forked from LulaSan/monodepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bilinear_sampler.py
103 lines (80 loc) · 3.85 KB
/
bilinear_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Copyright 2017 Modifications Clement Godard.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import, division, print_function
import tensorflow as tf
def bilinear_sampler_1d_h(input_images, x_offset, wrap_mode='border', name='bilinear_sampler', **kwargs):
def _repeat(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.tile(tf.expand_dims(x, 1), [1, n_repeats])
return tf.reshape(rep, [-1])
def _interpolate(im, x, y):
with tf.variable_scope('_interpolate'):
# handle both texture border types
_edge_size = 0
if _wrap_mode == 'border':
_edge_size = 1
im = tf.pad(im, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='CONSTANT')
x = x + _edge_size
y = y + _edge_size
elif _wrap_mode == 'edge':
_edge_size = 0
else:
return None
x = tf.clip_by_value(x, 0.0, _width_f - 1 + 2 * _edge_size)
x0_f = tf.floor(x)
y0_f = tf.floor(y)
x1_f = x0_f + 1
x0 = tf.cast(x0_f, tf.int32)
y0 = tf.cast(y0_f, tf.int32)
x1 = tf.cast(tf.minimum(x1_f, _width_f - 1 + 2 * _edge_size), tf.int32)
dim2 = (_width + 2 * _edge_size)
dim1 = (_width + 2 * _edge_size) * (_height + 2 * _edge_size)
base = _repeat(tf.range(_num_batch) * dim1, _height * _width)
base_y0 = base + y0 * dim2
idx_l = base_y0 + x0
idx_r = base_y0 + x1
im_flat = tf.reshape(im, tf.stack([-1, _num_channels]))
pix_l = tf.gather(im_flat, idx_l)
pix_r = tf.gather(im_flat, idx_r)
weight_l = tf.expand_dims(x1_f - x, 1)
weight_r = tf.expand_dims(x - x0_f, 1)
return weight_l * pix_l + weight_r * pix_r
def _transform(input_images, x_offset):
with tf.variable_scope('transform'):
# grid of (x_t, y_t, 1), eq (1) in ref [1]
x_t, y_t = tf.meshgrid(tf.linspace(0.0, _width_f - 1.0, _width),
tf.linspace(0.0 , _height_f - 1.0 , _height))
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
x_t_flat = tf.tile(x_t_flat, tf.stack([_num_batch, 1]))
y_t_flat = tf.tile(y_t_flat, tf.stack([_num_batch, 1]))
x_t_flat = tf.reshape(x_t_flat, [-1])
y_t_flat = tf.reshape(y_t_flat, [-1])
x_t_flat = x_t_flat + tf.reshape(x_offset, [-1]) * _width_f
input_transformed = _interpolate(input_images, x_t_flat, y_t_flat)
output = tf.reshape(
input_transformed, tf.stack([_num_batch, _height, _width, _num_channels]))
return output
with tf.variable_scope(name):
_num_batch = tf.shape(input_images)[0]
_height = tf.shape(input_images)[1]
_width = tf.shape(input_images)[2]
_num_channels = tf.shape(input_images)[3]
_height_f = tf.cast(_height, tf.float32)
_width_f = tf.cast(_width, tf.float32)
_wrap_mode = wrap_mode
output = _transform(input_images, x_offset)
return output