-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
metro and subsectors as factors #6
Comments
I added these to utils.R: # @export
get_geo_levels <- function()
{
x <-
structure(c(4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 1L, 14L,
15L, 16L, 17L, 2L, 18L, 19L, 20L, 21L, 22L, 3L, 23L, 24L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 25L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L,
26L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 27L, 76L, 77L, 78L,
79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L,
28L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L,
103L, 104L, 105L, 106L, 29L, 107L, 108L, 109L, 110L, 111L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L,
124L, 125L, 30L, 126L, 127L, 128L, 31L, 129L, 130L, 131L, 132L,
133L, 134L, 32L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L,
143L, 144L, 145L, 146L, 147L, 148L, 149L, 33L, 150L, 151L, 152L,
153L, 154L, 34L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L,
163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L,
174L, 175L, 35L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L,
184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L, 36L,
194L, 195L, 196L, 197L, 37L, 198L, 199L, 200L, 38L, 201L, 202L,
39L, 203L, 204L, 205L, 206L, 40L, 207L, 208L, 41L, 215L, 210L,
216L, 217L, 218L, 219L, 220L, 211L, 221L, 222L, 223L, 224L, 225L,
226L, 227L, 228L, 229L, 230L, 212L, 231L, 232L, 233L, 234L, 235L,
236L, 237L, 238L, 239L, 240L, 241L, 242L, 243L, 244L, 245L, 209L,
246L, 247L, 213L, 248L, 249L, 250L, 251L, 252L, 253L, 254L, 255L,
256L, 257L, 258L, 259L, 260L, 214L, 261L, 262L, 263L, 264L, 265L,
266L, 267L, 268L, 269L, 270L, 271L, 272L, 273L, 274L, 275L, 277L,
278L, 279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L,
276L, 289L, 290L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L,
308L, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L,
319L, 320L, 321L, 322L, 323L, 324L, 325L, 326L, 293L, 327L, 294L,
328L, 329L, 330L, 331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L,
339L, 295L, 340L, 341L, 296L, 342L, 343L, 291L, 344L, 345L, 346L,
347L, 348L, 349L, 350L, 351L, 297L, 298L, 352L, 353L, 354L, 355L,
356L, 292L, 357L, 358L, 359L, 360L, 361L, 362L, 299L, 363L, 364L,
365L, 366L, 367L, 368L, 369L), .Label = c("520", "680", "760",
"1123", "1280", "1602", "1642", "1960", "2082", "2162", "3120",
"4472", "5120", "5602", "5960", "6280", "6442", "7040", "7320",
"7362", "7460", "7480", "7602", "8872", "160", "200", "240",
"320", "380", "460", "480", "500", "600", "640", "733", "840",
"860", "870", "880", "920", "960", "1000", "1020", "1040", "1080",
"1240", "1260", "1303", "1320", "1360", "1400", "1440", "1480",
"1520", "1540", "1560", "1660", "1692", "1720", "1740", "1760",
"1800", "1840", "1880", "1900", "1922", "1950", "2000", "2020",
"2040", "2120", "2180", "2290", "2320", "2335", "2400", "2520",
"2560", "2620", "2655", "2670", "2700", "2710", "2750", "2840",
"2975", "2985", "2995", "3000", "3040", "3160", "3240", "3283",
"3290", "3320", "3362", "3480", "3520", "3560", "3580", "3600",
"3605", "3660", "3710", "3720", "3760", "3810", "3840", "3850",
"3880", "3920", "3960", "3980", "4000", "4040", "4100", "4120",
"4150", "4200", "4280", "4320", "4360", "4400", "4420", "4520",
"4640", "4680", "4720", "4880", "4890", "4900", "4920", "4940",
"4992", "5082", "5170", "5240", "5280", "5330", "5345", "5360",
"5483", "5523", "5560", "5720", "5790", "5880", "5920", "5990",
"6080", "6120", "6162", "6200", "6323", "6403", "6483", "6560",
"6580", "6640", "6680", "6690", "6720", "6740", "6760", "6800",
"6840", "6880", "6895", "6922", "6960", "7000", "7120", "7160",
"7200", "7240", "7490", "7510", "7520", "7560", "7640", "7680",
"7800", "7840", "7880", "7920", "8003", "8050", "8080", "8120",
"8160", "8240", "8280", "8320", "8400", "8440", "8520", "8560",
"8600", "8640", "8680", "8750", "8780", "8800", "8960", "9040",
"9080", "9280", "9320", "40", "120", "220", "280", "450", "743",
"1010", "1350", "1580", "1620", "2030", "2190", "2200", "2240",
"2330", "2340", "2360", "2440", "2580", "2650", "2720", "2760",
"2880", "2900", "2980", "3080", "3150", "3285", "3350", "3400",
"3440", "3500", "3610", "3620", "3680", "3700", "3870", "4080",
"4243", "4600", "4800", "5160", "5200", "5800", "6015", "6020",
"6240", "6340", "6520", "6660", "6820", "6980", "7610", "7620",
"7720", "7760", "8140", "8360", "8920", "8940", "9000", "9140",
"9200", "9260", "9340", "9360", "0", "720", "1120", "1600", "1920",
"2160", "3280", "3360", "4480", "5600", "5640", "6160", "6440",
"6920", "7360", "8840", "60", "80", "440", "470", "560", "580",
"730", "740", "875", "1125", "1145", "1150", "1160", "1200",
"1305", "1310", "1640", "1680", "1890", "1930", "2080", "2281",
"2600", "2640", "2680", "2800", "2920", "2960", "3060", "3180",
"3200", "3640", "3740", "3800", "4160", "4240", "4560", "4760",
"4840", "5000", "5015", "5080", "5140", "5190", "5350", "5380",
"5400", "5480", "5520", "5660", "5775", "5910", "5945", "6320",
"6360", "6400", "6450", "6480", "6600", "6780", "7080", "7400",
"7440", "7485", "7500", "7600", "8000", "8040", "8200", "8480",
"8720", "8735", "8760", "8880", "9160", "9240", "9270", "1122",
"7442"), class = "factor")
return(x)
}
# @export
get_subsector_levels <- function()
{
x <-
structure(c(2L, 7L, 10L, 9L, 11L, 1L, 4L, 6L, 8L, 3L, 5L, 12L
), .Label = c("Arts", "Education", "Environmental", "Health",
"Hospitals", "Human Services", "International", "Mutual Benefit",
"Public Benefit", "Religion", "Universities", "Unknown", ""), class = "factor")
return(x)
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
There are issues with metric availability for all geography-subsector pairs across time.
We should have 4,428 observations each year.
The sample code for HHI includes a line to ensure geo and subsector are factors. Perhaps coverage varies by year, though, in which case we should include a global GEO.LEVELS with all metro areas and SUBSECTOR.LEVELS as well. We can add these to utils.R so they are available to all.
To use the consistent set of levels we would add a levels argument to factor().
The text was updated successfully, but these errors were encountered: