└── src
├── __init__.py
├── config # Storing data files for emulator simulation
│ ├── object_box_db.json # carla blueprint data files (individual vehicle and pedestrian blueprint names, bounding box size, etc.)
│ ├── sequence_index.txt
│ └── vec_track # Intermediate Data Files
│ └── *.pkl
├── preprocess
│ ├── __init__.py
│ ├── create_tracklets_database.py # Generating Intermediate Data Files for Simulation Using Waymo data
│ ├── trans_seg_to_sequence.py # Get the name of the mesh imported by the current carla
│ └── waymo_converter.py # Generate kitti format datasets by converting acquired point cloud data with intermediate data files
├── scene_replay.py # WaymoSim simulation data generation pipeline
├── sensor_generator.py
├── walker_control.py
└── waymo_sequence # Storing waymo raw data
└── *.tfrecord
- Carla (>=0.9.12)
- PythonAPI for Carla
- requirements.txt
- Follow StreetSurf to generate Scenario Meshes.
- Thanks to Jianfei Guo for Technical support!!!
- Follow the instruction Import a Large Map into CARLA to import reconstruct mesh file(.fbx)
Follow LiDAR Simulation Library to use build different LiDAR.
Organize the raw Waymo files(*.tfrecord) in `waymo_sequence` folder.
Generate the data infos by running the following command:
```bash
python preprocess/create_tracklets_database.py
```
In [lidar_sensor python file](ReSimAD/src/sensor_generator.py),
- `local_save_dir` *line 53*: change the lidar data save path
- `lidar_name` *line 58*: change different LiDAR, such as: "hdl64", "hdl32", "pandar_40p" ...
- `lidar_transform` *line 62*: change the attachment location of LiDAR.
Generate Lidar data infos by running the following command:
```bash
python scene_replay.py --waymo_sequence segment-9320169289978396279_1040_000_1060_000
```
```bash
python preprocess/waymo_converter.py
```
The demo fbx and pkl file can be access from google drive
Please refer to 3DTrans for detail zero-shot cross-dataset adaptation results.