-
Notifications
You must be signed in to change notification settings - Fork 1
/
transfer_pytorch.py
140 lines (110 loc) · 3.69 KB
/
transfer_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, transforms
import torchvision.models as models
import matplotlib.pyplot as plt
import time
import copy
import os
import pandas as pd
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'validation': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
data_dir = './data'
dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x) ,
data_transforms[x]) for x in ['train', 'validation']}
dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=128,
shuffle=True, num_workers=4)
for x in ['train','validation']}
dset_sizes = {x: len(dsets[x]) for x in ['train','validation']}
dset_classes = dsets['train'].classes
def imshow(inp, title=None):
inp = inp.numpy().transpose((1,2,0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std*inp + mean
#plt.imshow(inp)
# if title is not None:
# plt.title(title)
#plt.pause(1)
# inputs, classes = next(iter(dset_loaders['train']))
# out = torchvision.utils.make_grid(inputs)
# imshow(out, title=[dset_classes[x] for x in classes])
def train_model(model, criterion, optimizer, lr_scheduler, num_epochs=25):
since = time.time()
best_model = model
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-'*10)
for phase in ['train', 'validation']:
if phase == 'train':
optimizer = lr_scheduler(optimizer, epoch)
model.train(True)
else:
model.train(False)
running_loss = 0.0
running_corrects = 0
for data in dset_loaders[phase]:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.data[0]
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dset_sizes[phase]
epoch_acc = running_corrects / dset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'validation' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model = copy.deepcopy(model)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed//60, time_elapsed%60))
print('Best validation Acc: {:4f}'.format(best_acc))
return best_model
def exp_lr_scheduler(optimizer, epoch, init_lr=0.001, lr_decay_epoch=7):
lr = init_lr*(0.1**(epoch // lr_decay_epoch))
if epoch%lr_decay_epoch == 0:
print('LR is set to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr']=lr
return optimizer
use_gpu = True
densenet = models.densenet121(pretrained=True)
#num_features = densenet.fc.in_features
num_features = 1024
print(num_features)
densenet.fc = nn.Linear(num_features, 12)
print(densenet.fc)
if use_gpu:
densenet = densenet.cuda()
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(densenet.parameters(), lr=0.001, momentum=0.9)
densenet = train_model(densenet, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
torch.save(densenet.state_dict(), './tes.pth.tar')