Skip to content

Latest commit

 

History

History
241 lines (177 loc) · 7.32 KB

README.md

File metadata and controls

241 lines (177 loc) · 7.32 KB

CSG-VL: A family of small multimodal models

Logo

CSG-VL is a family of small but strong multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Wukong-1B, Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5 and Phi-2.

News and Updates

  • 2024.05.09 🔥 CSG-VL is released!

Quickstart

HuggingFace transformers

Here we show a code snippet to show you how to use CSG-VL-1B-v0.1 with HuggingFace transformers.

Before running the snippet, you need to install the following dependencies:

pip install torch transformers accelerate pillow
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# set device
torch.set_default_device('cpu')  # or 'cuda'

model_name = 'opencsg/csg-wukong-1B-VL-v0.1'
# create model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map='auto',
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    trust_remote_code=True)

# text prompt
prompt = 'What is the astronaut holding in his hand?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
image = Image.open('example_1.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)

# generate
output_ids = model.generate(
    input_ids,
    images=image_tensor,
    max_new_tokens=100,
    use_cache=True)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())

Install

  • CUDA and cuDNN

    We use CUDA 11.8 and cuDNN 8.7.0. We actually use the CUDA docker by NVIDIA: docker pull nvcr.io/nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04. CUDA 12 is fine, too.

  • Create a conda virtual environment and activate it:

    conda create -n csg-vl python=3.10
    conda activate csg-vl
  • Basic requirements

    pip install --upgrade pip  # enable PEP 660 support
    pip install transformers
    pip install torch torchvision xformers --index-url https://download.pytorch.org/whl/cu118
  • Install apex

    # https://github.com/NVIDIA/apex#from-source
    pip install ninja
    git clone https://github.com/NVIDIA/apex
    cd apex
    # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
    pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
    # otherwise
    pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install flash-attention

    # https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features
    pip install packaging
    pip install flash-attn --no-build-isolation
  • Install csg-vl and other requirements

    git clone https://github.com/OpenCSGs/csg-vl.git
    cd csg-vl
    pip install -e .

Demo

Gradio Web UI

  • Launching the Gradio Web Server

    To interact with the models through a web interface, start the Gradio web server.

    Basic start:

    python -m csg_vl.serve.gradio_web_server \
    	--controller http://localhost:10000 \
    	--model-list-mode reload

    If you want to share your web server with others, use --share option. Note that frpc_linux_amd64_v0.2 may be missing and you can fix it following instructions printed on the screen.

    python -m csg_vl.serve.gradio_web_server \
    	--controller http://localhost:10000 \
    	--model-list-mode reload \
    	--share

    Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.

  • Starting the Controller

    First, start the controller. This service orchestrates communication between the web server and model workers.

    python -m csg_vl.serve.controller \
    	--host 0.0.0.0 \
    	--port 10000
  • Launching Model Workers

    Model workers handle the processing of model inferences. Configure each worker with the appropriate model and start it.

    • For full-parameter tuning models

      python -m csg_vl.serve.model_worker \
        --host 0.0.0.0 \
        --controller http://localhost:10000 \
        --port 40000 \
        --worker http://localhost:40000 \
        --model-path /path/to/csg-vl/model \
        --model-type wukong
    • For LoRA tuning models

      You can use script/merge_lora_weights.py to merge the LoRA weights and base LLM, and use it as above.

      python script/merge_lora_weights.py \
        --model-path /path/to/csg_vl_lora_weights \
        --model-base /path/to/base_llm_model \
        --model-type wukong \
        --save-model-path /path/to/merged_model

      Or you can use it without merging as below.

      python -m csg_vl.serve.model_worker \
        --host 0.0.0.0 \
        --controller http://localhost:10000 \
        --port 40000 \
        --worker http://localhost:40000 \
        --model-path /path/to/csg_vl_lora_weights \
        --model-base /path/to/base_llm_model \
        --model-type wukong

CLI Inference (Without Gradio Interface)

For CLI-based inference without using the Gradio interface, use the following command:

  • For full-parameter tuning models

    python -m csg_vl.serve.cli \
    	--model-path /path/to/csg-vl/model \
    	--model-type wukong \
    	--image-file /path/to/the/test/image
  • For LoRA tuning models

    You can use script/merge_lora_weights.py to merge the LoRA weights and base LLM, and use it as above.

    python script/merge_lora_weights.py \
    	--model-path /path/to/csg_vl_lora_weights \
    	--model-base /path/to/base_llm_model \
    	--model-type wukong \
    	--save-model-path /path/to/merged_model

    Or you can use it without merging as below.

    python -m csg_vl.serve.cli \
    	--model-path /path/to/csg_vl_lora_weights \
    	--model-base /path/to/base_llm_model \
    	--model-type wukong \
    	--image-file /path/to/the/test/image

License

This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the Apache license 2.0.

Acknowledgement

We acknowledge all the open-source contributors for the following projects to make this work possible