diff --git a/.github/workflows/website.yml b/.github/workflows/website.yml index 1d1cf997..bbc6395e 100644 --- a/.github/workflows/website.yml +++ b/.github/workflows/website.yml @@ -46,12 +46,20 @@ jobs: with: name: 'Data' + - name: Run the test that generates the plots report. + run: | + pytest tests/IVIMmodels/unit_tests/test_ivim_fit.py --json-report + mv .report.json utilities/ + python utilities/report-summary.py .report.json report-summary.json + - name: 'Filter and compress results file.' run: python utilities/reduce_output_size.py test_output.csv test_output.csv.gz - name: move data to the dashboard folder run: | mv test_output.csv.gz website/dashboard + mv report-summary.json website/dashboard + - name: Build documentation run: | diff --git a/requirements.txt b/requirements.txt index d32527f7..8964af89 100644 --- a/requirements.txt +++ b/requirements.txt @@ -13,3 +13,4 @@ tqdm pandas sphinx sphinx_rtd_theme +pytest-json-report diff --git a/tests/IVIMmodels/unit_tests/test_ivim_fit.py b/tests/IVIMmodels/unit_tests/test_ivim_fit.py index f4ecc2b8..431f1db9 100644 --- a/tests/IVIMmodels/unit_tests/test_ivim_fit.py +++ b/tests/IVIMmodels/unit_tests/test_ivim_fit.py @@ -3,115 +3,11 @@ import pytest import json import pathlib -import os from src.wrappers.OsipiBase import OsipiBase from utilities.data_simulation.GenerateData import GenerateData - #run using python -m pytest from the root folder - -# @pytest.fixture -# def algorithm_fixture() -# def test_fixtures() - -# use a fixture to generate data -# either read a config file for the test or perhaps hard code a few fixtures and usefixtures in the config? -# use a fixture to save data - -# def algorithm_list(): -# # Find the algorithms from algorithms.json -# file = pathlib.Path(__file__) -# algorithm_path = file.with_name('algorithms.json') -# with algorithm_path.open() as f: -# algorithm_information = json.load(f) -# return algorithm_information["algorithms"] - -# @pytest.fixture(params=algorithm_list()) -# def algorithm_fixture(request): -# # assert request.param == "algorithms" -# yield request.param - - - -# @pytest.fixture(params=SNR) -# def noise_fixture(request): -# return request.config.getoption("--noise") - -# @pytest.fixture -# def noise_fixture(request): -# yield request.param - -# @pytest.mark.parametrize("S", [SNR]) -# @pytest.mark.parametrize("D, Dp, f, bvals", [[0.0015, 0.1, 0.11000000000000007,[0, 5, 10, 50, 100, 200, 300, 500, 1000]]]) -# def test_generated(ivim_algorithm, ivim_data, SNR): -# S0 = 1 -# gd = GenerateData() -# name, bvals, data = ivim_data -# D = data["D"] -# f = data["f"] -# Dp = data["Dp"] -# if "data" not in data: -# signal = gd.ivim_signal(D, Dp, f, S0, bvals, SNR) -# else: -# signal = data["data"] -# fit = OsipiBase(algorithm=ivim_algorithm) -# [f_fit, Dp_fit, D_fit] = fit.osipi_fit(signal, bvals) -# npt.assert_allclose([f, D, Dp], [f_fit, D_fit, Dp_fit]) - - - -# test_linear_data = [ -# pytest.param(0, np.linspace(0, 1000, 11), id='0'), -# pytest.param(0.01, np.linspace(0, 1000, 11), id='0.1'), -# pytest.param(0.02, np.linspace(0, 1000, 11), id='0.2'), -# pytest.param(0.03, np.linspace(0, 1000, 11), id='0.3'), -# pytest.param(0.04, np.linspace(0, 1000, 11), id='0.4'), -# pytest.param(0.05, np.linspace(0, 1000, 11), id='0.5'), -# pytest.param(0.08, np.linspace(0, 1000, 11), id='0.8'), -# pytest.param(0.1, np.linspace(0, 1000, 11), id='1'), -# ] - -#@pytest.mark.parametrize("D, bvals", test_linear_data) -#def test_linear_fit(D, bvals): - #gd = GenerateData() - #gd_signal = gd.exponential_signal(D, bvals) - #print(gd_signal) - #fit = LinearFit() - #D_fit = fit.linear_fit(bvals, np.log(gd_signal)) - #npt.assert_allclose([1, D], D_fit) - -# test_ivim_data = [ -# pytest.param(0, 0.01, 0.05, np.linspace(0, 1000, 11), id='0'), -# pytest.param(0.1, 0.01, 0.05, np.linspace(0, 1000, 11), id='0.1'), -# pytest.param(0.2, 0.01, 0.05, np.linspace(0, 1000, 11), id='0.2'), -# pytest.param(0.1, 0.05, 0.1, np.linspace(0, 1000, 11), id='0.3'), -# pytest.param(0.4, 0.001, 0.05, np.linspace(0, 1000, 11), id='0.4'), -# pytest.param(0.5, 0.001, 0.05, np.linspace(0, 1000, 11), id='0.5'), -# ] - -#@pytest.mark.parametrize("f, D, Dp, bvals", test_ivim_data) -#def test_ivim_fit(f, D, Dp, bvals): - ## We should make a wrapper that runs this for a range of different settings, such as b thresholds, bounds, etc. - ## An additional inputs to these functions could perhaps be a "settings" class with attributes that are the settings to the - ## algorithms. I.e. bvalues, thresholds, bounds, initial guesses. - ## That way, we can write something that defines a range of settings, and then just run them through here. - - #gd = GenerateData() - #gd_signal = gd.ivim_signal(D, Dp, f, 1, bvals) - - ##fit = LinearFit() # This is the old code by ETP - #fit = ETP_SRI_LinearFitting() # This is the standardized format by IAR, which every algorithm will be implemented with - - #[f_fit, Dp_fit, D_fit] = fit.ivim_fit(gd_signal, bvals) # Note that I have transposed Dp and D. We should decide on a standard order for these. I usually go with f, Dp, and D ordered after size. - #npt.assert_allclose([f, D], [f_fit, D_fit], atol=1e-5) - #if not np.allclose(f, 0): - #npt.assert_allclose(Dp, Dp_fit, rtol=1e-2, atol=1e-3) - - -# convert the algorithm list and signal list to fixtures that read from the files into params (scope="session") -# from that helpers can again parse the files? - def signal_helper(signal): signal = np.asarray(signal) signal = np.abs(signal) @@ -160,17 +56,36 @@ def data_ivim_fit_saved(): @pytest.mark.parametrize("name, bvals, data, algorithm, xfail, kwargs, tolerances", data_ivim_fit_saved()) -def test_ivim_fit_saved(name, bvals, data, algorithm, xfail, kwargs, tolerances, request): +def test_ivim_fit_saved(name, bvals, data, algorithm, xfail, kwargs, tolerances, request, record_property): if xfail["xfail"]: mark = pytest.mark.xfail(reason="xfail", strict=xfail["strict"]) request.node.add_marker(mark) fit = OsipiBase(algorithm=algorithm, **kwargs) signal, ratio = signal_helper(data["data"]) + tolerances = tolerances_helper(tolerances, ratio, data["noise"]) [f_fit, Dp_fit, D_fit] = fit.osipi_fit(signal, bvals) + def to_list_if_needed(value): + return value.tolist() if isinstance(value, np.ndarray) else value + test_result = { + "name": name, + "algorithm": algorithm, + "f_fit": to_list_if_needed(f_fit), + "Dp_fit": to_list_if_needed(Dp_fit), + "D_fit": to_list_if_needed(D_fit), + "f": to_list_if_needed(data['f']), + "Dp": to_list_if_needed(data['Dp']), + "D": to_list_if_needed(data['D']), + "rtol": tolerances["rtol"], + "atol": tolerances["atol"] + } + + + record_property('test_data', test_result) + npt.assert_allclose(data['f'], f_fit, rtol=tolerances["rtol"]["f"], atol=tolerances["atol"]["f"]) + if data['f']<0.80: # we need some signal for D to be detected npt.assert_allclose(data['D'], D_fit, rtol=tolerances["rtol"]["D"], atol=tolerances["atol"]["D"]) if data['f']>0.03: #we need some f for D* to be interpretable npt.assert_allclose(data['Dp'], Dp_fit, rtol=tolerances["rtol"]["Dp"], atol=tolerances["atol"]["Dp"]) - diff --git a/utilities/report-summary.py b/utilities/report-summary.py new file mode 100644 index 