This parameter is ignored if ``look_at`` is not `None`. Defaults to `[0,0,0]`.
- look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.Camera` | None
- A position or instance of :class:`~sionna.rt.Transmitter`,
- :class:`~sionna.rt.Receiver`, or :class:`~sionna.rt.Camera` to look at.
- If set to `None`, then ``orientation`` is used to orientate the camera.
+ look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | None
+ A position or the instance of a :class:`~sionna.rt.Transmitter`,
+ :class:`~sionna.rt.Receiver`, :class:`~sionna.rt.RIS`, or :class:`~sionna.rt.Camera` to look at.
+ If set to `None`, then ``orientation`` is used to orientate the device. """# The convention of Mitsuba for camera is Y as up and look toward Z+.
diff --git a/docs/_modules/sionna/rt/coverage_map.html b/docs/_modules/sionna/rt/coverage_map.html
index 9e224a7f..64a4a2b1 100644
--- a/docs/_modules/sionna/rt/coverage_map.html
+++ b/docs/_modules/sionna/rt/coverage_map.html
@@ -3,7 +3,7 @@
- sionna.rt.coverage_map — Sionna 0.17.0 documentation
+ sionna.rt.coverage_map — Sionna 0.18.0 documentation
@@ -394,6 +394,18 @@
[docs]defshow(self,tx=0,vmin=None,vmax=None,
+ show_tx=True,show_rx=False,show_ris=False):r"""show(tx=0, vmin=None, vmax=None, show_tx=True) Visualizes a coverage map The position of the transmitter is indicated by a red "+" marker.
+ The positions of the receivers are indicated by blue "x" markers.
+ The positions of the RIS are indicated by black "*" markers. Input -----
@@ -1245,6 +1297,14 @@
Source code for sionna.rt.coverage_map
If set to `True`, then the position of the transmitter is shown. Defaults to `True`.
+ show_rx : bool
+ If set to `True`, then the position of the receivers is shown.
+ Defaults to `False`.
+
+ show_ris : bool
+ If set to `True`, then the position of the RIS is shown.
+ Defaults to `False`.
+
Output ------ : :class:`~matplotlib.pyplot.Figure`
@@ -1274,10 +1334,19 @@
Source code for sionna.rt.coverage_map
plt.colorbar(label='Path gain [dB]')plt.xlabel('Cell index (X-axis)')plt.ylabel('Cell index (Y-axis)')
- # Visualizing the BS position
+ # Visualizing transmitter, receiver, RIS positionsifshow_tx:tx_pos=self._tx_pos[tx]fig.axes[0].scatter(*tx_pos,marker='P',c='r')
+
+ ifshow_rx:
+ forrx_posinself._rx_pos:
+ fig.axes[0].scatter(*rx_pos,marker='x',c='b')
+
+ ifshow_ris:
+ forris_posinself._ris_pos:
+ fig.axes[0].scatter(*ris_pos,marker='*',c='k')
+
returnfig
to_world : :class:`mitsuba.ScalarTransform4f` Rectangle to world transformation """
- returncoverage_map_rectangle_to_world(self._center,self._orientation,
- self._size)
+ returnmitsuba_rectangle_to_world(self._center,self._orientation,
+ self._size)def__getitem__(self,key):ifisinstance(key,str):
@@ -1492,39 +1561,6 @@
Source code for sionna.rt.coverage_map
))returnself._value[key]
-
-defcoverage_map_rectangle_to_world(center,orientation,size):
-"""
- Build the `to_world` transformation that maps a default Mitsuba rectangle
- to the rectangle that defines the coverage map surface.
-
- Input
- ------
- center : [3], tf.float
- Center of the rectangle
-
- orientation : [3], tf.float
- Orientation of the rectangle
-
- size : [2], tf.float
- Scale of the rectangle.
- The width of the rectangle (in the local X direction) is scale[0]
- and its height (in the local Y direction) scale[1].
-
- Output
- -------
- to_world : :class:`mitsuba.ScalarTransform4f`
- Rectangle to world transformation.
- """
-
- orientation=180.*orientation/PI
- return(
- mi.ScalarTransform4f.translate(center.numpy())
- @mi.ScalarTransform4f.rotate(axis=[0,0,1],angle=orientation[0])
- @mi.ScalarTransform4f.rotate(axis=[0,1,0],angle=orientation[1])
- @mi.ScalarTransform4f.rotate(axis=[1,0,0],angle=orientation[2])
- @mi.ScalarTransform4f.scale([0.5*size[0],0.5*size[1],1])
- )
If set to `False`, scattered paths are not returned. Defaults to `True`.
+ ris : bool
+ If set to `False`, paths involving RIS are not returned.
+ Defaults to `True`.
+
+ cluster_ris_paths : bool
+ If set to `True`, the paths from each RIS are coherently combined
+ into a single path, and the delays are averaged.
+ Note that this process is performed separately for each RIS.
+ For large RIS, clustering the paths significantly reduces the memory
+ required to run link-level simulations.
+ Defaults to `True`.
+
num_paths : int or `None` All CIRs are either zero-padded or cropped to the largest ``num_paths`` paths.
@@ -1617,6 +1658,8 @@
Source code for sionna.rt.paths
Path delays """
+ ris=risand(len(self._scene.ris)>0)
+
# Select only the desired effectstypes=self.types[0]# [max_num_paths]
@@ -1633,6 +1676,78 @@
Source code for sionna.rt.paths
ifscattering:selection_mask=tf.logical_or(selection_mask,types==Paths.SCATTERED)
+ ifris:
+ ifcluster_ris_paths:
+ # Combine path coefficients from every RIS coherently and
+ # average their delays.
+ # This process is performed separately for each RIS.
+ #
+ # Extract paths coefficients and delays corresponding to RIS
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # num_ris_paths, num_time_steps]
+ a_ris=tf.gather(self.a,tf.where(types==Paths.RIS)[:,0],
+ axis=-2)
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # num_ris_paths] or [batch_size, num_rx, num_tx,num_ris_paths]
+ tau_ris=tf.gather(self.tau,tf.where(types==Paths.RIS)[:,0],
+ axis=-1)
+ # [batch_size, num_rx, num_rx_ant/1, num_tx, num_tx_ant/1,
+ # num_ris_paths]
+ ifself._scene.synthetic_array:
+ tau_ris=tf.expand_dims(tau_ris,2)
+ tau_ris=tf.expand_dims(tau_ris,4)
+ # Loop over RIS to combine their path coefficients and delays
+ index_start=0
+ index_end=0
+ a_combined_ris_all=[]
+ tau_combined_ris_all=[]
+ forris_inself._scene.ris.values():
+ index_end=index_start+ris_.num_cells
+ # Extract the path coefficients and delays corresponding to
+ # the paths from RIS
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # num_this_ris_path, num_time_steps]
+ a_this_ris=a_ris[...,index_start:index_end,:]
+ # [batch_size, num_rx, num_rx_ant/1, num_tx, num_tx_ant/1,
+ # num_this_ris_path]
+ tau_this_ris=tau_ris[...,index_start:index_end]
+ # Average the delays
+ # [batch_size, num_rx, num_rx_ant/1, num_tx, num_tx_ant/1,1]
+ mean_tau_this_ris=tf.reduce_mean(tau_this_ris,axis=-1,
+ keepdims=True)
+ # Phase shift due to propagation delay.
+ # We subtract the average delay to ensure the propagation
+ # delay is not applied, only the phase shift due to the
+ # RIS geometry
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # num_this_ris_path]
+ tau_this_ris-=mean_tau_this_ris
+ ps=tf.complex(tf.zeros_like(tau_this_ris),
+ -2.*PI*self._scene.frequency*tau_this_ris)
+ ps=ps[...,tf.newaxis]
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # num_this_ris_path, num_time_steps]
+ a_this_ris=a_this_ris*tf.exp(ps)
+ # Combine the paths coefficients and delays
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant, 1,
+ # num_time_steps]
+ a_this_ris=tf.reduce_sum(a_this_ris,axis=-2,
+ keepdims=True)
+
+ #
+ a_combined_ris_all.append(a_this_ris)
+ tau_combined_ris_all.append(mean_tau_this_ris)
+ #
+ index_start=index_end
+ #
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_ris,
+ # num_time_steps]
+ a_combined_ris_all=tf.concat(a_combined_ris_all,axis=-2)
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_ris]
+ tau_combined_ris_all=tf.concat(tau_combined_ris_all,axis=-1)
+ else:
+ selection_mask=tf.logical_or(selection_mask,
+ types==Paths.RIS)# Extract selected paths# [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant, max_num_paths,
@@ -1641,20 +1756,29 @@
Source code for sionna.rt.paths
# [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant, max_num_paths]# or [batch_size, num_rx, num_tx, max_num_paths]tau=tf.gather(self.tau,tf.where(selection_mask)[:,0],axis=-1)
-
- # Compute baseband CIR
- # [batch_size, num_rx, 1/num_rx_ant, num_tx, 1/num_tx_ant,
- # max_num_paths, num_time_steps, 1]ifself._scene.synthetic_array:tau_=tf.expand_dims(tau,2)tau_=tf.expand_dims(tau_,4)else:tau_=tau
+
+ # If RIS paths were combined, add the results of the clustering
+ ifrisandcluster_ris_paths:
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # max_num_paths, num_time_steps]
+ a=tf.concat([a,a_combined_ris_all],axis=-2)
+ # [batch_size, num_rx, num_rx_ant, num_tx, num_tx_ant,
+ # max_num_paths]
+ tau_=tf.concat([tau_,tau_combined_ris_all],axis=-1)
+
+ # Compute base-band CIR
+ # [batch_size, num_rx, 1/num_rx_ant, num_tx, 1/num_tx_ant,
+ # max_num_paths, num_time_steps, 1]tau_=tf.expand_dims(tau_,-1)phase=tf.complex(tf.zeros_like(tau_),-2*PI*self._scene.frequency*tau_)# Manual repeat along the time step dimension as high-dimensional
- # brodcast is not possible
+ # broadcast is not possiblephase=tf.repeat(phase,a.shape[-1],axis=-1)a=a*tf.exp(phase)
@@ -1830,7 +1954,7 @@
Source code for sionna.rt.paths
defset_los_path_type(self):"""
- Flags paths that do not hit any objects to as LoS ones.
+ Flags paths that do not hit any object as LoS """# [max_depth, num_targets, num_sources, num_paths]
diff --git a/docs/_modules/sionna/rt/radio_material.html b/docs/_modules/sionna/rt/radio_material.html
index 654c97ae..d31758d1 100644
--- a/docs/_modules/sionna/rt/radio_material.html
+++ b/docs/_modules/sionna/rt/radio_material.html
@@ -3,7 +3,7 @@
- sionna.rt.radio_material — Sionna 0.17.0 documentation
+ sionna.rt.radio_material — Sionna 0.18.0 documentation
@@ -394,6 +394,18 @@
This parameter is ignored if ``look_at`` is not `None`. Defaults to [0,0,0].
- look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.Camera` | None
+ look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | None A position or the instance of a :class:`~sionna.rt.Transmitter`,
- :class:`~sionna.rt.Receiver`, or :class:`~sionna.rt.Camera` to look at.
+ :class:`~sionna.rt.Receiver`, :class:`~sionna.rt.RIS`, or :class:`~sionna.rt.Camera` to look at. If set to `None`, then ``orientation`` is used to orientate the device. color : [3], float
diff --git a/docs/_modules/sionna/rt/ris.html b/docs/_modules/sionna/rt/ris.html
new file mode 100644
index 00000000..a714d493
--- /dev/null
+++ b/docs/_modules/sionna/rt/ris.html
@@ -0,0 +1,2681 @@
+
+
+
+
+
+ sionna.rt.ris — Sionna 0.18.0 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[docs]classCellGrid():
+ # pylint: disable=line-too-long
+r"""
+ Class defining a cell grid that determines the physical structure of a RIS
+
+ The cell grid specifies the location of unit cells within the y-z plane
+ assuming a homogenous spacing of 0.5. The actual positions are computed by
+ multiplying the cell positions by the wavelength and rotating them
+ according to the RIS' orientation.
+
+ A cell grid must have at least three columns and rows to ensure
+ that discrete phase and amplitude profiles of the RIS can be interpolated.
+
+ Parameters
+ ----------
+ num_rows : int
+ Number of rows. Must at least be equal to three.
+
+ num_cols : int
+ Number of columns. Must at least be equal to three.
+
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ """
+ def__init__(self,
+ num_rows,
+ num_cols,
+ dtype=tf.complex64):
+
+ ifdtypenotin(tf.complex64,tf.complex128):
+ raiseValueError("`dtype` must be tf.complex64 or tf.complex128`")
+ self._dtype=dtype
+ self._rdtype=dtype.real_dtype
+
+ ifnum_rows<3ornum_cols<3:
+ raiseValueError("num_rows and num_cols must be >= 3")
+ self._num_rows=int(num_rows)
+ self._num_cols=int(num_cols)
+
+ self._cell_y_positions=tf.range(self.num_cols,dtype=self._rdtype)
+ self._cell_y_positions-=tf.cast((self.num_cols-1.)/2.,self._rdtype)
+
+ self._cell_z_positions=tf.range(self.num_rows-1,-1,-1,
+ dtype=self._rdtype)
+ self._cell_z_positions-=tf.cast((self.num_rows-1.)/2.,self._rdtype)
+
+ z,y=tf.meshgrid(self.cell_z_positions,self.cell_y_positions)
+ self._cell_positions=tf.stack([tf.reshape(y,[-1]),
+ tf.reshape(z,[-1])],-1)
+
+ @property
+ defnum_rows(self):
+r"""
+ int : Number of rows
+ """
+ returnself._num_rows
+
+ @property
+ defnum_cols(self):
+r"""
+ int : Number of columns
+ """
+ returnself._num_cols
+
+ @property
+ defnum_cells(self):
+r"""
+ int : Number of cells
+ """
+ returnself.num_rows*self.num_cols
+
+ @property
+ defcell_positions(self):
+r"""
+ [num_cells, 2], tf.float : Cell positions ordered from
+ top-to-bottom left-to-right
+ """
+ returnself._cell_positions
+
+ @property
+ defcell_y_positions(self):
+r"""
+ [num_cols], tf.float : y-coordinates of cells ordered
+ from left-to-right
+ """
+ returnself._cell_y_positions
+
+ @property
+ defcell_z_positions(self):
+r"""
+ [num_rows], tf.float : z-coordinates of cells ordered
+ from top-to-bottom
+ """
+ returnself._cell_z_positions
+
+classProfile(ABC):
+ # pylint: disable=line-too-long
+r"""Abstract class defining a phase/amplitude profile of a RIS
+
+ A Profile instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ def__init__(self,dtype=tf.complex64):
+ ifdtypenotin(tf.complex64,tf.complex128):
+ raiseValueError("`dtype` must be tf.complex64 or tf.complex128`")
+ self._dtype=dtype
+ self._rdtype=dtype.real_dtype
+
+ @property
+ @abstractmethod
+ defnum_modes(self):
+r"""
+ int : Number of reradiation modes
+ """
+ pass
+
+ @abstractmethod
+ def__call__(self,points,mode=None,return_grads=False):
+r"""
+ Returns the profile values, gradients and Hessians at given points
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ pass
+
+
[docs]classAmplitudeProfile(Profile):
+ # pylint: disable=line-too-long
+r"""Abstract class defining an amplitude profile of a RIS
+
+ An AmplitudeProfile instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ @property
+ @abstractmethod
+ defmode_powers(self):
+r"""
+ [num_modes], tf.float: Relative power of reradiation modes
+ """
+ pass
+
+
[docs]classPhaseProfile(Profile):
+ # pylint: disable=line-too-long
+r"""Abstract class defining a phase profile of a RIS
+
+ A PhaseProfile instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ pass
+
+classDiscreteProfile(Profile):
+ # pylint: disable=line-too-long
+r"""Class defining a discrete phase/amplitude profile of a RIS
+
+ A DiscreteProfile instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ cell_grid : :class:`~sionna.rt.CellGrid`
+ Defines the physical structure of the RIS
+
+ num_modes : int
+ Number of reradiation modes.
+ Defaults to 1.
+
+ values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
+ Values of the discrete profile for each reradiation mode
+ and unit cell. `num_rows` and `num_cols` are defined by the
+ `cell_grid`.
+ Defaults to `None`.
+
+ interpolator : :class:`~sionna.rt.ProfileInterpolator`
+ Instance of a `ProfileInterpolator` that interpolates the
+ discrete values of the profile to a continuous profile
+ which is defined at any point on the RIS.
+ Defaults to `None`. In this case, the
+ :class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
+
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ def__init__(self,
+ cell_grid,
+ num_modes=1,
+ values=None,
+ interpolator=None,
+ dtype=tf.complex64):
+
+ super().__init__(dtype=dtype)
+ self._cell_grid=cell_grid
+ self._num_modes=tf.cast(num_modes,tf.int32)
+ ifvaluesisNone:
+ self._values=None
+ else:
+ self.values=values
+ ifinterpolatorisNone:
+ self._interpolator=LagrangeProfileInterpolator(self)
+ else:
+ self._interpolator=interpolator
+
+ @property
+ defshape(self):
+r"""
+ tf.TensorShape : Shape of the tensor holding the values of
+ the discrete profile
+ """
+ returntf.TensorShape([self.num_modes,
+ self.cell_grid.num_rows,
+ self.cell_grid.num_cols])
+ @property
+ defvalues(self):
+r"""
+ [shape], tf.float : Set/get the discrete values of the profile for each
+ reradiation mode
+ """
+ returnself._values
+
+ @values.setter
+ defvalues(self,v):
+ ifnotv.shape==self.shape:
+ raiseValueError(f"`values` must have shape {self.shape}")
+ ifisinstance(v,tf.Variable):
+ ifv.dtype!=self._rdtype:
+ msg=f"`values` must have dtype={self._rdtype}"
+ raiseTypeError(msg)
+ else:
+ self._values=v
+ else:
+ self._values=tf.cast(v,dtype=self._rdtype)
+
+ @property
+ defnum_modes(self):
+r"""
+ int : Number of reradiation modes
+ """
+ returnself._num_modes
+
+ @property
+ defcell_grid(self):
+r"""
+ :class:`~sionna.rt.CellGrid` : Defines the physical
+ structure of the RIS
+ """
+ returnself._cell_grid
+
+ @property
+ defspacing(self):
+r"""
+ tf.float: Element spacing [m] corresponding to
+ half a wavelength
+ """
+ ifhasattr(scene.Scene(),"wavelength"):
+ wavelength=scene.Scene().wavelength
+ returnwavelength/tf.cast(2,self._rdtype)
+ else:
+ # Scene is not initialized
+ returntf.cast(0.5,self._rdtype)
+
+ defshow(self,mode=0):
+r"""Visualizes the profile as a 3D plot
+
+ Input
+ ------
+ mode : int | `None`
+ Reradation mode to be shown.
+ Defaults to 0.
+
+ Output
+ ------
+ : :class:`matplotlib.pyplot.Figure`
+ 3D plot of the profile
+ """
+ fig=plt.figure()
+ ax=fig.add_subplot(111,projection='3d')
+ y,z=tf.meshgrid(self.cell_grid.cell_y_positions*self.spacing,
+ self.cell_grid.cell_z_positions*self.spacing)
+ ax.plot_surface(y,z,self.values[mode],cmap='viridis')
+ ax.set_xlabel("y")
+ ax.set_ylabel("z")
+ ifisinstance(self,PhaseProfile):
+ plt.title(r"Phase profile $\chi(y, z)$")
+ ifisinstance(self,AmplitudeProfile):
+ plt.title(r"Amplitude profile $A(y, z)$")
+ returnfig
+
+ def__call__(self,points=None,mode=None,return_grads=False):
+r"""
+ Returns the profile values, gradients and Hessians at given points
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned. Only available if `points` is not `None`.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ ifpointsisNone:
+ ifmodeisnotNone:
+ values=tf.transpose(self.values[mode])
+ values=tf.reshape(values,[-1])
+ else:
+ values=tf.transpose(self.values,perm=[0,2,1])
+ values=tf.reshape(values,[self.num_modes,-1])
+ returnvalues
+ else:
+ returnself._interpolator(points,mode,return_grads)
+
+
[docs]classProfileInterpolator(ABC):
+r"""
+ Abstract class defining an interpolator of a discrete profile
+
+ A ProfileInterpolator instance is a callable that interpolate
+ the discrete profile to specified points. Optionally, the
+ gradients and Hessians are returned.
+
+ Parameters
+ ----------
+ discrete_profile : :class:`~sionna.rt.DiscreteProfile`
+ Discrete profile to be interpolated
+
+ Input
+ -----
+ points : [num_samples, 2], tf.float
+ Positions at which to interpolate the profile
+
+ mode : int | `None`
+ Mode of the profile to interpolate. If `None`.
+ all modes are interpolated.
+ Defaults to `None`.
+
+ return_grads : bool
+ If `True`, gradients and Hessians are computed.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples,3,3], tf.float
+ Hessians of the interpolated profile values
+ at the sample positions
+ """
+ def__init__(self,discrete_profile):
+ self._discrete_profile=discrete_profile
+ self._dtype=discrete_profile._dtype
+ self._rdtype=discrete_profile._rdtype
+
+ @property
+ defspacing(self):
+r"""
+ tf.float: Element spacing [m] corresponding to
+ half a wavelength
+ """
+ ifhasattr(scene.Scene(),"wavelength"):
+ wavelength=scene.Scene().wavelength
+ returnwavelength/tf.cast(2,self._rdtype)
+ else:
+ # Scene is not initialized
+ returntf.cast(0.5,self._rdtype)
+
+ @property
+ defcell_y_positions(self):
+r"""
+ [num_cols], tf.float : y-coordinates of cells ordered
+ from left-to-right
+ """
+ returnself._discrete_profile.cell_grid.cell_y_positions*self.spacing
+
+ @property
+ defcell_z_positions(self):
+r"""
+ [num_rows], tf.float : z-coordinates of cells ordered
+ from top-to-bottom
+ """
+ returnself._discrete_profile.cell_grid.cell_z_positions*self.spacing
+
+ @property
+ defnum_rows(self):
+r"""
+ int : Number of rows
+ """
+ returnself._discrete_profile.cell_grid.num_rows
+
+ @property
+ defnum_cols(self):
+r"""
+ int : Number of columns
+ """
+ returnself._discrete_profile.cell_grid.num_cols
+
+ @property
+ defvalues(self):
+r"""
+ [shape], tf.float : Discrete values of the profile for each
+ reradiation mode and unit cell
+ """
+ returnself._discrete_profile.values
+
+ @abstractmethod
+ def__call__(self,points,mode=None,return_grads=False):
+r"""
+ Interpolates the discrete profile to specified points
+
+ Optionally, the gradients and Hessians are returned.
+
+ Input
+ -----
+ points : [num_samples, 2], tf.float
+ Positions at which to interpolate the profile
+
+ mode : int | `None`
+ Mode of the profile to interpolate. If `None`.
+ all modes are interpolated.
+ Defaults to `None`.
+
+ return_grads : bool
+ If `True`, gradients and Hessians are computed.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples,3,3], tf.float
+ Hessians of the interpolated profile values
+ at the sample positions
+ """
+ pass
+
+
[docs]classLagrangeProfileInterpolator(ProfileInterpolator):
+ # pylint: disable=line-too-long
+r"""
+ Class defining a :class:`~sionna.rt.ProfileInterpolator` using Lagrange polynomials
+
+ The class instance is a callable that interpolates a discrete profile
+ at arbitrary positions using two-dimensional 2nd-order Lagrange interpolation.
+
+ A discrete profile :math:`P(y_i,z_j)\in\mathbb{R}` defined on
+ a grid of points :math:`y_i,z_j` for :math:`i,j \in [1,2,3]` is
+ interpolated to position :math:`y,z` as
+
+ .. math::
+ \begin{align}
+ P(y,z) &= \sum_{i,j} P(y_i,z_j) \ell_{i,y}(y) \ell_{j,z}(z)
+ \end{align}
+
+ where :math:`\ell_{i,y}(y)`, :math:`\ell_{j,z}(z)` are the
+ one-dimensional 2nd-order Lagrange polynomials, defined
+ as
+
+ .. math::
+ \begin{align}
+ \ell_{i,y}(y) &= \prod_{j \ne i} \frac{y-y_j}{y_i-y_j} \\
+ \ell_{j,z}(z) &= \prod_{i \ne j} \frac{z-z_i}{z_j-z_i}.
+ \end{align}
+
+ Note that the formulation above assumes for simplicity only a 3x3 grid
+ of points. However, the implementation finds for every
+ position the closest 3x3 grid points of the discrete profile
+ which are used for interpolation.
+
+ In order to compute spatial gradients and Hessians, we extend the the profile
+ with a dummy :math:`x` dimension, i.e., :math:`P(x,y,z)=P(y,z)`, such that
+
+ .. math::
+ \begin{align}
+ \nabla P(x,y,z) &= \begin{bmatrix} 0, \frac{\partial P(x,y,z)}{\partial y}, \frac{\partial P(x,y,z)}{\partial z} \end{bmatrix}^{\textsf{T}}\\
+ H_P(x,y,z) &= \begin{bmatrix} 0 & 0 & 0 \\
+ 0 & \frac{\partial^2 P(x,y,z)}{\partial y^2} & \frac{\partial^2 P(x,y,z)}{\partial y \partial z} \\
+ 0 & \frac{\partial^2 P(x,y,z)}{\partial z \partial y} & \frac{\partial^2 P(x,y,z)}{\partial z^2}
+ \end{bmatrix}
+ \end{align}.
+
+ Parameters
+ ----------
+ discrete_profile : :class:`~sionna.rt.DiscreteProfile`
+ Discrete profile to be interpolated
+
+ Input
+ -----
+ points : [num_samples, 2], tf.float
+ Positions at which to interpolate the profile
+
+ mode : int | `None`
+ Mode of the profile to interpolate. If `None`,
+ all modes are interpolated.
+ Defaults to `None`.
+
+ return_grads : bool
+ If `True`, gradients and Hessians are computed.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions
+ """
+
+
[docs]@staticmethod
+ deflagrange_polynomials(x,
+ x_i,
+ return_derivatives=True):
+ # pylint: disable=line-too-long
+r"""
+ Compute the 2nd-order Lagrange polynomials
+
+ Optionally, the first- and second-order derivatives are returned.
+
+ The 2nd-order Lagrange polynomials :math:`\ell_j(x)`, :math:`j=1,2,3`,
+ for position :math:`x\in\mathbb{R}` are computed using three distinct
+ support positions :math:`x_i` for :math:`i=1,2,3`:
+
+ .. math::
+ \begin{align}
+ \ell_j(x) &= \prod_{\substack{1\leq i \leq 3 \\ i \ne j}} \frac{x-x_i}{x_j-x_i}.
+ \end{align}
+
+ Their first- and second-order derivatives are then respectively given as
+
+ .. math::
+ \begin{align}
+ \ell'_j(x) &= \left(\sum_{i \ne j} x-x_i\right) \left(\prod_{i \ne j} x_j-x_i\right)^{-1} \\
+ \ell''_j(x) &= 2 \left(\prod_{i \ne j} x_j-x_i\right)^{-1}.
+ \end{align}
+
+ Input
+ -----
+ x : [batch_size], tf.float
+ Sample positions
+
+ x_i : [batch_size, 3], tf.float
+ Support positions for every sample position
+
+ return_derivatives : bool
+ If `True`, also the first- and second-order derivatives
+ of the Lagrange polynomials are returned.
+ Defaults to `True`.
+
+ Output
+ ------
+ l_i : [batch_size, 3], tf.float
+ Lagrange polynomials for each sample position
+
+ deriv_1st : [batch_size, 3], tf.float
+ First-order derivatives for each sample position.
+ Only returned if `return_derivatives` is `True`.
+
+ deriv_2nd : [batch_size, 3], tf.float
+ Second-order derivatives for each sample position.
+ Only returned if `return_derivatives` is `True`.
+ """
+
+ # Compute products of differences of the sample and support points
+ sample_diff=tf.expand_dims(x,1)-x_i
+ sample_prod_0=sample_diff[:,1]*sample_diff[:,2]
+ sample_prod_1=sample_diff[:,0]*sample_diff[:,2]
+ sample_prod_2=sample_diff[:,0]*sample_diff[:,1]
+ sample_prods=tf.stack([sample_prod_0,sample_prod_1,sample_prod_2],
+ -1)
+
+ # Compute products of differences of support points
+ support_diffs=tf.expand_dims(x_i,-1)-tf.expand_dims(x_i,-2)
+ support_diffs=tf.where(support_diffs==0,1.,support_diffs)
+ support_prods=tf.reduce_prod(support_diffs,axis=-1)
+
+ # Compute Lagrange polynomials
+ lagrange=sample_prods/support_prods
+
+ ifnotreturn_derivatives:
+ returnlagrange
+ else:
+ # Compute sums of differences
+ sample_sum_0=sample_diff[:,1]+sample_diff[:,2]
+ sample_sum_1=sample_diff[:,0]+sample_diff[:,2]
+ sample_sum_2=sample_diff[:,0]+sample_diff[:,1]
+ sample_sums=tf.stack([sample_sum_0,sample_sum_1,sample_sum_2],
+ -1)
+ # Compute first-order derivatives
+ deriv_1st=sample_sums/support_prods
+
+ # Compute second-order derivatives
+ deriv_2nd=tf.cast(2,support_prods.dtype)/support_prods
+
+ returnlagrange,deriv_1st,deriv_2nd
+
+ def__call__(self,points,mode=None,return_grads=False):
+ # pylint: disable=line-too-long
+r"""
+ Interpolates a discrete profile at arbitrary position via
+ 2D 2nd-order Lagrange interpolation.
+
+ A discrete profile :math:`P(y_i,z_j)\in\mathbb{R}` defined on
+ a grid of points :math:`y_i,z_j` for :math:`i,j \in [1,2,3]` is
+ interpolated to position :math:`y,z` as
+
+ .. math::
+ \begin{align}
+ P(y,z) &= \sum_{i,j} P(y_i,z_j) \ell_{i,y}(y) \ell_{j,z}(z)
+ \end{align}
+
+ where :math:`\ell_{i,y}(y)`, :math:`\ell_{j,z}(z)` are the
+ one-dimensional 2nd-order Lagrange polynomials, defined
+ as
+
+ .. math::
+ \begin{align}
+ \ell_{i,y}(y) &= \prod_{j \ne i} \frac{y-y_j}{y_i-y_j} \\
+ \ell_{j,z}(z) &= \prod_{i \ne j} \frac{z-z_i}{z_j-z_i}.
+ \end{align}
+
+ In order to compute spatial gradients and Hessians, we extend the the profile
+ with a dummy :math:`x` dimension, i.e., :math:`P(x,y,z)=P(y,z)`, such that
+
+ .. math::
+ \begin{align}
+ \nabla P(x,y,z) &= \begin{bmatrix} 0, \frac{\partial P(x,y,z)}{\partial y}, \frac{\partial P(x,y,z)}{\partial z} \end{bmatrix}^{\textsf{T}}\\
+ H_P(x,y,z) &= \begin{bmatrix} 0 & 0 & 0 \\
+ 0 & \frac{\partial^2 P(x,y,z)}{\partial y^2} & \frac{\partial^2 P(x,y,z)}{\partial y \partial z} \\
+ 0 & \frac{\partial^2 P(x,y,z)}{\partial z \partial y} & \frac{\partial^2 P(x,y,z)}{\partial z^2}
+ \end{bmatrix}
+ \end{align}.
+
+
+ Input
+ -----
+ points : [num_samples, 2], tf.float
+ Positions at which to interpolate the profile
+
+ mode : int | `None`
+ Mode of the profile to interpolate. If `None`,
+ all modes are interpolated.
+ Defaults to `None`.
+
+ return_grads : bool
+ If `True`, gradients and Hessians are computed.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions
+ """
+ num_samples=tf.shape(points)[0]
+ # Compute absolute distances in y/z directions
+ y_dist=tf.abs(tf.expand_dims(points[:,0],axis=1)
+ -tf.expand_dims(self.cell_y_positions,axis=0))
+ z_dist=tf.abs(tf.expand_dims(points[:,1],axis=1)
+ -tf.expand_dims(self.cell_z_positions,axis=0))
+
+ # Compute indices of three closest support points
+ y_ind=tf.sort(tf.math.top_k(-y_dist,k=3,sorted=False)[1],-1)
+ z_ind=tf.sort(tf.math.top_k(-z_dist,k=3,sorted=False)[1],-1)
+
+ # Get support points in y and z dimensions
+ y_i=tf.gather(self.cell_y_positions,y_ind,axis=0,batch_dims=1)
+ z_i=tf.gather(self.cell_z_positions,z_ind,axis=0,batch_dims=1)
+
+ # Compute indices of all support points
+ support_ind=tf.reshape(tf.expand_dims(z_ind,1)
+ +tf.expand_dims(y_ind,2)*self.num_rows,
+ [num_samples,-1])
+
+
+ # Compute support values for all modes
+ vals=tf.transpose(self.values,perm=[2,1,0])
+ ifmodeisnotNone:
+ # Filter relevant mode
+ vals=tf.expand_dims(vals[...,mode],-1)
+ num_modes=tf.shape(vals)[-1]
+ vals=tf.reshape(vals,[-1,num_modes])
+ support_values=tf.gather(vals,support_ind,axis=0,batch_dims=1)
+ support_values=tf.transpose(support_values,perm=[2,0,1])
+
+ ifnotreturn_grads:
+ # Compute Lagrange polynomials
+ l_y=self.lagrange_polynomials(points[:,0],y_i,False)
+ l_z=self.lagrange_polynomials(points[:,1],z_i,False)
+ l_z_y=tf.reshape(tf.expand_dims(l_y,axis=-1)
+ *tf.expand_dims(l_z,axis=-2),
+ [num_samples,-1])
+
+ # Compute interpolated values
+ values=tf.reduce_sum(support_values*l_z_y,axis=-1)
+ returntf.squeeze(values)
+
+ # Compute Lagrange polynomials and derivatives
+ l_y,d1_y,d2_y=self.lagrange_polynomials(points[:,0],y_i,True)
+ l_z,d1_z,d2_z=self.lagrange_polynomials(points[:,1],z_i,True)
+ l_z_y=tf.reshape(tf.expand_dims(l_y,axis=-1)
+ *tf.expand_dims(l_z,axis=-2),
+ [num_samples,-1])
+
+ # Compute interpolated values
+ values=tf.reduce_sum(support_values*l_z_y,axis=-1)
+
+ # Compute gradients
+ l_z_d_y=tf.reshape(tf.expand_dims(d1_y,axis=-1)
+ *tf.expand_dims(l_z,axis=-2),
+ [num_samples,-1])
+
+ d_values_dy=tf.reduce_sum(support_values*l_z_d_y,axis=-1)
+
+ l_d_z_y=tf.reshape(tf.expand_dims(l_y,axis=-1)
+ *tf.expand_dims(d1_z,axis=-2),
+ [num_samples,-1])
+ d_values_dz=tf.reduce_sum(support_values*l_d_z_y,axis=-1)
+
+ grads=tf.stack([tf.zeros_like(d_values_dy),
+ d_values_dy,
+ d_values_dz],-1)
+
+ # Compute Hessians
+ # 1: Compute 2nd-order partial derivatives
+ l_z_d2_y=tf.reshape(tf.expand_dims(d2_y,axis=-1)
+ *tf.expand_dims(l_z,axis=-2),
+ [num_samples,-1])
+ d2_values_d2_y=tf.reduce_sum(support_values*l_z_d2_y,axis=-1)
+
+ l_d2_z_y=tf.reshape(tf.expand_dims(l_y,axis=-1)
+ *tf.expand_dims(d2_z,axis=-2),
+ [num_samples,-1])
+ d2_values_d2_z=tf.reduce_sum(support_values*l_d2_z_y,axis=-1)
+
+ l_d_z_d_y=tf.reshape(tf.expand_dims(d1_y,axis=-1)
+ *tf.expand_dims(d1_z,axis=-2),
+ [num_samples,-1])
+ d2_values_d_y_d_z=tf.reduce_sum(support_values*l_d_z_d_y,axis=-1)
+
+ # 2: Construct rows of the Hessians
+ row_2=tf.stack([tf.zeros_like(d2_values_d2_y),
+ d2_values_d2_y,
+ d2_values_d_y_d_z],-1)
+
+ row_3=tf.stack([tf.zeros_like(d2_values_d2_z),
+ d2_values_d_y_d_z,
+ d2_values_d2_z],-1)
+
+ row_1=tf.zeros_like(row_2)
+
+ # 3: Combine rows full Hessian matrices
+ hessians=tf.stack([row_1,row_2,row_3],axis=2)
+ return(values,grads,hessians)
+
+
[docs]classDiscreteAmplitudeProfile(DiscreteProfile,AmplitudeProfile):
+ # pylint: disable=line-too-long
+r"""Class defining a discrete amplitude profile of a RIS
+
+ A discrete amplitude profile :math:`A_m` assigns to
+ each of its units cells a possibly different amplitude value.
+ Multiple reradiation modes can be obtained by super-positioning
+ of profiles. The relative power of reradiation modes can
+ be controlled via the reradiation coefficients :math:`p_m`.
+
+ See :ref:`ris_primer` for more details.
+
+ A class instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ cell_grid : :class:`~sionna.rt.CellGrid`
+ Defines the physical structure of the RIS
+
+ num_modes : int
+ Number of reradiation modes.
+ Defaults to 1.
+
+ values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
+ Amplitude values for each reradiation mode
+ and unit cell. `num_rows` and `num_cols` are defined by the
+ `cell_grid`.
+ Defaults to `None`.
+
+ mode_powers : tf.float, [num_modes]
+ Relative powers or reradition coefficients of reradiation modes.
+ Defaults to `None`. In this case, all reradiation modes get
+ an equal fraction of the total power.
+
+ interpolator : :class:`~sionna.rt.ProfileInterpolator`
+ Determines how the discrete values of the profile
+ are interpolated to a continuous profile
+ which is defined at any point on the RIS.
+ Defaults to `None`. In this case, the
+ :class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
+
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ def__init__(self,
+ cell_grid,
+ num_modes=1,
+ values=None,
+ mode_powers=None,
+ interpolator=None,
+ dtype=tf.complex64):
+ super().__init__(cell_grid=cell_grid,
+ num_modes=num_modes,
+ values=values,
+ interpolator=interpolator,
+ dtype=dtype)
+
+ ifvaluesisNone:
+ self.values=tf.ones(self.shape,self._rdtype)
+
+ ifmode_powersisNone:
+ mode_powers=1/tf.cast(self.num_modes,self._rdtype)* \
+ tf.ones([self.num_modes],dtype=self._rdtype)
+ self.mode_powers=mode_powers
+
+ @property
+ defmode_powers(self):
+ returnself._mode_powers
+
+ @mode_powers.setter
+ defmode_powers(self,v):
+ ifisinstance(v,tf.Variable):
+ ifv.dtype!=self._rdtype:
+ msg=f"`mode_powers` must have dtype={self._rdtype}"
+ raiseTypeError(msg)
+ else:
+ v=tf.cast(v,dtype=self._rdtype)
+
+ ifnotv.shape==[self.num_modes]:
+ msg=f"`mode_powers` must have shape [{self.num_modes}]"
+ raiseValueError(msg)
+
+ self._mode_powers=v
+
+
[docs]classDiscretePhaseProfile(DiscreteProfile,PhaseProfile):
+ # pylint: disable=line-too-long
+r"""Class defining a discrete phase profile of a RIS
+
+ A discrete phase profile :math:`\chi_m` assigns to
+ each of its units cells a possibly different phase value.
+ Multiple reradiation modes can be created by super-positioning
+ of phase profiles.
+
+ See :ref:`ris_primer` in the Primer on Electromagnetics for more details.
+
+ A class instance is a callable that returns the profile values,
+ gradients and Hessians at given points.
+
+ Parameters
+ ----------
+ cell_grid : :class:`~sionna.rt.CellGrid`
+ Defines the physical structure of the RIS
+
+ num_modes : int
+ Number of reradiation modes.
+ Defaults to 1.
+
+ values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
+ Phase values [rad] for each reradiation mode
+ and unit cell. `num_rows` and `num_cols` are defined by the
+ `cell_grid`.
+ Defaults to `None`.
+
+ interpolator : :class:`~sionna.rt.ProfileInterpolator`
+ Determines how the discrete values of the profile
+ are interpolated to a continuous profile
+ which is defined at any point on the RIS.
+ Defaults to `None`. In this case, the
+ :class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
+
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ values : [num_modes, num_samples] or [num_samples], tf.float
+ Interpolated profile values at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ def__init__(self,
+ cell_grid,
+ num_modes=1,
+ values=None,
+ interpolator=None,
+ dtype=tf.complex64):
+ super().__init__(cell_grid=cell_grid,
+ num_modes=num_modes,
+ values=values,
+ interpolator=interpolator,
+ dtype=dtype)
+
+ ifvaluesisNone:
+ self.values=tf.zeros(self.shape,self._rdtype)
+
+
[docs]classRIS(RadioDevice,SceneObject):
+ # pylint: disable=line-too-long
+r"""
+ Class defining a reconfigurable intelligent surface (RIS)
+
+ A RIS consists of a planar arrangement of unit cells
+ with :math:`\lambda/2` spacing.
+ It's :class:`~sionna.rt.PhaseProfile` :math:`\chi_m` and
+ :class:`~sionna.rt.AmplitudeProfile` :math:`A_m` can be
+ configured after the RIS is instantiated. Both together
+ define the spatial modulation coefficient :math:`\Gamma` which
+ determines how the RIS reflects electro-magnetic waves.
+
+ See :ref:`ris_primer` in the Primer on Electromagnetics for
+ more details or have a look at the `tutorial notebook <https://nvlabs.github.io/sionna/examples/Sionna_Ray_Tracing_RIS.html>`_.
+
+ An RIS instance is a callable that computes the spatial modulation coefficient
+ and gradients/Hessians of the underlying phase profile for provided
+ points on the RIS' surface.
+
+ Parameters
+ ----------
+ name : str
+ Name
+
+ position : [3], float
+ Position :math:`(x,y,z)` as three-dimensional vector
+
+ num_rows : int
+ Number of rows. Must at least be equal to three.
+
+ num_cols : int
+ Number of columns. Must at least be equal to three.
+
+ num_modes : int
+ Number of reradiation modes.
+ Defaults to 1.
+
+ orientation : [3], float
+ Orientation :math:`(\alpha, \beta, \gamma)` specified
+ through three angles corresponding to a 3D rotation
+ as defined in :eq:`rotation`.
+ This parameter is ignored if ``look_at`` is not `None`.
+ Defaults to [0,0,0]. In this case, the normal vector of
+ the RIS points towards the positive x-axis.
+
+ velocity : [3], float
+ Velocity vector [m/s]. Used for the computation of
+ path-specific Doppler shifts.
+
+ look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | `None`
+ A position or the instance of a :class:`~sionna.rt.Transmitter`,
+ :class:`~sionna.rt.Receiver`, :class:`~sionna.rt.RIS`, or :class:`~sionna.rt.Camera` to look at.
+ If set to `None`, then ``orientation`` is used to orientate the device.
+
+ color : [3], float
+ Defines the RGB (red, green, blue) ``color`` parameter for the device as displayed in the previewer and renderer.
+ Each RGB component must have a value within the range :math:`\in [0,1]`.
+ Defaults to `[0.862,0.078,0.235]`.
+
+ dtype : tf.complex
+ Datatype to be used in internal calculations.
+ Defaults to `tf.complex64`.
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the spatial modulation profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ gamma : [num_modes, num_samples] or [num_samples], tf.complex
+ Spatial modulation coefficient at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated phase profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated phase profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ def__init__(self,
+ name,
+ position,
+ num_rows,
+ num_cols,
+ num_modes=1,
+ orientation=(0.,0.,0.),
+ velocity=(0.,0.,0.),
+ look_at=None,
+ color=(0.862,0.078,0.235),
+ dtype=tf.complex64):
+
+ # Initialize the parent classes
+ # RadioDevice and SceneObject inherit from Object
+ # Python will initialize in the following order:
+ # RadioDevice->SceneObject->Object
+ super().__init__(name=name,
+ position=position,
+ orientation=orientation,
+ look_at=look_at,
+ radio_material=None,
+ color=color,
+ dtype=dtype)
+
+ # Set velocity vector
+ self.velocity=tf.cast(velocity,dtype=dtype.real_dtype)
+
+ ifnum_rows<3ornum_cols<3:
+ raiseValueError("num_rows and num_cols must be >= 3")
+
+ # Set immutable properties
+ self._num_modes=int(num_modes)
+ self._cell_grid=CellGrid(num_rows,num_cols,self._dtype)
+
+ # Init amplitude profile
+ self.amplitude_profile=DiscreteAmplitudeProfile(self.cell_grid,
+ num_modes=self.num_modes,
+ dtype=self._dtype)
+
+ # Init phase profile
+ self.phase_profile=DiscretePhaseProfile(self.cell_grid,
+ num_modes=self.num_modes,
+ dtype=self._dtype)
+
+ @property
+ defcell_grid(self):
+r"""
+ :class:`~sionna.rt.CellGrid` : Defines the physical
+ structure of the RIS
+ """
+ returnself._cell_grid
+
+ @property
+ defcell_positions(self):
+r"""
+ [num_cells, 2], tf.float : Cell positions in the
+ local coordinate system (LCS) of the RIS, ordered
+ from top-to-bottom left-to-right.
+ """
+ returnself.cell_grid.cell_positions*self.spacing
+
+ @property
+ defcell_world_positions(self):
+r"""
+ [num_cells, 3], tf.float : Cell positions in the
+ global coordinate system (GCS) of the RIS, ordered
+ from top-to-bottom left-to-right.
+ """
+ x_coord=tf.zeros([self.num_cells,1],self._rdtype)
+ pos=tf.concat([x_coord,self.cell_positions],axis=-1)
+ pos=rotate(pos,self.orientation)
+ pos+=tf.expand_dims(self.position,0)
+ returnpos
+
+ @property
+ defworld_normal(self):
+r"""
+ [3], tf.float : Normal vector of the RIS in the
+ global coordinate system (GCS)
+ """
+ n_hat=tf.constant([1,0,0],self._rdtype)
+ returnrotate(n_hat,self.orientation)
+
+ @property
+ defnum_rows(self):
+r"""
+ int : Number of rows
+ """
+ returnself.cell_grid.num_rows
+
+ @property
+ defnum_cols(self):
+r"""
+ int : Number of columns
+ """
+ returnself.cell_grid.num_cols
+
+ @property
+ defnum_cells(self):
+r"""
+ int : Number of cells
+ """
+ returnself.num_rows*self.num_cols
+
+ @property
+ defnum_modes(self):
+r"""
+ int : Number of reradiation modes
+ """
+ returnself._num_modes
+
+ @property
+ defspacing(self):
+r"""
+ tf.float: Element spacing [m] corresponding to
+ half a wavelength
+ """
+ ifhasattr(scene.Scene(),"wavelength"):
+ wavelength=scene.Scene().wavelength
+ returnwavelength/tf.cast(2,self._rdtype)
+ else:
+ # Scene is not initialized
+ returntf.cast(0.5,self._rdtype)
+
+ @property
+ defsize(self):
+"""
+ [2], tf.float : Size of the RIS (width, height) [m]
+ """
+ returntf.stack([self.spacing*self.num_cols,
+ self.spacing*self.num_rows],axis=0)
+
+ @property
+ defvelocity(self):
+"""
+ [3], tf.float : Get/set the velocity vector [m/s]
+ """
+ returnself._velocity
+
+ @velocity.setter
+ defvelocity(self,v):
+ ifnottf.shape(v)==3:
+ raiseValueError("`velocity` must have shape [3]")
+ self._velocity=tf.cast(v,self._dtype.real_dtype)
+
+ @property
+ defamplitude_profile(self):
+r"""
+ :class:`~sionna.rt.AmplitudeProfile` : Set/get amplitude profile
+ """
+ returnself._amplitude_profile
+
+ @amplitude_profile.setter
+ defamplitude_profile(self,v):
+ ifnotisinstance(v,AmplitudeProfile):
+ raiseValueError("Not a valid AmplitudeProfile")
+ self._amplitude_profile=v
+
+ @property
+ defphase_profile(self):
+r"""
+ :class:`~sionna.rt.PhaseProfile` : Set/get phase profile
+ """
+ returnself._phase_profile
+
+ @phase_profile.setter
+ defphase_profile(self,v):
+ ifnotisinstance(v,PhaseProfile):
+ raiseValueError("Not a valid PhaseProfile")
+ self._phase_profile=v
+
+
[docs]defphase_gradient_reflector(self,sources,targets):
+ # pylint: disable=line-too-long
+r"""
+ Configures the RIS as ideal phase gradient reflector
+
+ For an incoming direction :math:`\hat{\mathbf{k}}_i`
+ and desired outgoing direction :math:`\hat{\mathbf{k}}_r`,
+ the necessary phase gradient along the RIS with normal
+ :math:`\hat{\mathbf{n}}` can be computed as
+ (e.g., Eq.(12) [Vitucci24]_):
+
+ .. math::
+ \nabla\chi_m = -k_0\left( \mathbf{I}- \hat{\mathbf{n}}\hat{\mathbf{n}}^\textsf{T} \right) \left(\hat{\mathbf{k}}_i - \hat{\mathbf{k}}_r \right).
+
+ The phase profile is obtained by assigning zero phase to the first
+ unit cell and evolving the other phases linearly according to the gradient
+ across the entire RIS.
+
+ Multiple reradiation modes can be configured.
+
+ The amplitude profile is set to one everywhere with a uniform relative
+ power allocation across modes.
+
+ Input
+ -----
+ sources : tf.float, [3] or [num_modes, 3]
+ Tensor defining for every reradiation mode
+ a source from which the incoming wave originates.
+
+ targets : tf.float, [3] or [num_modes, 3]
+ Tensor defining for every reradiation mode
+ a target towards which the incoming wave should be
+ reflected.
+ """
+ # Convert inputs to tensors
+ sources=tf.cast(sources,self._rdtype)
+ targets=tf.cast(targets,self._rdtype)
+ sources=expand_to_rank(sources,2,0)
+ targets=expand_to_rank(targets,2,0)
+ shape=[self.num_modes,3]
+
+ # Ensure the desired shape [num_modes, 3]
+ fori,xinenumerate([sources,targets]):
+ ifnot(tf.shape(x)==shape).numpy().all():
+ msg=f"Wrong shape of input {i+1}. "+ \
+ f"Expected {shape}, got {x.shape}"
+ raiseValueError(msg)
+
+ # Compute incoming and outgoing directions
+ # [num_modes, 3]
+ k_i,_=normalize(self.position[tf.newaxis]-sources)
+ k_r,_=normalize(targets-self.position[tf.newaxis])
+
+ # Tangent projection operator - Eq.(10)
+ # [1, 3]
+ normal=self.world_normal[tf.newaxis]
+ # [1, 3, 3]
+ p=tf.eye(3,dtype=self._rdtype)-outer(normal,normal)
+
+ # Compute phase gradient - Eq.(12)
+ # [num_modes, 3]
+ grad=self.scene.wavenumber*tf.linalg.matvec(p,k_i-k_r)
+ # Rotate phase gradient to LCS of the RIS and keep y/z components
+ # [num_modes, 1, 1, 2]
+ grad=rotate(grad,self.orientation,inverse=True)[:,1:]
+ grad=tf.reshape(grad,[self.num_modes,1,1,2])
+
+ # Using the top-left cell as reference, compute the offsets
+ # [1, num_rows, num_cols, 2]
+ offsets=self.cell_positions-self.cell_positions[:1]
+ offsets=tf.reshape(offsets,[self.num_cols,self.num_rows,2])
+ offsets=tf.transpose(offsets,perm=[1,0,2])
+ offsets=tf.expand_dims(offsets,0)
+
+ # Compute phase profile based on the constant gradient assumption
+ # [num_modes, num_rows, num_cols]
+ phases=tf.reduce_sum(offsets*grad,axis=-1)
+ self.phase_profile.values=phases
+
+ # Set a neutral amplitude profile
+ self.amplitude_profile.values=tf.ones_like(phases)
+ mode_powers=1/tf.cast(self.num_modes,self._rdtype)* \
+ tf.ones([self.num_modes],dtype=self._rdtype)
+ self.amplitude_profile.mode_powers=mode_powers
+
+
[docs]deffocusing_lens(self,sources,targets):
+ # pylint: disable=line-too-long
+r"""
+ Configures the RIS as focusing lens
+
+ The phase profile is configured in such a way that
+ the fields of all rays add up coherently at a specific
+ point. In other words, the phase profile undoes the
+ distance-based phase shift of every ray connecting a
+ source to a target via a specific unit cell.
+
+ For a source and target at positions
+ :math:`\mathbf{s}` and :math:`\mathbf{t}`, the phase
+ :math:`\chi_m(\mathbf{x})` of a unit cell located at :math:`\mathbf{x}`
+ is computed as (e.g., Sec. IV-2 [Degli-Esposti22]_)
+
+ .. math::
+ \chi_m(\mathbf{x}) = k_0 \left(\lVert\mathbf{s}-\mathbf{x}\rVert + \lVert\mathbf{s}-\mathbf{t}\rVert\right).
+
+ Multiple reradiation modes can be configured.
+
+ The amplitude profile is set to one everywhere with a uniform relative
+ power allocation across modes.
+
+ Input
+ -----
+ sources : tf.float, [3] or [num_modes, 3]
+ Tensor defining for every reradiation mode
+ a source from which the incoming wave originates.
+
+ targets : tf.float, [3] or [num_modes, 3]
+ Tensor defining for every reradiation mode
+ a target towards which the incoming wave should be
+ reflected.
+ """
+ # Convert inputs to tensors
+ sources=tf.cast(sources,self._rdtype)
+ targets=tf.cast(targets,self._rdtype)
+ sources=expand_to_rank(sources,2,0)
+ targets=expand_to_rank(targets,2,0)
+ shape=[self.num_modes,3]
+
+ # Ensure the desired shape [num_modes, 3]
+ fori,xinenumerate([sources,targets]):
+ ifnot(tf.shape(x)==shape).numpy().all():
+ msg=f"Wrong shape of input {i+1}. "+ \
+ f"Expected {shape}, got {x.shape}"
+ raiseValueError(msg)
+
+ # Compute incoming and outgoing distances
+ # [num_modes, num_cells]
+ d_i=normalize(self.cell_world_positions[tf.newaxis]-sources[:,tf.newaxis])[1]
+ d_o=normalize(self.cell_world_positions[tf.newaxis]-targets[:,tf.newaxis])[1]
+
+ # Compute phases such that the total phase shifts for all cells
+ # are equal
+ phases=self.scene.wavenumber*(d_i+d_o)
+ phases=tf.reshape(phases,[self.num_modes,self.num_cols,self.num_rows])
+ phases=tf.transpose(phases,perm=[0,2,1])
+ self.phase_profile.values=phases
+
+ # Set a neutral amplitude profile
+ self.amplitude_profile.values=tf.ones_like(phases)
+ mode_powers=1/tf.cast(self.num_modes,self._rdtype)* \
+ tf.ones([self.num_modes],dtype=self._rdtype)
+ self.amplitude_profile.mode_powers=mode_powers
+
+ def__call__(self,points=None,mode=None,return_grads=False):
+ # pylint: disable=line-too-long
+r"""
+ Computes the spatial modulation coefficient and gradients/Hessians of phase profile
+
+ Input
+ -----
+ points : tf.float, [num_samples, 2]
+ Tensor of 2D coordinates defining the points on the RIS at which
+ the spatial modulation profile should be evaluated.
+ Defaults to `None`. In this case, the values for all unit cells
+ are returned.
+
+ mode : int | `None`
+ Reradiation mode to be considered.
+ Defaults to `None`. In this case, the values for all modes
+ are returned.
+
+ return_grads : bool
+ If `True`, also the first- and second-order derivatives are
+ returned.
+ Defaults to `False`.
+
+ Output
+ ------
+ gamma : [num_modes, num_samples] or [num_samples], tf.complex
+ Spatial modulation coefficient at the sample positions
+
+ grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
+ Gradients of the interpolated phase profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+
+ hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
+ Hessians of the interpolated phase profile values
+ at the sample positions. Only returned if `return_grads` is `True`.
+ """
+ # Get amplitudes
+ a=self.amplitude_profile(points,mode)
+
+ # Get mode powers
+ p=self.amplitude_profile.mode_powers
+
+ # Get phases and (optionally) phase gradients and Hessians
+ ifreturn_gradsandpointsisnotNone:
+ chi,grads,hessians=self.phase_profile(points,mode,True)
+ else:
+ chi=self.phase_profile(points,mode,False)
+
+ # Compute spatial modulation coefficient
+ zero=tf.cast(0,self._rdtype)
+ gamma=tf.complex(a,zero)
+ chi=tf.complex(zero,chi)
+ p=tf.complex(tf.sqrt(p),zero)
+ gamma*=tf.exp(chi)
+ ifmodeisNone:
+ gamma*=tf.reshape(p,[-1,1])
+ else:
+ gamma*=p[mode]
+
+ ifreturn_gradsandpointsisnotNone:
+ returngamma,grads,hessians
+ else:
+ returngamma
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/docs/_modules/sionna/rt/scattering_pattern.html b/docs/_modules/sionna/rt/scattering_pattern.html
index 31feee93..09b63370 100644
--- a/docs/_modules/sionna/rt/scattering_pattern.html
+++ b/docs/_modules/sionna/rt/scattering_pattern.html
@@ -3,7 +3,7 @@
- sionna.rt.scattering_pattern — Sionna 0.17.0 documentation
+ sionna.rt.scattering_pattern — Sionna 0.18.0 documentation
@@ -394,6 +394,18 @@
"""returndict(self._receivers)
+ @property
+ defris(self):
+"""
+ `dict` (read-only), { "name", :class:`~sionna.rt.RIS`} : Dictionary
+ of reconfigurable intelligent surfaces (RIS) in the scene
+ """
+ returndict(self._ris)
+
@propertydefradio_materials(self):# pylint: disable=line-too-long
@@ -1266,13 +1311,17 @@
Source code for sionna.rt.scene
Output ------
- item : :class:`~sionna.rt.SceneObject` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.Camera` | `None`
+ item : :class:`~sionna.rt.SceneObject` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | `None` Retrieved item. Returns `None` if no corresponding item was found in the scene. """ifnameinself._transmitters:returnself._transmitters[name]ifnameinself._receivers:returnself._receivers[name]
+ ifnameinself._ris:
+ returnself._ris[name]
+ ifnameinself._ris:
+ returnself._ris[name]ifnameinself._radio_materials:returnself._radio_materials[name]ifnameinself._scene_objects:
@@ -1282,21 +1331,23 @@
Source code for sionna.rt.scene
returnNone
[docs]defadd(self,item):
+ # pylint: disable=line-too-long
+ # pylint: disable=line-too-long"""
- Adds a transmitter, receiver, radio material, or camera to the scene.
+ Adds a transmitter, receiver, RIS, radio material, or camera to the scene. If a different item with the same name as ``item`` is already part of the scene, an error is raised. Input ------
- item : :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Camera`
+ item : :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Camera` Item to add to the scene """if((notisinstance(item,Camera))and(notisinstance(item,RadioDevice))and(notisinstance(item,RadioMaterial))):
- err_msg="The input must be a Transmitter, Receiver, Camera, or"\
+ err_msg="The input must be a Transmitter, Receiver, RIS, Camera, or"\
" RadioMaterial"raiseValueError(err_msg)
@@ -1318,13 +1369,24 @@
Source code for sionna.rt.scene
else:# This item was already added.return
-
ifisinstance(item,Transmitter):self._transmitters[name]=itemitem.scene=selfelifisinstance(item,Receiver):self._receivers[name]=itemitem.scene=self
+ elifisinstance(item,RIS):
+ self._ris[name]=item
+ # Manually assign object_id to each RIS
+ iflen(self.objects)>0:
+ max_id=max(obj.object_idforobjinself.objects.values())
+ else:
+ max_id=0
+ max_id+=len(self._ris)
+ item.object_id=max_id
+ # Set scene propety and radio material
+ item.scene=self
+ item.radio_material="itu_metal"elifisinstance(item,RadioMaterial):self._radio_materials[name]=itemitem.frequency_update()
@@ -1335,7 +1397,7 @@
Source code for sionna.rt.scene
[docs]defremove(self,name):# pylint: disable=line-too-long"""
- Removes a transmitter, receiver, camera, or radio material from the
+ Removes a transmitter, receiver, RIS, camera, or radio material from the scene. In the case of a radio material, it must not be used by any object of
@@ -1359,6 +1421,12 @@
delself._radio_materials[name]else:
- msg="Only Transmitters, Receivers, Cameras, or RadioMaterials"\
+ msg="Only Transmitters, Receivers, RIS, Cameras, or RadioMaterials"\
" can be removed"raiseTypeError(msg)
Only works with the Fibonacci method. Defaults to `False`.
+ ris : bool
+ If set to `True`, then the paths involving RIS are computed.
+ Defaults to `True`.
+
+ ris : bool
+ If set to `True`, then the paths involving RIS are computed.
+ Defaults to `True`.
+
scat_keep_prob : float Probability with which to keep scattered paths. This is helpful to reduce the number of scattered paths computed,
@@ -1469,6 +1545,12 @@
Source code for sionna.rt.scene
scat_paths : :class:`~sionna.rt.Paths` Computed scattered paths
+ ris_paths : :class:`~sionna.rt.Paths`
+ Computed paths involving RIS
+
+ ris_paths : :class:`~sionna.rt.Paths`
+ Computed paths involving RIS
+
spec_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the specular paths
@@ -1480,6 +1562,14 @@
Source code for sionna.rt.scene
scat_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the scattered paths
+
+ ris_paths_tmp : :class:`~sionna.rt.PathsTmpData`
+ Additional data required to compute the EM fields of the paths
+ involving RIS
+
+ ris_paths_tmp : :class:`~sionna.rt.PathsTmpData`
+ Additional data required to compute the EM fields of the paths
+ involving RIS """ifscat_keep_prob<0.orscat_keep_prob>1.:
@@ -1497,14 +1587,15 @@
scat_paths : :class:`~sionna.rt.Paths` Scattered paths
+ ris_paths : :class:`~sionna.rt.Paths`
+ Computed paths involving RIS
+
+ ris_paths : :class:`~sionna.rt.Paths`
+ Computed paths involving RIS
+
spec_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the specular paths
@@ -1551,6 +1648,14 @@
Source code for sionna.rt.scene
Additional data required to compute the EM fields of the scattered paths
+ ris_paths_tmp : :class:`~sionna.rt.PathsTmpData`
+ Additional data required to compute the EM fields of the paths
+ involving RIS
+
+ ris_paths_tmp : :class:`~sionna.rt.PathsTmpData`
+ Additional data required to compute the EM fields of the paths
+ involving RIS
+
check_scene : bool If set to `True`, checks that the scene is well configured before computing the paths. This can add a significant overhead.
@@ -1573,7 +1678,8 @@
Source code for sionna.rt.scene
# Compute the fields and merge the pathsoutput=self._solver_paths.compute_fields(spec_paths,diff_paths,
- scat_paths,spec_paths_tmp,diff_paths_tmp,scat_paths_tmp,
+ scat_paths,ris_paths,spec_paths_tmp,diff_paths_tmp,
+ scat_paths_tmp,ris_paths_tmp,scat_random_phases,testing)sources,targets,paths_as_dict=output[:3]paths=Paths(sources,targets,self)
@@ -1600,9 +1706,10 @@
Defaults to `False`. scattering : bool
- if set to `True`, then the scattered paths are computed.
+ If set to `True`, then the scattered paths are computed.
+ If set to `True`, then the scattered paths are computed. Only works with the Fibonacci method. Defaults to `False`.
+ ris : bool
+ If set to `True`, then paths involving RIS are computed.
+ Defaults to `True`.
+
scat_keep_prob : float Probability with which a scattered path is kept. This is helpful to reduce the number of computed scattered
@@ -1774,7 +1886,7 @@
Source code for sionna.rt.scene
# Trace the pathstraced_paths=self.trace_paths(max_depth,method,num_samples,los,
- reflection,diffraction,scattering,scat_keep_prob,
+ reflection,diffraction,scattering,ris,scat_keep_prob,edge_diffraction,check_scene)# Compute the fields and merge the paths
@@ -1798,6 +1910,7 @@
If set to `True`, then the scattered paths are computed. Defaults to `False`.
+ ris : bool
+ If set to `True`, then paths involving RIS are computed.
+ Defaults to `True`.
+
edge_diffraction : bool If set to `False`, only diffraction on wedges, i.e., edges that connect two primitives, is considered.
@@ -2147,6 +2264,7 @@
def__init__(self,name,
- object_id,
- scene,
- mi_shape,
- radio_material=None):
+ object_id=None,
+ mi_shape=None,
+ radio_material=None,
+ orientation=(0,0,0),
+ dtype=tf.complex64,
+ **kwargs):
+
+ ifdtypenotin(tf.complex64,tf.complex128):
+ raiseValueError("`dtype` must be tf.complex64 or tf.complex128`")
+ self._dtype=dtype
+ self._rdtype=dtype.real_dtype
+
+ # Orientation of the object is initialized to (0,0,0)
+ self._orientation=tf.cast(orientation,dtype=self._rdtype)# Initialize the base class Object
- super().__init__(name)
+ super().__init__(name,**kwargs)# Set the radio materialself.radio_material=radio_material# Set the object id
- self._object_id=object_id
-
- # Scene
- self._scene=scene
+ self.object_id=object_id# Set the Mitsuba shapeself._mi_shape=mi_shape# Set velocity vector
- self.velocity=tf.cast([0,0,0],dtype=scene.dtype.real_dtype)
-
- # Orientation of the object is initialized to (0,0,0)
- self._orientation=tf.cast([0.,0.,0.],dtype=scene.dtype.real_dtype)
+ self.velocity=tf.cast([0,0,0],dtype=self._rdtype)
- ifscene.dtype==tf.complex64:
+ ifself._dtype==tf.complex64:self._mi_point_t=mi.Point3fself._mi_vec_t=mi.Vector3fself._mi_scalar_t=mi.Float
@@ -1021,10 +1050,14 @@
Source code for sionna.rt.scene_object
@propertydefobject_id(self):r"""
- int : Return the identifier of this object
+ int : Get/set the identifier of this object """returnself._object_id
+ @object_id.setter
+ defobject_id(self,v):
+ self._object_id=v
+
@propertydefradio_material(self):r"""
@@ -1088,7 +1121,7 @@
Source code for sionna.rt.scene_object
defvelocity(self,v):ifnottf.shape(v)==3:raiseValueError("`velocity` must have shape [3]")
- self._velocity=tf.cast(v,self._scene.dtype.real_dtype)
+ self._velocity=tf.cast(v,self._rdtype)@propertydefposition(self):
@@ -1097,14 +1130,15 @@
Source code for sionna.rt.scene_object
of the object. The center is defined as the object's axis-aligned bounding box (AABB). """
+ dr.sync_thread()rdtype=self._scene.dtype.real_dtype# Bounding box# [3]
- bbox_min=mi_to_tf_tensor(self._mi_shape.bbox().min,rdtype)
+ bbox_min=tf.cast(self._mi_shape.bbox().min,rdtype)# [3]
- bbox_max=mi_to_tf_tensor(self._mi_shape.bbox().max,rdtype)
+ bbox_max=tf.cast(self._mi_shape.bbox().max,rdtype)# [3]
- half=tf.cast(0.5,rdtype)
+ half=tf.cast(0.5,self._rdtype)position=half*(bbox_min+bbox_max)returnposition
@@ -1205,8 +1239,7 @@
Source code for sionna.rt.scene_object
deforientation(self,new_orient):# Real dtype
- rdtype=self._scene.dtype.real_dtype
- new_orient=tf.cast(new_orient,rdtype)
+ new_orient=tf.cast(new_orient,self._rdtype)# Build the transformtation corresponding to the new rotationnew_rotation=angles_to_mitsuba_rotation(new_orient)
@@ -1258,7 +1291,7 @@
This parameter is ignored if ``look_at`` is not `None`. Defaults to [0,0,0].
- look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.Camera` | None
+ look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | None A position or the instance of a :class:`~sionna.rt.Transmitter`,
- :class:`~sionna.rt.Receiver`, or :class:`~sionna.rt.Camera` to look at.
+ :class:`~sionna.rt.Receiver`, :class:`~sionna.rt.RIS`, or :class:`~sionna.rt.Camera` to look at. If set to `None`, then ``orientation`` is used to orientate the device. color : [3], float
diff --git a/docs/_modules/sionna/rt/utils.html b/docs/_modules/sionna/rt/utils.html
index 580b046f..ca3761c2 100644
--- a/docs/_modules/sionna/rt/utils.html
+++ b/docs/_modules/sionna/rt/utils.html
@@ -3,7 +3,7 @@
- sionna.rt.utils — Sionna 0.17.0 documentation
+ sionna.rt.utils — Sionna 0.18.0 documentation
@@ -394,6 +394,18 @@
[docs]defrotate(p,angles,inverse=False):r""" Rotates points ``p`` by the ``angles`` according to the 3D rotation defined in :eq:`rotation`
@@ -1034,6 +1059,11 @@
Source code for sionna.rt.utils
rotations about the axes :math:`(z, y, x)`, respectively.
+ inverse : bool
+ If `True`, the inverse rotation is applied,
+ i.e., the transpose of the rotation matrix is used.
+ Defaults to `False`
+
Output ------ : [...,3]
@@ -1047,7 +1077,7 @@
Source code for sionna.rt.utils
# Rotation around ``center``# [..., 3]
- rot_p=tf.linalg.matvec(rot_mat,p)
+ rot_p=tf.linalg.matvec(rot_mat,p,transpose_a=inverse)returnrot_p
@@ -1219,6 +1249,25 @@
Source code for sionna.rt.utils
res=tf.clip_by_value(res,-one,one)returnres
+
[docs]defouter(u,v):
+r"""
+ Computes the outer product between u and v
+
+ Input
+ ------
+ u : [...,3]
+ First vector
+
+ v : [...,3]
+ Second vector
+
+ Output
+ -------
+ : [...,3,3]
+ Outer product between ``u`` and ``v``
+ """
+ returnu[...,tf.newaxis]*v[...,tf.newaxis,:]
+
[docs]defnormalize(v):r""" Normalizes ``v`` to unit norm
@@ -1349,10 +1398,10 @@
Source code for sionna.rt.utils
""" Get a TensorFlow eager tensor from a Mitsuba/DrJIT tensor """
- # When there is only one input, the .tf() methods crashes.
- # The following hack takes care of this corner casedr.eval(mi_tensor)dr.sync_thread()
+ # When there is only one input, the .tf() methods crashes.
+ # The following hack takes care of this corner caseifdr.shape(mi_tensor)[-1]==1:mi_tensor=dr.repeat(mi_tensor,2)tf_tensor=tf.cast(mi_tensor.tf(),dtype)[:1]
@@ -1524,9 +1573,11 @@
# Compute rotated pointspoints=tf.linalg.matvec(rot_mat,points)
+ # Numerical errors can cause sampling from the other hemisphere.
+ # Correct the sampled vector to avoid sampling in the wrong hemisphere.
+ normals=tf.expand_dims(normals,axis=1)
+ s=dot(points,normals,keepdim=True)
+ s=tf.where(s<0.,s,0.)
+ points=points-2.*s*normals
+
ifnum_samples==1:points=tf.squeeze(points,axis=1)
@@ -1752,6 +1810,112 @@
Source code for sionna.rt.utils
@mi_transform_t.rotate(axis=[0.,1.,0.],angle=angles[1])@mi_transform_t.rotate(axis=[1.,0.,0.],angle=angles[2]))
+
+defgen_basis_from_z(z,epsilon):
+"""
+ Generate a pair of vectors (x,y) such that (x,y,z) is an orthonormal basis.
+
+ Input
+ ------
+ z : [..., 3], tf.float
+ Unit vector
+
+ epsilon : (), tf.float
+ Small value used to avoid errors due to numerical precision
+
+ Output
+ -------
+ x : [..., 3], tf.float
+ Unit vector
+
+ y : [..., 3], tf.float
+ Unit vector
+ """
+ x=gen_orthogonal_vector(z,epsilon)
+ x,_=normalize(x)
+ y=cross(z,x)
+ returnx,y
+
+defcompute_spreading_factor(rho_1,rho_2,s):
+r"""
+ Computes the spreading factor
+ :math:`\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + s)(\rho_2 + s)}}`
+
+ Input
+ ------
+ rho_1, rho_2 : [...], tf.float
+ Principal radii of curvature
+
+ s : [...], tf.float
+ Position along the axial ray at which to evaluate the squared
+ spreading factor
+
+ Output
+ -------
+ : float
+ Squared spreading factor
+ """
+
+ # In the case of a spherical wave, when the origin (s = 0) is set to unique
+ # caustic point, then both principal radii of curvature are set to zero.
+ # The spreading factor is then equal to 1/s.
+ spherical=tf.logical_and(tf.equal(rho_1,0.),tf.equal(rho_2,0.))
+ a2_spherical=tf.math.reciprocal_no_nan(s)
+
+ # General formula for the spreading factor
+ a2=tf.sqrt(rho_1*rho_2/((rho_1+s)*(rho_2+s)))
+
+ a2=tf.where(spherical,a2_spherical,a2)
+ returna2
+
+defmitsuba_rectangle_to_world(center,orientation,size,ris=False):
+"""
+ Build the `to_world` transformation that maps a default Mitsuba rectangle
+ to the rectangle that defines the coverage map surface.
+
+ Input
+ ------
+ center : [3], tf.float
+ Center of the rectangle
+
+ orientation : [3], tf.float
+ Orientation of the rectangle.
+ An orientation of `(0,0,0)` correspond to a rectangle oriented such that
+ z+ is its normal.
+
+ size : [2], tf.float
+ Scale of the rectangle.
+ The width of the rectangle (in the local X direction) is scale[0]
+ and its height (in the local Y direction) scale[1].
+
+ Output
+ -------
+ to_world : :class:`mitsuba.ScalarTransform4f`
+ Rectangle to world transformation.
+ """
+ orientation=180.*orientation/PI
+
+ trans= \
+ mi.ScalarTransform4f.translate(center.numpy())\
+ @mi.ScalarTransform4f.rotate(axis=[0,0,1],angle=orientation[0])\
+ @mi.ScalarTransform4f.rotate(axis=[0,1,0],angle=orientation[1])\
+ @mi.ScalarTransform4f.rotate(axis=[1,0,0],angle=orientation[2])
+
+ ifris:
+ # The RIS normal points at [1,0,0].
+ # We hence rotate the normal of the rectangle which points
+ # at [0,0,1] by 90 degrees around the [0,1,0] axis.
+ trans=trans\
+ @mi.ScalarTransform4f.rotate(axis=[0,1,0],angle=90)
+
+ # size = [width (=y), height (=z)]
+ # Since the RIS is rotated w.r.t to rectangle,
+ # The z axis corresponds to the x axis
+ size=[size[1],size[0]]
+
+ return(trans
+ @mi.ScalarTransform4f.scale([0.5*size[0],0.5*size[1],1])
+ )
diff --git a/docs/_sources/api/rt.rst.txt b/docs/_sources/api/rt.rst.txt
index 8b62d7ac..1a64ed6a 100644
--- a/docs/_sources/api/rt.rst.txt
+++ b/docs/_sources/api/rt.rst.txt
@@ -23,6 +23,7 @@ The paper `Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling
.. include:: rt_radio_device.rst.txt
.. include:: rt_antenna_array.rst.txt
.. include:: rt_antenna.rst.txt
+.. include:: rt_ris.rst.txt
.. include:: rt_utils.rst.txt
References:
diff --git a/docs/_sources/em_primer.rst.txt b/docs/_sources/em_primer.rst.txt
index e71758e2..da9a5ce7 100644
--- a/docs/_sources/em_primer.rst.txt
+++ b/docs/_sources/em_primer.rst.txt
@@ -470,7 +470,7 @@ where the former is orthogonal to the plane of incidence and called transverse e
\hat{\mathbf{e}}_{\text{i},\parallel}^\mathsf{T}\hat{\mathbf{e}}_{\text{i},s} & \hat{\mathbf{e}}_{\text{i},\parallel}^\mathsf{T}\hat{\mathbf{e}}_{\text{i},p}
\end{bmatrix}
\begin{bmatrix}E_{\text{i},s} \\ E_{\text{i},p}\end{bmatrix} =
- \mathbf{W}\left(\hat{\mathbf{e}}_{\text{i},\perp}, \hat{\mathbf{e}}_{\text{i},\parallel}, \hat{\mathbf{e}}_{\text{i},s}, \hat{\mathbf{e}}_{\text{i},p}\right)
+ \mathbf{W}\left(\hat{\mathbf{e}}_{\text{i},\perp}, \hat{\mathbf{e}}_{\text{i},\parallel}, \hat{\mathbf{e}}_{\text{i},s}, \hat{\mathbf{e}}_{\text{i},p}\right) \begin{bmatrix}E_{\text{i},s} \\ E_{\text{i},p}\end{bmatrix}
\end{align}
where we have defined the following matrix-valued function
@@ -846,7 +846,121 @@ which ensures the power balance between the incoming, reflected, and refracted f
.. math::
F_{\alpha, \beta}(\theta_i)^{-1} = \Lambda F_\alpha(\theta_i) + (1-\Lambda)F_\beta(\theta_i)
+.. _ris_primer:
+Reconfigurable Intelligent Surfaces (RIS)
+*****************************************
+Metasurfaces can manipulate electromagnetic waves in a way that traditional materials cannot. For example, they can be used to create anomalous reflections, focalization, as well as polarization changes. A reconfigurable intelligent surface (RIS) is a special type of metasurface that can be dynamically controlled to achieve favorable propagation conditions in a specific enviroment. While many different ways to model RIS have been proposed in the literature [Di-Renzo20]_, we adopt here the ones described in [Degli-Esposti22]_ and [Vitucci24]_. The former will be used for the computation of channel impulse responses (CIRs) (see :meth:`~sionna.rt.Scene.compute_paths`) while the latter will serve for the computation of coverage maps (see :meth:`~sionna.rt.Scene.coverage_map`).
+
+We consider only lossless RIS, i.e., there is no power dissipation. For waves incident on the front side of an RIS, only the reradiated modes but neither specular nor diffuse reflections are created. For waves incident on the back side, an RIS behaves like a perfect absorber. For coverage maps, diffraction around the RIS' edges is ignored.
+
+An RIS consists of a regular grid of unit cells which impose a spatial modulation, i.e., phase and amplitude changes, on an incident wave. This leads in turn to the creation of :math:`M\ge 1` reradiated modes. Let us denote by :math:`(y,z)` a generic point on the RIS, and by :math:`\chi_m(y,z)` and :math:`A_m(y,z)` the phase and amplitude modulation coefficients of the :math:`m\text{th}` reradiation mode, respectively. We assume that the RIS' normal :math:`\hat{\mathbf{n}}` points toward the positive :math:`x`-axis.
+
+The spatial modulation coefficient :math:`\Gamma(y,z)` is then given as (Eq.12) [Degli-Esposti22]_
+
+.. math::
+ :label: spatial_modulation_coefficient
+
+ \Gamma(y,z) = \sum_{m=1}^M \sqrt{p_m} A_m(y,z) e^{j \chi_m(y,z)}
+
+where :math:`p_m` is the reradiation intensity coefficient of the :math:`m\text{th}` mode. For power conservation reasons, we need to impose that :math:`\sum_{m=1}^M p_m=1` and that the normalized surface integral of :math:`|A_m(y,z)|^2` across the RIS equals one for all :math:`m`.
+
+.. _fig_ris:
+.. figure:: figures/ris.svg
+ :align: center
+ :width: 50 %
+
+ Incident and reradiated field from a reconfigurable intelligent surface (RIS).
+
+
+Consider now an RIS as shown in :numref:`fig_ris` with an incident electro-magnetic wave with field phasor :math:`\mathbf{E}_i(S)` at point :math:`S\in\mathbb{R}^3`, where :math:`E_{i,\theta}(S)` and :math:`E_{i,\varphi}(S)` denote the vertical and horizontal field components, respectively. The reradiated field from the RIS at point :math:`S'` is computed as (Eq.30) [Degli-Esposti22]_:
+
+.. math::
+ :label: ris_field
+
+ \begin{align}
+ \mathbf{E}_r(S') =& \sum_{u=1}^{N_Y}\sum_{v=1}^{N_Z} \Gamma(y_u, z_v) \frac{3\lambda}{16\pi} (1+\cos\theta_i(y_u, z_v)) (1+\cos\theta_r(y_u, z_v)) \\
+ &\quad \times \frac{e^{-jk_0(s_i(y_u, z_v) + s_r(y_u, z_v))}}{s_i(y_u, z_v) s_r(y_u, z_v)} \left( E_{i,\theta}(S) \hat{\boldsymbol{\theta}}(\hat{\mathbf{k}}_r(y_u,z_v)) + E_{i,\varphi}(S) \hat{\boldsymbol{\varphi}}(\hat{\mathbf{k}}_r(y_u,z_v)) \right)
+ \end{align}
+
+where :math:`N_Y` and :math:`N_Z` are the number of columns and rows of the regular grid of unit cells with coordinates :math:`(y_u, z_v)` for :math:`1\leq u \leq N_Y` and :math:`1\leq v \leq N_Z`, :math:`\hat{\mathbf{k}}_i(y_u,z_v)` and :math:`\hat{\mathbf{k}}_r(y_u,z_v)` are the directions of the incident and reradiated waves at position :math:`(y_u,z_v)`, :math:`\theta_i(y_u, z_v)` and :math:`\theta_r(y_u, z_v)` are the angles between the RIS's normal and the incident and reradiated directions, respectively, and :math:`s_i(y_u, z_v)` and :math:`s_r(y_u, z_v)` are the distances between the unit cell :math:`(y_u, z_v)` and :math:`S, S'`, respectively. With a slight abuse of notation, we denote by :math:`\hat{\boldsymbol{\theta}}(\hat{\mathbf{k}})` and :math:`\hat{\boldsymbol{\varphi}}(\hat{\mathbf{k}})` the spherical unit vectors :eq:`spherical_vecs` for angles defined by :math:`\hat{\mathbf{k}}` according to :eq:`theta_phi`. One can observe from the last equation that the RIS does not impact the polarization.
+Note that :eq:`ris_field` is only used in :meth:`~sionna.rt.Scene.compute_paths` for the computation of the channel impulse response.
+
+.. _fig_ris_ray:
+.. figure:: figures/ris_ray.svg
+ :align: center
+ :width: 35 %
+
+ An RIS anomalously reflects an incoming ray due to its phase gradient :math:`\nabla\chi_m`.
+
+For the computation of coverage maps, the ray-based model from [Vitucci24]_ is used. :numref:`fig_ris_ray` shows how an RIS anomalously reflects an incident ray, intersecting the RIS at point :math:`\mathbf{q}\in\mathbb{R}^3` in the y-z plane.
+The incident ray with propagation direction :math:`\hat{\mathbf{k}}_i`, representing a locally-plane wavefront, acquires an incident phase gradient :math:`\nabla\chi_i` on the RIS' surface which can be computed as (Eq.9) [Vitucci24]_
+
+.. math::
+ :label: incident_phase_gradient
+
+ \nabla \chi_i = -k_0 \left(\mathbf{I} - \hat{\mathbf{n}}\hat{\mathbf{n}}^\textsf{T} \right) \hat{\mathbf{k}}_i.
