forked from raoyongming/CAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
201 lines (161 loc) · 6.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
##############################################
# Center Loss for Attention Regularization
##############################################
class CenterLoss(nn.Module):
def __init__(self):
super(CenterLoss, self).__init__()
self.l2_loss = nn.MSELoss(reduction='sum')
def forward(self, outputs, targets):
return self.l2_loss(outputs, targets) / outputs.size(0)
##################################
# Metric
##################################
class Metric(object):
pass
class AverageMeter(Metric):
def __init__(self, name='loss'):
self.name = name
self.reset()
def reset(self):
self.scores = 0.
self.total_num = 0.
def __call__(self, batch_score, sample_num=1):
self.scores += batch_score
self.total_num += sample_num
return self.scores / self.total_num
class TopKAccuracyMetric(Metric):
def __init__(self, topk=(1,)):
self.name = 'topk_accuracy'
self.topk = topk
self.maxk = max(topk)
self.reset()
def reset(self):
self.corrects = np.zeros(len(self.topk))
self.num_samples = 0.
def __call__(self, output, target):
"""Computes the precision@k for the specified values of k"""
self.num_samples += target.size(0)
_, pred = output.topk(self.maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
for i, k in enumerate(self.topk):
correct_k = correct[:k].view(-1).float().sum(0)
self.corrects[i] += correct_k.item()
return self.corrects * 100. / self.num_samples
##################################
# Callback
##################################
class Callback(object):
def __init__(self):
pass
def on_epoch_begin(self):
pass
def on_epoch_end(self, *args):
pass
class ModelCheckpoint(Callback):
def __init__(self, savepath, monitor='val_topk_accuracy', mode='max'):
self.savepath = savepath
self.monitor = monitor
self.mode = mode
self.reset()
super(ModelCheckpoint, self).__init__()
def reset(self):
if self.mode == 'max':
self.best_score = float('-inf')
else:
self.best_score = float('inf')
def set_best_score(self, score):
if isinstance(score, np.ndarray):
self.best_score = score[0]
else:
self.best_score = score
def on_epoch_begin(self):
pass
def on_epoch_end(self, logs, net, **kwargs):
current_score = logs[self.monitor]
if isinstance(current_score, np.ndarray):
current_score = current_score[0]
if (self.mode == 'max' and current_score > self.best_score) or \
(self.mode == 'min' and current_score < self.best_score):
self.best_score = current_score
if isinstance(net, torch.nn.DataParallel):
state_dict = net.module.state_dict()
else:
state_dict = net.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].cpu()
if 'feature_center' in kwargs:
feature_center = kwargs['feature_center']
feature_center = feature_center.cpu()
torch.save({
'logs': logs,
'state_dict': state_dict,
'feature_center': feature_center}, self.savepath)
else:
torch.save({
'logs': logs,
'state_dict': state_dict}, self.savepath)
##################################
# augment function
##################################
def batch_augment(images, attention_map, mode='crop', theta=0.5, padding_ratio=0.1):
batches, _, imgH, imgW = images.size()
if mode == 'crop':
crop_images = []
for batch_index in range(batches):
atten_map = attention_map[batch_index:batch_index + 1]
if isinstance(theta, tuple):
theta_c = random.uniform(*theta) * atten_map.max()
else:
theta_c = theta * atten_map.max()
crop_mask = F.upsample_bilinear(atten_map, size=(imgH, imgW)) >= theta_c
nonzero_indices = torch.nonzero(crop_mask[0, 0, ...])
height_min = max(int(nonzero_indices[:, 0].min().item() - padding_ratio * imgH), 0)
height_max = min(int(nonzero_indices[:, 0].max().item() + padding_ratio * imgH), imgH)
width_min = max(int(nonzero_indices[:, 1].min().item() - padding_ratio * imgW), 0)
width_max = min(int(nonzero_indices[:, 1].max().item() + padding_ratio * imgW), imgW)
crop_images.append(
F.upsample_bilinear(images[batch_index:batch_index + 1, :, height_min:height_max, width_min:width_max],
size=(imgH, imgW)))
crop_images = torch.cat(crop_images, dim=0)
return crop_images
elif mode == 'drop':
drop_masks = []
for batch_index in range(batches):
atten_map = attention_map[batch_index:batch_index + 1]
if isinstance(theta, tuple):
theta_d = random.uniform(*theta) * atten_map.max()
else:
theta_d = theta * atten_map.max()
drop_masks.append(F.upsample_bilinear(atten_map, size=(imgH, imgW)) < theta_d)
drop_masks = torch.cat(drop_masks, dim=0)
drop_images = images * drop_masks.float()
return drop_images
else:
raise ValueError('Expected mode in [\'crop\', \'drop\'], but received unsupported augmentation method %s' % mode)
##################################
# transform in dataset
##################################
def get_transform(resize, phase='train'):
if phase == 'train':
return transforms.Compose([
transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))),
transforms.RandomCrop(resize),
transforms.RandomHorizontalFlip(0.5),
transforms.ColorJitter(brightness=0.126, saturation=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
return transforms.Compose([
transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])