00000000..83dacddc --- /dev/null +++ b/utilities/report-summary.py @@ -0,0 +1,26 @@ +import pathlib +import json +import sys + +def summarize_test_report(input_file:str, output_file:str): + file = pathlib.Path(__file__) + report_path = file.with_name(input_file) + with report_path.open() as f: + report_info = json.load(f) + summary = [] + for test_case in report_info['tests']: + values = test_case['user_properties'][0]['test_data'] + values['status'] = test_case['outcome'] + summary.append(values) + + with open(output_file, 'w') as f: + json.dump(summary, f, indent=4) + +if __name__ == '__main__': + if len(sys.argv) != 3: + print("Usage: python report-summary.py ") + sys.exit(1) + + input_file = sys.argv[1] + output_file = sys.argv[2] + summarize_test_report(input_file, output_file) diff --git a/website/dashboard/index.html b/website/dashboard/index.html index e7ca2650..262e5a5a 100644 --- a/website/dashboard/index.html +++ b/website/dashboard/index.html @@ -10,6 +10,7 @@ + @@ -97,6 +98,12 @@

IVIM MRI Algorithm Fitting Dashboard

+

Validation Data Plots

+
+
+
+
+
diff --git a/website/dashboard/test_plots.js b/website/dashboard/test_plots.js new file mode 100644 index 00000000..d88ff80f --- /dev/null +++ b/website/dashboard/test_plots.js @@ -0,0 +1,85 @@ +document.addEventListener('DOMContentLoaded', function() { + fetch('report-summary.json') + .then(response => response.json()) + .then(data => { + function createPlot(container, parameter) { + var reference_values = data.map(d => d[parameter]); + var fit_values = data.map(d => d[parameter + '_fit']); + var minRefValue = Math.min(...reference_values); + var maxRefValue = Math.max(...reference_values); + // Create a range for tolerance trace x axis. + var xRange = [minRefValue, maxRefValue]; + // var DefaultTolerance = { + // "rtol": { + // "f": 0.05, + // "D": 2, + // "Dp": 0.5 + // }, + // "atol": { + // "f": 0.2, + // "D": 0.001, + // "Dp": 0.06 + // } + // } + var DefaultTolerance = data[1] //Majority of the dataset has this tolerance values + var tolerance = xRange.map((d) => DefaultTolerance['atol'][parameter] + DefaultTolerance['rtol'][parameter] * d); + var negative_tolerance = tolerance.map(t => -t); + + var errors = fit_values.map((d, i) => (d - reference_values[i])); + + // Define colors for each status + var statusColors = { + 'passed': 'green', + 'xfailed': 'blue', + 'failed': 'red' + }; + + // Assign color based on the status + var marker_colors = data.map(entry => statusColors[entry.status]); + + var scatter_trace = { + x: reference_values, + y: errors, + mode: 'markers', + type: 'scatter', + name: `${parameter} fitting values`, + text: data.map(entry => `Algorithm: ${entry.algorithm} Region: ${entry.name}`), + marker: { + color: marker_colors + } + }; + + var tolerance_trace = { + x: xRange, + y: tolerance, + type: 'scatter', + mode: 'lines', + line: { dash: 'dash', color: 'black' }, + name: 'Positive Tolerance' + }; + + var negative_tolerance_trace = { + x: xRange, + y: negative_tolerance, + type: 'scatter', + mode: 'lines', + line: { dash: 'dash', color: 'black' }, + name: 'Negative Tolerance' + }; + + var layout = { + title: `Error Plot for ${parameter.toUpperCase()}_fit with Tolerance Bands`, + xaxis: { title: `Reference ${parameter.toUpperCase()} Values` }, + yaxis: { title: `Error (${parameter}_fit - Reference ${parameter})` } + }; + + var plot_data = [scatter_trace, tolerance_trace, negative_tolerance_trace]; + + Plotly.newPlot(container, plot_data, layout); + } + + createPlot('plot_f_fit', 'f'); + createPlot('plot_Dp_fit', 'Dp'); + createPlot('plot_D_fit', 'D'); + }); +});