+
+Each of the RIS' reradiation modes gives rise to an additional phase gradient :math:`\nabla\chi_m` at the point of intersection, which results in the total phase gradient (Eq.11) [Vitucci24]_
+
+.. math::
+ :label: total_phase_gradient
+
+ \nabla \chi(\mathbf{q}) = \nabla \chi_i + \nabla \chi_m(\mathbf{q}).
+
+It is this total phase gradient that determines the direction of the reflected ray :math:`\hat{\mathbf{k}}_r`
+for reradiation mode :math:`m` which can be computed as (Eq.13) [Vitucci24]_
+
+.. math::
+ :label: ris_reflected_direction
+
+ \hat{\mathbf{k}}_r = -\frac{\nabla \chi(\mathbf{q})}{k_0} + \sqrt{1-\left\lVert\frac{\nabla \chi(\mathbf{q})}{k_0} \right\rVert^2} \hat{\mathbf{n}}.
+
+From the last equation, it becomes clear that the phase profile and its derivative must be computed at arbitrary positions on the RIS' surface. However, in Sionna RT, phase and amplitude profiles are only configured as discrete values on a regular grid with :math:`\lambda/2` spacing. For this reason, the discrete profiles are interpolated using a :class:`~sionna.rt.ProfileInterpolator`, such as the :class:`~sionna.rt.LagrangeProfileInterpolator`. It is important to keep in mind that the phase profile typically varies on the wavelength-scale across the RIS, and the amplitude profile at an even larger scale. Both profiles must be carefully chosen to represent a physically realistic device (see, e.g., the discussion after (Eq.16) [Vitucci24]_ ).
+
+.. _asticmatic_ray_tube:
+.. figure:: figures/asticmatic_ray_tube.svg
+ :align: center
+ :width: 80 %
+
+ Infinitely narrow asticmatic ray tube.
+
+A side-effect of the anomalous ray reflection is that the reflected wavefront generally has a different shape as that of the incoming wavefront. The shape of an astigmatic wave (or ray tube), as shown in :numref:`asticmatic_ray_tube`, is represented by the curvature matrix :math:`\mathbf{Q}(s)\in\mathbb{R}^{3\times 3}` along its propagation path (see, e.g., (Appenix I) [Kouyoumjian74]_ ), which can be written as
+
+.. math::
+ :label: curvature_matrix
+
+ \mathbf{Q}(s) = \frac{1}{\rho_1 + s} \hat{\mathbf{x}}_1\hat{\mathbf{x}}_1^\textsf{T} + \frac{1}{\rho_2 + s} \hat{\mathbf{x}}_2\hat{\mathbf{x}}_2^\textsf{T}
+
+where :math:`\rho_1` and :math:`\rho_2` are the principal radii of curvature, and :math:`\hat{\mathbf{x}}_1`
+and :math:`\hat{\mathbf{x}}_2` are the corresponding principal directions; both orthogonal to the propagation direction :math:`\mathbf{s}`, where :math:`s` denotes a point on the ray with respect to a reference point :math:`s=0`.
+
+For an incoming ray with curvature matrix :math:`\mathbf{Q}_i(\mathbf{q})` at the intersection point, the curvature matrix :math:`\mathbf{Q}_r(\mathbf{q})` of the outgoing ray can be computed as (Eq.22) [Vitucci24]_
+
+.. math::
+ :label: ris_curvature_matrix
+
+ \mathbf{Q}_r(\mathbf{q}) = \mathbf{L}^\textsf{T}\left(\mathbf{Q}_i(\mathbf{q}) - \frac{1}{k_0}\mathbf{H}_{\chi_m}(\mathbf{q}) \right)\mathbf{L}
+
+where :math:`\mathbf{H}_{\chi_m}(\mathbf{q})\in\mathbb{R}^{3\times 3}` is the Hessian matrix of the phase profile :math:`\chi_m` at the intersection point and
+
+.. math::
+ :label: ris_l_matrix
+
+ \mathbf{L} = \mathbf{I}-\frac{\hat{\mathbf{k}}_r \hat{\mathbf{n}}^\textsf{T}}{\hat{\mathbf{k}}_r^\textsf{T}\hat{\mathbf{n}}}.
+
+The principal radii of curvature of the reflected ray :math:`\rho_1^r` and :math:`\rho_2^r` are the non-zero eigenvalues of :math:`\mathbf{Q}_r(\mathbf{q})` while the principal directions :math:`\hat{\mathbf{x}}_1^r` and :math:`\hat{\mathbf{x}}_2^r` are given by the associated eigenvectors.
+With these definitions, we are now able to express the reflected field at point :math:`\mathbf{r} = \mathbf{q}+s\hat{\mathbf{k}}_r` as a function of the incoming field at point :math:`\mathbf{q}` (Eq.23) [Vitucci24]_:
+
+.. math::
+ :label: ris_ray_field
+
+ \begin{align}
+ \mathbf{E}_{r,m}(\mathbf{r}) =& \sqrt{p_m} A_m(\mathbf{q}) e^{j \chi_m(\mathbf{q})} \sqrt{\frac{\rho_1^r \rho_2^r}{(\rho_1^r + s)(\rho_2^r + s)}} \\
+ &\quad \times\left(E_{i,\theta}(\mathbf{q}) \hat{\boldsymbol{\theta}}(\hat{\mathbf{k}}_r) + E_{i,\varphi}(\mathbf{q}) \hat{\boldsymbol{\varphi}}(\hat{\mathbf{k}}_r)\right) e^{-jk_0 s}
+ \end{align}
+
+where we have assumed, as in :eq:`ris_field`, that the RIS does not realize any polarization transformation.
References:
.. [atan2] Wikipedia, "`atan2 `__," accessed 8 Feb. 2023.
@@ -857,6 +971,10 @@ References:
.. [Degli-Esposti11] Vittorio Degli-Esposti et al., "`Analysis and Modeling on co- and Cross-Polarized Urban Radio Propagation for Dual-Polarized MIMO Wireless Systems `_", IEEE Trans. Antennas Propag, vol. 59, no. 11, pp.4247-4256, Nov. 2011.
+ .. [Degli-Esposti22] Vittorio Degli-Esposti et al., "`Reradiation and Scattering From a Reconfigurable Intelligent Surface: A General Macroscopic Model `_", IEEE Trans. Antennas Propag, vol. 70, no. 10, pp.8691-8706, Oct. 2022.
+
+ .. [Di-Renzo20] Marco Di Renzo et al., "`Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead `_", IEEE J. Sel. Areas Commun., vol. 38, no. 11 pp.2450-2525, Nov. 2020.
+
.. [Fresnel] Wikipedia, "`Fresnel integral `_," accessed 21 Apr. 2023.
.. [ITURP20402] ITU, "`Recommendation ITU-R P.2040-2: Effects of building materials and structures on radiowave propagation above about 100 MHz `_". Sep. 2021.
@@ -878,7 +996,9 @@ References:
.. [METIS] METIS Deliverable D1.4, "`METIS Channel Models `_", Feb. 2015.
.. [Tse] D. Tse, P. Viswanath, "`Fundamentals of Wireless Communication `_", Cambridge University Press, 2005.
-
+
+ .. [Vitucci24] Enrico Maria Vittuci et al., "`An Efficient Ray-Based Modeling Approach for Scattering From Reconfigurable Intelligent Surfaces `_", IEEE Trans. Antennas Propag, vol. 72, no. 3, pp.2673-2685, Mar. 2024.
+
.. [Wiesbeck] N. Geng and W. Wiesbeck, "Planungsmethoden fรผr die Mobilkommunikation," Springer, 1998.
.. [Wikipedia] Wikipedia, "`Maximum power transfer theorem `_," accessed 7 Oct. 2022.
diff --git a/docs/_sources/examples/5G_NR_PUSCH.ipynb.txt b/docs/_sources/examples/5G_NR_PUSCH.ipynb.txt
index feaf2a61..f15b521c 100644
--- a/docs/_sources/examples/5G_NR_PUSCH.ipynb.txt
+++ b/docs/_sources/examples/5G_NR_PUSCH.ipynb.txt
@@ -695,7 +695,7 @@
"It is important to understand that each layer is transmitted using a different DMRS port. That means that the number of DMRS ports is independent of the number of antenna ports.\n",
"\n",
"In the next cell, we will configure a single transmitter with four antenna ports, sending two layers on DMRS ports 0 and 1.\n",
- "We can then choose among different precoding matrices with the help of the transmit transmit precoding matrix identifier (TPMI). "
+ "We can then choose among different precoding matrices with the help of the transmit precoding matrix identifier (TPMI). "
]
},
{
@@ -802,8 +802,8 @@
"source": [
"pusch_config.dmrs.additional_position = 1\n",
"\n",
- "# In order to reduce the number of figures, we only limit us here \n",
- "# to the pilot pattern of the first stream\n",
+ "# In order to reduce the number of figures, we here only show \n",
+ "# the pilot pattern of the first stream\n",
"PUSCHTransmitter(pusch_config).pilot_pattern.show(stream_ind = 0);"
]
},
@@ -815,8 +815,8 @@
"### How to control the number of available DMRS ports?\n",
"\n",
"There are two factors that determine the available number of DMRS ports, i.e., layers, that can be transmitted. \n",
- "The first is the DMRS Configuration and the second the length of a DMRS symbol. Both parameters can take to values so that there are four options in total.\n",
- "In the previous example, the DMRS Configuration Type 1 was used. In this case, there are two CDM groups and each groups uses either odd or even subcarriers. This leads to four available DMRS ports.\n",
+ "The first is the DMRS Configuration and the second the length of a DMRS symbol. Both parameters can take two values so that there are four options in total.\n",
+ "In the previous example, the DMRS Configuration Type 1 was used. In this case, there are two CDM groups and each group uses either odd or even subcarriers. This leads to four available DMRS ports.\n",
"With DMRS Configuration Type 2, there are three CDM groups and each group uses two pairs of adjacent subcarriers per PRB, i.e., four pilot-carrying subcarriers. That means that there are six available DMRS ports.\n",
"\n",
"\n",
@@ -939,7 +939,7 @@
"The pilot pattern is now composed of four 2x2 blocks within a PRB. These blocks are used by the four DMRS ports within the same CDM group. This means that we can now support up to twelve layers! \n",
"\n",
"Let's create a setup with three transmitters, each sending four layers using four antenna ports. We choose the DMRS ports for each transmitters such that they belong to the CDM group. This is not necessary and you are free to choose any desired allocation. \n",
- "It is however important to understand, thet for channel estimation to work, the channel is supposed to be static over 2x2 blocks of resource elements. This is in general the case for low mobility scenarios and channels with not too large delay spread. You can see from the results below that the pilot sequences of the DMRS ports in the same CDM group are indeed orthogonal over the 2x2 blocks."
+ "It is however important to understand, that for channel estimation to work, the channel is supposed to be static over 2x2 blocks of resource elements. This is in general the case for low mobility scenarios and channels with not too large delay spread. You can see from the results below that the pilot sequences of the DMRS ports in the same CDM group are indeed orthogonal over the 2x2 blocks."
]
},
{
@@ -1192,7 +1192,7 @@
"source": [
"## Looking into the PUSCHTransmitter\n",
"\n",
- "We have used the ``PUSCHTransmitter`` class already multiple times without speaking about what it actually does. In short, it generates for every configured transmitter a batch of random information bits of length ``pusch_config.tb_size`` and outputs either a frequency fo time-domain representation of the transmitted OFDM waveform from each of the antenna ports of each transmitter.\n",
+ "We have used the ``PUSCHTransmitter`` class already multiple times without speaking about what it actually does. In short, it generates for every configured transmitter a batch of random information bits of length ``pusch_config.tb_size`` and outputs either a frequency to time-domain representation of the transmitted OFDM waveform from each of the antenna ports of each transmitter.\n",
"\n",
"However, under the hood it implements the sequence of layers shown in the following figure: "
]
@@ -1736,7 +1736,7 @@
"We will now compare the PUSCH BLER performance over the 3GPP 38.901 UMi channel model with different detectors and either perfect or imperfect CSI.\n",
"Note that these simulations might take some time depending or you available hardware. You can reduce the `batch_size` if the model does not fit into the memory of your GPU. Running the simulations in the time domain will significantly increase the complexity and you might need to decrease the `batch_size` further. The code will also run on CPU if not GPU is available. \n",
"\n",
- "Note that the XLA compilation step can take several minutes (but the simulations will be much quicker compared to eager or graph mode.\n",
+ "Note that the XLA compilation step can take several minutes, but the simulations will be much faster compared to eager or graph mode.\n",
"\n",
"If you do not want to run the simulation yourself, you can skip the next cell and visualize the results in the next cell."
]
@@ -1911,12 +1911,6 @@
"\n",
"Please have a look at the [API documentation](https://nvlabs.github.io/sionna/api/sionna.html) of the various components or the other available [tutorials](https://nvlabs.github.io/sionna/tutorials.html) to learn more."
]
- },
- {
- "cell_type": "markdown",
- "id": "468507f5",
- "metadata": {},
- "source": []
}
],
"metadata": {
diff --git a/docs/_sources/examples/Sionna_Ray_Tracing_RIS.ipynb.txt b/docs/_sources/examples/Sionna_Ray_Tracing_RIS.ipynb.txt
new file mode 100644
index 00000000..991451ec
--- /dev/null
+++ b/docs/_sources/examples/Sionna_Ray_Tracing_RIS.ipynb.txt
@@ -0,0 +1,1234 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9eaca88e",
+ "metadata": {},
+ "source": [
+ "# Tutorial on Reconfigurable Intelligent Surfaces (RIS)\n",
+ "\n",
+ "This notebook deals with the use of [reconfigurable intelligent surfaces (RIS)](https://nvlabs.github.io/sionna/api/rt.html#reconfigurable-intelligent-surfaces-ris) in Sionna RT.\n",
+ "In particular, you will\n",
+ "\n",
+ "- Learn how to instantiate and configure RIS\n",
+ "- Reproduce some results from the literature\n",
+ "- Develop an understanding of \"reradiation modes\"\n",
+ "- Setup a simple example to demonstrate coverage gains of RIS\n",
+ "- Optimize some RIS parameters via gradient descent"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3db6b6ce",
+ "metadata": {},
+ "source": [
+ "## Table of Contents\n",
+ "* [Background Information](#Background-Information)\n",
+ "* [GPU Configuration and Imports](#GPU-Configuration-and-Imports)\n",
+ "* [Reproducing Results from the Literature](#Reproducing-Results-from-the-Literature)\n",
+ "* [RIS with Multiple Reradiation Modes](#RIS-with-Multiple-Reradiation-Modes)\n",
+ "* [Coverage Enhancement with RIS](#Coverage-Enhancement-with-RIS)\n",
+ "* [Gradient-Based RIS Optimization](#Gradient-Based-RIS-Optimization)\n",
+ "* [Summary](#Summary)\n",
+ "* [References](#References)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "81ad633e-738d-477d-b173-404424677bef",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true
+ },
+ "source": [
+ "## Background Information\n",
+ "For background information on reconfigurable intelligent surfaces (RIS), we refer to the relevant sections of the [EM Primer](https://nvlabs.github.io/sionna/em_primer.htmll#reconfigurable-intelligent-surfaces-ris) and the [API Documentation](https://nvlabs.github.io/sionna/api/rt.htm#reconfigurable-intelligent-surfaces-ris).\n",
+ "\n",
+ "RIS are modeled in Sionna as radio devices, like transmitters and receivers, which can be placed at arbitrary positions in a scene.\n",
+ "\n",
+ "Every RIS has a [phase profile](https://nvlabs.github.io/sionna/api/rt.htm#sionna.rt.PhaseProfile) and an [amplitude profile](https://nvlabs.github.io/sionna/api/rt.htm#sionna.rt.AmplitdueProfile) which determine together the reradiated electro-magnetic field. These profiles are assumed to be discrete, i.e., a unique value can be configured for a regular grid of points (or unit cells) on the RIS with $\\lambda/2$ spacing. These values are then interpolated to obtain continuous phase and amplitude profiles over the RIS.\n",
+ "\n",
+ "Most properties of RIS can be made trainable by assigning a [tf.Variable](https://www.tensorflow.org/api_docs/python/tf/Variable) to them.\n",
+ "\n",
+ "The computation of propagation paths assumes the model from [[1]](#References) while coverage maps are based on [[2]](#References).\n",
+ "\n",
+ "For complexity reasons, propagation paths are only computed for direct links between a transmitter, RIS, and receiver. No other interactions with the scene are possible. For coverage maps, this restriction does not apply."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71f81316",
+ "metadata": {},
+ "source": [
+ "## GPU Configuration and Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "63dcf915",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "gpu_num = 0 # Use \"\" to use the CPU\n",
+ "os.environ[\"CUDA_VISIBLE_DEVICES\"] = f\"{gpu_num}\"\n",
+ "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n",
+ "\n",
+ "# Colab does currently not support the latest version of ipython.\n",
+ "# Thus, the preview does not work in Colab. However, whenever possible we\n",
+ "# strongly recommend to use the scene preview mode.\n",
+ "try: # detect if the notebook runs in Colab\n",
+ " import google.colab\n",
+ " colab_compat = True # deactivate preview\n",
+ "except:\n",
+ " colab_compat = False\n",
+ "resolution = [480,320] # increase for higher quality of renderings\n",
+ "\n",
+ "# Allows to exit cell execution in Jupyter\n",
+ "class ExitCell(Exception):\n",
+ " def _render_traceback_(self):\n",
+ " pass\n",
+ "\n",
+ "# Import Sionna\n",
+ "try:\n",
+ " import sionna\n",
+ "except ImportError as e:\n",
+ " # Install Sionna if package is not already installed\n",
+ " import os\n",
+ " os.system(\"pip install sionna\")\n",
+ " import sionna\n",
+ "\n",
+ "# Configure the notebook to use only a single GPU and allocate only as much memory as needed\n",
+ "# For more details, see https://www.tensorflow.org/guide/gpu\n",
+ "import tensorflow as tf\n",
+ "gpus = tf.config.list_physical_devices('GPU')\n",
+ "if gpus:\n",
+ " try:\n",
+ " tf.config.experimental.set_memory_growth(gpus[0], True)\n",
+ " except RuntimeError as e:\n",
+ " print(e)\n",
+ "# Avoid warnings from TensorFlow\n",
+ "tf.get_logger().setLevel('ERROR')\n",
+ "\n",
+ "tf.random.set_seed(1) # Set global random seed for reproducibility"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "43481114",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib import cm\n",
+ "\n",
+ "from sionna import PI\n",
+ "from sionna.rt import load_scene, Transmitter, Receiver, RIS, PlanarArray, \\\n",
+ " r_hat, normalize, Camera"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "12b6f2ca",
+ "metadata": {},
+ "source": [
+ "## Reproducing Results from the Literature\n",
+ "\n",
+ "As a first example, we will reproduce Fig. 4 from [[1]](#References). \n",
+ "\n",
+ "The underlying setup is shown below.\n",
+ "An ideal 7m x 7m RIS is located in the x-y plane and assumed to be illuminated by a planar wave arriving from the positive z direction. We approximate planar wave incidence by having a transmitter located at a very large distance away from the RIS, i.e., z=500m.\n",
+ "\n",
+ "The RIS is configured to act as a perfect anomalous reflector with a single reradiation mode, which steers the incoming wave of a frequency of 3GHz toward a zenith angle $\\theta_r$ of 60 degrees.\n",
+ "The goal is to compute the absolute field strength of the RIS-reflected field in the x-z plane."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f66502b0-b2bf-440f-99ff-0d312047c2ca",
+ "metadata": {},
+ "source": [
+ "![System Model]()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4fa89b78-6d8b-4dab-adf9-858760d56fa7",
+ "metadata": {},
+ "source": [
+ "The first steps consists in setting up the scene:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "a5551fbd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load an empty scene and configure single linearly polarized antennas for\n",
+ "# all transmitters and receivers\n",
+ "scene = load_scene()\n",
+ "scene.frequency = 3e9 # Carrier frequency [Hz]\n",
+ "scene.tx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "scene.rx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "\n",
+ "# Place a transmitter far away from the RIS so that\n",
+ "# the incoming wave is almost planar\n",
+ "tx = Transmitter(\"tx\", [0,0,500])\n",
+ "scene.add(tx)\n",
+ "\n",
+ "# Configure RIS in the x-z plane centered at the origin\n",
+ "width = 7 # Width [m] as described in [1]\n",
+ "num_rows = num_cols = int(width/(0.5*scene.wavelength))\n",
+ "ris = RIS(name=\"ris\",\n",
+ " position=[0,0,0],\n",
+ " orientation=[0,-PI/2,0],\n",
+ " num_rows=num_rows,\n",
+ " num_cols=num_cols)\n",
+ "scene.add(ris)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0220e82",
+ "metadata": {},
+ "source": [
+ "In the cell above, we have configured an RIS such that it closely matches the desired dimensions.\n",
+ "However, because of the discrete $\\lambda/2$ spacing of of unit cells, this can only be approximately achieved.\n",
+ "We can inspect some of the RIS' properties as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "70ac64e8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RIS size (width, height) [m]: [6.9951572 6.9951572]\n",
+ "Number of cells: 19600\n",
+ "Velocity vector [m/s]: [0. 0. 0.]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"RIS size (width, height) [m]: \", ris.size.numpy())\n",
+ "print(\"Number of cells: \", ris.num_cells)\n",
+ "print(\"Velocity vector [m/s]: \", ris.velocity.numpy())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b9584839",
+ "metadata": {},
+ "source": [
+ "Like any scene object in Sionna RT, RIS can have a velocity vector which is used to compute path-specific Doppler shifts. We will not make use of this property in this tutorial. You can learn more about mobility in Sionna in this [notebook](https://nvlabs.github.io/sionna/examples/Sionna_Ray_Tracing_Mobility.html).\n",
+ "\n",
+ "RIS have a [phase profile](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.PhaseProfile) and an [amplitude profile](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.AmplitdueProfile) which default to a configuration where the RIS acts like a normal mirror-like reflector."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "cce6a1e0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(ris.phase_profile)\n",
+ "print(ris.amplitude_profile)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7f71173",
+ "metadata": {},
+ "source": [
+ "Each profile is defined by a tensor of shape `[num_modes, num_rows, num_cols]` containing either amplitude or phase values [rad] for every reradiation mode.\n",
+ "Let us inspect the default values of these tensors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "db77342e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tf.Tensor(\n",
+ "[[[1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " ...\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]]], shape=(1, 140, 140), dtype=float32)\n",
+ "tf.Tensor(\n",
+ "[[[0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " ...\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]]], shape=(1, 140, 140), dtype=float32)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(ris.amplitude_profile.values)\n",
+ "print(ris.phase_profile.values)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3706521e",
+ "metadata": {},
+ "source": [
+ "We can see that the RIS has a single reradiation mode, the amplitudes are equal to one and the phases equal to zero.\n",
+ "\n",
+ "An RIS is defined in the y-z plane, centered at the origin, and assumed to point toward the positive x-axis.\n",
+ "\n",
+ "A rapid way to configure the amplitude and phase profiles is via the helper functions [RIS.focusing_lens()](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.RIS.focusing_lens) or [RIS.phase_gradient_reflector()](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.RIS.phase_gradient_reflector). However, any other configuration is possible by simply assigning the desired profile values. All of these options will be explored later on.\n",
+ "\n",
+ "Let us now inspect the phase profile differences between a focusing lens and a phase gradient reflector. Both assume that a wave arrives from a certain point or direction, i.e., a `source`, and some of its energy shall be reradiated toward another point or direction, i.e., a `target`. \n",
+ "Multiple reradiation modes can be configured by providing pairs of sources and targets. This is also further explored below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "0cf25498",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGiCAYAAACoFbIoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXgc133mi3/OqaUXNNDYdxAEwZ2UKJFaLMm7ZSn2jWPlN9ceOZscO9fZnFxfz42TzM2d8WTGnsTOeOI7drzEE2XGSWYSK7GTe73EsmLZkSXbskSKIilKXACQBECsjaXXWs75/dHo7qoGQAKkZFFSvc/DR+rqOlWnCtXnre/2foXWWhMhQoQIESK8yJAv9gQiRIgQIUIEiAgpQoQIESJcI4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gI6UXGn//5nyOEYHR09MWeyisSH/7whxFCMDs7+2JP5ZrF448/zu23305DQwNCCI4cObLquX2xn+OPfexj7N69G6XUi3L+z372s2zZsoVSqfSinP/lgpc8IVV+CGv9+53f+Z0Xe3rXNCr37kc/+tGLPZXnHfXPRTweZ+fOnbz//e9namrqxZ7eVeHHeW2u6/KOd7yD+fl5/vN//s988YtfZHBw8Hk9x9ViaWmJP/zDP+S3f/u3kfLFWdLe/e534zgOn/vc516U879cYL7YE3i+8Pu///sMDQ2Ftu3fv/9Fms3G8fM///Pce++9xGKxF3sqL0tUnotiscgjjzzCZz7zGb72ta9x7Ngxksnkiz29q8KP49rOnDnD2NgYf/qnf8ov/dIvVbdfS8/tn/3Zn+F5Hu9617tetDnE43Huu+8+PvGJT/Abv/EbCCFetLm8lPGyIaS3vOUt3HTTTS/2NDYNwzAwDOPFnsbLFsHn4pd+6Zdoa2vjE5/4BH//93//oi5gzweu5NpyuRwNDQ0bPsf09DQAzc3Noe3X0nN7//3381M/9VPE4/EXdR7vfOc7+djHPsa3v/1t3vjGN76oc3mp4iXvstsoDh8+zFve8haamppIpVK86U1v4vvf//6q/cbHx3nve99Lb28vsViMoaEhfvVXfxXHcYCyab5169ZV4yqxiCCWl5f5wAc+wNatW4nFYnR2dvLmN7+ZJ598srpPve+9cpzTp0/z7ne/m+bmZtLpNL/4i79IPp9fdd6HH36Ym266iXg8zvDwMJ/73OfWnMvVYHx8nPe85z10dXURi8XYt28ff/Znf7bm9W9k3hu5Ly8UKgvFyMhIaPvCwsIl5z02Nsav/dqvsWvXLhKJBG1tbbzjHe9YM2aykevbyD292mur/E1OnDjBz/zMz9DS0sKrX/3q6v6X+028+93v5nWvex0A73jHOxBC8PrXvx7YeMzoSq/zC1/4AvF4nDvuuIOxsbHqdq01b3jDG2hvb2d6epqRkRGOHj3KnXfeueoYb33rW9f8rWqtOXjwIK95zWsuOw+A5557bt2wQJCoDx06RGtrK3//93+/oeNGWI2XjYW0uLi4KjDd3t4OwPHjx3nNa15DU1MTH/rQh7Asi8997nO8/vWv5zvf+Q633norABMTE9xyyy0sLCzwvve9j927dzM+Ps4DDzxAPp/Htu1NzelXfuVXeOCBB3j/+9/P3r17mZub45FHHuGZZ57h4MGDlxz7zne+k6GhIf7jf/yPPPnkk3zhC1+gs7OTP/zDP6zuc/jwYX7iJ36Cnp4e/t2/+3f4vs/v//7v09HRsal5XgpTU1O86lWvQgjB+9//fjo6Ovj617/Oe9/7XpaWlvjABz6w6XlfzX25Wpw5cwaAtra2Tc378ccf59FHH+Xee++lv7+f0dFRPvOZz/D617+eEydOhFxkl7u+zd7Tq722d7zjHezYsYOPfvSjVPpxbuQ38cu//Mv09fXx0Y9+lN/8zd/k5ptvpqura8PzuZrrvPnmm/mt3/otPvrRj/JHf/RH/Jf/8l8A+PSnP83DDz/MX/3VX9HZ2clf/uVfAqz53Nx88818/etfJ5PJ0NLSUt3+P//n/+Tw4cM88sgjG7qOpqYmvvjFL4a2nTx5ko985CPcddddoe0HDx7ke9/73oaOG2EN6Jc47r//fg2s+a+Ce+65R9u2rc+cOVPdNjExoRsbG/VrX/va6rZf+IVf0FJK/fjjj686j1JKa631fffdpwcHB1d9/2//7b/V9bcznU7rX//1X9/Q/EdGRkLHec973hPa76d/+qd1W1tbaNvb3vY2nUwm9fj4eHXbqVOntGmaq+ZyqXOvdb0VvPe979U9PT16dnY2tP3ee+/V6XRa5/P5Tc97I/flalG5tm9961t6ZmZGnz9/Xv/P//k/dVtbm04kEvrChQubmnflOoN47LHHNKD/+3//76Htl7u+jd7T5+va3vWud606xkZ/E9/+9rc1oL/0pS+tOYfKc1v/+fm4Tq21vuuuu/Rtt92mtdb6zJkzuqGhQd9zzz3V73/v935PA3p5eXnV2H/4h3/QgH7ooYeq2xzH0cPDw/ptb3vbZc+9Hs6cOaN7e3v1q1/9ap3L5ULfve9979OJROKKj/1Kx8vGZffpT3+aBx98MPQPwPd9vvnNb3LPPfewbdu26v49PT38zM/8DI888ghLS0sopfjKV77C2972tjVjUVfiAmtubuYHP/gBExMTmx77K7/yK6HPr3nNa5ibm2NpaQkoX9e3vvUt7rnnHnp7e6v7bd++nbe85S2bPt9a0Frzt3/7t7ztbW9Da83s7Gz13913383i4uIqN9vl5g1Xd182izvvvJOOjg4GBga49957SaVSfPnLX6avr29T804kEtXvXNdlbm6O7du309zcvOoeXOr6ruSePt/XttHfxNXg+brOG264gWPHjqGU4j3veQ+xWIzPfOYz1e/n5uYwTZNUKrVq7M033wwQOs/nP/95RkZG+OhHP3pF13X+/Hne+MY30tfXx1e/+tVVySMtLS0UCoU13esRLo+XjcvulltuWZNIZmZmyOfz7Nq1a9V3e/bsQSnF+fPnaW9vZ2lp6XnNzPvYxz7Gfffdx8DAAIcOHeKtb30rv/ALvxBaBNbDli1bQp8rLodMJkNTUxPT09MUCgW2b9++auxa264EMzMzLCws8PnPf57Pf/7za+5TCXpvdN5wZffFcRzm5+dD2zo6Oi4bWP/0pz/Nzp07MU2Trq4udu3atWZq8OXmXSgU+I//8T9y//33Mz4+XnV9QdldHMSlru9K7unVXlt99ulGfxP79u3b0DzWwvN1nfv372d5eZnf+q3f4jvf+Q5f/OIX6e7u3tAcuru76evr4/Dhw0A5oePf//t/z8/93M9d0e/84sWLvOlNbyKdTvONb3yj+jwHUXkuoiy7K8PLhpB+XFjvQfN9f9W2d77znbzmNa/hy1/+Mt/85jf5+Mc/zh/+4R/yd3/3d5e1YtZbaIML4QuNSpHhz/3cz3Hfffetuc/1118f+ryReV/JfXn00Ud5wxveENo2MjKyZtA6iPVeVOpxuXn/xm/8Bvfffz8f+MAHuO2220in0wghuPfee1cVY17q+m688UZgc/f0aq8taN39uHAlz85aqBDHJz7xCX7yJ3+Sn/u5nwt939bWhud5LC8v09jYuGr8zTffXCWkT3ziE2QyGX7/939/U9cCZUvszjvvxDAMHnzwQVpbW9fcL5PJkEwmX5R7/nLAy56QOjo6SCaTPPvss6u+O3nyJFJKBgYGSKVSNDU1cezYsUser6WlhYWFhVXbg5lAQfT09PBrv/Zr/Nqv/RrT09McPHiQj3zkI1ftVuvs7CQej3P69OlV36217UrQ0dFBY2Mjvu+vmcV0NdjsfTlw4EDVDVvBRt+Unw888MAD3Hffffyn//SfqtuKxeKazwKsf33f+c53XrB7ulFs9Ddxted4Pq6zYsU1NzevWXS6e/duoPxyshbB3XzzzfzDP/wD586d44/+6I/41V/91U0X9i4uLnLXXXdRKBT47ne/S2dn57r7joyMsGfPnk0dP0INL5sY0nowDIO77rqLv//7vw+lqE5NTfFXf/VXvPrVr6apqQkpJffccw//7//7/66pXFB5Ux4eHmZxcZGjR49Wv5ucnOTLX/5yaH/f91e5cjo7O+nt7X1e5EUMw+DOO+/kK1/5SihWcfr0ab7+9a9f9fEr5/gX/+Jf8Ld/+7drEvXMzMymj3ml96WlpYU777wz9O/HWXdiGMYq6/S//Jf/ssoyvtz1vRD3dLPY6G/ias/xfFznn/7pnwLwUz/1U6FYaQW33XYbwLpqIzfddBNKKX7mZ34GrTX/1//1f230EgDIZrO85S1vYXp6moceemhVfK4eTz75JLfffvumzhGhhpe9hQTwH/7Df+DBBx/k1a9+Nb/2a7+GaZp87nOfo1Qq8bGPfay630c/+lG++c1v8rrXvY73ve997Nmzh8nJSb70pS/xyCOP0NzczL333stv//Zv89M//dP85m/+Jvl8ns985jPs3LkzFDxdXl6mv7+f//V//V85cOAAqVSKb33rWzz++OOht+yrwYc//GG++c1vcscdd/Crv/qr+L7Ppz71Kfbv38+RI0c2fJw/+7M/4xvf+Maq7f/7//6/8wd/8Ad8+9vf5tZbb+V/+9/+N/bu3cv8/DxPPvkk3/rWt1bFdS6HH8d9eSHwkz/5k3zxi18knU6zd+9eHnvsMb71rW+tSrHeyPU93/f0SrDR38TV4Gqv88yZM/zrf/2vgbLltha2bdvG/v37+da3vsV73vOeVd9XXJrf+973+PCHP7xuSYQQgte97nU8/PDDoe0///M/z2OPPcb//X//3zzyyCOhVPH9+/dzww03VD8/8cQTzM/P8/a3v/2S1xXhEngxUvueT2wkdVlrrZ988kl9991361QqpZPJpH7DG96gH3300VX7jY2N6V/4hV/QHR0dOhaL6W3btulf//Vf16VSqbrPN7/5Tb1//35t27betWuX/ou/+ItVad+lUkn/1m/9lj5w4IBubGzUDQ0N+sCBA/pP/uRP1px/fdr3zMzMJfer4KGHHtI33nijtm1bDw8P6y984Qv6X/2rf6Xj8fiG7916/86fP6+11npqakr/+q//uh4YGNCWZenu7m79pje9SX/+85+vHmuj897ofblabPS52Oi8M5mM/sVf/EXd3t6uU6mUvvvuu/XJkyf14OCgvu+++6rjNnp9G7mnL9S1VbCR38TVpH1fzXUqpfTrXvc63dLSon/xF39Rp1KpaulFPT7xiU/oVCq1bhr51q1bdUdHx5qp4Vprvby8rAF97733rppDKpVa9/fx6U9/OrT/b//2b+stW7asO88Il8dLnpAirMbb3/52vX379hd7GhEiXDE+9alPVWu8/sf/+B8aCNVMBbGwsKBbW1v1F77whVXfnTlzRhuGoT/5yU+ue66vfvWrWgihjx49esXzLRaLuru7W//xH//xFR8jwsuoDumVikKhEPp86tQpvva1r1UlXiJEeKlhdHSU3/md3+Ftb3sbP//zP891110HsG7dUjqd5kMf+hAf//jHV2U8/u7v/i5bt25dVYsVxLe//W3uvffe6nmuBPfffz+WZV3yPBEuD6H1jzGPOMLzjp6eHt797nezbds2xsbG+MxnPkOpVOLw4cPs2LHjxZ5ehAibgtaaO++8k8OHD3P8+HF6enrwPI+WlhZ6e3v5V//qX/GzP/uzlxSIXVhY4Otf/zoPP/wwf/qnf8rXv/517r777h/jVUS4YrzIFlqEq8S73/1uPTg4qGOxmG5qatJ33323fuKJJ17saUWIcEX47Gc/u6Yc0/3336/7+/t1LBbTjuNc8hgPPPCABnR/f/+GYnIRrh1EFlKECBEiRLgmEMWQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1AfPFnkCEVx6UUniehxAC0zQRQrzYU4oQIcI1gIiQIvzYoLXG9308zyOfzyOEqJJS5Z9hGBFBRYjwCoXQWusXexIRXv7QWuO6Lr7vV/9fCIFSCq01WmuEEEgpMQwDy7IwDCMiqAgRXkGICCnCCw7f93FdF6UUUkq01jiOg5ThEKbWek2CClpPEUFFiPDyRURIEV4waK3xPA/P89BaI6WsWkWu6wKsSy6VxzIiqAgRXjmICCnCC4JK4oLv+wDVeFHlO8dxQtsuh4igIkR4+SMipAjPKypuN9d1q6RRTxBXQkhrnafyTylVPU5EUBEivHQRZdlFeN4QdNEBV0U4l0Pw2IZhhAhqfn6es2fPcv311yOlrCZImKZZdRtGiBDh2kNESBGeF1SsIt/3q660HyeCBCWEIJ/PVxMoisVidXuFoCoWVERQESJcO4gIKcJVIVhbVMmie7EX+KD7DlZbUEGCqlhOEUFFiPDiIyKkCFeMYG0RsKHFXCnFmTNnGBsbI5VK0draSktLC42NjS+oVbWei08pFRFUhAjXCCJCinBFUEoxOTlJQ0MD8Xh8Q4t2sVjkqaeewnEc9u7dS7FYZGFhgfPnz6OUIp1O09LSUiWoqyGCy+XqXIqgSqUSxWIRKeWqJImIoCJEeOEQEVKETaHionNdl5MnT7Jz504SicRlx01PT/P000/T2dnJwYMHUUoB0N/fj9aaXC7HYmaCucwiY2NjADQ3N1cJqqGhYcNEcCWEUZ+AUSEo3/fxfZ9SqRSKQVUsqRcycSNChFcaIkKKsGHUu+g2shArpXj22We5cOEC+/bto7e3t6rUUIEQglSDS6d4L9s6bsAzfpJM4RCZTK6aMSelDBFUMpl8QYmgQjQVN2KQoCpafEtLSwwMDKzS4YsIKkKEK0NESBE2hHr5n8rCeynXWC6X46mnngLg9ttvp6GhYd19LfdLCPKY/qOY/qN0mjtp674er/9t+Lya5WyWTCbDzMwMp0+fxjTNKjm1tLSschs+3+V19QRVLBaZmpqip6enqsu3XgwqQoQIG0NESBEuifraomAM5VKENDExwYkTJ+jr62PXrl2XXph1Ccv9UniTSGB6f4Pp/Q1KDGEl3kG68U1s3boV3/dZWloik8kwOTnJs88+SywWq1pQtm0/Pxe/AZhm+SdUsaA8z1tFUEGh2IigIkRYHxEhRVgXldqiSrynfjGVUla/q8DzPE6ePMnU1BTXX389nZ2dlz2P6X0NwXztvKQR6njtPHoE0/sHLPfjKHkrvvWTtKTfQEvLNqBsvS0uLpLJZBgfH2dpaQmAkydPVi2oF5qk1nPxVQgK1laRiAgqQoQaIkKKsApB+Z9L1RbVW0jLy8scOXIE27a5/fbbN5TsoLVCeN8MbVNyG1I9UftMP1KfBMBQ30cWH0PIYbTcjTJ/EsO4hdbWVlpbWwFYXFzk8OHDGIbB2NgYx48fp6GhgZaWlqoVZVnWFd2bjWI9gnJdtxo/iwgqQoQwIkKKEMJmaosqhKS15sKFC5w8eZKtW7cyPDy88YXV/y6O910cMYQp27H0BYQ6FZ6TbAd1ofpZyb1IdRzUaQzv/0PRh7LuRJlvBbmrmlywY8cOAFzXZWFhgUwmw8jICMeOHSOVSlWtp+bm5qrrbTPYTPLCWgRVIf2g8nmQoKJuuhFeaYgIKUIVQfmfjdTbCCHwPI+nnnqKTCbDwYMHaWtr29xJnT8v/1eP4PkjuOIgCA9L9GCq5xCiGamOheeJT5DutOxEun+OdP8cLYexeStxuzYPy7Lo6Oigo6OjfErHIZPJkMlkOHXqFMVikcbGxio5NTc3YxjG5q5jk6jEl6rXECCoivBsJauvsbEx6qYb4RWBiJAiXLH8j+d5nDlzhnQ6ze23304sFtvcif1j4D9emwcazUVQ4ziAI1qRYh+WHsFivDxEDCDVydAY9MXqZ6HOYPPP3HHdEXT+KyjzrWjzzSBrBGXbNl1dXXR1dQHljLkKQZ08eRLHcWhqaqpaUOl0+gV3pa1FULlcjscff5xXv/rVUTfdCK8IRIT0CseVyP9orRkdHWVhYYHOzk5uvPHGK1sY3f8W/iz3Q8Aa0jqH6/8Al2WEGMKSnUgtMRmr7SP3I4JjiGNQdvkJdQTDOYLvfRVEEm2+Fcw3gUiFThuPx+np6aGnp6eqdVchqImJCTzPW6Ui8UJ3bQm69yzLWtOCilptRHi5ISKkVzA8z2NmZqbqEtrIYuY4DkePHiWXy9HS0kJra+sVLYJKTeD7Y5gaKsM1TngnuQ9Wkhu0HqHkL6HJIuVOLGFh+c+hcQieXcu9SPVk7Ty0g3oKgUL430OXPgzm29DGbWC+DkQydEohBIlEgkQiUS3izefzVYKqyBzF4/Fq+vnVyhyth0o/qcq8KhZUsFmh4zghFYmIoCK8lBER0isQwXTkH/7wh7zuda/bUNbZ3NwcR48epbm5mdtvv53jx49fsaXguP+dknoKITqx5RCWdhHqaG2OgNIToTFCDqHV4yj1NCXAEbuROoYpdmCoUwgBQo+Hr1UOINR04CCDCO/vEN7foUsJtPFGtHknmK9BiPiqeQohaGhooKGhISRzNDY2xtzcHEeOHAGuXOboclgvuxGICCrCyw4RIb3CEEzn3ojaQmXMmTNnGB0dZdeuXQwMDFTH1tchbWwOS5ScvwFA62lK/jSOvAHYji1SWOokGDsgRFBxtHomfCARx1dP4AOIdgx5PZYew1ixLBQJWDUmWWY7QFBA6wtQ/ACQRJuvR5tvQZh3IMTa8TAhBKlUira2NorFIgcPHmR5eZlMJsPc3NzzKnO0UbK/FEGVSqVLpplHBBXhWkJESK8QrNda/HKEFFToftWrXkVjY2P1u42Q2ZrHLP0PIBfY0onnHwUUZT2IBDFSGGInUj1bnqfch1Y/CozpQKunAxc4i6fO46jTQD/5pQbam7sw9GO1XeiCwBitNVotrnzKg/c10FOo4ocQ5hsQ5t1gvnpNy6ly/UIImpqaaGpqYnBwEKVUlaDWkznaSH1W8BybRZCg6ntB1RNU1E03wrWEiJBeAVhLFDUYm1jPygkqdB86dGhVrU6lI+vm5uJQKP55aJuQg+DX3GqG7KXk/XP5HKIbS2zB0LlQrEgYg2h/JrBhGKWeW/lwgXgKcmoRIbZiy2ZMNYKU/Qg1VZuL3AXq2dpnTLR/Bsijva+iva+CcStCtID5ZoT5WoRYX48PyvcknU6TTqc3JHNU0eFb+149P4kTl2r3XiwWmZycxLIsurq6om66EV5URIT0MsflaovWIpW1FLrXwpVYSLnSN/FEH0LPIYSL1il8P1xnhKhZYUpfxNNdFNRxTLkDS6Yx1Hnww644XUcU2dwQqdQIWl+kqACaMMhhiQNY6gxSZNHUxc3kdRBIiIAW8J9A44H3DTQxsH4SYdyEYO+GrtcwjCrxQFnmaGFhgYWFBcbHxzl58iTxeDxkQQVljl4IQqgnqGw2Szwej9q9R3jRERHSyxQbrS2qJ5XNKHRvlpC01szlP0vJewZ0AzF5PXGjAe19t5ppJ+jC94+GxinyAHjqFJ4CQ94MwsEWYPjPgGhF+QFXHGAYxdAxpLEL338cHyhiYoibMHCxdBIh8uUaKD0bnrDcDqpWJ4XoA/dv0e7f0pY0sHv34jv3IM03IeTlNfugTABtbW3VAmLP86oqEvUyR7FY7AVPL4fy36VS4xS1e4/wYiIipJchNlNbFBRInZiY4Pjx4/T3919eoZvNE1LBfbRMRgAiR1E9Rd5tRNBHXHZgy1FMcwueX3OrSbkDLyAlpBF4+hxKTeMAgkbich+CC0j13AqxbSeROB28SrQaDXz2UMLF8X9EAQtT7MESLRj+k9RukwVVF2DlgptqCRHCR8o8fun38Uu/j5DXI8yfwDBfC3Lbhhdq0zRpb2+nvb0dKMscZTKZqgXleR4//OEPr1rm6FIIppeXry3qphvhxUFESC8zrNW36FKoyP88/fTTTE9Pc+DAgQ0pdFfGboaQphc/G/psywO44giwhMNFCm4SP79I0txFzDqDlN6qOiHTOIDjP1X9rLUi730fTR4pOonJQQwlQZ+ukouU16PUkdoYGgNuQhdPHUXL/fiUMMVeLGFiaBuhg0kUbaGiXQAhC7VjqqPg27jOx0AMlq0m801I4wBCbFyGyLIsOjs76ezspKuri6effprBwcE1ZY4qKhJXK3NUT0j12Ew33YigIlwNIkJ6mSDYt6jigtnIYqC15vjx4yQSiQ0rdFew0bRvrTWj57+DG380vF1kqhYHQNzeQ8l8Egco+kncxQEaknPE7XLxrAZ8nQ0dwzT24Phl4lB6mpIvUXoKp9hBOjWIoc4BS6Ex0tiFCkgWCdGPv0I2njqKq8s1T1LswcLGVGeQxhAEsvxcf5B4bDRwVAOtRlYubAzl/hnCP4KvR5DG65Hm68G4HSnDKhGXu29CiHVljp555pnnRebocoRUj0t10w0SVMXFF7V7j7BRRIT0MoBSCs/zNi3/c/78eYrFIj09PVx33XWbXsg2Qkiu63Ls2DGK9l/TEjuEFKeBRSy5BzdQI6S1iReQBJJGnoaWBkrqOYpuH7rUiIlLQ+OZwBiJp86FzmfKfhz/InZ8hoI3gyF2opXCljdhqrPAEkqdCY2RsgvfvxD4vA9PHccHyjrcKSxdwJI3YKpRJAv4JEMCr0Jehw5YYZBeSUt3Ud6XUd6X0XIvQrQizddjmK9HyL5L3ru1iKJe5qhQKFRjUOvJHF3u77pZQqrH5XpBVb73fZ9YLEYsFovavUdYExEhvYSxXm3R5eC6LsePHyeTyZBMJunu7r4i8dDLnWtxcZEjR46QTJWItT1CTnsIbdJg3oQWCbQWCFE2kWLGdRT9I7Vj04izQljCnEaY0xjsI+fuRHgGMfsMpUI/8YazgTOmcP3jhCDjuP7TuKp81ITxaqTIIbSPYBFowg8kRMCKYGsAprEb1//RCjkJLHEQX/ko1ULMypTH6MXQGOSOkEWF2IpWx8sKFP4/45U+gpAHkeaNGMbrEMYNCLG5n6MQgmQySTKZvKTMUUXBvEJQ9X+3qyWktea1FkEdPXqUnp4eurq6qhZU1E03QhARIb1EUXkDPXXqFK7rsmvXrg0tKgsLCzz11FM0NDRw++238+STT15xJtdaHWMrczt//jzPPvss27ZtI9bxFaby5ZJXjYejF1h0j2GKXhqMAYQaw9eZ0DEscxeeV2vSZ4puXH0CDA0G5LGxk904noVpnEIKRT7bSzJVS0SQogcnlFKucfUFPH8EkNjGPmzRDepxxIqOnhBb8NSJ0FyUmgwdQ0uJMp7AAXyGsMQgBqOI6sJuQp0VpkVzyD1Ztqh+hO/8CJ8/BfqR5vUY5muRxmsQsu2KXGn1MkfZbLZqQY2OjiKEWCVz9HwT0lrzqsQbKwS0lgUVNSuMEBHSSxDB2qJKavdGFbpPnTrFjh072Lp161XJ/8DaSQ1B6+vQoUOkm2M8PfM3oX0M0Q5cwNNzLLpzxOVuND5xeTPaP4YWDo4/Ehpjyl48v9ZmwjK2UvB/BAZI0UZcbCOWLKADYq3ZbCOxhsAYuRu32rpCUfJPURJTKF0kZuzHFjEMbQA1N6Ah91fjS2Uk8PwaYflqBG004vmjK0W8A9g0INQj1XloWsKqEgArqezVe2l0o7yvobyvAQJpvBFLbqEh2YvWt2wqMaJ6TCFobGyksbGRgYEBtNZryhwBxGIx0un0FcscbQTB2OZaFlTUTTdCREgvIaxVW2QYxmUJpVQq8fTTT5PL5bjllltobm6ufnclagsV1BPS4uIiTz31VDVBIhaLMZX77/i6llRgilZybjhbTQtJwX+OAiCIkTbvAH0RrTIIoRGkKNW74qipGyi9iJKKPM9iMkBc9FLIXiCRGAuNyOVK2IGcDTvgJiz5z+DQDJSw5H4sEV/pXOuFjmEa+/D8mitO0I234vJT+iIl/yKe3IrSSSy5HVMoDJ0A/YPAjRtGh7riBhIiyncETQbLeIid26CU/RTSejtC7sQwX4OUXVwJ1pM5OnbsGMvLyzz++ONXJXN0OVT0E9ea16UIKrKgXjmICOklgvVqi9Zzm1VQUehuaWnh9ttvX6XqfaV6dMGx9S66bdvKdThKe5zLP4ht3oZWI/jqIrY5TMmpueJsuYWCH2y4V6Lgn6OkzmOKXpJyAFsYlPzvVfcxRC/FgCtOa/BUmfQ8PU3Wn6bkDSNlnLjsAD2G1BI7MRI4D2QLk5g1UQRsYzsl/0c46hkcwGQrKANb3oxUIwhmUYFW6gDS6McPWG6G3I2/YoU5/pM4WAiRxhC7sUQSqS9giEb0KvfdkcBRm9GhuNYivvcYSv23lf13YFo/iTT2YRg3IcSVkUZF5igWi7Flyxba2trWlDmq1D9dSuZoI6hYSJfDWgQVtXt/ZSAipJcAKm0F1qotWo+Q1lPorsflCO1SqGROVVqYHzp0iNbW1ur3M8V/YsmtubfS5k242gRtgyi7ZgzZBoFFPmHsouCX9eU8PceSt4gQTZhiNwkjDf5zGEYPeDUSiBm7KPrBIlaJGZ/CVVnclWM3mHcgGECos8AMhtiNadd07JQyKPgnkQHPmJCtlPzDOCu3J2m8BikcJBKhJ1AqjiIcbxJ1ckSmcR2e/ySensUDBO1oMtjiJgyWMNRzCJbDxzB2oP2gQsRQQKcPtDqD63wR9CxgI41DmOabkOaNSLkXIa4s7Xs9maNMJsP4+DjPPPMMiURiXZmjy6Hy/G4WwV5Qlfmu1aywXkkiIqiXHiJCuoZRcdFVsujWSudey8K5lEJ3Pa7GQioWi8zPz1etr2ALc601Y9n/Hh4gY8w4hzFEI43GMIbKk3OPE1JNDX8gYe4j6x3F0xmKCgzS2J7AlgdR/gkQRagjgbjcT9GqyQ9JGln2nkBTKn9v7CMuuxD+DJp5oOy+8/SR6hjfTeEbRwnebk/P4awQn1Bb8ApdNDfNodVZhAApevHqYkWqTo5IGkMrChGjAJhiH4a2MMUNGHoESQ7tnw6N0SId+izk9QGLykH5z5RrsUouiGYM41YM87UY5i0IsfaLSOj46yQ1bEbmqGJFXaqv1vOVPHE5gspkMpimSVtbW9Tu/SWGiJCuUWxU/qfewqkodHd1da2p0F2PK0lqqLjoRkdHSSQS3HTTTavmtuA8ybIbFEAVFL1y8zxf51jwjpIybsQVW0gabfj+aUzZUOe+A1fNh44bN7ez5B4GHyQJmsyb8fQCWkuEUCvHXwiNsc1duIGMPV8VWPC/Bwjixj5skmiRC2XB2eZOXA5XP7vFLogHrBQxiYgVWPYzGKKHmBxAigTam0KI8t/MkHvxAxl7mhiuXy9HZFLyj6xQpSBm3IGkhEkG4Z/BV41Ioz4hIlwcLI0dtUJfvYDyT+F7/1g+ouhFGrdjmLdimLeuGX/aKFGsJ3OUyWQ4e/YsuVyOVCq1rszRlVpIl0OQoLTWzM3NYVkWTU1NUbv3lxgiQroGsRn5nwohbVShe63xm7GQPM/j2LFjZDIZtm7dytLS0przO5f9y9DnJmsfS4FkBqHjZP3T+DpHQU0AkjbjBiyjDdc7DsIjYewm59fcamiTvFeLAymK+HgseKcxRScNxiCWhpL/g0CGm0HRD9YqgSU7cf1xQFP0T6HlHvLeCAljPzHZAOocvjgbVpGId+BT09gr5QeJNYwC4OsZCl6BLD6CJuJyGEv4oOvrma7D8WvEKOios6g0nh7Hryo+NFLMDdPaDFKNIZhHyO1oFbSgjFWFvkKkq6fWegKlTuMXHyh/J7diGK/HMA9gGLcgZPu6yQaXQ1DmCMrJMxUdvrVkjq70PJtBxeKvkE/UTfelhYiQriEE5X9gY4oLUkpc1+X73/8+cHmF7npsxmW3tLTEkSNHqll0c3NzLCwsrN7PHeF84QQt9i1oPUPRG8HTudA+KWsPC25Nk84SaWbdH6HxMUUrTcZWNDKUxt1g7mfJq7niDBrJemULxNMLLLoLJMy9uAziLsdpaSpgyzZygYJbSROFuow9jQA0Bf80BR+Sxg0olonJ3aBHEdrF52RojB0LW5WFfB9W8jk0kPefwhR9eHqKuHEdtkiAGoNALyYA0xjEDfR0MuQu/EB/JihiJU+R97Mr32/FZgApLIQ6hRAewrgOHbg+aEWtSjGvWVRajaLEcbzCnwMg5DBdHbsx5KtQ6vXIDaqWr4VYLEZ3dzfd3d3l2dfJHCmlOHHiBG1tbVcsc7QRBC2xoEgsRN10r3VEhHSNINhaHNjwD3VhYYFsNsvg4OCGFLrrsZGkhvWy6NYjszPLf42ns8yUygtjm30bGg/JDIosWksK/kRoTMLcSmmFoDydJe9nyPkTxOUQKaMD5Y9SqnPfJc3tLHs1t5ote8lV1MQbYN6HRtGFadyKVufw9SQJcwe5gPvOkv0hN2H5/DM4apxKA4tG63YEBYQaR+vzWHIY1wxIGCGxE3MhfYdCvgEr4VH0T1IEYnIPSmex5a1IvQDqPF7deaWIlduxV6B2YwTcdUotU+C7gA/EMcVObN2EEIMINVaOYxnDdTp9w3UWlRmyqLQ6Q6oBTPlVCtkVC8q8Gym3YZg3IUTfFS/MQZkjpRQPP/wwnZ2dZLPZK5Y52ggu5RoMElTUTffaQ0RILzKCAdmNKnRD2XX2zDPPcPHiReLxOHv27Lmi81/OQgq66Oqz6NZMqPDnOJ/7x9A2F4fp0kkkFq32TSRkgkzp0arlI4iR9cKBfEu2gj9BUU1RdKZIyR0I4RM3DlLyn11JDx+pG9NJMaCqkJQ7WPaOBT7voaTjSNGF0mVrxRCdQI0cE8YeCqHmfzGy3nF8Xc6Es+UwKTGE73tIWSaBmHEdhUAPJ0EKKx6ugcoX8hix87jqPABx4xY0DpbQoE5jUJY4CkGE1StMYxtulWyKaDzy/nfLu4oWLLENUxtIOhCULS8hG9EBlhPG/lUWVTIZSIdXo/jeg3jq7MpxuzGttyLlFqRxECF3bDqLL4ienh5s214lc3Tu3Dm01tX08ubm5jVljjaCSjPKjWC9VhtRs8IXBxEhvYjQWrO4uEgul6O1tXXDD/ny8jJHjhzBtm3279/PqVOnLjtmPVzKQqp30QWz6GBtQjq7/ABqRfUNIGF0k3HKloDCZab0DClzKw79NMlulD5H0uxhwa0t6JZoZtENWw9CwrJ3lmXKqdVt9h1onQEvB8LFoImsF+4iC+FFScomZt2yRZU09pIQaYr++box4etJmnvJejXXotIO8+73QfjgddFob8XHRGsTIcqu1pixm2KgeNagD2I1gtJAtjSKMCsZeIKUeRDBEFLPgDqDZezGC7kJbbxgPA2QIlG1qLTOoKQm75ddt4boxRKDSF1A0ISsKJ4HipRhDYuqLkal9SzK/TKKhZUtjRjmTyBkH8K4EWlcv6E6qMozVnm+15M5qsSgRkZG1pQ52sjv42qSJyKCenEREdKLhIpVNDs7y+TkZDVz6VIIus62bt3K8PAwi4uLV1xHBGuTynouusuNdf085/IPhfaJGV1k/enq5yZrGwtu+Y28qOYAQZswSRg3UPJPoiiSMLZSVDUSSMg+lr0a6Spclv1x8v4EpmgmbWwlLuIsud+rWl2q1Eo+VlvANVBSNYsj749imjeypOZJGruJiyaEzoXiSxpwVC3GU76eLXjeCpEYS7hkWXbPIkmTNIaQysetixVZRie+P177zF6UWSMb5VssqycQsrzgGaKDJD14noUUo1jGMpZxHW5dQkS9RaV1zaXp6wmk7KsqURhyEFsMIplH6BRCZCm778IvM0KkQpRsGNdBqGjXwvf+DqpUaKxo7w0gjRuQxg0gelc9L5Xn5FKutIrM0ZYtW1BKVQlqbm6OM2fOhOqkmpub15U5ej6z+S5FUNlslhMnTrB//35s2456QT0PiAjpx4x6+Z+NSP9AWCPu4MGD1dqQq5H+gVpxawWXctGtNTZ47tO5bzLtZOmIHcQgj+tNVq2jCqQIW1lJtZW5leJZiU2rtQ9HeSElcFu2UFC1Bb3R3MXiCkF5Ose8+yymSCLoocnoQ6s5iq4PsdoC3WDsYtkPLr4W+ZXsu7w/Sh5oMA7giT0kZRNKnScmW8gF3HeCWLVot3o9lBsIKnJkvWMkjOvJ+RmSxgFsGUf4M6tljwwIBotixh5cagTslCSe9ShClq/f0jtI6BRC7IGVZIbLJ0RYeIFiWl+N4RnNuP4xQGCKISyxFckMvlvCMgtAW6gVPAB1KuZCDqODbd3lMMp/GHzw3S8CVrn2yRguE5S8HuRelCovNRtdpKWUq2SOKioSU1NTnDp1al2Zoxcqvbwy/8o1SClZXFys/oYrFlTUTffKERHSjxFr1RZthJDqFbqDrrOrEUetzKFCKpdz0dUjSEhK+xxf+jsUHlOlMgl1xw6SXBFKddQcCaOL+TqCclWu6llTOBQdnyVxipjsIW30ItQiS3WuuPr2EGlzNwsrsaJZN4NJI660aBM3Axfx9Hl0nfuu0dzDciBjzyTNsncSjUt+hSya5RCWcQtaX8T1z5Gy9pINJFHgNZMnWGdUTsjQ+OT858j5kDJvxFWShNGO1AtIXaRUl8ygxVQ4xdwawA3EjwoFhRt/rHzPaSAud6C0jRD9oC6sFOWGEyLKFtWT1c9li6oST9N4agQtV8RhpcDRg8TMbQg9h1BjSBaRcgfocEKErreoSIT+GkLuR6vDaO8synsQ6AAWgSG2DXbgu3NgHkDIYTYjGCulrLbRGBoawvf9dWWOXNetZqq+kPB9vyphBGELqiJ8HLV73xwiQvoxYb3aokvFcCoK3adPn2b79u1Vhe4grkb6B2oW0rlz5y7roltrbIWQxvKPkA3I+UhsZtzTOCoLCNrt61BFEy1nEbI830ZjK8srigXl6xXk/Itglt1r0ypDSu/GN7bRaDTh+GewjRRLdQkQ9dl3DcY2MrGnmfUWAEibN+NgYIleXF1OYHBVWEEhYQ5Tco9UP8flAAtujXxiYitFGjDldlx/pT261wnmQm2MsZ28H6wJkhT9UTydobRi4TWah0B0YAqF558hbmwJ6fIJGvBEeNGPxQKxIgosZwuYiTKZGqKHpNiG1kUELUCZyJSeCx3DNLbWWVQ78VcsKCE0igmK/kK1r5Mh+rFFH5IUhp5E6ItI4zq0ChAy7ei6tu7UtRERchCtfgQ8S3fnsyhvBu38GyCJMPaAvAEp9yDN/SC2bHiRrpc58jyPxcVFMpkMruty4sQJRkdHQzGozcgcbQQVD0foetcRil2r3Xswiy9qVlhGREgvMC5XW7QeoQQVum+++eaQQncQV0tIWmsymQzz8/MhV+BGUDm31prjiw+EvmuL7eJiqeKq0swXJ9C4mKKVdnsQ35vBqHPftVi7mRfBQliLJTWGpkTWnwAtaFcDJM02iuoUiiJN5k6WvJprSmiTrB/OcEMYTDvluaSMnaSNbkoBdxbaIuuFi2dt2UxR1RIeLKOFWadscdiiD9vrQJPH0iasJDMIwsKjKWM/WT9YN5Um6x1FV5M+BEKmMYxb0WoGX50lYe6mEIgVKbcdrLC6gx1fpvIX9/UcmWwbZqK8jyWHScgtaOYQOgkiz9oJEfGQRWWIffgB6SSlSxS8f6biWxS0YesYhjiEwTxSjSKNIXSQ2OVOdPC+Ytd9Dt6jPNp/AoHGd/8rfgmgCWHehpD9CLkPaeyDDUgfAVWpoLa2NiYnJ9m3bx9KqSuWOdoINuIavBRBVdrGVJQm6nX4XokEFRHSC4j62qK1HrK1COVyCt1BBBW3N/sALy0tce7cOYQQ3HHHHZd10a137ovFE2S92sKkESx74WSAhN9FzhrF1R6TxRMkZQd55dNo3kjRO4PLEq4uhsa02ruZcWrxF0M3MKuOgasQ2iKlh/BpAC1hRTYobe1h3q2NsWhiwa0txll/HCkSLHnLpIxdJI0mbCSLXi0uYtLMcp2bUOmaC8jRGQzdRcG+gEGaRjmEjSS/qp4pHH9JmsMsezU3WkwOsOQFs/G6MbSNIW/EV6eBZbTfBtZsYMxeSqEGgnHMeE2c1lXnKRUsZOwsIImJ3SSMfpS+CP4phCgh6Ay478rQ1KeYhy0qKdso+Y8F9khjqQKmuAmDAlKNYdS774z96IDb0HHSxO2686qgJbcEag61InvkQzmTjxhC7gZjD8i9CLmVS3XXVUph2zapVKqaLOQ4TlWH78yZM+Tz+UvKHG0Evu+vspAuh/UIqr5Z4Su1m25ESC8ANtNaPEhIQYXu3bt309/fvyGlhso5N0pIwSy6lpYWhBCbJiOoEdKPFv+OGS9Pp72PmNQYaKadGgkITLzYHAR4t8HoZMo5wZIPAoMe+1UosqANED5aC7JeOFutJb6VWae8oGnhUfSzLPpjCL+ZBtWFZebI17mqGqwhim4tUJ+UvVWXX9a/QNaHpOxBiB00GGk8NUFSdrLoHamOicsBsiFXHLiyvFj7usCCd4K0eYBlpUkZ12HLOIZ2KYSy04w16qZaKKlaM8CY2ctilbAEpr8HpSyaxE48dbqs1Vf3J06YeykESE7SCXblPIqSOkuxlEVY04BBTOwlbvQh1ARanUaIEoV8H4lk0Kq8dIo5gGUM4/pPVm09SQeGP4spb8AQAqFmMfwwyZWcLuJ2IO1c7oRVFlXdebUP6gdo/wfgAvIgWh0HuRNh7ELI60AOg7ETIVLlq17DcrFte1MyR+l0+rJks5l6p/WwUYL6z//5P/OmN72J1772tVd1vmsdESE9z6hPXLic6S2lxPd9CoUCR48e3ZBCd/142HhmUTCL7uDBg+RyOWZmZi47bi0IISiac4zmy9bFtHMGraHD3olV2oEvZlF2hs7YLqZKNavFFilmnVqcRONT1CVm3FFs0Uq7OUBMSGacJ6tp3BKbRTe8oDcmOim5c2ijSNYYw3Z6KXkl4t4ODGMBaWdY8kZDY2JGC3lVK4RtMnewtJKxl/MvILRFyWwmYdyMUtM4agxLtkAoy283y17NGpLEyfrPofFZ9k+DDw3GXly202C0IfQ8tkiS82uZdAbN5Lw6CSNdCn4CncCNPcOcB4ZoISX34uoiUnSXLR7ADbVXh5gxQCGQZm+yA8+q3GufojdK0ZtAyDxlgtpDtmQTSzYj9VkQBSxj/xoJEfUq5uG4nWUM4vmP46zUdZWz/s5hyp3l/k9+AcucC704CeKXtKigA1RdhqKeBUqgni534TVGESsuTi36wbidrT1LmGTR/j6QW9a0pi4nc+Q4Dul0uhqDWkvmaK0Y0tViPYL66le/yu7du5/Xc12LiAjpeUSwtfhGs2gqhPToo49uWKG7fnzl3JfDWll0+Xz+qvohzTY9EdrWbPQz7ZyuPlltcgc+SQzi+CtiPC32EJPFoIJCOzNu2WpxdI4J5yTN5gDILTQZrZTUBRqNbmYD4qy2SDPnhoP/8WSSgnuRvFnWzUvkd6K1gxWz0dYclmgMue/KqMvYs3Yx5x6vlJHSZOyjpOLE5DBF/wxCgNJuaEyjtYvFgC6fLTpY8k5S1scrk1+jsQNT3oSFh6tOkzC3kQ1YNnE5SMEPFqRKXFGzEH2dR+GxuHIPbDlIozG84mpbBrIIEpT8sKvRMGy8gGljiT14okIuPvnSHGbTIktKAxKLlRRzeQOoUQQLayRE1KeY2/h1FpUQcaCAp06We+6q68GexKcNQ/Rh6hRSLyN1I1KUVTDC7rty7RShGNVuUEG3aAwRVE/XF9D+Cbb2HQP/G5AHYdyCIAtyB1puB7kL5BCInppIImGZI601hUKhSlDryRw9HxbS5VAhqFwutymNypcqIkJ6HrBWa/GNVpSfPVsOpu/Zs2fDCt1BVM5zKVK5VKHr1dQxFdQCS43huEkx5wW7i2OIOGfyx7BEnK7YblBZ5kvhpIOk2cWyU3vjbjYHWPDKb9pZfxq0RAqTRvMAee8UPnkarS0UnRpBNRh9ZNxwYoJoKFBQUxQB2+tFF1vAnkDGyq6kOF2hjD2toVC3KFoyxfSKyy8mu2mRw/h6Hq0MhCyv9EU/bKXEjV4KgYU0ZQyXa6BWiEEQQwmNLW9B6ylcNYYh02GXprmXZa8WK5Kkajp9gKOmKYgW8v6zgCBh7KZB9qOYBP80iBKm6F5VAyWMTOg8thzAFwsrnxTFgo8b/37t+sUObG1iyJuQehKtxlelmNvGfvx6FfN1ZJCUnkP5c2DcXLW6JN3YcgeSElLEkeoCQrh17jyo73sljH3gB7P+OkHXNUzUFxH6PKhnyhK68hBCPYEmCXIYLW9GyFaQ29By20pRrySZTJJMJunr61tX5igej6O1Zmlp6YpljjYCrTW5XG7DXpOXMiJCukpstG9RPXK5HE899VSVDLq6Vvep2Qgq51qPVOpddPVZdFfToO/ZwvcRThM6tgCA6TZSiIfdf44ui1W6usSF4rP0xPZQwKXV2k7BG0Vrl1mnTsdOhLPV2u1hLjrlxUli0mnfgKPKGXV6JcPNFs1AjRjMQhf5RM3CcOUSfoOPo0skvEFsL07J9aCxtk9KDrMUaFUhsFgKtLsoqQWKRpF5dwyp08ScDtob2siG1MQTVRdgdZsIL6Rpc0e1bgogKXdTUHFs43pc/zSaPF7IfQcN5o6QkGxM9q2QEZQtsTF8XcJRFxHESBo7sWQXUjfj+6cRwiMm91BSQQsqjjLqsgvthhDZFPM2biLYcn4XnpKY8haEXkCrs+i6JoQbsaiCMSqlL+LThRNwaVryNqCAIWwMXUCqAkad+07UvTwgBxBqOvB5F0IHelgRq5KcIA/qaQQCGfhbaHkzgmW0HCr/E8MI2U9DcpCGhv6QzNHIyAhLS0scPnz4imWONop8Ph9ZSBEuDd/3GR8fR0pJe3v7hh/AiYkJjh8/Tn9/P9u2bePb3/72FfujK/7mtSykjRS6XmnauKOKfH/5G5QMh4ZiH0ksmlMNXAw05WuxBph1a0F7rSHrZVj2Zln2ZgHBUPx6PL3MoncahUODbKu67ypwlVP9f4WHwmCsdBJLpOkwBzBwmHfOhAP+InxNrfZOpleKcgtiBmU34loFEmorcdWAr6fIermQddds7CDj1964bdFMxi0vaEoUKVjnWVQmy75B2ryOhLSwkGQCauIx0cmSF3ZnOfUNBI0W5ldcfgJJs3k7Pj74DlpcQEixSnPPlu3V2iaABmNPVVVC41LwJyj44ygKSFIkzUFM0YYUHr4aQQhvVUKEKbrwZNgqMWPZkFOzlLfw4wHXqdyNo1wseSsmDvjTuN7J0N9C1KX3l9u61+6RpAO/zqLy9SRKjVaTJmzjJpQuN0OUIokkhqlGkdX2JPYqi0qKWNgjK/ciAnVUmk6kqreoppH6HKwQqJKHkKoSo+pCG7cgRJLm+BZ622Mk4y1sG34N2VzpimSONopK88OXOyJCugIEW4vPzMxgWRYdHR2XHVdR6J6enubAgQN0dnaGMuyuFPWkEnTRDQ0NMTw8vO6P4UotpCOL36a00uMoZ2bwRQNLpQJdsQP4OsOiew5LJkNjumPbmSwFLRDJpHOWolrGEgk67V0kpU22NFd176eNATJebTHWCJb88hu5qwtMOM/RY++lJNK0mb34egGhHbLxycAYyNdlfKWtLUw7x8npaXICGs0elOmT5DpcfxZPTrJQGIdALWWDMUAxkIhgeZ0sUbagFrwzLCCIy1ZMMUzSaEGrDDGRpBRIMkgZ28kGYkUCi1zACtMolPDIuMdAgFAttNvXofUShtL4eg5JapWQrA43rqDB3MnySqagooTjL5H1KlZmIwljC6ZuQLIDT51FSh9L9uP5NYsxJndRIpgtaWPEwsRYKLgYsTM4K49f3DiIq0awxXZMYSNVCc87HSKotSwq7zIWlVLPoVnCW8miNOQBivo8EMcQ/ZhiEMky+IsIfwLLalwjISJsUQm5BRFwrWqxE0MHk23Kfaeq++sphB7DWEmZH0hDa2wXqeK/psHspqNrANW9E0UrmcJrmcuoy8ocbQQVxYeIkCKsglIKz/OqLrqNatEFFbrvuOMO4vHyq/hGYkCXQ5BUPM/j+PHjGy50vRILyfNdHpn++9Ai0xHbwljhJKOF8qLXa+/D1ya2aMBZIS5PhxfNroArztUlZpxxXK2Iyz7azA5KahKzjtQ6rGGm3FoKtoHFnDuGo3OMr6Sa99rX4S/FSTU65NU4LdZ25rwgEZosuOE4VtxoZsZ5hhzTIKDTuAlhKDx/lhLnQJvMl06Xdegq906FXYst5k4yK9ZQ1p/AIIEtXRqMgxi4FP0zyLqMryZzN4tezTqwRDNLAStTyzx5f5rcSsp4Qm6jyRzEV9M4/hm0KBKT/eTrWqOXVmXfdeOsKGmoleSSjPvD8jlUnJSxA0fb5bbr/lkQRUSdqzFh7KUUyr5rx7DDmY+F0gTCzFBYeQGImzdR9BykvwXfSdGcasfX4wF1dGtVQgR1LlvLuA6lgskzHfjVJoRFfHUaIX08NVreZIAnrgfdhhRJDHwMTKR6uvqio7GQKmyJCxEPWVRa7kMGUve1aMVQ4RcBy8gh8BF6HOmP40sHU4/RlL6XpmarKnO0uLjIwsLCKpmjyr9LlV1ks+UGi1EMKUIV69UWGYZRbeq13rh6he5gZk7lOM+HhbRZLbrK+TdjIRUKBb5x4q/JNy5UtxmYTJXCb86mYXM2fxKJQW98HwnDZLxwPERi9VZLmzXIhdKzZH2HrJ+hQbZSUooW6zqy3iiuXsaty3DrsIe5GNDHi4smJkonUQmfrAeNxiBSdpCURXL+BEJAu72TGafmqomJJuaccNzHocD8Spp5XHbTFdtB0ZsuC7JKH9wkJetCaIxfF/dptoaZc49RWFEMT8pulnyThHETvpqkpMZx6tKnG8zBUCddw+smR23RL6iL+G4RR88jMGiQezBlF5oEjn8WhE+DuZdcKCEiSc4LJ5/IgMUspIcQMRaq7juDBnkTjjYw5AGUGkOTQek65XNzkGKgINpgO74ZSBJRJgXnGYTUKDmJiIOj4zj+GGBiiW3YcgBYROhZUOeRonWV+w7qsu+Mrfh1MkhBjT2lDOA4sIhPuXzJkAfQuoCgBynbMUQHBotIvYhUUwiRWsN9txCehtyGUDVCLjgDNNg1t6nGQKqzuNY7IEDmhmHQ2tpaFSoOyhydP3+eEydOkEwm15U5yuXKL3SvBAvplVH+e5WoFKo5jrOq0PVSFpLruhw5coQzZ85w8OBBduzYsWaa6EatrPUghODixYv84Ac/oLe3l5tuumnDha6bIcOZmRm+9+j3mE5M0GINUOGx7tgwRVVrUR4XDUwUyxaJwudC8Qw5X6NEOx2x60kZXXTa21gKLCpCS+bc8Ft9k9XJnDfBaPE0c56i2TwENGBQu7asH3b/NFsDqID7SgiDkcJTTLvzGGILaeMAXt31pq0BFDUlhpTRUyUjgKJaYtY9z5R3ngJNJIzraRC7QNUWHVlsY8kfDRxVkKvPvpMdLHgjTDrPMO0tYMpb8OkhbuxDkkCwWsLI0GELscncXSUxjU/Rn2XaeYI57zx53YiQ16Npx5Jb0br8jDaYO6tWEUBMdJOvSw93gskA+AhhsugdYcE7yZIqoMWrKNGDkDcjxSDoOI5XF28ywm4okz0IWXsufKeJUjWBwMNVZympUZa9Iyz5F1jWMVy5D08eQsub0GIbhtiDqlg+AFioOmuworheQb4wRFnQtQxB24rmnkbrCXz/KL4awfGfoKhOk2eZgthGTmwjLw9QlNfjiINonam+rGkMDBX+2ygVvl4l9gLLeOa/4FKoyBxt376dm2++mde85jUMDw9jGAZjY2M88sgj/OAHP+C5557j61//OufPnycej68ZY/7MZz7D9ddfX1VGv+222/j6179e/f6Xf/mXGR4eJpFI0NHRwdvf/nZOnqy9nDz11FO8613vYmBggEQiwZ49e/jkJz+56jwPP/wwBw8eJBaLsX37dv78z/981T6f/vSn2bp1K/F4nFtvvZUf/vCHl7wPa96bTY94hSFYWxQsWKtgPZdXUKH7jjvuuKSw49Xo0VUqusfHxzetRVc59+UsJK01p0+fZnR0lKadMUbyz0IRWq1+yPrkjFxo/874AOcKtYc+ZbRwoXgGjeZsvlzhMxjvpc3cy6I3gkeBrtgOxku1t1ybBNPOaG0OKBxdYtIZwRQxuuwdJIXNpHOkanUZWMw6dSnlMs0SZVfVkj+NLRuZcsZIG4M0mS14/hyZwHkA4rK5Ogag1Rxm3iu7CT1dYNYZQWLia4NWuZe4tDBTMO/V3uSNfA/FZK0A1yDJfF2yhsKpWmYCm277ZiCPVFOU1HkM3YRjhufm63zoc8raVrWofIq4KlfV9jNFKw1iAE8nsOQWHP8cQkDc7CLr1ebm5/twkrU3fUGcfB3ZKByyAasrZRxCk8MSiXLsRi2vSjGX5iJ+8LH2uxF2jSi80kCocSFoSuooKiC5ZBs3oPU2TNGKISQmcZRfK5gWtKPqBF4tMxueh7ENHWhCuJaKuVLHgYVqRrwhb8TRM0AjQnRh0I8URSQOBkugSjTEwu5KyOMbb0TLy8eTQ/NdiUFX4tAVmaP5+Xl+7/d+j9OnTyOl5EMf+hBvfOMbec1rXlN13/X39/MHf/AH7NixA601/+2//Tfe/va3c/jwYfbt28ehQ4f42Z/9WbZs2cL8/Dwf/vCHueuuuxgZGcEwDJ544gk6Ozv5i7/4CwYGBnj00Ud53/veh2EYvP/97wdgZGSE/+V/+V/4lV/5Ff7yL/+Shx56iF/6pV+ip6eHu+++G4C//uu/5oMf/CCf/exnufXWW/njP/5j7r77bp599tmqOsZGIPTVNNN5GWOjtUVjY2PMzs5y6NCh6riRkRHOnDmzrkJ3PR5++GEOHDhQVS7eKCouulKpxL59+66ojmlhYYHDhw/zhje8Yc3vS6USR48epVgscsMNN/BA5vM8m6sJhqaKbeRiSwwktgBF5p3zxGScgqotCgOJPYwWanGCNquHGae84BuY9NgDJA2TidJxWOmB1BvbzYVSbUxKtpBTC6HWE63mFpb9DJ12D1ovk5AJJgPuuxgpXAohi6nFGmLWHa1+7rF3k/VnaTbb8PUcrr+Ao4shi6nVHGI+kHjQae9lOuTya6agczSZnaSMNErNY6DIBmSBZG4AN7DoJ2Un+ZBVAg1GT9Wqislmkk4vWi5iWBfxWaLB2EouZIVJbJHGCShsp63rWAxIJTWZe6rtO0zRSKMxiClkuaWGGisrfRf6kYma+zFl3hhqs2GLLhw9TTDAEpP9lNSFwHluxFUXicl2jJVmH47/RFnuCEBbSG2FLCbh70Ybtb+XX9yJlaj9zSXtKDLUmkdpYnIIT41giE5M2YkpOpHMIvRsWQ5JDyFl0JIxkSIFAfebadyIDsSGhLwh9BlakGQh8AwYcgcEY07yJjznFIg2bLsFqZMYIo9vfxBt3sjziQceeID/8//8P/npn/5pHn74YUZHR/nSl77ET//0T6+5f2trKx//+Md573vfu+q7o0ePcuDAAU6fPs3w8PCa43/913+dZ555hn/6p38C4Ld/+7f56le/yrFjNeK/9957WVhY4Bvf+AYAt956KzfffDOf+tSngPKL/MDAAL/xG7/B7/zO72z4WiMLaQ1sprYo6G7bqEJ3PTZrIWmtuXDhAidPnmRoaIipqakrljC51LkzmQxHjhyhpaWFG2+8kVnvYoiMtAZfePh4jBbKi8D25HWAB955Cv4CMZFkvDgaOm7cqPnCfTx8FM8VTpGUbXRaXZT8DHNO2N2VtjrJlmoLb6vZx4xbXhDPFcsLRae1hVbzOly9wJJ3nmazl6mAe6fJ7A6REUDOn2fZn2V5xfU3ELuOGA5KL7DkjtFk9oTICCBf5yZssvrJOydY9CZZ9CZJG/2U9BIt5o1ISuS9EWRDPhQwd7M2QU9T2hxm0aslazgqh2eM4IsC+NBo7EKKbuIyRtE/C8JdIZuaVWLSyHJd6/dgO3lPL6MxmFmxqEzRTlIPUfIXaZLDOP4oQvg46mLoGLbRixPQFUwauwI1UGVZp6L/HL7O4qzIMiWNfRR1EzHZjyVSeAUFxhmkyJX7N9GBMoJWmMaKhS1tp9iBGa/da1vurDYd9PU0vj+PKy6gqmQTw/BbcQsmTY1ppM5hkEKrH9YsKtG6umUGy6FP0tgOgRb0QgyFyQgJegTTXAQWUT5o4yBK58C4oV5u8KqRSqXo6uriC1/4AgDnzp2jqalp1X6+7/OlL32JXC7Hbbfdtur7XC7H/fffz9DQEAMDA+ueb3FxMdSY87HHHuPOO+8M7XP33XfzgQ98AChbdE888QS/+7u/W/1eSsmdd97JY489xmYQEVIdlFI4jrNhxYXKgr4Zhe71jrERVLLo5ubmqi662dnZq5L/WauFeaUP086dO9mypdyn5rvTXw/t1x3rY5KJwDiYcWbJuLMIBH3xXbTZjZzNPVV1q6WMZi4U6nzxKyt1Xi0zWlymP7YD37fotAdY9sbxVSnkvgNWp5TbQ1x0asQRczsoyRgpo5dlr5zMEJfNQG1h7bC2MRNQd5CYTLsjlFasu4TsJG5sRYgUS245YaDN3M5cQN3BwGa+juRs2cCie4FJp+ye7DB3oYVLk9hCSU3iqyx+Mmwd5bLhGqhWa0e1ky6Ao7JcKD2JRiFJ0WT0o0gTk4MU/XMIoWm0hskEejolZB/Zut5RhYCOn6dzKKEoJc4z44KkiRbrOhQlLNmM54+C0OTr6qhCqYZAg7mHfECM1hLtKzEqRcE/TQGQshslcxh0ERe9JGQ76Cm0mkTpGWLmzlCHWzAx7XDSSKkAZiA0ahvX4QSUGiQNIA9jJXwKK8aNKYfxdROm6MaQjVik0Uwi9HS5GaEcRqugcK4BKvwCIkUL6NHAhv2gjgb2aET4JyD2Oy+IWkO9bNCWLVtC3z/99NPcdttt1dTwL3/5y+zdu7f6/Z/8yZ/woQ99iFwux65du3jwwQfXDSE8+uij/PVf/zVf/epXq9suXry4qnC/q6uLpaWlqsSS7/tr7hOMV20EESGtIFhbpLXelBZdLpfjySef3LBC91rH2Gjq+OHDh0kkEqF2EVeTpVc/1nVdnn76aZaWlkJW3oKb4Xxhji57G1OlERAas67gsT8xxPlCOSag0UwULzDnpvB1mr54L44/T6PRyJJXixHE3UamCBTPAll/mXlvmnlvGhDsSOzD1TkW3BE8iiRlc6ieCcAPtIcAsLwkYysxm7Q5QLvZSs6fQ1cLKctxqSC67O0hl5/WmrOFYyh8bNFMu9WHIW0k8WqSQKu9g4tOLUEgLpqZrdPYcymw4NayEPtiB1C6BDpPzhshYbSQj4etkoX8REgpp9HqryqdKxx8fC6UyouxJTpJy34cbWLJXpyVbMKY0Rpq/d5k7l7R2CvDIEle1xZjRQlHL7FcjR8ZtFuH0BSxKOHrC5gYdQkRGq+u2aFtbMENZN/F5Q6KlO+Jr5fI+wUcdQFflwnbEF1I+kC2Iimi1QS27MXhSPUYQrcg7TpyLU5jBO6RbWzDDcSKDDmMt0I2rlrCVQaeTFeFYQWNxOkGkUZiIClg0IBWjwdk7ppW1zMFEkQAhNwF6hRYP8kLgWw2e8kMu127dnHkyBEWFxd54IEHuO+++/jOd75TJaWf/dmf5c1vfjOTk5P80R/9Ee985zv53ve+Vy09qeDYsWO8/e1v59/+23/LXXfd9YJcy+UQERJXLv9TKBQ4ffo0nudx2223XXGdQEVg9VLzC7ro6gtdr0aPrr6F+eHDh0mlUtx+++2ht6iHZ/+Js/nym2Pa7KQv3s2scy50LE+Fr2EgsY2zhfKCcDp3GlvEWPQ0DbofL56hpHO0pToZL9VcJqlSC/PUrAeh4ULpPFl/CUNY9NlDNJlJst5REOXztZo9zAQWfK2hZNaC/4veLE1GGxOlOdJmPy1mC1BkxjkV1Nck54dTsFusAcZX2rE7ukDezzJRuojEIk0/0lcUzfDilLZ6mXIWap+N/qou38oVkXHPkVdl96NBnGZjGFP24KgpCv5Fms1hFgm8tSuDueLpUE6sJRPV0IqrsyghGC+VCSsm+8oEpTxM0YmrptcWhTV3sODVUszjsjtARgCKrH+eYsCF124fROr+chxKzWMLi2KoNsem6NdLJ4VfXOotKoHBovtDCMT6EvQgOIAlE0gcLJHA8x6tjdFbMazR6metJSX3OYI5R1I0rWrr7odiRRLH/wEE3JqG3ImvJYbowRAtmKIdXy8gySLVNEK0IAKWnNYCqS+AdQ9ChK325wv5fJ5kcv1j27bN9u3bATh06BCPP/44n/zkJ/nc5z4HQDqdJp1Os2PHDl71qlfR0tLCl7/8Zd71rndVj3HixAne9KY38b73vY/f+73fCx2/u7ubqalwK5ipqSmamppIJBLVnk1r7VNRU98oXvGEtF5r8cthenqap59+mnQ6jed5V1W0dikLaS0X3WbGXw4Vl92lWpgX/AL/PP/d6udFb5FWv5OLpRItbjetjQmQDpOlmotFA4veUvBUpEpp5u1pFgHpSQZje/G0i9AGeoVcGlJNLLs1C6qh1MZirJy95muPi6VJLjogSNFj96HIE6tzIXXb25gM1O4YmFXCWvRmWfRm6Y3tRIgBWq1WXDVLTNjMBmJFUpvMuWGXUUI2scBFFD4ZJmjUPcyVJmkxt9FopnC9DPN1rkVbNgTXWTqsHcy4tQVNYjHunKjWMDXIPgzZSaOwyTpn0bJEq72L+UCGm3CTzOvnQjVdbiDtvqQWUEY/EyvWXlwO0CIH8MljiS4cNYUQYfddeb/OEPk0mrtYDrjrDBFnyXsmlOnXZO5FiX3EZApJCQubnFeL2ZiinbwfrO/ReHUt52PGIF4gQzFuDFOoxKj8ciGzJZMoncIWvVgyTUykUCqOVudB5DD0HoSsxYZ8L4XWTxP+OYdjVLaxE8+vpSZLsbXa1t1X5/A5jy860Lr2gmTLnYBEiiaWF3M0ptqxmcG07+WFwmZlg5RSlEqlNb+rtLMIfn/8+HHe+MY3ct999/GRj3xk1ZjbbruNr33ta6FtDz74YDVOZds2hw4d4qGHHuKee+6pzuGhhx6qZuptFK9YQqoo+F68eJHe3t5NKXQ/++yzjI+Ps2/fPhKJBIcPH77suEthPUJZz0W30fEbQcU6On369LqE9735RyiqmiWQlA2MFkbRaOatBeaLC+xs2EFfvJmsN82iN0dffJDzxYAFpaEYqwX2FQqN4FT+PAmZptfuxsTlgnOm5lLTYDQYwWQnksU0C/HyAjFaPENKptEIOux9eGqRjHcBn7D7rie2jQulGgnERYqJ0ig+HosrC+GW2E5azOvx9QKL3jk6Y9uZqBsz5YSb9OmVDLKMN0HGg157FyXPpcXajqCA4y+sdt/pQuhzmz3ExUBXXIRkbMUVhzZIeoNoq5EGYytZ7xxCKFriQ8wHUqyNUjvLsaC1Kln2a2RaVPM4Rnc1xTwu+2kztqHIYmiJxxSmaFilubeqNYe5k8WARVVus/EMoMmukG5C9uHTR0J2YQkTW9h43pNAmcQSxg5KfjhWVPTDrjhZZ2kkzb0UVwRsS2oET7VQYJEK05v0EzebEbwKt7SMYB5LdiJEba6e04OMBf8WEr8+ViRbUYEsRlNehwrEigQpfPUUUMQH4ilwEWjZgyUHeaFwKUL63d/9Xd7ylrewZcsWlpeX+au/+isefvhh/vEf/5GzZ8/y13/919x11110dHRw4cIF/uAP/oBEIsFb3/pWoOyme+Mb38jdd9/NBz/4QS5eXMl+NYxqGvqv/Mqv8KlPfYoPfehDvOc97+Gf/umf+Ju/+ZtQnOmDH/wg9913HzfddBO33HILf/zHf0wul+MXf/EXN3Wtr0hCqtQW5XI5Tp48SX9//4bGVRS6AW6//XaSySRLS0tXVdQKa2vRXcpFV48rjSFls9kqmd56661rqgn72ufbcw+FtvXE+3guV/txp400p3KnqynZffGtJGQzJhfxKKtY9McGuRCoEbKFzXipHN8oqDxnCmfZEtuOJXppt5pZ9idpMFJMOrWFVSBwk8VQ+wSjECdjT7NcKFtVA7E9oCW200zJWkAIWPLCb+Ttdj9jAbJpMTs5F/iclF14uoEWcxsL7hha+LTa/UyUavGXBtrIGmEXxbI/R14tkC8tANBr7yWuO4hLg7waJy6Sq9x3S17YSkkZ7eQqBcNCIZXJuVL5mbNEM61GP0qaxHU3Bf8iQkAq0cJiII5jFXooJWqxI4sUmQAxFlWGrJpnccUilH47vcm9KLIolaHonyNudNS57zQlFb7ehNGLE2hV32BsJ7dCLo6XQWJhCgtPKwy/D4sWEmY7htT4/jkQJRrM/eQC7juDFvJe2KLSOmxpJ4whCkFxVtFAttKC3gC0xDcMhNiGJVpAGWhh4Lg+pjGLlAq3uA0jHiSoRrz6Vh2EXZymsQelajGqUqmVWOwkMeuDvJC4VC+k6elpfuEXfoHJyUnS6TTXX389//iP/8ib3/xmJiYm+Od//mf++I//mEwmQ1dXF6997Wt59NFHq7VBDzzwADMzM/zFX/wFf/EXf1E97uDgIKOjowAMDQ3x1a9+lf/j//g/+OQnP0l/fz9f+MIXqjVIAP/yX/5LZmZm+Df/5t9w8eJFbrjhBr7xjW9suovBK4qQgvI/SilM07xk7CaIoEL3rl27qgWyhmFs+BjrIUhIG3HRrTV+szGkyclJjh07Rn9/P7lcbt2sm+/PP4FJM/3xViaKo0gEF4rjoX1azVYW/ZqbzVU+h5dOYmqLDt2JmfAp1lkGffGtnMnXFoQGmeJ8cQwfn3m3TCC7klvosRuYc8/h6AL9sSHOB5IZLGJk7YXQcbPZHBlrGgxooou+WD+L3ng1mcHAZMoNz7/BaCLj1dwyTWYrZwrluEhMNNFl9eEqMIjhU3Z1xEiRC0jadFpDTLtBN6HNlHMOJ+De2hLfRtpsR+tllrxROuzhkPvOIslsXU+noM/J1eUur+dL5QU7IbtpMfvQOFi6GXcl/dlOght4HGSxDTdeexlIGb1VMgJQskDGG6G4QmoGjaTkDpKyH62zlPwxUuYAuVCqd5zsqlhROLO07PIrWxi+MYdWHlPOWcpvFBZxtmDoRkzjFrTOoPzzxK1t5AJq6XFjG6W6LDinTjHBEOEUaOENl1XLNbhcQNKENotoHCCOqbqQooVifj+oAraZReh2EokaIUkxgF+nW6d1+LlxnFbisQZM84VtK57L5ejr61vzu//6X//ruuN6e3tXudrq8eEPf5gPf/jDl53D61//+st6gt7//vdv2kVXj1cMIa2VuGAYRpWk1uv8uJZCdxAVMgm2Zt4sKseouOji8fglXXTrjd8IlFKcPHmSiYkJDhw4QFtbG2NjY2sSmtaab0w/xPli+S0+ZTSyvWGI8dI58isuGEtZXHDCsRbLL5ObJzwmxQz9op9lr0B/fC8Zd5y8t8SME0577rB7qgkQAG1mG8/mywuggUFvbDtSxDEwqy65ntggo8UgqTWxYNXe2JfUAnrJYtFYJG300mG1EpOCkeLx6jqfECkmS6Ph6w64qkq6gNKC08XTGNh0xYZICpMF91wohqPqMvY67G2Mh6yuNOeLJ6uZfZZI4+k0LeZ15NUFSiqzyn1n+81kjfC9zQfiLwW1QBN9TK244lLGFlrNHny9jOkv4ellQKLiYc1AN28SUF8i5vZRlEHLTTLtHsPXFTetwNYt2MZNSFw8dZEGo4tFr+bOskVHqK37WrEiW/dSpLLIK6SMM+cG21DE8FQByziEgQSdxSAeslOSxj5Kgb5JkjTFUIwKhAwnmsSMHQGLykMKiW8drmYxOoChBItOB56TQhLDlk3EYnEsmQFmscz9dfVLcZLJ81jWBxDihVVge6W0noBXCCGt11q8Uky6HiGtp9AdRPAYV1qcKoRgYWGBkZGRDbno6rFRQioUChw5cgStddXlWCGitcYfXz5ZJSOArFfgTH6SeTfHlsQQScMgv7TArKy5i5I6yQV3ItybCMmsM8+sM49AsK/xBhyVJefl8PEwsZgohV1XjWaauZX4jo+PqxXHsqeJiQb64j1olWfeDYt9dthdjBZr7p20aCNjlI+x6GdYLGRo0E0YspN2uxVHLNJoNHK+zn03Fcge1BqWV6w/H4+J0hhb4juZ9V2aVD/tDS0IHc7Y0xqWvfqMvR7ypZoV2Wi0MlqskU+zMURJxWkytpP1xlDCJaabcVio7tNqDYU09iQWmUANVNafJiGbq7VVjcYgrWYfrl5A++fx9DImDTix8L3Wq0RhtzMXUHtIyk5m3KOhfRzdhikPYAsLrZeJy2TIfZcytpMPWlDaxJHhrEyzTtW70dxF1q+dx6QFnyUsMUDc6MAUNgoTIXpRaqW2zNxOPmBR4XWDFTyPwFV155Vt+H7NYowb+3A5hpRgmxnQCXzOUxAlChq0SiBKBpa9H9tIYEoFKo7rPUOz/f/jhcYrpVssvMwJ6XLyPxUC8X0f0zRD44IK3du3b1+XICpEdqWE5HkemUyGYrHIoUOHNq1FBxuLIc3MzHD06FG6u7vZvXt3da6X6jj7talvhT4PNQxyJlf+cZ8rTGAgiesE3cZ2HBaZ92do8BrJBlKh2+0OzhVqb98KzYyTYbI0RVw2MBDvJmVYPJs7UV3Qk7KB83Vtzg1Z/vuUdImzhVEG41tZ8nL02Htw9BKL7gyTTlhxPGk0klE166Db7OOiNw4alkuLCC1IA23WDpSRZ94bp8FIh9x33bFBJksBCSAMZpyy62ZJzrFUmGMgth3opdVqQ+kctij3earOHZuZuhT5WF1hb9xoZLRYth4MkaTLGqTkF7BFByU5gxDl/lFBtFvbmXbra6BqCQLL/hRSWCx6ZSur0Rgkbfbj6gwFfwJXLxBT7XjxgLWqYbF4LlT7mjA6yAfiR2lzO4ve6Wr2oMQuJzDIbSRkM4ZQGMJAa1mVDjKcLfixgLtVtIRqospSsYsEkTS3suQdxtFzON4cSWOQxZU2HJIW4qIXdAxp3ILQSyg1gVaNBDsHx419FP2aZSNJ4ayKFYV/OzFzL6VQjKoFETuGDxQUoDTC62J5YT8drasVE55v5HK5S6Z9v5zwsiWkjdQWVVS7gzEg13U5duwYCwsLG+4nBGVS24w6A9Sy6JRS9PT0XBEZVeawXhxLKcXp06cZGxtbV+9uLUIby53nRDZYbwEFP/wmva1hK89mR1gult13XfSSSKWxS0s4K2/dTWYT06WaBdUf76taXUVV4lR+jBazmZjspNNuYcmbpsNu40yhtrC2mK3hjD2gqArk/BynK5JFiV1oPBy1wJw7SUzFmdRhd5cwZChjr8ccYMI/x4I3Dx6k/E4WlaLZ7GdBjYPQVcXsCvpi2zgfEIFNiIZqxt5SoUx+vfYQzeZuLCFY8i7QZvcyEdDlS8o0F51wHMTVNRL3tYsQJjNGmTwTuosucwBfF7BFc7XjbKHOJZa2+kI1UM3GQCiJYtmfwdVFiqq88DcY/Rh04pcasRPLFP1pmuQwyyJYA2Uz74RTzEWdOE6rtZ159xiunyXnTxAT7ZT0PAZpGsyelSaFBQzVgRJlck0agywGkhkajCEKfvCeGBT8cBacJRqpPIGKIlIkWXAPB0akgCyWu5dkrAmJj8ZE6ARalGOYcWMnpYAskCl6cepcfr6uU2m3BigFGhcKfzvSPM3C7Hv57oXvkk6naWlpobW1lcbGxnXd/1eKfD4fWUgvZWy0tqii3l1ZzBcWFjhy5AiNjY2XVeiuoHL8q9Giq8gVXSmklLiuu2p7qVTiqaeeolQqcdttt63rh14rKeLvJr9DszlAsxVnvDBKV6KTc4VAF1YNc074jbY51cKx7FksYbKtYRADj5FcnaVT16Bua3wLoytkk/EWMDExhaIvtpM55zxFXSBttTDn1SydHruHyaDWnRZMOTMseAtAuVA2UYphJ/MsqlmEgDazg8m6nk0FUa+c3cy4OgcuWCpFh+6gqDwMLHxRvr9ZfyE0psPuC2XotZidTDjhhTRhSDqsfbh6kYw7vsp912r21tU8CRa8Wj1QQS3j4DNRrBQmD9JhduOwiMkyHvlV7jsIF88CdFjbQ0kUriowo59DmR645cJYbXSQoglfzVPwz9Mkh1gKdI013GYWCCYz6GoyRPU+mj2U3Fl8Six5ozQZ21iKjYAGk3YaZS+OjpEwrsdTUzhqCks2UAz8hBrNPSx7NcvGJB3q8QSgCCfKNJjbyXIYhwyOWy4Q9nT5b27RhyXacUgg5c2gl1B6Alt2U/JryQq23IsT6IskiOH4YfmbmJ1E+QfR3hC33nqITCZDJpPhwoULKKVCfY1SqdRVywlls9l1s+xebnhZEVKlb5HnlV+DN1JbVMmSO3v27KYUuoO4Wi26M2fOPK8tzAHm5+d56qmnaG1t5eDBgyGXZD3q9eymS/M8Nn8UheJCAeIyQYPRRoftV5MRhhIDnC3UFlGJYLxY/s7VHs9mx9idGsaULWyJt5FxpjGEZLQQtnRKKmx1DSa2cCpfcctItiV24SmFiYW3Et62ZPhFYSA+yGixRnzLXpZlM4vrubRZ3bRZzcSkYNadqboFe2NbmAi44gwMMoGsOVe6KCGZUNNIZZH222kykyzp8aq1ILRkxq1P2w5n7PXYg1wIZAamZAd5ZdJu7WbZu0BJZ4nJ8GLTbW/jYqDmqdyKo0Zyi94MMZli2jmHQNBibafd7KCgZvH9c/iUVrnvYHUNVIu1lalAEoUlklwo1WI4BmlidoIGcRB0noJ/jgari6VAXMt2+sjbwefAZrGup5OUdpUYPZ1HihjTgZhUQg6x5IMtb0EKB6Xm8FS4iDVlDrFcbSBYLvbN+8HsO0HJD79wxI02sisWoqtnsWQnGbdmHUkSFPUcprwOSySRgBLxlRjVFEL4xIx9OIFutQYduP4x4vr3MQyDZDJJMpmkr68PrTXZbLZKUCMjI0gpV7Uu38zaUqmXjCyklxiC6dxQc8ddDlJKnnnmGRzH4ZZbbiGdTm/63BtN/a4kScRisVAW3dUUttaPD7a/2LVrFwMDAxsWiK3g/7v43VDWWJPZwOOZ8pt1f7yPJsNmcTkTenq2NWzludxo9bMtLMby4xRUkYxbTjQ40LSbBrOF8eJ5XO3Qa3cz4QQ03LRgzl2oflQohJA8kxvFFjG2JLZiCc2FwkiVFLQuu/6CGEgMcHbFlTfnzlNSDlmvSIvVS7uVpqgyqDqZo974VkaLtYU0KZPM6pWW39InI+eRmGR8aHQ7SAgbG8FCvLYYV9x3Qei64tJmq4uxYo0o+uw9uNqk2Rws690JhVuXZNARG6xKGAE0GR1VgtJo5t0JfO2x6E0jsWm1BkmbbRT0DFnvHApnlfuuXAMVTmNOGM0s+7W/R4s1wJRTs6hMEmjDI2ncgCEUjj+LaRqhMmTL6aMUaGseE60suOF6JreuE2vS6GQuQFCNxhaK3gRJYxcx2YhE42oHQRJdye6ULRRV7XpS5h7yAeVzQzSQr+uSS12sqMHcRd47jOtPUQAs0YWvL1IuCI5h0YnARshbESgEOUzSKCUQ6jUYxmjoeEIIGhsbaWxsZMuWLdUuzplMhqmpKZ577jls26a1tXVDrcsriGJILyGs11p8I5ibm6NUKlVbfm82BlTB5Qgl6KJbK0niagmpYuG4rsvRo0fJZrObIteghbTs5fmnmXCnx2YrzcWV1g8XijO0eA3kTIftie1ksjNk5CKLXrgp2raGAU5mA5aBkeTppdN42icmbbYmBkms9OWp3Iot8X5Gi7UF3sBgolReIB3tcDo/xnBiW1msNdaBq7JI4YdJDci44TTnTqubJe8sc+48c+487VY7y9qnx95DSS0w606y5IeLL7tifYwUaq6pFrOdOW8aBCzbSyxpSPqN6FIbST+OaTukjATT4lxgTCcXgxl7wFJd23ZD2JwtlhdsWzSxJbYNpYskZRt5VbbYgu47gJTZGuq222ENMuOWLUSFz7x7kWU/Q0nlkMRotbZiG22kiZP1z+NTpMPayYxbc8XZNDBbp0ShdJi02+2tzDjHWVrZ3CDbKbFMk9xLXMTx/BwY4ZRr6bSAVYt1NZlD5EKxIYMlbzQ0xpYN5H2HrH+OrA/N5h5m3NOAIC63kpRdOBpixvX4agZXXQQddnk3GDvI+TWLyhY95P36tPRwoW/c6CHnVVzBPoZsIBvM4MPEEEnaYj+HyorLJjFJKWlubqa5uZmhoSF832dxcZH5+flQ6/JK/Km5uXnNNSjKsnuJoD5xYaNkFAz0x2IxtmzZcsVkBJdOKvA8jxMnTjA7O/uCaNFVxpdKJR599NGqMOpmricYA3t4+nEKvlMliSazgVO5sCsk3dBIppTjxHJ5EdxpbMMyDJZlnrzKIxBcLIXjCn2JHp5ZLhNUSTnMOovMOkukzXZ6Y60s+3O4dQvgUGILpwu1xSsh44wWxnG1y7MrsaldyW1siTWT9xeYcafYmhhkLOC+MzEZL9W1RjcbOVsYYX4lLjUc34MU0GHFmXHGkUIyXTcmbabJBBSs20UnM0aZFPJGDoEk64Lt9WJJhWNnsP1wi+see5CJQCaggcV0IHbk6BJF5XChVL7mhOqg0+hEWi6OKuHqwir3HYCsq4Ppjm2ryh4pfHL+MnPuBBqFwKTF2o4iTdrcxbJzHiXztNhh912j0bVGH6jwAt5gdpJzZqvtN1qtIeb9GRK6l5TRjvB0uZ+TioEsW31+idCq02LtIhNos2GJJhbdsISRF0j4KKoZkkZ3tacTQEruJKsUtnGI/FKWeELj6WxI2d02unG82t80aeyiFCj0FdgU6lqjmyK2qgaq4B+nNf4vmF10N528YBgGra2t1V5DruuysLBAJpPhzJkzVddcxXpKp9PV+PIrhZBe2IquFxAVAUHP86rJCRtV6P7hD3/I9PQ0r3rVq0gkEleslF1BsElfEMvLyzz22GMUi0Vuv/32dbPoLqf2fSlorVlYWGBhYYGBgQEOHjy4aXKtJDU4yuV/jD9Cs9nF9obtxGWMvngXfoAoWq00Y6XwwpTVJZ5eGiPjKgbi29iX2s2CU1PwtjA5lw8v8G12KxrNgrfMiewYvkqQ9yRb49tJrqREL3jhpIm+WB9uQLG6xWziufwIJ3OjnCsukJRdWDTRanZQ+ZMOxAcpqFrspEE2MFYXx3JwOZUfYbQwA7SwNXYdKaMdubJyJkSSC3Vp6PU/ncH4VrJymXl7nilzgYJKMlN0iOV7iXnNaA2OF/4b98W2UlS1xIoG2cREqUYCBZllSWcZKZ5nzhPE5BCd8f00mn1IXf4bNxptTNURVM4P37dWq6dakKtRoAVnC8c4VzxPRoHr9OEomxZzL3HZjtaQMFpDx+gwh8kFGhMaxEI1UVAWQYVywe6Mexph2czJcZaRFEpdGN5+SiqGLvagV4qnc6W6TEFzEB1wAjYY/WRDFpWgoMLZk7bRRM4/R8Y9TikxhovNlHuBrG7HYy+GfBWOimHLfRiiE63L6ftBNJh7ULpm5ZuijcKq7Lsl0vZdWLL9quoOK6i0Lt+5cyevetWruOOOOxgYGMB1XU6ePMlrX/taXv/61wPlnkf1iUuf+cxnuP7662lqaqKpqYnbbruNr3+91rPsl3/5lxkeHiaRSNDR0cHb3/72Vf2JfvM3f5NDhw4Ri8W44YYbVs1xdHS0+qIf/Pf9738/tN+XvvQldu/eTTwe57rrrrusQsR6eMkRUiVxYX5+nm9961ubUuiempqqWhGVdhHPt/RPZY7nz5/n+9//Pt3d3dx8881rFtWuN36j8DyPo0ePMj09TSqVWqXSvdn5PzR9mAU3y2RpnqOLY7h+nGxR0ew1Vhf4rnhruI04jVxYKVD1tc/J5fOcLyxhiha2JXbSYrWwrWELOb9GCkmZ4Eyd1ZUw4oyXZjiRPce8o9ge30tSNmOulNNLJJOlsLpDu90WmoslbI4sn+JcYRnptNIttuHW3deeWDd+IPWszWzjfMBNmPVyTJRmOZ2/SNFL0mHupD++o7rYArSYbczoOlL2w11HexN9LBgZZux5Zihie/1kc5AotCNV+ZoW3LnQmDa7OxS7S/ktZKqtODQz7kXOFc8zVrzIsoqTNHaQNreRNgZAl3/KHdYgi4HurhKTOTd8r2MybLnZOsn50jOcL51l1s1iikEKvkGreR2NxgBoo9rqozbXYTwd/Ju2MRdKotAUAzVgnrWEYVpkjHMsWossYqK9/RTdRvzsNlShB/wGlurI1ZJht3OztZOSqt03gyTLdRYVovxM+DpP1h9FAXPeU8x5Z1nwl/HFdpZ9DyEPYRm3YMrr8RWga/GcuLGFYIpiTG6jpEZojZVVvStF9s8nYrEY3d3d7Nmzh9tvv50vfOEL1b5EP//zP09LSwtvfetbeeihsrZkf38/f/AHf8ATTzzBj370I974xjfy9re/nePHy5buoUOHuP/++3nmmWf4x3/8R7TW3HXXXavWu/e85z38y3/5Ly85t29961tMTk5W/x06dKj63aOPPsq73vUu3vve93L48GHuuece7rnnnlDL843iJeWyC7roNmNVBOVy9u3bR09PT/W754OQgsfYiIuuHldCSBVh1Fgsxs6dO5mYmLj8oHUghMBXir+b+OfQ9g7ZxDOF8nF7rC66Y41MFMLxjBjhjLehZA9n8+V9FtwsQgsaZDvbksOMF85T0g5bkr2cWK7Fl1rMJs7ma6SgUMy7Oc4VL2KLGEPJQZpMu1wXtcK3cRFjrBB+U44btYV2WeZp1k2czl2kw+6m3Woi5y0yXgzfp7TVVFWEgHCdVEk7jBUuMO0kyPuSvvgwDYaJLQVzbu3NvtfuZ8IJZpoZTNXFtRoTaUaL5RiNVAbdbj+eXyRmNlG0ljCEwVRdWrqlwwHvvtg2xlcy9nw85p1Z5txpXO1giybarS5iMkWT6bHkToDQdNvbmAgkJiRk0yqLSslwEkXKaGE80KiwxdzCsm+QNm9AUyTvTtQEYCvXZ3aTd2r3sdUcYiFo2SjJEnXEaJtlEltZhVJqiEV/Fum0YQqDmKXJqhm0CDRVrIsVlYt0j9Q2OM3k7WAsTOPUx4pkW3nMyk+uwdjOvH8aMLDFFmKijaKOYRi3gM6j9RxCp0gYe0ma15cv53mwkC4FIQR79+7l3nvv5bOf/SyTk5OcOHGChx56iESi/Jy/7W1vC435yEc+wmc+8xm+//3vs2/fPt73vvdVv9u6dSv/4T/8Bw4cOMDo6CjDw8MA/D//z/8D1Arn10NbW9u6vY0++clP8hM/8RP81m/9FgD//t//ex588EE+9alP8dnPfnZT1/2SIaT61uIVt9TlHoy1FLqDuBp3WfAYFS26Shbd7bfffkmraK3xG0VF6HVwcJDt27czMzNz1UkRT2ZPM16suWSEFkyWMlUCmCzO02almSn67GwcxtcFlr1lJrxwkF6K8N9ie6qfE8tlF5ktTHaktpArltAKKqGPeNFEmzVLpzvWwbliJZnB5dncebrsVgQptsQ6cXSOlBmvpocDpM0mRvLhBc9bcTXOOPPMOPNsTw6RVYItsS3k/QXy/jJjdQW39WoIg4ktnC2MAnC+OE5SJnC1S4ouUtpGxr1VhaID8UHG6jL2gi4/hUIkJdOl8gIe99M0e204OothK3yjRJwGFoywRejWZRN2xwc4t6Ll5+gSWW+ZiytZfrZoos3sBBpIm/0suhMgFK1WbyhjL6XayIXOI8jUJVEkZBMTTs0K6bC2sqwyNJn7sYTE87OhjrgAhrRCNVB2sRsnWXsZiIs083WtOQzbx/OWIbGMA5j+NpYYR3hNWH4zCZGmqH1ixhCumkSJIkUVzhTETUNAcLfR2Ek+0FBPYpNd1e6iRvyOmiVhdpMJkJxJGsE5hhO/W/VAvBAW0lqo1CAZhsH111/P9ddfv+Z+vu/zpS99iVwuV+1TFEQul+P+++9naGiIgYGBTc/jp37qpygWi+zcuZMPfehD/NRP/VT1u8cee4wPfjCseH733Xfzla98ZdPnueYJab3W4kHZn/UIqbJwDwwMsHPnzjUfoPXiP5uBlJK5ubl1s+g2Mn4jc1BK8cwzz3Dx4sWQ0OvzkRTxg+VnKb+KrrSQEC2co0Y2ljAYzU/hap/jS+XF52DzdmJOhiVjkZwu0BVr43SutkCU1R1qb7SO9igUSpz1pmiUTQzGOyj4y8yJTKj1js77IWfy1kQvoyuW2jO5MaQW9MQ7GYztIK8WmXam6bDbybg1t1naTzFJ7S1eA/PuIrNuhtmVLLz9qe342qOkl5gqTdJmtXKuGLa6lv1w9mBvvIfT+bNkWCADtPotzLt5emK7AIcZZ5xcnfuuK9bLSEB5otVsYzxgDRUpUIgXmPcWQEPa6yTmNoBYomQvoKVPi+xkuk6lPFOn5dditZH151budRGl4blCOQ5iiQY6zV48ZdNsDrLkjqOEh008VF7aZQ0zFXC92SRDKuYAUmhyXoacX1Gm2M28M0XaHCIpG7GEoODPoLVAVNxnRrgIudnqY8apPV9NxgCLXu3lQCDw7TlQoA0Hx5jG8hpY1CMrahuSRv86iqZPwtqKoITvL1CKTYVeDwwpQ9nejebOqgJ5+b60rhKF9alrLGlupeCfpS32huq2F9pCquBy3WKffvppbrvtNorFIqlUii9/+cvV1uUAf/Inf8KHPvQhcrkcu3bt4sEHH9xQwX8FqVSK//Sf/hN33HEHUkr+9m//lnvuuYevfOUrVVK6ePHiqjYTXV1d1d5Km8E1TUhKKTzPW1P+p0IunuetusEVt9nMzMyaCt1BXK3LzvM8lpeXcRyHG2+8kfb29k0fYyOEks/nOXLkCEIIbrvtttBDerWENKYzfGfxLK1mM02OYNnK4sUlBDJ4d6YGOLZUe8tPyhjHls5RVC7CF+xMbaUtluBiYaHauG4w0cVoIfyWP+culVOnVYFj2XPsaRgkIQ36rSRT7kUMBFN1dSqFQngxG24Y4NlADKov1ovvm7RZbcytxGXi2CFltK2JfkYKtQXdwGCkMEHOLx+7yWyj3erDkg1cLE6ghaI/1seFUm2MRDJVF8dqMVs4UzjLcr5MXP2xfnwt6Iu1suzNkvUzTNe575rMZuYDbsK+2ECIoLJkcWIOBZVH+jYtfjO+YxGz0hTNRYSEbnOQi17t72ER42Jd4kUw+87VDkKYnClWFNRjdNs7cLwSSfpxjDk8CniErbB2e0u18yyUa6Bm6ggq68+Vu+h6k2SYpNfew6Q7jymaSBtdNMkWMrkLJOI2eTWNIQwW3fBc6zvrtlk7yASIwqKBohkmZE8XyOlxFlfeeRrVMHk5R5KtJIxmbGJ4Oo8l+sqp4cJbpUCeNLaEXH5JY2udZJGk6J+jK/72kCV1JVJhV4KKhbTeC+6uXbs4cuQIi4uLPPDAA9x333185zvfqZLSz/7sz/LmN7+ZyclJ/uiP/oh3vvOdfO9739uw96a9vT1k/dx8881MTEzw8Y9/PGQlPV+4JglpI7VFFSupnkyWlpZ46qmnLqnQHYSUsqrssFlUXHS+79Pf339FZFSZw6UIZXp6mqNHj9Lb28vu3btXWXr1SgubxXdW0nvnvRzzAnbEerCEwdZEjJH8BALBVHEhNGZbqpejS6NAuThzqrjAmdxFkkYjQw3tLLgL2Eb4RaGXFiZE7a3YQHChOMeil2O8OIdEcCg9TIuVZ7w4gaNdOs0WpgJuQa1hNh+eS6OZ4ulseS5ddhdddhMXc+GsPl+H7++25ACn8qO175XP0ewZPO2RkCkGYp2kDBuLGdyVJoNbA+47ABubc8Wwq0oIg7HAtj3JvSh8UkaeGWecmLDXyNhb7fKrxJuU8CnKEplYBoXCVo00uY3ksj52vJGSsYwQ0GP3c8GpucCajFYmnfB58gHLzcfDkCbj4mzZfPQEA7HrUBrazAYKaoa8P8diXap3o9lC1qlta7eGmA31gbKYXSEbTzvMueexLJvl+BzLXrnJYI+9C6WLxHFx1Ry+yjFfpyqhCNczpa0hZt1akLxBdlMIEZTG0bMgFHk1RV5N0ah3sixOr9zhBG3WHko4xIweBC6+v0jBDz8ntkxRCllUu8l7J+iKh1W9f1wW0uVaT9i2zfbt24FyEsPjjz/OJz/5ST73uc8BkE6nSafT7Nixg1e96lW0tLTw5S9/mXe9611XPKdbb72VBx98sPq5u7ubqanwczI1NbVuzOlSuOYIqV7+51K1RcEGe0GF7s20cDAMY93+85ea4/j4OM888wxbt27FcZyr8ievR0hKKU6dOsW5c+fYv39/KBljI+M3glOZcU7UBX01cHyp/GPvinWwI9VRrfsBMJCcK4TdRQPJTp5eGmXJy/PU4jk67WaUVgxZ/VwoXcSVHnYyVulkDcBwsp+TuZqLzBYWTy+fo6gcYvL/z95/B8mWX/ed4Od6k95nlq/nXXe/7teNRjcEkFRAwEigggqNONKKGmKH1CjIlRRyMaSoUFCUYkaj0awkKkJaMbQgRayGHEIRw9VOkCuSILgQDYAG+vn36pmqV/XKV2Wl9+aa/SOzMu/N500bCjwRCETXy2vyZubv+zvnfM/3q3DEnCEkqRz0q6Osa0ZJsdn3zDi5sN0a3/9+r0RUCbPn9kiRIqNHcOmxNgEcVctflpnRs9wZ9qTaTodSv8bdVgVZkJnVp9EEkd5EDydJnB3Xq2wQ84ERQMmqst8bPCtFMJgPHKXntKnZB9TtEnElwXbX38eqT9C201p2VPLr0UXQo+wO3WoNO0LAClBstlC0EL0hQEXkBDV7nA1klFn2PX2egWq5l+Ax4Cve96hIzGuv4AgWSWWavluna5dG1haHMdk/S6tH2fVkVKYY9ZkO9t0ONatAxaMSMa2dxnGqBMQAouAguTb1vl/QtTkBHKYUp+2M/xaTj1ET/HYXDXfsWeXi0Ou3aODx3FLOULH2UIUsuhRHI4TlWujiWWzK9O08uB3i6qfRJf9v78PqIT3OLfZhcTgO87BwXRfXdZ95vZuMK1eu+Naid955h6997Wv8zb/5N0d/++pXv/rQXtaT4mMFSF7fosPZosfFYYbkVei+cOHCaPDsaeJZe0heFt1hie727dsvVDJ72D10Oh2uXr1Kv99/rDAqPD8gFYtF/h/X/k9fv2bGSLDcGC+y+90quqRS6tqcDC0AfXRJ5kZ9vIiqSNybyEiSWoQbtcFrZEHi9eBRmnYTwRVwBRfXhYrlL8UdCeRYagyAr+v02e6UaVgdDDHEgpGk5zaREfFOK84rGdY9NGcZidXWYKE9sKocNKqcMGcJiRlSaoiaXcYUNTY8/ksSItsTpbi4EqXQr2C5FmvtbWa0HBudA6a1WaKyQbmzT5mKb9GMKTGf9NG0NsW25zqDc22N+lIxOUtMyqEKYYq9Hfp0mdJm2el6gUNkb8IrypQCo2fQpk0ykGFzSGYwrDgBy6TQaqKq4wxKmiCbTGmLbHXH4GOIQd8MFAzMCfMe9uCsdoK2UycmBwb23m6HfG/Na2o76iuNn0l2pPIxeM+zlC3/+ytbm3Sc2qhjmVVPUXYUQtIUphQhIJr03BKq69B1ysiCTsXyq0qIE3vPhHqSYn886Cs7IRrCqufzcukOxXh7bpWeVSWpvEK+N87CTGmRktXhfOAvMhkfZob0KED6qZ/6Kf7kn/yTzM3NUa/X+eVf/mW+/vWv85u/+Zusrq7yla98hc997nOkUim2trb4J//kn2AYBn/qT/2p0TlWVlZoNBrs7e2N/NIAzpw5g6qqfPnLX0ZVVV5//XUAfvVXf5Vf+IVf4Etf+tLoHH/jb/wNvud7vod/9s/+GV/4whf4lV/5Fd5//33+7b/9t8/8fj8WgPQk36JHhSRJVKtVrl+//kwK3ZPneNoe0qNYdKIovrBa9+HuRRAEisUiV69eJZlMcuHChccKo8LT+SF541Dv7vK9JWpBELoDkAAIyyYw3lkfCaRZbQ4W66XawAr8RHCK04Ej7PUOKPfrzCkJVvrjBT0oGdyujRcyy3VoWH2W6nmiSpQFM4Ek2tys3x+/BwR2J4Ykp/UkN+sb1O02N+qbZNUofbfPUeMoDbvKXrdAX7J9lhLTUoo1T5kpgM5KaxsHh/3e4Pxnggss6sdo2jX2e3mOBOZ85TtT1H39JgB5qFK+3c2z3YUZMUPHqTEbmMNy29T6JTYmaOjKBAgsGnOstseZZsfucLO5TN+1EJGY0hYwxAgJ2abY3x3QtqVpdjyioaYYZKvjL8VZnmHhttAiGx6TKHQrRqgbpCz10NQoHbGCIEDb8ZM1UsqUT7U8rmR8KhIAFeuAul2mMLzcrHaCnpskJiXRRQVVECh5gEJCpjzhA6WK/hJ6Wj1C3qN1pwoBDnr3cHGp2Xlqdp6UMk+pf8jUTBBTTmDTRsTGdusITpeK5S/5eWegAGLavE8vT7Vz/pKfK9CY6GtpYpS+UyemvMZkfJgZ0qM2o/l8nh/+4R9md3eXSCTCq6++ym/+5m/yJ/7En2BnZ4ff+73f42d/9mcpl8tkMhk+85nP8I1vfMPXU//Lf/kv85//838e/fch8KytrbGwsAAMaNzr6+vIssypU6f4yle+wp/7c39udMy7777LL//yL/P3//7f5+/9vb/H8ePH+Y//8T9y7ty5Z36/HzkgPY1v0eOOW1lZ4cSJE8zPzz/3UOiTAGmyRDfJontRpp7XU2l9fZ3V1VVOnTrFzMzMUwvEPm0Pqd/vc/36dWq1GhtTIkt7BUKCwawewZYsbtX8C7Eq+r8iJ0NT3K4PsiEBmJOSOLaEhDQaOI32NWrCuAeQUMLcrg/OW+k3uVJtciyQJSGnSaoBdrp5pvQYd3zlO5m1lr+UGFND3GpsUhyy6c4EjyIJkFTsIXNOoCq2/ZYLYpj7zhgsE0KIpWG/CQZeS4KrDywtunsguMzquVH5DiAuRx8AqI7bpU6bW8NS5qnAIn23jyoKFPr7qILM+gRjzzscDDCjT7E8FIF1cGg7Xa7UB6QDQ4wQ7BsIukFYSlC1iggCZLUcqx6NvaScYrc3yb4bEyY6QptcdIq1zj1wQe2HifYidBSHgJKiSQFBhMIDquVBKh6gn1IXfbYaChp7vXX6bpfd3kCZe1qdp9S3CEk5wnKMkBSg5RSwrF1s2uhChPyEXt6kAnlCmWe3N1ZICEvpkTQRQM9tUbK2fKoROfUUXdvFEMJ0Gz1S0SQ9dw8JHZsOIjK1CRmkkBGj0h9n9Vp/lr46vo7oGlT7dzkV/PGH/gY/Dj2kn//5n3/kcVNTU0+llvD1r3/9sf/+xS9+kS9+8YtPPM8P/uAP8oM/+INPfN2T4iMFpMnZoqcFlG63y7Vr1+j1eiwuLo6Q/HniSRnSw0p0k/Gis0yHgHT58mVardYzq44fluwOM6xHxaEhoGmanP/EBf7xdwZDa3W3x1L7gNcicyyYBpLgsNzYJmdEuV33L1Re5QOXwdzRzU6BkGyyqIYpd0oU5Y6Pxj1lxCl4pISm9TgrzUFZcLtTRnAFcqrOMWOejSGZ4WhgmpuesmBIMlhu+u+l59ijv01pWWbNGFudcblRRiIv+HtFpqtRZHwvJhqXaoeW3xFm9SSW6/gANqHEKPTHfZ1ZPcum5zqH2n0Va3zeV4PzRKQ0bafOfm+PaT3r09QTEEa9pcOIyVGKQ0p62+lguDq3hxlGVE6TVuNYDhhiiLYzuFZQDlPwWIfPavM+t10FlR0PYPXEHnrEZKt3H9zBwptoJhA0CCthWkIRRZDYnVAtt/ETf7LavM/6PSzF2OsNjqnbZep2mZicoTwsp2pWkmzoKH2aWG6TprVHUI77yncgULX8pd+gFKPpyXgTyhGKnp6UJKiUrPv03RZtymBA0AlQ6A97bGKOhLKI7bbRBBvHaeC4TSoTpoOGKVL3vEW5l6Mnb7F1NUQ7dmskgHpYgfm49pD+sMdHAkiPmi16migUCly/fv2BL8jzxuMA6bBEp6rqYwddXzRDqtcHi4sgCM+lOn74w3gcIB3OZB1meL+y+R51a5zFGMjcqu3RcQb1mKQaZU7P0rH6lK3BDnjOSHKvOV4cXBdaw9fXrQ5LVofTZpYmfeY1k/X2LuBydwLUomqQ7c64PLdgprgy7DdposIxcxrXEUf9psG109xsjBfalBLxAdROt4QsSGx3mkzrWdSuTdjUuesRMw1JBruOf+ap37NGC1PdbtHt9Vnq7aKJOvNGGk18UChWmTAZPGLMcM9j064LKnda63SdQRnXEEMExATzmkGhn6fpNB4o3xmC/sAMlOhp7lWsGgklzt1haTGpTJFSovSdHrpg0nEH/TivLBLAjD7HmoeoEJYibHvYd45g0zctKpQG8zoupLpJVBU0RaQv1lBEif3eJCnE/0xicpKmPc7MUsosBx4SRU9qsdW75ysVhuU0ASmMKsi4tNAEhb3e2MpewfARIh4WKeUIeY84q2QFKDJ+v22nTM02fVYbWe0szX6PgJhAE000VGy3jirO0LfzuEIP0agzp/4ppk6d96lzBwIB4vH4C5XonyWazeZzs3f/MMZHAkhe2/CnBSOvQvdhOevatWsvRfZnEkwmS3RHjx597G7oeUkFruuysbHB3buDnebp06efa7bh8PkdZpreOJRN2t3d5fz586RSKSzH5lc23vO9blaNc7s73mlbrsPvF1ZxXJdT4Vlk0UGa+JyOBzMsN/xltZLTZr9TZaNVRBZE3k4cpdyvc6+xiys4RJUAt+v+hdfrItt1LGzgUnWLkBxi0UzQsVusT5TvkmqEfG+c/cwZqRHzb7tTxAXinRAxJUdCNSlZJTJahFuecl1aibHnsfwGKHWqIA5IFXeb25wwZtjvdpkzZgjKGn279UD5rv2AyeC0r+SniypX68sj3b2MkkMmSE6dZq87eC4zxhTLLY+ckhKjgL+nVrfHpnWFfomYEmN5KLmUVmfIKFG6bgtNMOgOS2Fly3+OlJqi4aHwR+wYFWn8GkEQaJlNmk5jUPq0IdnLoCmzmIqOIPfQRJldT+lNRiU/QTGXRf/3ONhL0RTHn6EhBNns3sXxAGhGncYmSURKoIkahqBTtzZpOvsg2ASklC87Ape2R9cOBj2zjjzOVKPSHJWJgduatUXfbY1INRnllAf4ZDLqq1hui3nzzxJS/Orc5XKZUqk0Kn2Hw+GRgvcHYV/+JNr3f2nxkZXsnqX+2m63uXr1KpZl8clPfnIkxf6ydejg6Up0k/E8JTvLsrhx4wblcpkLFy7w/vvvP/cskTdD8kan0+Hy5cu4rusbpv3a/m2SaoRSt4mFjeQKbHlKUgALZpLLlcEPeam2S0oN4bhwNrTIfrdIoVfDsf0gfDo0za26V6nB5Xp1h0q/RVQJshhIYEoSF6vjHWxGjXJ3gqF3qO5Qt9pcq21xNjSL61qcMKeoWlXq/QYrE8fo4uTMU4RtuwZ2g61OEQUJ2Q1wzDhK1aqQ7xUH9HAPIM3rWdZ9pTjYauZxRJf77cFietKcIyimCDoKXbdFQFfZnFA/3+/5s4e0mqDsoZkrosyV+qAPpIkGM2oG11GIyXFK/dLAcl2J+XydJhl7A7HZ8b3mewXCUpDVIVim1GlySoKO26Qrdmk7TWRB8dlfACPx2sOY0xZY97DtdMGgrBYHJTsLsCBuxRHlNBE5gqpImKLMRufGKNMMilH2fIw9F3vCJymhzrDlkTCKyRkKw4yq0xtkUUEpTsMuI2IQkZMEpAyakMOmRdcpYophn16eiERP9bMlJ23ck+pxih4xVgWT8sQMlOV20KUYIWXGfy5FIZ1Ok06nyefznD17lm63S6lUGtmXH1pHxONxTNN8Yfvy7ya3WPgYkBqeFPv7+9y4cYNMJsPp06d9QCZJ0nMPtR6GF0yetkQ3Gc9asptk62ma9kzEhIe9B8B3D4dMvXQ67Xturuvy8/e+yXL9gLBscDacxO60WPLI0OiizN26f5GdMmJcqWxSKA0Wi7PGFM1GA0kUsYczQh3HX8Y4HZnhWnWwg6/0W9yu9QGRpJYhpZpsd/ZJqCF2u2MwXDCS3G+PF3TXhYNunUKvPupDvRlZxKJPoVem0K+QUEMsNyem+CecWo8Hp1hqbHKokzNvTOO4CjktzU4njyCALPo3ScfNWe569PEUV+JecwtLcDh8OqfceWa1wfzMfm+XaS3tK99pgsp6x39vmgc8u87gmVxrDBbWqJwgp8axHAfFVulLg2c6WSacHNI1RdM3pHvQK6AJ2khpIqHkmNUytN0GdatAzS4TliOUXH8fqz1BMshpM6x1PEaFUpzq0Oq9blXBAtMJ0RUDxOUEISVAUNIQ+lvUrMFzjYtTVJQxmAqIlB4gUYSoeWaNMuriSATWwaZuVWjZZZ+b7ow2jS4eRxcNRFzou9TclZEPkiaEH7Bxt10/MMbVBQoeqndATFGxVvh06Gd4XNi2jWEYJBIJpqamfPblxWKRe/fuIcvyCJxisdhTryfe+G5yi4WPMSDZts2dO3ceqtB9GJIkvXAt9xDUtra2nrpENxnPUrLb3t5maWnpAbbeixAjvCU7r4X5qVOnHhBS/EZhleX6YBGqWR0ulrZIySZTYoxwwORuY4dToRyXK157aJ1bNX9G0ui0WXdbGI7KghImHNK5WtkYqzIDxV7Td8yJ0BRXKhu0WiU2WyViskGj73IyMMtaa5eea6FPqDucDOa40/ASFUSWm3tUrcHCOaNnmNfiOM4W5SGpYEZLstH1l3KKHp07gJBscHXYt4orMRaMFE27geCKoyHcSVbcseDMiFUHEHA0bjU2cIfvWUAgqxgc0Y9Rs8sc9IosBKa447F2j8ohVifo4R1nvEhWrDoZNcmdYb8sRYasHqPrtlBQR6oRh5JHhzGjZ1lpjctoSSXhkz06VCc//P+wlCIlzyC287hql5pbJK1lfDJHAsKIHHAYMSVGzdMrysjT7A/7MwfWPsW+iCKI9IUeihAiIafQ3AB6B2SzT90+YEo/wo5nBkoXTPZ7/l6RM6GskdXm2emOM5ugGGO3t4y3IRgiRR3Q3CQhKU5YTtJ3G7hum65TRBV0Kpa/tNh8wI03heQI5LQ3eVQc/s68m+OH2ZdXq1XK5TLb29vcvn0bwzB89uVPGueAgXTQH2VIH0I8LpVtNptcuXIFURQfqtB9GC+jZHcYd+/efW4tuqe5D9u2uXXrFvv7+6NejjdeRG3hUM2i1+tx69Yt6vX6I5l6X171947ORXLcqA5lSHs1kmoI0VVIqqFRRnI8mOZS2QNQKGwzAJu2a3GnV+JMf4qMmialm2y095gyYtyqj3/sIgJbLf9syJyZ4OpwXkkXFc6F5mg5bR+ZYdLP6GRoipueHlSp1yDfbdBx+swbOeKqjiy64AGkY2aOFY9B4KTSRKnfIKvFudUoEJCCLBgJApLEcmu8eAnAXs/fj0lIEerO+DxR2+CGl1IuxbFslTltjr3eHj23R0ZL+th4U1r6gaHcvMfG4cAqE3ei3G3tISGS02dJKmHqdmXEBBQR2J8oG0bkMAUP/XtWm2GzO35uLbvN3dZ92kIb+qAKIQwhzbQaxaZDsb9LVs2NBm4BNEFnZ0JVQpYk3xzYlDLDjj04pu/2KLeL7Is7AzX33sARtu/opJQzCNh0nCoRKcxO36OXJ6dGluyDcGlY/g1GTEnT9jynhDxLccjY67ot+v0ObadC2xmXSmfUOWRBRReDyIKIKii07V1ENBy6SIJGxbrHueBfQhAevSE9/J0+ru0giuIIeI4cOYJlWZTL5ZE7bLvdHrnDxuNxIpHIA5tg13X/iGX3UcdhBvE4he7DeFFAOqRBw0Cf6Xk/+CeBiVcY9d133x35mTzLOZ4UgiBw+fLlkfngw9iHNys7fKfk3yG2bb8L5ZQR5ZuFwaJzOjyNJgncb/gXg+PRrC+Dios6S9VdXGCjVUYSRI6aIU4EJFaaOzi4nA5Nc8Mz46QKEqut8WLecfr0HJebtQIRJcSiGUcWba7XtnxKAKWef6DzSCDLtaH6+Hq7SMMKUrFaJIiSNAJU3JrP9A7gZHB6UL4bhilqoz5W0+5ws77NicAUjb7MojmFLomogsstz/Cs4krsuH6ATYbilFvjzEXpClwdLs4iIkeMeWxHJqWkyPcOEAQwJX8Z54gx48ugVJRRyc/GYauzjyqorLYPkAWNKS1FSg1R6RdpWm0cwcYQjAc09iYUfpg3ZrnnsYfXRJXbzWXfs0rIOjn1JCIOTadCXI6w7infReX4hOyRS0fwZ8VJNcu2PX5uumX6SoACAk1ZQBEWCEoBZAEMUaFtNegP66sZZYEDzyySJIz18kbPWvR7R2XUI+z7Bm5N8r0VbI/Mx0CHrwhIGGKOjDKPS58F47M8Lg5/p89SRZFlmVQqNdqIHvaeyuUyN2/exLIsotHoKIM6JDK0Wq3vKlLDx8Yx9tD99Pbt25w/f/6hIqKT4dWye9bY2toaOboenut543HAeOhSG4vFePvttx8KRvBigLSzs4PjOCNlh0dR4f+Pjeu8GplFGyoIHAumuNfw92vKvXGZ6lZtH1yZZhdm7QgpOYghKg/0l+Ki6evYTBtRvlG4z7VyHtUNcSaw8IBl9OnwFHVr3A8ISBq3h6W5ar/Nleo2bUskIsc4E1ggo0Y5Hsiy262MjhER2GxPqDsYMWzXIe82WWrlEV2DRg9OmQsklUHGWOr7QW3RzNJzxtv8pBpmublD37W529zlWm2bfLdHQp7imHGEjJpkWkrS86QGUTnIvdZErygwBhsHh1a9xZXaOmutKqIbYVE7ju1IBKXxRqjn+nuis2rG15uLySHWhoBluRYbnV12uxXutYu0HZ2EvMC8cZyEkkEa7jcTStznigsPavlltbQPjNJqmnvtNVZa97nb2mC7U2Ov2yYsHSGnniajHiEm+1X0c+osJc9MlIREyfVnf0HFv7jG7DRVq0Shv8/9ziqbnR2W26uUbReBDBH5JIqYJKGcJChlwBXJqov03DHwG2LkgZJf3/WXNFPKnA+MQlLKJwrbdiqUrR2C8hSa9PgS2dNKmz0uNE0jl8tx5swZPvWpT/HWW2+RSCSoVCpcunSJH/mRH+HP/tk/S6lUolKpPHD8h2FfDnDt2jU+/elPo+s6s7Oz/NN/+k8feM3Lsi+Hj0nJ7lChW9O0p1LoPoznyZAmWXSJRILV1dUXHmydBBPHcbh79y6bm5u88sorT1S+fR5A8lK6ZVl+rLLDRrPM/7F+DQeXgKzyWiSFMiEAdjqc4VbNs4C4sFErUrd71OlBG/5YapGm3WG5Mej5BESV+xMMvbBiwlCZrNJv07D63K3nmTNTpPUAm+0DdtsV3zFHA2muVMeLZkINcKu+i4NLvjsocb0eiXE6ME++V6LYr3MyOMVNz4yTLigP0NAjisnN+jYbQ5w9Hz6Ki4OrCux1S8iCwEbbz4rLalEKPkp5cvSaw/NMSRGmhCyqLrHd2WdKT1BpjIFuWkuy2fUTBrq6Oypv1e025VqNLXHwnHJqhik9RtNpoKDQpw8uFB8QWk2OemWD62TYHpbr+q7FRmePitWgatWRBJUpbTCvpAlBCv19em6XWX2aTQ/RQkJkrzc5kGrihZJ5fc5nZqgJKoLgoItJ4koUTZTQRAnF0ukPiQPT+gIbnXFfKyAGOXD9ZAZX8pNPok6Cgrg1fEZVBES2PYO+IiZNWyIsn0URRFy3gyHpbHWujzLpmJyjZI2/SwJQsyd6RVKCusf1NqksUrJWORv8r3hSvOyhWEEQCAQCBAIBZmdnR+Mbv/Zrv8bXvvY1/uv/+r9mbm6Oz372s/zQD/0Qn/nMZ0b25cePH8d1Xb785S/zAz/wA1y+fJmzZ89y4cIFfuiHfoi5uTlKpRI/8zM/w+c+9znW1tZ8pcYf+ZEf4b333nuoW2ytVuNzn/scn/3sZ/m5n/s5rl+/zo/8yI8QjUZHbrSH9uX/8//8P/P93//9/PIv/zJ/5s/8GS5duvSHTzroeRW6D+NZAelRLLqXIf3jVUrwCqO+++67T1UKfNZ7mKR0f/vb334sS+//de87OMM8pmn12Gs12GrVOBHOITt97nWKuBN1nTkpyLpn9kVC4FYtT6HbJCCrnAtPI/X7XG7tjhaDhBrkZtW/6EjDevxGq8xGq8wpM0Wj2WRWjrJLDQeX5aofSGb0mI8UMa3HuOQpEy4YaXTBICoHqAwHd48Hs1yvj18TFnVuNybIGFaX5eFwb0ZLcCyYYr9XotJvDUpoovoApdycKAedDExx53AotzEYuG1ZcNxcoNArUbZqBGQDr7XQUXOKe63xc1EFmaLUHPXkd3tlxC5sC2VkZGaMLEqzjyVb4DZAcFEFhfW2/9lOkkCOGrOstAfAYbs2hW6F/W6JntsfkC60aQwxxqyuUu4XaNh1ZpQpNj2KCQHRZL3tL/n1JzM3fZrVzj16do+aXSMqR6la1cH8lzJFRAoiopNSZin39rGEHmk1x7pXL09OU7L8GVRT8AOwbgepeYwiU0qWre44GxKRMCSdvhvCtMOorkpASyIKAXpOhaZdIKMtctAbkyhkdAqeEiAMvqM59QwJZZ4nxQctGySKIp/+9Kf5xCc+wb/5N/+GW7ducffuXX77t3+b+/fv85nPfOZDsS//pV/6JXq9Hr/wC7+AqqqcPXuWK1eu8M//+T8fnf9l2pfDRwhIvV6PK1euPJdC92E8CyA9jkX3or2owy+n4zhUKhWuXr1KKpXizJkzT/3FfZYMqVgscuXKFR8V/nHHF7tN/uPmDd/fUnqIrVaNu7XBLnFOCqOhkdHC7HdruC44kuib4TgXm+JKebCzblo9rpf3UEWJGEHmInHuN/PMmnEOumMgmTGi3Kr5d6elZp19OtAHQ9J4PZwj363S7JVAABWR2xOsvphistUeL0yyKPON0n0AjgQyRGSNmuVnxU2pEW53xkA3pUdHYASw362hCDJbnTJRJcycESekKFyueS0KQtydkCzqOv7Fed5MccMDhEfNWVxHYU7Psd3JY2Nju/7v11Fz2sfYC0smu3YFAAub++19km6QQqeBIQaY0ZMk1AB7vT3adndoMRFiteUvxbUdP615zpgaDem6uPQciyv1MSiYTghH1pnTjtO0qxT7B+S0HCvt8TNIKSl2ul7a9oMDtwklQWWonl3qlzBEnZvNO6MjQk6SjiqTU0/Td1vUrTxBOewDpGltfiQ/BANvpZK75+t/uX3/d3xaW2B7CDY1oYiCTrl1MJI6EgkQswMEpTMooozg9tFFjbzHIiMgxjno3+NPxP8OTxMfpn05QDqd5tixYz6V7sn7+SDsy7/5zW/ymc98xtcC+PznP8//8r/8L5TLZWKx2Eu1L4ePEJAOPTmeR6H7MJ4GSD5MLbp79+6xvr7O6dOnmZmZecJRD57jSYDkui6rq6usrq4+cI3HHf+/r13yLaIx1eB62b/gK4LE+8UB2EyLAabCEa55yl8uUOr66/Jnozkul7doAPniNmFZp2vB6VCOO/U9HFySWpAtT3kug8GexzS7bfdZb1fZ7lSJKUEWAjEUXC43xmSGoKuwVJvMusar1GqzwJlQjru1MkcCWSKqyk4jz8YEKy6mBNn23MvRQJp7QyXzSr9Ftd8ipgRwbY2jgRSS6KJLoo8yPqsnHnDB3e/6d/WGpHJtqMOnixqng1PY2MTk8GhAtjBR5pwxUiPrDYCsEmOPQ127HsutHQ7aJhW3RVCKMK3FiSsmO8Iuhd5gmPZhjL3JId2UGqXsMTzUXY073Y1RNmeKYeoWzGknsdwOJStPSA5y4JlTm9NnJ/TyFLa6fmBUJ5QadExW2uPMxhRMdt0GCfk4mijj0EVGGs0QwWHJb0yAMAhScHd8FhKNiecYdVMcCOPNQUSO+zT3wCUqJ6nZYIhJglKUsBwnJhxhwXiLp4kPS1i10WggCMIjWcYftH353t4ei4uLvr8dWpXv7e0Ri8Veqn05fISAFA6HR1LnzxtPGox9Fi26F7UxhwG54O233yYcDj/zOZ4ESIdSJY+idD/q+KbV4/+3c5/z0Vnu1vdo2X0Wg0kuFj39GsXgnqdnsu10iBNFF3SOhxPkuzXCqubvLwG7bf9icCyU4mJpcN6oEuBUOPkAKy4eDLNXHwPSqVCa2/XBecv9NtVKh6hikpDiTBlB9nsVkpLOkgcEkoLBHS9YutC0+rjAvWYBmnBEjKCKsBAIsNstYuNwp+4HYXmC2ns6NMXSsCe1VN/BEBUkQWRGnyKoKBz0KgRk/3foeCDHsqfEpwoSa63xvXacPl3HZqlxKPGT5IiZpGY3qAlNum4fBYn19kTvSw2y51FqWFDT3O8Nztuw26w0d9FEiY7bIyRFyGlxoopB17Ep9AbK4EfNWe55BnsfNqQruf5nMKVnWPHQ3QOiyT5tptVjyCK07AbuxIzQrDHLqgdswlKYzQmLjL7gl1fK6TnW2itUhuCYkBMUrSKaGCGuxDFFHdeViMvT1K2Ba29Gz7HRGX9PI26Kqnew14Wa4N+EhKQINY9fVlZdID8s17WdBj23Q9Mu8FbkC4jC04HMhy2s+qhrfdD25R9FfOxo388Sh0DyMFHRwxLd/Pw8x44deyJ9/Hl7SJVKZWRq9cYbbzwXGMHjAcmr0v0oSvejbMx/9f4NliqDhUyXZF6PzlHv+ss6Gdmk4GHXTZsRrlcGO5zDrOntZJxXIzPcqe/RdSzORXPcqHhnewTuN8aLQaXfxnLhbrVMSjRJqAaOCrcmGHr2xD2fDWe5Vh1ce7dTQxdlDNPkXHCO7U6RstUkrgYodMf3O6OEuN/yU9PLbodyt8vGMHt5J75I1+mx3ytT6NXIaBHfwC0M+kveOBbMcr22SWOYRcWUAHmnx0lzkWq7wp5TwZr4zI4HprjZ8O7QDV/JL9+rEpIN7rX2kQSReWOarBpmv1ekaXVBcAlJBisTjD1B8n9/F5QUa8Ohzrrdwmk6rNDFwSUohclpcTTBIK2kyPcKILgsmlPc9WjsxeQwB27F/wwmBm5n9TR3W2scDLPNlJJg2yqTUecIyQYuFn3H9mU2GS3FqmezEiNO2QMUIgKFnn9zE5ajFK0iXafLbneXaW1mYJkxjLico2EJZJQzuPTpunXCUoC6RzE91E9RV8f/LaOyP6FaPrlO5NQF8r01Xgl+H08bH6b1xOPkhz5o+/JHWZMf/tvjXvM89uXwMaJ9P08cUrW9C/khffxw0PVJs0zwfBmS67rcv3+f73znOywsLDyTYvnD4lGAtL29zbe+9S2mpqYeS+l+2PF9x+bfLb8/+u+OPRDUuVUusmikeC0yTVTSuNvy7yrTup+aOx+I8a2DDS4VdnEtmVdDM+goeLHkXHSKYm+8mOmizK0hqB04XW53KoTkICcCU5wLT6MKEnNGlOXGeAFxXaj0/aBwKpxhuVHgUnmH/XaXE/o0mmISksf0ecX176uOqnHKHokZBZGbtV0uVbbZbrVIK0nm9QxTWnz0HhbNFBvtMagJwK5HhBRgxoiz3alwpbrFWq9Bwo0juBonzFkCw3kiLzsPYNZIYXkyipwW415r8Fxs12G1lWe1XeBeq4xIgHl9nmPmPFE5PLq3rBpnre0FT5em6H9OGSkyIq007DblVp33qyvcb1dwXJOsMgeuxpQ6hTzch6bUhK8/M6Nl2fMwA0UE9iYsMqLKwOZ7u5vndnOdju1yp7mL64ZJygvMa6ewHJGQFBvdvyb4SSGz2hx1e/ycNEFnq+snUUgTP6WwHOF+5z7L7VVW2puUehbL7X1kponKJ8koZ5EJEXATiMPvQ9RKYjGmzJtE2Pf0qMCl49Q4GXgbU3r6jeTH1XriZduXv/POO/zu7/4u/f6YLv/Vr36VkydPEovFRq/52te+5jvuee3L4WNC+37eONyl2LaNJEk0Gg2uXLmCoijPpEX3rD0krzDqm2++SSwWY3V19YWZet57cByHW7dusbe391Blh4cdP3n939y+y2573P+QEbhfH5RIVmqDxfe4GCSjhzjoNyi6HWKqwY2KP3OIqAZQAaBl92n0+9wtFpkLJInJMmutA4oT/aUFNcxtz4xQSNa4Udkb9bJMSWFaS6AKKivNPAhwIpTibn3c8xCAnYmyoCIpvF/aRkTgeGiKqKJyb6Lc1bb8clLHjCS3PCW/cq/NXmeDnmOT1uJMG2EMSWDNPRgt0KeCU9xqjDMbTZAH9+kJVZC56TErvBA5hoONhMJ2t4AiiKy3/Qt6TAmy67H0PmpmRwDVtLssN/YIDAkaQTfATCBBXDNo2t2R2vdRc4o1D9tOQWIf/3MyBXXE4Os4Pfq9Ppfag3uVkJk3prAcmVgvRlfv0nJaD/R9jhizPosMU9S5P6F0fjg50HG6bHR2OWYusNIc9M8MMcqMlsbqdUiQw1a6lK0Sluv/fKb1aVY9JIqoHGVrQhGiYfuln7JalrXOMiWrSMkqkpTTlMV9sEFAJiwlkYwwKc7g2D26Vh3FkmmrlVEmFxdylK0d/lTy/8azxIfZQwoEAg9dKz8M+/K/+Bf/Iv/wH/5DfvRHf5Sf/Mmf5MaNG/zLf/kv+Rf/4l+MzvEy7cvhIy7ZParM9LThdVp9lhLdZDyrjfnly5cxDMNHyHhRpQXv8YdfjkmV7qc9HgY/mp+/8x3fa16J57hcHC9kkiuQF20qzcECeSKSYToY5JsH90evSWlBbpT9AKVKg4Vro1lhA5iXAoREk7Nhg1u1PRzXZa/j7x2dDKd5v+RRR5BU/qCwge26JNQwC8Eosoiv9HM2nOWGh6GnCCL3hqoRDi536gecj05T7tgcC+YwFRnL6XJnAjj2O/6sZUGPc31Yrst36+C6HPQaQ7uLODb9B5h0x0M5rnls2UOCxn0POcAFqlZnxOKLyGHOhaaoW00c94Cm3SH4EJPBycXmZHBq1G9qCD02O2XutfP0XZvsUJUhIEkEJGOktXc0MM3tpt/McNvxZ709jyKHjYNgCVxrrw+QtAsL+ix9R2FRP0rTrnHQK9JxJh1uc76SX0KJPtCTqnlmpNpOB1GUWHeGn2EXptU5mjZMqScRBIdWv0KlX/GdI6HEqdnj+8+q0+x5TAZFRPITc1MhOTgyA3RxCcoh7ntKfjIKkiIhuDECbgjZluj3BUL2MbYLZdrxtae2kPhusS+PRCL81m/9Fn/1r/5VLly4QDKZ5Kd/+qd9lPKXaV8Of8h7SIfT0rdu3aJcLj9VJvGweNoe0iHoPWxm6kWJEYcZ0sMo3U97vPc9/MH+BuV2nwuxWe7U92n0exQ6flmXVxM5LhXHP+zNeoWdRg1V0DgXTXDQq5M2guQ9x00Z4QcAyhHgenmwGAQEhRN6hJLUp9IZ7IRlQfQpQgDMBeIcDJlZxV4Loy2z1a4xbcTIGkG22yWatn8nfSac40plvKAHJZXbtX1sdwBOAK9GcizqOdxuh4LQZMaMcdtDgBBdgdWJe8noYfK9BjWrw9XqDotmgu1OjWOBGTRZYKddZK/rB7WcHOJuf3yeaT3mo5RXrTZrrSI7ncrA6t3MMqtHOOiX2Wwf4AouGTXywMxTpe/PNOf1BEvDftJetwKuy/X6IBua0jIklAAiog+gZo2Mz6Y9q8Yf0OE76FV85ToVmTvN8YZhTpuia8OCfgybPqVe0aexB5CYYOzN6Dm2Op6+oiCy0/W/P13SuedRKV8wZtjqbJNQcoTlIAoiPaePKYZo2nUE4UHG3pw+z4ZnFskQTHY8rL9BTNDD9XnWh0aFHdoEpDAdsc6fjv4lct3cyIQPGEn4xONxDMN4YNPwYfeQHhYfhn05wKuvvsrv/d7vPfY1L8u+HP6QA1Kj0cB1Xdrt9jMpPEzGk8DEtm2WlpbI5/OPpY6/qBZdpVJhe3v7uWjjk9nml25fZLdVZ7dVRxMlPpM5ylrtYJyBuLDb8mcxZ2MZ3i8MFr/3D3YIyioGBuej09yu7dFxbLJGiJ2WlwYdZtOTgTQcm4oI9+t1FoNJkoaBLMJ3fNmRwq2JQdikFmCrXWN7+L8jgTi2Ba+GZlhvF6n02+xPZF0nQikuVcY756Qa4EZ1b9RLEYFjAZNzwVm2OyXKVpOz4SmueSjkOiK3q/5ZF1NS6Tk2S0MCxqlgho7T51wwRrlfI9+tsWX5S2QxxWS7M16cjwcyI4Byga1WiWq/TaXfwpRMFow4SdXEcqHQqyIIcMTMsOoxIhRc2OpOzPuoYfZ6g2vvdMsYkjYioOS0NCk1hO1AWApSswfPK6oEfYB0xJhi1VPykxDZ6PifgSLI3PNkP8eMaUr9CtPqIqoo0ne6vn4TgDxhkbFozDxgkbE+obHnug4ODgf9Igf9IseMI6wMZ6tMMc6UksJ2BGbUE3TcJlWrQMfxg/aUNsV9r0WGnGC35y/51Sc+r7SWodh3OR9/B1mQRxYS9XqdUqlEPp9neXkZTdNGAqjxeBxFUUYtgg86vtvM+eAPccnuUIRVkqSRjtLzxuN6SIfK45IkPRb0XmSWqd/vs7+/T6fTeaRK95PCC4jXS/t8Kz/+4Xcdm7VigfVuk3kzRjJo4uJyuTTevQoubDQqvnOeiqb5zsFgUTJlhbdiM1R7bV9ZLaSo4CHtnQwnuVMbZA5rjTJr9TJzgSinAlPIEtyu73M6kuV9D+08phjcnAAoQ1K4MfybiMDbyUW6Tp96v0PD7iEhsNb0L9azZpSCR90howR5zwOER8w0qqiRUkMcDJXMT0WmfJJFIRSWJujhlutwv1Xi/nAdvBCdp9FuYAl99tw6hqQ8wNibrPqfDk1xY2he2LJ7bLbK3GsU6LkWKTVOTg8TkmVMsUJr6EA75YTY9vROAqLGcst/b6Jn977brRBTgiMPqpSaJKdFcFyXpBLloDfonxw61x7GMWOKZQ9QmGiDHpXnTfScHhWrQcUagNypwAL7nTwpNUNMCWKIEg2rjoyMhQW4D1hkTOtZnytuSomz2fWX/MrD4VqAltNCFCXuemw1MkqaUr9NQj6KLirg2vQcGxkNazhMFVWiVD2yQFl1hr3e+DMWETno7fCJyPf5QFQQhJE23MLCArZtU6lUKJVK3L9/n5s3bxIKhXBdl0Ag8FCH5pcZfwRIfwjCsixu3bpFPp/n/Pnz3Llz54UyE3h0hrS3t8eNGzeYnp7m5MmTHwh1/LAnJQjCSIb+ecILSD9/+33fv03JOuvdwUKy3qqx3qpxJpbiQmyGg26DjVaFBdlkzVOakwWRe7Xxgt+y+tiuy61SkblgjIwZoNxrcqvuL38pEyZ352IZbpT3GbpVEFE0cCSOBVMs1weK14vBOJfK44Upowd9AOXgUuy2uFsvIAkiJ0NZkrrBZQ+QmKLCnfoklVhjxyOkqkgS3xgqmc8aCdJ6gI7d8wHskUiaq1VP1oXGStOfCex0qiNTQUWQOB+aoeV02e+WKfTr5LQId5t+gJ0sxR0NpLk6VCk/6NURgGu1wf/PGhliikGrVkGV5JGI62Igw436eOefViK+GSiAqjW+zkGvRk6LjnyfwnKYo0YGW7CZ1jLsdgs4WFRtf+Y5H8z5rN7jboCtiYHbg14ZF5d8r0y+V+ZUYIGVVhERmbSWYkqL0qdLRpEo9PLYgs3exDmiSpiix1ZiTpthwzNgKyGx05kw8pMN1jr7I3HYeX2e9fY2IGA4UZJqnK6jkFNP0nfaNJ0y0kTmNqMvsNO9z1vhz/C4kCSJRCJBIpEABsP85XKZ1dVVCoUCv/u7v+sr7z2KgPC88UeA9DEPL4vuMFtZWVl5KTbmXqM/x3G4c+cO29vbnDt37qk49c+TIR1meYuLi8iyTLFYfPJBjwhBEHAch/V6ma9u+V0yA7IK/XEaczKSZKk8XmSPBONovT6qINIbUpRfjWe5WBgvdoYkc7s6OGajUWWjUeW4HGROCOFgs02bKTPEjYp/IZ70M1oMJXhvmL2l9RBzgTC13uTQZJi99niRXAjERuw723W4Wc0z14/S7sKJcA5FEtAlgYue8l1IUFieUAIXPFv+zXaFqGpwvXpASgsza0bo2j3uNfzgkw3FKXgypikMdjrj8o/rutyo7VIdPt+sHmdOTxAQDe63D7CwfYoQMMj4NibuLatHyPfqAwuPdglZSLFKE9mSmDPSRBUNy7ZHHkgAKT1M3qNUsGikWfOwCUVBYKsz3jDUrDY91+bmUOZIERRy/ShBPYypByn0i7TtDpsTrMV0ME6lOf480naYvIfVpyCzPmTwOTjsdYuEZYOV0VCuzDF5DlkSSSjZwTCqVWNjQoF8Mq1cNGZZ9VhkBCZccQH67pis0RY7SKLEXU8WFpHCbNoVwvIcAclAQkBE5vXgHyMkR3mW0DSNbDbLwcEB4XCYRCIxspBYXV31OcTG43E0TXvySR8TzWbzu8qcD/4QAdLh4j3JonsZNubeDKnT6XDlyhVs2+add9556jmAZ8mQHkbp3tzcfGGWnuu6/Ltbl4lJATKqxmqrTFDVWWn7G/LKRP1bFSVudSuEFJVX4kny7Rr7bT8B4mwszfsFb+9FYMNu03UGzy2umRwNpHAdcSQVdCQY507Vv8B77S3ynSbTRoTb5TLzgQQpw6DQq7NUnch0FP8P+1Q4xe1hWfBmNY8IZIwQJ80csiSw2jogJwa442FvTRmRkSLEYdSHIHLQbXLQbfJ6dJqeLXEqOIOAQ8VqcmtCPdw0A9DyDBFjsu7Jwhr9Lu+VBpRyVZQ5EsiQkAM01C573UGv6HRoipv1MXiaosrdieto4uCnabkOq60DzoSmWKrvoggK82aWsKzSsbpIiNjDBr4q+n/OAxFYbxap+TKqvmvTFRyuN8aveT10jJ7bI6sKNO0mLbvJ6sSQrhEMgOc7legH2VPGzzoiBR44pkmbfc+820lzgXavQFoJo0sKMu5AH88VBvVjXOoTVO8pPcs9Dz08qSR9GnvgUnMeVEdfbd+jPfzeZdUse+09/sacX3/tWcJxHGRZJhgMEgwGfQ6xpVJpRH4KBAI+h9hn7Ts1m82HOmX/lxwfeQ/pSeElFDyMRfcyXGMPs5tCocDVq1efmeF2eI6nAZRHUbpfhuJ4sdPm/7i3RNe2ybebKILImXSWrVaV5dpATmY2EOZGyb/4Hbbx6v0e7+d3OBfL0LEt3ohPs1TZo+vYbDT9P/STkRRXK/4F/vd2N+g7DkdCSeKGziTT6XQkzS0v2LiMCBLrzQrrzQoX4lOoaARVhdVmAU2SHugvCRNb6XPRLNcqe6OZq6Ck0pHgpJZk26rRsHuk1IBvpulYMMlKwz/ztN2u0rB6XBsqULwRnUHHJKDI7HbLGKLMSstfouypIp7ZSzKuzr3hothzbMq9NnfqeVwgqUaY0sNogkJA0mja3eG9ZEYmgwBJNfSASnlzqCLRd21WmnnOh2dYquVRBZVZM05c1anbLWQkLGzApWX7FTmOmBluNMYlv6QSYh/vou9y0Kuy4yFSnAvNU7NaRGQdFwvXtVhrbftME+2A4HsGga5MXRl/9nE3xL7tzwjzvdJET2qe7U4dRTBIqTFSahTL7ZJTdapWmbbdYr/n/x6E5RAFD9Mx2o9SETwCvILMbtdf8tNFgxltlnl9geeNh9G+vQ6xR48epd/vUy6XKZVK3L17l263SyQSGWVPoVDoievfd5tbLHzMM6SHlegm42UBUqPR4PLly8/FcDs8x5Pu43GA9zLmmP7PvTW6nnsIqRq/vzMAiYVwnKShgwibzfHudjEU5U7NXyrs2jYr1cECYsoK35OeY6NVZd9tIgggCwKbbf/u9Wg4MSJArNbLNK0glW6bc9EpEF1uV/aZsF/iXDTDdQ+oyYLAaqNEuTdYSCVB5NXUFDWtw0rjgLZjMWNEuFXzZ131CXWH4+EEl8u70BuIsJ6LTCG4ElHZoDJUBNcmsonJmSdVkLhbL/hMBD8ZnyWqhGnabdaaB8ypYTY8ygwiAoUJzbaQLXG4jBZ6TcKyzrXaLgIwb6aJq8aARuzJdKb16Mg+HmDBSHDfoyIhAjtDFYmea3GvmScgzXK7VkAWJGaNFGktRN1uYIgqbac3ANwJxl5ajVDwCMcuGhmfpp6IwFa7MLL3ADgTnEVww2TVKAFZQZNEtjq7oz6cLEjUtI5vL6Lagk8T5gFXXEFhY9gr6rsWO90DDFHnnscC41TgBB2nzYw2hYhD3+lyMEFDFybIGvP6LPc7HkFXMcBmZ4P/Jvt/eaFez9PQvhVFIZ1Oj+Z+Wq3WCKA2NgabAm9572HGna1W648A6eMSjyrRTcaLuMbCwAZjfX2dbrfLO++889w128dlOI9T6T6MFwWkYr3GbxT8NfmjkTjf2R/80O/XKtS7BpbjcCE2TaHXZL1ZIaKMVRgAjkcSLFfGP/Rmv89atcL9RpWMYjIbiyKLIu95rqUgcLviB4nZQJj9doNrw2zsZDiJhsbRYJKVYT+oZftLra/EMlwujUFBE0XeL+7SsvpoosSZSI6YrpNvN+kO7RyOBxMsT1ise9UpbNdFFmTeL+wgAEdDaZKawWbHvzhPWrmfCWe57Jl5iioGF8vb9Ic9NlPUCbgmp4MhtjpF6laHM+EcNzyUckOQ2ZwoO9Ef3LcL3G+VCMg5btZ20USVxUCcoKRQ7/uZjKY84ccUzHHHoyKhiworQxKF5TqstQoYkspS/QABmNLTzJsxGnYbXIFSv44pPahwMVnyOxGc5nbDX/JbaQ6MGQ/VJY4Hsux1ukTkCGktQkIJUrNrVPoVqladkGxQwF8yrjVqeA2Ej5hT3PXYw0fkkA+wYKCxt9Md3+9Jc4H97j5BKUpMCROWTCqdAll5hoZbo25VaU48+5yWY6+3x+uhN3iReJ7BWNM0MU2T6elpHMcZ0cv39va4e/cuuq6PynvRaBRVVb8rSQ0fqZbdw3Yptm1z/fr1kZX5k7ToXiRDKpfL/MEf/AGyLGOa5gs1EB+VIfX7fS5dusTW1hZvv/32I7Ov5wUk13VZWVnh/7u+QttzvCnJ3Cr5y0tHIjFqvS4X93dZL9c4H84huQKqR/XakPxDiMdDUe43BiWo/X6H9/N77DZbvBLJcTaaQXAF5iWTen9cswkpKjfK/nKeqai8f7DDcrlMVo3wbnyOStPfpzro+JlopyNpWtYAKLqOzVazzjf2tnBtiXPBHOfCWXTJv4iei2R8KhGKIHKvPgAfF1ipl+jZLtuNNjk5wfnQLOfD06x4QM11Ya/jX8yOBOMjMAIIiApX2gWulPcpti2mlBS6oDNnjPXxToazI+AESMgGaxOqBLVhr67rWNyp57Fdgdu1EjoBMv0w5wKzlIdU+8PoO37wPB7M0vIMEceVALeHRAwX2O6U2e3UuVbdZafVwSTKafMI82qOmGUiIpJQgtybUJFoWv6S36KZ8Vmsp9QIK0MaetVqsdzcZb1dZKm+z06ni0iEeW2BhJVmWpoiJkdJy3EKkhegXHYnlDWyWtJHTZ/WUj4wEoDCMDtq2C02O3v0XZtdpcpq54B8t0taPkrb1skoJ5jRTjGlHKHt9Hk38imUiUHbZ40XHYwVRZFIJMLi4iIXLlzg05/+NMePH0cQBFZXV/mbf/Nv8slPfnLkOO3VkoOXY1++sbHBF77wBUzTJJ1O8z/8D/+Drxf/9a9/HUEQHvjfpK3Ev/7X/5qFhQV0Xeftt9/m29/+9nM/F/iYias2Gg2++c1v0mq1+NSnPvVUqgvPK4y6trbG+++/P1JdeBnU8clz1Go1vvnNbwIDiY3HKYE/DyAdgt361hZfa9aIuhqfSMwQVw3OxjM0PCARkBWWipODjBIX9/ZQHYUjmLwSTXO96N81d9r+RelcPM16vcK14j43CgfEZBPREZg2x+/tVDRFx5P9JDTDd97dVoOtUolCr8+0FOKYFGJR0NlqectfsD4xF3UkFMNyHTq2xbXyPoVWi+VKhXOhHGdDWVRB9F0X4GwkQ8XDMAzJKktDG43NVpX3i7t0LYiJYV4NzXIikOaVSJZdDyB5JYtG70kal49dQBIl/qCwwXKthiEEOW3OILgSYY8I7Gwg4SsqTSthNvv+7GFrOFtVt7ps0sJ2RNYbdYJCmJPGLG+EF6lbPR9ATfoxzRjx0XAwDDyc1lrjz77cb7LczHOtvsuu28eyNGa0KY6Zixw1ZglLAeb0FJsdf49td7Lkp/lHFBaMjO81LbvDndYOa5S50ymw2W5hyglSyjSLxlGOGIuc0Bdpeax1RVfgftNPiAjI/nLWojEz8pWCQclvc4IeLokSu90DVlob3Grcx0LmXnOfd6J/jBeNly0dJMsyyWSSEydO8MlPfpKf/Mmf5C/9pb9Ep9Phn//zf048HudP/+k/za/8yq8AjOzLL168yPvvv88f/+N/nB/4gR/g5s2bwED5+9/9u3/HrVu3+M3f/E1c1+Vzn/vcaJ20bZsvfOEL9Ho9vvGNb/DlL3+ZX/zFX+Snf/qnH7i3O3fusLu7O/qfV3roK1/5Cn/7b/9t/sE/+AdcunSJ1157jc9//vPk8/kHzvO0IbgvIib3gmHb9giVn7ZENxn37t2j2Wzy6quvPtXr+/0+N27coFqtcv78eaLRKOVymatXr/K93/u9z/tWHrgPL6X7aazZK5UKly9f5vu+7+lk8L2WFOshg7/3B78z+jddkngllaFidbhbKYIAn0hP85398Q89rGj0bNu3gL+RylLr9whrKjdKe0QkhfyEUOnJaJI7lfFC9UoszfXS4At4LBInoqnkuy22WuNF8q3k9Ki/BBATFCpu37c4nwzFBz9012G9V2da0lnzDFZqooQqSb5M7PV4zjfceyKUQJMVBMHhTj1P33WYMSM+oLsQn+Jiabx4pbQAxW7Lt4CfjaQRBQFJhPvtIkeCca56rDZCskbH7vsyprPhDDdrY9A9F8lyY2ijMW9GSesmPbfPcmN/1Cs6F57ylfgWlagvg5JdAVWSaXkyolfCU1yv7RBTTGaMCGFVYatdGDH4VEFCEeURYQLgbGjax+o7Gcxyt+kpjQoykij6sqzXI3P0nD6aJNK0WwQkhdsexp4uKAjiQLh19PwD09z1gMnpwAx3PH5MAVHHpu/Lso6aU6y2dkipUWJKgCAylV6VutOgKbQwULHEPo6nKTWv53wAdMJcYMVDD49IIWp2w5dlzehpslqaH5v9Ii8av/u7v8sbb7zxgZbTXNfl5MmTfOUrXyESifDVr36VSCTCf//f//cPfX08Hud//V//V370R3/0gX+7du0ar732GisrKxw9epT/9J/+E9///d/Pzs7OyFzv537u5/jJn/xJDg4OUFWVr3/963zf930f5XKZaDT60Gu+/fbbvPXWW/yrf/WvgEHmODs7y1//63+dv/t3/+5zve+PnGX3JBbdk+JZMqRarcaVK1cwTZN33313JIz6Mpl6z6rS7T3+aTOkvb09rl+/PrJj/4f/n1/x/fuZRIrv7A1+sPOhKKmAwXbDvxM/GUv6AMoURG4UD+gNadyaIHI6lSPYrrFaK4MAR8NxHxjh4gOIlWqJC8kp9mpNXo3nsAWH9UbJN/MEMB+NUfaU9BYCUe54hnAVQSQWiiD3VVbbVWzBZU42WfY0+kOyOvJ5OgxNUkY9K0WQeD2UwpIlylKbpt0fqDs0yr5j5gIRn+X6fCDKzap3ZghcQ+J8eIaDXp2tdpXjoaR/kFcLslTzZ5YtD5CvtyrEVZOrlQN0UeVIME5YkSn2G75ekaQq4KnOTGOy7ozvLSxq3KoPgKTcb1HutzgeTLPebBFRQswYURKaznanNPRWgqhsPMDYsycM9k4Es1yve5UzTK7XNnwgfcRMk5DTxBQTUXAxZYnr9TEIxJUQK00/Bbs5Yae+GPBr7KWUCPdag2PyvQr5XplpPcHuUB9PFUymtBytfgvb6mPRQxZho73jYfm5PnUHGPgxVT3yVlk1xU53j7+Y+7O8jPgwxVXD4TCvvfYar7322iPv5Vnty7/5zW/yyiuv+JxeP//5z/PjP/7j3Lx502ecev78ebrdLufOneNnfuZn+NSnPgUMeu8XL17kp37qp0avFUWRz372s6Oq0PPERwpIjUaD73znO49l0T0pnmYOyXVdtre3uXXrFkeOHOHIkSMvVRj18Bz9fp/33nsP13V59913H8qceVQ8DSA5jsPy8jKbm5u89tprpNNp/vPmfe6W/eWkg/Y4s9ioV0kZJuVGhwvJKYrdFjutmo+4AJCTNe71x/M1YU3nGzvbWK7DQihGKmDiCP77OxVLcrvsB6h8u0nfcbhaGCzQn8xM03dsdutldqw2EVXjVtV/7Yjq/9wXQzEuDsVaTUnleCgKroPYbeAIg0VyWja47RlQTWkBX9+q7zqU+j1WazVkQeRkJEPK8FtrmJLMrYk5qaii45XpPBFO+bKwnB5BcCQW5AhbVh0LhykjzH533Lc6EoizOiFrtDOc2+k4Frdqed6ITbNSqxFTQ8yZUUxJZG2CUl7D3ztIo7Pi8XnKqSGWG4P3XO13qPZ3mTYi7HSqmJLBrB4jowfZ71bY7pTouxbTeox7LT+QH/T8/bI5I8H1+hgIZ/Q4q8NjDvX6UmqYnqUxpceIKDohWWFbOCDfLeMKLnN6iq3O+NkOSn7+zz2lRTnwDPYuGNmBpt4wLNdiyy5Qc5qj5sKinMWyegRtDR2ZkKJh2X1CQoiaU0cWJLYnBF1DsoEq5jhuHuFFw3EcXNf9wLXsXNd9LKnhRezLH2U7fvhvALlcjp/7uZ/jzTffpNvt8qUvfYnv/d7v5b333uONN96gUChg2/ZDzzPZr3qW+MgzpEwmw9GjR597x/E0wqg3b96kUCg8Uhj1sP/zMOfZp41DWuf09PQzzzDBkwGp1+tx9epVOp0On/zkJ0df1N9YXUFCwB7uZs8l09wo+Gd99poN2pbFxb3BD/XTM3M0+31u9vfpOjaGJLM94ZY6H45xMBTgXK9X6To25Xab8/EcfcFmqZxHmrAAP5dIc8PTpxKBe9USB52hCnUwyolYnOuVfQ6GMkVJzRhIC3lC8XwXWnYfG4EblSJBWeNYJEa732Gv6ydEJCWNPGMgzso6q0MQsFyHpcoB8/0opXaPo+EkUVVDk0S+5dG6i6sGN6qPr3+n9SDfHgrQKoLEuUgOwRVJa0HyQ1AyZb+J4mQ5TxUklodMw3KvTbnX5rVIjr12lyk9TtYIoosCNypbI/UCRRDJi10fnVrz4xXHAinuDXtFLbvPvUaB3U6NmtVBEkRmjTRTeoSgbLLfKVO1W+Tc4EgGCQaSUffb/mcQVgyfXuGJQI67wwHb9XYBtTMopzbtLoqgkdOjJJUIphSgYTfZaxdYNDOseYBCExRWJ3T5Jll+xwPTLHtKfqaosW0X6GHRlQab0FkSIzq75OockTM4oktKU3AFm57dZae7z5/Lfv9LkfU5/I1+0BlSp9PBcZxHAtIHbV9+8uRJTp48Ofrvd999l3v37vEv/sW/4N//+3//4m/wEfGRAlIwGOT48eMvdI7HAVKz2eTy5ctPNOzz+iodutA+bRxSujc2NtB1/bl9QA6VFh4m2FitVrl8+TKRSIR33nlndI9X9vf4f9+5TVw3mA0GWK2X6U08i1dTaa4d+AFqpVRmt9kgoCici2fodVtcb1ZGL3kYAWImEGav0eDqwWBhPRNPExAUckZoRLPu2xMZVDjOkqcUt9ds0Oj2qPQ6nIylMBUZWRIoePoB02aImxMU8sM+V8PqcaW4z/l4FrvV5XwkRdvustWqcK/lL0kGJ1ULPKKvK7USApDSA+SUKFkzQMVqE1d1LpbH9zJjhLk9MfPkJUj0XQdJEPnOUMEiZ0SZM8M07S6qINEbMuwOy6CHcSaS8dloxBRjBFg7nRo7nRongklqtsC8liSpmQRk2VdWC8s62xPipe1m0ye/cyqU4caQbWe7DqVei+12lf7wvhJKBM2ROBOZo9ZvstMtcyqYG/kxAYQlg7sTwrHOxMDziVBuJEfUd21q/Tbf6ZZGpUHBlXEcjUV9EUUQaLttwrLOzYbXTj3EvQl1h7YzsUkyctxq3h/9d1IJs9MfZ122YFNxGhR7tdGg7hE5S8dVeTN0npcRh4D0QWdIzSED9VGA9CL25dls9gE23KQ1+cPiE5/4BL//+78PQDKZRJKkl2pfDh8zlt3zxOOEUb/5zW+STCZ56623HrszOPxyPS/LbWtri+PHj6Moz08nPQShyXvY2tri29/+NnNzc5w/f94HmF+6egmAUqfN1UKBsCMTQOFUNDmgfrnQ7vvLma+ls+wOdcma/T6X9vbYqrfJuTqvRTODeZ/4mG4NEFY1rhf8XzxdVvjO3i57tSZTrs6nkjNsNvxsr6JH/wzg1WSGynDo9U65yJ1ikTuFMudCGV6NZlAFkbThHwQ8Goqx4gE1XCh22tT6XS4X9rhdLnMmnONMJMOZcAoRgaikstrzX5uJ53ouliHfabLVqvF+YZfNWp3dRovXQtOcDqZRBZGk7r+XE6Ek6x7gFhgw9Q5jt12n77rcKBewLYnjRoa3o/O0bcvHistP2GgsBuM+m/MZI8zdoYrEeqvCxfI295tVql2bKTXJudAsZ0NTqB4h25weZkfwA9RuzV82PBJIjsAIBoPId9wqlyvb3GtWsGyJvi1xypznuDlNXA4ybyaxPMfktOho5mkQLqXJkp+Z8PWpoq7OrdYON+vbXKltcadeYKNVRxeizGizHDePsGhMkVTiiO7gdzCjJ9nqTBgtTng6pdWYj7iQcEIU8TM1D6wyR1oZLn7rfZaWltjb2/PpVj5r2LY9okB/kNFoNBBF8anL/s9iX/7OO+9w/fp1Hxvuq1/9KuFw2Ff2m4wrV66MpIxUVeXChQs++3LHcfja17723Pbl8DEejH3amByM9QqjTjbuHhXeDOlpo1arcfnyZYLBIO+++y6VSuWFDfpgDEhecsTDSo2rlTJfu7/q+5sqilzNDxaL+XCEuUiEiweeRrMLjYkf48lQmDv1wY94L39ARNWQHJEjoSirtQoIcDKaGA3YAsR1g2segNq1eqR6Fk4PzsezVFp1bNdm05NN4ML+BECdjqe4eLDLjdIgC8kaAVxL4HQ4xZ1aAQcXU/aD/JlYkiVPz0wEVusVCsMZpqCs8Vo8y1a1yHqviYVDSta50/AvZo0JQdez0TSXirsjFYu0btLrubwWmWKzVaHUb/lKiQDHtAjLnnKXLsrcHWZhPcfmdq3Aa9Es67U6cTXIXCBCUFFYqj/cBfcwklqQLY9W3IlgiuWh4vj9VpnNVoWwolPp28yaCZKaSUhWaNk9akMlimOBlE+lXACWq/5MJ6kEyHuUGubNBNdq4yxFEgQkocOiMY0hyXScLkFJZbdbGT+DQIZ7Hg8nWRDZmLBtN12FsqfmdzyQG80vlftNFCRUSaFpd5AElYwaIS7HMcUwfbdHzaqRUIKseOzTVWEs6HoY2oSq9xFzhrX2Fv/X1/4calscmfAtLS0RDAZJJBIjhf2nLcEdVjA+aEA6lA36IOzLP/e5z3HmzBn+2//2v+Wf/tN/yt7eHn//7/99/upf/asjQdif/dmfZXFxkbNnz9LpdPjSl77E7/zO7/Bbv/Vbo/v423/7b/PFL36RN998k0984hP87M/+LM1mk//uv/vvnvt9f+Q9pBcNb4bk1Yl79913n8r6+/A+noXYcEjp9hIkXoYWHQy+8IcCr47jPNLC/BeuXvbRpnNmgPueQdPNWo2IaiD0Rd5MTVPsNtEUmdteRXEXOhOfwZFYjPe2Bz/8xUiUZMBkpzEhExSJ+QAqKkrcKB7guO6opHchnSMrCux3Gmw0q7wy0duSEFivT8zPBMO8nx8sMmFV50w8QcXqDLK94W06rv9+X4lnuOrR5rMcm4uFPRr9HpoociaaJqprNArbtIe25NOywZon0xmYFfrf42wgwkWPm+5rsRwqIouBOGuNEgjQdv3Z55lImkuekp+3J1XqtSn12pwMJym1+8wHEiR1A1OWeb887pOEZO0Bxp4i+RfLs5Es16qDe9toVSh1W4P5LMciNyQyRFSVWr/LfreGIMDZUG5UvgPQXJHlCXLDpHXI6VCOm/Xx+wlIKpbrEFFipLQgmiiiSyK6qI7o3yeDU9xqjN9PUNLZcyey1QmJn+PBKZaGx9iuQ9PucLG66ssaA0KUhJQlLBvIooApyWx39mnbPRBcQoLBvkdxBAZK4G+ET5PRE6Az0pnr9XqUSiVKpRI3b97EsiyfjI9pmo9cmz5Mc75HAdKL2pdLksSv/dqv8eM//uMjAekvfvGL/KN/9I9G1+j1evydv/N32N7exjRNXn31VX77t3/bN5by5//8n+fg4ICf/umfHrGKf+M3fuOpkoBHxR/6DOkQSA4ODrh27dpzCaPC02nRPS5reRladDBQj7h9+zaJRIKzZ88+9H3sNxqslyvIgoA1rAWlDZM9DyDNhsLcGPaOLu0OFqK3p6Y4aYa412pg4XImmeRWwc+SO2iOyz73q1UShkmh3ub1ZJaOY7Fer7BU8u+A45JCxSPkORsKc3F/vPgtRmLEZYO4ZlDqDnbwr6QyXDnwaMeJIsuVcRZT63Xp2w63CyXiWoCFSARBcLlY9Dub1iZ07M7EU1wqDM7bdRzu16u0yxaOC6ejaXRZRhBdtktjRuG8bLDusbsYqDv46eGSKPKdg8F7iqgGi2qANhYBSR1Zre9MqKovBGNcKvl7Uod9rEMx2VkzQr8vciSYIKxqGLLoMxXM6iFuTQBUre+nUx8Ppbg8tN7Y7dQHG4NKAxeIKSGmjBCGaDBvJNlql7BxOBXJcs0zmxRG5Xbdn0E1JpQajgXSXK1tke/WyXfrZNQQB8PB3owWJ6GYqILOgp7loF+haXdYNNJc9wi6ptUIKy3/dSp9P2DNGUlueo7JaTGWW35KeVaPsd9tIgsaKTVCRgxQ7zQwQwYtu4kiCGx29vhLU9/PZKiqSjabJZvNjthspVKJYrHIvXv3UBSFeDxOIpEgFov5SvEfJuX7UTp2L8O+fH5+/rGv+4mf+Al+4id+4onn+Wt/7a/x1/7aX3vi6542PnJAehHXWBiTAa5cucKZM2eYnp5+rvM8KcOZzL4ma7svSh0/ZPhdv36dU6dOMTs7+8hd2r+/do2L27tEdZ1jiRjFboulCS+lpBlgszbe9c+EQry3M/hRBxWFk8kkEyQ5TsXj3C5N0JXrdXq2zZVh8/Kd6Rks12G9UWW/3SCkqGxOlL9SRoDN2nhxlhD43c0NREHgTDyNKou0en6K2Ll4mksegArKCktD6aNSt00p3+Z8MkNSDjAfDlPpd5FEuDvRJ9mdKAsej8R5fwgkS+UCWSNAodPiaChJVFfZbdfRFBVqY4CaFTVWPTYZIVnlpodSXu11aUo6y+0aIgJHwkmmzRBbncporkgVRFbqE5+JHvCV4k6GktwZsu2W60UkBCKqjuwozJkRrFaLrBkj36kPLRngaDDhK/GJwGar4rvOlBEZ0dDL/TZx1eQPCgMyuyoqzJsxRFSOqGn2umVaQp+5QIIbHmuKrGCw7vFsEoCtjv86OSM8AqT9bo2ApLFUuj/695Qao2NDth8hEApQtuuktTAHnuHfRSPDmlfQdcLDCSChBNn3KEAcMbOstQffFcu1yfcqNIQGTbocipefDs4xr4U5E3w81VsQBJ+NhG3bIxuJtbU1bty4QTgcHmVPH4cM6b/k+MgB6UWi2+1y7do1AN58801isdhzn+txgHKo0p3NZjl9+vRDd0gvkiEdUtNd1+Xs2bOPVRuvdbt85cYNACqdDu9v7/JWbgozolBu1Njud0kYBtcn5DtUD7mh0e9TbLW5X6lwPJ4gpKlcO9ijb00w9NIZruW96s+wUi5x0BpkUafiSYKuw5XeOJuIazrXDvw7+uBw/sFxXZaKB5yOJ9mo1HktnqWPzZ1q4QEgORlLcvFgvEDGdZ0bxTyW6476RRdSOS5Ep6jZHZZrJV6Jp7le9pYFYaXqz3SmA2H22s0BUaIGC8EIjY7FG7Fpqv029+olepqMh0FO2pW551EkSGsBVoZWFg4uK7USIgL3alUiqsFCMEpM07ju6dlEFO0Bnyd54nt0Nprh2nBO6k69iIbAdmF/kHWYUQxFRhMFVt0S7hCgzkyolBui/IBzrrcPd+jT9J7HQn7WSGEjcy44R91qsd0pE9GD7HfGoDwnhln3KJsbosLypIfThK5gSgtxvT60Qm80MUWVtlUlp0wRUlQEHHRJRhXkkXrDgx5O6sTA7aBP5Y0TgSnuNP2KECvNHX509r965gVdkqQR+Bw7doxutzsq712/fn2UIW1tbY3Kex9EfDcKq8IfYkAqlUpcvXp1BELPMoT6sHgYID2NSrf3+OeZZWq1Wly5cgVRFFFV9Ylfwv9w8yZNj9hiQFG4eXBAa/i32XCE48kY39rZxhoCZFiSuN/1l1+iw+blyjAjmtU0gpLKQjjK/VoFgOYEAeLVdJYr+fHit1IqYkgykiNwLpmi7dqEVc3XX8oGglwv+BdIcag5d3VYUjyfyiKKAiFZ4261iCQKo3s4jMVQjIsdj3OrGeSi514SeoCwpHMilGC5NliwTwSiLHn08IKy8oBqRETTuVrcZ3vYQ3otnkUURGLRACv1Aj3bpiw54PlqRBzwvqOFYJS7QwuPaq/L1dI+02aIYqvHfDBOyjAIKDLvFceLZs4I+RQh4MHy44xocG9I7b5ZPRjJHOmSzkIwOqDNCyAijqjYp8Jpn0p5QjUfKPl1HX/vK6mZXKl4lSdCNGyBM4E5XByKvRq2i28GalYKseKxH48rAe5MlPy8skIAx4JprtW2KA/t3JNqkEpvUFpMaXESagBd0DlmzFCzmhz0KhwNZLlZH48qJ9QQKxPlu6bd9l1n3sxwv73P9ySeTk7scaFpGrlcjlwuh+u63L9/n93dXQ4ODlheXkbTtBE5IhaLPfPYyKOi0Wh811lPwMcAkJ61ZHf4pVhZWeHEiRPMzc2Rz+df2DV2sofU7/e5du0ajUaDt99++7HCqIfHw7MpAR9mXrlcjlOnTvF7v/d7j82yupbFl69c8f3tdDLJ+zvjhbrSbvPexkAd+lQgTKnXYSoW5YpnFikTCHBtIoOSBZFrB4NSyZFojJlwiIt5P4up0vX/8I+HwtweMvSuHhxgSDLZQJBPpKfZalbZaTaYCYbZ82Q/c6EINwt+UGj0e6xUBplMQg/wSirFRrNCsdMGYaDNd2dCWSJrhtjx9MwiqsYf7Ax21lFNJyOryK7o8xk6GU36bNmTmsHNkv859B1nJEkkCyLvZGZpOxZKq8Z+p4EpyWxNzMfIff9G5nQ0xa3hLNV6o8J2s0pI0XAtiRPhJAFFQZcldlr1kQTOsWDCpzguAAeuf0GfNQcyRy27z1L1gMVAjLVWCU1UOBqMEpQVcAdsv84QdBbMGJcq43Rv3oxNGBO67HX8va8pI8rlyhY0x8fs9erMG1lCikK716XrdH2yR0nBoMT485gz4g8oT+x2JkgsenREGc93axii4pM5UtCodB0W9QVUUcRy+4RkhXJvXMKc19NseujhhyKwn02+jiG9mIX4ZAiCgKqqmKbJ+fPnsW175HF079492u22r7wXDoefu+T23WjOBx8DQHqW6Pf7XL9+nVqtxltvvTUS/XtZ0j+HYDBJ6X6a+SIvdfxJgHSoNn7v3j1f3+tJZb//dGeZ+VCEaqeD5boDQ7uyvyR1ygNQd6o1gopCt2vzRirLjWKenuMwGwqz3xgvHrlgkPv1MWisVSoEFRWn5/JGOkfT7iGKAreKE9I2ExuJs6k0F3d3uF+tAPBKKo3oCoQVldpQ8y5pmGx4+ktHI7ERGMFgxmi1UmGjXiNrhpgOh9BkkW/sjVULworGzQliRVAZqyNUul1iosKdSoWArHAsGsPBZq/lLwvOh6IUPAA1Ewiz5NHqs1yHzWaD+/XB+5k2IxyPxtnr1FmpFrEFl5iqs9b1n7fT9gP3uViGK0Ofp1uVAkFZpe/YhORBeU+WBGRJ9C3wp0NJlurje9FFmTt1/3sOqSq0htYVtQLnImlulPJIgsCcmSShG9iO6zMmjCj+ebw5KcRGd9xrVAWRlcZEFqnqbLRLLA//fjqUYblZJCQHyGkhdFeg3+8RclRqQg9BAN31l9VOBrLc8Qi6qoLEvQnbiaCi+xQhjgTT3PEAlCbIKJJA19FIa2GiskFc0dFEnUqnRtVpsBDIsNLa4U+lP8EHEd4NpyRJJJPJEbmp0+mMynubm4Ns+EkmfI+KPyrZfcyjWq1y5cqVEUgc6jLBywMk27bZ2tp6pObdk46HJw/XWpbF9evXqVarfOITnyASGUv4Pw6QbMfh//ntS6xXqkR0jWPpOJIk8K3tcalFdGGl6G/yn0qluLg9JDOoKm+kU6Me0GHkgiF2PYA0GwpzY5hBXdkdLCIXcjnOBqNsturUHJtXUmmue7IuEdis+nfApqzwnZ0dZFHktUQGRRZZmgA1c6LEcTqe4FZpkCnstZrst5pkjADTWphcMMh+t0HaDPjKdSndHM0yTUbT6nO1kOe1RIZCvcO5aAZFFthp1x/IulK6yZbHTfdEOO4jTey06vRdh3y7iSZKLGhBZqMDMdaD7uCZTulB1iYGX/OTwraRBBeLu3R7NldL+2T0APluk5QeYjoQwsXFdv2kj9OR1MAFdxhx1Xig5Ncbfnds12WtWSaqGqNj0nqYOTOCgMucEWerXcbBHfWiRtcJZ7la9RoT6tyq+Utx9nAjUre61BtdXotOc3soWWSKBjNKiG7bIueE6Yh9yrTpWf73cyqU44bHtj0iGz7wgQGF3xsnQtmRIsRup0Jb7rHc2vMM4Yr0HYXvi79FVovzQcTjWHa6rjM1NcXU1BSu61Kv1ykWiyMTPsMwRuAUjUYfW977owzpI4onLfiu67K1tcXt27cfCRIv6hp7eB87Ozu0Wq1Hat496XhBEB4LSIc26bquPwCq8HhA+trKGuuVwYJf7XS5uLHLTCTEa/EMPWxuFQvM6xprnXE5SRFF7nkAqtHr4TguawcVTiYSmLrCdrM2Ap/DSJkmW54sZj4S4eKQOi4AZ1MpooqOIor0h/d7Jp7kpgdsZEFgpTy4tuU4XD/I82Z2CskWuZDM0bL7lDstn/bdw+KVRHrUg9ppNFAEEcNVeDORY7/TZLNRYy4U8Zn7zQbDrE2AQK3fpefYo8zqjWSWmtglEtbY7dRp9LsPmAqqE5nuK/E014Ylvq7jsN6qs9/vUO/3mAlEyJhBTFnmoNsaWVMcMcIjTb3D57dW82e1M4Ew+90m+c7gf0eCMVYbZeKixkIsiY3t87aCIaXcozg+Z0a4W/eDvVcRIt9pMmtGuFgcgI0mKpzWo/SsHqeCWXY7VapWm2LPrxF4JJDgcnVMMpjSw9xt+J9TyXNMy+kTMMxByQ/AgSRBSo0uOSJoiowlOtR6/k3RgpnkWn0MUFN6dEIE1qX4EEWI6/UxPTwlBrnd2OaHZ76HDyqetiQvCMLIQG9xcRHLskblveXlZTqdDpFIZARQoVDIt641m80XImn9YY2PtXTQYTaxvLzMG2+88UhfoRfNkNrtNqVSiU6nw7vvvvvMYPQ097G/v8+3vvUt0uk0b7755gNgBI8GJNd1+fn3L/n+9ko2zVa1zvW9PHf2imQlHdUVMTw/llczGSqdcQ1EkySWCwOQWC6WuLq9z9FgjFcTGTLqoN4e1/UHGHqih0ThAn3L5g/ub2I4Cm8mp8iKCvUJ2ZJXM1nKnmsb0mAot9nvc3lvjzsHRaJ9OCob5GQNXJg2g6Ps6PBizYmF+FwqzXKlzMW9PbYqdY6aUSRXYCEYGc1bJnV/aeRENM7aBElip1VnpVrm4v4eO9UmZ8NZXotkORlOICKQM4PcnCBAtCb6lMcDkZH9xlazzkqlxLf2t8GWOBVM80ZsimQg5JMNOmFEKHnmiHRBfEBxPDQsP5acPpeKu1g23C6XySgRXg1P8Wo4S3HCXTeu+dlep8JJtj1AKAsCq54eVdexsHG506txvXxAod3jXGCGkBTktfAsRwIpAqLCWmtSodvvqnw8mGKrPX62EgJrTf8xYUHhgA7rNLnbr9KzXJYbVRTLICvEOa5O4TgiU1oceehtHlf85arjgSx7HoUISRAeUISISBqzeoLXI4t8UPG8c0iyLJNKpTh58iTvvPMOn/zkJ8lkMiNfs9///d/n5s2b3L59m7W1NVqt1kNLdh+GWywMHGPfeOMNNE3j2LFj/OIv/uID9/Ky3WLhY5AhPSoajQZXrlx5ojAqvBggHRILNE0jmUy+EFvvYYDiui7Ly8usr6/zyiuvPFZ48FHDue9tbnNz3/Pjc6E5MccTkCWWGy10WeJCJkeh02Sn5t9Rnk2nubQzLr/oksTSQYF6d7CoLoRCHEkl+Ob2Jodfz7AksT7REzGGPbVGr8elnV1mdB2r5/JWeor79QoH7Rb5CXvys6k07++OSzKGILDe69EdlmXSmk7Cho6oUBwa0h2NRFkd9qMOI9/ynzeqG3xneN6sGWQ+Eqbc86s7qBMKBK8kUlz3ZGaKILJUPKA6nKcKKionAknSaoDVRpm61eNoeEJTDyhMDqhG4rw/7EndqhTImUF2Ww0SWoDZYBgXZ2Cf4Xmc81qQO90xcERljRsTPk+HigU7rTo7rTqvx3OsVmuk9TBTZhBZFCh2mr4elMDDKOV+k8Hltj9T67kOS9UxI+/VaI5yr8XZYBJRcGnZXZYnKOWT6g5nwjmue0wHA6LCtuv/zMKBANv1Og36NPp9FiyXG8NsSEBgTk/SseBMcB7btahZLeSJjehAEcJjGIjMplXmr8z8iQ90dsdxnJfCpDMMg+npaaanp3EcZ1Te+9Vf/VX+x//xf0TXdS5cuMAnP/lJPvOZz4zo5YduscePH8d1Xb785S/zAz/wA1y+fJmzZ89y4cIFfuiHfoi5uTlKpRI/8zM/w+c+9znW1tZG6+QXvvAFstks3/jGN9jd3eWHf/iHURSFf/yP/zEAa2trfOELX+DHfuzH+KVf+iW+9rWv8Zf/8l8ml8vx+c9/Hhi7xf7cz/0cb7/9Nj/7sz/L5z//ee7cueNzlX3W+EgdY2GQBU0uwru7u9y4cYO5uTmOHz/+xB3JxYsXSaVSzM3NPfV1Xdfl3r17rK2tcebMGRqNBrZtP1Zc8Enx9a9/nVdffZV4fFC/7vV6XLt2jVar9VQOkxcvXiSZTDI/P+/7+0/92m+zXatx/SBP33E4kUxw98C/Cz0Sj7FaGi8wr2bStPp9gobKjYM8luOSDgR8ZIY3p3O8vz1epHRJQhQGg8YL4SClTpNUOMR1z9BtLhhkr97wib/MGTobHqvzd2dnadl9bpcPaFsWAgJpM8C+B6TeSGe45Jlxius61U4X23WZMk2Ckoht9VnxLPpn4snRsCwM0vu4YVLw+D9dSGe5uL9HRFGYMk00Q+NaOT/qe8AAOJarY3B5I5n1DeWGFJWeY9O1bURB4EgkynQwyGqzwkajCgIcMUKstseALwsCIUUbgOHovDkueUgTx8IxVmplZgNh0qZJ2+rRdi3ue2SMTqhB7nqEYWf0EFsd/8ZiNhAeae4BvJnMcbG4Q0TRmQuGCcgKhX6L9WZ5yDB0WQhEWfcM0L4Rm/LJHGX1gX2G93NdDMRYa46/U2/Ep7he2WXGjBBVdVRRpNhvsN2ujJiM82ac9db42b4SzHDTQ2ZIa0EKvbrvOpPHLBLkvjB+zyk1SMVqkVKDxFQTVRQxZZl8t0KhV6XrWhyV4uy6Nf73N/8WhvRg9eFlxdLSEoZhsLj4wWVhBwcHfP/3fz/xeJzNzU329/f5C3/hLzw0S4GX7xb7kz/5k/z6r/86N4bzjgB/4S/8BSqVCr/xG78BfDBusfAxKNl5dzOO47C0tMTS0hKvvfYaJ0+efKr0+FkzpEOV7u3tbd5++22mp6efSjroae7Dy9T75je/iSiKvPPOO0/FmHlYhrW0d8CvL93lytYeAUHhzWyO4ATr70Qy4QOjwwzqXrHM1a19TBS+Z24e2fNxi8BGxd9nORoJ0+r3aVsWt0oVmn1od13eykwR0wYZ6lQw5AejcNgHRgDFVosr23u4XTifyPKp6VkOPGAkCwJrNT8BYjESHYHGTqtF3XFZbXeZ00OcNiOERYnqhKbeuVTaB0aaKHJ32Leq9vvcqlYRHJGAq/J6NMsrsTQnJ8Do0FTQ9zxjCbrD74LjulQ7XX5ve4vNcp2UFOCN6BRhQUHzDGi+Es/4wCj0kJmnwwHVzWaNiwd7SMhsVOscNRJciE5zKpikiP87qE4MK58MJ3xgJAkCq0OZo2q/w/Vynp7jslIpI9oSx4wU78YXCYgaIXlQlhXBp1oOMGWGfZ/r0WDCB0YDZfMKlutwv1nmSnkXy4F7tSp9S2JKTfBWeJGIZLJoJtHFwbfN67UEMKVHfNdZMBM+MBKAhubfIwe6gyxxt1tjqb5Htd/lW6V1VptVan0IChHalsBnzXMfKBjBs411PG+kUinC4TB/5a/8Fe7fv8+1a9f44R/+4QdeZ9s2v/Irv/JS3GJrtRo3b94cveazn/2s71yf//znR06wh26x3te8DLdY+BiV7FqtFlevXsV13UcKij4qnsY19jAeRel+WTbmjuOws7PDzZs3n5mp9zBA+sVvXx7fe6dLod5kq1pjwdRRTJ3lUuWBif+TKX8GVe/02ChV2S3XOZVKoKsyoiRwaXe8cxWB7bp/YT6VTnJxaxdKg4XvQi6LbbtIgjACj4Tpp3EficW4Uxhcu2vbXN3dZy4cxnQk5kJBurJIWNe4vO8vHd6ZkD7KBkPsNptsNgbZwkI4Aq7L2ZDBVqtB1bbIT7D6zibTXPKcNyBJLBUP6No2V4bZ2OvpDOfCKRRZYq1RYSoQ9GVdEg8O5XpJE4VOG1NW2GjUkASBU9HBXJHjur4y4YmJmae0HniACdh1bGzXZWVIcngjmaXarnAilMKQREqNKnsTs0ithv8zeiWW5mrZI7kkKaM5qq5jc7dWRBVlbgzp7DkjyvFIjIbdQ3UEdvtNTEl5wPfJlPybnnORjE8RQhdl7gyPsV2H9eZAgfxQnUIA3ozN0+i1CaGhBnSqvSZ3J9QdArJ/Vuh0KMutCar3gdzzDSbbrY5PzzClhbnT2OWvh76XDzo+TC27YDCIIAicOHGCEydOjP7tg3aLfdRrarUa7Xabcrn8gbjFwscEkPL5PNevXx8NiD7rB/60YPI4SveLqnXDINvb2NigUqlw/vx5UqnUMx0/CUib5Sq/deee7zWybeO4sNHsQLPD61MZREnEVGRaQ3mgSWmVU+kEt/ODBf/uQRHcAdi8mcmx12qwVa9zJBhgxQNIsiiwWhzvkG3XRRIkLm/vDGjnyThNq/cAAcI7DwSwGA6zNgSsW5UquHAuneIT6Sm2mzW2mw3OJFI+IAmpKksTw7MRXeOq51pvZbJ0rD49x6Vk9cCF9QkdvvlAkCVPJpYyTK4e5AfgwWBNOxlK+Bh751Lpkf06DMkYZT97La4bbDRq2K7LnXKJU7EEt8tF4prJfDiCgz0Y6vXEbDBMvjN+vgvBKHcnrNz3h/bvd4Z/P6EGsHo2J8IpQqqK49jcrPmZZ7sT0kgno6kRkw4GMkdLnp7UbruOqSjcqw+elSoonI/P0Hb69F1rMCQruA8ojnecSRp6mssTyubeY1wGZobLhwSHSoPXY1NUGhZzeoKQoiLhUu930AWZzlA6qD+hoH4qnOVabdwrisoGuxPGhNVGjRPECPVELMt6aWoJD4sPQ8vOdd1Hkhrgg3eL/SjjIwekvb09rl69ytmzZ5mamnquczwpQ7Jtm1u3brG/v/9YG/MXyZC63S6tVoter/dM1heT9+AFpF/8zpXR4gkQUWTWJrIYXLi8sYuhyBzTDfSgyc28fzEX8GdopzNJbu2PF9nFcBCpbyMLYA0v92o2w+XtMUhoksTdYeZT7XS5uLXLhakcs0YY1bHYtXqYqvoAhdyekB86m0757u9INIImSCQNg8KQPHEiHufinlcWyODGwSTjzWZpyBhcjETJBXRWKpXRv0vA5gSxYi4c5sBT4psJhfj27nhRzRgBgqLKqWiC5WoJ23U5E09y0dNfimn6A5mOONzYlLsdygcdXkumWS/VWAzHSBgGTbvHvQlCRFTTwDOuNPB58mdqO1aHrmOP5qUuJHO4tsjxUJywqiEJcL3qn91ZmSgTzgYj5D1274vB2AiMYEBkuFsrse+hiH8yOUNT6aLJMm27h4vNcsMPynttf/l0IRDnUsVLQ49OHOOy36nTsHqjv78RneHOMDtMa1EWzBi2YHE6OE2t32a/V+Vgguq9GEhw1TO/NKVF2OlW+RwDxZbt7W0ikchIzucwy3hZ8WGU7ODxg7EftFtsNpt9qBNsOBzGMAwkSfpA3GLhYwBIqVTqqXssjwpJkh7plthut7l8+TKCIDxUpfswXqSHVKlUuHz5MpIksbCw8NyCi945pmKjxZX1XV7PZbm+t4/lukxHQlQL4x1xOhjgxu4AANp9i9W+xVnd5EQ0TkBXuZ7fZzoc5lbev5hM0licfp/ldhdDlngtm6bYabJf8w93ns2mueQhQJiKzO2DwojtJwoCb2SmyJgBlgoH9B2HpKKw0fH3l+yJLDSkqry3OVjITsRjBDXVZ4EBsBCNcHFvnHFMBYMseWwz7lerKKLIQavLbChMyjToddrcaNRGpR1dEB/IuhKGyWZ9vOBFdZ1vbA9244YscywaQxVk4qpBaaj+fSQS80kqTQVCvpIfQH0IwvdrVe7XqryRztJpO5yJpDAVhYbdfQDUJj+T0+E4N2rjDCokKyxVBs/1sAf2SjxNtyswH0qQ0HU0SeSWJxtSELhZ8i8aYVXDo/DDUS3EvY5fqWGpmqdujX9P52NZEmKEjBFAlUQUSeRmzSPxI4g+OSKAmGqy4SFRnAqlueOZX5IRWW2Oj8l3G0wZIa56dPhOBtNUex2O6dNokozjWnRsG11URhlbQgshixJn7AxHjxwhEAiM1BLu37/vE0uNx+MPHbd4ljg06Pug41mUGp7VLfZ/+p/+J/L5/IgNN+kW+8477zxgTfHVr3511KfyusX+mT/zZ0b38LWvfe2FrSg+ckCSZfmFJTIeld0ceiQ9TqXbe47nKdltbm5y+/Ztjh8/TmmiZPSsIYriKNP7pfevsXIwOJ8pibySTZKfIA/MRMLkPRlTRJG5fVAaZVVhXWMxEqVn2SMlhoVYlNsTAKWZJrS7tC2by1u7nMumaVhd3szluFMs0uj12K76CRCn06lBf2kYpizx3sYWXctGF0WOhEKk4hF+f3Ms+bMYjY76S4dR92RQK6Uy5zMZdkoNTieSGKrEVrPOrYn+UsYMsONRlliMRlkeSiht1ets1etkdZ2EpDEfj1HtttEEfOW7sKw8kHV5HWHbw8/hUAljMRwlYRp0h6zBQ+vsrBlgpzle0I9FYg8ojO806nRtezRjdSGdI4DKfCSCLIp0XWsw8+TZyFetCWff2IM9qZulAxxc7tcr3K/D8XCccscia4TJmkGCksRqo8RurwkChAWZG2U/QNkTZnnnYhlfKS6i6NysDtidh1nUqUiKWscho0dIGwESqs5Br4FAnarVJizrLE24004mKQOTwfF1QrLGrbr/3kRRZK9TZ28ImK9Gclwf9sviaphpPYJtC/z56bdhvYUoipimiWmazMzM4DgO1WqVYrHIxsYGS0tLhEKhUfYUDoefGVw+jB7SoUfTw9bFD8Mt9sd+7Mf4V//qX/ETP/ET/MiP/Ai/8zu/w3/4D/+BX//1Xx/dxwfhFgsfA0B62a6x8CCl+2k8kp61ZHdYBszn87zxxhskEgmq1eoLlf0kSaLX69Ho9vjKxTHlsmU7yKLCfqnAq7k0Xddmp17n5p6/PJbWNWqeqXldlvn9exs4rsvpdBJFkRAmpGIW41FWiv4FtNu3WC9XWS9XUSSRTy/MUWi1yNebuMKA4LBenmDJRSNcHxIpOo5DoWuxvr5LVg8wG4+w22oQ0fw17BOJOHeLfsbbQbON47oj4Hojl6FlWWiKxEq1jCgK3DzwA+pk3+pUIjFyxi3t7SMwUJt4PZGl51gsV4pM6Qa3PWoOad3wKU3AGJRgkO3EdJ0b+QIhVSWrakiyyPaEIoQxYbl+LpHyqVGooshKtUSt1+P6MGN7PZUlKQeYOZzWF10uF8ZGhKIA6w3/857sSS2GoiwPy4J77SZ77cZgDqrdxpQ15gJhYrLCfrvObr9JB4eUqHLfp8PncjChy3csHPf1pKbN8IgAsd9psN9pMBeIsNEc3F9cDXIulKZlD3pS+XYV17a5PTG/VO1PCvUmx+oOQEYLctvXx3KpewwDS70W82acO/U8//dXT3F17f0HgEIURWKx2EjxYNJKwnXdkdZcIpF4qh7Lh9FDarVauK77UED6MNxiFxcX+fVf/3X+1t/6W/zLf/kvmZmZ4Utf+tJoBgk+GLdY+BgA0ssIr3TQoUp3s9l8KpXuw3gWQDo06wN8Q7svw8bccRz+t29cpNEd75A1WeLufgHHdbmxM/hhv3Nklo5lsXRwQLtvEdJUNhr+UtdMNEx+yMq6ky+QCQbp9vscNXSqrkuh0yWk+VlOxxNxVgpjkOjbDtvlGmulCsmAwUIiiiSJfGtz3C+QgPsV/4J5NBHj4tYuB80WB80WqYBJ3e3yVnaKtWqZQrv94FBlKsmShx040Merj7T3JEHgndkZ6v0u92plar0eadN8QD18Ml5Jpbh2cABDVl5IVdFUg9eTBmvVMpV+j7Ag+i0lQmGf6CtAfngf9V6Peq/H2UiUfK3NQjhK0jTouza3JggQvYnv1NlEisse0kRY1VgqDZiAh0SIc4kUSckkKoiEwoPB1/eLu+Pyoyhxu+K/Tlj1f45nY2luDst3LavPaq2MIStUhxYXU0aYFBJhVOpOjwO3x4Ie5n7Lb6y4OuGcm9YDPgWIE6GkT7Ko0m9zs5IflTgBTmlhAmqIiKohCiAJ+OSHBpRy/3VyHpNBgCOBpE89XAC2OxW+P3eWgKw+VW9n0kriYVpzh9lTNBp96Pk+jB5Sc9j7fBggfRhusQDf+73fy+XLlx/7mpftFgv/hQDSIZh4Kd3vvPPOU6l0T57jSVEsFrl69SrpdJozZ874dmUvw8a8Uqvzv33nhu/v53JpLm14qLCSxM3tPLVOF0NRuJDLoasy37g/bvaGNPWBDCquydyqN6gMN5pvzebouw6yKGA5g8xJn2AonUwluDMEiWKzTbHZZi4W4Xg0RtjQuVMokFZlVpvjBUiXpNExhzEXjXBxe5f7pcrg2tNTWK5DSFGoD6WJ+hPP7lwmzbV9j4CrIHB9P0+120USBE4nkmRCJlfyeSrDGaDZUGiUHR1Go+9niB2LxbjsacieSaYIKgpzoshGoz5Y7SbIGF7RVxiA5dYQoNZrVdZrVS5kskiWxNloAl2R6WNzrZD3leIOJiR/jkfjvp5U1gxys3iACxQBOi2ORWIkpQDToRCiKKDLEt/Mj0uhcU1/wEZjLDg6iLPxNJeL4zJaw+pzYDfpD8u7qigTQOWoEMJybeqiTVo3ue0BiqCssjQhczSpgnEumuV6xUMPFyTW+nW6vfH9vBLNUunYJNQQaSNAWjOp2x1MSWOvU0UUBO5OZFSBiczzdCjDrcY+PzjzOvDsvZ2Hac0dZk+3b9+m3+8TjUZH2ZNpmgiC8KGU7JrNJrIsj0po303xkQPSyyrZdTod3nvvvWee/TmMJ4GJ14fp0GL8Yed43pKd4zjk83l+b22XmGpyLBXkxv6AorxRmpi3mRoDVLvfZ2k7jy7LzOoGQVPjbrnKiXSCi5vjhS4gSywX/edxXLi2uU9Y15iOGnRtixsTICZN/PhOp5M+koQsDJ7/sVCY1XoNBzib8RMggqrC0gTzz3Zcru7sI4kCZxJJgobC9YnX1CYatWfTKa7sDYDEdl22qlU2qlU6fYuTiTghXUUUBR9R4VgsxsqERcf+BPvOlOSRZUfaMDkSi9Kw+yi97mjBrtcnSlnBEHc9g7qmLHOrWKRjWyNF8/OpDCnFZCYUxhFcBAGueEgGkiCw9oCjbdBnk3E0PO5JFTptwCUXCBIRdWZDYTRZQpflAUANYzYQ4nbVn0FN0tCPR+JcLI4/o4Rmcr3pv5eAazHlmgN9RFkkrOlcqu+P+kFpLcjNqr/v05rofR0xwix5rNCTmjmSJyr2WhR7LexwgmVPlvXJxAx1u4shydiuQ9+1WG/6+7M2Dp9KHGHWHJTjXpRsIMsy6XSadDo9ol2XSiWKxSKrq6soikI8Hh+RBD7IOFT6/jDIEx+3+MgB6UXDtm3W19fp9Xq8+eabLyyM+jDHV8uyuHHjBuVy2efD9LBzPI9RYK/X48qVK9QbDX5/r0a+1WW70iBsaLw2n+Hm3nihFoHNsr9vcXYqzeWNXWodoN4mHTKRHZF0MDAq2U0HDO5WxgtdxNC5OSz/1Tpdap0ux2MhjkZjREyd2wcHxAMmS/sTbLCJe58NBrhXawIdoobO0WSMnu34hkRPppJc9ABUVNdH2ZvtuNw+KPJqNo3bd3klmcQVB5P5tyesNCb18U4mk6Ph3uVimZiu0+j2OBKOYogDrTltorxyNpnkpoehJwkC9z108UK7zVwkwtJ+AVWSOBGLEdZVVqtl8CRalQn24KlE0jdLFdd1rhcGkkWHdPbT8QRzWoRUwKTrWGiyyEVP+S4gKw+U/CZVOc7GUyPR12rxAFUU0WUF1ZFZCEcIKiqGKlHutWkMLR9ORRLc9sw8SYLAfY+TLkDODLHbHn8/joXjrBzSw20QehDudNFdhbSiE9I0YoaBAOx1GggCHAnGuNfwfmYu+b4/I5wPxCh0x3+bMyM+MALYbFfZ8ZQFL8SnKHctEmqIpBYgrup0XYv/Zpgdua6L4zgvjd4tCAKBQIBAIMDs7Cy2bVOpVCgMvzfvvffeSKk7kUg8oNT9ovHd6hYLHxNAelbX2MM4pHQfCh4+LxiB38/IWyNutVpcunRpJPL6uDT6eTKkWq3GpUuXiEQiFOQA+dY4K6i1uqzuV6hUO7w6nabj2OiazLWt8SImAtsTADUdjfCdtW0EYDaooWsK+c5E2SoR5+LmuFkd1hTWKg2s4eegyRJHIzFMSRnMHwkPZ+jJmsYhj7jS7tC3ba7v5JmNhsmEA2zX6qyVK75jjsSjXPLMOKUCJjf3D7Bdl5vD+ahXsmleTaRwcLlbLnE0HuNWwV8yW59QaliMRbm0szfqZyU0lf8/e/8dbFl+1XfDn71PzjndnPrezj0dJE1LYDC2GGFhobIJNgWWy1S5qKKwgXoAGwyYUvECFpRROYBdwFvi9SNZyBLCmMcGSTwEIY00M919O9ycw8k5p733+8c5Z9+99+2e6TAzahCrqmvmnrDP3if8vr+11nd9v5VahxvhBJVem61y6VRZ8FIkwrKmLOgwm1XViK4ksZrP80IsRq7WYsLtIe5xYxLR+TEB7BrKhLO+AK9lNOZ/bo9a8jscuuzO+fzMOwIEHHYaUg+X1cKruZPn+EzmU/Tw/sNKcfnBuayVCngtNtpSn64sMen2E3E4cVstVB1dks1BOfJCMMpdTabmNJlVh1v1NiM5IxDl3tCeY7/bxNptIdbKtJFxiBYSDjdjNh8es51yr8Vxs8pZX5gHGmKCVRBPgU/Q5uBQoxZ+zhvVESDMgsj2UKV8lFG94B+j1GvzjuBA83G0drxVvR2TyaQCz/HxMS+++CLlcplCoaAa8Y3AKRgMPnOp7evVCwmeE0B6mtBSuqempvjSl770TMcbfZm1LJpcLsfy8jLj4+OPpav3pKQGrcTQ7Owsv/zrn9Tdf348wsrxYKG4fzT4kV6ejHFtPM5KJke7L3FxPMY9DUAJnACUAhzXO1wNBim1y9wYT3BQrlDpdNgwAMuE181K7qRk47Ja+dLOIZIsM+Z1MxbwIIgCexpwmQsF2Mzps5hae2jHUK5yVK7ywliMZrfHjNfLZrFEV+rrSBMAk36fbvZozOvmXloPEgGznYuhMBulIl1Z5kI0oivx2UziKXPCiN3OWqWqUsTPh8PYBBMXgxE2ywU6kkyprS8Lng2Hua0ZyvXb7TwY0sOT9TrJep0L4TCmvsCs24PX7QIkXsud9IrMwJqBaBFxujjSlPjOBIJsDnX3qAxo0XGXmzOuID67jXK7iUnqs65h0k15vKdMBfMP60kNQe2wXqUnS6Tzg2N4LHYmXB68oo1z3jB7tSItReasP8ItTfkubHeohIhRtA0brYuhmPqcliyRa9bZa1YYfftNgoBVsbBgDmIWBBSbiMdq45XCkVry81lsOnVxOE0Pv+iL6QwD3SYrq9Us/3LxG9SB5NFv7q0ucY02mw6HA6fTydjYmE6p+/j4mNXVVdxut86I70nPawRIb6Vq+fMaf+UA6WGU7na7rabtT/ul1FqQa1/jSRQkHpfUoCgKGxsbHB4eqhJDr+4cs5EtnTTAFej29IvAuUSEu4eDH7DTauHaWORU8/pMyMdG/iRzEIDjcpVio0Wx0UIA3rMwRbHdZiWdRQbsZhN7ZcNEfMiv9qnS1Tp9WabUaDHhtOH3udkslnEZRV4NGnooAyLE0VDE1SQK3JyZpNxps54v0JEkXBYLq4beUcztJqkZzI15XLx8MGD12c1mlkJBXCYzNpNJFUE9GwrrMh2XycSOoe9jMZm4MxwktppMvHssQVuSqNs6FDttBCBZ078P836/TjUi4XKpJb/tWg1qNRYCAWJWF+NeDz1FwqTI3CmdvA8u0cSDvH6BN5YSL4ZPjAhhIBRrEQQWPEH8dhtNqYfDYh6ojQ/jrD/EmgagTAinfJ/G3R7SQ/HYWq9LV5b5YlJLr3Zhkk1cDYxR6bU4aFSYdvvJawBqxu1ns6oFQoV0S//eLoVivKqhh/sxD5iBo2goTLl9eAUnCacbl9mCx2rluFUh1a7QkvvE7W5WDdJIlb6+97XojbBezfHt4yfabW8XII2qJ1qgEEVRVUaYm5uj1+up5IiVlRX6/T6BQEDNnh5naP5vMqSvcTxuya7b7XLv3j0ajQYvvvgiHs/ALGykXfUsDBhBEBBFkW63y+rqKrVaTfcajxOPU7LrdrssLy/TbrfVOQCA/++fvcak241ZlDhqdJgO+dnKGhq5GrBrdnu0u33WknmW4mGsVpH7ySylhv4HfHE8xr1jfQa1ni6QqzXwO+3MRQNYzCa+vH+ySLmsFtbShsl7s0heUUg2OiQbHWaCfsyKeGKFIYDZpH/vz8cjrGr6X5KssJkrkKk1sJvNXIlG8Tls/OXByWv77Da99xPgtdmBwULcMNq3BwABAABJREFU7vfpywpf3U9hNZm4FI4gmqBi6OlMedwD7bxhhBwnmQ4MynHVdpeV4UzTrN/PpN/LYa2i9r+soqgO3I4i7naT0vSy5vx+lTSRazZRgHGvh3l3AL/dRqXTxi4K3NeQF0JW6ymqestg8X3G6+d+uUh9SD332Wy0+33m3AECDgc9uY/JrH+/L4aiLBcMpThDT8plmNnyWqx8NavxLzJbqLX6XPWNoQgKxW4Tv0Vfgjrvi+jYdmZBOOk3DWMqEKJQPAHyMdHO4XBWqVJpIwrg1yhgROwe5p1h4jY/CjLVfnug3t44eZ2R4vjfHz+Py3xyHSNAeqszisdZXywWC7FYjFgspg64FgoFcrkcm5ub2Gw2FZwCgcBDdff+BpD+CkSlUuHOnTt4PJ5TlG5tue1JqN7GEEXxoUrgjxtvVLKr1WrcunVLvYbRl3H1OMtXtk4WZa/DxpjHQ2lIswaYiwTYyOjLNfKQqr0xBI8pjw2r2YTsNFFoDp5XNag7XByPqT2ocrPN8n6aoNPBvNuLIMgcNJucjYV1NHO7SWC/qi8NBZwObg9ZfCG7lUm/i6wBDCXJQOOOR1UWX7vfZyWVw++w4xItLESCNPs9nFaLzkQw4nKeoq+PmH9dSeJBJseFWITjYo3z4RA2i5mDakVVCR/FlM9HIX2yWI973CoYwWCOyiSK7BWrBOwOpgNe3HYrt9MaUzur9ZRqhNsgRXM+HFZZdjAoXUWcTs77w9jNJnLNBi5RoKChlU+6XKdmnnIGVtyCP8BrmTS7lQq7lQoJ18D8b8zlJeZyISMPNAs1ZJJzoYhavgMI2xyn6OHGntSSP8StvKZkabVRaLSZcwbx2ewoyFhNJkyIqgfSxUCMO1rFcbOVFUNPKuBxk6qefBenTA72NLNK9W6XV/MpmtIJMF8JxPAJHiJ2J06zBZfZTL7b4B9NvaA79qgy8lYD0pPOIAmCgNvtxu12Mz09jSRJqo351taWzsY8FAqpunv1ev2Z1Wv+qsZfCV7h0dERX/3qV5mYmODq1aungGKU3TyLSkI6nabf7xMKhbh+/fpTAdvrlezS6TQvv/wy4+PjXL16Vbcz+tif6wfQvA4bX1zbp1ptczkeYyESxGHVn89s2M9GWr84KohsF5tUqm0uRqPcnJnkQEv1VgYgpI2L4zHy9SZ7xSq7hTouxYJZFpgN+lVK3WzAR1dzXT6HTWXoAZTaXTo9mXSxzrwvwLVEnLOR4CkTwaZhHuhCIkqh2aLe6XLnKM1erkSu3OBaLM5SKISgDIBEa6435vWcYv51JGnA1ssWWD7O4JMgaLZxPRYn7nJhN5n0ihAMgE4bcwE/20NPqXK7zXIqy16hQqcts+gNcT2a4GI4Srt3wqIMWK26rAtOS/FcikZJNxqs5gvcTmcpNTuUujKXA1GuBCNEbQ6shuLAos9PRgNIZkFgR8MEhEGmpgDJRp3b2QyNbp876Sw+0cFFX5TrwQSypGDV7OinvX7dexmz2Nlp6kuURm+oBV+Qer/LdrXErVyKTKPBV9JJBElkxh7kijeBS7Qy7w5iH84kLfnCqhMwQNhiY7Wqz9QEmx7IJ8wOHRiFbA4eVDIUOk3WKnluFVJkWi3CVi+TLr/uuW+XvtyzziCZTCbC4TCLi4s6G/MRsen3f//3+Z7v+R6++MUvPvR1Xs++vFgs8sM//MMsLS3hcDiYmpriX/yLf0HFQPz5whe+wLvf/W48Hg/xeJyf/Mmf1DGD9/b2EATh1L+XX35Zd5xPfepTnD17FrvdzqVLlx5rIPdx4rnIkB61s3kcle5RPK1atyzLbG5ucnh4iNVqJZFIPPVO62HnMLIwPzg44MqVK6fsfQ/yZf7kwY7utqDLyVGhiiQr3D/MMOb30O/IXB2SGTp9CbeByTPpd3NUGmQFsqKwcpxlKR4mancxGfaxUyoS87pZTWkWBgWKBnWH2UiAV3cHJZyI3UIs4KFioLIvhEO8dqBh6FktbBUHfaLdofjrlbEo50MDuaK1XJ7JgO8UmaFsyN4uxKPcPkpzXBkskmNeN4I8kBjazBdRhIGgrNaafTboP3XcriiSrDU5qg2u7eb0BB2pT6nTZqdUxmO3smIgdTgNG5BzkRCrQ0DdLBQxCeCzOwhbnEz6PdSaDexWMyUNUEx6Pad8nYqGa1wKh7mVTquqDyG7g5oCl/1RZFki06rTbOo/k/PBMHc18kNus0WXhcEJK67S7VDJd7gUjnAvn8MkCAPVcbsDZIW4YzjnJIDXbCat+WjP+cOslvXZ3bahFBd3ekg26/Rkmd1amUVfUDdbNe70giRwPTBOW+qRbJSJ25wUNLI/s24/uwaDwAr671hUtFJUTt6HSaePjVqeHzn3bozxdgHSm63SYLQx39jYIJFI8JnPfIZKpcKNGzd43/vex0svvcQ3fMM3vK59uaIoJJNJfuVXfoXz58+zv7/PD/7gD5JMJvkf/+N/ALC8vMzf+3t/j5/+6Z/md37ndzg+PuYHf/AHkSSJX/mVX9Gd2+c//3kuXLig/h0KhdT//9KXvsQ//sf/mF/8xV/k27/92/n4xz/OBz/4QW7dusXFixef6T15LgDpYdFsNrlz584bqnSP4mkASdvPefHFF1leXn5mpQXtOWhljF588cWHpuGffWVlUHobYqDHauLBkZ55FPG6WN5Pc5AHl83Ktek4e4ZhWb/LpQISwHTYz/oQfHK1BiZR4Fwkwrl4hLVUDkWAc2MR1pL6HX5eA1CFdo9Js410qsTFsSiIsFMsspnVL7pjXidrGiJF2OXgQTKn7sYdFjNxlwuLILKeyyMz8GPSUcgVSBkUxhNeN7eGZcGAw85CJECj10MElc3lMey0F4J+toZqEDB4W3cKJdW6PeCwczkaJddqslkq0pVkIk6HrnwH6Gw/AC5GoyppotBqYRUELCYTC94gPoeNcqeN227hQEOKWAwG2dAI7grAYVVP0R8omadVeaQJr5dmt8uS04fU71Hsd0kaynmLoZCOdh5xOHV6eQCdodOspCjsVioEbHZuDckZPqudOZ+PVrPJGaePdK9Frdc9tRG7FIxyp6gtxZ12wTUqewTtTp0IrBWBlNxmwRnBY7GCoOC0mMm1G9SHGdEFX4QHmp6URRA46ukzNTciUw4vL4YmMMbbZZr3Vr6OKIqcPXuWX/u1X0OWZRwOBzdv3uSP/uiP+NEf/VFeeeUV/v7f//u65/zCL/wCv/7rv87LL7/MD/zAD/DpT39avW9+fp5f+IVf4Pu+7/tUj6hPfvKTXL58mZ/92Z8FYGFhgX/37/4d3/3d383P/dzP6frloVDokVYSH/3oR3nf+97Hj//4jwPw4Q9/mM997nP8x//4H/mN3/iNZ3ofnktAGlG6n8Sw70mHUiuVCrdv38bn86n9nGf1RNL2kOr1Ordu3cLlcj1SxihfbfDJv7jLTMCHz+3gQTJDyG6h1jnZTQbdDh4cnZTHGp0urXaPTKHOtN+Jy+Ok1Grz4FgPYl67PoOaCPr48uZgZiLicTIV9p3qH0x6HPqhWwUy1TrSMOMCuDE7hiQrFNstdgtl7BYT+2VDvybgo1A/KTn5nXa+vHWIwqDcNxsOYLGadP2OC4kID1Ini5JRwLXcaqPIsJrKD1TMwwEUZFYyeiCxGBbIi/GojkLe6HS5m8xQbnewmkxcDIcJu53cz+XUAdZJj4d1YzZnUI2Y9bpZr9TUMp/fbqNYb3E5EMVsFkg1Gzr1cICLkQj3NCU+myjqAAsg7HBwp1qlOCRpLAaDZJoNzrk9KLJEsd1ky0CImPLofZ5mvD42yoYBVU0prtLtIAom1honn9uFQASzLHIjmKDa77JfL1HpGbI7gwtuxO487YIr6X+DM3Y3G+0ahcrg/QtY7dT6HfqKTMjmIuZwEbQ4ecFvptrvkG5VWfKFuVPSqIyIZrbaFT5oS/CXf/mXKqU6FAphs9ne1pLd2+WFNDs7y/d///fz/d///Y88l0996lOPtC+HwRrn9XrV9kCn0zklIOtwOGi327z22mt88zd/s3r7Bz7wAdrtNouLi/zET/wEH/jAB9T7vvzlL/NjP/ZjuuO89NJLfPazn32Kq9XHcwFIo53Z06h0j+JJwOT4+JiVlRXm5+eZnZ1VX/9ZAWnUQ8pkMty9e5fp6WnOnDnzyBLgJ754l54kc5CvQL7CWMCNKPcIuuwUG4PFYDrs5/auZljSYePB0WAROCw3odzknQsTjHs8bGTz1Do9Yl63DsRg0JcaRb7WxGO3sp8rc34sgmgSWEll6RmFQMejPDg2iGAWqqpX0lTAy2wswPJRitZwR+4wi6ymDDRuj5tUZfCcSqtDsd7koFgl6nYyGfJSbLdodU/3l+4mNUOVJpHNIUhU2x2Wj9K8MB7DLMGky4nd5aTZ75/yfjrVt4pHuDM8bleS2C9W2C2WafX6zPh9hNwObBYTx7WamoWdCQROse1yhvml+WCA15Jpyu3BtSfcLoq9NtdCcfrI7NcqNA0bpvORiE5Tz2ezncrULCaRSqdDZQiIlyIRtkolFhwuTIpMo9dhwwBQfg0rEeBcMKxj25kEYaA8oQm7xcwtjRHhgs9PuyPxgi+BySRQ6bZO9ZemPD5yGtWFGY3i+ChKRikhb0BVDy90WtjNZlYMMkftnsySK4bTYkYBXBYze/UiP/pN70dqdSgUCiSTSdbW1nC73Tgcjmce+3iceLvM+Vqt1iPp4W9kXz6KfD7Phz/8Yf75P//n6m0vvfQSv/Zrv8YnPvEJvvu7v5t0Oq2qfKdSgzXG7Xbzq7/6q7znPe9BFEU+/elP88EPfpDPfvazKig9yuI8ndYPiz9NPBeABIPy2d27d2k2m09Mt4bHAxNZlllbWyOVSj20J/WsxAhBEOj3+9y9e5dLly69rntirdXhMy/rRVSjXjd39tKYRIHLkzG6cp/VIwNbySpQaWlcZJ12lvdSdPsSJkFgPugmHgmSKdfV7ONhAOW22VAUWBsO3o65rFgRmfB71bkhbQMfTlPIk6Uq7W6fWr3L2XgQUQRZ7rFeOClbua0WHqT0r+13OjgoVsnXm+TrTebCAZrdHtfHEmSbDQ5LVSqG3sv5eJQ7GnUHp8XMSipHV5bZrTah2uTaRBx3OILZLLJVLBH1uNg2WGvkDUzApWhY1d07KFeodTrUOl08FiuzIf/gPTTsJ85HQjpVcosonrLwiHvc3E5l1FLhrN+H1JG5HonTlvrsVkqnNPUWAgHdzFPQatEZEQI0e31a/T47w9Lg1WiUdC7HhN2JA5CROTCAp3E/dCkU5Y5GsshttpwyGXRarGxVsuow76VQhJ1SjnGXj4jDgck0YFF6LFZqvQHoBGx29jXJ8sN6UjuGnlTM4eZYQ6w44w2yonmOAITtTt43fgaXxQYWmyqIOpr5OTo6ot1u8xd/8Re67OnNtux+u0qDr8eyeyP7chiov7z//e/n/Pnz/Nt/+2/V27/1W7+Vj3zkI/zgD/4g3//934/NZuNnfuZn+Iu/+Av1usLhsC77ecc73kEymeQjH/mILkt6q+K5YNlVKhW+/OUvI4oiN2/efGIwgjcGpHa7zVe/+lXK5TI3b958pI350/aQ+v0+q6urALzrXe96QyvfT798n0bnZPduM5vYSg9+rJKscH8/g8tsJeF2c2UyjkkAqyiQaelBYj4WoKvpF2SqLV7bPGbM4+baVAKP3cZYwKPriQwASl/iczrs7JXbJLNV5v0B3j07SdowLKu1xIBBBpWvD2ZvNtJFNlMlKk2Zy7Eoi6EAAhB3Wulp6N9+jYbeKBxWC+lqndv7KY5zVa4n4kQcTiZ9XpXplzEMucZtFh3zz2+3cy+Z5UEqx/JhhlazR9zh4noiTsw9mOk4Fw1xpDEaFIFDg23GXDBAX5apdbrcTWbJVhvcP84x7/FzIxZnIeCnZXgfzodDagYDAxBeNTAM3XYbB5Uqt5MZVjMF5twBnFi4EUlwLhDCbbGwbWDSRWx2HWdvzu9n29BPyjSbyIpCstViu9XC6/ZSbvcIYGHWZOeC3UO92cYsnPzUR8roo1gKhmlrSm0R+0N6UrI0ZPXVWM5nUWSR5WyOerNPxOTiui+BWTZx2R8j4fCAwoCGrolLwSglzWu7TJZT9PBTflKBKPl2k388d7pZPpr5GRsbw+v1cu3aNTweD+l0mi9/+ct85StfYXNzk2Kx+Ey94VE8D26xI/vy69ev84u/+ItcuXKFj370o+r9tVqN973vfXg8Hn7v937vVKvgx37sxyiXyxwcHJDP5/mO7/gOAObm5h55Pu9617vY2tpS/36Uxfmz2pfDc5Ih9ft9JiYmnkqlexSvB0ilUok7d+4QCoW4cOHCI9Pupy3Z1et1bt++rWpYvdFQW7vb5+W1A10P5fxEVFeas5hEdtIlKs025MBhMXFtboz1bJFWd7B4OCxmNpL6hW/c62QzXyNdrpMu1wm5nSg9hcVoaDDHJMCY30O2crLARz0utnMnC/VutoTTakHqyFwZi9GWJRQU/RyUApWmvmx1cSLK8mGGTHWw84+4nfhdXmZFM7uFCggQNENZ1oCjx8WKAaBavb46mDvu8zAXDbBfKqvvlwCU+voFZi4cUAkQMKB1v7x7pC7oU34vYYeTuYDMTnGgiHExEeWuJnuzmUxsGhxtE14P6VqD3WKZ3SJMet3k6g3OBvw47FYOalW19zSKM8EgtzUzT2GH47TaObBTKsMQX67Eo9S7PRY8ARr9Lql6lb2mobH/sJknTQZlFgT2hzp5lX6fSr/PBaeLo1IREzBmtRNz2OkiEne4SDcbCMJAYkgbU14fuaxGANXjNfSkIKeRNMq3W0x7/byq0e6b9QRod/osmNw4nXZainyqv3Q2ENYpjoftDu6X9N+FjiTxTfEZJt0+HhWjUprH48Hj8TAzM0Ov16NUKlEoFFhZWUGSJJ0Z3xuRpB4Wb1cPqdlsPpV9ebVa5aWXXsJms/E//+f/fGSGKAiCqj7ziU98gsnJSa5du/bI17hz5w6JREL9++bNm3zhC1/gR37kR9TbtBbnzxLPBSCFw2F8vkd/4R4nHkW5Pjg4YGNjg6WlJSYnJ18X8J4GkLLZLHfv3mVycpL5+Xk+//nPv+EX9w9fWePOZoqZqB+v28Z6KjfoI2niwmSMOxqA6kkyq4d5yo0WF8YjKCLYbWZu72kYTSaRo4pBXTnsU4Fu3O9mPOxTqdmjGAt4yFZPFpiE36OW+O4dDBbWazNjXJ9IcFytka7WWYqHWDfMQeUNFPLxgJdbw9eOe11MhDyUWh3gZJfsMEzuTPi9OpWIVKWGy2rhKFcl6rLjMQv4fB5upU6046wmkU1DRjLu96jlMhiUrf5ya0DqCDnsTAV92M16+aHz8Qi3NWVBt9V6auZJ7PdoywobhTIAZyMhat0u16NxWlKf/Ur5lOjrpN9LPn0CWlNezykr93Krzb4mezsf8FPudIgHvbRliUq3fXrmSVZ0f1+MRrmT1ZTiLBa2h6w+CUh3u3jsNjaHRAyXaOKMy4tgsxCxO0k2ajT7PdZL+nML2R0caEDrXMBQiuO0jUbA4eDWaCi33WDBF2A1XyRocxF1OnGZLVgQmXcHSbWqNKX+QLKoc/J9nnL52KgW+L8unaZ6a+NhmYvFYtHZSYwUE7LZLJubmzgcDhWcHmXG97DXeZiywpsZT2tfXq1W+dZv/VaazSb/7b/9N6rVKtXhZx+JRNTr+8hHPsL73vc+RFHkM5/5DL/0S7/E7/7u76r3f+xjH8NqtXL16kBJ/TOf+Qy//du/zW/+5m+q5/Ev/+W/5Ju+6Zv41V/9Vd7//vfz3//7f+fVV1/lv/7X//rM1/9cANKbEVrXWBjsZh48eEChUODGjRuqjfHrxZP0kBRFYWdnh52dHS5evKi6UAKvWx7oSzL/9/97B4CDbBmycG1+DIVBTb7cHGiqHeXKuuddmIpxd3eo6nyUQxQE5mJBrk0l2MwUqHW6LMQCrByfLCY2s4mt1Mnf6XKdqNdJudJkPujG4rCRrjRUAddRxHwuUppy3UTQy63dk7mjhWiAiNPFsa1KfVh2PJeI6MgMggIZTRaWrTYYD3jZTZeYCnqJeJ3km01SNX0WYFH0u+hZjYRSvtEmD0ybrMTsTsYDXmq97kBR4egESFxWC6sG9l3QecIgLLXahLpOlo8zWEwi58Nh7FYT7a7+tZciIZ1thtds4rClL9cJgsBxpabOTl1OxGj2esx6/ZTbbVKN2qmh3IDDwYFmlmoxFGBD04MSgHSzRbHTITlU3LiWiCFIg8yvj0JXlgaqEZr9VdEgn7QUCul6UhGHk22NwGtLlil2Oxxp9O9eCIXpCgOSQ7Pfo9prn2LSCYaqlVGyyGW2sGp4zmjOq9hpUey0uBiM8KpGESLh9NLpylzzDySL6v0uPqsNsyDwYuQ01Vsbb1RKMyom9Pt9NXvSmvGFQiE1e3rYxlWSJKyGLPWtiEcB0uvZl//pn/4pX/nKV4ABnVsbu7u7zMzMAPC///f/5hd+4RfodDpcuXKF3//93+fbvu3bdI//8Ic/zP7+PmazmbNnz/LJT36S7/zO71Tvf/e7383HP/5x/s2/+Tf81E/9FGfOnOGzn/3sM88gwV8jQNJmN6MZplFP6nGbm49LHe/3+9y7d49qtaqzSR9NNb8eqH3hzhbJop5anS7WSRarmE0i0147bredB6my+hAByJX1C/fFqRh39wY/aItJ5IWpOJ1+91QZUJtlWU0iG8k8sgK7hTpQ550L4/Qkmf1imXy9RcBpP0WACLocHBVOzrknyXxp/QCLSeTSWBRZUOjJ+mvWKpXDsF8zVI04KlY5Kla5OhXHpIj4XQ4OSmX6isJhTV/+Egyfx2I0xMZwDio3HHxdiAa5Gh+QBTbyBZZiIW4dnix2AYddRymHAViPrmUtk+d8PMxaOs+kz0PU56be7ZzuL0VCqjgrwITPe4rVV+t02NXMQV2fSNDq9bBaTGSbTWrdzikmndnouhqNci+rLSUO6OH1bpejIZC9EI8RsToY83gwmQREUeCWZjZJBA4MM09TPg+5zMn3KGqxcqRRhFAYWGPkeyegeyUUoSPKxD1ubGYTMgpHzarue1br6Uu3S8HQSXYEBG02HhgAqmsYOYg7XTpHW6/Fxp5U4V9f/YY3LOM/aW/HbDYTiUSIRCKqGV+hUCCfz7O1taXqzYVCIQKBwCOtad6qeBQgvZ59+Td/8zc/lh7on/zJn7zu/R/60If40Ic+9IbH+a7v+i6+67u+6w0f96TxXADSm+Ua2+12yefzLC8vP9EMk/YYb5QhjfyRrFYrN2/ePLVjej1ihKIo/M6f3NLddn4qysrBYPHpSzKHxTbhjsRcwDcApuMsZ8cj6mMGB4K8RluuNzTEWz8sEnFZmYiH2MrmOS7oF6Qxj5W98sku2mY2sXKYoz60jBjzWFmYjPHlrRMr9IDLzoqB6ed32jksVOhJMg8Os8xE/BRrTa6Nx6l0OmznSqeyjQsTepsMsyiwmy8PpIyG2eDNhUla/R57pTLFZpuQ08auYcapb6ARnx+LsKIZ7vXYrAgSXI5H2S6UaPR6zBr6SzGPixUDQPWHxItRtnN5PMZRo8qsw4HZJNJAOMWkC7ucOpLEmXBQpaaP4rhSI60hZLxjcoxWv4dJFEg3G8gorOaMTDrDNUYjOksM75Ae3pUkVbPwQiSMXTYz5fPitlmxWszcL+j7Y+tFA9HCZCKrYcWfC4VZ1bDtRGC7VKQuS2qf7GokRq7awme1Meb2EHI6qPe7TLq8HDdqyMgcG3tSLh93NL2hSbfRRkM5baPhC7JZKfD+6TO8UTwL2UBrxjc1NaXqzRUKBTY2Nuh0Omr21Ol03ha9vGaz+Tfiqn/VQxRFKpUK6XT6iWeYtMd4PUAaDeyOj4+zuLj40B/B6+nZfWX1EEXmZHepcGr+JuG1ka52KDQqkK3gc9rw2WwE3Q6Kw2HTc1MRVg/0C2pxmC0UGl0K2ykuz8QQEHBbrezmSggC1Pr6H5ORSFFodKltpbArJi5ORCm32/icdu7UTxbDkNuhDsmOwm0bzDQtDzO2q1MxRJNIwqedPzLIBI3HWNZkMTaziXsHGZXJNxf24RT69G0ylWFZMOZ2sFPUM/9ahnmg2XCA2/uD45pEgUvxKCZlIHA6UkMY83nIaEqFM0E/GwZfp1KjSavXZ39Ifb86EcckCywFwzT7PfLN5qn+0ijrUq8xHtG5/ZpFgc1cgbLmnN8xmSBudyGIAplmA5vZxLbO0FA5TQ8PBlSnXIC428VKLj9gOw7Lg/PBALVGl4TbRdTlGmwiahVa/QqSouC32dk3CLieoodHoiznNKAmCKqNRrXbpVoscNkU5e7wNosoci02RkeWGHd6afZ7HFeKbBvcacMOJweNE9Ba8odZr+iBcL9e4R/MnTtlFPiweDPZbyO9uXA4jKIotFotCoUCxWKRSqVCo9Gg0Wio2dOb3VNqDD/rp2Ea/3WIvxaA1O/3SaVSNJtN3vWudz01QeJRGZKiKOzu7rK9vf2G/kivl2V97I9eY++wyGzMj9ttoyNJbBwbRCcNq0I04OYrK4eYRIGLk1E6cp92x8BWmoiwps1iFCjX2hwOiRJRt42FyagOAEThpIQ2ijGPjf3yYLFc3k3jsJoRJLg2lWCvUKLYaDMZ9lPQECmiXherhh5UT5JZHZIhZsI+xoJe1g09nZyhd3RuLMKd/ZPzS5WqIIh0+hIL0QBepw2TWSSjUYAY8zjZLep340WNDpwkK1hMIq8N+18zQR8Rr5NqR1/aNKpazIf8bA9JC6NIVmpkag21V3R9KkGj08Nhs5BrNuhIkg58AHp9g6ldPKoO5QK4LBbup3O0NGXJ6+MJ3AEL7VaTOgp+t5M1jT6eSRBOOfCOeTykNQSOGb9PtcRI1xuk6w3G3G6S9ToWUWTG52XS72U/m6VtEUk1GiTc7lP6eNWugeYfjels2j2iyH2Nh1NPlil1OjpSxJzVTqGnsOSK4LZaQFCod7s4TWaaQ9bdKUWLYIz7pSz/eOHxehJvVSlNEAScTidOp5PJyUleeeUVgsEgkiSxvb1Nq9XC5/Op5b03w1RvBEh/kyF9DeNZPsQR5VoQBDwezzOx9R5Wbuv3+9y/f59yucw73/nONzz+ozKk5e0Uy9uDhXw/U4YMXJmLcz4eYDdfodWXmY0F2EsbhhqHq6YkK6zsZ5lPBOl2+lydTrCeztPs9NRy0yjOTkZYPzxZHPO1Do5sFaklc2UyRqPXw2G3cG9fY4UuQKFpaOqPh7mzm4ZsGVEQuDwZBUnBahLpDl9zLOAhp2PouXUAdZCv4LBYKFVaLMaDOO1WZBSdDbsAJEv6zOdMLMT95GCB3MmW8DvsNLs95gJ+/B4HyUqVoNdFsnYCQBMeB0eG46Q1xIqDYoWw28lmskDQaWcq5EMQOVWK6xho3BcTEe6n9JnOdq5IuaXJdKbHSDjdIMJBpYLXbmfDUL4bldfU9zcW0lm5h5wObifT+pkxp4cL/jA2i4lSp43HZuWuhm3nsphPlfy8dptWqIFz4TCrQ3p4T5Y5KFcotlqqHJLbYmXeE2DMOTAYTDcbeGwWtgxzUccG88IzkaiubxU2m08x9GqyRKXfo9IdvNaNWFyVZYo4nMx4fCjA1UCcWr9Lpl2nJfX422MzjLu8PE7IsvxMtjOPG4qi4PP51BlGbfa0u7uL2WzW9Z6e5pwajQZWq/WZbdD/qsZzAUhPG5lMhnv37jE5OYnX62V3d/eZjmfMbprNJrdv38ZsNnPz5s3H+pI8KkP6//2xvnc0GfFxdwhQZpPICzMxLDazDpAmI342joxSMiZShSKpQg27xcy7FyY5NgywdgxlrKWJMOvD49zbHQDBxekY16YT7ORKlJttzk9Eua/pU4kCHOROVjVZUbCIJu7spHDaLJwfj9JR+qrSwyiiPjcpTd9nIuhVRV5Hg7+L8RDno2HMFhNbuSJzkYBq0Q6DLCBZ0WdQs9EAt/dT7OXLkC8T9jipVdtcH0+QazY5KFbwuN2gIUVMuu0cagRbRQH2hplPudmm3GxzbSpBp9nnXDSEqMiUW3WOGh0de61tzHQSUe4cGzKdVJaWRtliMRgiZLfTkSR2y2UmfV7WNNR0UYDDsj67G3e7dKA14fVyz1AWnA/5WfQGcdssNKU+LquZ1zQzT0GHnfuGmSdjs/tCLMqyYbDxtXSatiZTm4jFOOcN47Ja6CkSVpPIK5n0CdVeFNkyzCaN+QPkNAO1E1Y7R5pBWFGAvdrJdyrfajHt9fGaJuua8frIV1v81AvfwOPG18p+wuFwMDExwcTEBLIsUy6XKRQK7O7u8uDBA7xerwpQI6+jN4pGo4HT6fy6tC+H5wiQHtc1FgY/sK2tLfb29lSJnlwu90yyP6AHk0KhoA6EPQk54mEZ0tZxni892Nc/Tj7pHfUlmXy5SapQZdzvwOWxs5Up43PaONQ8ZyLkZU2T+bR7faqNDkfJMvPxAA6HmVylzF5Ov9DJhnmVpYkw94fZkUkUuDAewW4y61S0z46FdBRysyiwnx2AZbPT495emhdmE/gsNiYSPtK1Oo1O7xQBIuB2cKQpq81E/Gyk9Md1iCbmfE4Oay16ssKFiahq1Q5gNZvYMpgTTgS83DlIczg89vlEGLto5kwkyHauiAxYHQ6onyyIEy4bB5qSn81sYiNToC/L6kzVpUQEmSYJv4e21KevyKf6S6fkh+Ihbh3pWX2vHSbVOSEB8IVt3EgkaPZ7bBdLLEZDOtFXqyieyqgibidHGqbcYjioo5ALDGjgEw4PYacDWVCwW818JZlSgWPC69GV/GDg96SNs2E9PTzscHA3m9V5Jy2GgjgFC+MeD16bDbfNzH6tSrPXo68oeKxW1gwA5XY4QANIsw4X2xrrc7toOpVR+W12LCYTN6KPLosb43mwnxBFUZUtgoEyzCh72t/fx2QyqXNPwWDwkdlTvV7/ui3XwXMESI8bWs27mzdvqvRI4xzS04QoivT7ffb29tjc3OTcuXNMTLz+DMTDjmE8j//nS2vMxvzsZsoA+BxmDvP6DCDsc5IqVEmVW1BuMT8WxCqI+Jz2gVoDEPA4OMqfLFBjIQ+r+4NFbZRZTQZsXBqPUm61OSxWmYn62TSoOWhxX5IVZFnh9kYSv9PGWMhFulInbejNnJ+I6kp8FpPIbqZIpdlRGX8vLk3Q6vXZK5QpNdsEXXZWDBRyl8EuYjLk5bWdQaZoNZtYigdxmM3YLSbaveHA6liEOwcaHTurhXWDxbrNYubOsLflsVu5MB6l2u1gN5vUDEc2W4GT7HHcaWWnegIubpuF9VyRbl9S1SauTMQ4FwrjsJnJ1Bu47VbWs6+f6RhZfQmvm1c0/lGiADZMXI8naPS77BRLjDus7DZOFm+v7bSVu9VImohFuD98TLJaxyqKWC1mvKKVca8Hh9WMw2qm3GpTH4rMLgaDbJQ0oCacpodP+3w69Ykpr5f1oSr5qDc16fVyWKtiEgQm3R7mAgHqvS5NqUe62cAsCqwbhmX7BsyYcblZq59kTH6bnfvFHP/mHW9M9dbG82jQZ7fbdV5HlUpFBaeVlRU8Ho+aPXk8HvV6R5Tvr9cM6bnQsnvcqFarOs07LVf/WZW6R9Hr9djd3eUd73jHE4PR6Dy0GVIyV+HTX7jLwVGJab+bSZ+NmN+lUycIeZ2s7BmYa3YbdzaStOodLk/GuDAZZWVPX2YJe/U7Kb/LwmGpw4O9LMeZKvPhAOMBr24hm476TxEpRlbjlWaH1cMiEY+HgMPFxUQYh2VgE3Fo8EA6NxnVSQdZzSbu72dZ3klTq3ZYioQ4PxbFpmEhRTyuU2KxPY0GXLcvIUkKr2weo3ThYjzCxUSEckO/o19KhFT5JBjo42mZf7V2l0a7O2AidhTOh8N8w+yE7jkAVcPXJeGyq7qAwMCW4jjLejrPnf00qUINl2jhajzO5XgUj83KhUSUnEahwmYynfKLinn0MyUzoQFg3T5MsZEqIHdlXPaB7t65cAinZZDpdTXf55jbdQqgOobv+/l4hFq3S73bYz1fZLtQ5tXDNM1mn3GbmxdCUWJOF3M+H+bhgncuFFbZhzCwxFg3WGIEDDI7S6EQh0OJIklRSNZqrORy3EqlWcsWKNfbzLkDLHqCLJgdXA3FuBqOkevoP8diV19annA4cZrN/L0Z/WDnG8XzkCG9XoiiSCAQYH5+nne+8528+93vZmxsjEajwZ07d/jiF7/IgwcP+NjHPsbR0dFDM6S3wy0W4O7du3zjN34jdrudyclJ/t2/+3enzuWtcouF5yhDeqOSXTKZ5MGDB8zNzT1U8+5ZAanVavHgwQNkWebd7373UzcVjSW7T3zujtqkPsrV8DptSFKfq3MJNpMF6u0uk1E/herJDtpjt6jg05dk7u+keWE+waTfh9/nYPU4h9NuVbOjUUxEApQbJ7c1W11evn+Aw2bh/HSUYqOFx6G/rumIj+2UfgGSFYW9YTZnMYm8Z3GSfLVBpVVUgfQwYwSoCMtDJQlZUTjKVzjOV5H6EhfHB+Z+ZouoI0D47WaOqvpFShm+Qk+SWDnKcWE8QipX5UI8gtkislcss2+QWRr1l0YRcTtVYkVPkllP5jk7FqZcbjEb8hH0OhFEhVcPTnoiZlEgYwC+iMOqk0Ma93u4o2EqAliDItcTCWq9DtuFEucTEZ1qhNt2Wn7IZSjXnIkEWdG8n1aTSLPV43oiTleSOKhUGfd5dPTvmYBPN/OkANmGfpZnMRTkteTgXFL1Bn1F4V4mhwKYRZG42YTfbOVqOEah0+KoVnu4JYZBcdws6n97FyJR7mno4XaTiQf5HI2R9Ue7zQvRKO22RNThJOJ0EnI6qfW6eHodUo0abbnPfr3Kuxwell99Tc0e/H7/G4LN2wFII3uLN4PNZ7PZGBsbY2xsDFmWqVarHBwc8B/+w39gc3MTp9PJz/zMz/Bt3/ZtvPOd78RsNr8tbrEj+aG/+3f/Lr/xG7/BvXv3+Gf/7J/h9/tVG4u30i0WQFAet3HzFkev13soO02WZdbX1zk+PubKlStEIpGHPr/dbvOnf/qnvPTSS0+c7haLRVV8NZVKPdUxRrG8vIzb7WZ+fp5itcl3/uvf0dF/ryyMsbw5AB+rxcSFuRjFRovdzEl5Y2k8wPrRyd9up5V+V6IzLGE57RauLo2zcZgjMyyX+V12Gu2uTln7ylxCZfYBRAMunFYLXredjUyeZqc/yLw0ZIaZqJ+9bFl3TXPxIDupIgG3namYH8EMt3b0C3PAaaXUPKEJvzCT0KlEuO0WLGYT4yEftXaT/WJt0KfSlBMnQ14ODcO889EAO5r35uJklE5fwmG3cFAqU2t3sVstVDWMt6tTCe5oAGos4DnF4ou5rDT7CjOxIBIKFouoU3ewm0VA0BEazseCrGROQGA+EmA7V9I8x8S5sQgIAvlWk/1ShWtTcd1xw24nxUZLx6RbioV0ZcDLYzGdF5TTYibiduF3DdS/M40GUY+TZY1qxNnICZMOBsQQn8NOUUOSuDYW180vRa0Wspo5OKsoshQNYTKJyCiU2i1CLqeOdBB3ucg0G7oMf94f0KmQX4vHdfRwv81Ovd+hr/l9nwuHdTTzd8QT1Hs9fvVvfQu2bo98Pk+xWKTf7xMIBFSAepjqyiuvvMLMzMwj14Y3IyRJ4s/+7M/4xm/8xreU0fdLv/RL/MEf/AEXL17kj//4j5Flma2tLbU3pY1gMMhHPvIRfuAHfuDUfZ/61Kf4vu/7PhqNBmazmZ/6qZ/ic5/7HK+88or6mD/4gz/gu7/7u8lms3g8Hn7913+dn/7pnyadTqsD///qX/0rPvvZz7K2tgbA93zP99BoNPhf/+t/qcd58cUXeeGFF57ZLRaeowzpYdHpdLhz5w69Xo93v/vdjzStAtSdiyRJjz2sphVfPXv2LLFYjFQqhaIoz6Q6PgLW//t/v6IDI5fdwoZmoLXbk1BkODgssTQZxmQV2EkV2M/qF+UzY2HubJ5kUALw6oNDOj2J2bgPl9uB2SxyRwM+XqedFUMGlQh4VGaf1WziHfMJKq3uoKk0vF6nXd/jmYkF2BlmUKV6m1I9zWw8wJTPR8jnYK9QJupzsa4BFgHYM2RQC4kwd3ZTlIYkg5jfiVW0sBQPsZkuIAMBl0MHSHMGMIKBwd+hJkN6cXHQt0rV6qQq9UF/yaDCEPG4dIAUcVrINAbgORKPnQr7WAoGcTusZBtNwh4ntzVA4rKa2cjqz8Vq0u/KZyNBbmt6XSGnHXpwNREnXa+TqtaZ8Hl0WddkwKsDo8E1GkqUsTC3j9Kqg27AYee4W+NiOILNYqba6SCaDFlLLMpdDfvOYTazZhB0jfi8ZDXMv9mAj7uabE4UoN2RmHf58dntIILTaqbUaavlwlmf75QlRrqhV9eYD/h5TaME/rCZp0KrxUIgyITPPzi3oaxPo9Egn8+TyWTY2NjA6XSq4OTz+dSKxFudIY2qL2+1dJDVamVpaYmPf/zjSJLE3bt3T4HRW+UW++Uvf5m/9bf+lk595qWXXuKXf/mXKZVKBAKBt9QtFp4jQDICQLlc5vbt2wSDQa5fv/6GIDP6ooz8498oJEliZWWFfD6viq+O6qnPYsQ1IjXsHRzzyp1t4gEn6dJQc20izPLmyQ/TZjGxczRYELYOBz/Qs1N++gocl5vU212sZhPbx/qFJO53sJ0aLNz76QoOWwOf08HVmTg7qRyVjsRcIsCdLS1A2XQlvm5fot+T2T7IEw+4iYc91NodVg/1IOa06neDc/EAO0MCxVG+ggDMhYNcnoixmSnQ6vU5E/OzkS6rzzEJsGNQBk8EfGoG5XXaODMWotbp6ph+xtc+MwQvbexly6SHNPOJgIf5RICjYo3dfGlgme60nVKWCHrc5JqajNSgXC4I4BDNXE3E6SGzUyixFA9z6+Dk/fTbLKwZzsVYMp4MenUlvjGvi1qpyhmvm6qskKk1BqKvGlKEUX5IgFO0/tlwgNeOUipFfMznIZsvM+/343faB7qCiqIb/j0XC3Mrqcla7DbWDfNXggFgL0Qi3MvmoAFQwWE2I4gC/Z7MuGfA7PM77ThNFrKtBrlma2BeqGH1iSin3GnjLjdJDWjN+QLsVEr87Lv/lv58NKKoRkuJBw8eIEkSwWCQbrf7WBqUzxKjz/atJhs0Gg21h2QymVTVbXjr3WLT6TSzs7O6Y42cYdPpNIFA4C11i4XnCJC0cXh4yNraGmfOnGF6evqxvgSiKL6hsOko2u02t2/fBtCJr2qzrKdNy0VRpFwu83/+zx32MyMgCmGzm9lP6X+YZ6ej3NUAlNkkcJRtUG8NxDivzMSxOyx8dfWE/G0SIF3U9wqWJiMsb6bIDGV1zk+HQVYwCYJK3Z1LBFjWAJTHaWNtmK1lS3WypTqX5+IsRkNYrCbWk3mCHucpgLJZ9F+ZuUSQ26MSpNnExfEIDocVUaioZanpkJud/MkCZBEFtjWLebXZQZYUNg/y+Jw2ZmIBJFE+RSE3GbKA8xMR3WMy5RrdvkSh1iTgtDMV9eF2WPnq7rH6mJDLzqahJCkYeiLnDNbtdrOJTqvP9fEExXaLvXyZ2VhIlw1F7BY2svpeXKWlb9o7kNmtnJTQZkN+hD5cjcdJ1Wuka41TTLrzBvkhrZX7KGJuF8lKbSDqWoSFcICtQomA3ca434vdbEJRwGESaQ1LuvPBIK8lNVmLx33KVLBuUGpYCge5kxm8L6lanXa/x0oup37HvFYLXpONa+E4CArldhuh12FbI1HkMpt1enkwMDQ8FwpzNapf6IxhtJSo1+uqKOqDBw/Y399Xsyev1/umZk2j/tHbCUjGeKvdYp+HeK4ASZZlVlZWyGazXLt2jVAo9ETPfxxiQ6lU4vbt20QiES5cuKD7MARBeCYbc0mSyOfzVKp1bu2cLMA7RwUun0lgR+SFuQTrxzk6XYnjrL45f342rgJUtyexsp0h4HEwHwlitYmsH+eZjXnZSp3sqE2iwIEmGwGwmkzcW0/hc9mZHg+QqzbZOtIvNnOJoK6/NMigcmqJ0WW3ciYWwGkxD/pbgkAi6GH1UA8SZs2uutuX6PVlVtaOcTuszCWClJsNyoa5nYmAg93CCag6LGaV+Vdtdri7m+bKbBy3aGFmLEBHkmh0u6wZ2IGjnpr6/k3EuD+cXyo32zQOuzisFugqTHns+HwebDYLBY2VxnjAy1pSf1yjvuBiIqybi4p6XchdhRfG4xyXq+QaTRLhIDmN+kTcYWG/qP98q319uzbkcuiyrsVIAJMscDURJ99sclSu0jEM5Z5PRPWeTQ8hTTiGm6lKu0MlneN8LMzKULpp3OMi5vVgRmAhEOCwWqUjScS9A2mhUcwHA2wX9RuoVF0/qjDj8+kIEF6bja8cJ3WPidmsRMxOIi4XDosZl83CYb1KqlGnJfUJ2u08yOf4t+/5pida7EfKLB6Ph8PDQy5evEin06FYLHLv3j0URdHN/Tyr8sHbZV/eaDROZSCjGLnFAly/fp1XXnmFj370o/yX//JfgMdzi/3RH/1RUqkUgUCAvb09/vW//teqW+yjnGBH973eY94Mt1h4jgCp3W7z6quvAgO/jce1jNDGGwHSwcEB6+vrLC4uMjU19dAfwNPamI+yrn6/z3ZWoqIZyBQFSOWq5EsNcqUGdpuZd5+fOlWKyxT0pZnzszHub6cpDE33PA4LQY+XaFMiO1QyuDAT4972yQI18FIauoY22tzdSHFpLo5DNGGPWlg/ziGKAtvJ0wClLfGZRIFXVo/p9SXGgh5iITeiWSSlETcdC3pZPzRo8Q3/W291ubuTZsxnQ+mLXJ2KU2y1OciVaUr6H3bUZeagdPJ+ue1W1o5ydHqSqizxwlyCgM2BhMxmtshYwMN2Rp8pVA29l7PjEbVHdFRpU2wNvhszfh9Bj5Nyq43bYeG4dALws5EAOzn9QlwwGA9OBLw6Vt9iLIhZFriYiLJfLFPrdAn4faQ1s1KTLhuHGhbfSH5IGx6HTde3OhsLISJyfSxBtdNht1giZwCFxUiIW0d6p1wjPbyqeU6q1iDmcfPK/gA4REFgKRRA6MH1WJxyp8NhtXKKCXghGuaBRqLILAjsGC3XnU6ONaA26/WyO6SHj+aaYi6XyhaMOpyc9YdAEHjfzKMttN8oZFnGarUSCASIx+MoikKtVqNQKHB8fMzq6qpu7sfr9T5xpvO1tp54WLzZbrE3b97kp3/6p+n1eiqYfe5zn2NpaUn1k3sr3WLhOQKkVCqFx+Ph/PnzT70TeRQgaTOv69evP5SxMoqnyZBG/a5QKEQoHOHXfu//1d1/fi7Og62Thabd7rN3VCSbq3F2JoIiCpjMIis7+p1H0eD+OhkP8tqDIwQBzk1HkAWFvEFiZyJk57BwkpEIAiTzVRXUXHYrVxbiHOQq1IdmczaLiS0DOM6OBdUSX7pYo93p0Wr3WIwFsTssbKQLhLwOkhoSwkTEy4bhOFabnWSlwvIQNK/NJ1AY6OEd5quIIjQMKuRhp4m94km5yO+0c38/o2r22SwmxrwePDYbu7kS9U73of2lI8OCvzgW5s5eioN8hYP8QEm9Vhe5PBZDERT2CmWcdv1CvJQIq9JHMADcQ0Pm47HbVIASgCuTUUyiyJzfw0GlRl8Bs90OjZMS3rTXybbG48ppteiccgFsZjN3NRJF5+JhOpLEjXicjixxVK2yr/FeggFJQjtXFLFbOTJkqEUNcMuKgsdm02nqRdxOKvU2VyMxRJNAvds9tYBfjEe5o+kbuCyWU4oQduMgbzjMAw0TsNxucy+b43vOn9fNqz1pGEkNgiCo8zqzs7N0u12KxSKFQoHl5WUAFZyCweBjme69XRnSo6wn3g632O/93u/l53/+5/mBH/gBfvInf5L79+/z0Y9+lH//7/+9eh5vpVssPEeANDs7+8yDrQ9Ta2i329y5cwdZlrl58yYOw5CfMZ50nun4+JiVlRW13/XJ//klAjYLLrudo1wFFCgZgOXsbJS13UEtfmMvBwpcmI/zwlyC1cMsnZ7E4nSYjX3NAqVAfTiIqiiD552didJv9bk6n2AvU6JUb1NvG0o8MzEeaICu2emysZ8nX2kyHfPj99oxmUVuaVh8NstpIsVMfNCDGt0e9bugp3B2PMxmMo+kgN/lULMzgMmwlz1tWVKBcr2tqkqMBz3MjgXYy5VBaYEwyBxKbX2GGnKZKDdPbvM4bHx1/QhZUTCJAkvxEGGPi3KjpZr2jXttHFdPAOBh6uZz0SC391IUhnJCUa+LdrPH9YkEhVaTPcO8E8CFiahOd89qEnWyRgpgEkTu7J1YYLxjOoGkyJjDJvaKZXqyTEPSl++mvE7WNOcXcNp5kNL37xTQZW8Xx6Nkaw1eiMUQRYFyp82Wob/kt9vItU/AfTESYkPTKxI4rTQx6ffx2nFKvX3C52UzWyThdhFxO7GYRKyiiajTRbbRAAGWImFeS51kaiG7nfWSQanBYMp3MRrlfj7Hdz2kMf+4IcsyiqK8LlhYrVbi8biaPVWrVQqFAoeHh6ysrOg057SqCcbXeTsypHq9/jVzi/X5fPzxH/8xP/RDP8T169cJh8P87M/+rI4c8Va6xcJzBEjP0rsZhRFMtJnLhQsXHusL9biAJMsyGxsbHB0dcfXqVcLhMLKs8Id/vsVxZlC2WJwOEwg6+Oq9gxOzGQVaHX2P4sx0hJVhBmWzmJiLuOg2m4bHhNnSAZRCu9OlUG5SKDcRRYEXL0xykMpSVhQUQRjaUOh3x+dnYjwYlsEOM2WOshDzu7k4EaWnyGwe51mainBXUwa0W0ynelDxsJe7wwzK47RxZio88GvSUMi9LjtopI7mxoLsJk8WzHSxhsUkkspVGQ96iAbdmK0mXtk4OhHxNIukqnpyQNBpUeWKJFmh3uqq8kgTQTcWoY/D6eS4ciKSen4iyn0NQcNiEk+V/MaCHhVIAM7Gg9gwcXk8xkGpMuhLdfSN/nPjEZYPNEKrVouO1SfJCr2+pPagrCYT12fG6ckyXruDvWKJniyTNmQxCY+TUvMkkxnzeXQZlALUO10ytYbq7XR1Ik6yVWPe50PodxEtFmpD88bR+2AxMuniUe5rNPVsJhMbBnp4eKipl6k3yNQbLEaC3B7OSbktVsZ9biyKyPVonFq3y3GjRtxhp6BRZpjweFg3WLmX2i2+dW6OyOuMc7xRjMYoHzd7EQQBn8+Hz+djbm5O7TuNAEoQBF32NCpdvZ09pId5Ib0dbrEAly9f5i/+4i9e9zFvlVssPEeA9GaEFkyOjo5YXV19IqYePB4w9no9lpeXabVa3Lx5U02xv3x7j+PMSY9ley/HTD9IwuchGvGwdpBlIh5g+0BfmkEjftrpSTQbXXLlLotTIcw2M2sH2RMu9DDmJ8Nsa/o3sqyQK9RJ59v4nBZ8bjOCWWDPMNNUMagRnJ+JsbKTIVMcgGjY58QmmIgH3KRLg9uWJvUA5bCZ2dS8dq3ZodsZlCFDLitTiSBNqX/KRNBYwlkYD6mlwlSxRqpYYyzkYczrIRZ0k683CXgcqlU7gMNiYi+v77X5HGZGBMZksc5YwM3+YZGwx8FE2Ee736dp2AScn4iwrNHmc1otrBvIDQ6blbsaj6brswkUwBozsZMv0ZNkclX9xiHhsbFVOOmjBF12HWOvK0lUWx3WhmVAsyhyc25CJW7slspIssyuIZsLOm0kKyfXvRAJsJU3zP9U63T7kvrca5N+to5ShJx2Ej4PbruFaqeLx2qlNmTQtXv69+VcPMJtDT3ca7OdIk1YNRu7Zq+H3WzRafVZBIFcv8k5bwiX3YqEgsNiJtdsqvNLCwE/W+UyP/+N30i/31cX+ydd9Ef93qcFC5vNRiKRIJFIqKoJhUJB1ZwbZU9vlzxRs9l83XnLv+7x1w6Q+v0+KysrpFKpp2bqvR6poV6vc+vWLVwuFzdv3lRnnhRF4RN/8KrusXNTYXaG4JPJ13A5rEQ9Tio+l9r7mU4E2DIAlGW4cG8fDBbrc3NRrFYzfred8pAsYTJQlWfGAmr2UW32qDZ7zMR9zARFenKfZLnNRMTDoaGEVq3rASoe8nBrdUCTnksEcLutFA2L7uJERMfQc1jNbAzVHsqNLuWtNJfn4kx4PYQCTo6KVUSTqFMqf9g1aG0y0kPyhNNk5up0gnKrzW6mxNJEVKcA4bKZ2TKwDH0uO8lSnWKtRbHWYj4RJJWvcj4ewWIROSxWTgHJ4lhIlx35HHZWDcKwvZ7Eg+FtVrOJG3MTdPoSZlHkoFBBECBreD+nw3pZozG/RwUjgL4sk6001FKcKAi8c36cdr9PR+pzWK7Sl/qnZp7sBvr9uXiYVU0GZRIEdocsuVKzTanZ5upEXGUUxj0uZsN+OpLEUjjEUbVKvdsblOA0sRAJ6PpL0Ydo6rV7+hmgCZednUaL/LB86LFZ6UoSPUkm7nITdjkIuhycCYS4OKRwj+aIRkzX0X/fKJ4VkLQhiiJ+vx+/38/8/DztdlvNngqFAoqisLq6qmZPb7Zb7GgQ+OvVLRaeI0B6s/j9+/v7WCwWbt68+VQ7jdcr2eVyOZaXl5mamuLMmTO6c15ePWZlS09KMBvmZoJ+J1+9vY8oCFyYi9JRJCyGL3U04CCZN1pLC9xdTWIyiVyYjWK2mljeSOo8e6yGBWoqHtDNPQXcNvx2C1WHmUpr8OOfiXvZT+t34lp24H6qxIXZGLlsnQuTUSQUdtIFDnP650Q8Fg4KJ4uS22Fl/TBPp9vnePjYd56fZMzrZj9XptRoMx46zdCTDGWH81N6WaOo14kZgTOJENvpArIyVLHY1ezo7ZZT9HCLSaTTk1RAXBoP0ez0uTY1ALr9fOmUZNFcLMBtgzOuthTX7UuU6i3VSsNlFpmPeBFtNtLVOulKA5vFdIpoEfG5dJnOXFjP6pMUhf1ChaRmGPZdc+O0en0kWSJbr9Pu9XhgUKPoGGaGLo5HWdYQIpwWM2sa195srUHc62ZZI1F0YzJBV5ZIjLmp93pkqjVVHWIUE36PDrSm/T42NaU4Beia9N/FxXBInXnKNhooKKzmC/x/vvVbsNlsyLKs+6f9/YmiqP57WEiShCAIb8l8kN1uVzXn9vb2KJVKWCwW1e/ozXaLhSdj2f11jOcGkJ41KpUK+Xweu93Oiy+++NQNyIcB0uNYmH/q929xeS5OplwjU2wwEfexsatfNDzOwSyErCisbWeIhz10TT1mY24OcnUkGfxeJ9niCSDFwm7WhqQESZJZ3cpwYSHOmM9DJOxmK5nH47azsW8Q8DSwxXxuByvbg4VjfjyAaFJoGRaxubEAO0lNGUgZAFSvL7M6JGFcPjMoW3kdNvbSJQQBygYSwvxY6NQQ7u2NJL2+hCDAwliQWMhDvdVVrTWmor5TTL+mYR4oFnRzayM5vD4rc4kAtUodiyjQG5Y9ZxMhVeQVwO+wsHZkBD44zFdUCaLLs3EkWWbM5+GgUKbZ7T20v5TVCMNOhLw6X6dWX6bWg/3U4LOKeJycHQtT6XQ4LlUpNFq47VZWk/rPycjqO5fQZzqiILCZKVLU9JhuzI5RbbUxCwrVdoe21GXHYBdSfoT80Mn7Ytf1jgBavR6rGtC6lIiSrNa4GIpgt5rpSv1BX0vTk/I77OyXT0DL6NkkCrBvoIdP+n0gwHvnB6oAWsAZkRRG4PRG2dPbqfRtt9tZWFhgYWGBVqulZk+7u7tYLBadW+zTZk9/A0h/DWLEdPN6vbjd7mdiwxh7SJIkcf/+fUql0iMtzDd2snz19p7691jEzljYy1GypDb4YyE3a9v6DCrgc7C6NVgUXA4ri4sRDlJl3WMiQQ8ZjcpBOOBibTuDLCtk8jUsZhNzcwHsFjN7ySIIArGgm3WDnYXLcUJt3TsuMRn3USn3uDgdpVRvcpyv0TASKabCbBrKiYVyg+Mhky7gsnBmJsJ+tkJ16DNkNgmnbNjnNBRyRYFitclBuowsK5wZH9iaY4IDTTlxNh5g13CcioY23Wh3qdVq7OWaWMwi58bCWK0imZJeR20qFqKsKcWFnGa2DDNYlUabfY16wzsXJwa9nnaHnVwRu+V01hVwO1RzQID5WFAHYoVak51MUXXPTfhcnEmEKLc7HJcHABV2O1kxOO7K6LPEC+NR7mkGbm1mE6vJHA1NT2zaaydht+C1Wej1eyiCzF6hosugjysG+aGI3rNpzOfWgREMlBoKjRaFIRhenYizn83hspgZ83kIOO30UZhwOMh3OrRlWS03j+JiLMrdjJ40sZ4v8E+vXcHykN/pCFxGv+E3yp7eLrKBkWXncDh0fkcjt9jt7W1arRZ+v18FqMd1gJUkiXa7/TcGfX9VY6QEnkwmuXr1KqVSibbBDfNJQ5shtdttbt26pfovPWra+7//3iu6v1tNiVu39pmI+giEnKzuZYkGPWQ1wOLz2ljfPvmhNlpdpK5CKd9gIuzA6fWQLddOgdhYxEuheLJTdzutvHr3EEmSmYx6CYbcIEJW01iPBlwqzfzkeXYO0xW1zHhpfjBz0uqWqTZHw3b6RWxxKsyGBqAq9R7JdJ18vsFcIoDHa0M0iaqUEAx6LTtJfbYxHTuRMdo+KhD2OqnW2ywmgjidFvZyFexGHbvxEJvaDEqB6nDQtdeXWT/IcWU+TjZbZy4ewOexU2m3T0kfxUIBCs0TEIh7bDowgkH2NBoAdlgHPax6u0uqUiNTaeB32dVe0ihsFv3iem48zKoGxHLV5qDMNySVxL0uFuMhKq0OqWqdbLXBeNCr09QDqBns6M8ZzQrNIslGl54skxkyKs/GQ9jrfcJ2CxYB7DYLyVZHzWwsosiWYUYr5nWT1Ni9z4UD7BhJE7XB/a1en+18iRfGYyrbDmApHIC+wo14gr4iU+l0Tns2xSLcz+b4zovneJx4WPYkSRKKoqAoCq1WC0EQ6PV6T9R7etKQJOmx3GLPnDlDq9VS+047OztYrVZd9vSo49SHQ8V/00N6DuJJ66/dbpc7d+7Q7XbVflGtVntTqOOyLKsSQ9Fo9HWHdQ+TJb741W3dbR6XiWq9RypTIZWpMB73Y0LA77FTrg0WJK9dROuf5XHZWN/OoCiQyrUg1+L6pUk6/T5bR0Ua7e7gMTsGD6S4n3vrAwBIZqs0Wl16fZmL0zEavS67x0ViIS9ZDYhFAi7WDQClyHB/M40oCJydDuNyW9Rh1lHUjCoB0xE2h6XC/VQJUpAIe1iKh7DaLWynCixMhri79foU8vGIj0Klyfbw9ljQTb/V44XpOIfFKoVa89T3YzbmYVfDaBSFE4WKvXQJ0vDCfIK6tcNY2Eur36PUbLNuyHQ8Lifp2smiPxV0caBRo+j0+qwf5ikM55tiPhcTQSeZChS7fRrdPjGfW/VfGkXfMGd0YSLCPQ04Vlttbu2mVPZf2O1gNugn4nZSaDQ5KFYHWZdBHy9d0WeAi4kIdzQZVNTjYj1TQAGOa0NlioCVar2L2ywStFsJuh3UFQURgXK7jdtq0ZUJYUBf18b5eETHtjMJAps5/XPcdv2A7UzQx1aqwJjHRcjlxGo2YRFNfNeFcwTfYB7wYWHMnsrlMhsbG0xNTQE8Ue/pSUOSpMcaoIVB9jQxMcHExASSJKnZ08bGBp1OB7/fTzgcJhQK4XA4dG6xwNd1ye75UdXj8UGpWq3ypS99CYvFwosvvqiSF94M11iTyUS1WuXVV19lfn7+lN6dMf7HH9zSWYL7vXZSOX2WFgw4uffgmEalw2zcSzxgJVPS929mJ0N0NdpsToeFBxsp7q8kkVs9Ls3GODsd0T3G5bCwaSjNTY0FaLa6rGym2d8rMh8PYVLA6zrJ7uJhr86PJxxwqUAnKwqbezk6LQkHZq7MxJlNBBgLuUgV9WSLpqHEtzQTIZWvsXVYYGUzjdyWMEkCF6ejagaxOB2loRnUNFpyAEQDbnaOi9zbTFEuNHhhMobLbCbqPVnERJN+wTw7FaWgYc6ZRYHddIl8pcnd7TSb+wUmfV6WomGuTMUIuh3EAi62DPYWGD7ruahXBSOAUq3J2lGBZLFNp9Fnzu9nMRpkMRZS7SgmQ75TZAaj0OrZ8YiOit6XZF7ZOububprjbBWvyULM6eTaRJwzkSBWk8j5sYgOkEyCcEovbzzo0RX9poI+9obSSM2+zGGtTbrWZjtTplpr4xPMnAv4OBcKciEaIeRwEHTYWTGQJmTDUOuU20Fd+321mFnN6gHKax/4N6VrDR6kc7S6fb66e8wHz53lWWM0Yzg7O8v8/DxWqxWr1aoKoMqyTL/fV5XAJUl6KkmwUTztYKzJZCIUCrG4uMjNmzd517veRTgcplAo8JWvfIWXX36ZjY0NvvjFL5LL5bDb7af6T2+GW+wrr7zC3/k7fwe/308gEOCll15SVSsA9vb2VHKI9t/LL7+sO85b6RYLz1GG9Ljxes6xzwpIsixTKBSoVCrcuHHjDSnj2VyVP/+zDS4tJMiUamQLdcYTAcoVjTGd08rmcLGXJJn9wwoXl+I4rV0cLitru1ksFhM7+/of88J0hLtD+nW3J7G1m8ViNjEd8eHx2tk4yDM3GVazIxjMB20bjuNxWrm3MmDonZ+JgFlQs5pRjIW8FAon2c8IoGRF4f7G4FqmYw7OjQUoNLtkyw3Gwx6Oc/qSXrOpX3QXJsPcHT7fZjFxaSqKhQHrbWQkuDAR1imeu5021g0ApSgK9zYGO+9EwMX0WHBgOaEZwtWCHMC56aiqgweDzGzjKE+jfQIC7zg7wZjHS63bYSdTZDzk48CgzlBr6Y877rOzX2oNzwvylQbpcp12r4/FJLIYDRILerCIInv5MrKisBAPspXWZDoCpAyWEvOxoI7V57Ra+crWkbrZMYkCDsHEGa+LPgqVvsxkyMfykZ5JZyz5+Z12DjSgtRgLsaHxX6p3+2zlKlQ04PjCRJSWQ8Jpt9KTJfqKzJoGbBSgZWBELsXCOtHXgMPOSlr/OYoCXJ9IsBR9slEMY5RKJe7cucP8/LyaHT2s9zQCoRFJAp6cVj6KN4M8IQgCTqcTp9PJ5OQkkiSpdho/8iM/wu7uLoqi8J/+03/i/e9/vyp6+qxusfV6nfe973184AMf4D//5/9Mv9/n537u53jppZc4PDzUibB+/vOf58KFC+rf2jXwrXaLhefIMRYGZbhHnY5WGeFRzrHpdJrd3d2nEvrrdrssLy9Tq9XweDy84x3veMPn/Ppv/hmf/V93gMG6eP5cgk5fYmMnqy6Ul86Nc2/1xP7AajVhM5upDxv0Pq+Ds0txVrfSajlPFAYlvErtJNO6uJTg/vrJguXz2JmZDJEp1UkOS1WXlhLc0zzGZh2USBqaRfXS0hiHyRIT4wHS5RqNdo9ep6/LvC4tJri3oWHJOczUW311cZweDxCPeri/k6U23PknQk5SBYP2XszHYeZkMTw/G2VlJ4PDZmF2IkgfmUK1RU6j6XZlIaFj6PnddmrNDpJmePj8bIyV3YES+njMh8Vi4vZOSveYsZCHpEas9spcnGWNy63bYaXXP3HhddgsXFmI0+j0OCpWKNRbzMeDbKf1JbOAw0KpdbJ4X5qJclfjMxVw2am2Budrt5iZjvoJ+Zwcl2vs50vIytA2Q1PiM4kCHruNskaZ4cp0nDuaodyJgIcjg+vt2fEwJpOIxWyi0m7jc9p07rR+h516p6t3ah2L6LKfi+NR7mvo7BZRwCwKqk0FwOWJKOuZAnGvC6Hfw+O00xAEkrUajSETMu51ka6dfI7XxxO8dnzyOcY9g/t/9QPfyrec0XvuPEmM3J0XFxeZmJh4rOdoe0+j/x/F45b2bt++TSwWeyjD9s0IWZb52Mc+xs/+7M9y48YN/vzP/5zZ2Vk+/elPP3SxfxK32FdffZV3vOMdHBwcMDk5CQy8lS5fvszm5iYLCwvs7e0xOzvL7du3eeGFFx56jm+1Wyw8ZxmSIAgPBaQRWLTbbZ0ygjGeNkOq1Wrcvn0bt9vN3Nwc+Xz+DZ9TrjT53398X/1bUUBEYGs9Q8hvJRoPspcssmPIRs7Ox7i3cpLV1Btt1tfSNOptLizEBgtIr8lxVqMWLgocZ/Q798mxAHcfDAdYJ4M4XBbSOT31d3EmqgMxq8XE7mGBeqNDuTrY5d+4MkWz02XrqEC708fltJ7qL00mgqxoCBjNVo+v3jlAFAXOToURLeJg168BpHjQoQMjFIXqsKHf6vRY2c5wcT5Os9rh4tRgxukgW2Y3pQeAoNuiDgPDQElibVimLNValGotlqYjOBCZmQgimEQUQeG+ppQpAMmiISMZC+mGe20WE6+sHamgNhHyEPe6MSGwnSkgKQMA0LLtBAF2UvqMZDrqV+ei2r0+5UaLjWQeRQG71cxU1I/fbmcuEmC/UEaSFc5PRFVVchgOGhuOa1b0w6dn4sFTthkJv5tZrx+/246Mgt1m4as7JzJMcZ/rVCnOaLVxYTzGHQ093GESWUnm6CsK+0NW4QW3m+3hcaJuJ2eiQdqSRMzlotzukKs32DbIBI15vYiCyDfNT/O0kc/nuXv3LmfPnn0iYHij7OlxhnJfj9TwZoQoiiQSCcbGxvj85z9PrVbjT/7kT5ie1r9fT+MWu7S0RCgU4rd+67f4qZ/6KSRJ4rd+67c4d+6cqnM3ig984AO0220WFxf5iZ/4CT7wgQ+o973VbrHwnAHSw6JWq3Hr1i08Ho9OGeFhMVJqeJLIZrMsLy8zMzPDwsICqVTqsUDts//rDp3uyWtZrSZ2h+WyUrlLqZzm7GKYeqMJioVGq4coChwly7rjnF2I82B1AFCr6ykEIBaxc2E+xuZhnm5X4uxCjJUNvcVERiMJtH9Y5PxinHaly+X5OIVak1S+xrFh6HVx9jRArW9lqDU6WK0mLs7GcLltfOXuvprhuZxWtg6MOnYecsU6kqSwsZsjGnJTawyApafIbB4V8HncpLXzVH47RwZQLVabKjgBXF6M0+srKCHYShWQZZmkwYxwLOIlX9ECn5v1IeiPZqXOTIY5Ew3gctrIVhv43HadjJFJFNg39I6m4wEdQEmyzMsrByjK4PELiSBBl4OpUVlPgAtTMR2QmAVYM7D64n4PmWEG2O72aXf6vDw0XLSaTcxHfLjNFhZjIfYLZTp9iaWxMLc1VHWnReSoqu9LGunV58dPsq79/KAs6rBZcIpmJoJeXHYbLocFSR4MxSIMDAK3DVYbRnuLcxMxnWeTx2LSDeXm602CLoeuDHh5PEau3mAy4sVqNtNXJKrtNv/o6gVMT1n2yuVy3L17l/Pnz5NIJJ7qGKMwMvceZyj37RBX1coGeTwevuM7vkO971ncYj0eD3/6p3/KBz/4QT784Q8DcObMGf7oj/5IXU/dbje/+qu/ynve8x5EUeTTn/40H/zgB/nsZz+rgtJb7RYLzzkgpdNp7t27pzYu34j08CQZkqIo7OzssLOzw6VLl1SDqcfRsms0Onz+T1Z1ty0uxLj/4KQ0JwhwdFSm0ehjsZi4dCaO1Wnh1t1DzbMU8gZdtqUzMdY2MqSzaew2M4tzMfp9fTP27EKMtU09HTxfbNBsdXmwOlg8rl+epN3r02x16HQHA6kpg67d0lxULfF1uxKbO1lsVjM+q5lwyEG9oxCLeLmrATG3y3Yqg4oG3WQLdZVCPjMewCaIzI8F2UkWUBDwed1kyieLajxgU0uNo8gWGqSHZTaTKHB22g9mK7vpEo12D6fdoqOdA0QCbtLFk0b/RNSn09kDCDsdvDAdp9nvsZMqnuovPcx+I+x1kikNFmdJVmh3+7z8YPDZ+Zw2JiJe3FYLUY9rsMADF6bjLGuAxGYSTtHOvS4bDE+v25dAEPjK+pF6zXNhPxZMXByLcFCsUG13mQp5WdPII8W87lMDtl2Dkd+5iQh3h2C5mS7islkG19Hr47NbGQt4CPtcuKxWcvUGmWqDs4mwTs1BFGDXAFjz8YhuwDZoM+vACKDSapOq1EkNCRhXJxMki0U+ePHpyAyZTIb79+9z8eLFR5rXPW087lDuaE14KwdxH6X0Dc/mFttqtfiBH/gB3vOe9/CJT3wCSZL4lV/5Fd7//vfzyiuv4HA4CIfDuuznHe94B8lkko985CO6LOmtjucSkBRFYXNzk4ODA65cuUI0Gn2s5z0uIEmSxL179yiXy7zrXe/C6/XqjvFGbJw//H/u0ii1uLyU4DhbpVxtcnys/+GOJ1wcHw8Wql5PYmUlSSzmZWE8hMlmYnM3y+J8nDVN5oMCVU3fqN3pUyyUyWTbTI15sbttbB3kqdX15IGl+SjrW/qFb0A5r2K3mbk4H8duN/PqvUM18xEYmAZqY346xNr2YKGrNWtYzCJ+p4NLC3F2j4vUW13mJoI6gPK6bKwbFCncDhsP1gfXFfQ6mJsJkS83dBP+DqcTSifXMRF2cqQBZ0lWyJa75EslRFFgcSJEOOhmbT9De5iZepw21gwlUb/bzpF2wDYRUNXNYQA+NkHkykyM42KNfLXJ2amIrr/ktJnZMKg7+Fx2VTKp1uzQ7Up8dX8AJHG/i3jQjUU04XPaVfWJxfEI9zTSR26bidUD/eekddyVZAWnzcprmycbmzGvA6fFzguTcQqNJkfFKomgm0ztBISnw362DMoSxbqeEbkYD6uaevV2l1y1wVa2qJYoPTYLPquNa+MJ+rJMsdXCYzOzqqGd28wmNg3zS+OhAEVNxjTmtJ1i/h1Xqnz7xUU89id3bU2n0zx48IBLly499jrwtPGo0l4qlaLT6WC1WlWAerNp5fD69uXP4hb78Y9/nL29Pb785S+r5/vxj3+cQCDA7//+7/OP/tE/euhrvutd7+Jzn/uc+vdb7RYLzxkgjQbclpeXaTabvPjii0/EyR+BiaIoj8ymWq0Wt2/fxmQyPXTY9Y1ArdPp89nP3qLd7nH/3jGiKHDjxjTpbJVSeVhKUqCjxwyWzsRY12Q1waALj8OGy2FVSQfzc2G2d/QeSFaLHWhznBx604w5sZsh4LVTqg5kXFotfR/gzFyEzZ3BItHu9FlZTTGR8DEe9BIKu9lNlZiI+1g1aO8dG5QRluZiPBiCj8kkcnEuiiAPFtGRWd6MAaB8brsugypXW7RbfQ4OSkT9ThJxH7KocG8zrVMSQNR/FWcSHvZSA4CSZYWdowKFcoNytcVsIoDPa8cy7PuMQDbgsbNqoMHbbXp6+FQswG0NM3Ey7MUqiCyOhdhJF+nLChGXmf3iSTnW77afAhKrZhA2V24Q8ji5tzMAksmQh3DAhWAakBVGw61TYT8rmkws6B4442qjbejpRINenVZf2OOg2+pzbTJBq9fjqFTF59R/hxcTITY0bDsBODKAxHREL/rqddh4ZedY95i4y8qky03Q60YUB72tO5pBWI/dxrphTsrtdICGbTnjc7FbbfCdl588O0omk6ytrXHlyhXC4fATP/9ZQxRF0uk0W1tbXLlyBa/Xqw7ljrIoeHrmnjGazeZb4hbbbDbV89Ne24ge/6i4c+eOrjz6VrvFwnMGSLVajVdffVVV0jZ6wr9RjHY2kiQ9tNf0OMOubwRIn/vcA0qlkx6GIssc7ObJZmtEw3acXgfdfpdUSl+LbxrowwGfk9de3cNqMXFxIU6p3kI2DFPOTofY29eXQ0TRwvb2ADgSUQcen53NPYMRmqHEtzAXYXsIUOlsFVEUcIwHWZqNsrWfQ5IVxiJ2kpr5KQHIajMWScYkitxfSeK0W5iZjdCW+uwahlynxwI6pp/f62B9qMU38m46vxAj5nYRj3kpN9ogohOCBWh39J/B/LifzcPBY/ZTJcxZEafdQtzrJhb2UG93cTmtOpuMaMDN2r4eSIz7FJ/LrqqbW8wiCa8Vv9tDRzaTLtVAEJiO+XVDwrGA65RyuZbJlizUCHqdqrX8VNhL2O9CRsHrsFEdMhPDbgfFxsn3YizgYkfT21I4nelMhvzc0dDDAy47xVKTy+MDk75Kq63LumDgBaVVlrCYxFMDtzGfWy2xAUSdFlLNLjS7HA3lj8b8Hlr1HhG3g4jXRcTrotRqU2q3SFZqBFwOtgy2GYogcD7gYf/+MqUDL+FwmEgkgtvtft0S/NHRERsbG1y5cuWJFfvfrBgB4gsvvKC6TBuzpxE4jdaM0fzO02RP9Xr9LXGLfe9738uP//iP80M/9EP88A//MLIs80u/9EuYzWb+9t/+2wB87GMfw2q1cvXqVQA+85nP8Nu//dv85m/+pnoeb7VbLDxngJRMJkkkEiwsLDyVcu4IhB4GSIeHh6ytrbG0tMTk5OQjj/96gNTvS/yPT+stJhaXEmysDRaIQr5NIddmfMLN0lyYg2SFVrvHvAYQRjEiE3Z7EiurKaYmAwg9mXMLMTZ2skiycmphmZwIcHh0smBlsi0sJjNus4g/YKXSlPC47ewaSAiKEeimQizfHyzCToeZYNCKy+PWAdLSfIx1TQYlAJnh3FGz3WNlI83FpQQ2WWBuPk6x3iJTrLFjeO3JhF8HUEGfk7WdLLKskB/2aM5M+ZgJOlEsFvbTFeYmg+wcGUpQBqv2xekwKztZqo0O2WIdm9WE12Xn0lQMWVDYTZeIhzxkNdp2Y2EvG4b+ktY6odeX8bo93B+WP2N+F2NRL4o8GOAdzTDFAx61vwQwGdELwypARZMlHOWrBL1O7g7LghMhD7GAG0lQCLq6qnCq2TB8Oh/zs62RNXpophMNcGcvRXJICY/5XSTzNeaCfnyuAdtOEAWE4XnBAKC08kMum0VniQEQ8nnJtE6uaSkeUmecCvUWpUabbLWhnrtJEFicCFJ3drGYTXRlCVmRWcnl+eh3fhs3xmPk83ny+Tx7e3uYzWYVnILBoI4wcHh4yObmJlevXiUQCPC1iIeBkTYeJWmkJUiMHqcFqdeLR5XsntUt9uzZs/zBH/wBP//zP8/NmzcRRZGrV6/yf/7P/9FlQB/+8IfZ39/HbDZz9uxZPvnJT/Kd3/md6v1vtVssPGeAtLS09EyDraMPXnsMWZZZW1t7bH+kEaPmYWW/L/3lJuWyhvWlKBQNg5RzCxF2tnJAHbvdwqWlBIrB92dyIsiOoe9it1nYHJb0vF478wtRdg70i7LDoZcuGYv7VNZeo9lHEAZstkTIRqbYQVZgPOE9NXSrjWarTyziZX01w1TCjz/oZCdVOjXkujQf0+nqCUA6W6FUaVGqDBala5cm6UkS6WKdTKGO/SGDuuNxH0UNS87ntrJ5cPIehrwOYh434rjAznEBmYeLvB4beiaL0xHubabJDYHC67bTaXa5MhcnU6qTLg6ylqTGwXYmHtA52ALUNYOz+XKDsbCHu9tpBAFmY34CPifNbh+TKKj9F21/CWAhYRiEBR0wJgs1on63ms3FfE6CLgvtbpeEz0WqPGDBtdv67OjcRIQVTYlv4HprYEAOWX17QyCbifjZy5dxWMyMh7y47VasJhPjfg/Jcg0FWEyEdeU7v8POuuH9Nf4WLoxHuaextzCbRO4dZ3Sir5cnY8z5AtycmUAURZ0YaalUIp/Ps76+TqfTIRAIEIlE6HQ6HB4ecu3aNfx+P1+LeCMwMsabNZTbaDQYHx8/dfub4Rb73ve+l/e+972PvP9DH/oQH/rQh97wOG+lWyw8Z4D0rH4igiDoMpyH6d29UZhMJlW4UXs+sqzw8d/5ElYFls6PsX9UxOk0kU7ptcW0m9x2u0e11OToqMjSmRiSAFu7ORwOfSkyHvOqYARQrbZp1bvU8g3OLkTpoVBrtNk09Hx8XjvJk3WEWMTL9u5gYXS5rETCDvqKvicxkfCzvadf3EdU3ONUmeNUmbmZwcDludkomwc5+pJCo3WaSLFmyKD2j4oUhoAwlfAzPuZn86BAc7jIO+wWNg2vHfBaqdRPylZ2q5mvLh8AA9LC9EQAu9Oi61stTkdO2W3sGUgIM4mATgFifjyISYHFiRA7qRJ9ScZhsH5YmAjpdfYEVNdcRYH9dBm/28HGbharxcRCPIjLZaVUbyOgoAybYharnh58djLM2qGWvSboBF1zlSZui5P9oQ+W125lcSKEhILV2uKoWKUnK+QN3kTnJqM6R1u3zXJaq2/YX2r3+myniwMjwuFzHBYz40EvZkVgMeil1GxR6PSYjQW49TqmggB1Q5P03FiEO5qhXI/dxmoqz4++9+apxVcURVVsdHFxkWazSS6XY39/n1arhcPhIJfLoSgKPp/vbVHzHsXx8THr6+uPDUYPi9fLnl5Pb6/ZbH5dK33DcwZIb0aMAGk0v+T1erl27dpj+5No+1DaH8LLX9ricJix3F8+RBQF4qEgYsJHMjVYKCanguwaSnMOpxVFgc2NweJ9djGKSRjMLXW7gy9n0O8ko5kZCgXdbGwMLCY2hs974YVJYkEPe0dFao0OoaBLR5KAAVEiPaR2NxqDnko+12ByzIfJAkeZGrKsX0jGYj62DOcsigKbw0FYh8PCtQsJcuXmiVSPotAwZFBnF2I6ksRxukyz1aVYbjIzEcDrcWC2mri1ctI4d9hMJHP6LCAccJEe9q7qzQ6lcpPkegW7zczSRBTBLNAzlLbOzUbVGSQYDqwayAIep00nY3RhOkq13sDntFBp9obXrV/4zk5FdPNLoiBwkCkDg1Lr5mGeKwsJ9o+KuO1WJmM+HA4r2ape1sgotHp+Osp9jX26WRTI1k82DvV2l76kcHdIZjCJAtdn4/RlGb+zS7bWoNzqcWxgvC0k9K63AZedlSNjD+1kk9Xu9bFbzby2c0LycFktNGodXhgb9KTqnS4ep01nGDgXOa0EnqnqS6oLsSCb2QLffnmR14uRnI4kSfT7fW7cuEG321XNMBVFIRwOq2Kkjytw+jTxZoCRMbTZ0yhTetRQbrlc/htA+lqfgDbeDMdFk8lEPp9nd3f3seeXtDH6AkmSpJIqFEXhdz+hFxmMxdxsrQ120wsLUUSLiGx4mXjcy8a6fmhMNJlYvZfE4bCyuBSn0e6xvqF/TCzqpaCxqvD7Hdy/f0y/L2M2i5w/E8XptlPI19RFz+93sGEAqEjIQy5b5/h4AHbRiBuhJxEL2skUWiAImE36EulYzKsDqFarR7ncYn8nTyToIpHwoYiCTkMPoNYwAlSc1c3BdR0clTCJZbweO9MRDwo9yg2J6cmwrr/0MAq53+sgmanQ7vRZ284wOebnOF1hcTKEw2nlKF85pWN3dibCquY4ZhE2NcDS6UlUqzX2s4PSYSLkYSLupdrsYjWb1JmerqF8fG4mqqOQW80mtoe9o0a7y9p+jsvzCY6TFfxOGxNRH06nlWSxqgOoqiHbPDcV5d7eyXHddivrGkCVZIWeJPNAQ9C4PB2l3esSdtiptjsUWh12DTp2o/7SKBIB9yl1h5LBYmQhEWRZA5Zum4WjXJWI3UnE68JhNeOwW+j2JZKVGrKiDOaXDKaCe4UyH3zhLA7r6xOTFEVha2uLZDLJjRs3VJZZLBZDURSq1aqaPY1cWkcA9UbEiCeJtwKMjDFaWx42lJvNZvnyl7+s6td9vcZzBUjPGqMdx87ODpcvX34qfvzD6JB3bu2rGc4o3C4nMPgx72xliSd8KIrChXMJ1jfT9PvKIGNJnWQ+/oBTPU6r1WXl3jEXLowxPxkCk8DWTha3x6Er3wGMjwd48GAAAP2+zNFhiW6nx1jQQyjqYfewyMRYgPsaSSKvx34KoCxmmePkICOJRTxE424ODfNTdru+3KQFqEKxQaHYYGE2wmTYhz/g5ChTJhhwneoVVWv6zGdpqDYx6jdZzCK9Ro/LC3GOclWKlSbTE8GHMPQMPk4OG7KsqK83MxGg25J5YS5BqdliP12i2tAD1PxEiHUN2cJqFkiVTggcmUKNSMDF5m4Os3lAAfd77RwX9ZnOSPpoFGenIzpWn8tuYf1wNMfVYXUvy8X5OKlMFb/TxnjEh8dtI1msISgKyvC4WQNhY2EsxJ2dk/ch5HWwamD19WSZLY2Z49mxIMV6i5DXgqTIdGSZbYOlRMTnJlk+2ejEPXaSVf3nlKvqlTEWEiFu76Vp9/oUak2CbgeVZhtJUTCJAhN+LwGbnWvjCbpyf2A86HVyP5nju2+8frNbURQ2NjbIZDLcuHHjVHYgCAI+nw+fz8fCwgLtdlslRox8hkbgZCRGPEm8HWD0sBiV6/L5PP/wH/5DvuVbvoVf/uVfftte/3mMvzaA1O/3uXfvHv1+n/n5+Wca1jIy7f78CyuYTALSsPQyNh5gywBQ/oCTtQdJMqkKdoeZ+fkgmbR+8HRszM9K6QQ03G4bWxtZusNBz0jYzexClPsrSXpD0U+n08L2tn4xmpkO8eD+MZlMlUymitdrh47M3FRoQGAQBKYngjqAsttFsrmTnXkuVyMW8VArtTkzG0G0iOSLNfYO9ADldulnXMbiXraG2cdxsjxo9o8HubgQZy9ZpN7ssjATZsvQK8rm9e/F4lyMFQ34LEyFMCsDM8HssA81mfBzb+3kGrQ2GaOwWS3sHWVJDmWJLi4MSk3eKRs76QKdrkTJMEg8Hnaxmz5ZmF0Oi+qw2+/LbB3kOT8XI5UsE3DbmYj5cDitp5xmsyUDkEyETwnDjmjntWaHtf0sixMhjlNlHGaRqXiQoM9JplqnOFRAN/aXACYifgo1TaYT9LBu6Jl1JIWsBlyWxgIUMmWiDgtuuwWL1Uyl3sQkDCzcAewWfYlyMRFmI6XNdOCgoP/cpsN+lQAhyQqyovCVrSPdYzxmKx+8dJaE/9FGc4qisL6+Ti6X48aNG4/V37Xb7TqfISMxIhgMqsw94yzOo+JrBUajKJVKfMd3fAdzc3N86lOfektLkn8V4rkCpKdNv5vNJrdv38ZsNuPz+Z75Q9UC0vKtXT7/h/dwOM3MnEtwcFjC67Gj4RIQCrnZWD25pd3q0+9KVDI1zi7FaXZ6FEp1tjb1i+nMTJgH9056KvV6h/vLh/R7EufPxKi3unh8DjU7ArDZzOwaylqTkwOAAohHPEQTXrIGa4i5mSgrq5rdvMvK5nYWRUGlpF+6OE4i4qPe6rJ3WMDjsakDtqPweh0kNUCbiPu4szyUvjGJLM6E8XmcOOxmWu0B0E4mPBymNOejQKGoJ4O4nFbuDq9hMu4jFHRRbXR0GUoi6lWp4gDRkPsUQPV6ElvD7MlsEnnX+Una/T5yXyJfbSEKUGnqe1BRn00HUH6vXRVwrdbbrNTbLM1GqRRbjIc9RAJubHYz9zX9GlGAw6yedDCdCOgAKuxzsjEkTXT6MpuHeeaVELvHRcwmkfmon3jIQ6nRRpJlqs3OQNbIUGYL+1wqzRtgJhZg16DNV+v0kWSFfKNHvtHjTMzLYaaKSYCIy4rHYcbpdDMjWjgqVenLCgYyKOcmotzXSB9ZzSa2DKy+iNel6y/NRgJsZYr8X+//Bh4ViqKwurpKsVjkxo0bOJ7CrM9kMqnZkaIoNBoN8vk8mUyG9fV1XC6XCk4+n++ha8vXGowqlQof/OAHicfj/O7v/u7XPRjBcwZITxPFYpHbt2+TSCQ4e/Ysy8vLb4pJnyRJVCoVfvvX/xiAVrPP6vIRY+OBwU4+4lEX/VjCN+jnDMPhNHO0Xx6QEoZAde0dMzRaXTa2M0iSMgAWw2I/vxBRAWptJYnFImIXw1xYjLO5l6PblTizEFXBB8BsFjnQlKNyuRrRqJdCqsp43AkmkUK5w74h85mdCXNfA3ROp5WNzQydzjBbC7lYWIiyvZ9XrdddTvOpMqDP61BJHZIk02r22Nrex2IxcXY6QrPbotfTM/0W56MqaWIUGQ2AJtMVgn4X+zt5YiE3saiXVrfH1p7ByC/k0Vm1j8W8KhjBwPSuUG6wO5xpivqdLMyGyVeaVBtt+pKM2SRSqOnPz2MTKFdPiAixkJv14Wun8zXS+RrzEyE69R4zMT9+rwO73cQdDfg8zLrdZVbQQstE9GR+qS/J7KZKSNJA9RwGPZ+5iRD1dodCvUWyUMXpOK3u4DKoUSxNhHVsO1GAYnOoyaZArt7Fbbdwb0gEEQWBC2MhzJi4Ohmn3u2RLtd0BoIwsGVfPtD3l9aSp89lKRHmhemHVygUReHBgweq59jjZjKvF4Ig4Ha7cbvdzMzM0Ov1KBQK5PN57ty5Awx8fUYAZrFYvuZgVKvV+Af/4B/g9/v5zGc+c0ox5us1/koD0sHBAevr65w9e1b1+XgzXGNFUaRQKPDaV1fZ2Sjr7vP5nawMM4LFc3EwiWys6hv8Y+M+tjdOQMJmM7P+IEmz0cHrczCxGEK0mrl750Ro1WQSOTrUL2BnFuOs3hsc2+GwsLQUp21QfFhcjLOiARaTSeDoqIAsK6SSg2zi8uWJgTZcsUYmV8diEdk3zDjNzeoBqtXssnz7gE6nz8xEAI/fiWgRWL6vATGHSa/Fx6B3dZwaZCobW1nCQRu1Wp/zM1EUUWD7KE+/p/98lhb0WnyCAMkhmy1fqJMv1Ll0bgwbIgtzMXqyTK7cYMMg8ur3OklmTrK3qbGACkYwUIpwpKocpcsD2vZ4hGDQwc5xkWq9A8KAdl6o6RXjrQbix0TMp9qtH6bLHKbLTMb9SG2Z+XgAr9uOzWHm9tbJe2U1C6Qq+s/O59bPL82NBXUglinVQRj+l8G5XZ6M0ez26PQljks1zCbhFEAZp1LOTUZ5cKBXasg2TsBGVhSazQb7GvHbmaifaq3N+VgYu9VMV5KQh1nUyHbqjGF+Keiys3qc46c/+E0PzUhkWeb+/fvU63Vu3Ljxli3CFouFeDxOPB5HURQqlYo6kPvgwQMcDgetVotz5859TQZvG40G3/Vd34XNZuOzn/3sU2WIf13juQKkxy3ZybLM6uoq6XSa69ev63Y4zwpIiqLQ6/XY29tja0Xfe/AHnWxqSnObq2kuXpkgEfbgDjhYX89gsZpIHunLZeGojeTBYFGpVlqs3zvG53dydiFKqyuxv59naSnOikEtPJs6WVxbrR6ypLCzmmFmJoTDbWNnP0c2o6/xz86G2NrSe/YcHRUpDh1hZ6ZDRMd8qpcSDLOsw9MANSoVHh6VcBbrgMDidBizxcTWQZ6Z6Qgra5o5GJdZp+4AEA76KRQyrA97brPTQayiibNzUXaOCnS70iktvqX5mG7GySQKHCZL1OodVoasxcvnxml7e5isJg7SZUSRgTGiJgT034O5yRA7hwMg6fYkNvdyxBsecrk6sYCLWMSD023jrgZIXE4r6ZL+/EzoAWt2PMju8eD920uWUIBY2IPclpkMeRDpEQp5WT0qMnqq321nzeCMa7Pof45npyI6iaJuT2L9IEdJQxi5sTRBw9vDYjFRbXXoSRIbhlmk+kNYfVpVcrfdQrquv0ap26ZQa1MYvtbiWJiNwxwWk0g84MHvsmMRRM4lwhTqTbLVJtNhP3v5Cu+9pFcMgMFv9t69ezSbTW7cuPG2lacEQcDv9+P3+1Ujuq2tLbxeL2tra+zs7BCJRAiHwwQCgbfcYqLVavE93/M9yLLMH/7hH37d07yN8VwB0uNEt9vl9u3b9Pt93v3ud5/aXTwLII1UwHu9Hh5nlHopgygKyMMt4fh4kAf5kwau02VlZyNDq9mFg0H2dOZCgpUHJ6BlMgnUK/oFbGzSy+FeRQWJiYkANrOIxWqiN5xNWlpKsL6S0j2vNHz8wd5gUT17IYEoilgtIskheGUNfYylpThrGhA9PCjQaHSgLXF+IUqnJ2F3WXmwoj/no0N9iW9uNsL9B0m2h5mM3+dE7CsszkbY3s8P9PASfjY0YOj1WNkwAJTValHByWoxcf3CJM1OV9dzqhtVIgx+UGazyO6hXvX8xpWpAROs2uQoXcbrtnKQ1m8MzGZ9E//MbITNYT8uX2pQKDUIBVz0an3mx4N4PDasNjOvrp185n6PnaOcnommSPrPd2k6otqwH+dqCAI0OiK9hsRMzI/PY8fltHJvP0N1eK3RgJs1g4CrVh8PTtPObRYTKwc5He39ynwcpa8Q8DoQRAFJ6rOqASgFyBlnhozzS247xzX9Z9BqDa65J8kc5it4nTZe3TrZ1PjsVhrNHv/kPS9gNXg1SZLE3bt36XQ6XL9+/WvWKzk+PmZnZ4dr164RDAaRJIlisUg+n2d1dZVut0swGFQB6s0oJ2qj3W7zvd/7vTSbTf7oj/4Ij+fRpI+v13juAOlRrrEwULW9desWfr+f69evP3TY1WQyqSq4TxLtdptbt25hMpkIBAJ84fc2WL19iD/oYnw2RDpbYXNNX56aW4jyQFN2a9TbbNw/ptfscuFsgmKliT/oZk3T8wGoV/WlG4tVYPmVPRxOK4vnEuTyNaoVPR33zFKMzXXN4q4o1MotjofadrGYC6fXzHGqpXtMpaJfPBcX46wPs4y1lYEh4OxshEtLCbKFOpl8jbOLMVYMAKXV0AOYmPCrJT6Xy8bMbJhGq60jIYSDTmqaaw36HTqA6vYkGvUOG1sZzGaRpekIHr9dJ1EEqFTxUSzNn6iQw8CqfXUzTaM5eC2f08J42EkfK3upEt2eRDzsYcNABpEk/YK/NBdjbSgEu3dUxGwScDlsOBQzU+N+rFYzFoeJVx+cKIyHfQ72DWzKdlf/+Z6bjbEyPO5BuowlL2K3Wmg0O4wNlcG9bhsiDLydBJgw6OPB6Vmvxamoqo8HA1v21YMc3b7E8ZDVOBmwI/YFJkJe/B47DoeFTKWBRWX1waGRSRf1c1ujMB73uzgs60GsXNOTUmZjQVaPsrx0RZ8dSZLE8vIy/X6f69evP7Fg8psVD+sZmUwmIpEIkUhEJUbkcjlSqRRra2u43W617/QoYsTjRrfb5Z/8k39CPp/n85//PD6f7826tL9W8dwB0qNiZNY3NzfH3Nzc64qjPqlrbLlc5vbt20QiEc6fP8+f/+nLfOXPdgb3FRuUiw0uXZsiHvZynCxTKjaxWE0cGEgJZ84lWL072E2v3j1CECDoc3DmTJStzQwKAotn42xogU1RqA9nP1rNLqvLR0zPhRAQWVyMsbmZQVEGMkTamFuIsqPpu+QyDSZsAUx9hfOLcerNDhabie0t/TnWDYvamcU4m5rh3ZnpIHazGbfLpj52cTHO6uqjAarR6NBttdnbLOD32JicDtHu90+BmNttolg++TsScrE5BJ9+X2ZzO8uZ+QjtSpf56SAOlw1FVFRvpVHkDQy9M3Mx7mvo4b2+xP5hnXanPwC6yRChkBtZklWq9kTcf0oItmkYsF2ci7EyHO7d2Mlhs5gQLSYCdjtjMR+iWcBiMZMvnwBUJOBg3+DUWzPMLy1NR7k/nF/KFGrU6m1kBiaAfqeNsaiXgM+JzWziIF+m15dP9ZcUTnpLo1gYD3FH43rrtpk4LneQFYXDXIXDXIXFyTB7xyVEQWAi6GEq5qfV6xN0OUiXa7R7fTYNNvKxgIe0ZlZqIujmyPDamVKVb7k4S8hzQt+WJInbt2+jKMoTqaW82TECo9cTa9USI2ZnZ+n1eurM0+3btxEEQacY8STA2uv1+Kf/9J9yeHjIF77wha+ZYOxfhXjuAWk0yb23t8fly5ff0DHySUt2yWSSBw8ecObMGaanpxEEgZe/sK/bPdsdFnbW0jQbHUSTwLnzYzi9dm59dU99zKDno1+IzpxLsDokQIQiHqLjfpodQ//hTIxdA3OtXm1QyA4WMY/PzsK5OLu7+kXCmEVOzYY42B0ssKOM7MKlcS6eG+ju1Wpt5uYj7GhnmhROkSQcNgt3Xt3HZBJZmo8giwrVssHszQBQojhwxwWo1Tqs3E9y8cI4bouFxZkolUabQrlBOqM/jtUio72MeMzL5vD8dodlyfnZMFOR/z977x0f2UGe+3/P9N67pFHv29f22hCwwRT3XS6hhBAbckNIAuReQhIIl5aQxjVceoBAKAnxD8f2GhuDbRy864rb9l1Jq97LSDOarunn98eMRueM1n13tbb1fD58Pnh2dObMaHSe877v8z5PeQl3KZrGaNLIpOirJq9SlAmqfH6FQomFUJyJ6Qj5fBGfy4THbUGvVxMKJ8hVBBZNdQ7GZ+SfcbS2Sm32cKLijxdLZDAZNOTyRdxGAz63hZIgks1nCEk+L59dz1RNdHu4dhE26OJ4RaGXSGeZX0owMhWmUCyhVAg0e2x4LSYMajWhaIpQNEl3o5v+Gn+8yXX7S1YGJKIO6f5SSRSZDSfQalSMSXKwdrcHSGby6DwqcqUiiUyWoRrZud1slBFSo8PMRCRBiybLU089VV1UHRwcrDpLbxQZrcZYvFjncLVajd/vx+/3UyqVqsKIsbExTp48ic1mqxKU0Wh81hvkQqHAH/3RHzE0NMSBAwc2JNfplYQLjpCkLbvVZdd4PM6ll176gnquL5SQpKm0O3bswO12AxBbTvH0I5Oy57Z1+jh1pPxYqSgydGoWi1VPY4MdtV7DyOA8HT0BTksUaOXKZ+3CFF5MYLEZmBsP09PlIxJfYX4uhlgzJ2hodDI1tnbnnohlmJkIEQulaWpxotKoyeYLjNUsy2pqBuL1jQ5OHZ+pfCYKOts9GC06mUqqqdnFxFhNHEN2NbK5xNDgAu0dXqKhJL3tPtK5POMTYSIR+QXV7zMyM732mEqlYGIyTCKRqWZHbd/RQKFQIpbKMDkdwWzWEwrLyVCpkJN1nd/GSOX8pmeiAPR0+9na5iedyzM2HaajRW7yqlAIzEgcDACagk5OVJSQi0tJ8vki8VQWQYD2egd6vQaFWgHTa+3GtkaXTEKOQDVefRXN9U5ODM5Vc56MOhUruSJeqx6v20JJAJVayXwkXT2uz65lTrIiIAgwsygnrEaJMWyxJJLJFnjq5GSVvG1GLWathp3NPlK5PDPhOM0+h8wfT6NSMLUkr2Jcttr9JZuMjKDcMpyRtPB2tPpYWEzS7LBiMZZDEdO5HA6jjkgyAwIY9Dp2NBl5zzVvYWlpiVAoxMjICAqFAr/fTzQaPS+CgVq8VDKqhUKhwG63Y7fbaW9vZ2VlpVo9jYyMoNVqqztPdrtdZj/2Z3/2Z5w4cYIDBw6c88TbVwMuOEJaRTqd5vDhw2g0Gi677LIXPAh9IYS0SnSJRGJdKu0Ddx7BHzAzNb6MiIBao2SqZvbQ0Rtg4Pg00cqF2ekxY9Cq0epUZCuD+ZZOH6M1rSaxKJLLFqpV09bdQbL54qpfKQDamp0Sf52NucrFeGKkTFTBFgt1fj2JVIl4PIs/YF3nHKHXrX1exWKJdDLL0MB8WXbe5CC8nF6Xt9TY6GSiJhAwly2wspKjvzIv6u0NICgEVAqBmdkoIJDP1Wz818yg1GoFoyOLJCrx7E67gfZ2L3OLcSamIiAIWC065kPy1payRm7dUGenT1KZ6XQqVKUSdS4dy4kC6WyBzlZv1UMPyuQ4PiV/T/UBe9UBYmR8CbfTyFIkhcOsJ+CzIgog1hitdjZ7GJDIzBUKgen5qOw5HoeOsdkkS8tplpbTuB0mlqJJPFYDXpcFlAIKJcxH5qoEFXBomYmszflUSkVVsbcKr8vEgsTyx2LUcahfPpcUXCU6PTayuQyiSoPdauCo1NZIr1kXKmisiTPpqHPJFHqCUM5yyheKTIZiQIztrX4GKkRt1qlp8zsQBYH3/c52tFotbrebqakpnE4n9fX1RCKRqmDA6XRWBQPneu/mbJHRmaDX62loaKChoUEmjDh16hSFQoEf/ehH7Nixg2PHjnH06FEOHjwoyx3axLPjgiSkcDjM0aNHCQQCdHZ2vij7+ecjpJWVFQ4fPoxarebSSy+VEV0qkWH/jx4lncxic+gJtHgRlAKnjkxJjiASDsmHwHankaO/HUFn0NDTG2BhIU6xZtemvtHJ+LBcRZVJ5xjun8dqN1DX7CSdyTNcI5yw2AxVQgKwO/RMjazdUQfqzdjsWhbm1ioft9fCcA0ZGs1lxVA8tkLfsRl8ASu5RJbebj8TUxGSySwarfzrEGxyMjEuv5inkpnqYw67jtYOH5NTUdlzlmruzNvbffRJbIxSySx9p2ZJJrPYrXrq6u3ojRoOHVurTK1WHdOz8uMolfI2pcOmp29gbbmzpcGOUavG7zYzF4qDIJxRAFHru+d1WVgMl+PRo/EV/F4Lcwtx6n1WHHYjmVyhGn2xiq4WD32SykylFAhF5RWfz21mcTlZraACHguzoTg2o5aA14pKraCkEJlbDlV/d3VOPROhtWrToFUzWJMFVVb6rX0HmgMO+iRkKbJCIVei3mrGbtGjVCrQ6lQyfzy7WbfOH6+269Qd9NBXs780KpkvpTJ5EAQWoyle1xUkl8tx6NAhDAYDW7duRaFQ4PF46OzsJJlMsrS0xMzMDP39/ZjN5mpVYTabz5pJKpxbMqqFVBjR1dVFLBbj17/+NV/72teIRCJs2bKF73//+1x77bVcdNFF5zVK45WIC46QJiYmGBgYoLu7m/r6+hf9889FSKsR5l6vl+7u7nVfjl/919OkK1LiWGSFRGwCf4OD3m11TI6HScQztPcEGDolb81lK3s0mXSO/iOTNLS40CgFmlpcjI8sgiCgq8ne8QasDFesfGLLaWLLabq3Buhs95ArlhgbWcTpNsv2ngAMJgVRCUekk3kWZubQ6ZS4/EbiySJ2m55FifLL6TKtIyibzcDpU7PMTEVQKhVs31ZHJleUefZpNTUE1eiQEVR0OcPSQoLF2SgN9XasDiMoBNmCLcBSjY1Re7unKjOPxVbIZPKolAqMKjXBoIOCKKLWqWRefDarjoka4iuV5MudSqWSw4fLpOZ2GPF6LSgVirKRayXWva3Fw0kJQRn1mqr0exUOq4G5hTiz8zFm52M0BOzMLcRoq7NjNGmJpzPrxCFdLV5OSiozvU7NUE1mk91iYDYUJ5HKcno0RFOdnbG5ZTRqJfVeG3q9imKpiF6zwkqufL4Bl4Gh2TXysRp1nK45rlCSf9+l+0uzS3EUgoDVrKOwUqDOYcZhMWCz6FiIpphbTpDI5PDZTev88TK5fM1xPRyXyMMNlfylP3rbRRTyeQ4dOoTJZGLLli2yvy1BEDCbzZjNZpqbm8nlciwtLVVdvJ8rPfbF4nySUS0EQcBisVAqlTAajdx3332cPn2ae+65h69//es8/fTTtLe3n9dzeqXhgiMkQRC46KKLXvKXSaVSnZGQZmZm6Ovro6Ojg8bGxnX/nl3J84ufyiMmOrbUM3BsipnxMCq1kq4e/7ot+KZ2D+M1HnUajYrhykU50ODAFbBWHRdWYXOaWJBcaBxOE4OnZilVyMDnt9LQ5uLU8RzpipzZYFSxMCOXcdc3OOlbniaTLjA9EsNg0hANLVMXMLAQWqFQEPH45HEWdodRRnTFYol8rsjQqVkMRi2NbS5KCpGB/nlg7c61psNHMLhWQc1MLzMzvUxjk5NGvxWz1cD0XBSP11LNdFrFQqgm8qDNU13C7e+fQ6dTodWq6Woqm75OTC9TX+cgGpO4mZvU61p8Uo+CcCSFw26gr38OtVpJR9CFdnXXSSJNb2l0yQxcLSbdeodxg6Zs7VNR5bU0upifjxKwajGadGTyIuEaWXR7o6uav1Q97rj8uLpKUGMuX2R0OkxHo4vBSvXmd5qwmbWIQgmnUU0klUNEwO8yMjC59r5tJg2jNaq+Qk1eVFeTh75KvMV8OEEklkajVpKsCFrcFgMtbjt+q4lcsUQ4kUanVTEqmS+JQDgh/+611zkZnFnirduaeeaZZ7BarfT29j5vtaPRaAgEAgQCgWp67OLiIgMDAy9rF2gjyQjKy7+f+9zn2L9/PwcPHqSjo4OLL76Y97///RQKhQ0TdryScMF9Qo2NjS/LaaG2Qlq1uJ+enmbnzp3PqnL59Z2HiEflf3ARyZ19IV8knysw2jdHa7efkiAwNrSw7o/PX29jRHKxn5uKYLHq0QoCHVvrmJuLIgJDfbPrfm5ZMuxOp3Icf3y0vJNSZyJXBJfHRv/xtdmB0axbV/k0tXqq1kYarRJ/vYHFhbDsIhwI2IhKPOBsNkN1xyqdytJ/Yobu3gAuiwFvna0sBCgVGBuVt++0+poKKiht8ZVbO8GAjS3dfqZno0RjK3R2ru1BQfmU5mrUia2tZYKKVVRuZrOWbCJHb4ePqdkw8WSeujoncclxbFZNVQCxikKlKsrniwyPLNLZ7mV0KITXacLjNZMrFAktycmxsd4hIyin3cDpGt89EMnliiwsFWEpQ0eLm8mZKF31ZdJbTq4wW6P8awrYZQTltBnXZT9JFYcL4SQOq4H+isBFr1HidRgopDPUWbXEMkWS2QIWnRLJeImA2yJPvYX1ab9BNyck+0vZXJ4jgzNkJW3mrS0+mipCBoVSQKFUlGPZRUCo2DuFE7xtZysDp47jcDjo7u5+0a03aXpsZ2fnGXeBVsnJYrE86/E3moxEUeQf/uEf+M///E8OHDhAR4c8mHCTjF4YXnWf0iohrcYGHzt2jFQqxaWXXvqsNh35XIEnH+ijrcvHcH954BxosjI7Hl17kihSqLgojFYIp3tHAyKgVCkoVi5+ZpuBOYnLgd1lYqhS+fQdmkAQYNfvtBEJpxgdCoEgYDLryq8rQbDZSV9l6XZ2LIbeqMGgKs+oxsaWWEnnaGpxyRZz9QY1o4NrF89ctojVZGVmZAqX24jerCaWzDI0ICfDQNBB3/E1NwKrTc/gwBzFQolwhZSDrRbc7W7mFxLE4hk8HvM6IYWuJpq9sdHJSclxGxsdmPVq7HZDVX0nXdSFslhgdjYqO04w6JQ5nrc0uVALChrr7UxORxARCPgdRGMStwGrmrEagcZKpSJY9cfr7vSxPJ+ktd6B0VxuxY3XXMz9Xivh5bUbFZfDyGiND2ChUCKTzVdbf91tXsKhFJ11LnR6FYmVHFM1AoiA18KSxDHB77YwVDMrWpGYm2ZzRcwmI6eG196j06iilCvS7DJQFBUsJTPYLYbqUixAc6DcFpRiqUZ23lrv4phkf8lm0tE3sUCxtMaQnUEPiVgGq0GLx27EYzMRz2RoM+RxOr10dXW97DlQ7S7QamtvaWmJyclJFApFlZycTme1tXchkNH//b//l+9///s8+OCD9PT0nPdzeLXggiOkl/ulXv2SJpNJjh07hlar5bLLLnvORbaDdx/l5FPlRVhvvR2jTUckKh+oN7Z7mKhpzRVzRYZOzmC26Wno9pNIZeXzJcBXZ2c5tHYsg0nH8SfHyecKeANWnH4rCpWCU4fXiEWnV69T6DW3e6sEpdao6O7xlWdXksqnud1brY4AtDpVVUgRWUzBInRtDZBMrlCkxNxcCrVawfBpORnWNzg4JSESvUHF7ESSQiGOIJQrGKfXTDKRJV25yHs8ZoZqjFY1NXMzhULB4afHy59n0IHZpqdQkjdBOzq8DEiEHUqlwFSNz57JqKkSncWso6nZRb5QRKdVVWXrHo+d5dja78vt1DFZs6gbi69QLJYYrxBXT7efcDZFd6MHpVpBOJZmpCbXSauWt8Pq/esXbJPpHJlsvpob1dvpZyYWpdXvwGTSksnnma6Yx67CaTUwt7hGJI1+O+Oz8vNdrnHdqPM7OTmyAJQrIINWwdxMmFaXGa1OQ7YoYqj5HXQ0uBiU7S8hE0gANPrsMoLy2E3VmVQinSWRzlIqldBQoLe1h46OjrMqSlhFbWsvGo2yuLjI4OAg2WwWu92OWq0mFAqxa9euDSOjr33ta3zzm9/kgQceYNu2bef9HF5NuOAI6eVilZCeeuqpF6TSKxaK3PGDh6v/vTC9TIvZTyGWo77JzMJsinyuRLFmcOwJWBmqLKAmoiv0PTNBz64gnZ0+4skMs1PLmKx6hk/JL/aNbW76Kqq90GyM2HIag15Nd6+fWCzD7PQygUYbo/1rF1OVWsGUpB2VzxUQRBg5MY2vzobTa2FmZpnpmoqgtUNOUGq1kumJCMl4eQZhMGpo6fQwPxdjMVTeldFolYzULOo2tXjor+xYiWJZpDA9EaYkinS0eVColSjVCkKS2ZDHY5E5QACoJR5nU5MRmpUuxkeWqK+zYXeZCEWS1TZd9T20uhmUVH3lHac1gkokMojFEgN9c6hUCtqCTkwWLfNL8rRXk9nAYnht9hLwmaqxGVDxeAsnSaWynK68/y3dfoqZIq11TtLZDIvLCUIRuZLObJLPOJoanDKZuUjZJy9fKDJWeXxrp5/4Upqg14rNZgABFqMp2fkaDHJJdluDi+Ep+V7UQo1jRVujl+ND80QrRqlmnZLJbBGPWYfLYUajVaHWKDEbtCQqHnpdTR5OjT+7kg7A5zCzIJmR1bvMjM1H+cQNO84ZGdVCoVDgcDhwOBx0dHSQTqcZHh5mfr5igzUwUFW7PVdr72xCFEW+/e1v8+Uvf5n777+f3bt3n/PXfLXjVUdIs7PlC2dTUxOtra3P+/xH7zvJvPQOXBQp5AokYxmSsQxavZrOXi8zNXlCVruBUMWdYPW/B49PV6MVGts9uOvsHPrtSPU5Wr16nQCitdNH/5FJohXjVH+DhdzKCkqVQLFQrh7aewLV3SUot7XmK3f7CzNRFmaidG+vp1gUcblMjA2HEBQKZmsMUtsk1kYA2WyByeEw8egKbq8Fm8tAUSwwOrT2cxqNkolReZUQbHRWK6jhgXnMVj3FQomuNk95tja+iNNtIiSRx3t9VoZriE5ZuVGYm4kyNxOlpdVNPJ5ha6efRDrL+FSEhZpKonbHSaNRMlYh60KhxOjoIr29AULTUTwuEx6fBVGgWq1IP0MpmoM2xiQqPkEo5zJFltMsVeZtXR0e4oksDoeRbKFINLmyzmFcq5YrxNqb3DK1nQDMhuKIIszMx5iZj7G1y09oNo7TosfrNqPTa4ilVlApBQoVkUvt9bWryUO/hEhUSoGJmoXgYMDJqdEQ4XiGcDyD3awmUiErp0WPx27CotXSG/SwlEgRWk7R1ejhxFiNkq5Gfaco5alzGLnhiovPy4W/FoIgsLy8TDgc5qKLLsJkMlVbe4cPH0ahUMhsfs7F/EYURb7//e/zD//wD/zqV7/ikksuOeuv8VrEBUdIL/ULXiqVOH36NLOzs9X9hxfyM3d8/yHZY8EOL5MSE9PsSp5STiS1lKRtSx3JVJZkMltV0a0i0OSk//DaHk1oZpnFmSh2kxZ/U9kRIdjmpe/I2nOUKgWzNS0hpVpgZnAZo1lHsNvL0lJinSXR6mKuFEsL8arU2+400drjl3ndCQKEatRY7d1+BiqBgEsLcZaXEphMOlw2DQazjtBiGqdXx8zE2p24Vqta5xKxSlCDFaJwuk2QLdLR5mF0fIlCoYTDaWRB8vo+n4WRGnJGEFhaTFRl4nV1egxGIx6nlfGpMPl86Qw7Tl7ZfEmnUzFasRZaWkqytJSkpycA2RLtQSc6g4ZsoVg2eZV819IZ+eC/rcVdtTGCcutwdi5OPJGpVlZbe8sZTVa7gWyuSCqTW5fRJNboMjtbvTLzWJVSYGKmfAOwuge1tdPP+FgYlVJBg8+G06EnFIlhNaqJJXMgCGTycleLriYvJ0fXjqvTqBidkd+QuO1mIsnyzddyfAWtSqi6kgPo1UooiGxr9CEoBJIrWSxmHYclwYMGjYKZWJa/eNcbNmyn5kwzI6nNTzQaZWlpieHhYU6cOCGLNj8b2UOiKPKTn/yEz372s9xzzz28/vWvf9nH3EQZFxwhvRTk83mOHTvGysoKl112GU8++eQLUuo99Zs+VIJIY5uHiaHyBUpZ80fmDlgZPjFd9tSrkMDON7STiGfLS6wiaHRKhk7KCaKly0/foQlWUlmWl5LoDBoUpSJ1QXu12uroDTBwVL50m02WZxSpRIb+QxO0bwmQzxVxdvsZGZynWCixHK65KPfKd6OWlxJMjSiJzEZpbveiNWpAAQMn5e3DcM1+UFO7m5G+8gU1vLCCRqvEZjCja9UxPhGmWBBxerTMTq21bzRa5TqC8vlsnKpUdFqdmu4uP/l8CZVKUVW+2e0mFmYlUegBm4xAAdQqHaODZcLWaFTs2NFAaiXPykqORKJs/bNQ47S9qtBbhdGoZXg4RD5fZKRynt3dfpwmPX6/jYJYIlsorBMqhMM1MR5t3moWU/l8lIyOL5FK55iuiDC2dAdQFkVsdgPZfJFcsSC3HwJWagxcO1u8MqGCdHG3UCwxObOMWMoxPV/+zC1GLR3NbvLFEp0NbuYiceKpLMtJuQS+vdHFCclelMmgZbTmxkavlVdzPqeRUxJSE4TybMup02E36yjmM9htJlZKAm/fvTH7NFNTUwwNDT2rgKG2tbcabR4KhRgcHHxB0ebPBVEUueWWW/jkJz/Jz3/+cy6//PKz9dY2wauAkFKpFIcPH8ZgMHDppZeiVqtfkH1QqVTi9n95kNHKHKiuxY2zzsaJJ8dlz3N6zCxK7jTNdj0nnxwlnyvi8FrwBp0ISiV9hyaqz1EoYXxQfvFv6vRy6qkxABpa3ejNeqK1C6O9ddW51CqS8QxzlYulyaqn46L6dS7j6aT87r6121+Vno9X2mRN7R66u/2kVnJMji2VF3ylyj4RFmtaPs3tPvqOlolFp1fT3OWlBMyRRKzsJ3kDJqbG1i50Gq2yvAxcQTaTBxEGj8+g1apoa/Og0CiZrKkMrTY9cxJ1nS9gZWpi7XPP5QqEQ4mqrLyp0YEnYCuTQWX2IgisU+iVo9rXPlOLRc/Q0AKFQqmq9Ovq8tPktWGx6kms5EDBOoXe7LycsDpaPVUDVygH+Q2NhMjmClWC6un2U+8wY7cbKYoiJUQGalp80rA9gI5mDyckIhOdRsHs4tpzkqksmWxB5hKxrd1HsVTC1eIjnc0zF06wUFNJttQ7ODYkSXe16pkIyZ9T65LfXu9ksKI6jCZWUCoEommRG36ne93S9PnAKhnt2rULm832gn7GaDRiNBppbGw8Y7T5Kjm9kNaeKIrcfvvtfPzjH+f222/nyiuvfJnvaBO1uOAI6cXcsaxaDNXV1dHZ2Vn92ecjJFEUOfroIMMn1qqamdFF9EYtDrseT9DJcP88JouOwZrWWEOLl75D4wBEFuKkYisYLTq6t9URWogTXkjQ0uNn+Li0pSeyIJlTTY8s0r6tnsRSnEDQSDJeJL68Qiohv8tt6fYx2r92l5uMplmaXmZpapnmDi8ao5aCWGKkXy4eyOdqHMU7vYxJ2pAujxmzUYvDaayGBHoCRkIzcjlwXDLIzlQSa0+fnMVs1VPf7CSeyhBfll9Q6xpsjNXEt49VIjCy2QKDp+bo3VZPPpmjvdWNUqMkGl+RZz0BVquBecnicENQ7hIxNVHeiVmYjOCyG/DV29GZNBw/sUY+SqXAZI2PXTBo56TEBNdhNzA4OF8NYQSoD5qod+mxOawsx1fQ69UM1+w4Tc3Kj9vS6KoauEJZ/Tc4EqJQKDFXSfXtavfiNunxuM0olAoEpcCJwVmky8fzNTcpdT4zw1Nrn4Pdqud0TVswXyjKsp46mt2EY2l6Gtyo1SpWsjnCNQq9Bq+NSHyNoHxOE9M1lXc0Lj+X7iYP/eOL7L28l/ONl0JGtZBGm0sdvEdGRjhx4gR2u70qKzcYDOt+/q677uLP/uzP+NnPfsZVV131Mt/RJs6EC46QXigmJyc5ffr0GS2GnouQVveTbv/OAdnj3noHw8fL7bPwfAyjRUdrl4/Tx6dIVOIE9CYto/3y2VFLb4D+Z8aJLMQRBIG2rXWoFQqZYqqhw8XUafkFbXkpTiqRJVVpPe24rJV4PEN18xCqu02rCLZ5mKzMXcYrO0AdW+vo6Q0QjaWZnY7S0OJisqaFVmsvYbLoOfLoMAC+BgsKjYBGqwfWCKil08toDUmsxlAkYiv0H52mc0uAlXyaLd0BoolyWODSgvyiFmxxMtQvSTnVqRittNBWfft6ttUh5HOotEriiQJKlXKdQk9fozprlPjsLS+niSynqQvaEfJF2pucaPVqlBoVxyRiEI1ayXiNN58/YCMi2TOyWNTMTCcRgbm58ufR3eWnp8WDQqUgFE5itmgZkRxHEGB8Sv77bZQ4jAM4HUYGh0OURLH6em0tbvRKNXV+K3q9BrVGSb+kZaYQYCkmb/HV++yckFTfHqdpXfBgvlhiaTnFUiX7qbfNx/D4UlnI4DSh1akQS+CxGwlFkiAIuB0m5iSqvaDXWjFUXcNsKMKOFgeFlQR5o/a8he1NTU0xPDz8ssioFrUO3ul0umpnNDg4iMFgwOVyMTc3x2WXXcavf/1rPvShD/Ef//EfXH/99WflHDaxHq84QiqVSgwMDDA3N/esFkPPRkiiKFIqleh7Zoy+p8dk/2ZzGVmQ3E0rlAqOPXwaURTp2tbAciSN02+l75lxyesomJXcOYuiiFIh0P/kKN4GBw6flZHT8xQyckZw15tYnI5Lfg6iS0nGB+ZxVtqAuUKR4ZoIc3WNgquuySmr4OqbXXg8ZpbmYuVYdaCu0clYzQKr1OV7YSpOfbOT2eElOju9FEQYGw5VLYxW0dLhkS3dIookoyssh1PVaPWtu4OURIiY0sxOLyMoBGan5a2ulnaPzEZJp1cxPDBPLrf2+9q5p4ms18pSOMnCfKzs6VdDULVGsM2tbsYqF+ZVsYTPZ8VrN+D2WsnkCmj1Kk5JZPhSAcQqHE4D8eTahdjvt9I/IP89uKw+elu8oBSYX4pjtWgZlbQXVUqB0ZrZkd9rISyJ7fC5LdVF2lWHieagk0w8h8OixuEw4nRamVyIEounERHQqpWM1lR8HqeZkKSyqfPZ1j0nXgkIXBVNbOnwcaIiVDBoVDQG7CiKsK3ZR3Ily9xyYt18qbXOychMmD+5uJnx8XFOnTqFzWarSq3PVFGcDayS0c6dO88aGZ0JBoOBYDBIMBikUCgQDocZGxvjfe97H9lsllwux0c+8hHe/OY3n7Nz2AQI4rPlhW8gni2CPJfLcezYMbLZLLt27XrWP4LDhw/jcDhoamqqPrZaGZVKJf75j35IIppmJVNgenQJh8/C8kIcUdK26bmoSUZaGr2api4/+YLI2EDZzaFrZ5CBw2uzI0QRb71D1p5r396ASqMkNF9u5wG468wszqy1Q+wePcvzNT5hWwMIgkCuKDI+FMLX4GC+ZvDeviXAkKRF5a23szC9jFqjpLnbT65YQqVRyQQPvno78zUS9rYev4z8Wrq8aPVaEsksU+NLIAg0t3sYk6jiWjo8sjYglB0fZivn6PJaaOzwMDMdZXZ6uVxGCGU/vnRyraVY32Rmenzts9AbNJRKYnn2BLi9ZpravYRCcSYmwohieQk3VOOH19LhYUQiimhtk/83gD9QrkR0Ri3h5TQOp3GdQq9EeV61iu5uvyyMsKHBIVvUFSkr/ZQqBYIC5pcSmM1qxiU3HFqtEgGhurQL0NPll7mQNwRsTNXMv+oCNmbmoui0agI+Ky63ieX4CqHlJJFoGqNBQ6EokpWcb0+7l1OS+VJzvUMWZyECPo+ZeYll0rYOfzV/CcBq1CKKRZx2EyZTeXlZq1VSKIl8/S/2AlQzgRYXF4lEIhgMhio5vdy471WcLzJ6LjzwwAO85z3v4a1vfSsTExP09/fzhje8gZ/97Geb+UbnAK+YCimZTHL48GFMJhOXXnrpcw4gayukUqlU/d943yyHDw5U/62xO4AzYCMyG11bSjRpGT0lFxe09tbRX6mOfI1OrB4zy7UmoVvrq0q8VWTTWYaOLiAI4G20obPqmOgPyyTHDqdNRkhWl44hyXHcARv1QTvJaLq61OryWRiuEUDYnCYWppfJ54oMHpvG6bOAWE6OnV+IEw4lMFt0SGsNT8C6rhJTKpX0V+TpLq+FhlY3s5IIDGBdG7CWsJYW4mg0SuanlvF4LXgCVtQ6DUeeGa++d0GAyFLN3KzdU1XoQdnT79jT4+SyBQxGLQ1NTsw2HYl4hpUKaXn9lnXkU6p1gOj0MnhariDTCNDR7CSZThNLFmhqdnNK4jG4KoCQonZhtbnZxVDNa9sMTrqb3IiCyFI0hUEvMDm79vs1GjUM1e4vaeQVSXPQWV2kzWTzjE4skUxlq957DouOjjYvK5k8K7kCc0sJlApBltlUPq7876Sjyc2gROotCDBd05qzGBRMLWaJp6NAFLfDxGI0yWf/+G3V50gzgVYrisXFxapYYJWcHA7HS9oDuhDI6JFHHuH9738/3/72t/nDP/xDBEFgYmKC++67bzP59RzhgiQkaWoswOLiIseOHaOhoeEFbYZL/exWKyMo9433/8uDsufGFuNMD87jC9ixei0MnZyhqdtP31Nr1ZFSpWBOorqanwhjsRlIR+L07GhgejxMfDlFJiXv9zd2eJmotJpEERbGo7RuqcPlNOAJOpkYXsRkNTBSs9Pk9FqJLa5dwDKZLIcPDiAoBDp668gXRTQ6NUsSGa/VaVxHUG6/lYEjU4QrQ/W2LT5SiQQanZJcpvyZONxmQhLxgNtnYVhyUQ4vxHG5TSyOL1EXdGBzm8kWiuuEFLW/EylBLS3EWVqI42+w47TqcfnMLEXimKwGJkbWqjVBARM1LbSmVneVoNKpLDOTEbKDeYrFEs0tLgwmLUqtivn52Jp5bL2NsZrjZGui4zu6fJyWvAeVSkEmnmVLp59MrsDkTIRgg10WpeFwGNcRlEolJ5K2VjfDI/ILvs5vpa3OjqAUiSczqDQwvbD2XbGatYzUqPpq27PtLW5ZdHs8kWFodJFliSHwzi31pDJ5NBoVK7k8mXxhncN4qaYh0tXspX9s7T0pFbCclLe7vS4zCPCGnc2cCSqVCq/Xi9frrYoFFhcXGRoaIpPJVMUCbrf7Bbl3Xwhk9Nvf/pZ3vetd/N//+3+rZARl8+cPf/jDG3JOrwVckIS0ClEUmZiYYGhoiN7eXgKBwAv6uVVCWiUlKJPR1NA8T9x3XPZcf7ObaGiU+Ykl5ieWcNc7UFBCb9BU5zDt24MMVJR1lRMjsZwisZym78kRlGolO1/XJouTAFDWXKy8DQ5GKqSxNBdDrVVRv60OlVJgZqzcGrO7TYz3yy96Dq+JRGQFSiKDx6YwWXUYTDp6dtQxO7lMNJKmrtFJX3ht6dZs068junQqxdxoHLVWRWe3HxQKmTM5lCsvWZaSx1xt+c1NRpibjNC5rZ5ggx2TzcD0ZASjRcdozZxqHUF1eKuzrOWKJNlmMtHT7SebLzA+tkRTm4uR02sXXYVSWEdQjS2uKkGNDy9itelJJrN4HEY8fisr+QJqnYpZotWfqVXoQTmqXor2Dp+sNac3qMkmcmzt8pNI55iaieD3W2Xx7W6PeV11tK4ya/dWrYigrPyzmPXU241otAIr+TxqjYKYpNj2uEwM1VQ6xZqZXmebl35Ja06tUjA0viTLaert8pPU6XA7TeU8LgFmI3GZ4CZdsxfVFnRyWvJZGSq5TjfecBHK2vyRM0AqFljdA1pcXGR+fp7Tp09X3bufLZjvQiCjp59+mne+85188Ytf5E/+5E82xI3itYoLlpBKpRJ9fX2EQiEuvvjiF/XlVCqVZLNlA0iFQlH9Qt3zbw/Lnme06hk5NiV7zBWwcuKRQXQGDd07gyzMRFmq2c9p3drAyPG1i38xX2Q5FGd2cI5gpw+tSUcqmVvX9rO5TLL5ksmi5+jDpykWStS1uDE7zShUCpYlljsmm4HZ0RrbIo+emcEIoYpwoH1bHaVCEYVSqIoRGlo89EnmWxqdknAlSymfLTB4bIqe3Y0Y1ArqOn0sL6dIJLLr2nfegJXIwtr5lN3LZ6qvIwjQ2u7BZtUzNRkmGc/ib7CvI6haSAkKyrMjk1ZDR5eXifEw2UyBhiabrIJSqRTrCKq+0cmpY9MshRIshRKVpdQC7U0uNHo1C4sJ9DVR3YE6C7Mz8oXaaE30SHOzmz4JoVttegqpPFu7/MSSGaZnlnG7zIQW1wQFAb+V0Rp5+Kr57Co62r30y8xjQaVRYdOqMJlUCEoBg0nN0vJaHEWd3yoTSYhAKl1z3FYvpyTmtnqtiuHxJTLZPNF4WR3Z2+EjvJDEqFXjc5txOY2kcwXqHOWI9EIJEil5KF9r0MXgxCLX/s5Lc7Be3QNqamoil8tVW3urwXyr5GS325mdnd1wMjpy5Aj79u3j//yf/8Of//mfb5LRecYFSUj5SvpkoVDgsssue1F2H6IoYjAYGBsbI5VK4fV68Xg8ROeTHPyvJ+nY3kBsOc3CZJjGTj99T6x5zSnVCmYqd52ZdI6+J4bp2NUIImi1rnIVI4rkavJl6ls9jFfaXJOVFl3zVh91LRaiSzlS8QwOr1k2FwLwBR1V8pkZXcQUTqJUCnRvrycSTrEwvUywzSNT9umNGsLTaxdBsSSSTCSYGylL1et7fCQTWcZrnLebOnwMSmYzeqOG0f45Mukc8Ur1t/11reRyRWany1WXyaxbZw7rb3BUKxwoz62OPzlKqSgiKARa2r04fBYS0TTJRLbyM/Z1Sj9qWkeBoIMTz5QJVKlS0Nbqxmw1ELdnqwusvjoj0xNrpYRGo6zuOFWP01iO0hipvJ7TbSIWStDb5SebLzIxuUSxKG/ftbZ5qi4Oq1is2Qeqr7dzSrq/5DSST+fZ2uUjnswyNRvFatXLDFuDQQeTNU7l0Rrz2LZWDwNDITIZiCdy6PVqQqEMyiI4rWrMFh0ms5ZsxshSRaLdFJQbuAJEagi1tdktW7A1G7XV/aVMNs/4dAS9Ti2rsnZ0BcgVCrhb/eQKRSKJNPPhBG9/fRdmo5aXC41GI7P4WQ3m6+/vrwqZmpqazpli7/lw4sQJbrjhBv7yL/+Sv/zLv9wkow3ABUdIoijyzDPPoNVq2b1794saiK4KFzweDzabTWYZEhlPYbLrOf1MeTbUeVET2XQWURSrX7z2HUH6KzEUlZMhvpRkvuIqEOzyYw/YOf7YsOx1dUb5HbjFaWD8xByiCCq1ks5tDRgsBiLzQ2vu01a9bDEXyj56fU+NEQuXz7FlSx2URFRqZdW0tbnLLyMotVZFYql8t5yKZzh9aIL6djsmgwKH20JoNoUowuyY/ALW3OmXVVBanYqhY1NV14emTh/uOjt9R6aqi7ZGk3Zdi09KUGJJJBpOMjG8gCiW4zB0Rg3pjPwiHGiwywQQUE6trf7/QgmFQuDYE+XPoT7owOYyki+JIMarn6HTq2NOYmOk06sZrZnxeH02+k5Ms1ip8mx2LTqFhi09NqKxNDMzy+tSgNs7vAwNygUQczXtWH/AxknJzM7lNpGvVFCpdI6puWX0NdEPLc0ueQUlQLhmsbi12c3JymccXs6RycHkVIJSScSgVeJ2G3FZdGia3ITCCaKJDG3NboYlzheCAHMheQXY1ODkxGkJodrWBw9msnkGx9eIuavFw8hUhP/x5q2cbUiD+QwGA8PDw/h8PsLhMOPj41gslmr1ZDQazzk59Pf3c/311/PRj36UT3/60xtKRt/5znf4zne+w/j4OAC9vb187nOf4+qrr96wczpfuOAISRAEduzYgVarfcFfijOJF6QqoFwux2L3Ii3b63ny3hMcu3eUfD7H6NEZGjp86Ew6Rk/NsFCTa9O2Pcjw0bXW3OTAHEqVEofDgLfJzdjAHFaXieGatp/VZSC+VL5QFvJFZkdDZBJZ6oNOjA4jI/3zBNu9Mlm51qBmvOZir9Nr6HtiGINZR/v2emLRNNM1Lau2LXX0y2yLBGKhFRKVC51SpaB9Vx0rqSKpxAqiWH5spsa6p7UnILM/mh1fYmkuSjado63Lj0KlRK1Tc0piIGswaRmp2dHxNdirBDV+eh6TRctKKkdjswuDVc/cdBSz1QASJ/K6Rsc6F/S8JL10djKCwaRluG8Oh8OIr8FBNp8nmZS3rVw+nayCMhg1jNRUil6/g9N9c0D5d93c6kaDQE+nj4XFOOFIWib7Bujo9HFa1mZTMFkjwfd6rZySEJTXayGbzLK1szwjm5mPrXMYb2/1MCghBYVCYKbGb6650cXJSvWdyRaJxTJMStqNNosOq17LtvayGCMUSeD1WGQWRSqlwOSs/HwdVq2sqvK6zTIyAsjmi+zqrafBZ+NcYWpqipGREdnSazabZXFxkcXFRUZHR9FqtVVystlsZ93UdXBwkOuuu44//MM/5Atf+MKGV0b19fX88z//M+3t7VUj171793LkyBF6e8+/S8b5xAW5h1QoFF5wjPkqEa2+DUEQnvMLVSgUCIVCPP6rQxy85TCzp8sXpu5LmxFLAsMnpsrJsKJIfbuPackFra7Nw4xkiK0zaNjy+g7GT88TrjhZG206MokcxcLa+fdc3ELfk2utQbvXSl2rh7npSHU3qXbvSalSYLLqiYXXKoCuXcGyVZHNyNjgArlcAbvLREQiP2/fVsfQ0bXKSxDAZNeTiKxgsGjwBB3ozQb6D0viLJQCVptB1orr3hWUuZerNUrMNgMuv42iWPbI69zeQJ/kOXpjZYdoZW0O0dBuZ0oSZ+FwmzFadJhtBhYW4iyFEnT0BhiUzGvqGh3MTMgvoMEWF5OSGIz2Xj/jgyEaWt1o9BoWFmIUSiVi0bWKo7nNwdjw2nGMZi25TEFGdl29AQYkr93Z40dQKSmKIjOzUZLJLPUNdqYlBNrVI99N0miUqNRK0hKVZe+WOtmOk89nJZvLYjCqMJpMRGIr6IxqWbZTV6ePAUllplYr0GrUcqFCT4CTEgcIq0VNLCGf+3S2eSmKJXQ6NbliCa1exdG+mWplqVYJKASBbH6tKu3t9HNS4gDR4LcxNR/jS399Pbt65U4oZwsvRMBQLBaJRCJVgiqVSjL/uZfrFjE6OspVV13Fu9/9br785S9vmIP588HhcHDzzTfzP//n/9zoUzmneEUTknTZVSpeeKEoFos8c/A4d3/vALODC8QWUugtOho6fSAoGJRUDFBu6Q1JKian30pkPgaiiLvZjlqrxeq00C+RjOtNWsSiSEZyUem+pKXaGmzZWo+gUhIOxYlKBuRdu5tkyj5BAKfXwlJleVJn0NB7WRsLM9Fy1SQIgIjFriceXrsod+xoYPCovIIzO3Qo1UqsbhNL82nqml2y+ZIggN1tlhFd184gA5LoDIvdQH2bh5WVAuPDC4gl6NkVlBGURqdEQFFdcgXo3hms7jgBtPb40Ro0LC+ny0u1grCOoBqaXbKAQoD6JifTEjVYx5YA0UgKp9dCOptnejqCRqMiJami2rs8DA2s3VCsKvSkFk0dPQEGJWTTu70ekXK1MDOzTGoljz9gZU5SyfT0BmQCCL1eTUmUS82DjRYmJ9Yqm/p6O9FYGp/fhkanIrmSRRQExiUE1dPlp09Sgep0KkRBICP5PHu7/ZySPMdh0xCJyivHQMDGciyNz20BRRFBKLCSVzIfSVIolDAaNOQKRXISou5p95HO5PnXv3/3OakYXoqaThRF4vF4lZxSqdTz+s89FyYmJrjqqqu4/vrr+cY3vnFBklGxWOS2227jpptu4siRI6/6ePRXLCG9XDKqxczIArd/814e//lR8tkCnmYbeqOeZDRDeC6ON+hc19LrvrhZNnMyWvTY3WbMLjOj/XPkMvl11ZFSrcBkMRCT2L10XdTE/OQS/hYvM+NLxCNp3AEbi5LN/Y7tDQwekROkr9HJ/EQYb9CJ2WUktZJmbrhm1tHkZE5y4W7bJl/eFQTwt9lRKFTMzyQo5Ip0bKtfZyrr8llYksjBpQRltOgIdngRRYGBkzPVpdmenUFZ/tOZKqjunQ30VxJ07S4TDa0eEskM4yOLVQl1e4+fIYn6r7HVzUSNCEHqEgHQsTVANJpAo1eTTBWJLqfQaFVkViQuDFsC1SRcKAsVotEVmXS7rdPHcEWoIgiwdUeQQqlEJldkenaZlUwet9ssE0HUVkd6vZJcriSTbnd1+2RR7U1NTiYnI/h8Vqx2AyUBSoicHlqoOqvXVkcmk5ZsTl7xdbS6GZR8Nl6PngXJ8rEIuJxGliIpFIKA22WiMeggncmTzRcJx8vptol0jv910+VcfXk3ZxuTk5OMjIy8bDXdyspKlZyWl5dflFvEzMwMb3vb23jb297Gd77znQuOjE6cOMFll11GJpPBZDJxyy23cM0112z0aZ1zXJCEVCwW11nhSyF1XjgbZCRFbCnBg7c+wc+//QCJys6Jp8WOxW1h6Jnp6mtZHEZSsbTs7rpnTwt9vy0LHgxmHU1bG0jGMkxJBu1dFzczUOOj5wpYqxEXCqWCHZd3EQ2nGO2fK7+eKJaJRVIltG6pZ0SawSSKBFpdGEwGUAiM9M/T3OVntE++i1Tf6mFaMrdo7Q1Ud6PUWiX2OiN6s4GJ05EqsbRvrWeoRoBRS5hdO4IMHJ1Ea1ARaHIiKFVEllLVJFxYX0EZTFqKxdIZCUpv1NDQ4katUzM2skhKErHR1u1jWLLU2tTmYVzSShUBm0tPVBJZvu2iRvKFEtl8nqmpCKViCYVSIJeV/P621dMnsWJye8ws1loUtXsYrcy7BAG27gqSL5TIFUrMzkdJpXLY7IaqMhDWV0c2m4F4Qk58HR1eBiXtutY2D8Mji+j1anx+K0ajFlQCU7NRIsspEAS29gY4Ifn92qx64omM7LhNjXbGJUm49QEzU3Nr70kQyj+3LFH/beupI18s8s9/cwNa7dk1UD1bZFQLqVvE4uJiNTV2tbWnVK7tBM7Pz/P2t7+d3/md3+EHP/iB7N8uFORyOSYnJ4nFYtx+++384Ac/4KGHHtqskDYCz0ZIteKF55sXvRxkV3I8vP9pfvHdB0nF00RDMaweEzqrjoWJOHUdTqb71u5EtXo1SqWCdHztD7t7Tyv9TwzTuj0ISiVj/bM4vDbCkr2m9p1BBg+Py167rtXDzEgIp9+Gt8mNCAw8I39OsNNXlZgDNLR7mJJc0Mx2I+07gsxMRliozD8aO7xM1MivpW4SAI1dPiYG5tGbNNj8BnJZUKrVhKbXKq+2LXXrXCGcPjPheWmLr4Gp4UUa2jzkCyWmJsLo9Brikgt1LUEZTVry+SI5Saure2cDp49P09DixmDRk80VGBmYl1kvtXb5yo9V4A4YCc3JZdAev7WavKtQCmy/pJnMSo5oLMXcXByVWgBBQT63RlDdW+volxCUL2CVRWIABFvcTEhuFLbtaiCfL1EslZiej5BOFzAadSQk0SLlCkpCfG4TS0tJmRK+udXNqGRm1tnl43Rlnmk26/BVHMJTmRyL4STLsTRbeuuqAggoL9iGIvIFYL/PyOzC2mNtTQ6GJfM6lUqBTqfm+rdt5aZ37eFs4lyRUS2kbhGLi4tkMhlCoRAzMzNcccUVfPjDH2bXrl385Cc/OSfx5ucCb3nLW2htbeV73/veRp/KOcUr47fBmlN3qVS+YJxLMgLQ6jW89fdfz5W/dxnHHznNz7/5a449PABzCSweI6VCAZ1RRSZVvng2b6lnQNKaExQCCxXV0six8kV3y+s7KAGZ5AqpRFlynqxdyOytY6xysQrPRQnPRWnuqaOt209JEBjtm6WhwysjIwC1Rn4na3UaOXygH4BAiwer20yNiQD1bR4ZGcGaw8JKMsfKUI5Aq5PEchJ/0MhKukh0cYV0TTppQ7uLqSH5jCcSSpBKZKptve7djRSLJbw+S7UdN10zF2rs8MoJqrIHVSqKTFSqkq4dDXhcJlx+KyuZAtlMXkZG5c9CA6x9rm1dvmrUBZTl6ZPDi9XEXJ1eTe/WILF4inAkSSS8glavlAcYAja7UUZI9UGHjIwAIosppiW7R1t2NJDLF1DV2VmOrxCOJKuu5KtweywsSuaHfr9VRkYgT5pNJDLU19k5LlF3elwmiisFtnWW963CyyncbrOMkAI+KzMLckKNxmscK5rdDI4tct1btnA2sUpGu3btwmq1ntVj1+JMbhF33303t956K5///Oex2+20trZy4sQJduzYseGquheCUqn0rKbTrya8IghJOi8SBOG89nsVCgU7Lu9mx+XdnHr6NP/fV+4mE80xcmgKlVpJY4+fRHyFiX55S6tjVxOnnx6VPRaeXWZubBG1RkXHjka0Rg3HHh2S/UHUFqz17V7GJK05u8eCy2tmORQlGa0snja5GK2JUNcb1zzDZkdDlIolFmcitPXUlau10/Po9HISq2txrZee67TMRsJl6yKgodtNsZjFbNeSWC6/fipRs5TZG1hnWxSejxOqtCXVWhU79rSUBQX5IqlkFpVawVTNXKix3SMjKJNVz0jfLPlckcVKtdOzK4hRr0ZUiMxOL2Ow6JmZiMqOUyjI55Ht3X4GJTOpXLZcdUUrF2+LVU9zl5tYNEU4nCYRz2EwaRiqIT6DSe7L1tjsWkdQS6E48xIBRO+2elKpLMaglkyuwHIsvc4Y1mo3MiuZ1wWD9nUy81hN4J7XY+GU5Hdn0KuZWlnEZ9PidNoQBQGdXsX8Ypxi5c6ksd7BRI0T+OxChN4OO/FoCK367OwAnU8yOhOMRiNXXXUV3/rWt3j729/Oe97zHn71q1/x1a9+lcsvv5x77rnnvJ/Tc+Fv/uZvuPrqqwkGgyQSCW655RYOHjzI/fffv9Gnds5xQRJS7QX6bIoXXipCoRALiRk+9KV3YzXY+fW/P8J9P3yI8WPTdO1pJa1bQVGvYKJ/Hkoi85Pyi0zr9mC1UsrnCpx+aoTG7gB1DXasHisjfbN4GhxVx4dV6A3yDXmNTsXh/+4DytWUxqAFpYI5yVjKXWerhg2uwuowMD++yHDlHOrbvagUq6F/CyAIGC1ylZKv0cloDbFolBpG+ssVnM1rxOzWsxySV0y1ibVtvXUMS1pU+WyBqZEQoZkoCqVAU5sXZ8Ami7NQqRXrggaDrW4ZQVnsek4fn5bN8drb/XhcFlYyeSbGlvDX2xmvcXNYWZHLpNt7/JyWiBvSqSzjpxeJV+YqdoeBQKOVaCxNNJollchjsenXZTQpVfLvZmv7+giMhbkYS1IBxNY6VCUBR9CEoBRIZ3KM1jiB134HmptdjI3JrYQWayLLPR4945Nxksk8odAKFrOO1EoOBeBzm7Fa9ZitOjQqJUvRJMvRNO3NHoYmFvlfb99KNBqt7gB5PJ7qDtCL/fvbaDICiMVi7N27l0AgwP79+9FqtXzwgx8km80yOzv7/Ac4zwiFQtx4443Mzc1htVrZtm0b999/P29961s3+tTOOS5IQlrFhUBGqwavo6OjbNmypZqB8u5PXMs7PvZ2HrvrEI/sf7rarrN5LLRsC3L6GXl1lErIWyP1HT7GT5WrmpnhBXRGLR6/lWI2z1zlbtjT4GCoRlmnkFybxk7N4PRbya7k6N4ZJLacYmZsCaffzqIkLsLuMTNUs7xrsuoZqCgEnT4rdR1eFqbl7Ryrw8i8xIVaag4LEF1I4XBbSYaWcNVZ0JjVFEWxmmq7ilyuxh9NUkGViiLjp+dJJTJEZqP4gw7sXgsavYajvx1d253RKKttu+pn2CwnKKvTyKlDE1XXB61OjcdtxmLWsbiYYHE+TkPLegn5aqTHKtp7/GW1YAWpZJaJoUhVWGG16fB49RiNAslUiXgsi8NlYnRITny1w9mOLh+DkipLoRCYnYmyvJwmVHGS6N1eB7kizXU2jGYdCJQD+CSGqLUmp+3tHoYkpCsIsBSWO0AEg46qAGJuPlaOkx8KVd2/TQYNZp2Gt/9OF6+7pLx8WSwWq0KBY8eOAeByufB4POuEAmfChUBGiUSCd7zjHdjtdu644w602rU/IK1WS3PzmR3MNxL/9m//ttGnsGG4YEUNuVyOUqlUtfbZCDJaTaddXFxkx44dz/pHJYoip58Z45fff5DH7z6Ev9nDwvgSbTsby/HnSpHZmotVU2+AMYlyzRN0EqoYaDZ0+TE6zAhKZZU0AAxWLZlETqai6r64hf6n1mZXLVvr0VsMTA4tkKzc4Xdf1ES/RNlndZpIxlcoSuTC3Rc30//0GIEWNzaPlVgszdx4WY22iq5djbJAQnedTUZ8AM09PhKxNFqzmvhyFq1Ry9KMXKkWbPfISKutN8BwTSXm9lvJ5Qr4G13kC0U0ek1VHg7lxFiFUiCTXiO7WpGE3W1iOZKuBi863GaaOr0kEhlmppZJJbPrFHoAvnob8xIFYfe2evolMnidXg2CgkzFONVgUuPy68nnRbI5CC+l8QZsslYdrG/pdfYEOC1ps6lUCnRGjVwAsbWeUydnMBq1eP1WzFYtqXSexXCirOQTBJqb3YxKnDfq60xMzyblx9VrSEhmf1t6AlWLIig7NcwvJfjsX1/D6y5poRaiKBKNRmVCAYfDUZVZSy/0cGGQUSqV4p3vfCcKhYJf/vKXGI3GDTmPTbxwXJCE9K1vfYvl5WX27t1LS0vLhuwIFAoFjh8/TjabZceOHS/Y4DU8F+WBf3+E+3/8MNGKn9i2yzvJZQqMnJymkCti95uJzMgvVp0XN3NaQj42j5VCLk+wu46lUIzF6RhtOxsYllyUTXYD2WRW1iLrubSNvieGUaoUNG9pQKVVMTm0wIpENt1zSQt9ktcy2QxkV3Lkpeq2S1pIJzLozXqmRkKoNWoS0bTMc65rdyMDkuVhV8BGeDYqm4O17agjk82RiGWJhTP4Gu3MT0Zl7z3Y5mFSQgpnUvH5GuwYLXo0Og1zM8tY3XomTq9Vb1q9GoVCYEXiltC9M0ifZCnY5bUQDsWrxUag0YmvwU44nGJqIkwhX6Kl07vOD8/ttVS98AB6tjfQJyEojVaBKArkKzHsGq0Sf6MZBCWFAswvJPD5bUzVzIHqgg5mJA4Q3VsC9ElatjqdCkGhZEXiGC5dwjVbdDS3uCmI5dTYudAyiUSe+gYH0zOS43bLF2y1WhUKpULWuuzp9hOOpPjBN9//gmImVmMlQqEQ8Xhc5j0XDocZHR3dUDJaWVnhd3/3d8nn89x7772YzeYNOY9NvDhckIR022238f3vf5+DBw/S3d3Nvn372Lt3L52dneelUlpZWeHo0aNotVq2bdv2kqSh+VyBJ35xmMfueoYn7zkCgMlmJNhbj1Kt4sSjp6vPNdh0ZOKZaqQDrBHLKpp66zDaTIz2zZKpRA/07GmVPUdv1iEWS9V/Lz+nhYm+WRq7A8TjGcILMUCQOUf07Gmh70nJgq9ZR6FQrO4HKVUKei9rJTQfIbyQJp8pYnEYSScyVdNXqBCURJ7uCtgIz8WqBGXzmHA2mIksplleWAFBoK7FxUyNoux5CUoAT4MFu8vGykqeqbElunfIqyO9QVNWNEp3nHY00C8hKE/AWg0nVGuU1DW7cHjNhBbiTE9FEEtlAYRUbScIQtmuSTKzaevyMCxxgLBY9aRSuSp5KxTQ1OFEISgRFUoWFxPY7EbGJQvLIuCrs8oFEFvrZA7jRqOGfL4k89qrtTFqbXNTEsFg1FIolYhE0yg1CmYk6sDa6sho1JArlPjg71/Gvmu382KRzWarceZLS0uIoojP56O+vh6r1XrebygzmQzvfe97icfj3H///RtGigD/9E//xP79+xkYGECv1/O6172OL33pS3R2dm7YOV3IuCAJCcotgkgkwl133cUdd9zBb37zG1pbW9m7dy/79u2jp6fnnHzRY7EYR48exePx0NnZeVZeY/T4JPf+20Eevv1JTDYDsaUETb31CEoFI8en6N7TWl2oBdAa1RQLJQrZtYt972XtnHpsEI1OTcuORnK5IvNTYVYSEmK5tFUWp6HRqVGrlaQkiqztV3STzxeZn4ywvJgoP0ejIiXZn6olKK1BQylfIJ8totaoaOwJYPNaOf7kKLlM+eJothtYWUdQcvsjKUGZbHrsfhOoBWZGYpQqP9bQ5maqRoRQ3+KWmcr6m63Mja1dYI0WHY0dPkolkfnZGNFIip5dQU5JqkmjWUc+V5DtOHVtr2dAYpnkD9qZmy5XFjq9mkCjC6vTyMJ8nNnpCKJI2dZIotBTKATMFj0xiXy/d0eDLIbdateTiMkXVlu7PSAo0WhVJJJZNDqVPOxPAKfLTFhCfL1b6mQGrharnmQqK6taO7p8sqj2llY3k5NhPF4LFqsehVIBCgVj02GSlap5S2+AkfEl/uN7H8BQkx31YjA5Ocnw8DAtLS3VCgpe3Nzp5SKbzfL+97+fhYUFHnjgAex2+zl9vefDVVddxXvf+14uvvhiCoUCn/70pzl58iR9fX2bLcQz4IIlJClEUSQWi/GLX/yCO+64g1//+tfU19dXyWn79u1nhThCoRAnT56ktbWVYDB41quxVCzNYz9/hrv/5QFmhsrD7UCbF7vXxvTQfNVOqOPiJgafHq/+nFqrRKVSsSKZLfRc1s7idAR3o4uZ0UXSyQwGk464ZO+k55IWWQWlVCsxWvTEK6/T2FOHu9FF31NjrFQqJrVGidagle1H+dvtzJ1eazdpDRoUCoFCvkhTTx2olGj0Gk49WdMGTOdk7cRnIyiNToWrwUpRLCGolMyNSSTPNfMmgECzi1nJLKbW6ijQ5MTps5JIZJkcD1MslNbNl0xWPZl0TkagndvrOC1ZhJX65ekNGvxBBxaHidnZCKG5OCICXVvqZAIItVqJRq8mJb1R2F5Pn4SgbA4Dy9EVmeqhucNNPlfEbDNQEkVUGhUnTkxXhQwKhYDFopcFCXb3+umTkKPTaWS51vqo3cOwhOjaO7wMVj5Pi0WH22PGaNKyZWs973v3JbxUrAp/pG261b/bUCj0guZOLxf5fJ4bb7yR8fFxHnzwQZxO51k9/tnA4uIiHo+Hhx56iDe+8Y0bfToXHF4RhFSLRCLBL3/5S+644w7uu+8+XC4XN9xwA+94xzu46KKLXjQ5PZuS7lxBFEVOPDLA/T96iNhSkpOPDKBQKmjb2UixKDIztkBWktzZvL2OsSNyd26z3URsqSwWUCgEdr5lC4nYCqOnZsp5QkoBq8PIsmT2ITV1hfLyrs1lJhFN0bylAZQK1DqNTAAhKAVMZh2JiMRhoWYGpdWr0Zt0uOsdCEolE8MLtG6tp09iMmuyVuZUz0FQ7oCNSCiOu8GKQqsgEc1hcRiZkSTm1rbzoExAs5L2V+f2Bk5XVIUarYpghxedSc/ifIz5mSgIwjqfPavDQDKRkVcbW+oYlJCN1ENPo1NR1+jE6jITCZeXYYuFUlkAISE1rU6FQqFgRdJG7d5eT9/xtec4XHoiEbkqrrHZRWghji9gQ2/SojWoGR0Ns1wJ6VOpFShVApmMpIqu8dDzeC2EanKRGptdslZhV6ePwaEFvv+vN+H1WngpOBMZnQnPNXd6uftOhUKB//k//yf9/f08+OCD5/xv+KVieHiY9vZ2Tpw4wZYtZ3f5+NWAVyQhSZFKpbjvvvvYv38/v/zlLzGbzdxwww3s27ePSy+99HlbBKVSidOnTxMKhZ5TSXeuEJmP8pufPsqvf/IIi1Nh6no9JEJp6jsCzI6ESMbSmG3GqkACoK7Hy0yfZPAugDNgJzyzjNFmoLGnDo1Ry9GDA7I/cne9g8XptUqn86LmamAhVIxWWzxYnGbiiRRzYxHadgQZllQWCqWAxWEiKtmlqSU6o1VPfbsXhPIu0UoqS8/FzbJ4jRdCUE6/lWKpiN6qIZcrEQmt0NDmZnJwrX3X1OljvGYfyB90VKXzUDGCrcyObE4j/kYXCrWCybEw8UpcRc+uIH0SJ3e7y0Q0kqoq9AAaWhxMja4dt7nTV03CVamVBIIObG4zqWSW2Zko6XSu7I8nqd4MRg35oii3R9pWY/Lq0hJZkm/lBxoczE4vYzLrcHvNCKoCmZxIOlMivJREp1cjKGqECr1ykURdvZ3pGlVkfb2dYIODT3/6Wl4KXigZ1UI6dwqHw9XMI4/H86LnTsVikT/5kz/h8OHDHDhwAJ/P91LeyjlHqVTihhtuIBqN8uijj2706VyQeMUTkhQrKys88MAD7N+/n7vvvhutVsv111/Pvn37eP3rX78uO+WlKunOBRZDi/zi3+9n9kiYw/edqph/Ktj5ll5iiwlGj09Vvc7cDU4WJRHW3nYHC0MSBZco4mtylYmqzsn0aAhvo5uhGs88X5OrmoYL0LG7iUEJIZgdRpq3NhBdSjI5uIAgCOtJTCFgc5uftRJTqhS0bKlHa9IxMRQiUWk5vRCCat/RwNAxqTTeilKtQFRALJJjJZmnucvHmGS3p7nbz1iN24Sn3k5IciGWZj156+04/VZKIoyPLFYVbT07GmQKPZvTQDSSlrXZWrr8jErIsK3bL7Mo8tXbcPms5Atl0lhciNOzMyibL5mtelZWcjI3ic4efyVEsAynR094Ue7YbXcaWK5UVUaTlq7eACuZPMVSieXYCslUlmy+UFX+AXR2+2UO442NTiYmwnzpn3+X3t4ALxYvlYxqId13ks6dVo1Rn0tUVCwW+djHPsZjjz3GwYMHqaure8nnca7xp3/6p9x77708+uij1Nefm4ypVzou6MXYFwu9Xs8NN9zADTfcQC6X48CBA9x+++184AMfQBRFrrvuOvbt28fll1/OxMQEN998Mx/+8Ie5+OKLN9RkcXZ2lv7+fq5635sJ/GWA8Owyv/nPx/jvnz7KVN8MocklbB4Lde1+FGoVJx8dlP28oiivAn3tTuYre0/zY4sIQrnV1bEzyFjfLPlsQeYcsYpaXz1v0MXxg2U/PLvXiq/FDYiy2PeOHUFOS3aTBAFZTEexUEKlVnLy0UEEQSDY4cPkMJKIyJ0Fgh3yBF2jVb/OJcLhtslk5nWdTjIrCVw+I0vzSWB9y6elJ8BoDUEtSZRsC9PLODwWBg5PICgEGprKbbhcroBGq6pWMkaLiqgkfcRbZ5OREUBB4hgBYLEaOPnM2vna7AZK2QJbtgRIpXPMzkQJNjs5Jamg7E7jOosiq9UsIySv38DC/FqLL53KMj66KBdAbK8nFl3BbNGBQiBXKDAzHZUdV6tV0d7moafHv+5zez6cLTICUCqVeDwePB6PbO40PDzMyZMnn3XuVCqV+Iu/+AsefvhhDhw4cEGT0Uc/+lHuueceHn744U0yeg68qiqkZ0OhUODhhx/mtttu46677iKRSJDL5di9ezf79+/HYnlpvfOXC1EUGR0dZXJykm3btq0bwhaLRY4f7OeBnzzMU786QiFfpK7Dj0arRmvUMnJ8imBXHaPH5cQSaHMzK9ml8bd7mKsMsrUGDc1bg2jNOo4/MlR9TlNvgHEpAYgiDZ1+pk5LJMUVEnMG7PiaXGXps6CQV1m7GhmsISiHz0pYQgKrS7jeRifOgI1kLEN4MUFK4pgQ6LAzOxSt/rfFYSCdyMpVfJJFXa1BjavRjFgSiEVypOLllldTl1/W0mvbEmBY0h4TBHB4LISlFd7uRvoPT6JQCjj9ZjRGBVqtkemJMNmKqrBrewMDUiFF0MGsZKcI1gcLdm6tk1kUaXQq/HV29GYtoiAQXU5hc5tlMyi318xiSE7edY02pifXPs9gs53J8bXXVioFTBa9LD23Z1tZoedwGHE4TRjNOjK5PNdfv4M3Xv7iJMhnk4yeD7VzJ71ez7333svevXv52c9+xi9/+UsOHjxIS8v6Zd4LAaIo8rGPfYw777yTgwcP0t7evtGndEHjVVUhPRtUKhVvfvObefOb38zb3vY2fv/3f5+LLrqIyclJOjs7ueqqq9i3bx9vfetbX3Tq5EtFqVSiv7+fcDjMRRdddMbFPaVSyc4rt7Dzyi3EluI8dufT3PuDA4ydKBOQwaLH6jRQ1+5lenC+XIF0B5jsm6450to9RzadIxFJMPDkMFa3hboOP8vhBMmU3NqosbuOiX75cuoqGYRnlwnPLtOyrYF4OEn37kZikRQzo4vrqqz2HY2yYEFBgFBFWr0wEWZhIkz3xS3EQjG6tteTSmeYn14mOi8f8te3yisoi8PIkIQQsuk8Rq2xmo5rdeux+kzkMisoVYqq3510dgPlHachCQEolEJ1/lQqiixOx+na2cDAkSkUSoGGRhc2t4lsrojBqCVdUSearQaQENKZUm7jMfl7au3wyRwgtHo1mUSOpgZHWaZeLKEzalhcSFTVdv46ORkBZCRO4ADNbW6GJXM2tVrBROWmIRJJEYmk6N1Sx9J8nNe9vo0Xg/NJRlA2RjUajTQ1NZHL5ejr6+Ppp5/mG9/4BgA33ngjU1NTBIPBCzJK4iMf+Qi33HILd911F2azmfn58s2R1Wrd0BHBhYrXRIW0ijvvvJMbb7yRf//3f+cd73gHpVKJJ598kttvv52f//znLCws8La3vY19+/bx9re//Zxtd0tnVzt37kSn0z3/D1UgiiKDz4zy3//+CGMnJhk6VL5I+5rdOOudiKIoi8EItHmZHZY7D3jbnCwMr/WfbAEzlAQCrX4WZ5dZmo3Rtr2BYcmQv77Dx/SgvJXU1Ftf9eMD6L60FUGhIBFbYWoohCAIBFo9zEoCAdt3BhmSqNvKFZQ8I6pjd5BSAVQ6NbNTETLpXGVXSiJ7r5lBWV0mklF5YGLLlgCjp+ZQqhQ4/CasHhOJSI6FmVj1Al+749S5vZy/tAqlSoHBpKvOvgB6djdWJeT+oAOnvzwnmp+NEq3kPbX3BhiSVJxN7d51FkXSjCYoL+5K5eFGk5ZcoYBCAS6vGavDgs6oZWy1PScI1Dc6mK5xgLA7dSxH1kQR6xwg9GoE4F3vvYTffc8Ll3qfbzI6E0RR5Itf/CI/+tGP+OxnP8uRI0f4xS9+QalU4uTJkxecoOHZlIM/+tGP+MAHPnB+T+YVgNcUIcXj8WpAWC1KpRKHDx/mjjvuYP/+/UxOTvKWt7yFffv2cc0112CxWM7KXlImk+Ho0aOo1Wq2b9/+su7qVpIZfnv3IX7z00c5+cgAvmYPocklWrYFUWpUjJ6YonV7I4MSo1dPo6vqmbcKb5uD+cE1guq+rB2FSsHs2BKxylyifWejzOi1rs3LTA3RNW9tYOxERc3mNtO6vZFwKMHk4HxVkFHX5mFGuhdTc1wEcNYQ1I4rusjlCiSiK0yNLq2FIUrtkC5qok/iEmH3mIlF0jIvvoYOF1ODS2gNKtz1VswOE6GZBGFpBdLolCv0djRUFXpQ3tPS6DVycpTsODncZupaXRSKIsvLaeZnlhFFaO32y3KbakMFBUHA7jZXM5oAOrf6OX1qrWVaFkDkKeSLGM06PD4rTq+ZWDzD8nKKxVCcxlYP4xLnCxGw2NXEYxL13ZY6RoYW+OFPP4TZ/MJuhi4UMvrSl77Ed77zHR588EG2bt0KlFvbhw4d4uKLL35FZBtt4tnxmiKkFwpRFDl58iS33XYb+/fvZ2hoiDe/+c3s3buXa6+9FofD8ZK++MlkkiNHjmC328+608TC+CK//cVhfvm9/64STl2HD6vTRDqRZWJgFkEQ6NrTKqugbF4L0YW4XN68xc/UyXJ8emNvHVaPlfH+ORLLa229jl1NsqTb2koIoGVbA6PHpzDZDNR3+NGatPQ9PU5Bovx6PoISFEJ5BjVfriRMNgOdFzWTiKaZGVsilciiM2hAgIzEx67n4mYZQTm9FiKLCdn79DVbmR+LYbbrcdXZMFlNjJyeI51cu3j7GuzMS/3mdgZl9kNn9NDbtfYcnV5Na2+AEgLZbJ65mSjpVI6mdg/jkoXf9l4/g31yJ3CtUclKaq3FWOsAYXcaiUkWYbVaFZ1b6sgXiogCJJJZdEaNLBodwGLRsH1nPR/93297QW2j8fFxxsbGNpyMvva1r/GVr3yF3/zmN2e8qdzEKx+bhPQ8EEWRgYEBbr/9dvbv38/Jkye5/PLL2bt3L9dffz1ut/sFkVMkEuHYsWMEg0FaWlrO2Z1cqVSi7/FBHvzPx1icWuL4wXJ2kqvOQaDTz+LUMguSCql7Txt9v10TN1g9FhLhpKyyaN0VZPToFE1bGtCZ9SRjK8yOhmQX946LmhmUyMF9TW7mx+UWQC3bGpgZXiDYFUChVlEsiYwcl8+76ts8TEsIqmNXI4OS1qGgKFcSkYU4gkKgvs2Lt8nF3ESEmcrMRm/UICLIPP26dzfR/yw2RqtwN5pZnEpi95hw1zkwmPWMnl6Qxa67A7ZqOCBUCErSgtQbyx56Wck+kHQPCqBjax2CQkBQKohF08zNRqlvdjMpqWx8DUbmZ9ZuAFRqBTq9lqTUraOmxefymllakDurN3d4ScRXsDlNZccPtZLJqTC/d1MvSlUWk8lU3f8xmUzrvperZLR79+4NFf98+9vf5p/+6Z+4//77ueSSl+4osYkLG5uE9CIgiiIjIyNVcjpy5Aive93r2Lt3LzfccAN+v/+MRDM3N0dfXx9dXV3nVZqaTWf57S8OceCWxzh+4BTdFT88R9CGO+AitpQmMh8ln5G0c17XTt/jawRltOvJJLKy2Uz3ZW1k03m0Jh1TwwtodWpiS3IS67yoRZYJ5W1ysTAubxX6210UCkVcPieh2RgWu4nxfrnUu67dy4yk8urYWSOSUAjYXCaWQwmMVj11reXF3uGTs9UEWINZSzFfIit5n7VO5Ra3gXhNhpAnaCE0Gcflt+IK2NCZ9EwMh1heKh9XECiTY2iNBHp2B+mr8dDL5Wr2gbbVy+ZUjW0eSpSl7tlsjvm5ZYxWA6G5teN2batnoNYBQqmUOUDULuH66mzMzcoFEMFWFx6vhc/84/8gn8+ztLREKBQiHA6j0Whky6mTk5MXBBl9//vf5/Of/zz33nsvr3vd6zbkPDZxfrBJSC8Rq3ZDd9xxB3feeSdPPPEEl1xyCXv37mXv3r00NDQgiiI//OEPaWpqYseOHbhcrg0736XZCHf8y908ffcxFituA72/00kmlUWt0zB2chqVSkWxWCQrucj1vr6DU4+t7T3pzVpymTzFfMXJWqlg55VbWEllmR4JkYymsXksxGuqrK6LWxiQRLrbvCaiC3I585bXd1ASRVLxLJNDCzT1BBgfkO8QBVrczEpFCLsaZXtQCqWAxW4iupTAG3Ti8NvQWwycfGrNCNZo0ZPL5mVxG409HiYG1o7rCzqYrxEL+JodzI8v4/CYcdfZMVoNTI0tsThbFkmUXSyMRMMSP8FdjXKLIruBZFxuUdS+tY5BiRy8rsXO8lIab50dvVFLLl+ghMDI6fnqrKunxn7IYNRQLJTISs1jt9bJHCDqGx1MT0X42y+/i+27GmXvrVgsEolEqr5zpVKJUqlEW1sbDQ0N59wU9UwQRZGf/OQnfOpTn+Kee+7ZcO+3hx9+mJtvvplDhw4xNzfHnXfeyb59+zb0nF5t2CSkswBRFJmZmWH//v3s37+fxx57jO3bt5PP55mYmOC///u/6enp2bDzW1X15XI5du7cycLIIgdvfZxn7jvGREUlp9Gr2f6mLURDCcZOTlEslNAaNWUfNmlgXA1BaYxqSgWRQraAoBBo7KnD0+Rm6OhkVRBhc5tJLKdkVVZDj5cpif2RN+iULdQarQY6L2ohlcwwPbpIOpktE1RNxLu/2c3cmJSgmjgtmW0pVQqMVgOp+Ar1bV6MNgM6g44jjw9XW44Gi5Zctig3Wt0R5LSkVegN2lmYispfu8nB3HgEk1WPL+jE6jYTmosxOxmhWBRRqRXojToSErl3rYeew20mUmNR1NrrZ0SyzNvS5WP09EJZyBCwojdqUaqVzM5Gyy06QVhn4Gqy6FnJ5OXvaUuAbCbPV79/43O2jMfGxhgbG8Pj8RCNRslmszidTjweDy6XC43mpTuCv1CIosh//ud/8olPfIK77rqLN7/5zef8NZ8P9957L4899hi7d+/mf/yP/7FJSOcAm4R0liGKImNjY+zbt4+RkRFyuRy9vb1VZ/KOjo7zqgTK5XIcPnz4jKq+UqlE/2+HePi/fstT9x4ln8mTiCQxWPQ09jZgtBs5/MDJqkJOrVOj0alJSSXQNS0+jUENIuRW8jR0BbC4LKgNWo4/PFB9jtGmI5PKyxJruy5pkaXjehudLFTi0xVKBQ2dflxBJ7NjYeYmlhAEYf0yL+BvcjEnaQ12XdQs88dTqZXoTVry2QIWjx6T1YTFaeXoY8PV6sPmNJKIrcgItGNHkEFJDLynwUpoSt4O8ze5mZsIl33tmpx46h1El9OE5mPEoytotCpUaqVMHVgbIuj2WVisMUSVeuYBtPX4Ga5YC+n0anz1dkw2A/lCiUQiw8J8jI7eOpkAwmY3EE+s8JFPvI0rr97Ks6F2ZiSKIqlUqlo5JRIJbDYbHo8Ht9t9TnZpRFHktttu46Mf/Si33347V1111Vl/jZcLQRA2CekcYJOQzjIWFxe59tprMRqN3HHHHYiiyM9//vNqplN7e3vVmby7u/uchpel02kOHz6M1Wqlt7f3OV+rkC9w9MFTPHLbEzxxz2HymRxmh5lioUhDdx3pRBajzUjf42vVkUqjLFcAEvVd+8VNDEmiM7QGNSBgcZnQWjXksyLugEsWi2F1mUnG0nKCqmnxeRtd1QrK5jbja/Ggt+g5fXiyGp3R3BNgrKaC8jY6WZDKuC9qZkAivlBrVWh0ZWNSf5MLlVaFxqDlmISg7G4LseWUrAXZtrWeYUkEvbvBzOK0fLnYW29nobIE7PBaaO4JkE5lScQzzE1FUGtVlESq7g8A3Tsb6JcQn6/eXnYol0DqOg7QubWe0xJXco1Oha/Ogc6gQaVRksnmMZj1TIwv8oOffRi15syrBi9EwJDJZKrOCcvLy88ringpuPPOO/njP/5jbr31Vq677rqXfbxzgU1COjfYJKSzjGQyyc0338ynP/1pme/WqkfX3XffXc10CgaDVXLatm3bWSWneDzOkSNH8Pl8L7oqy67kOPLfJzj4s8c5dP8xcpl82eetM4DJYSIdzzDRP0vPZe0yhZ5SrcRoNRBfWhvGN+2oY/yoZBhv1GBzWXDWOcjmCkyenqfzomZZQOEZCeqSVhlBrRrDKpQK6jt8mB0mlBoVJ367Jmlv2VrPaE0UutN/BhsjiTy8vOOkRKlW4GssE5TWqJNVUE6fhchCQqbQa+mtY1RiiOqqN7E0LZmRCQKugLXqo6dUKejYUU80GkdvMBKPZUmnsuQLxfUhgpJZUV2TkxlJfET5MRczE5JIiRoBhEarQqlWsu99l/CuD7yeM+GlqOlWRRGrSbFqtbpaOdlstpf0fb7nnnv44Ac/yE9/+lPe8Y53vOifP1/YJKRzg01C2iDE43FZppPH46mS0+7du18WOYXDYY4fP05zczNNTU0v6zzTiRWevvco/b8d5IGfPEyh4sZt81ho7G0gFk4x2T+DKEL3pW30SwMBVQoMFj0JSWhgXa+HmVNrqjmry4y/1YugVDAzskgylqbnsrb1BBVfkRFU58XNnJY4Nfhb3MyNLmK0lq2UlCololIpEzwEu7xMDkhjOwRcARtLs9HqQ6s+e6vQG8s+c0qVEn+TC41ejVav4egTo9W5T9lNXN6+a+z0MiFJbvW32JgbX3uOIAjoLRrS8TUByZZLmkkmMhhMWnL5Iul0lvm5uLx1eKaMppoIeG+9nQWpu/mOBob65/jX/X+Kzb4+pfRsSLtXRRGrjt2iKL7opNj77ruPP/iDP+CHP/wh73nPe17SeZwvbBLSucEmIV0ASKVS3HvvvdVMJ6vVWs102rNnz4tSOK1KzHt6evD7X7yL83OeZyzN0/ce4dH9T5GKpqvtO7PTRH1nAJVGRd9vR6qtrZadQUaPSLOUFFicJlm2U6DHzWxfuf0kCALN24IY7UbCc1Hmxsuzop7L2mTR7GcSSdTGYgRaPcyOLeEJOnEF7KTSK6ysZFmcXHvttu1Bho+vtccEAeweK5GFNeLouaRFtmBrNOvI54sIlEnQYNahNenoe2ayKiuvzWMC8Lc4mJMYoHobzSxMrlVQSqVQjrePyC2KJodCeOpsaI1aSoJIeDFZ3oOqVGttvYHqPAmgudPL2GBNFLrXyo6Lm/jI31xNLc7FnpHUsTsUCr0gUcSDDz7Ie9/7Xr773e/y+7//+xe848ImIZ0bbBLSBYbVTKc77riDX/ziF+h0Olmm03NZDU1MTDAyMsL27dvPeXxzKpbm6fuO8tufP8PhB47T2NvA0KFRDFY9we560ukVktEVlmfXCKDrklYGnlojljMRVHCbn8nj5Qus3Wsl0OFFRMHoyRlylQv+ugrKYyEZScoriYtbZNlO9oCJ6HyK+jYvZpeZlVQWURCYkNj3tO8IMnS0hkBdZlkY4bocJ5uB7EqeQqGIv5Iga7DoGRtYIBKKl/3mWtxM1+xgOQNmwnNrhNS6xc/IqbVzUWuUaHUaknGJQq/ioac3avDU2bE4jeRyRaLLaRbmo4ilNUVe9biVjKav/ccf0tjilp3D+Vh6XRVFrM6dVkURLpeLfD5Pe3s7Dz/8MO9617v4+te/zgc/+MELnoxgk5DOFTYJ6QJGLpfjN7/5DXfccQd33XUXgiBw7bXX8o53vIM3vvGN1TvNYrHIiRMniEaj7Ny587zbu6wkMxw7cJKHb3uSQ78+TiaZwdvuYnkqRuOWBpQqFVODc1icZualEu1LWjktIShBIWB2GIlLcn3aLmpk5PAkKo2KYFcAndVAYjnNVMXdHKDn0jaZSMLutRKLyEUIrdsbGJGIBRo6fMyPL1HX7sVoNZCIZxAEgUlJbEfnriaZ9FupUmCy6olJ94wuaVnnQp6KZygWilidRjz1ZTn44lyMmckwhXyJ+hYX02PyOZDVbSC2tEY+tR56Wp0KpVol9+/bvbbjpFQpaOsNlPehVOWF2cXFOE6vFZvDyOe/Km+BbZQDw6oo4uTJk7z3ve/F4/GwuLjIX/3VX/HFL37xnIp8Xi6SySTDw+Xv2c6dO/l//+//8aY3vQmHw0EwGNzgs3t1YJOQXiEoFAo89NBD1UynbDbLtddeyzXXXMOPfvQjisUit95663mLzzgTRFHk+NETHPnv4+RCIg/f+kQ1iK91ZxOlYgm92cDCxBKR+Rj+Fg9zo2vtpVrpt6AQMDoMpCRtrFUvPoffhrfJQ7Eosji7LK9iLmuj78m149i9ZqKLSdmuT61nXmO3n7nxMHVt3vLcK7aCKCiYlrhE1C7hqtRKdCadLHKjtoKSmrwKCgFvg51Aq5dUIkM0kmJhJkpzl5+x03K/ObNDS0Lq2L0rSL/EAUJv1FQUes9uUeQPOkgms3z87/ex/ZLm6uNjY2OMj49vqAMDwAMPPMB73/teurq6GB4exuFwsHfvXj772c/idruf/wDnGQcPHuRNb3rTusdvuukmfvzjH5//E3oVYpOQXoEoFos8+uij3HLLLfzkJz8hn89z7bXX8r73vY+3vOUtG0JKpVKJEydOkEql2LVrFzqdjmKhSN/jgzx5z2Em+2c4duBU9flb39hFSRSIh5NMnS4bua4jqD2tnH5aTlB6i5Z0VOLn9rp2Bp4coaErgMluJJXIsDATlRmtdu9ppV9iKOsM2IjU+Ni17WyUxW009dQxM7JAXVu5gkqlshRKIjPDaxVe10VNMvshjU6FSq0iLVkkrlXxufxWwhKFns6goWNnkEKhVI46X0hgc5sY7ZdEfQhgseuJL0ved41FkcmiJ5vNyyyKOrbXk0pk+fqtf1ytJsfGxpiYmGDXrl0bSkZHjhzhuuuu4zOf+Qx/8Rd/QS6X48EHH+Suu+7iy1/+MiaTacPObRMbh01CeoViYWGBa6+9FpvNxic/+Unuvfdefv7zn7O4uCjLdDoff9iFQoFjx45RKBTYuXPnGYfWoigyfnKKJ+85zFO/PEypJDJWSbq1uMy0724lHkkyOTBLrmJMGmjzyghqfYsPDFY9qWXJnOV17Ywen8ReZ8HisBFfXmF5MSGzQ+re00K/pIJy19tZrNn1ad3WwIhE8NCyrYGJgVkCLR7MDhO5XJF8ocSkZGG1+6ImGfnoDBpKiORWCvLnSEjM2yBXxAF0bG8gny+iN+nI54oo1UoGjk1XhQwoBMw2PQlpIuwZLIoSiSx//KmreOu+sjP2hUJGJ06c4JprruETn/gEf/M3f/OKmBlt4vxgk5BeofjCF77A4OAgP/7xj6sEUCqVOHToUDXTaXp6mre85S3s3bv3rGY6SZHL5Thy5AgqlepF5TstTod55t6jPPWrIxx/qJ9gdx2jxyZQaVQ09tRj81qZHJiT5SLVVlAdF7cwKKugQG/RySqo3td3Mj9RVtsVSxBdShALp6oCCYDuS1rply7h1tgYATRvrWfs1JrcunVbA6MnZvDUO3D4rYgKgUKhxMiJmSpxNPZ6mehbO1+DWUuxINaYvDYxIGkd+hudzE3IXzvY4SU8H8dTb0dr0CCoBWYnl4lFVoCyh57BpCMpyWjq3hVkeizM937xUbQ69QVDRn19fVx99dV85CMf4fOf//wmGW1Chk1CeoWiWCwiCMKzDoFXW2irzuTDw8NceeWV3HDDDVx33XXY7faXfTHIZDIcPnwYo9HI1q1bX/JAuiyKOMXT9x3l0H3HWF6I0bI9yOixSbxNblz1TlQ6NX2/HZbtItUSVKDbw2z/2n8rlAqMdiMJiQih93XtROZj2H02cvki8XCKaCQpM1rturiZAemOU7NrHUk09dQzIXEmX1XoGS16vE0uihQolEoszaSqURQ9lzTTJ3GxMFnXt9k6dwY5Lal06lvdTNfsGdW1eJgZW0KtUeH0mzG79STjK+SyJRKxHGKpbPN07Xsu5r0fvrxKRrt37z5nKcgvBKdPn+bqq6/mgx/8IP/4j/+4SUabWIdNQnoNQBRF+vv7uf3227nzzjs5deoUb3zjG9m3bx/XX389LpfrRV8cUqkUhw8fxul00t3dfdYuLqVSiZGj4xy6/zjP3H+M4UNjiKJIy/ZGZgbnaOipQ6PXIigE+iW7SQD2gEUmMw9uDTB5cm0WU17UNVSFFlA2i40uJbC6LeSyBeLRFZYXYnJT0oubOS2RkNe1epitIYlgp4/J02uv5W93MDeyjCAIeBud2D0WVFo1obkYC5XAv55L5CGCFruBVCLznB56jR1eJobkOVO+RifzU2t7T/UddgoFkZs+eTlGi5ZQKMRFF120oWQ0MjLCVVddxXvf+15uvvnmC0JN9+1vf5ubb76Z+fl5tm/fzje/+c3NrKUNxiYhvcYgiiLDw8NVclrNdNq3bx833HADPp/vecklHo9z+PBh6urqaGtrO6d3urHFOEcePMWh+49y5L9PVF0fWrY3EY8kcTc4iS7HUKqUzJ6uuVA3e2UhgYFuN7P9a/+t0ijLgYMSL76ey9qJLcaxeqzk80WSsTSLczH5Eu7uZgYlarv6Di/TNamsgTaPPCZjd1NVoafVawi0ujFaDGRzBcILCSKh+LqUW7vbQjQiVwe2bWtgWGIL1NztW6fQcwdstG8P8IZ3NhOLxVAqlVVLH5fLdd6jJMbHx7n66qu5/vrr+cY3vnFBkNGtt97KjTfeyHe/+1327NnD1772NW677TZOnz6Nx+PZ6NN7zWKTkF7DEEWR8fHxaqbTk08+yZ49e6qZTvX19evIZjX59mzYEr1YFIslhg+PceKhfp6+7xinnx6pXqxbdzRSyBcx203EI0l0Jp1MNQcVg1ZJWq6/28Xc6bVWnFqnQqNVk4rJRRKRuRh2v5VSCdLpLLOj4RoJeZAhSZst2OmT7TNBJSZDshzbfVEz/c9I5eEWXHV21Do1uQpJ+ZpcMgGEy2clHEog/Ytt6Q0wKomqaO0NMNI3xye+dgM5Ic6uXbsQRbHqmpDJZKquCW63G7Va/fwf/MvA9PQ0b3/723nb297Gd77znQuCjAD27NnDxRdfzLe+9S2gXJk3NDTwsY99jE996lMbfHavXWwS0iYAeabTHXfcwWOPPcauXbvYt28fe/fupampif/8z/9kamqKG2+88bwm354J6XSaxw4+TmQkQWJqhSd+eZhFiRCh4+IWRBE0Og3huShmp4mRGoJyBR0sTa/Z+QS3+GQtPq1eg1KtlMm4ey5tY25sEU/QiVKjIpctMn56npKkgmrbIbckau4JMNYvDxr0NDgISdpstfJwnVGD0WbE4jCV4zLyJQxmHcd+O1oVTXjr7SxIfPgAmrr8qHUCV/1h5xlnRslkskpOyWQSu91edevW6XTP+nm/FMzNzXHVVVfxhje8ge9///sbEvJ3JuRyOQwGA7fffrvMaeGmm24iGo1y1113bdzJvcbxqiWkG264gaNHjxIKhbDb7bzlLW/hS1/6EoFAYKNP7YKHKIrMz89XYzMeeughfD4f8/PzfPazn+UTn/jEhg6kk8kkhw4dkjmZi6LI7PACRw+cYvjQGE/88jBpSaXTdWm5tSgoFCxMhnHWORg+OiE7rs1rIbqwNoNq3dnAyNG1iAmdsezenklJ3BIua2f42AT2gAWn14mgEJgcDpGSKN5atjYwenLtOC1b6uQu5GcweV3noWfRkc+XUCgEPA0OjBY9RquRuekIodko+VzZumhuMsL1H97KO//gbc87M1pZWala+kSjUcxmMx6PB4/Hg9G43oT1xWBhYYGrr76aiy66iJ/85CcXDBkBzM7OUldXx+OPP85ll11Wffyv//qveeihh3jyySc38Oxe23jVEtJXv/pVLrvsMvx+PzMzM/zlX/4lAI8//vgGn9krC6Io8sUvfpF//ud/pqenhxMnTtDR0SHLdDqf5BSLxThy5AgNDQ20tLQ862sXC0WGD49z7OApxk9O89S9R6tO5QBde8oEJQpCRRbuYkiSNIsgYHYZSCytuTB0XtLCaYmThN6so1goyRR63Xva6H9qBE/QicNnQ23QEFmIMzcZqbb5apNv27Y3MHx8jbAEhYDdayUiIcdaiyKT1UA2kyefKyf1ugM2HAEzBTHPp7/9AazWFyftzuVyVXKKRCLo9fpqW+/FrgssLS1xzTXX0NPTwy233PKCVwHOFzYJ6cLFq5aQanH33Xezb98+stnsOe+bv5rw93//93z961/nvvvuY9euXUSj0Wqm0wMPPEAwGGTv3r284x3veFnS7xeC5eVljh49+pLmV9l0loGnRjj+UD/Tg7M8fe8xmddd1552BIUCBAhNRXDW2xmSCBcQwGCV7zg1bPExLdkzMloN5HMF2Y5T155WBp4eQ6NT42ty4/BbSSezhENxwnMxBEGgscvPhESh176zkSGJsk6hFDDbTcTCa+rAdRJym550IsuNn7qK6298w4v6bGpRKBQIh8OEQiGWlpZQqVTVtt7z5RxFIhGuu+46mpubufXWW89L3PmLxWbL7sLFa4KQIpEIf/qnf8rMzAyPPvroRp/OKwqPPfYYLpeLzs7Odf8Wj8e55557qplOXq+3GtX+cjOdarG0tMTx48fp6Oigvr7+ZR9vJbFC3xNDnHh4gNmRBZ65/4SMoDouakahVCKoFETm49i9Flm8RdnGSMdKXN6+k5q8muxGMis5CtI9I0lMhtGqp3V7kGJRJJstsDQfI7qYoKHDL/fQ29m4zuTVYNaTkHjoBTrsJBazfO/gp9Dqzt4NV6lUIhKJVCPMRVGskpPD4ZC14mKxGNdffz1er5f9+/fLAiovNOzZs4dLLrmEb37zm0D5fQaDQT760Y9uiho2EK9qQvrkJz/Jt771LdLpNJdeein33HPPOY9leK0imUzKMp3sdjs33HADe/fufdGZTrVYWFjg5MmT5yTjaRXp+AoDT41w6rHTzI6GePpXR2W7SC07GlGqFKi1ahbnI+gsWmb611RzCqWAzqwjHZP77ElznKwuE8loWr5ntLtJJiFv2xlEFMvzqlyuSHghht5sYHZs7bW6djcycFhKUAJag5Zr/uB1/N6fv/XsfSg1EEWRaDRaJadcLsfS0hLLy8tcddVVfPCDH8RisXD33XefdYHE2catt97KTTfdxPe+9z0uueQSvva1r/Ff//VfDAwM4PV6N/r0XrN4RRHSpz71Kb70pS8953P6+/vp6uoCynfVkUiEiYkJ/vZv/xar1co999yzuSF+jrGyssKvf/1r7rjjDu655x50Ol01cPB1r3vdi5opzM7O0t/fz9atW8/rfkg2nWXw0Bh9jw8xO7rAU786KhMzNHTVoVAqMNmNZDN5lDoFg09LSEKtQGvUkY5LFXqtMoKye6zEIklZZda+q1GWydTUW8fi1DLuBgcGs55iqYSgVDF0YopSsfyn27GzgdFTc3z3wb/G7j4/y6+iKJJMJrntttv4yle+wsTEBHa7nc9//vO8+93vxufznZfzeDn41re+VV2M3bFjB9/4xjfYs2fPRp/WaxqvKEJaXFwkHA4/53NaWlrO2Leenp6moaFh3SBzE+cW2WxWlumkUCi47rrrqplOzzXPm5qaYmho6LwEDj4fUskU993x34RH4xSTAs/cd4LIfLT6794mF4V8EVednRIiqAVGjswgVrhGrVWh1qhqJOStspgMZ8BGZCEudyHf3igzeV311FOqFJidelwBB0aLkWCnnw/8zXXn7gN4FqTTad71rncRj8d55zvfyS9/+UuefPJJrr76an7xi1+c9/PZxCsbryhCejmYnJyksbGRAwcOcMUVV2z06bwmkc/neeihh7j99tv5+c9/Xo3N2LdvH29605tkM4dTp04RCoXYuXMnNptt406acsV36NAh7HY7PT09VZn50swyA08OMzkwy9EH+xg7OVVtx7kbnURDcTyNLjRGFWgEFieiJMPlIECdUQOCQi4h39NKn8Tk1VPvWOdCXmvyWnZumOb//eoTNHadm3bmsyGTyfCe97yHZDLJfffdVw2GnJ+fp6+vjze/+c3n9Xw28crHq5KQnnzySZ5++ml+53d+B7vdzsjICJ/97GdZWFjg1KlTZ2XYOj4+zhe/+EUefPBB5ufnCQQCvP/97+f//J//c0Eqiy40FItFHnnkkSo5JZNJrr76am644QZ+/etf8/TTT/PAAw+c9/TbWqysrPDMM8+8IM++bDrHyLEJxk5Oc+rxQQYPjZXdygUBZ8BOeHYZvVmLxWNEb9eTTxdJRjLEwykMVj3FYqlqxArQfXErAxIhha/JyfxkRPaajT0BbE4zn/v3Pz7r7/25kM1m+f3f/31CoRAPPPAAdrv9vL7+Jl6deFUS0okTJ/hf/+t/cezYMVKpFH6/n6uuuorPfOYzZ81h4L777uPWW2/l937v92hra+PkyZN86EMf4g/+4A/48pe/fFZe47WCYrHIE088we23386//du/kUwmefOb38xNN9103jKdzoRUKsWhQ4fweDx0dna+pNnj0uwyo8cmGTw8xuDhcUaOTrCSymHzWIiGyntGOrOG+m4vYkmAkoKl+RiFXJF8rijbcWra6mf81Jo8PNDiZnZsic/8+EPsfON6FeS5Qj6f58Ybb2RiYoLf/OY3G95O3cSrB69KQtoo3HzzzXznO99hdHT0+Z+8CRmKxSIf+tCHeOihh/jKV77Cb3/7W+68806mp6d561vfKst0Oh9YdYPw+/20t7efVTfzudEQw8cmGT46ycixCSb6Z1FqlCQlUe1tFzdSyBQxWAwU80Viy0kW52KUCmt/rp27mkglM3ztvr88b0KdQqHAH/7hHzIwMMCBAwcuyKjxTbxysUlIZxGf+cxnuO+++3jmmWc2+lRecbjjjjv43Oc+xwMPPFC1dyqVShw/frya6TQ6OirLdLLZbOfkQpxIJDh06BD19fW0trae84t9sVhkdjjEyPEpho6NM3R0jKXZGNGFtUXYQJeTxbEYvkYXJrsRpUZJKp7h6g+8kbe8+/xEJhSLRT784Q9z5MgRDhw4cMEq6f7hH/6BX/7ylxw9ehSNRkM0Gt3oU9rEC8QmIZ0lDA8Ps3v3br785S/zoQ99aKNP5xUHURRJpVLP2p4TRZG+vr5qbEZfXx+XX345+/bt47rrrntJmU5nwmq0RjAYpKWl5WUf76WiVCoxM7rAI/c9wciJKRKhNPNDyyQrce09l7YxPbzAvz75BTRncRH22VAsFvnYxz7GY489xsGDBzfcXPe58PnPfx6bzcb09DT/9m//dl4IaXx8nObm5nWPX3755Rw8ePCcv/6rBZuEVIMXu+sEMDMzw+WXX84VV1zBD37wg3N9iq95iKLI0NBQlZyOHj3K61//+mqmk9frfUnkFIvFOHz48IZEa5wJIyMjTE1NcdFFF6HX61laWmJsaJLTR0aJzafwN3h4y3tef84qxVWUSiU+/vGP85vf/IYDBw7Q2Nh4zl7rbOLHP/4x//t//+/zQkjFYpHFxbX8q/n5ed7ylrfwZ3/2Z/zd3/3dOX/9Vws2CakGL3bXaXZ2liuuuIJLL72UH//4xxdM3strBaIoMjY2Vs10euqpp7j00kurmU51dXUv6GIdjUY5cuQIra2tBIPB83Dmzw0pGdVWjaVSqeo1t7i4iCAIuN1uvF4vdrv9rH4HS6USn/zkJ/nFL37BwYMHN7RqfLE4n4QkRSaT4YorrsDtdld37zbxwrBJSC8DMzMzvOlNb2L37t389Kc/vaAs9l+LEEWR6elp9u/fz/79+3nsscfYvXt3lZyamprOSE6RSISjR4+eNZ+8l4vnIqNalEqlqp1PKBSiWCxWveacTufL+k6WSiU+85nPcNttt3Hw4EHa29tf8rE2AhtFSO973/s4duwYTzzxxIbGxr8SsUlILxEzMzNcccUVNDY2rst7uVCHva8lrGY63Xnnndxxxx08/PDDbN26tWr+uhq9/qtf/YpCocDu3bsviLnIiyGjWoiiSCwWq5JTLpfD5XLh8XhwuVwvyrJJFEX+7u/+jp/85CccPHhQ1qLeCLyUVvpGENLf//3f89WvfpWnnnqK1tbW8/a6rxZsEtJLxI9//GM++MEPnvHfzvZHuqkaenkQRZGlpaVq4OCBAwfo7OyktbWVX/3qV3z729/mfe9730af5ssio1qses0tLCwQCoVYWVnB4XDg9XpxuVzPubwtiiL//M//zHe/+10OHDjAli1bXta5nA28FNuw801Id9xxB7/3e7/Hvffey5VXXnleXvPVhk1CegVgI1RDr1aIosjy8jJf+MIX+Jd/+RcEQaC1tbWa6bRly5YN6fmfTTI6E1KpVLVySiQS2O32ajqs1LlEFEW++tWv8tWvfpXf/OY37Nix46yfy/nC+SSkkydPsmfPHv7iL/6Cj3zkI9XHNRoNDofjnL/+qwWbhPQKwkb1xF9t+K//+i8++MEPcsstt3DFFVdwzz33sH//fu677z58Pl+1rbdr167zQk7nmoxqsbKyUiWnWCyG0WjkwQcf5J3vfCcPPPAAX/rSl7j//vu5+OKLz/m5nAtMTk4SiUS4++67ufnmm3nkkUcAaGtrO2ef77N1TDZl3y8Om4T0CsImIZ0dfOITn+DKK6/kmmuukT2eTCb51a9+xf79+/nVr35VzXTat28fl1xyyTkRrZxvMqpFNpulr6+Pj3/84xw6dAiAP/qjP+LjH//4hs+NXio+8IEP8JOf/GTd45vGyhc+NgnpFYRNQjp/SKfTskwng8HA9ddf/5IynZ4NIyMjTE9Ps3v37g3z64Nym+7HP/4xn/zkJ/nzP/9zTp06xf33309LSws/+9nP2LZt24ad2yZeW3j5f1WbeEl4KaqhTZw/GAwG9u3bx759+8hkMtVMp/e///0olcpqptMb3vCG58x0ejZcSGT005/+lE996lP84he/4E1vehOwlgB8ISwIb+K1g80KaYPwSlANbWI98vk8Bw8e5Pbbb+euu+4in89z3XXXsW/fPq644ornjTYRRZHR0dELhoxuu+02PvrRj3LHHXfw9re/fcPOZRObgE1CekVhk5AuLBQKBR599NGqhVEqleKaa65h3759XHnllej1etnzLyQyArjzzjv58Ic/zM9+9jOuu+78p81uYhO12PS0eAVgcnKSo0ePMjk5SbFY5OjRoxw9epRkMvn8P/wc+Pa3v01TUxM6nY49e/bw1FNPnaUzfm1ApVJxxRVX8K1vfYvJyUnuuecevF4vf/3Xf01TUxM33XQT+/fvJ5VKUSqV+Nu//VuefvrpC4KM7rnnHv74j/+Y//iP/9gko01cMNiskF4BOBeqoVtvvZUbb7yR7373u+zZs4evfe1r3HbbbZw+fRqPx/Myz/i1jVKpxNNPP13115uZmSEQCDA/P8/tt9/OG9/4xg09v/vuu48bb7yRH/7wh7z73e/e0HN5NmwmMr82sUlIr1Hs2bOHiy++mG9961tA+SLa0NDAxz72MT71qU9t8Nm9elAsFvnTP/1TbrnlFtxuN3Nzc1x55ZXs3buXa6+99pw7ddfiwQcf5L3vfS/f+973eN/73ndeX/vFYDOR+bWJTUJ6DSKXy2EwGLj99tvZt29f9fGbbrqJaDTKXXfdtXEn9yrD5z73Of71X/+VAwcO0NXVxalTp6ozp/7+fq644opqppPT6TynBPHwww/zrne9i2984xt84AMfuGDJ6Nmwmcj86sfmDOk1iKWlJYrFIl6vV/a41+tlfn5+g87q1YlAIMCBAwfo7u5GEAS2bNnCF77wBY4ePcqJEye44oor+OEPf0hrayvXXXcd3//+95mfnz/rfoiPP/447373u/nKV77yiiQjKOdVbdrwvLqxSUib2MQ5xJ/8yZ/Q3d297nFBEOjs7OTTn/40Tz/9NKdPn+aaa67hZz/7GR0dHVx11VX8y7/8C9PT0y+bnJ566il+93d/l3/8x3/kQx/60CuSjIaHh/nmN7/Jhz/84Y0+lU2cQ2wS0msQLpcLpVLJwsKC7PGFhYXN6IwNgCAItLS08Fd/9Vc8/vjjjI6O8s53vpO7776bnp4errzySr7+9a8zPj7+osnp8OHDvOMd7+Bzn/scH/nIRzacjD71qU8hCMJz/m9gYED2MzMzM1x11VW8613v4kMf+tAGnfkmzgc2Z0ivUezZs4dLLrmEb37zm0BZ1BAMBvnoRz+6KWq4QCCKInNzc9VMp0ceeYRt27ZVAwdXM52eDcePH+faa6/lr/7qr/jkJz+54WQEm4nMm3hubBLSaxS33norN910E9/73ve45JJL+NrXvsZ//dd/MTAwsG62tImNx2qm0yo5rYokVslpdUa1ir6+Pq6++mo++tGP8rnPfe6CIKMXi81E5tceNgnpNYxvfetb3HzzzczPz7Njxw6+8Y1vsGfPnrP6Gg8//DA333wzhw4d+v/bu5eQqPo4jOPfEKmxGsFQMHJARAYKBkQKx5WSRbUQCcVKGsUbVBK4iDAI2kSE0GooWmkWQrcRbwxOoDNQQSsFRXQRKTQGBtnpRpKNLV4ailq8pjPnzPH5gJsDcp7d4//i+cX/2v/1Zp+s3c+ZTv39/QQCAZ48eUJ+fn58plN6ejrHjh2jsbGRq1evpmwZaSLz5qNCkoQKBoM8e/aM4uJijh8/rkJKAMMwGBwcJBAIEAwG+fbtG62trfj9/pTd4krmRGaxDhWSJM2WLVtUSAn24cMHbty4weXLl7XFJSlH4ydEbMTpdHLlyhWzY4j8k9Rcz4uIiO2okERExBJUSCIiYgkqJBFJmMrKSlwuF9u2bSM3N5fTp0+zsLBgdiyxKBWSJNSnT5/iAwUBXr16FR82KPZXXl7OgwcPmJ2d5fHjx7x8+ZLq6mqzY4lF6dq3JFQ4HKa8vPyP5/X19XR3d2/Ye65du0YgEGBmZgaHw0FpaSnXr1/H7XZv2Dtk/QYGBqiqqmJ5eZn09HSz44jFqJDEFo4cOcKJEyfYv38/KysrXLp0iampKaanp9m+fbvZ8QR49+4dZ86cIRqN8vTpU7PjiAWpkMSW3r59S05ODh8GBosAAAM5SURBVJFIxPSR4ZvdxYsX8fv9fPnyhZKSEoaGhti1a5fZscSCdIYktmQYBoAGuiXAWkdIXLhwgfHxcUKhEGlpafh8Pn3+R/5KKyQb6Onpob29nYWFBbZu3Rp/XlVVxc6dO7l7966J6ZIvFotRWVnJ+/fvtTWUAGsdIfGr169fk5eXx/Pnz/F6vYmKKClKnw6ygZqaGs6fP8/AwAA1NTUALC4uMjw8TCgUMjld8p07d46pqSmVUYJkZ2eTnZ39T78bi8UAWF5e3shIYhPasrMBh8PBqVOn6Orqij+7d+8eLpeLsrIy84KZoK2tjaGhIcbGxtizZ4/ZcTa1Fy9e4Pf7mZiYYH5+ntHRUU6ePElBQYFWR/JXKiSbaGlpIRQKEY1Ggf8+39/Q0JCSs3D+xerqKm1tbfT19TE6Okp+fr7ZkTa9jIwMAoEABw8exO1209TUhMfjIRKJ/La1LPKTzpBspLi4mOrqag4fPsyBAweYm5sjLy/P7FhJcfbsWXp7e+nv7//tf48yMzNxOBwmJhOR/0srJBtpbm6mu7ubrq4uKioqNk0ZAdy6dQvDMCgrKyM3Nzf+c//+/YS8y+Px4HQ6cTqdeL1egsHghr9HZLPRCslGDMNg9+7drKys0NPTQ21trdmRbGlwcJC0tDQKCwtZXV3lzp07dHZ2Mj4+zr59+8yOJ5KyVEg24/P5GB4e/uMKuCRWVlYWnZ2dNDU1mR1FJGXp2rfNRKNR6urqVEZJ8v37dx4+fMjnz591c0xknVRINrG0tEQ4HCYcDnPz5k2z49je5OQkXq+Xr1+/smPHDvr6+ti7d6/ZsURSmgrJJoqKilhaWtIXrpPE7XYzMTGBYRg8evSI+vp6IpGISklkHXSGJLIBKioqKCgo4Pbt22ZHEUlZuvYtsgFisZg+hyOyTtqyE1mjjo4Ojh49isvl4uPHj/T29hIOhxkZGTE7mkhKUyGJrNHi4iI+n483b96QmZmJx+NhZGSEQ4cOmR1NJKXpDElERCxBZ0giImIJKiQREbEEFZKIiFiCCklERCxBhSQiIpagQhIREUtQIYmIiCWokERExBJUSCIiYgkqJBERsQQVkoiIWMIPJ4eBqcygUvkAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
If sector_id is a scalar, then all UTs are relocated to the same
sector indexed by sector_id.
diff --git a/docs/api/config.html b/docs/api/config.html
index 3cd5e633..fda9c614 100644
--- a/docs/api/config.html
+++ b/docs/api/config.html
@@ -3,7 +3,7 @@
Fig. 6 Fig. 1: Implemented 5G Polar encoding chain following Fig. 6 in
+
Fig. 9 Fig. 1: Implemented 5G Polar encoding chain following Fig. 6 in
[Bioglio_Design] for the uplink (I_BIL = True) and the downlink
(I_IL = True) scenario without block segmentation.๏
Fig. 10 Fig. 1: Overview TB encoding (CB CRC does not always apply).๏
+
Fig. 13 Fig. 1: Overview TB encoding (CB CRC does not always apply).๏
If n_rnti and n_id are given as list, the TBEncoder encodes
num_tx = len( n_rnti ) parallel input streams with different
diff --git a/docs/api/ofdm.html b/docs/api/ofdm.html
index 290740ed..0031e4ab 100644
--- a/docs/api/ofdm.html
+++ b/docs/api/ofdm.html
@@ -3,7 +3,7 @@
spec_paths_tmp (PathsTmpData) โ Additional data required to compute the EM fields of the specular
paths
diff_paths_tmp (PathsTmpData) โ Additional data required to compute the EM fields of the diffracted
paths
scat_paths_tmp (PathsTmpData) โ Additional data required to compute the EM fields of the scattered
paths
+
ris_paths_tmp (PathsTmpData) โ Additional data required to compute the EM fields of the paths
+involving RIS
+
ris_paths_tmp (PathsTmpData) โ Additional data required to compute the EM fields of the paths
+involving RIS
check_scene (bool) โ If set to True, checks that the scene is well configured before
computing the paths. This can add a significant overhead.
Defaults to True.
-(43)๏\[b_{i,j} = \frac{1}{\lvert C \rvert} \int_{C_{i,j}} \lvert h(s) \rvert^2 ds\]
+(52)๏\[b_{i,j} = \frac{1}{\lvert C \rvert} \int_{C_{i,j}} \lvert h(s) \rvert^2 ds\]
where \(\lvert h(s) \rvert^2\) is the squared amplitude
of the path coefficients \(a_i\) at position \(s=(x,y)\),
the integral is over the cell \(C_{i,j}\), and
@@ -1702,7 +1769,7 @@
For specularly and diffusely reflected paths, (52) can be rewritten as an integral over the directions
of departure of the rays from the transmitter, by substituting \(s\)
with the corresponding direction \(\omega\):
For the diffracted paths, (43) can be rewritten for any wedge
+(53)๏\[\hat{b}_{i,j}^{\text{(ref)}} = \frac{4\pi}{N\lvert C \rvert} \sum_{n=1}^N \lvert h\left(s(\omega_n)\right) \rvert^2 \frac{r(\omega_n)^2}{\lvert \cos{\alpha(\omega_n)} \rvert} \mathbb{1}_{\left\{ s(\omega_n) \in C_{i,j} \right\}}.\]
+
For the diffracted paths, (52) can be rewritten for any wedge
with length \(L\) and opening angle \(\Phi\) as an integral over the wedge and its opening angle,
by substituting \(s\) with the position on the wedge \(\ell \in [1,L]\) and the angle \(\phi \in [0, \Phi]\):
The output of this function is therefore a real-valued matrix of size [num_cells_y,num_cells_x],
for every transmitter, with elements equal to the sum of the contributions of the reflected and scattered paths
-(44) and diffracted paths (45) for all the wedges, and where
+(53) and diffracted paths (54) for all the wedges, and where
scattering (bool) โ If set to False, scattered paths are not returned.
Defaults to True.
+
ris (bool) โ If set to False, paths involving RIS are not returned.
+Defaults to True.
+
cluster_ris_paths (bool) โ If set to True, the paths from each RIS are coherently combined
+into a single path, and the delays are averaged.
+Note that this process is performed separately for each RIS.
+For large RIS, clustering the paths significantly reduces the memory
+required to run link-level simulations.
+Defaults to True.
num_paths (int or None) โ All CIRs are either zero-padded or cropped to the largest
num_paths paths.
Defaults to None which means that no padding or cropping is done.
The position of the transmitter is indicated by a red โ+โ marker.
+
The position of the transmitter is indicated by a red โ+โ marker.
+The positions of the receivers are indicated by blue โxโ markers.
+The positions of the RIS are indicated by black โ*โ markers.
Camera(3).
This parameter is ignored if look_at is not None.
Defaults to [0,0,0].
-
look_at ([3], float | Transmitter | Receiver | Camera | None) โ A position or instance of Transmitter,
-Receiver, or Camera to look at.
-If set to None, then orientation is used to orientate the camera.
color ([3], float) โ Defines the RGB (red, green, blue) color parameter for the device as displayed in the previewer and renderer.
Each RGB component must have a value within the range \(\in [0,1]\).
@@ -3806,14 +3892,15 @@
Sets the orientation so that the x-axis points toward a
-position, radio device, or camera.
+position, radio device, RIS, or camera.
Given a point \(\mathbf{x}\in\mathbb{R}^3\) with spherical angles
\(\theta\) and \(\varphi\), the orientation of the radio device
will be set equal to \((\varphi, \frac{\pi}{2}-\theta, 0.0)\).
color ([3], float) โ Defines the RGB (red, green, blue) color parameter for the device as displayed in the previewer and renderer.
Each RGB component must have a value within the range \(\in [0,1]\).
@@ -3907,14 +3994,15 @@
Sets the orientation so that the x-axis points toward a
-position, radio device, or camera.
+position, radio device, RIS, or camera.
Given a point \(\mathbf{x}\in\mathbb{R}^3\) with spherical angles
\(\theta\) and \(\varphi\), the orientation of the radio device
will be set equal to \((\varphi, \frac{\pi}{2}-\theta, 0.0)\).
Class defining a reconfigurable intelligent surface (RIS)
+
A RIS consists of a planar arrangement of unit cells
+with \(\lambda/2\) spacing.
+Itโs PhaseProfile\(\chi_m\) and
+AmplitudeProfile\(A_m\) can be
+configured after the RIS is instantiated. Both together
+define the spatial modulation coefficient \(\Gamma\) which
+determines how the RIS reflects electro-magnetic waves.
An RIS instance is a callable that computes the spatial modulation coefficient
+and gradients/Hessians of the underlying phase profile for provided
+points on the RISโ surface.
+
+
Parameters
+
+
name (str) โ Name
+
position ([3], float) โ Position \((x,y,z)\) as three-dimensional vector
+
num_rows (int) โ Number of rows. Must at least be equal to three.
+
num_cols (int) โ Number of columns. Must at least be equal to three.
+
num_modes (int) โ Number of reradiation modes.
+Defaults to 1.
+
orientation ([3], float) โ Orientation \((\alpha, \beta, \gamma)\) specified
+through three angles corresponding to a 3D rotation
+as defined in (3).
+This parameter is ignored if look_at is not None.
+Defaults to [0,0,0]. In this case, the normal vector of
+the RIS points towards the positive x-axis.
+
velocity ([3], float) โ Velocity vector [m/s]. Used for the computation of
+path-specific Doppler shifts.
color ([3], float) โ Defines the RGB (red, green, blue) color parameter for the device as displayed in the previewer and renderer.
+Each RGB component must have a value within the range \(\in [0,1]\).
+Defaults to [0.862,0.078,0.235].
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
+
+
+
Input
+
+
points (tf.float, [num_samples, 2]) โ Tensor of 2D coordinates defining the points on the RIS at which
+the spatial modulation profile should be evaluated.
+Defaults to None. In this case, the values for all unit cells
+are returned.
+
mode (int | None) โ Reradiation mode to be considered.
+Defaults to None. In this case, the values for all modes
+are returned.
+
return_grads (bool) โ If True, also the first- and second-order derivatives are
+returned.
+Defaults to False.
+
+
+
Output
+
+
gamma ([num_modes, num_samples] or [num_samples], tf.complex) โ Spatial modulation coefficient at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated phase profile values
+at the sample positions. Only returned if return_grads is True.
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float) โ Hessians of the interpolated phase profile values
+at the sample positions. Only returned if return_grads is True.
Get/set the the RGB (red, green, blue) color for the device as displayed in the previewer and renderer.
+Each RGB component must have a value within the range \(\in [0,1]\).
The phase profile is configured in such a way that
+the fields of all rays add up coherently at a specific
+point. In other words, the phase profile undoes the
+distance-based phase shift of every ray connecting a
+source to a target via a specific unit cell.
+
For a source and target at positions
+\(\mathbf{s}\) and \(\mathbf{t}\), the phase
+\(\chi_m(\mathbf{x})\) of a unit cell located at \(\mathbf{x}\)
+is computed as (e.g., Sec. IV-2 [Degli-Esposti22])
The amplitude profile is set to one everywhere with a uniform relative
+power allocation across modes.
Input
-
u ([โฆ,3]) โ First vector
-
v ([โฆ,3]) โ Second vector
+
sources (tf.float, [3] or [num_modes, 3]) โ Tensor defining for every reradiation mode
+a source from which the incoming wave originates.
+
targets (tf.float, [3] or [num_modes, 3]) โ Tensor defining for every reradiation mode
+a target towards which the incoming wave should be
+reflected.
Sets the orientation so that the x-axis points toward a
+position, radio device, RIS, or camera.
+
Given a point \(\mathbf{x}\in\mathbb{R}^3\) with spherical angles
+\(\theta\) and \(\varphi\), the orientation of the radio device
+will be set equal to \((\varphi, \frac{\pi}{2}-\theta, 0.0)\).
Configures the RIS as ideal phase gradient reflector
+
For an incoming direction \(\hat{\mathbf{k}}_i\)
+and desired outgoing direction \(\hat{\mathbf{k}}_r\),
+the necessary phase gradient along the RIS with normal
+\(\hat{\mathbf{n}}\) can be computed as
+(e.g., Eq.(12) [Vitucci24]):
The phase profile is obtained by assigning zero phase to the first
+unit cell and evolving the other phases linearly according to the gradient
+across the entire RIS.
+
Multiple reradiation modes can be configured.
+
The amplitude profile is set to one everywhere with a uniform relative
+power allocation across modes.
Input
-
u ([โฆ,3]) โ First vector
-
v ([โฆ,3]) โ Second vector
-
keepdim (bool) โ If True, keep the last dimension.
-Defaults to False.
-
clip (bool) โ If True, clip output to [-1,1].
+
sources (tf.float, [3] or [num_modes, 3]) โ Tensor defining for every reradiation mode
+a source from which the incoming wave originates.
+
targets (tf.float, [3] or [num_modes, 3]) โ Tensor defining for every reradiation mode
+a target towards which the incoming wave should be
+reflected.
A PhaseProfile instance is a callable that returns the profile values,
+gradients and Hessians at given points.
+
+
Parameters
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
+
+
Input
+
+
points (tf.float, [num_samples, 2]) โ Tensor of 2D coordinates defining the points on the RIS at which
+the profile should be evaluated.
+Defaults to None. In this case, the values for all unit cells
+are returned.
+
mode (int | None) โ Reradiation mode to be considered.
+Defaults to None. In this case, the values for all modes
+are returned.
+
return_grads (bool) โ If True, also the first- and second-order derivatives are
+returned.
Defaults to False.
-
Output
-
[โฆ,1] or [โฆ] โ Dot product between u and v.
-The last dimension is removed if keepdim
-is set to False.
+
Output
+
+
values ([num_modes, num_samples] or [num_samples], tf.float) โ Interpolated profile values at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float) โ Hessians of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
A discrete phase profile \(\chi_m\) assigns to
+each of its units cells a possibly different phase value.
+Multiple reradiation modes can be created by super-positioning
+of phase profiles.
A class instance is a callable that returns the profile values,
+gradients and Hessians at given points.
+
+
Parameters
+
+
cell_grid (CellGrid) โ Defines the physical structure of the RIS
+
num_modes (int) โ Number of reradiation modes.
+Defaults to 1.
+
values (tf.float or tf.Variable, [num_modes, num_rows, num_cols]) โ Phase values [rad] for each reradiation mode
+and unit cell. num_rows and num_cols are defined by the
+cell_grid.
+Defaults to None.
+
interpolator (ProfileInterpolator) โ Determines how the discrete values of the profile
+are interpolated to a continuous profile
+which is defined at any point on the RIS.
+Defaults to None. In this case, the
+LagrangeProfileInterpolator will be used.
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
+
+
+
Input
+
+
points (tf.float, [num_samples, 2]) โ Tensor of 2D coordinates defining the points on the RIS at which
+the profile should be evaluated.
+Defaults to None. In this case, the values for all unit cells
+are returned.
+
mode (int | None) โ Reradiation mode to be considered.
+Defaults to None. In this case, the values for all modes
+are returned.
+
return_grads (bool) โ If True, also the first- and second-order derivatives are
+returned.
+Defaults to False.
+
+
+
Output
+
+
values ([num_modes, num_samples] or [num_samples], tf.float) โ Interpolated profile values at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float) โ Hessians of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
Abstract class defining an amplitude profile of a RIS
+
An AmplitudeProfile instance is a callable that returns the profile values,
+gradients and Hessians at given points.
+
+
Parameters
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
+
+
Input
+
+
points (tf.float, [num_samples, 2]) โ Tensor of 2D coordinates defining the points on the RIS at which
+the profile should be evaluated.
+Defaults to None. In this case, the values for all unit cells
+are returned.
+
mode (int | None) โ Reradiation mode to be considered.
+Defaults to None. In this case, the values for all modes
+are returned.
+
return_grads (bool) โ If True, also the first- and second-order derivatives are
+returned.
+Defaults to False.
+
+
+
Output
+
+
values ([num_modes, num_samples] or [num_samples], tf.float) โ Interpolated profile values at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float) โ Hessians of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
Class defining a discrete amplitude profile of a RIS
+
A discrete amplitude profile \(A_m\) assigns to
+each of its units cells a possibly different amplitude value.
+Multiple reradiation modes can be obtained by super-positioning
+of profiles. The relative power of reradiation modes can
+be controlled via the reradiation coefficients \(p_m\).
A class instance is a callable that returns the profile values,
+gradients and Hessians at given points.
+
+
Parameters
+
+
cell_grid (CellGrid) โ Defines the physical structure of the RIS
+
num_modes (int) โ Number of reradiation modes.
+Defaults to 1.
+
values (tf.float or tf.Variable, [num_modes, num_rows, num_cols]) โ Amplitude values for each reradiation mode
+and unit cell. num_rows and num_cols are defined by the
+cell_grid.
+Defaults to None.
+
mode_powers (tf.float, [num_modes]) โ Relative powers or reradition coefficients of reradiation modes.
+Defaults to None. In this case, all reradiation modes get
+an equal fraction of the total power.
+
interpolator (ProfileInterpolator) โ Determines how the discrete values of the profile
+are interpolated to a continuous profile
+which is defined at any point on the RIS.
+Defaults to None. In this case, the
+LagrangeProfileInterpolator will be used.
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
+
+
+
Input
+
+
points (tf.float, [num_samples, 2]) โ Tensor of 2D coordinates defining the points on the RIS at which
+the profile should be evaluated.
+Defaults to None. In this case, the values for all unit cells
+are returned.
+
mode (int | None) โ Reradiation mode to be considered.
+Defaults to None. In this case, the values for all modes
+are returned.
+
return_grads (bool) โ If True, also the first- and second-order derivatives are
+returned.
+Defaults to False.
+
+
+
Output
+
+
values ([num_modes, num_samples] or [num_samples], tf.float) โ Interpolated profile values at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float) โ Hessians of the interpolated profile values
+at the sample positions. Only returned if return_grads is True.
Abstract class defining an interpolator of a discrete profile
+
A ProfileInterpolator instance is a callable that interpolate
+the discrete profile to specified points. Optionally, the
+gradients and Hessians are returned.
+
+
Parameters
+
discrete_profile (DiscreteProfile) โ Discrete profile to be interpolated
+
+
Input
+
+
points ([num_samples, 2], tf.float) โ Positions at which to interpolate the profile
+
mode (int | None) โ Mode of the profile to interpolate. If None.
+all modes are interpolated.
+Defaults to None.
+
return_grads (bool) โ If True, gradients and Hessians are computed.
+Defaults to False.
+
+
+
Output
+
+
values ([num_modes, num_samples] or [num_samples], tf.float) โ Interpolated profile values at the sample positions
+
grads ([num_modes, num_samples, 3] or [num_samples, 3], tf.float) โ Gradients of the interpolated profile values
+at the sample positions
+
hessians ([num_modes, num_samples, 3, 3] or [num_samples,3,3], tf.float) โ Hessians of the interpolated profile values
+at the sample positions
The class instance is a callable that interpolates a discrete profile
+at arbitrary positions using two-dimensional 2nd-order Lagrange interpolation.
+
A discrete profile \(P(y_i,z_j)\in\mathbb{R}\) defined on
+a grid of points \(y_i,z_j\) for \(i,j \in [1,2,3]\) is
+interpolated to position \(y,z\) as
Note that the formulation above assumes for simplicity only a 3x3 grid
+of points. However, the implementation finds for every
+position the closest 3x3 grid points of the discrete profile
+which are used for interpolation.
+
In order to compute spatial gradients and Hessians, we extend the the profile
+with a dummy \(x\) dimension, i.e., \(P(x,y,z)=P(y,z)\), such that
Optionally, the first- and second-order derivatives are returned.
+
The 2nd-order Lagrange polynomials \(\ell_j(x)\), \(j=1,2,3\),
+for position \(x\in\mathbb{R}\) are computed using three distinct
+support positions \(x_i\) for \(i=1,2,3\):
+
+\[\begin{split}\begin{align}
+ \ell_j(x) &= \prod_{\substack{1\leq i \leq 3 \\ i \ne j}} \frac{x-x_i}{x_j-x_i}.
+\end{align}\end{split}\]
+
Their first- and second-order derivatives are then respectively given as
Class defining a cell grid that determines the physical structure of a RIS
+
The cell grid specifies the location of unit cells within the y-z plane
+assuming a homogenous spacing of 0.5. The actual positions are computed by
+multiplying the cell positions by the wavelength and rotating them
+according to the RISโ orientation.
+
A cell grid must have at least three columns and rows to ensure
+that discrete phase and amplitude profiles of the RIS can be interpolated.
+
+
Parameters
+
+
num_rows (int) โ Number of rows. Must at least be equal to three.
+
num_cols (int) โ Number of columns. Must at least be equal to three.
+
dtype (tf.complex) โ Datatype to be used in internal calculations.
+Defaults to tf.complex64.
which are both orthogonal to the incident wave vector, i.e., \(\hat{\mathbf{e}}_{\text{i},s}^{\mathsf{T}} \hat{\mathbf{e}}_{\text{i},p}=\hat{\mathbf{e}}_{\text{i},s}^{\mathsf{T}} \hat{\mathbf{k}}_\text{i}=\hat{\mathbf{e}}_{\text{i},p}^{\mathsf{T}} \hat{\mathbf{k}}_\text{i} =0\).
-
+
-
Fig. 1 Reflection and refraction of a plane wave at a plane interface between two materials.๏
+
Fig. 1 Reflection and refraction of a plane wave at a plane interface between two materials.๏
Fig. 1 shows reflection and refraction of the incoming wave at the plane interface between two materials with relative permittivities \(\eta_1\) and \(\eta_2\). The coordinate system is chosen such that the wave vectors of the incoming, reflected, and transmitted waves lie within the plane of incidence, which is chosen to be the x-z plane. The normal vector of the interface \(\hat{\mathbf{n}}\) is pointing toward the negative z axis.
The incoming wave is must be represented in a different basis, i.e., in the form two different orthogonal polarization components \(E_{\text{i}, \perp}\) and \(E_{\text{i}, \parallel}\), i.e.,
Diffraction[Kline], [Luneberg] can accurately describe phase and polarization properties of electromagnetic fields undergoing reflection and refraction (transmission) as described above, they fail to account for the phenomenon of diffraction, e.g., bending of waves around corners. This leads to the undesired and physically incorrect effect that the field abruptly falls to zero at geometrical shadow boundaries (for incident and reflected fields).
Joseph Keller presented in [Keller62] a method which allowed the incorporation of diffraction into GO which is known as the geometrical theory of diffraction (GTD). He introduced the notion of diffracted rays that follow the law of edge diffraction, i.e., the diffracted and incident rays make the same angle with the edge at the point of diffraction and lie on opposite sides of the plane normal to the edge. The GTD suffers, however from several shortcomings, most importantly the fact that the diffracted field is infinite at shadow boundaries.
The uniform theory of diffraction (UTD) [Kouyoumjian74] alleviates this problem and provides solutions that are uniformly valid, even at shadow boundaries. For a great introduction to the UTD, we refer to [McNamara90]. While [Kouyoumjian74] deals with diffraction at edges of perfectly conducting surfaces, it was heuristically extended to finitely conducting wedges in [Luebbers84]. This solution, which is also recomended by the ITU [ITURP52615], is implemented in Sionna. However, both [Luebbers84] and [ITURP52615] only deal with two-dimensional scenes where source and observation lie in the same plane, orthogonal to the edge. We will provide below the three-dimensional version of [Luebbers84], following the defintitions of (Ch. 6) [McNamara90]. A similar result can be found, e.g., in (Eq. 6-29โ6-39) [METIS].
-
+
-
Fig. 2 Incident and diffracted rays for an infinitely long wedge in an edge-fixed coordinate system.๏
+
Fig. 2 Incident and diffracted rays for an infinitely long wedge in an edge-fixed coordinate system.๏
We consider an infinitely long wedge with unit norm edge vector \(\hat{\mathbf{e}}\), as shown in Fig. 2. An incident ray of a spherical wave with field phasor \(\mathbf{E}_i(S')\) at point \(S'\) propagates in the direction \(\hat{\mathbf{s}}'\) and is diffracted at point \(Q_d\) on the edge. The diffracted ray of interest (there are infinitely many on Kellerโs cone) propagates
in the direction \(\hat{\mathbf{s}}\) towards the point of observation \(S\). We denote by \(s'=\lVert S'-Q_d \rVert\) and \(s=\lVert Q_d - S\rVert\) the lengths of the incident and diffracted path segments, respectively. By the law of edge diffraction, the angles \(\beta_0'\) and \(\beta_0\) between the edge and the incident and diffracted rays, respectively, satisfy:
@@ -1367,9 +1392,9 @@
DiffractionFig. 3 below shows the top view on the wedge that we need for some additional definitions.
-
+
-
Fig. 3 Top view on the wedge with edge vector pointing upwards.๏
+
Fig. 3 Top view on the wedge with edge vector pointing upwards.๏
The wedge has two faces called 0-face and n-face, respectively, with surface normal vectors \(\hat{\mathbf{n}}_0\) and \(\hat{\mathbf{n}}_n\). The exterior wedge angle is \(n\pi\), with \(1\le n \le 2\). Note that the surfaces are chosen such that \(\hat{\mathbf{e}} = \hat{\mathbf{n}}_0 \times \hat{\mathbf{n}}_n\). For \(n=2\), the wedge reduces to a screen and the choice of the 0-face and n-face is arbitrary as they point in opposite directions.
The incident and diffracted rays have angles \(\phi'\) and \(\phi\) measured with respect to the 0-face in the plane perpendicular to the edge.
@@ -1463,9 +1488,9 @@
Whenever a material has a scattering coefficient \(S>0\), the Fresnel reflection coefficents in (33) must be multiplied by \(R\). These reduced coefficients must then be also used in the compuation of the diffraction coefficients (35).
-
+
-
Fig. 4 Diffuse and specular reflection of an incoming wave.๏
+
Fig. 4 Diffuse and specular reflection of an incoming wave.๏
Let us consider an incoming locally planar linearly polarized wave with field phasor \(\mathbf{E}_\text{i}(\mathbf{q})\) at the scattering point \(\mathbf{q}\) on the surface, as shown in Fig. 4. We focus on the scattered field of and infinitesimally small surface element \(dA\) in the direction \(\hat{\mathbf{k}}_\text{s}\). Note that the surface normal \(\hat{\mathbf{n}}\) has an arbitrary orientation with respect to the global coordinate system, whose \((x,y,z)\) axes are shown in green dotted lines.
The incoming field phasor can be represented by two arbitrary orthogonal polarization components (both orthogonal to the incoming wave vector \(\hat{\mathbf{k}}_i\)):
Metasurfaces can manipulate electromagnetic waves in a way that traditional materials cannot. For example, they can be used to create anomalous reflections, focalization, as well as polarization changes. A reconfigurable intelligent surface (RIS) is a special type of metasurface that can be dynamically controlled to achieve favorable propagation conditions in a specific enviroment. While many different ways to model RIS have been proposed in the literature [Di-Renzo20], we adopt here the ones described in [Degli-Esposti22] and [Vitucci24]. The former will be used for the computation of channel impulse responses (CIRs) (see compute_paths()) while the latter will serve for the computation of coverage maps (see coverage_map()).
+
We consider only lossless RIS, i.e., there is no power dissipation. For waves incident on the front side of an RIS, only the reradiated modes but neither specular nor diffuse reflections are created. For waves incident on the back side, an RIS behaves like a perfect absorber. For coverage maps, diffraction around the RISโ edges is ignored.
+
An RIS consists of a regular grid of unit cells which impose a spatial modulation, i.e., phase and amplitude changes, on an incident wave. This leads in turn to the creation of \(M\ge 1\) reradiated modes. Let us denote by \((y,z)\) a generic point on the RIS, and by \(\chi_m(y,z)\) and \(A_m(y,z)\) the phase and amplitude modulation coefficients of the \(m\text{th}\) reradiation mode, respectively. We assume that the RISโ normal \(\hat{\mathbf{n}}\) points toward the positive \(x\)-axis.
+
The spatial modulation coefficient \(\Gamma(y,z)\) is then given as (Eq.12) [Degli-Esposti22]
where \(p_m\) is the reradiation intensity coefficient of the \(m\text{th}\) mode. For power conservation reasons, we need to impose that \(\sum_{m=1}^M p_m=1\) and that the normalized surface integral of \(|A_m(y,z)|^2\) across the RIS equals one for all \(m\).
+
+
+
Fig. 5 Incident and reradiated field from a reconfigurable intelligent surface (RIS).๏
+
+
Consider now an RIS as shown in Fig. 5 with an incident electro-magnetic wave with field phasor \(\mathbf{E}_i(S)\) at point \(S\in\mathbb{R}^3\), where \(E_{i,\theta}(S)\) and \(E_{i,\varphi}(S)\) denote the vertical and horizontal field components, respectively. The reradiated field from the RIS at point \(S'\) is computed as (Eq.30) [Degli-Esposti22]:
where \(N_Y\) and \(N_Z\) are the number of columns and rows of the regular grid of unit cells with coordinates \((y_u, z_v)\) for \(1\leq u \leq N_Y\) and \(1\leq v \leq N_Z\), \(\hat{\mathbf{k}}_i(y_u,z_v)\) and \(\hat{\mathbf{k}}_r(y_u,z_v)\) are the directions of the incident and reradiated waves at position \((y_u,z_v)\), \(\theta_i(y_u, z_v)\) and \(\theta_r(y_u, z_v)\) are the angles between the RISโs normal and the incident and reradiated directions, respectively, and \(s_i(y_u, z_v)\) and \(s_r(y_u, z_v)\) are the distances between the unit cell \((y_u, z_v)\) and \(S, S'\), respectively. With a slight abuse of notation, we denote by \(\hat{\boldsymbol{\theta}}(\hat{\mathbf{k}})\) and \(\hat{\boldsymbol{\varphi}}(\hat{\mathbf{k}})\) the spherical unit vectors (1) for angles defined by \(\hat{\mathbf{k}}\) according to (2). One can observe from the last equation that the RIS does not impact the polarization.
+Note that (44) is only used in compute_paths() for the computation of the channel impulse response.
+
+
+
Fig. 6 An RIS anomalously reflects an incoming ray due to its phase gradient \(\nabla\chi_m\).๏
+
+
For the computation of coverage maps, the ray-based model from [Vitucci24] is used. Fig. 6 shows how an RIS anomalously reflects an incident ray, intersecting the RIS at point \(\mathbf{q}\in\mathbb{R}^3\) in the y-z plane.
+The incident ray with propagation direction \(\hat{\mathbf{k}}_i\), representing a locally-plane wavefront, acquires an incident phase gradient \(\nabla\chi_i\) on the RISโ surface which can be computed as (Eq.9) [Vitucci24]
Each of the RISโ reradiation modes gives rise to an additional phase gradient \(\nabla\chi_m\) at the point of intersection, which results in the total phase gradient (Eq.11) [Vitucci24]
It is this total phase gradient that determines the direction of the reflected ray \(\hat{\mathbf{k}}_r\)
+for reradiation mode \(m\) which can be computed as (Eq.13) [Vitucci24]
From the last equation, it becomes clear that the phase profile and its derivative must be computed at arbitrary positions on the RISโ surface. However, in Sionna RT, phase and amplitude profiles are only configured as discrete values on a regular grid with \(\lambda/2\) spacing. For this reason, the discrete profiles are interpolated using a ProfileInterpolator, such as the LagrangeProfileInterpolator. It is important to keep in mind that the phase profile typically varies on the wavelength-scale across the RIS, and the amplitude profile at an even larger scale. Both profiles must be carefully chosen to represent a physically realistic device (see, e.g., the discussion after (Eq.16) [Vitucci24] ).
A side-effect of the anomalous ray reflection is that the reflected wavefront generally has a different shape as that of the incoming wavefront. The shape of an astigmatic wave (or ray tube), as shown in Fig. 7, is represented by the curvature matrix \(\mathbf{Q}(s)\in\mathbb{R}^{3\times 3}\) along its propagation path (see, e.g., (Appenix I) [Kouyoumjian74] ), which can be written as
where \(\rho_1\) and \(\rho_2\) are the principal radii of curvature, and \(\hat{\mathbf{x}}_1\)
+and \(\hat{\mathbf{x}}_2\) are the corresponding principal directions; both orthogonal to the propagation direction \(\mathbf{s}\), where \(s\) denotes a point on the ray with respect to a reference point \(s=0\).
+
For an incoming ray with curvature matrix \(\mathbf{Q}_i(\mathbf{q})\) at the intersection point, the curvature matrix \(\mathbf{Q}_r(\mathbf{q})\) of the outgoing ray can be computed as (Eq.22) [Vitucci24]
The principal radii of curvature of the reflected ray \(\rho_1^r\) and \(\rho_2^r\) are the non-zero eigenvalues of \(\mathbf{Q}_r(\mathbf{q})\) while the principal directions \(\hat{\mathbf{x}}_1^r\) and \(\hat{\mathbf{x}}_2^r\) are given by the associated eigenvectors.
+With these definitions, we are now able to express the reflected field at point \(\mathbf{r} = \mathbf{q}+s\hat{\mathbf{k}}_r\) as a function of the incoming field at point \(\mathbf{q}\) (Eq.23) [Vitucci24]:
There are two factors that determine the available number of DMRS ports, i.e., layers, that can be transmitted. The first is the DMRS Configuration and the second the length of a DMRS symbol. Both parameters can take to values so that there are four options in total. In the previous example, the DMRS Configuration Type 1 was used. In this case, there are two CDM groups and each groups uses either odd or even subcarriers. This leads to four available DMRS ports. With DMRS Configuration Type 2,
+
There are two factors that determine the available number of DMRS ports, i.e., layers, that can be transmitted. The first is the DMRS Configuration and the second the length of a DMRS symbol. Both parameters can take two values so that there are four options in total. In the previous example, the DMRS Configuration Type 1 was used. In this case, there are two CDM groups and each group uses either odd or even subcarriers. This leads to four available DMRS ports. With DMRS Configuration Type 2,
there are three CDM groups and each group uses two pairs of adjacent subcarriers per PRB, i.e., four pilot-carrying subcarriers. That means that there are six available DMRS ports.
[19]:
@@ -1916,7 +1941,7 @@
How to control the number of available DMRS ports?
The pilot pattern is now composed of four 2x2 blocks within a PRB. These blocks are used by the four DMRS ports within the same CDM group. This means that we can now support up to twelve layers!
-
Letโs create a setup with three transmitters, each sending four layers using four antenna ports. We choose the DMRS ports for each transmitters such that they belong to the CDM group. This is not necessary and you are free to choose any desired allocation. It is however important to understand, thet for channel estimation to work, the channel is supposed to be static over 2x2 blocks of resource elements. This is in general the case for low mobility scenarios and channels with not too large delay
+
Letโs create a setup with three transmitters, each sending four layers using four antenna ports. We choose the DMRS ports for each transmitters such that they belong to the CDM group. This is not necessary and you are free to choose any desired allocation. It is however important to understand, that for channel estimation to work, the channel is supposed to be static over 2x2 blocks of resource elements. This is in general the case for low mobility scenarios and channels with not too large delay
spread. You can see from the results below that the pilot sequences of the DMRS ports in the same CDM group are indeed orthogonal over the 2x2 blocks.
We have used the PUSCHTransmitter class already multiple times without speaking about what it actually does. In short, it generates for every configured transmitter a batch of random information bits of length pusch_config.tb_size and outputs either a frequency fo time-domain representation of the transmitted OFDM waveform from each of the antenna ports of each transmitter.
+
We have used the PUSCHTransmitter class already multiple times without speaking about what it actually does. In short, it generates for every configured transmitter a batch of random information bits of length pusch_config.tb_size and outputs either a frequency to time-domain representation of the transmitted OFDM waveform from each of the antenna ports of each transmitter.
However, under the hood it implements the sequence of layers shown in the following figure:
Information bits are either randomly generated or provided as input and then encoded into a transport block by the TBEncoder. The encoded bits are then mapped to QAM constellation symbols by the Mapper. The LayerMapper splits the modulated symbols into different layers which are
@@ -2543,7 +2568,7 @@
diff --git a/docs/examples/MIMO_OFDM_Transmissions_over_CDL.html b/docs/examples/MIMO_OFDM_Transmissions_over_CDL.html
index dfb29c86..76076ee0 100644
--- a/docs/examples/MIMO_OFDM_Transmissions_over_CDL.html
+++ b/docs/examples/MIMO_OFDM_Transmissions_over_CDL.html
@@ -3,7 +3,7 @@
- MIMO OFDM Transmissions over the CDL Channel Model — Sionna 0.17.0 documentation
+ MIMO OFDM Transmissions over the CDL Channel Model — Sionna 0.18.0 documentation
@@ -398,6 +398,18 @@
For background information on reconfigurable intelligent surfaces (RIS), we refer to the relevant sections of the EM Primer and the API Documentation.
+
RIS are modeled in Sionna as radio devices, like transmitters and receivers, which can be placed at arbitrary positions in a scene.
+
Every RIS has a phase profile and an amplitude profile which determine together the reradiated electro-magnetic field. These profiles are assumed to be discrete, i.e., a unique value can be configured for a regular grid of points (or unit cells) on the RIS with \(\lambda/2\) spacing. These values are then interpolated to obtain continuous phase
+and amplitude profiles over the RIS.
+
Most properties of RIS can be made trainable by assigning a tf.Variable to them.
+
The computation of propagation paths assumes the model from [1] while coverage maps are based on [2].
+
For complexity reasons, propagation paths are only computed for direct links between a transmitter, RIS, and receiver. No other interactions with the scene are possible. For coverage maps, this restriction does not apply.
+importos
+gpu_num=0# Use "" to use the CPU
+os.environ["CUDA_VISIBLE_DEVICES"]=f"{gpu_num}"
+os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
+
+# Colab does currently not support the latest version of ipython.
+# Thus, the preview does not work in Colab. However, whenever possible we
+# strongly recommend to use the scene preview mode.
+try:# detect if the notebook runs in Colab
+ importgoogle.colab
+ colab_compat=True# deactivate preview
+except:
+ colab_compat=False
+resolution=[480,320]# increase for higher quality of renderings
+
+# Allows to exit cell execution in Jupyter
+classExitCell(Exception):
+ def_render_traceback_(self):
+ pass
+
+# Import Sionna
+try:
+ importsionna
+exceptImportErrorase:
+ # Install Sionna if package is not already installed
+ importos
+ os.system("pip install sionna")
+ importsionna
+
+# Configure the notebook to use only a single GPU and allocate only as much memory as needed
+# For more details, see https://www.tensorflow.org/guide/gpu
+importtensorflowastf
+gpus=tf.config.list_physical_devices('GPU')
+ifgpus:
+ try:
+ tf.config.experimental.set_memory_growth(gpus[0],True)
+ exceptRuntimeErrorase:
+ print(e)
+# Avoid warnings from TensorFlow
+tf.get_logger().setLevel('ERROR')
+
+tf.random.set_seed(1)# Set global random seed for reproducibility
+
As a first example, we will reproduce Fig. 4 from [1].
+
The underlying setup is shown below. An ideal 7m x 7m RIS is located in the x-y plane and assumed to be illuminated by a planar wave arriving from the positive z direction. We approximate planar wave incidence by having a transmitter located at a very large distance away from the RIS, i.e., z=500m.
+
The RIS is configured to act as a perfect anomalous reflector with a single reradiation mode, which steers the incoming wave of a frequency of 3GHz toward a zenith angle \(\theta_r\) of 60 degrees. The goal is to compute the absolute field strength of the RIS-reflected field in the x-z plane.
+
+
The first steps consists in setting up the scene:
+
+
[3]:
+
+
+
+# Load an empty scene and configure single linearly polarized antennas for
+# all transmitters and receivers
+scene=load_scene()
+scene.frequency=3e9# Carrier frequency [Hz]
+scene.tx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+scene.rx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+
+# Place a transmitter far away from the RIS so that
+# the incoming wave is almost planar
+tx=Transmitter("tx",[0,0,500])
+scene.add(tx)
+
+# Configure RIS in the x-z plane centered at the origin
+width=7# Width [m] as described in [1]
+num_rows=num_cols=int(width/(0.5*scene.wavelength))
+ris=RIS(name="ris",
+ position=[0,0,0],
+ orientation=[0,-PI/2,0],
+ num_rows=num_rows,
+ num_cols=num_cols)
+scene.add(ris)
+
+
+
+
In the cell above, we have configured an RIS such that it closely matches the desired dimensions. However, because of the discrete \(\lambda/2\) spacing of of unit cells, this can only be approximately achieved. We can inspect some of the RISโ properties as follows:
Like any scene object in Sionna RT, RIS can have a velocity vector which is used to compute path-specific Doppler shifts. We will not make use of this property in this tutorial. You can learn more about mobility in Sionna in this notebook.
+
RIS have a phase profile and an amplitude profile which default to a configuration where the RIS acts like a normal mirror-like reflector.
+<sionna.rt.ris.DiscretePhaseProfile object at 0x7f734c2519c0>
+<sionna.rt.ris.DiscreteAmplitudeProfile object at 0x7f734c251900>
+
+
+
Each profile is defined by a tensor of shape [num_modes,num_rows,num_cols] containing either amplitude or phase values [rad] for every reradiation mode. Let us inspect the default values of these tensors.
We can see that the RIS has a single reradiation mode, the amplitudes are equal to one and the phases equal to zero.
+
An RIS is defined in the y-z plane, centered at the origin, and assumed to point toward the positive x-axis.
+
A rapid way to configure the amplitude and phase profiles is via the helper functions RIS.focusing_lens() or RIS.phase_gradient_reflector(). However, any other configuration is possible by simply assigning the desired profile values. All of these options will be explored later on.
+
Let us now inspect the phase profile differences between a focusing lens and a phase gradient reflector. Both assume that a wave arrives from a certain point or direction, i.e., a source, and some of its energy shall be reradiated toward another point or direction, i.e., a target. Multiple reradiation modes can be configured by providing pairs of sources and targets. This is also further explored below.
+
+
[7]:
+
+
+
+source=tx.position# Location of the origin of the incoming ray
+target=25.*r_hat(PI/3,0.)# Target position
+
+# Configure the RIS as focusing lens
+ris.focusing_lens(source,target)
+
+# Visualize the phase profile
+ris.phase_profile.show();
+plt.title(r"Focusing Lens - Phase Profile $\chi(y,z)$");
+
+# Configure the RIS as phase gradient reflector
+# Source and target vectors are automatically nornmalized
+# in this function as only the directions matter
+ris.phase_gradient_reflector(source,target)
+
+# Visualize the phase profile
+ris.phase_profile.show();
+plt.title(r"Phase Gradient Reflector - Phase Profile $\chi(y,z)$");
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
One can see from the visualization above that the phase profile of the focusing lens is designed such that it achieves perfect constructive interference at the desired target point, while the phase gradient reflector has a linearly decreasing phase in the z coordinate. In world coordinates, this corresponds to a constant phase gradient in the x-direction.
+
Note that phases are not wrapped to the \([0, \pi)\) intervall. The reason for this is that the computation of the phase gradient along an RIS requires continuously evolving phase values.
+
With our scene set up and the RIS configured as phase gradient reflector, we can now compute the electric field at the desired positions.
+
Note: As a small experiment, you can configure the RIS again as focusing lens and observe the differences in the simulations below.
+
+
[8]:
+
+
+
+# ris.focusing_lens(source, target) # Uncomment to change the RIS configuration
+
+# Define a grid of points in the x-z plane
+x_min=0
+x_max=30
+num_steps=20# Increase to obtain a finer resolution
+x=tf.cast(tf.linspace(x_min,x_max,num_steps),tf.float32)
+x_grid,z_grid=tf.meshgrid(x,x)
+x=tf.reshape(x_grid,[-1])
+z=tf.reshape(z_grid,[-1])
+y=tf.zeros_like(x)
+r=tf.stack([x,y,z],-1)
+
+deffield_at_points(scene,r,batch_size,path_loss=False):
+"""
+ Compute absolute field strength at a list of positions
+
+ Input
+ -----
+ r : [num_points, 3]
+ Points at which the field should be computed
+
+ batch_size : int
+ Since we cannot compute the field at all points
+ simultaneously, we need to batch the computations.
+ Must divide `num_points` without rest.
+
+ path_loss : bool
+ If `True`, the path loss in dB is returned and not the
+ absolte field strength.
+
+ Output
+ ------
+ e : [num_points]
+ Absolute value of field strength
+ """
+ # Add batch_size receivers to the scene
+ # if they do not already exist
+ iflen(scene.receivers)==0:
+ foriinrange(batch_size):
+ scene.add(Receiver(f"rx-{i}",[0,0,0]))
+
+ # Iteratively compute field for all positions
+ r_vec=tf.reshape(r,[-1,batch_size,3])
+ em=tf.zeros([0],tf.float32)
+ forj,rsinenumerate(r_vec):
+
+ # Move receivers to new positions
+ fori,rinenumerate(rs):
+ scene.get(f"rx-{i}").position=r
+
+ # Compute paths and obtain channel impulse responses
+ paths=scene.compute_paths(los=False,reflection=False,ris=True)
+ a=tf.squeeze(paths.cir()[0])
+
+ # We need to scale the path gain by the distance from the
+ # transmitter to the RIS to simulate an incoming field stength of
+ # 1 V/m and undo the effect of the isotropic antenna
+ # see https://nvlabs.github.io/sionna/em_primer.html#equation-h-final
+ ifpath_loss:
+ e=20*tf.math.log(tf.abs(a))/tf.math.log(10.)
+ else:
+ e=4*PI/scene.wavelength*normalize(tx.position)[1]*tf.abs(a)
+ em=tf.concat([em,e],axis=0)
+ returnem
+
+em=field_at_points(scene,r,40)
+em=tf.reshape(em,x_grid.shape)
+
+# Visualize the field
+plt.figure(figsize=(5.55,4.57))
+plt.pcolormesh(x_grid,z_grid,em,cmap='afmhot',vmin=0,vmax=2)
+plt.ylim([0,30])
+cb=plt.colorbar()
+cb.set_label(r"|E| (V/m)")
+plt.xlabel("x (m)");
+plt.ylabel("z (m)");
+
+
+
+
+
+
+
+
+
+
+
You can run the cell above with a larger value of num_steps to improve the resolution. As this might take some time, we provide the result for 500 steps below:
An RIS can be configured to have mutiple reradiation modes. The following code visualizes the path loss in the horizontal plane (z=5m) for an RIS that steers energy toward two different directions. The power of each reradiation mode can be configured. Otherwise the setup is identicial to the previous example with the unique difference that the transmitter is located much closer to the RIS, i.e., z=50m.
+
+
[9]:
+
+
+
+# Load empty scene
+scene=load_scene()
+scene.frequency=3e9# Carrier frequency [Hz]
+scene.tx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+scene.rx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+
+# Place a transmitter
+tx=Transmitter("tx",[0,0,50])
+scene.add(tx)
+
+# Configure RIS in the x-z plane centered at the origin
+# Note that we need to configure `num_modes=2` here.
+width=7# Width [m]
+num_rows=num_cols=int(width/(0.5*scene.wavelength))
+ris=RIS(name="ris",
+ position=[0,0,0],
+ orientation=[0,-PI/2,0],
+ num_rows=num_rows,
+ num_cols=num_cols,
+ num_modes=2)
+scene.add(ris)
+
+# Configure the RIS with two reradiation modes
+# Each reradiation mode is defined by a pair of source and target vectors
+z_target=5
+sources=[tx.position,tx.position]
+targets=[[10,10,z_target],[-10,-2,z_target]]
+ris.phase_gradient_reflector(sources,targets)
+
+# Uncomment to observe the difference when a focusing lens is used.
+# ris.focusing_lens(sources, targets)
+
+# You can freely distribute power among the modes
+ris.amplitude_profile.mode_powers=[0.7,0.3]
+
+# Define a grid of points in the x-y plane at some height
+x_min=-20
+x_max=20
+num_steps=40# Increase to obtain a finer resolution
+x=tf.cast(tf.linspace(x_min,x_max,num_steps),tf.float32)
+x_grid,y_grid=tf.meshgrid(x,x)
+x=tf.reshape(x_grid,[-1])
+y=tf.reshape(y_grid,[-1])
+z=z_target*tf.ones_like(x)
+r=tf.stack([x,y,z],-1)
+
+# Compute path loss
+pl=field_at_points(scene,r,40,path_loss=True)
+pl=tf.reshape(pl,x_grid.shape)
+
+# Visualize the field
+plt.figure()
+plt.pcolormesh(x_grid,y_grid,pl,vmax=-75,vmin=-120)
+cb=plt.colorbar()
+cb.set_label(r"Path gain (dB)")
+plt.xlabel("x (m)");
+plt.ylabel("y (m)");
+
+
+
+
+
+
+
+
+
+
+
For comparison, let us have a look at the coverage map:
+
+
[10]:
+
+
+
+cm=scene.coverage_map(los=False,# Disable LOS for better visualization of the RIS field
+ num_samples=10e6,
+ cm_orientation=[0,0,0],
+ cm_center=[0,0,z_target],
+ cm_size=[40,40],
+ cm_cell_size=[1,1])
+cm.show(vmin=-120,vmax=-75);
+
+
+
+
+
+
+
+
+
+
+
While the zones of coverage match closely the ones we have computed via scene.compute_paths() for individually placed receiver locations, we can see that large areas of the coverage map are empty. The reasons for this are (i) that anomalous diffraction around the RISโ edges as described in Section II-C [2] is not modelled and (ii) that the coverage map is located very close to the RIS, i.e., around 5m. The
+difference between both results becomes smaller in the far field.
+
Also note that the line-of-sight field components are not taken into account here for a better visualization. The latter would be the dominating source of radiation otherwise.
In the next example, we will use an RIS to improve the coverage in a certain area of a scene. The code below should by now be easy to follow without additional explanations.
+
+
[11]:
+
+
+
+scene=load_scene(sionna.rt.scene.simple_street_canyon)
+scene.frequency=3e9# Carrier frequency [Hz]
+scene.tx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+scene.rx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+
+# Place a transmitter
+tx=Transmitter("tx",position=[-32,10,32],look_at=[0,0,0])
+scene.add(tx)
+
+# Place a receiver (we will not actually use it
+# for anything apart from referencing the position)
+rx=Receiver("rx",position=[22,52,1.7])
+scene.add(rx)
+
+# Place RIS
+ris=RIS(name="ris",
+ position=[32,-9,32],
+ num_rows=100,
+ num_cols=100,
+ num_modes=1,
+ look_at=(tx.position+rx.position)/2)# Look in between TX and RX
+scene.add(ris)
+
+# Configure RIS as phase gradient reflector that reradiates energy
+# toward the direction of the receivers
+ris.phase_gradient_reflector(tx.position,rx.position)
+
+# Compute coverage map without RIS
+cm_no_ris=scene.coverage_map(num_samples=10e6,
+ max_depth=5,
+ los=True,
+ reflection=True,
+ diffraction=True,
+ ris=False,
+ cm_cell_size=[4,4],
+ cm_orientation=[0,0,0],
+ cm_center=[0,0,1.5],
+ cm_size=[200,200])
+cm_no_ris.show(vmax=-65,vmin=-150,show_ris=True,show_rx=True);
+plt.title("Coverage without RIS");
+
+# Compute coverage map with RIS
+cm_ris=scene.coverage_map(num_samples=10e6,
+ max_depth=5,
+ los=True,
+ reflection=True,
+ diffraction=True,
+ ris=True,
+ cm_cell_size=[4,4],
+ cm_orientation=[0,0,0],
+ cm_center=[0,0,1.5],
+ cm_size=[200,200])
+cm_ris.show(vmax=-65,vmin=-150,show_ris=True,show_rx=True);
+plt.title("Coverage with RIS");
+
+# Visualize the coverage improvements thanks to the RIS
+fig=plt.figure()
+plt.imshow(10*np.log10(cm_ris._value[0]/cm_no_ris._value[0]),origin='lower',vmin=0)
+plt.colorbar(label='Gain [dB]')
+plt.xlabel('Cell index (X-axis)');
+plt.ylabel('Cell index (Y-axis)');
+plt.title("RIS Coverage Gain");
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
As expected, the coverage has significantly improved in a small area around the receiver. We can also visualize the coverage map together with the RIS as follows:
+
+
[12]:
+
+
+
+# Open 3D preview (only works in Jupyter notebook)
+ifcolab_compat:
+ ifscene.get("birds-eye")isNone:
+ scene.add(Camera("birds-eye",
+ position=[0,0,200],
+ look_at=[0,0,0]))
+ scene.render(camera="birds-eye",
+ num_samples=512,
+ coverage_map=cm_ris);
+ raiseExitCell
+scene.preview(coverage_map=cm_ris,
+ show_orientations=True)
+
In the previous example, we have configured the RISโs phase profile by hand. Sionna RT offers also the possibility to optimize phase and amplitude profiles via gradient descent.
+
We will now jointly optimize various RIS parameters, namely the phase and amplitude profiles, as well as the power allocation of reradiation modes. The optimization goal is to maximize the average received signal strength at two receivers which are served by a single transmitter with the help of two RIS. The scene is setup in such a way that both receivers are only reachable from the transmitter via the RIS.
+
+
[13]:
+
+
+
+# Load scene consiting of a simple wedge
+scene=load_scene(sionna.rt.scene.simple_wedge)
+scene.frequency=3e9# Carrier frequency [Hz]
+scene.tx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+scene.rx_array=PlanarArray(1,1,0.5,0.5,"iso","V")
+
+# Place a transmitter
+tx=Transmitter("tx",position=[-10,10,0])
+scene.add(tx)
+
+# Place receivers
+rx1=Receiver("rx1",position=[30,-15,0])
+scene.add(rx1)
+rx2=Receiver("rx2",position=[15,-30,0])
+scene.add(rx2)
+
+# Place RIS
+ris1=RIS(name="ris1",
+ position=[40,10,0],
+ num_rows=50,
+ num_cols=50,
+ num_modes=2,
+ look_at=(tx.position+rx1.position)/2)# Look in between TX and RX1
+scene.add(ris1)
+
+ris2=RIS(name="ris2",
+ position=[-10,-40,0],
+ num_rows=50,
+ num_cols=50,
+ num_modes=2,
+ look_at=(tx.position+rx2.position)/2)# Look in between TX and RX2
+scene.add(ris2)
+
+# Visualize scene
+ifcolab_compat:
+ ifscene.get("cam")isNone:
+ scene.add(Camera("cam",
+ position=[50,-50,130],
+ look_at=[0,0,0]))
+ scene.render(camera="cam",num_samples=512);
+ raiseExitCell
+
+scene.preview(show_orientations=True)
+
+
+
+
+
+
+
+
+
+
+
We will now configure the parameters of interest as trainable variables which can be optimized via gradient-descent.
+
+
[14]:
+
+
+
+# Make the phase profile trainable
+# Initialize all phases to zero
+ris1.phase_profile.values=tf.Variable(tf.zeros_like(ris1.phase_profile.values))
+ris2.phase_profile.values=tf.Variable(tf.zeros_like(ris2.phase_profile.values))
+
+# Create trainable variables for the amplitude profile
+# to which some normalization will be applied in the training loop.
+# Initialize all values to one and ensure that the gradient update can
+# never make the values negative.
+a1=tf.Variable(tf.ones_like(ris1.amplitude_profile.values),
+ constraint=lambdax:tf.abs(x))
+a2=tf.Variable(tf.ones_like(ris2.amplitude_profile.values),
+ constraint=lambdax:tf.abs(x))
+
+# Make mode powers trainable
+# to which some normalization will be applied in the training loop.
+# We cannot set them to zero as the gradient is infinitely large at this point.
+# Ensure that gradient updates can never bring the mode powers
+# out of their desired range.
+m1=tf.Variable([0.99,0.01],dtype=tf.float32,
+ constraint=lambdax:tf.clip_by_value(x,0.01,1))
+m2=tf.Variable([0.99,0.01],dtype=tf.float32,
+ constraint=lambdax:tf.clip_by_value(x,0.01,1))
+
+
+
+
Next, we will setup a gradient-based optimization step that can be iterated until convergence.
+
+
[15]:
+
+
+
+# Define an optimizer
+optimizer=tf.keras.optimizers.Adam(0.5)
+
+# Helper function to compute dB
+defto_db(x):
+ return10*tf.math.log(x)/tf.math.log(10.)
+
+# Define a training step
+deftrain_step():
+ withtf.GradientTape()astape:
+
+ # Set amplitude profile values while ensuring an average power of one
+ ris1.amplitude_profile.values=a1/tf.sqrt(tf.reduce_mean(a1**2,axis=[1,2],keepdims=True))
+ ris2.amplitude_profile.values=a2/tf.sqrt(tf.reduce_mean(a2**2,axis=[1,2],keepdims=True))
+
+ # Set mode powers while ensuring a total power of one
+ ris1.amplitude_profile.mode_powers=m1/tf.reduce_sum(m1)
+ ris2.amplitude_profile.mode_powers=m2/tf.reduce_sum(m2)
+
+ # Compute paths
+ paths=scene.compute_paths()
+
+ # Convert to baseband-equivalent channel impulse response
+ # Get rid of all unused dimensions
+ # [num_rx=2, num_tx=2]
+ a=tf.squeeze(paths.cir()[0])
+
+ # Compute average paths gain per RX
+ path_gain=to_db(tf.reduce_mean(tf.reduce_sum(tf.abs(a)**2,axis=-1)))
+ loss=-path_gain
+
+ # Compute gradients with the goal of maximizing the path gain
+ grads=tape.gradient(loss,tape.watched_variables())
+ # Apply optimizer
+ optimizer.apply_gradients(zip(grads,tape.watched_variables()))
+
+ returnpath_gain,a
+
+
+
+
We are now ready to exectue our training loop:
+
+
[16]:
+
+
+
+# Create a storage tensor for intermediate results
+a_it=tf.zeros([0,2,2],dtype=tf.complex64)
+
+# Run training iterations
+num_iterations=100
+foriinrange(num_iterations):
+ path_gain,a=train_step()
+ a_it=tf.concat([a_it,a[tf.newaxis]],axis=0)
+ ifi%10==0 or i==0:
+ print(f"Iteration {i} - Path gain: {path_gain.numpy():.2f}dB")
+
Note that the learned phase and amplitude profiles might not necessarily be realizable by an RIS. Other forms of regularization could be used to constrain the space of allowed values.
+
For performance comparison, we also evaluate both RIS configured as focusing lenses towards both receivers:
+
+
[18]:
+
+
+
+# Configure both RIS as focusing lenses
+ris1.focusing_lens([tx.position,tx.position],[rx1.position,rx2.position])
+ris2.focusing_lens([tx.position,tx.position],[rx1.position,rx2.position])
+
+# Compute paths and average path gain
+paths_lens=scene.compute_paths()
+a_lens=tf.squeeze(paths_lens.cir()[0])
+path_gain_lens=to_db(tf.reduce_mean(tf.reduce_sum(tf.abs(a_lens)**2,axis=-1)))
+print(f"Path gain with focusing lens: {path_gain_lens.numpy():.2f}dB")
+
+# Visualize phase and amplitude profile for one reradiation mode
+ris1.phase_profile.show(mode=0);
+ris1.amplitude_profile.show(mode=0);
+
+
+
+
+
+
+
+
+Path gain with focusing lens: -71.74dB
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
We can now compare the path gain behaviour of the learned and deterministic RIS configurations in more detail:
In this scenario, the learned RIS configuration amplifies the link to the closest RX at the cost of a weaker link to the other RX to obtain an overall path gain. โRX-1โ denotes the overal path gain for the first receiver, while โRX-1-RIS-1โ and โRX-1-RIS2โ denote the path gains for the individual links between the first receiver and the first and second RIS, respectively.
+
The results for the second receiver look identical due to the symmetry of the setup.
In this notebook, you have learned how to configure, use, and optimize reconfigurable intelligent surfaces (RIS) in Sionna RT. It is important to keep in mind that not all RIS configurations, such as the ones showed above, are realizable in practice.
+
RIS modeling and optimization are fields of active research and the examples in this notebook are only meant to help you get started.
+
We hope you enjoyed this tutorial and encourage you to get hands-on, conduct your own experiments, and deepen your understanding of ray tracing. Thereโs always more to learn, so do explore our other tutorials as well.
+
+
+
+
\ No newline at end of file
diff --git a/docs/examples/Sionna_Ray_Tracing_RIS.ipynb b/docs/examples/Sionna_Ray_Tracing_RIS.ipynb
new file mode 100644
index 00000000..991451ec
--- /dev/null
+++ b/docs/examples/Sionna_Ray_Tracing_RIS.ipynb
@@ -0,0 +1,1234 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9eaca88e",
+ "metadata": {},
+ "source": [
+ "# Tutorial on Reconfigurable Intelligent Surfaces (RIS)\n",
+ "\n",
+ "This notebook deals with the use of [reconfigurable intelligent surfaces (RIS)](https://nvlabs.github.io/sionna/api/rt.html#reconfigurable-intelligent-surfaces-ris) in Sionna RT.\n",
+ "In particular, you will\n",
+ "\n",
+ "- Learn how to instantiate and configure RIS\n",
+ "- Reproduce some results from the literature\n",
+ "- Develop an understanding of \"reradiation modes\"\n",
+ "- Setup a simple example to demonstrate coverage gains of RIS\n",
+ "- Optimize some RIS parameters via gradient descent"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3db6b6ce",
+ "metadata": {},
+ "source": [
+ "## Table of Contents\n",
+ "* [Background Information](#Background-Information)\n",
+ "* [GPU Configuration and Imports](#GPU-Configuration-and-Imports)\n",
+ "* [Reproducing Results from the Literature](#Reproducing-Results-from-the-Literature)\n",
+ "* [RIS with Multiple Reradiation Modes](#RIS-with-Multiple-Reradiation-Modes)\n",
+ "* [Coverage Enhancement with RIS](#Coverage-Enhancement-with-RIS)\n",
+ "* [Gradient-Based RIS Optimization](#Gradient-Based-RIS-Optimization)\n",
+ "* [Summary](#Summary)\n",
+ "* [References](#References)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "81ad633e-738d-477d-b173-404424677bef",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true
+ },
+ "source": [
+ "## Background Information\n",
+ "For background information on reconfigurable intelligent surfaces (RIS), we refer to the relevant sections of the [EM Primer](https://nvlabs.github.io/sionna/em_primer.htmll#reconfigurable-intelligent-surfaces-ris) and the [API Documentation](https://nvlabs.github.io/sionna/api/rt.htm#reconfigurable-intelligent-surfaces-ris).\n",
+ "\n",
+ "RIS are modeled in Sionna as radio devices, like transmitters and receivers, which can be placed at arbitrary positions in a scene.\n",
+ "\n",
+ "Every RIS has a [phase profile](https://nvlabs.github.io/sionna/api/rt.htm#sionna.rt.PhaseProfile) and an [amplitude profile](https://nvlabs.github.io/sionna/api/rt.htm#sionna.rt.AmplitdueProfile) which determine together the reradiated electro-magnetic field. These profiles are assumed to be discrete, i.e., a unique value can be configured for a regular grid of points (or unit cells) on the RIS with $\\lambda/2$ spacing. These values are then interpolated to obtain continuous phase and amplitude profiles over the RIS.\n",
+ "\n",
+ "Most properties of RIS can be made trainable by assigning a [tf.Variable](https://www.tensorflow.org/api_docs/python/tf/Variable) to them.\n",
+ "\n",
+ "The computation of propagation paths assumes the model from [[1]](#References) while coverage maps are based on [[2]](#References).\n",
+ "\n",
+ "For complexity reasons, propagation paths are only computed for direct links between a transmitter, RIS, and receiver. No other interactions with the scene are possible. For coverage maps, this restriction does not apply."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71f81316",
+ "metadata": {},
+ "source": [
+ "## GPU Configuration and Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "63dcf915",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "gpu_num = 0 # Use \"\" to use the CPU\n",
+ "os.environ[\"CUDA_VISIBLE_DEVICES\"] = f\"{gpu_num}\"\n",
+ "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n",
+ "\n",
+ "# Colab does currently not support the latest version of ipython.\n",
+ "# Thus, the preview does not work in Colab. However, whenever possible we\n",
+ "# strongly recommend to use the scene preview mode.\n",
+ "try: # detect if the notebook runs in Colab\n",
+ " import google.colab\n",
+ " colab_compat = True # deactivate preview\n",
+ "except:\n",
+ " colab_compat = False\n",
+ "resolution = [480,320] # increase for higher quality of renderings\n",
+ "\n",
+ "# Allows to exit cell execution in Jupyter\n",
+ "class ExitCell(Exception):\n",
+ " def _render_traceback_(self):\n",
+ " pass\n",
+ "\n",
+ "# Import Sionna\n",
+ "try:\n",
+ " import sionna\n",
+ "except ImportError as e:\n",
+ " # Install Sionna if package is not already installed\n",
+ " import os\n",
+ " os.system(\"pip install sionna\")\n",
+ " import sionna\n",
+ "\n",
+ "# Configure the notebook to use only a single GPU and allocate only as much memory as needed\n",
+ "# For more details, see https://www.tensorflow.org/guide/gpu\n",
+ "import tensorflow as tf\n",
+ "gpus = tf.config.list_physical_devices('GPU')\n",
+ "if gpus:\n",
+ " try:\n",
+ " tf.config.experimental.set_memory_growth(gpus[0], True)\n",
+ " except RuntimeError as e:\n",
+ " print(e)\n",
+ "# Avoid warnings from TensorFlow\n",
+ "tf.get_logger().setLevel('ERROR')\n",
+ "\n",
+ "tf.random.set_seed(1) # Set global random seed for reproducibility"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "43481114",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib import cm\n",
+ "\n",
+ "from sionna import PI\n",
+ "from sionna.rt import load_scene, Transmitter, Receiver, RIS, PlanarArray, \\\n",
+ " r_hat, normalize, Camera"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "12b6f2ca",
+ "metadata": {},
+ "source": [
+ "## Reproducing Results from the Literature\n",
+ "\n",
+ "As a first example, we will reproduce Fig. 4 from [[1]](#References). \n",
+ "\n",
+ "The underlying setup is shown below.\n",
+ "An ideal 7m x 7m RIS is located in the x-y plane and assumed to be illuminated by a planar wave arriving from the positive z direction. We approximate planar wave incidence by having a transmitter located at a very large distance away from the RIS, i.e., z=500m.\n",
+ "\n",
+ "The RIS is configured to act as a perfect anomalous reflector with a single reradiation mode, which steers the incoming wave of a frequency of 3GHz toward a zenith angle $\\theta_r$ of 60 degrees.\n",
+ "The goal is to compute the absolute field strength of the RIS-reflected field in the x-z plane."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f66502b0-b2bf-440f-99ff-0d312047c2ca",
+ "metadata": {},
+ "source": [
+ "![System Model]()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4fa89b78-6d8b-4dab-adf9-858760d56fa7",
+ "metadata": {},
+ "source": [
+ "The first steps consists in setting up the scene:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "a5551fbd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load an empty scene and configure single linearly polarized antennas for\n",
+ "# all transmitters and receivers\n",
+ "scene = load_scene()\n",
+ "scene.frequency = 3e9 # Carrier frequency [Hz]\n",
+ "scene.tx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "scene.rx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "\n",
+ "# Place a transmitter far away from the RIS so that\n",
+ "# the incoming wave is almost planar\n",
+ "tx = Transmitter(\"tx\", [0,0,500])\n",
+ "scene.add(tx)\n",
+ "\n",
+ "# Configure RIS in the x-z plane centered at the origin\n",
+ "width = 7 # Width [m] as described in [1]\n",
+ "num_rows = num_cols = int(width/(0.5*scene.wavelength))\n",
+ "ris = RIS(name=\"ris\",\n",
+ " position=[0,0,0],\n",
+ " orientation=[0,-PI/2,0],\n",
+ " num_rows=num_rows,\n",
+ " num_cols=num_cols)\n",
+ "scene.add(ris)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0220e82",
+ "metadata": {},
+ "source": [
+ "In the cell above, we have configured an RIS such that it closely matches the desired dimensions.\n",
+ "However, because of the discrete $\\lambda/2$ spacing of of unit cells, this can only be approximately achieved.\n",
+ "We can inspect some of the RIS' properties as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "70ac64e8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RIS size (width, height) [m]: [6.9951572 6.9951572]\n",
+ "Number of cells: 19600\n",
+ "Velocity vector [m/s]: [0. 0. 0.]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"RIS size (width, height) [m]: \", ris.size.numpy())\n",
+ "print(\"Number of cells: \", ris.num_cells)\n",
+ "print(\"Velocity vector [m/s]: \", ris.velocity.numpy())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b9584839",
+ "metadata": {},
+ "source": [
+ "Like any scene object in Sionna RT, RIS can have a velocity vector which is used to compute path-specific Doppler shifts. We will not make use of this property in this tutorial. You can learn more about mobility in Sionna in this [notebook](https://nvlabs.github.io/sionna/examples/Sionna_Ray_Tracing_Mobility.html).\n",
+ "\n",
+ "RIS have a [phase profile](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.PhaseProfile) and an [amplitude profile](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.AmplitdueProfile) which default to a configuration where the RIS acts like a normal mirror-like reflector."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "cce6a1e0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(ris.phase_profile)\n",
+ "print(ris.amplitude_profile)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7f71173",
+ "metadata": {},
+ "source": [
+ "Each profile is defined by a tensor of shape `[num_modes, num_rows, num_cols]` containing either amplitude or phase values [rad] for every reradiation mode.\n",
+ "Let us inspect the default values of these tensors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "db77342e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tf.Tensor(\n",
+ "[[[1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " ...\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]\n",
+ " [1. 1. 1. ... 1. 1. 1.]]], shape=(1, 140, 140), dtype=float32)\n",
+ "tf.Tensor(\n",
+ "[[[0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " ...\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]\n",
+ " [0. 0. 0. ... 0. 0. 0.]]], shape=(1, 140, 140), dtype=float32)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(ris.amplitude_profile.values)\n",
+ "print(ris.phase_profile.values)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3706521e",
+ "metadata": {},
+ "source": [
+ "We can see that the RIS has a single reradiation mode, the amplitudes are equal to one and the phases equal to zero.\n",
+ "\n",
+ "An RIS is defined in the y-z plane, centered at the origin, and assumed to point toward the positive x-axis.\n",
+ "\n",
+ "A rapid way to configure the amplitude and phase profiles is via the helper functions [RIS.focusing_lens()](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.RIS.focusing_lens) or [RIS.phase_gradient_reflector()](https://nvlabs.github.io/sionna/api/rt.html#sionna.rt.RIS.phase_gradient_reflector). However, any other configuration is possible by simply assigning the desired profile values. All of these options will be explored later on.\n",
+ "\n",
+ "Let us now inspect the phase profile differences between a focusing lens and a phase gradient reflector. Both assume that a wave arrives from a certain point or direction, i.e., a `source`, and some of its energy shall be reradiated toward another point or direction, i.e., a `target`. \n",
+ "Multiple reradiation modes can be configured by providing pairs of sources and targets. This is also further explored below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "0cf25498",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGiCAYAAACoFbIoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXgc133mi3/OqaUXNNDYdxAEwZ2UKJFaLMm7ZSn2jWPlN9ceOZscO9fZnFxfz42TzM2d8WTGnsTOeOI7drzEE2XGSWYSK7GTe73EsmLZkSXbskSKIilKXACQBECsjaXXWs75/dHo7qoGQAKkZFFSvc/DR+rqOlWnCtXnre/2foXWWhMhQoQIESK8yJAv9gQiRIgQIUIEiAgpQoQIESJcI4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gIKUKECBEiXBOICClChAgRIlwTiAgpQoQIESJcE4gI6UXGn//5nyOEYHR09MWeyisSH/7whxFCMDs7+2JP5ZrF448/zu23305DQwNCCI4cObLquX2xn+OPfexj7N69G6XUi3L+z372s2zZsoVSqfSinP/lgpc8IVV+CGv9+53f+Z0Xe3rXNCr37kc/+tGLPZXnHfXPRTweZ+fOnbz//e9namrqxZ7eVeHHeW2u6/KOd7yD+fl5/vN//s988YtfZHBw8Hk9x9ViaWmJP/zDP+S3f/u3kfLFWdLe/e534zgOn/vc516U879cYL7YE3i+8Pu///sMDQ2Ftu3fv/9Fms3G8fM///Pce++9xGKxF3sqL0tUnotiscgjjzzCZz7zGb72ta9x7Ngxksnkiz29q8KP49rOnDnD2NgYf/qnf8ov/dIvVbdfS8/tn/3Zn+F5Hu9617tetDnE43Huu+8+PvGJT/Abv/EbCCFetLm8lPGyIaS3vOUt3HTTTS/2NDYNwzAwDOPFnsbLFsHn4pd+6Zdoa2vjE5/4BH//93//oi5gzweu5NpyuRwNDQ0bPsf09DQAzc3Noe3X0nN7//3381M/9VPE4/EXdR7vfOc7+djHPsa3v/1t3vjGN76oc3mp4iXvstsoDh8+zFve8haamppIpVK86U1v4vvf//6q/cbHx3nve99Lb28vsViMoaEhfvVXfxXHcYCyab5169ZV4yqxiCCWl5f5wAc+wNatW4nFYnR2dvLmN7+ZJ598srpPve+9cpzTp0/z7ne/m+bmZtLpNL/4i79IPp9fdd6HH36Ym266iXg8zvDwMJ/73OfWnMvVYHx8nPe85z10dXURi8XYt28ff/Znf7bm9W9k3hu5Ly8UKgvFyMhIaPvCwsIl5z02Nsav/dqvsWvXLhKJBG1tbbzjHe9YM2aykevbyD292mur/E1OnDjBz/zMz9DS0sKrX/3q6v6X+028+93v5nWvex0A73jHOxBC8PrXvx7YeMzoSq/zC1/4AvF4nDvuuIOxsbHqdq01b3jDG2hvb2d6epqRkRGOHj3KnXfeueoYb33rW9f8rWqtOXjwIK95zWsuOw+A5557bt2wQJCoDx06RGtrK3//93+/oeNGWI2XjYW0uLi4KjDd3t4OwPHjx3nNa15DU1MTH/rQh7Asi8997nO8/vWv5zvf+Q633norABMTE9xyyy0sLCzwvve9j927dzM+Ps4DDzxAPp/Htu1NzelXfuVXeOCBB3j/+9/P3r17mZub45FHHuGZZ57h4MGDlxz7zne+k6GhIf7jf/yPPPnkk3zhC1+gs7OTP/zDP6zuc/jwYX7iJ36Cnp4e/t2/+3f4vs/v//7v09HRsal5XgpTU1O86lWvQgjB+9//fjo6Ovj617/Oe9/7XpaWlvjABz6w6XlfzX25Wpw5cwaAtra2Tc378ccf59FHH+Xee++lv7+f0dFRPvOZz/D617+eEydOhFxkl7u+zd7Tq722d7zjHezYsYOPfvSjVPpxbuQ38cu//Mv09fXx0Y9+lN/8zd/k5ptvpqura8PzuZrrvPnmm/mt3/otPvrRj/JHf/RH/Jf/8l8A+PSnP83DDz/MX/3VX9HZ2clf/uVfAqz53Nx88818/etfJ5PJ0NLSUt3+P//n/+Tw4cM88sgjG7qOpqYmvvjFL4a2nTx5ko985CPcddddoe0HDx7ke9/73oaOG2EN6Jc47r//fg2s+a+Ce+65R9u2rc+cOVPdNjExoRsbG/VrX/va6rZf+IVf0FJK/fjjj686j1JKa631fffdpwcHB1d9/2//7b/V9bcznU7rX//1X9/Q/EdGRkLHec973hPa76d/+qd1W1tbaNvb3vY2nUwm9fj4eHXbqVOntGmaq+ZyqXOvdb0VvPe979U9PT16dnY2tP3ee+/V6XRa5/P5Tc97I/flalG5tm9961t6ZmZGnz9/Xv/P//k/dVtbm04kEvrChQubmnflOoN47LHHNKD/+3//76Htl7u+jd7T5+va3vWud606xkZ/E9/+9rc1oL/0pS+tOYfKc1v/+fm4Tq21vuuuu/Rtt92mtdb6zJkzuqGhQd9zzz3V73/v935PA3p5eXnV2H/4h3/QgH7ooYeq2xzH0cPDw/ptb3vbZc+9Hs6cOaN7e3v1q1/9ap3L5ULfve9979OJROKKj/1Kx8vGZffpT3+aBx98MPQPwPd9vvnNb3LPPfewbdu26v49PT38zM/8DI888ghLS0sopfjKV77C2972tjVjUVfiAmtubuYHP/gBExMTmx77K7/yK6HPr3nNa5ibm2NpaQkoX9e3vvUt7rnnHnp7e6v7bd++nbe85S2bPt9a0Frzt3/7t7ztbW9Da83s7Gz13913383i4uIqN9vl5g1Xd182izvvvJOOjg4GBga49957SaVSfPnLX6avr29T804kEtXvXNdlbm6O7du309zcvOoeXOr6ruSePt/XttHfxNXg+brOG264gWPHjqGU4j3veQ+xWIzPfOYz1e/n5uYwTZNUKrVq7M033wwQOs/nP/95RkZG+OhHP3pF13X+/Hne+MY30tfXx1e/+tVVySMtLS0UCoU13esRLo+XjcvulltuWZNIZmZmyOfz7Nq1a9V3e/bsQSnF+fPnaW9vZ2lp6XnNzPvYxz7Gfffdx8DAAIcOHeKtb30rv/ALvxBaBNbDli1bQp8rLodMJkNTUxPT09MUCgW2b9++auxa264EMzMzLCws8PnPf57Pf/7za+5TCXpvdN5wZffFcRzm5+dD2zo6Oi4bWP/0pz/Nzp07MU2Trq4udu3atWZq8OXmXSgU+I//8T9y//33Mz4+XnV9QdldHMSlru9K7unVXlt99ulGfxP79u3b0DzWwvN1nfv372d5eZnf+q3f4jvf+Q5f/OIX6e7u3tAcuru76evr4/Dhw0A5oePf//t/z8/93M9d0e/84sWLvOlNbyKdTvONb3yj+jwHUXkuoiy7K8PLhpB+XFjvQfN9f9W2d77znbzmNa/hy1/+Mt/85jf5+Mc/zh/+4R/yd3/3d5e1YtZbaIML4QuNSpHhz/3cz3Hfffetuc/1118f+ryReV/JfXn00Ud5wxveENo2MjKyZtA6iPVeVOpxuXn/xm/8Bvfffz8f+MAHuO2220in0wghuPfee1cVY17q+m688UZgc/f0aq8taN39uHAlz85aqBDHJz7xCX7yJ3+Sn/u5nwt939bWhud5LC8v09jYuGr8zTffXCWkT3ziE2QyGX7/939/U9cCZUvszjvvxDAMHnzwQVpbW9fcL5PJkEwmX5R7/nLAy56QOjo6SCaTPPvss6u+O3nyJFJKBgYGSKVSNDU1cezYsUser6WlhYWFhVXbg5lAQfT09PBrv/Zr/Nqv/RrT09McPHiQj3zkI1ftVuvs7CQej3P69OlV36217UrQ0dFBY2Mjvu+vmcV0NdjsfTlw4EDVDVvBRt+Unw888MAD3Hffffyn//SfqtuKxeKazwKsf33f+c53XrB7ulFs9Ddxted4Pq6zYsU1NzevWXS6e/duoPxyshbB3XzzzfzDP/wD586d44/+6I/41V/91U0X9i4uLnLXXXdRKBT47ne/S2dn57r7joyMsGfPnk0dP0INL5sY0nowDIO77rqLv//7vw+lqE5NTfFXf/VXvPrVr6apqQkpJffccw//7//7/66pXFB5Ux4eHmZxcZGjR49Wv5ucnOTLX/5yaH/f91e5cjo7O+nt7X1e5EUMw+DOO+/kK1/5SihWcfr0ab7+9a9f9fEr5/gX/+Jf8Ld/+7drEvXMzMymj3ml96WlpYU777wz9O/HWXdiGMYq6/S//Jf/ssoyvtz1vRD3dLPY6G/ias/xfFznn/7pnwLwUz/1U6FYaQW33XYbwLpqIzfddBNKKX7mZ34GrTX/1//1f230EgDIZrO85S1vYXp6moceemhVfK4eTz75JLfffvumzhGhhpe9hQTwH/7Df+DBBx/k1a9+Nb/2a7+GaZp87nOfo1Qq8bGPfay630c/+lG++c1v8rrXvY73ve997Nmzh8nJSb70pS/xyCOP0NzczL333stv//Zv89M//dP85m/+Jvl8ns985jPs3LkzFDxdXl6mv7+f//V//V85cOAAqVSKb33rWzz++OOht+yrwYc//GG++c1vcscdd/Crv/qr+L7Ppz71Kfbv38+RI0c2fJw/+7M/4xvf+Maq7f/7//6/8wd/8Ad8+9vf5tZbb+V/+9/+N/bu3cv8/DxPPvkk3/rWt1bFdS6HH8d9eSHwkz/5k3zxi18knU6zd+9eHnvsMb71rW+tSrHeyPU93/f0SrDR38TV4Gqv88yZM/zrf/2vgbLltha2bdvG/v37+da3vsV73vOeVd9XXJrf+973+PCHP7xuSYQQgte97nU8/PDDoe0///M/z2OPPcb//X//3zzyyCOhVPH9+/dzww03VD8/8cQTzM/P8/a3v/2S1xXhEngxUvueT2wkdVlrrZ988kl9991361QqpZPJpH7DG96gH3300VX7jY2N6V/4hV/QHR0dOhaL6W3btulf//Vf16VSqbrPN7/5Tb1//35t27betWuX/ou/+ItVad+lUkn/1m/9lj5w4IBubGzUDQ0N+sCBA/pP/uRP1px/fdr3zMzMJfer4KGHHtI33nijtm1bDw8P6y984Qv6X/2rf6Xj8fiG7916/86fP6+11npqakr/+q//uh4YGNCWZenu7m79pje9SX/+85+vHmuj897ofblabPS52Oi8M5mM/sVf/EXd3t6uU6mUvvvuu/XJkyf14OCgvu+++6rjNnp9G7mnL9S1VbCR38TVpH1fzXUqpfTrXvc63dLSon/xF39Rp1KpaulFPT7xiU/oVCq1bhr51q1bdUdHx5qp4Vprvby8rAF97733rppDKpVa9/fx6U9/OrT/b//2b+stW7asO88Il8dLnpAirMbb3/52vX379hd7GhEiXDE+9alPVWu8/sf/+B8aCNVMBbGwsKBbW1v1F77whVXfnTlzRhuGoT/5yU+ue66vfvWrWgihjx49esXzLRaLuru7W//xH//xFR8jwsuoDumVikKhEPp86tQpvva1r1UlXiJEeKlhdHSU3/md3+Ftb3sbP//zP891110HsG7dUjqd5kMf+hAf//jHV2U8/u7v/i5bt25dVYsVxLe//W3uvffe6nmuBPfffz+WZV3yPBEuD6H1jzGPOMLzjp6eHt797nezbds2xsbG+MxnPkOpVOLw4cPs2LHjxZ5ehAibgtaaO++8k8OHD3P8+HF6enrwPI+WlhZ6e3v5V//qX/GzP/uzlxSIXVhY4Otf/zoPP/wwf/qnf8rXv/517r777h/jVUS4YrzIFlqEq8S73/1uPTg4qGOxmG5qatJ33323fuKJJ17saUWIcEX47Gc/u6Yc0/3336/7+/t1LBbTjuNc8hgPPPCABnR/f/+GYnIRrh1EFlKECBEiRLgmEMWQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1gYiQIkSIECHCNYGIkCJEiBAhwjWBiJAiRIgQIcI1AfPFnkCEVx6UUniehxAC0zQRQrzYU4oQIcI1gIiQIvzYoLXG9308zyOfzyOEqJJS5Z9hGBFBRYjwCoXQWusXexIRXv7QWuO6Lr7vV/9fCIFSCq01WmuEEEgpMQwDy7IwDCMiqAgRXkGICCnCCw7f93FdF6UUUkq01jiOg5ThEKbWek2CClpPEUFFiPDyRURIEV4waK3xPA/P89BaI6WsWkWu6wKsSy6VxzIiqAgRXjmICCnCC4JK4oLv+wDVeFHlO8dxQtsuh4igIkR4+SMipAjPKypuN9d1q6RRTxBXQkhrnafyTylVPU5EUBEivHQRZdlFeN4QdNEBV0U4l0Pw2IZhhAhqfn6es2fPcv311yOlrCZImKZZdRtGiBDh2kNESBGeF1SsIt/3q660HyeCBCWEIJ/PVxMoisVidXuFoCoWVERQESJcO4gIKcJVIVhbVMmie7EX+KD7DlZbUEGCqlhOEUFFiPDiIyKkCFeMYG0RsKHFXCnFmTNnGBsbI5VK0draSktLC42NjS+oVbWei08pFRFUhAjXCCJCinBFUEoxOTlJQ0MD8Xh8Q4t2sVjkqaeewnEc9u7dS7FYZGFhgfPnz6OUIp1O09LSUiWoqyGCy+XqXIqgSqUSxWIRKeWqJImIoCJEeOEQEVKETaHionNdl5MnT7Jz504SicRlx01PT/P000/T2dnJwYMHUUoB0N/fj9aaXC7HYmaCucwiY2NjADQ3N1cJqqGhYcNEcCWEUZ+AUSEo3/fxfZ9SqRSKQVUsqRcycSNChFcaIkKKsGHUu+g2shArpXj22We5cOEC+/bto7e3t6rUUIEQglSDS6d4L9s6bsAzfpJM4RCZTK6aMSelDBFUMpl8QYmgQjQVN2KQoCpafEtLSwwMDKzS4YsIKkKEK0NESBE2hHr5n8rCeynXWC6X46mnngLg9ttvp6GhYd19LfdLCPKY/qOY/qN0mjtp674er/9t+Lya5WyWTCbDzMwMp0+fxjTNKjm1tLSschs+3+V19QRVLBaZmpqip6enqsu3XgwqQoQIG0NESBEuifraomAM5VKENDExwYkTJ+jr62PXrl2XXph1Ccv9UniTSGB6f4Pp/Q1KDGEl3kG68U1s3boV3/dZWloik8kwOTnJs88+SywWq1pQtm0/Pxe/AZhm+SdUsaA8z1tFUEGh2IigIkRYHxEhRVgXldqiSrynfjGVUla/q8DzPE6ePMnU1BTXX389nZ2dlz2P6X0NwXztvKQR6njtPHoE0/sHLPfjKHkrvvWTtKTfQEvLNqBsvS0uLpLJZBgfH2dpaQmAkydPVi2oF5qk1nPxVQgK1laRiAgqQoQaIkKKsApB+Z9L1RbVW0jLy8scOXIE27a5/fbbN5TsoLVCeN8MbVNyG1I9UftMP1KfBMBQ30cWH0PIYbTcjTJ/EsO4hdbWVlpbWwFYXFzk8OHDGIbB2NgYx48fp6GhgZaWlqoVZVnWFd2bjWI9gnJdtxo/iwgqQoQwIkKKEMJmaosqhKS15sKFC5w8eZKtW7cyPDy88YXV/y6O910cMYQp27H0BYQ6FZ6TbAd1ofpZyb1IdRzUaQzv/0PRh7LuRJlvBbmrmlywY8cOAFzXZWFhgUwmw8jICMeOHSOVSlWtp+bm5qrrbTPYTPLCWgRVIf2g8nmQoKJuuhFeaYgIKUIVQfmfjdTbCCHwPI+nnnqKTCbDwYMHaWtr29xJnT8v/1eP4PkjuOIgCA9L9GCq5xCiGamOheeJT5DutOxEun+OdP8cLYexeStxuzYPy7Lo6Oigo6OjfErHIZPJkMlkOHXqFMVikcbGxio5NTc3YxjG5q5jk6jEl6rXECCoivBsJauvsbEx6qYb4RWBiJAiXLH8j+d5nDlzhnQ6ze23304sFtvcif1j4D9emwcazUVQ4ziAI1qRYh+WHsFivDxEDCDVydAY9MXqZ6HOYPPP3HHdEXT+KyjzrWjzzSBrBGXbNl1dXXR1dQHljLkKQZ08eRLHcWhqaqpaUOl0+gV3pa1FULlcjscff5xXv/rVUTfdCK8IRIT0CseVyP9orRkdHWVhYYHOzk5uvPHGK1sY3f8W/iz3Q8Aa0jqH6/8Al2WEGMKSnUgtMRmr7SP3I4JjiGNQdvkJdQTDOYLvfRVEEm2+Fcw3gUiFThuPx+np6aGnp6eqdVchqImJCTzPW6Ui8UJ3bQm69yzLWtOCilptRHi5ISKkVzA8z2NmZqbqEtrIYuY4DkePHiWXy9HS0kJra+sVLYJKTeD7Y5gaKsM1TngnuQ9Wkhu0HqHkL6HJIuVOLGFh+c+hcQieXcu9SPVk7Ty0g3oKgUL430OXPgzm29DGbWC+DkQydEohBIlEgkQiUS3izefzVYKqyBzF4/Fq+vnVyhyth0o/qcq8KhZUsFmh4zghFYmIoCK8lBER0isQwXTkH/7wh7zuda/bUNbZ3NwcR48epbm5mdtvv53jx49fsaXguP+dknoKITqx5RCWdhHqaG2OgNIToTFCDqHV4yj1NCXAEbuROoYpdmCoUwgBQo+Hr1UOINR04CCDCO/vEN7foUsJtPFGtHknmK9BiPiqeQohaGhooKGhISRzNDY2xtzcHEeOHAGuXOboclgvuxGICCrCyw4RIb3CEEzn3ojaQmXMmTNnGB0dZdeuXQwMDFTH1tchbWwOS5ScvwFA62lK/jSOvAHYji1SWOokGDsgRFBxtHomfCARx1dP4AOIdgx5PZYew1ixLBQJWDUmWWY7QFBA6wtQ/ACQRJuvR5tvQZh3IMTa8TAhBKlUira2NorFIgcPHmR5eZlMJsPc3NzzKnO0UbK/FEGVSqVLpplHBBXhWkJESK8QrNda/HKEFFToftWrXkVjY2P1u42Q2ZrHLP0PIBfY0onnHwUUZT2IBDFSGGInUj1bnqfch1Y/CozpQKunAxc4i6fO46jTQD/5pQbam7sw9GO1XeiCwBitNVotrnzKg/c10FOo4ocQ5hsQ5t1gvnpNy6ly/UIImpqaaGpqYnBwEKVUlaDWkznaSH1W8BybRZCg6ntB1RNU1E03wrWEiJBeAVhLFDUYm1jPygkqdB86dGhVrU6lI+vm5uJQKP55aJuQg+DX3GqG7KXk/XP5HKIbS2zB0LlQrEgYg2h/JrBhGKWeW/lwgXgKcmoRIbZiy2ZMNYKU/Qg1VZuL3AXq2dpnTLR/Bsijva+iva+CcStCtID5ZoT5WoRYX48PyvcknU6TTqc3JHNU0eFb+149P4kTl2r3XiwWmZycxLIsurq6om66EV5URIT0MsflaovWIpW1FLrXwpVYSLnSN/FEH0LPIYSL1il8P1xnhKhZYUpfxNNdFNRxTLkDS6Yx1Hnww644XUcU2dwQqdQIWl+kqACaMMhhiQNY6gxSZNHUxc3kdRBIiIAW8J9A44H3DTQxsH4SYdyEYO+GrtcwjCrxQFnmaGFhgYWFBcbHxzl58iTxeDxkQQVljl4IQqgnqGw2Szwej9q9R3jRERHSyxQbrS2qJ5XNKHRvlpC01szlP0vJewZ0AzF5PXGjAe19t5ppJ+jC94+GxinyAHjqFJ4CQ94MwsEWYPjPgGhF+QFXHGAYxdAxpLEL338cHyhiYoibMHCxdBIh8uUaKD0bnrDcDqpWJ4XoA/dv0e7f0pY0sHv34jv3IM03IeTlNfugTABtbW3VAmLP86oqEvUyR7FY7AVPL4fy36VS4xS1e4/wYiIipJchNlNbFBRInZiY4Pjx4/T3919eoZvNE1LBfbRMRgAiR1E9Rd5tRNBHXHZgy1FMcwueX3OrSbkDLyAlpBF4+hxKTeMAgkbich+CC0j13AqxbSeROB28SrQaDXz2UMLF8X9EAQtT7MESLRj+k9RukwVVF2DlgptqCRHCR8o8fun38Uu/j5DXI8yfwDBfC3Lbhhdq0zRpb2+nvb0dKMscZTKZqgXleR4//OEPr1rm6FIIppeXry3qphvhxUFESC8zrNW36FKoyP88/fTTTE9Pc+DAgQ0pdFfGboaQphc/G/psywO44giwhMNFCm4SP79I0txFzDqDlN6qOiHTOIDjP1X9rLUi730fTR4pOonJQQwlQZ+ukouU16PUkdoYGgNuQhdPHUXL/fiUMMVeLGFiaBuhg0kUbaGiXQAhC7VjqqPg27jOx0AMlq0m801I4wBCbFyGyLIsOjs76ezspKuri6effprBwcE1ZY4qKhJXK3NUT0j12Ew33YigIlwNIkJ6mSDYt6jigtnIYqC15vjx4yQSiQ0rdFew0bRvrTWj57+DG380vF1kqhYHQNzeQ8l8Egco+kncxQEaknPE7XLxrAZ8nQ0dwzT24Phl4lB6mpIvUXoKp9hBOjWIoc4BS6Ex0tiFCkgWCdGPv0I2njqKq8s1T1LswcLGVGeQxhAEsvxcf5B4bDRwVAOtRlYubAzl/hnCP4KvR5DG65Hm68G4HSnDKhGXu29CiHVljp555pnnRebocoRUj0t10w0SVMXFF7V7j7BRRIT0MoBSCs/zNi3/c/78eYrFIj09PVx33XWbXsg2Qkiu63Ls2DGK9l/TEjuEFKeBRSy5BzdQI6S1iReQBJJGnoaWBkrqOYpuH7rUiIlLQ+OZwBiJp86FzmfKfhz/InZ8hoI3gyF2opXCljdhqrPAEkqdCY2RsgvfvxD4vA9PHccHyjrcKSxdwJI3YKpRJAv4JEMCr0Jehw5YYZBeSUt3Ud6XUd6X0XIvQrQizddjmK9HyL5L3ru1iKJe5qhQKFRjUOvJHF3u77pZQqrH5XpBVb73fZ9YLEYsFovavUdYExEhvYSxXm3R5eC6LsePHyeTyZBMJunu7r4i8dDLnWtxcZEjR46QTJWItT1CTnsIbdJg3oQWCbQWCFE2kWLGdRT9I7Vj04izQljCnEaY0xjsI+fuRHgGMfsMpUI/8YazgTOmcP3jhCDjuP7TuKp81ITxaqTIIbSPYBFowg8kRMCKYGsAprEb1//RCjkJLHEQX/ko1ULMypTH6MXQGOSOkEWF2IpWx8sKFP4/45U+gpAHkeaNGMbrEMYNCLG5n6MQgmQySTKZvKTMUUXBvEJQ9X+3qyWktea1FkEdPXqUnp4eurq6qhZU1E03QhARIb1EUXkDPXXqFK7rsmvXrg0tKgsLCzz11FM0NDRw++238+STT15xJtdaHWMrczt//jzPPvss27ZtI9bxFaby5ZJXjYejF1h0j2GKXhqMAYQaw9eZ0DEscxeeV2vSZ4puXH0CDA0G5LGxk904noVpnEIKRT7bSzJVS0SQogcnlFKucfUFPH8EkNjGPmzRDepxxIqOnhBb8NSJ0FyUmgwdQ0uJMp7AAXyGsMQgBqOI6sJuQp0VpkVzyD1Ztqh+hO/8CJ8/BfqR5vUY5muRxmsQsu2KXGn1MkfZbLZqQY2OjiKEWCVz9HwT0lrzqsQbKwS0lgUVNSuMEBHSSxDB2qJKavdGFbpPnTrFjh072Lp161XJ/8DaSQ1B6+vQoUOkm2M8PfM3oX0M0Q5cwNNzLLpzxOVuND5xeTPaP4YWDo4/Ehpjyl48v9ZmwjK2UvB/BAZI0UZcbCOWLKADYq3ZbCOxhsAYuRu32rpCUfJPURJTKF0kZuzHFjEMbQA1N6Ah91fjS2Uk8PwaYflqBG004vmjK0W8A9g0INQj1XloWsKqEgArqezVe2l0o7yvobyvAQJpvBFLbqEh2YvWt2wqMaJ6TCFobGyksbGRgYEBtNZryhwBxGIx0un0FcscbQTB2OZaFlTUTTdCREgvIaxVW2QYxmUJpVQq8fTTT5PL5bjllltobm6ufnclagsV1BPS4uIiTz31VDVBIhaLMZX77/i6llRgilZybjhbTQtJwX+OAiCIkTbvAH0RrTIIoRGkKNW74qipGyi9iJKKPM9iMkBc9FLIXiCRGAuNyOVK2IGcDTvgJiz5z+DQDJSw5H4sEV/pXOuFjmEa+/D8mitO0I234vJT+iIl/yKe3IrSSSy5HVMoDJ0A/YPAjRtGh7riBhIiyncETQbLeIid26CU/RTSejtC7sQwX4OUXVwJ1pM5OnbsGMvLyzz++ONXJXN0OVT0E9ea16UIKrKgXjmICOklgvVqi9Zzm1VQUehuaWnh9ttvX6XqfaV6dMGx9S66bdvKdThKe5zLP4ht3oZWI/jqIrY5TMmpueJsuYWCH2y4V6Lgn6OkzmOKXpJyAFsYlPzvVfcxRC/FgCtOa/BUmfQ8PU3Wn6bkDSNlnLjsAD2G1BI7MRI4D2QLk5g1UQRsYzsl/0c46hkcwGQrKANb3oxUIwhmUYFW6gDS6McPWG6G3I2/YoU5/pM4WAiRxhC7sUQSqS9giEb0KvfdkcBRm9GhuNYivvcYSv23lf13YFo/iTT2YRg3IcSVkUZF5igWi7Flyxba2trWlDmq1D9dSuZoI6hYSJfDWgQVtXt/ZSAipJcAKm0F1qotWo+Q1lPorsflCO1SqGROVVqYHzp0iNbW1ur3M8V/YsmtubfS5k242gRtgyi7ZgzZBoFFPmHsouCX9eU8PceSt4gQTZhiNwkjDf5zGEYPeDUSiBm7KPrBIlaJGZ/CVVnclWM3mHcgGECos8AMhtiNadd07JQyKPgnkQHPmJCtlPzDOCu3J2m8BikcJBKhJ1AqjiIcbxJ1ckSmcR2e/ySensUDBO1oMtjiJgyWMNRzCJbDxzB2oP2gQsRQQKcPtDqD63wR9CxgI41DmOabkOaNSLkXIa4s7Xs9maNMJsP4+DjPPPMMiURiXZmjy6Hy/G4WwV5Qlfmu1aywXkkiIqiXHiJCuoZRcdFVsujWSudey8K5lEJ3Pa7GQioWi8zPz1etr2ALc601Y9n/Hh4gY8w4hzFEI43GMIbKk3OPE1JNDX8gYe4j6x3F0xmKCgzS2J7AlgdR/gkQRagjgbjcT9GqyQ9JGln2nkBTKn9v7CMuuxD+DJp5oOy+8/SR6hjfTeEbRwnebk/P4awQn1Bb8ApdNDfNodVZhAApevHqYkWqTo5IGkMrChGjAJhiH4a2MMUNGHoESQ7tnw6N0SId+izk9QGLykH5z5RrsUouiGYM41YM87UY5i0IsfaLSOj46yQ1bEbmqGJFXaqv1vOVPHE5gspkMpimSVtbW9Tu/SWGiJCuUWxU/qfewqkodHd1da2p0F2PK0lqqLjoRkdHSSQS3HTTTavmtuA8ybIbFEAVFL1y8zxf51jwjpIybsQVW0gabfj+aUzZUOe+A1fNh44bN7ez5B4GHyQJmsyb8fQCWkuEUCvHXwiNsc1duIGMPV8VWPC/Bwjixj5skmiRC2XB2eZOXA5XP7vFLogHrBQxiYgVWPYzGKKHmBxAigTam0KI8t/MkHvxAxl7mhiuXy9HZFLyj6xQpSBm3IGkhEkG4Z/BV41Ioz4hIlwcLI0dtUJfvYDyT+F7/1g+ouhFGrdjmLdimLeuGX/aKFGsJ3OUyWQ4e/YsuVyOVCq1rszRlVpIl0OQoLTWzM3NYVkWTU1NUbv3lxgiQroGsRn5nwohbVShe63xm7GQPM/j2LFjZDIZtm7dytLS0przO5f9y9DnJmsfS4FkBqHjZP3T+DpHQU0AkjbjBiyjDdc7DsIjYewm59fcamiTvFeLAymK+HgseKcxRScNxiCWhpL/g0CGm0HRD9YqgSU7cf1xQFP0T6HlHvLeCAljPzHZAOocvjgbVpGId+BT09gr5QeJNYwC4OsZCl6BLD6CJuJyGEv4oOvrma7D8WvEKOios6g0nh7Hryo+NFLMDdPaDFKNIZhHyO1oFbSgjFWFvkKkq6fWegKlTuMXHyh/J7diGK/HMA9gGLcgZPu6yQaXQ1DmCMrJMxUdvrVkjq70PJtBxeKvkE/UTfelhYiQriEE5X9gY4oLUkpc1+X73/8+cHmF7npsxmW3tLTEkSNHqll0c3NzLCwsrN7PHeF84QQt9i1oPUPRG8HTudA+KWsPC25Nk84SaWbdH6HxMUUrTcZWNDKUxt1g7mfJq7niDBrJemULxNMLLLoLJMy9uAziLsdpaSpgyzZygYJbSROFuow9jQA0Bf80BR+Sxg0olonJ3aBHEdrF52RojB0LW5WFfB9W8jk0kPefwhR9eHqKuHEdtkiAGoNALyYA0xjEDfR0MuQu/EB/JihiJU+R97Mr32/FZgApLIQ6hRAewrgOHbg+aEWtSjGvWVRajaLEcbzCnwMg5DBdHbsx5KtQ6vXIDaqWr4VYLEZ3dzfd3d3l2dfJHCmlOHHiBG1tbVcsc7QRBC2xoEgsRN10r3VEhHSNINhaHNjwD3VhYYFsNsvg4OCGFLrrsZGkhvWy6NYjszPLf42ns8yUygtjm30bGg/JDIosWksK/kRoTMLcSmmFoDydJe9nyPkTxOUQKaMD5Y9SqnPfJc3tLHs1t5ote8lV1MQbYN6HRtGFadyKVufw9SQJcwe5gPvOkv0hN2H5/DM4apxKA4tG63YEBYQaR+vzWHIY1wxIGCGxE3MhfYdCvgEr4VH0T1IEYnIPSmex5a1IvQDqPF7deaWIlduxV6B2YwTcdUotU+C7gA/EMcVObN2EEIMINVaOYxnDdTp9w3UWlRmyqLQ6Q6oBTPlVCtkVC8q8Gym3YZg3IUTfFS/MQZkjpRQPP/wwnZ2dZLPZK5Y52ggu5RoMElTUTffaQ0RILzKCAdmNKnRD2XX2zDPPcPHiReLxOHv27Lmi81/OQgq66Oqz6NZMqPDnOJ/7x9A2F4fp0kkkFq32TSRkgkzp0arlI4iR9cKBfEu2gj9BUU1RdKZIyR0I4RM3DlLyn11JDx+pG9NJMaCqkJQ7WPaOBT7voaTjSNGF0mVrxRCdQI0cE8YeCqHmfzGy3nF8Xc6Es+UwKTGE73tIWSaBmHEdhUAPJ0EKKx6ugcoX8hix87jqPABx4xY0DpbQoE5jUJY4CkGE1StMYxtulWyKaDzy/nfLu4oWLLENUxtIOhCULS8hG9EBlhPG/lUWVTIZSIdXo/jeg3jq7MpxuzGttyLlFqRxECF3bDqLL4ienh5s214lc3Tu3Dm01tX08ubm5jVljjaCSjPKjWC9VhtRs8IXBxEhvYjQWrO4uEgul6O1tXXDD/ny8jJHjhzBtm3279/PqVOnLjtmPVzKQqp30QWz6GBtQjq7/ABqRfUNIGF0k3HKloDCZab0DClzKw79NMlulD5H0uxhwa0t6JZoZtENWw9CwrJ3lmXKqdVt9h1onQEvB8LFoImsF+4iC+FFScomZt2yRZU09pIQaYr++box4etJmnvJejXXotIO8+73QfjgddFob8XHRGsTIcqu1pixm2KgeNagD2I1gtJAtjSKMCsZeIKUeRDBEFLPgDqDZezGC7kJbbxgPA2QIlG1qLTOoKQm75ddt4boxRKDSF1A0ISsKJ4HipRhDYuqLkal9SzK/TKKhZUtjRjmTyBkH8K4EWlcv6E6qMozVnm+15M5qsSgRkZG1pQ52sjv42qSJyKCenEREdKLhIpVNDs7y+TkZDVz6VIIus62bt3K8PAwi4uLV1xHBGuTynouusuNdf085/IPhfaJGV1k/enq5yZrGwtu+Y28qOYAQZswSRg3UPJPoiiSMLZSVDUSSMg+lr0a6Spclv1x8v4EpmgmbWwlLuIsud+rWl2q1Eo+VlvANVBSNYsj749imjeypOZJGruJiyaEzoXiSxpwVC3GU76eLXjeCpEYS7hkWXbPIkmTNIaQysetixVZRie+P177zF6UWSMb5VssqycQsrzgGaKDJD14noUUo1jGMpZxHW5dQkS9RaV1zaXp6wmk7KsqURhyEFsMIplH6BRCZCm778IvM0KkQpRsGNdBqGjXwvf+DqpUaKxo7w0gjRuQxg0gelc9L5Xn5FKutIrM0ZYtW1BKVQlqbm6OM2fOhOqkmpub15U5ej6z+S5FUNlslhMnTrB//35s2456QT0PiAjpx4x6+Z+NSP9AWCPu4MGD1dqQq5H+gVpxawWXctGtNTZ47tO5bzLtZOmIHcQgj+tNVq2jCqQIW1lJtZW5leJZiU2rtQ9HeSElcFu2UFC1Bb3R3MXiCkF5Ose8+yymSCLoocnoQ6s5iq4PsdoC3WDsYtkPLr4W+ZXsu7w/Sh5oMA7giT0kZRNKnScmW8gF3HeCWLVot3o9lBsIKnJkvWMkjOvJ+RmSxgFsGUf4M6tljwwIBotixh5cagTslCSe9ShClq/f0jtI6BRC7IGVZIbLJ0RYeIFiWl+N4RnNuP4xQGCKISyxFckMvlvCMgtAW6gVPAB1KuZCDqODbd3lMMp/GHzw3S8CVrn2yRguE5S8HuRelCovNRtdpKWUq2SOKioSU1NTnDp1al2Zoxcqvbwy/8o1SClZXFys/oYrFlTUTffKERHSjxFr1RZthJDqFbqDrrOrEUetzKFCKpdz0dUjSEhK+xxf+jsUHlOlMgl1xw6SXBFKddQcCaOL+TqCclWu6llTOBQdnyVxipjsIW30ItQiS3WuuPr2EGlzNwsrsaJZN4NJI660aBM3Axfx9Hl0nfuu0dzDciBjzyTNsncSjUt+hSya5RCWcQtaX8T1z5Gy9pINJFHgNZMnWGdUTsjQ+OT858j5kDJvxFWShNGO1AtIXaRUl8ygxVQ4xdwawA3EjwoFhRt/rHzPaSAud6C0jRD9oC6sFOWGEyLKFtWT1c9li6oST9N4agQtV8RhpcDRg8TMbQg9h1BjSBaRcgfocEKErreoSIT+GkLuR6vDaO8synsQ6AAWgSG2DXbgu3NgHkDIYTYjGCulrLbRGBoawvf9dWWOXNetZqq+kPB9vyphBGELqiJ8HLV73xwiQvoxYb3aokvFcCoK3adPn2b79u1Vhe4grkb6B2oW0rlz5y7roltrbIWQxvKPkA3I+UhsZtzTOCoLCNrt61BFEy1nEbI830ZjK8srigXl6xXk/Itglt1r0ypDSu/GN7bRaDTh+GewjRRLdQkQ9dl3DcY2MrGnmfUWAEibN+NgYIleXF1OYHBVWEEhYQ5Tco9UP8flAAtujXxiYitFGjDldlx/pT261wnmQm2MsZ28H6wJkhT9UTydobRi4TWah0B0YAqF558hbmwJ6fIJGvBEeNGPxQKxIgosZwuYiTKZGqKHpNiG1kUELUCZyJSeCx3DNLbWWVQ78VcsKCE0igmK/kK1r5Mh+rFFH5IUhp5E6ItI4zq0ChAy7ei6tu7UtRERchCtfgQ8S3fnsyhvBu38GyCJMPaAvAEp9yDN/SC2bHiRrpc58jyPxcVFMpkMruty4sQJRkdHQzGozcgcbQQVD0foetcRil2r3Xswiy9qVlhGREgvMC5XW7QeoQQVum+++eaQQncQV0tIWmsymQzz8/MhV+BGUDm31prjiw+EvmuL7eJiqeKq0swXJ9C4mKKVdnsQ35vBqHPftVi7mRfBQliLJTWGpkTWnwAtaFcDJM02iuoUiiJN5k6WvJprSmiTrB/OcEMYTDvluaSMnaSNbkoBdxbaIuuFi2dt2UxR1RIeLKOFWadscdiiD9vrQJPH0iasJDMIwsKjKWM/WT9YN5Um6x1FV5M+BEKmMYxb0WoGX50lYe6mEIgVKbcdrLC6gx1fpvIX9/UcmWwbZqK8jyWHScgtaOYQOgkiz9oJEfGQRWWIffgB6SSlSxS8f6biWxS0YesYhjiEwTxSjSKNIXSQ2OVOdPC+Ytd9Dt6jPNp/AoHGd/8rfgmgCWHehpD9CLkPaeyDDUgfAVWpoLa2NiYnJ9m3bx9KqSuWOdoINuIavBRBVdrGVJQm6nX4XokEFRHSC4j62qK1HrK1COVyCt1BBBW3N/sALy0tce7cOYQQ3HHHHZd10a137ovFE2S92sKkESx74WSAhN9FzhrF1R6TxRMkZQd55dNo3kjRO4PLEq4uhsa02ruZcWrxF0M3MKuOgasQ2iKlh/BpAC1hRTYobe1h3q2NsWhiwa0txll/HCkSLHnLpIxdJI0mbCSLXi0uYtLMcp2bUOmaC8jRGQzdRcG+gEGaRjmEjSS/qp4pHH9JmsMsezU3WkwOsOQFs/G6MbSNIW/EV6eBZbTfBtZsYMxeSqEGgnHMeE2c1lXnKRUsZOwsIImJ3SSMfpS+CP4phCgh6Ay478rQ1KeYhy0qKdso+Y8F9khjqQKmuAmDAlKNYdS774z96IDb0HHSxO2686qgJbcEag61InvkQzmTjxhC7gZjD8i9CLmVS3XXVUph2zapVKqaLOQ4TlWH78yZM+Tz+UvKHG0Evu+vspAuh/UIqr5Z4Su1m25ESC8ANtNaPEhIQYXu3bt309/fvyGlhso5N0pIwSy6lpYWhBCbJiOoEdKPFv+OGS9Pp72PmNQYaKadGgkITLzYHAR4t8HoZMo5wZIPAoMe+1UosqANED5aC7JeOFutJb6VWae8oGnhUfSzLPpjCL+ZBtWFZebI17mqGqwhim4tUJ+UvVWXX9a/QNaHpOxBiB00GGk8NUFSdrLoHamOicsBsiFXHLiyvFj7usCCd4K0eYBlpUkZ12HLOIZ2KYSy04w16qZaKKlaM8CY2ctilbAEpr8HpSyaxE48dbqs1Vf3J06YeykESE7SCXblPIqSOkuxlEVY04BBTOwlbvQh1ARanUaIEoV8H4lk0Kq8dIo5gGUM4/pPVm09SQeGP4spb8AQAqFmMfwwyZWcLuJ2IO1c7oRVFlXdebUP6gdo/wfgAvIgWh0HuRNh7ELI60AOg7ETIVLlq17DcrFte1MyR+l0+rJks5l6p/WwUYL6z//5P/OmN72J1772tVd1vmsdESE9z6hPXLic6S2lxPd9CoUCR48e3ZBCd/142HhmUTCL7uDBg+RyOWZmZi47bi0IISiac4zmy9bFtHMGraHD3olV2oEvZlF2hs7YLqZKNavFFilmnVqcRONT1CVm3FFs0Uq7OUBMSGacJ6tp3BKbRTe8oDcmOim5c2ijSNYYw3Z6KXkl4t4ODGMBaWdY8kZDY2JGC3lVK4RtMnewtJKxl/MvILRFyWwmYdyMUtM4agxLtkAoy283y17NGpLEyfrPofFZ9k+DDw3GXly202C0IfQ8tkiS82uZdAbN5Lw6CSNdCn4CncCNPcOcB4ZoISX34uoiUnSXLR7ADbVXh5gxQCGQZm+yA8+q3GufojdK0ZtAyDxlgtpDtmQTSzYj9VkQBSxj/xoJEfUq5uG4nWUM4vmP46zUdZWz/s5hyp3l/k9+AcucC704CeKXtKigA1RdhqKeBUqgni534TVGESsuTi36wbidrT1LmGTR/j6QW9a0pi4nc+Q4Dul0uhqDWkvmaK0Y0tViPYL66le/yu7du5/Xc12LiAjpeUSwtfhGs2gqhPToo49uWKG7fnzl3JfDWll0+Xz+qvohzTY9EdrWbPQz7ZyuPlltcgc+SQzi+CtiPC32EJPFoIJCOzNu2WpxdI4J5yTN5gDILTQZrZTUBRqNbmYD4qy2SDPnhoP/8WSSgnuRvFnWzUvkd6K1gxWz0dYclmgMue/KqMvYs3Yx5x6vlJHSZOyjpOLE5DBF/wxCgNJuaEyjtYvFgC6fLTpY8k5S1scrk1+jsQNT3oSFh6tOkzC3kQ1YNnE5SMEPFqRKXFGzEH2dR+GxuHIPbDlIozG84mpbBrIIEpT8sKvRMGy8gGljiT14okIuPvnSHGbTIktKAxKLlRRzeQOoUQQLayRE1KeY2/h1FpUQcaCAp06We+6q68GexKcNQ/Rh6hRSLyN1I1KUVTDC7rty7RShGNVuUEG3aAwRVE/XF9D+Cbb2HQP/G5AHYdyCIAtyB1puB7kL5BCInppIImGZI601hUKhSlDryRw9HxbS5VAhqFwutymNypcqIkJ6HrBWa/GNVpSfPVsOpu/Zs2fDCt1BVM5zKVK5VKHr1dQxFdQCS43huEkx5wW7i2OIOGfyx7BEnK7YblBZ5kvhpIOk2cWyU3vjbjYHWPDKb9pZfxq0RAqTRvMAee8UPnkarS0UnRpBNRh9ZNxwYoJoKFBQUxQB2+tFF1vAnkDGyq6kOF2hjD2toVC3KFoyxfSKyy8mu2mRw/h6Hq0MhCyv9EU/bKXEjV4KgYU0ZQyXa6BWiEEQQwmNLW9B6ylcNYYh02GXprmXZa8WK5Kkajp9gKOmKYgW8v6zgCBh7KZB9qOYBP80iBKm6F5VAyWMTOg8thzAFwsrnxTFgo8b/37t+sUObG1iyJuQehKtxlelmNvGfvx6FfN1ZJCUnkP5c2DcXLW6JN3YcgeSElLEkeoCQrh17jyo73sljH3gB7P+OkHXNUzUFxH6PKhnyhK68hBCPYEmCXIYLW9GyFaQ29By20pRrySZTJJMJunr61tX5igej6O1Zmlp6YpljjYCrTW5XG7DXpOXMiJCukpstG9RPXK5HE899VSVDLq6Vvep2Qgq51qPVOpddPVZdFfToO/ZwvcRThM6tgCA6TZSiIfdf44ui1W6usSF4rP0xPZQwKXV2k7BG0Vrl1mnTsdOhLPV2u1hLjrlxUli0mnfgKPKGXV6JcPNFs1AjRjMQhf5RM3CcOUSfoOPo0skvEFsL07J9aCxtk9KDrMUaFUhsFgKtLsoqQWKRpF5dwyp08ScDtob2siG1MQTVRdgdZsIL6Rpc0e1bgogKXdTUHFs43pc/zSaPF7IfQcN5o6QkGxM9q2QEZQtsTF8XcJRFxHESBo7sWQXUjfj+6cRwiMm91BSQQsqjjLqsgvthhDZFPM2biLYcn4XnpKY8haEXkCrs+i6JoQbsaiCMSqlL+LThRNwaVryNqCAIWwMXUCqAkad+07UvTwgBxBqOvB5F0IHelgRq5KcIA/qaQQCGfhbaHkzgmW0HCr/E8MI2U9DcpCGhv6QzNHIyAhLS0scPnz4imWONop8Ph9ZSBEuDd/3GR8fR0pJe3v7hh/AiYkJjh8/Tn9/P9u2bePb3/72FfujK/7mtSykjRS6XmnauKOKfH/5G5QMh4ZiH0ksmlMNXAw05WuxBph1a0F7rSHrZVj2Zln2ZgHBUPx6PL3MoncahUODbKu67ypwlVP9f4WHwmCsdBJLpOkwBzBwmHfOhAP+InxNrfZOpleKcgtiBmU34loFEmorcdWAr6fIermQddds7CDj1964bdFMxi0vaEoUKVjnWVQmy75B2ryOhLSwkGQCauIx0cmSF3ZnOfUNBI0W5ldcfgJJs3k7Pj74DlpcQEixSnPPlu3V2iaABmNPVVVC41LwJyj44ygKSFIkzUFM0YYUHr4aQQhvVUKEKbrwZNgqMWPZkFOzlLfw4wHXqdyNo1wseSsmDvjTuN7J0N9C1KX3l9u61+6RpAO/zqLy9SRKjVaTJmzjJpQuN0OUIokkhqlGkdX2JPYqi0qKWNgjK/ciAnVUmk6kqreoppH6HKwQqJKHkKoSo+pCG7cgRJLm+BZ622Mk4y1sG34N2VzpimSONopK88OXOyJCugIEW4vPzMxgWRYdHR2XHVdR6J6enubAgQN0dnaGMuyuFPWkEnTRDQ0NMTw8vO6P4UotpCOL36a00uMoZ2bwRQNLpQJdsQP4OsOiew5LJkNjumPbmSwFLRDJpHOWolrGEgk67V0kpU22NFd176eNATJebTHWCJb88hu5qwtMOM/RY++lJNK0mb34egGhHbLxycAYyNdlfKWtLUw7x8npaXICGs0elOmT5DpcfxZPTrJQGIdALWWDMUAxkIhgeZ0sUbagFrwzLCCIy1ZMMUzSaEGrDDGRpBRIMkgZ28kGYkUCi1zACtMolPDIuMdAgFAttNvXofUShtL4eg5JapWQrA43rqDB3MnySqagooTjL5H1KlZmIwljC6ZuQLIDT51FSh9L9uP5NYsxJndRIpgtaWPEwsRYKLgYsTM4K49f3DiIq0awxXZMYSNVCc87HSKotSwq7zIWlVLPoVnCW8miNOQBivo8EMcQ/ZhiEMky+IsIfwLLalwjISJsUQm5BRFwrWqxE0MHk23Kfaeq++sphB7DWEmZH0hDa2wXqeK/psHspqNrANW9E0UrmcJrmcuoy8ocbQQVxYeIkCKsglIKz/OqLrqNatEFFbrvuOMO4vHyq/hGYkCXQ5BUPM/j+PHjGy50vRILyfNdHpn++9Ai0xHbwljhJKOF8qLXa+/D1ya2aMBZIS5PhxfNroArztUlZpxxXK2Iyz7azA5KahKzjtQ6rGGm3FoKtoHFnDuGo3OMr6Sa99rX4S/FSTU65NU4LdZ25rwgEZosuOE4VtxoZsZ5hhzTIKDTuAlhKDx/lhLnQJvMl06Xdegq906FXYst5k4yK9ZQ1p/AIIEtXRqMgxi4FP0zyLqMryZzN4tezTqwRDNLAStTyzx5f5rcSsp4Qm6jyRzEV9M4/hm0KBKT/eTrWqOXVmXfdeOsKGmoleSSjPvD8jlUnJSxA0fb5bbr/lkQRUSdqzFh7KUUyr5rx7DDmY+F0gTCzFBYeQGImzdR9BykvwXfSdGcasfX4wF1dGtVQgR1LlvLuA6lgskzHfjVJoRFfHUaIX08NVreZIAnrgfdhhRJDHwMTKR6uvqio7GQKmyJCxEPWVRa7kMGUve1aMVQ4RcBy8gh8BF6HOmP40sHU4/RlL6XpmarKnO0uLjIwsLCKpmjyr9LlV1ks+UGi1EMKUIV69UWGYZRbeq13rh6he5gZk7lOM+HhbRZLbrK+TdjIRUKBb5x4q/JNy5UtxmYTJXCb86mYXM2fxKJQW98HwnDZLxwPERi9VZLmzXIhdKzZH2HrJ+hQbZSUooW6zqy3iiuXsaty3DrsIe5GNDHi4smJkonUQmfrAeNxiBSdpCURXL+BEJAu72TGafmqomJJuaccNzHocD8Spp5XHbTFdtB0ZsuC7JKH9wkJetCaIxfF/dptoaZc49RWFEMT8pulnyThHETvpqkpMZx6tKnG8zBUCddw+smR23RL6iL+G4RR88jMGiQezBlF5oEjn8WhE+DuZdcKCEiSc4LJ5/IgMUspIcQMRaq7juDBnkTjjYw5AGUGkOTQek65XNzkGKgINpgO74ZSBJRJgXnGYTUKDmJiIOj4zj+GGBiiW3YcgBYROhZUOeRonWV+w7qsu+Mrfh1MkhBjT2lDOA4sIhPuXzJkAfQuoCgBynbMUQHBotIvYhUUwiRWsN9txCehtyGUDVCLjgDNNg1t6nGQKqzuNY7IEDmhmHQ2tpaFSoOyhydP3+eEydOkEwm15U5yuXKL3SvBAvplVH+e5WoFKo5jrOq0PVSFpLruhw5coQzZ85w8OBBduzYsWaa6EatrPUghODixYv84Ac/oLe3l5tuumnDha6bIcOZmRm+9+j3mE5M0GINUOGx7tgwRVVrUR4XDUwUyxaJwudC8Qw5X6NEOx2x60kZXXTa21gKLCpCS+bc8Ft9k9XJnDfBaPE0c56i2TwENGBQu7asH3b/NFsDqID7SgiDkcJTTLvzGGILaeMAXt31pq0BFDUlhpTRUyUjgKJaYtY9z5R3ngJNJIzraRC7QNUWHVlsY8kfDRxVkKvPvpMdLHgjTDrPMO0tYMpb8OkhbuxDkkCwWsLI0GELscncXSUxjU/Rn2XaeYI57zx53YiQ16Npx5Jb0br8jDaYO6tWEUBMdJOvSw93gskA+AhhsugdYcE7yZIqoMWrKNGDkDcjxSDoOI5XF28ywm4okz0IWXsufKeJUjWBwMNVZympUZa9Iyz5F1jWMVy5D08eQsub0GIbhtiDqlg+AFioOmuworheQb4wRFnQtQxB24rmnkbrCXz/KL4awfGfoKhOk2eZgthGTmwjLw9QlNfjiINonam+rGkMDBX+2ygVvl4l9gLLeOa/4FKoyBxt376dm2++mde85jUMDw9jGAZjY2M88sgj/OAHP+C5557j61//OufPnycej68ZY/7MZz7D9ddfX1VGv+222/j6179e/f6Xf/mXGR4eJpFI0NHRwdvf/nZOnqy9nDz11FO8613vYmBggEQiwZ49e/jkJz+56jwPP/wwBw8eJBaLsX37dv78z/981T6f/vSn2bp1K/F4nFtvvZUf/vCHl7wPa96bTY94hSFYWxQsWKtgPZdXUKH7jjvuuKSw49Xo0VUqusfHxzetRVc59+UsJK01p0+fZnR0lKadMUbyz0IRWq1+yPrkjFxo/874AOcKtYc+ZbRwoXgGjeZsvlzhMxjvpc3cy6I3gkeBrtgOxku1t1ybBNPOaG0OKBxdYtIZwRQxuuwdJIXNpHOkanUZWMw6dSnlMs0SZVfVkj+NLRuZcsZIG4M0mS14/hyZwHkA4rK5Ogag1Rxm3iu7CT1dYNYZQWLia4NWuZe4tDBTMO/V3uSNfA/FZK0A1yDJfF2yhsKpWmYCm277ZiCPVFOU1HkM3YRjhufm63zoc8raVrWofIq4KlfV9jNFKw1iAE8nsOQWHP8cQkDc7CLr1ebm5/twkrU3fUGcfB3ZKByyAasrZRxCk8MSiXLsRi2vSjGX5iJ+8LH2uxF2jSi80kCocSFoSuooKiC5ZBs3oPU2TNGKISQmcZRfK5gWtKPqBF4tMxueh7ENHWhCuJaKuVLHgYVqRrwhb8TRM0AjQnRh0I8URSQOBkugSjTEwu5KyOMbb0TLy8eTQ/NdiUFX4tAVmaP5+Xl+7/d+j9OnTyOl5EMf+hBvfOMbec1rXlN13/X39/MHf/AH7NixA601/+2//Tfe/va3c/jwYfbt28ehQ4f42Z/9WbZs2cL8/Dwf/vCHueuuuxgZGcEwDJ544gk6Ozv5i7/4CwYGBnj00Ud53/veh2EYvP/97wdgZGSE/+V/+V/4lV/5Ff7yL/+Shx56iF/6pV+ip6eHu+++G4C//uu/5oMf/CCf/exnufXWW/njP/5j7r77bp599tmqOsZGIPTVNNN5GWOjtUVjY2PMzs5y6NCh6riRkRHOnDmzrkJ3PR5++GEOHDhQVS7eKCouulKpxL59+66ojmlhYYHDhw/zhje8Yc3vS6USR48epVgscsMNN/BA5vM8m6sJhqaKbeRiSwwktgBF5p3zxGScgqotCgOJPYwWanGCNquHGae84BuY9NgDJA2TidJxWOmB1BvbzYVSbUxKtpBTC6HWE63mFpb9DJ12D1ovk5AJJgPuuxgpXAohi6nFGmLWHa1+7rF3k/VnaTbb8PUcrr+Ao4shi6nVHGI+kHjQae9lOuTya6agczSZnaSMNErNY6DIBmSBZG4AN7DoJ2Un+ZBVAg1GT9Wqislmkk4vWi5iWBfxWaLB2EouZIVJbJHGCShsp63rWAxIJTWZe6rtO0zRSKMxiClkuaWGGisrfRf6kYma+zFl3hhqs2GLLhw9TTDAEpP9lNSFwHluxFUXicl2jJVmH47/RFnuCEBbSG2FLCbh70Ybtb+XX9yJlaj9zSXtKDLUmkdpYnIIT41giE5M2YkpOpHMIvRsWQ5JDyFl0JIxkSIFAfebadyIDsSGhLwh9BlakGQh8AwYcgcEY07yJjznFIg2bLsFqZMYIo9vfxBt3sjziQceeID/8//8P/npn/5pHn74YUZHR/nSl77ET//0T6+5f2trKx//+Md573vfu+q7o0ePcuDAAU6fPs3w8PCa43/913+dZ555hn/6p38C4Ld/+7f56le/yrFjNeK/9957WVhY4Bvf+AYAt956KzfffDOf+tSngPKL/MDAAL/xG7/B7/zO72z4WiMLaQ1sprYo6G7bqEJ3PTZrIWmtuXDhAidPnmRoaIipqakrljC51LkzmQxHjhyhpaWFG2+8kVnvYoiMtAZfePh4jBbKi8D25HWAB955Cv4CMZFkvDgaOm7cqPnCfTx8FM8VTpGUbXRaXZT8DHNO2N2VtjrJlmoLb6vZx4xbXhDPFcsLRae1hVbzOly9wJJ3nmazl6mAe6fJ7A6REUDOn2fZn2V5xfU3ELuOGA5KL7DkjtFk9oTICCBf5yZssvrJOydY9CZZ9CZJG/2U9BIt5o1ISuS9EWRDPhQwd7M2QU9T2hxm0aslazgqh2eM4IsC+NBo7EKKbuIyRtE/C8JdIZuaVWLSyHJd6/dgO3lPL6MxmFmxqEzRTlIPUfIXaZLDOP4oQvg46mLoGLbRixPQFUwauwI1UGVZp6L/HL7O4qzIMiWNfRR1EzHZjyVSeAUFxhmkyJX7N9GBMoJWmMaKhS1tp9iBGa/da1vurDYd9PU0vj+PKy6gqmQTw/BbcQsmTY1ppM5hkEKrH9YsKtG6umUGy6FP0tgOgRb0QgyFyQgJegTTXAQWUT5o4yBK58C4oV5u8KqRSqXo6uriC1/4AgDnzp2jqalp1X6+7/OlL32JXC7Hbbfdtur7XC7H/fffz9DQEAMDA+ueb3FxMdSY87HHHuPOO+8M7XP33XfzgQ98AChbdE888QS/+7u/W/1eSsmdd97JY489xmYQEVIdlFI4jrNhxYXKgr4Zhe71jrERVLLo5ubmqi662dnZq5L/WauFeaUP086dO9mypdyn5rvTXw/t1x3rY5KJwDiYcWbJuLMIBH3xXbTZjZzNPVV1q6WMZi4U6nzxKyt1Xi0zWlymP7YD37fotAdY9sbxVSnkvgNWp5TbQ1x0asQRczsoyRgpo5dlr5zMEJfNQG1h7bC2MRNQd5CYTLsjlFasu4TsJG5sRYgUS245YaDN3M5cQN3BwGa+juRs2cCie4FJp+ye7DB3oYVLk9hCSU3iqyx+Mmwd5bLhGqhWa0e1ky6Ao7JcKD2JRiFJ0WT0o0gTk4MU/XMIoWm0hskEejolZB/Zut5RhYCOn6dzKKEoJc4z44KkiRbrOhQlLNmM54+C0OTr6qhCqYZAg7mHfECM1hLtKzEqRcE/TQGQshslcxh0ERe9JGQ76Cm0mkTpGWLmzlCHWzAx7XDSSKkAZiA0ahvX4QSUGiQNIA9jJXwKK8aNKYfxdROm6MaQjVik0Uwi9HS5GaEcRqugcK4BKvwCIkUL6NHAhv2gjgb2aET4JyD2Oy+IWkO9bNCWLVtC3z/99NPcdttt1dTwL3/5y+zdu7f6/Z/8yZ/woQ99iFwux65du3jwwQfXDSE8+uij/PVf/zVf/epXq9suXry4qnC/q6uLpaWlqsSS7/tr7hOMV20EESGtIFhbpLXelBZdLpfjySef3LBC91rH2Gjq+OHDh0kkEqF2EVeTpVc/1nVdnn76aZaWlkJW3oKb4Xxhji57G1OlERAas67gsT8xxPlCOSag0UwULzDnpvB1mr54L44/T6PRyJJXixHE3UamCBTPAll/mXlvmnlvGhDsSOzD1TkW3BE8iiRlc6ieCcAPtIcAsLwkYysxm7Q5QLvZSs6fQ1cLKctxqSC67O0hl5/WmrOFYyh8bNFMu9WHIW0k8WqSQKu9g4tOLUEgLpqZrdPYcymw4NayEPtiB1C6BDpPzhshYbSQj4etkoX8REgpp9HqryqdKxx8fC6UyouxJTpJy34cbWLJXpyVbMKY0Rpq/d5k7l7R2CvDIEle1xZjRQlHL7FcjR8ZtFuH0BSxKOHrC5gYdQkRGq+u2aFtbMENZN/F5Q6KlO+Jr5fI+wUcdQFflwnbEF1I+kC2Iimi1QS27MXhSPUYQrcg7TpyLU5jBO6RbWzDDcSKDDmMt0I2rlrCVQaeTFeFYQWNxOkGkUZiIClg0IBWjwdk7ppW1zMFEkQAhNwF6hRYP8kLgWw2e8kMu127dnHkyBEWFxd54IEHuO+++/jOd75TJaWf/dmf5c1vfjOTk5P80R/9Ee985zv53ve+Vy09qeDYsWO8/e1v59/+23/LXXfd9YJcy+UQERJXLv9TKBQ4ffo0nudx2223XXGdQEVg9VLzC7ro6gtdr0aPrr6F+eHDh0mlUtx+++2ht6iHZ/+Js/nym2Pa7KQv3s2scy50LE+Fr2EgsY2zhfKCcDp3GlvEWPQ0DbofL56hpHO0pToZL9VcJqlSC/PUrAeh4ULpPFl/CUNY9NlDNJlJst5REOXztZo9zAQWfK2hZNaC/4veLE1GGxOlOdJmPy1mC1BkxjkV1Nck54dTsFusAcZX2rE7ukDezzJRuojEIk0/0lcUzfDilLZ6mXIWap+N/qou38oVkXHPkVdl96NBnGZjGFP24KgpCv5Fms1hFgm8tSuDueLpUE6sJRPV0IqrsyghGC+VCSsm+8oEpTxM0YmrptcWhTV3sODVUszjsjtARgCKrH+eYsCF124fROr+chxKzWMLi2KoNsem6NdLJ4VfXOotKoHBovtDCMT6EvQgOIAlE0gcLJHA8x6tjdFbMazR6metJSX3OYI5R1I0rWrr7odiRRLH/wEE3JqG3ImvJYbowRAtmKIdXy8gySLVNEK0IAKWnNYCqS+AdQ9ChK325wv5fJ5kcv1j27bN9u3bATh06BCPP/44n/zkJ/nc5z4HQDqdJp1Os2PHDl71qlfR0tLCl7/8Zd71rndVj3HixAne9KY38b73vY/f+73fCx2/u7ubqalwK5ipqSmamppIJBLVnk1r7VNRU98oXvGEtF5r8cthenqap59+mnQ6jed5V1W0dikLaS0X3WbGXw4Vl92lWpgX/AL/PP/d6udFb5FWv5OLpRItbjetjQmQDpOlmotFA4veUvBUpEpp5u1pFgHpSQZje/G0i9AGeoVcGlJNLLs1C6qh1MZirJy95muPi6VJLjogSNFj96HIE6tzIXXb25gM1O4YmFXCWvRmWfRm6Y3tRIgBWq1WXDVLTNjMBmJFUpvMuWGXUUI2scBFFD4ZJmjUPcyVJmkxt9FopnC9DPN1rkVbNgTXWTqsHcy4tQVNYjHunKjWMDXIPgzZSaOwyTpn0bJEq72L+UCGm3CTzOvnQjVdbiDtvqQWUEY/EyvWXlwO0CIH8MljiS4cNYUQYfddeb/OEPk0mrtYDrjrDBFnyXsmlOnXZO5FiX3EZApJCQubnFeL2ZiinbwfrO/ReHUt52PGIF4gQzFuDFOoxKj8ciGzJZMoncIWvVgyTUykUCqOVudB5DD0HoSsxYZ8L4XWTxP+OYdjVLaxE8+vpSZLsbXa1t1X5/A5jy860Lr2gmTLnYBEiiaWF3M0ptqxmcG07+WFwmZlg5RSlEqlNb+rtLMIfn/8+HHe+MY3ct999/GRj3xk1ZjbbruNr33ta6FtDz74YDVOZds2hw4d4qGHHuKee+6pzuGhhx6qZuptFK9YQqoo+F68eJHe3t5NKXQ/++yzjI+Ps2/fPhKJBIcPH77suEthPUJZz0W30fEbQcU6On369LqE9735RyiqmiWQlA2MFkbRaOatBeaLC+xs2EFfvJmsN82iN0dffJDzxYAFpaEYqwX2FQqN4FT+PAmZptfuxsTlgnOm5lLTYDQYwWQnksU0C/HyAjFaPENKptEIOux9eGqRjHcBn7D7rie2jQulGgnERYqJ0ig+HosrC+GW2E5azOvx9QKL3jk6Y9uZqBsz5YSb9OmVDLKMN0HGg157FyXPpcXajqCA4y+sdt/pQuhzmz3ExUBXXIRkbMUVhzZIeoNoq5EGYytZ7xxCKFriQ8wHUqyNUjvLsaC1Kln2a2RaVPM4Rnc1xTwu+2kztqHIYmiJxxSmaFilubeqNYe5k8WARVVus/EMoMmukG5C9uHTR0J2YQkTW9h43pNAmcQSxg5KfjhWVPTDrjhZZ2kkzb0UVwRsS2oET7VQYJEK05v0EzebEbwKt7SMYB5LdiJEba6e04OMBf8WEr8+ViRbUYEsRlNehwrEigQpfPUUUMQH4ilwEWjZgyUHeaFwKUL63d/9Xd7ylrewZcsWlpeX+au/+isefvhh/vEf/5GzZ8/y13/919x11110dHRw4cIF/uAP/oBEIsFb3/pWoOyme+Mb38jdd9/NBz/4QS5eXMl+NYxqGvqv/Mqv8KlPfYoPfehDvOc97+Gf/umf+Ju/+ZtQnOmDH/wg9913HzfddBO33HILf/zHf0wul+MXf/EXN3Wtr0hCqtQW5XI5Tp48SX9//4bGVRS6AW6//XaSySRLS0tXVdQKa2vRXcpFV48rjSFls9kqmd56661rqgn72ufbcw+FtvXE+3guV/txp400p3KnqynZffGtJGQzJhfxKKtY9McGuRCoEbKFzXipHN8oqDxnCmfZEtuOJXppt5pZ9idpMFJMOrWFVSBwk8VQ+wSjECdjT7NcKFtVA7E9oCW200zJWkAIWPLCb+Ttdj9jAbJpMTs5F/iclF14uoEWcxsL7hha+LTa/UyUavGXBtrIGmEXxbI/R14tkC8tANBr7yWuO4hLg7waJy6Sq9x3S17YSkkZ7eQqBcNCIZXJuVL5mbNEM61GP0qaxHU3Bf8iQkAq0cJiII5jFXooJWqxI4sUmQAxFlWGrJpnccUilH47vcm9KLIolaHonyNudNS57zQlFb7ehNGLE2hV32BsJ7dCLo6XQWJhCgtPKwy/D4sWEmY7htT4/jkQJRrM/eQC7juDFvJe2KLSOmxpJ4whCkFxVtFAttKC3gC0xDcMhNiGJVpAGWhh4Lg+pjGLlAq3uA0jHiSoRrz6Vh2EXZymsQelajGqUqmVWOwkMeuDvJC4VC+k6elpfuEXfoHJyUnS6TTXX389//iP/8ib3/xmJiYm+Od//mf++I//mEwmQ1dXF6997Wt59NFHq7VBDzzwADMzM/zFX/wFf/EXf1E97uDgIKOjowAMDQ3x1a9+lf/j//g/+OQnP0l/fz9f+MIXqjVIAP/yX/5LZmZm+Df/5t9w8eJFbrjhBr7xjW9suovBK4qQgvI/SilM07xk7CaIoEL3rl27qgWyhmFs+BjrIUhIG3HRrTV+szGkyclJjh07Rn9/P7lcbt2sm+/PP4FJM/3xViaKo0gEF4rjoX1azVYW/ZqbzVU+h5dOYmqLDt2JmfAp1lkGffGtnMnXFoQGmeJ8cQwfn3m3TCC7klvosRuYc8/h6AL9sSHOB5IZLGJk7YXQcbPZHBlrGgxooou+WD+L3ng1mcHAZMoNz7/BaCLj1dwyTWYrZwrluEhMNNFl9eEqMIjhU3Z1xEiRC0jadFpDTLtBN6HNlHMOJ+De2hLfRtpsR+tllrxROuzhkPvOIslsXU+noM/J1eUur+dL5QU7IbtpMfvQOFi6GXcl/dlOght4HGSxDTdeexlIGb1VMgJQskDGG6G4QmoGjaTkDpKyH62zlPwxUuYAuVCqd5zsqlhROLO07PIrWxi+MYdWHlPOWcpvFBZxtmDoRkzjFrTOoPzzxK1t5AJq6XFjG6W6LDinTjHBEOEUaOENl1XLNbhcQNKENotoHCCOqbqQooVifj+oAraZReh2EokaIUkxgF+nW6d1+LlxnFbisQZM84VtK57L5ejr61vzu//6X//ruuN6e3tXudrq8eEPf5gPf/jDl53D61//+st6gt7//vdv2kVXj1cMIa2VuGAYRpWk1uv8uJZCdxAVMgm2Zt4sKseouOji8fglXXTrjd8IlFKcPHmSiYkJDhw4QFtbG2NjY2sSmtaab0w/xPli+S0+ZTSyvWGI8dI58isuGEtZXHDCsRbLL5ObJzwmxQz9op9lr0B/fC8Zd5y8t8SME0577rB7qgkQAG1mG8/mywuggUFvbDtSxDEwqy65ntggo8UgqTWxYNXe2JfUAnrJYtFYJG300mG1EpOCkeLx6jqfECkmS6Ph6w64qkq6gNKC08XTGNh0xYZICpMF91wohqPqMvY67G2Mh6yuNOeLJ6uZfZZI4+k0LeZ15NUFSiqzyn1n+81kjfC9zQfiLwW1QBN9TK244lLGFlrNHny9jOkv4ellQKLiYc1AN28SUF8i5vZRlEHLTTLtHsPXFTetwNYt2MZNSFw8dZEGo4tFr+bOskVHqK37WrEiW/dSpLLIK6SMM+cG21DE8FQByziEgQSdxSAeslOSxj5Kgb5JkjTFUIwKhAwnmsSMHQGLykMKiW8drmYxOoChBItOB56TQhLDlk3EYnEsmQFmscz9dfVLcZLJ81jWBxDihVVge6W0noBXCCGt11q8Uky6HiGtp9AdRPAYV1qcKoRgYWGBkZGRDbno6rFRQioUChw5cgStddXlWCGitcYfXz5ZJSOArFfgTH6SeTfHlsQQScMgv7TArKy5i5I6yQV3ItybCMmsM8+sM49AsK/xBhyVJefl8PEwsZgohV1XjWaauZX4jo+PqxXHsqeJiQb64j1olWfeDYt9dthdjBZr7p20aCNjlI+x6GdYLGRo0E0YspN2uxVHLNJoNHK+zn03Fcge1BqWV6w/H4+J0hhb4juZ9V2aVD/tDS0IHc7Y0xqWvfqMvR7ypZoV2Wi0MlqskU+zMURJxWkytpP1xlDCJaabcVio7tNqDYU09iQWmUANVNafJiGbq7VVjcYgrWYfrl5A++fx9DImDTix8L3Wq0RhtzMXUHtIyk5m3KOhfRzdhikPYAsLrZeJy2TIfZcytpMPWlDaxJHhrEyzTtW70dxF1q+dx6QFnyUsMUDc6MAUNgoTIXpRaqW2zNxOPmBR4XWDFTyPwFV155Vt+H7NYowb+3A5hpRgmxnQCXzOUxAlChq0SiBKBpa9H9tIYEoFKo7rPUOz/f/jhcYrpVssvMwJ6XLyPxUC8X0f0zRD44IK3du3b1+XICpEdqWE5HkemUyGYrHIoUOHNq1FBxuLIc3MzHD06FG6u7vZvXt3da6X6jj7talvhT4PNQxyJlf+cZ8rTGAgiesE3cZ2HBaZ92do8BrJBlKh2+0OzhVqb98KzYyTYbI0RVw2MBDvJmVYPJs7UV3Qk7KB83Vtzg1Z/vuUdImzhVEG41tZ8nL02Htw9BKL7gyTTlhxPGk0klE166Db7OOiNw4alkuLCC1IA23WDpSRZ94bp8FIh9x33bFBJksBCSAMZpyy62ZJzrFUmGMgth3opdVqQ+kctij3earOHZuZuhT5WF1hb9xoZLRYth4MkaTLGqTkF7BFByU5gxDl/lFBtFvbmXbra6BqCQLL/hRSWCx6ZSur0Rgkbfbj6gwFfwJXLxBT7XjxgLWqYbF4LlT7mjA6yAfiR2lzO4ve6Wr2oMQuJzDIbSRkM4ZQGMJAa1mVDjKcLfixgLtVtIRqospSsYsEkTS3suQdxtFzON4cSWOQxZU2HJIW4qIXdAxp3ILQSyg1gVaNBDsHx419FP2aZSNJ4ayKFYV/OzFzL6VQjKoFETuGDxQUoDTC62J5YT8drasVE55v5HK5S6Z9v5zwsiWkjdQWVVS7gzEg13U5duwYCwsLG+4nBGVS24w6A9Sy6JRS9PT0XBEZVeawXhxLKcXp06cZGxtbV+9uLUIby53nRDZYbwEFP/wmva1hK89mR1gult13XfSSSKWxS0s4K2/dTWYT06WaBdUf76taXUVV4lR+jBazmZjspNNuYcmbpsNu40yhtrC2mK3hjD2gqArk/BynK5JFiV1oPBy1wJw7SUzFmdRhd5cwZChjr8ccYMI/x4I3Dx6k/E4WlaLZ7GdBjYPQVcXsCvpi2zgfEIFNiIZqxt5SoUx+vfYQzeZuLCFY8i7QZvcyEdDlS8o0F51wHMTVNRL3tYsQJjNGmTwTuosucwBfF7BFc7XjbKHOJZa2+kI1UM3GQCiJYtmfwdVFiqq88DcY/Rh04pcasRPLFP1pmuQwyyJYA2Uz74RTzEWdOE6rtZ159xiunyXnTxAT7ZT0PAZpGsyelSaFBQzVgRJlck0agywGkhkajCEKfvCeGBT8cBacJRqpPIGKIlIkWXAPB0akgCyWu5dkrAmJj8ZE6ARalGOYcWMnpYAskCl6cepcfr6uU2m3BigFGhcKfzvSPM3C7Hv57oXvkk6naWlpobW1lcbGxnXd/1eKfD4fWUgvZWy0tqii3l1ZzBcWFjhy5AiNjY2XVeiuoHL8q9Giq8gVXSmklLiuu2p7qVTiqaeeolQqcdttt63rh14rKeLvJr9DszlAsxVnvDBKV6KTc4VAF1YNc074jbY51cKx7FksYbKtYRADj5FcnaVT16Bua3wLoytkk/EWMDExhaIvtpM55zxFXSBttTDn1SydHruHyaDWnRZMOTMseAtAuVA2UYphJ/MsqlmEgDazg8m6nk0FUa+c3cy4OgcuWCpFh+6gqDwMLHxRvr9ZfyE0psPuC2XotZidTDjhhTRhSDqsfbh6kYw7vsp912r21tU8CRa8Wj1QQS3j4DNRrBQmD9JhduOwiMkyHvlV7jsIF88CdFjbQ0kUriowo59DmR645cJYbXSQoglfzVPwz9Mkh1gKdI013GYWCCYz6GoyRPU+mj2U3Fl8Six5ozQZ21iKjYAGk3YaZS+OjpEwrsdTUzhqCks2UAz8hBrNPSx7NcvGJB3q8QSgCCfKNJjbyXIYhwyOWy4Q9nT5b27RhyXacUgg5c2gl1B6Alt2U/JryQq23IsT6IskiOH4YfmbmJ1E+QfR3hC33nqITCZDJpPhwoULKKVCfY1SqdRVywlls9l1s+xebnhZEVKlb5HnlV+DN1JbVMmSO3v27KYUuoO4Wi26M2fOPK8tzAHm5+d56qmnaG1t5eDBgyGXZD3q9eymS/M8Nn8UheJCAeIyQYPRRoftV5MRhhIDnC3UFlGJYLxY/s7VHs9mx9idGsaULWyJt5FxpjGEZLQQtnRKKmx1DSa2cCpfcctItiV24SmFiYW3Et62ZPhFYSA+yGixRnzLXpZlM4vrubRZ3bRZzcSkYNadqboFe2NbmAi44gwMMoGsOVe6KCGZUNNIZZH222kykyzp8aq1ILRkxq1P2w5n7PXYg1wIZAamZAd5ZdJu7WbZu0BJZ4nJ8GLTbW/jYqDmqdyKo0Zyi94MMZli2jmHQNBibafd7KCgZvH9c/iUVrnvYHUNVIu1lalAEoUlklwo1WI4BmlidoIGcRB0noJ/jgari6VAXMt2+sjbwefAZrGup5OUdpUYPZ1HihjTgZhUQg6x5IMtb0EKB6Xm8FS4iDVlDrFcbSBYLvbN+8HsO0HJD79wxI02sisWoqtnsWQnGbdmHUkSFPUcprwOSySRgBLxlRjVFEL4xIx9OIFutQYduP4x4vr3MQyDZDJJMpmkr68PrTXZbLZKUCMjI0gpV7Uu38zaUqmXjCyklxiC6dxQc8ddDlJKnnnmGRzH4ZZbbiGdTm/63BtN/a4kScRisVAW3dUUttaPD7a/2LVrFwMDAxsWiK3g/7v43VDWWJPZwOOZ8pt1f7yPJsNmcTkTenq2NWzludxo9bMtLMby4xRUkYxbTjQ40LSbBrOF8eJ5XO3Qa3cz4QQ03LRgzl2oflQohJA8kxvFFjG2JLZiCc2FwkiVFLQuu/6CGEgMcHbFlTfnzlNSDlmvSIvVS7uVpqgyqDqZo974VkaLtYU0KZPM6pWW39InI+eRmGR8aHQ7SAgbG8FCvLYYV9x3Qei64tJmq4uxYo0o+uw9uNqk2Rws690JhVuXZNARG6xKGAE0GR1VgtJo5t0JfO2x6E0jsWm1BkmbbRT0DFnvHApnlfuuXAMVTmNOGM0s+7W/R4s1wJRTs6hMEmjDI2ncgCEUjj+LaRqhMmTL6aMUaGseE60suOF6JreuE2vS6GQuQFCNxhaK3gRJYxcx2YhE42oHQRJdye6ULRRV7XpS5h7yAeVzQzSQr+uSS12sqMHcRd47jOtPUQAs0YWvL1IuCI5h0YnARshbESgEOUzSKCUQ6jUYxmjoeEIIGhsbaWxsZMuWLdUuzplMhqmpKZ577jls26a1tXVDrcsriGJILyGs11p8I5ibm6NUKlVbfm82BlTB5Qgl6KJbK0niagmpYuG4rsvRo0fJZrObIteghbTs5fmnmXCnx2YrzcWV1g8XijO0eA3kTIftie1ksjNk5CKLXrgp2raGAU5mA5aBkeTppdN42icmbbYmBkms9OWp3Iot8X5Gi7UF3sBgolReIB3tcDo/xnBiW1msNdaBq7JI4YdJDci44TTnTqubJe8sc+48c+487VY7y9qnx95DSS0w606y5IeLL7tifYwUaq6pFrOdOW8aBCzbSyxpSPqN6FIbST+OaTukjATT4lxgTCcXgxl7wFJd23ZD2JwtlhdsWzSxJbYNpYskZRt5VbbYgu47gJTZGuq222ENMuOWLUSFz7x7kWU/Q0nlkMRotbZiG22kiZP1z+NTpMPayYxbc8XZNDBbp0ShdJi02+2tzDjHWVrZ3CDbKbFMk9xLXMTx/BwY4ZRr6bSAVYt1NZlD5EKxIYMlbzQ0xpYN5H2HrH+OrA/N5h5m3NOAIC63kpRdOBpixvX4agZXXQQddnk3GDvI+TWLyhY95P36tPRwoW/c6CHnVVzBPoZsIBvM4MPEEEnaYj+HyorLJjFJKWlubqa5uZmhoSF832dxcZH5+flQ6/JK/Km5uXnNNSjKsnuJoD5xYaNkFAz0x2IxtmzZcsVkBJdOKvA8jxMnTjA7O/uCaNFVxpdKJR599NGqMOpmricYA3t4+nEKvlMliSazgVO5sCsk3dBIppTjxHJ5EdxpbMMyDJZlnrzKIxBcLIXjCn2JHp5ZLhNUSTnMOovMOkukzXZ6Y60s+3O4dQvgUGILpwu1xSsh44wWxnG1y7MrsaldyW1siTWT9xeYcafYmhhkLOC+MzEZL9W1RjcbOVsYYX4lLjUc34MU0GHFmXHGkUIyXTcmbabJBBSs20UnM0aZFPJGDoEk64Lt9WJJhWNnsP1wi+see5CJQCaggcV0IHbk6BJF5XChVL7mhOqg0+hEWi6OKuHqwir3HYCsq4Ppjm2ryh4pfHL+MnPuBBqFwKTF2o4iTdrcxbJzHiXztNhh912j0bVGH6jwAt5gdpJzZqvtN1qtIeb9GRK6l5TRjvB0uZ+TioEsW31+idCq02LtIhNos2GJJhbdsISRF0j4KKoZkkZ3tacTQEruJKsUtnGI/FKWeELj6WxI2d02unG82t80aeyiFCj0FdgU6lqjmyK2qgaq4B+nNf4vmF10N528YBgGra2t1V5DruuysLBAJpPhzJkzVddcxXpKp9PV+PIrhZBe2IquFxAVAUHP86rJCRtV6P7hD3/I9PQ0r3rVq0gkEleslF1BsElfEMvLyzz22GMUi0Vuv/32dbPoLqf2fSlorVlYWGBhYYGBgQEOHjy4aXKtJDU4yuV/jD9Cs9nF9obtxGWMvngXfoAoWq00Y6XwwpTVJZ5eGiPjKgbi29iX2s2CU1PwtjA5lw8v8G12KxrNgrfMiewYvkqQ9yRb49tJrqREL3jhpIm+WB9uQLG6xWziufwIJ3OjnCsukJRdWDTRanZQ+ZMOxAcpqFrspEE2MFYXx3JwOZUfYbQwA7SwNXYdKaMdubJyJkSSC3Vp6PU/ncH4VrJymXl7nilzgYJKMlN0iOV7iXnNaA2OF/4b98W2UlS1xIoG2cREqUYCBZllSWcZKZ5nzhPE5BCd8f00mn1IXf4bNxptTNURVM4P37dWq6dakKtRoAVnC8c4VzxPRoHr9OEomxZzL3HZjtaQMFpDx+gwh8kFGhMaxEI1UVAWQYVywe6Mexph2czJcZaRFEpdGN5+SiqGLvagV4qnc6W6TEFzEB1wAjYY/WRDFpWgoMLZk7bRRM4/R8Y9TikxhovNlHuBrG7HYy+GfBWOimHLfRiiE63L6ftBNJh7ULpm5ZuijcKq7Lsl0vZdWLL9quoOK6i0Lt+5cyevetWruOOOOxgYGMB1XU6ePMlrX/taXv/61wPlnkf1iUuf+cxnuP7662lqaqKpqYnbbruNr3+91rPsl3/5lxkeHiaRSNDR0cHb3/72Vf2JfvM3f5NDhw4Ri8W44YYbVs1xdHS0+qIf/Pf9738/tN+XvvQldu/eTTwe57rrrrusQsR6eMkRUiVxYX5+nm9961ubUuiempqqWhGVdhHPt/RPZY7nz5/n+9//Pt3d3dx8881rFtWuN36j8DyPo0ePMj09TSqVWqXSvdn5PzR9mAU3y2RpnqOLY7h+nGxR0ew1Vhf4rnhruI04jVxYKVD1tc/J5fOcLyxhiha2JXbSYrWwrWELOb9GCkmZ4Eyd1ZUw4oyXZjiRPce8o9ge30tSNmOulNNLJJOlsLpDu90WmoslbI4sn+JcYRnptNIttuHW3deeWDd+IPWszWzjfMBNmPVyTJRmOZ2/SNFL0mHupD++o7rYArSYbczoOlL2w11HexN9LBgZZux5Zihie/1kc5AotCNV+ZoW3LnQmDa7OxS7S/ktZKqtODQz7kXOFc8zVrzIsoqTNHaQNreRNgZAl3/KHdYgi4HurhKTOTd8r2MybLnZOsn50jOcL51l1s1iikEKvkGreR2NxgBoo9rqozbXYTwd/Ju2MRdKotAUAzVgnrWEYVpkjHMsWossYqK9/RTdRvzsNlShB/wGlurI1ZJht3OztZOSqt03gyTLdRYVovxM+DpP1h9FAXPeU8x5Z1nwl/HFdpZ9DyEPYRm3YMrr8RWga/GcuLGFYIpiTG6jpEZojZVVvStF9s8nYrEY3d3d7Nmzh9tvv50vfOEL1b5EP//zP09LSwtvfetbeeihsrZkf38/f/AHf8ATTzzBj370I974xjfy9re/nePHy5buoUOHuP/++3nmmWf4x3/8R7TW3HXXXavWu/e85z38y3/5Ly85t29961tMTk5W/x06dKj63aOPPsq73vUu3vve93L48GHuuece7rnnnlDL843iJeWyC7roNmNVBOVy9u3bR09PT/W754OQgsfYiIuuHldCSBVh1Fgsxs6dO5mYmLj8oHUghMBXir+b+OfQ9g7ZxDOF8nF7rC66Y41MFMLxjBjhjLehZA9n8+V9FtwsQgsaZDvbksOMF85T0g5bkr2cWK7Fl1rMJs7ma6SgUMy7Oc4VL2KLGEPJQZpMu1wXtcK3cRFjrBB+U44btYV2WeZp1k2czl2kw+6m3Woi5y0yXgzfp7TVVFWEgHCdVEk7jBUuMO0kyPuSvvgwDYaJLQVzbu3NvtfuZ8IJZpoZTNXFtRoTaUaL5RiNVAbdbj+eXyRmNlG0ljCEwVRdWrqlwwHvvtg2xlcy9nw85p1Z5txpXO1giybarS5iMkWT6bHkToDQdNvbmAgkJiRk0yqLSslwEkXKaGE80KiwxdzCsm+QNm9AUyTvTtQEYCvXZ3aTd2r3sdUcYiFo2SjJEnXEaJtlEltZhVJqiEV/Fum0YQqDmKXJqhm0CDRVrIsVlYt0j9Q2OM3k7WAsTOPUx4pkW3nMyk+uwdjOvH8aMLDFFmKijaKOYRi3gM6j9RxCp0gYe0ma15cv53mwkC4FIQR79+7l3nvv5bOf/SyTk5OcOHGChx56iESi/Jy/7W1vC435yEc+wmc+8xm+//3vs2/fPt73vvdVv9u6dSv/4T/8Bw4cOMDo6CjDw8MA/D//z/8D1Arn10NbW9u6vY0++clP8hM/8RP81m/9FgD//t//ex588EE+9alP8dnPfnZT1/2SIaT61uIVt9TlHoy1FLqDuBp3WfAYFS26Shbd7bfffkmraK3xG0VF6HVwcJDt27czMzNz1UkRT2ZPM16suWSEFkyWMlUCmCzO02almSn67GwcxtcFlr1lJrxwkF6K8N9ie6qfE8tlF5ktTHaktpArltAKKqGPeNFEmzVLpzvWwbliJZnB5dncebrsVgQptsQ6cXSOlBmvpocDpM0mRvLhBc9bcTXOOPPMOPNsTw6RVYItsS3k/QXy/jJjdQW39WoIg4ktnC2MAnC+OE5SJnC1S4ouUtpGxr1VhaID8UHG6jL2gi4/hUIkJdOl8gIe99M0e204OothK3yjRJwGFoywRejWZRN2xwc4t6Ll5+gSWW+ZiytZfrZoos3sBBpIm/0suhMgFK1WbyhjL6XayIXOI8jUJVEkZBMTTs0K6bC2sqwyNJn7sYTE87OhjrgAhrRCNVB2sRsnWXsZiIs083WtOQzbx/OWIbGMA5j+NpYYR3hNWH4zCZGmqH1ixhCumkSJIkUVzhTETUNAcLfR2Ek+0FBPYpNd1e6iRvyOmiVhdpMJkJxJGsE5hhO/W/VAvBAW0lqo1CAZhsH111/P9ddfv+Z+vu/zpS99iVwuV+1TFEQul+P+++9naGiIgYGBTc/jp37qpygWi+zcuZMPfehD/NRP/VT1u8cee4wPfjCseH733Xfzla98ZdPnueYJab3W4kHZn/UIqbJwDwwMsHPnzjUfoPXiP5uBlJK5ubl1s+g2Mn4jc1BK8cwzz3Dx4sWQ0OvzkRTxg+VnKb+KrrSQEC2co0Y2ljAYzU/hap/jS+XF52DzdmJOhiVjkZwu0BVr43SutkCU1R1qb7SO9igUSpz1pmiUTQzGOyj4y8yJTKj1js77IWfy1kQvoyuW2jO5MaQW9MQ7GYztIK8WmXam6bDbybg1t1naTzFJ7S1eA/PuIrNuhtmVLLz9qe342qOkl5gqTdJmtXKuGLa6lv1w9mBvvIfT+bNkWCADtPotzLt5emK7AIcZZ5xcnfuuK9bLSEB5otVsYzxgDRUpUIgXmPcWQEPa6yTmNoBYomQvoKVPi+xkuk6lPFOn5dditZH151budRGl4blCOQ5iiQY6zV48ZdNsDrLkjqOEh008VF7aZQ0zFXC92SRDKuYAUmhyXoacX1Gm2M28M0XaHCIpG7GEoODPoLVAVNxnRrgIudnqY8apPV9NxgCLXu3lQCDw7TlQoA0Hx5jG8hpY1CMrahuSRv86iqZPwtqKoITvL1CKTYVeDwwpQ9nejebOqgJ5+b60rhKF9alrLGlupeCfpS32huq2F9pCquBy3WKffvppbrvtNorFIqlUii9/+cvV1uUAf/Inf8KHPvQhcrkcu3bt4sEHH9xQwX8FqVSK//Sf/hN33HEHUkr+9m//lnvuuYevfOUrVVK6ePHiqjYTXV1d1d5Km8E1TUhKKTzPW1P+p0IunuetusEVt9nMzMyaCt1BXK3LzvM8lpeXcRyHG2+8kfb29k0fYyOEks/nOXLkCEIIbrvtttBDerWENKYzfGfxLK1mM02OYNnK4sUlBDJ4d6YGOLZUe8tPyhjHls5RVC7CF+xMbaUtluBiYaHauG4w0cVoIfyWP+culVOnVYFj2XPsaRgkIQ36rSRT7kUMBFN1dSqFQngxG24Y4NlADKov1ovvm7RZbcytxGXi2CFltK2JfkYKtQXdwGCkMEHOLx+7yWyj3erDkg1cLE6ghaI/1seFUm2MRDJVF8dqMVs4UzjLcr5MXP2xfnwt6Iu1suzNkvUzTNe575rMZuYDbsK+2ECIoLJkcWIOBZVH+jYtfjO+YxGz0hTNRYSEbnOQi17t72ER42Jd4kUw+87VDkKYnClWFNRjdNs7cLwSSfpxjDk8CniErbB2e0u18yyUa6Bm6ggq68+Vu+h6k2SYpNfew6Q7jymaSBtdNMkWMrkLJOI2eTWNIQwW3fBc6zvrtlk7yASIwqKBohkmZE8XyOlxFlfeeRrVMHk5R5KtJIxmbGJ4Oo8l+sqp4cJbpUCeNLaEXH5JY2udZJGk6J+jK/72kCV1JVJhV4KKhbTeC+6uXbs4cuQIi4uLPPDAA9x333185zvfqZLSz/7sz/LmN7+ZyclJ/uiP/oh3vvOdfO9739uw96a9vT1k/dx8881MTEzw8Y9/PGQlPV+4JglpI7VFFSupnkyWlpZ46qmnLqnQHYSUsqrssFlUXHS+79Pf339FZFSZw6UIZXp6mqNHj9Lb28vu3btXWXr1SgubxXdW0nvnvRzzAnbEerCEwdZEjJH8BALBVHEhNGZbqpejS6NAuThzqrjAmdxFkkYjQw3tLLgL2Eb4RaGXFiZE7a3YQHChOMeil2O8OIdEcCg9TIuVZ7w4gaNdOs0WpgJuQa1hNh+eS6OZ4ulseS5ddhdddhMXc+GsPl+H7++25ACn8qO175XP0ewZPO2RkCkGYp2kDBuLGdyVJoNbA+47ABubc8Wwq0oIg7HAtj3JvSh8UkaeGWecmLDXyNhb7fKrxJuU8CnKEplYBoXCVo00uY3ksj52vJGSsYwQ0GP3c8GpucCajFYmnfB58gHLzcfDkCbj4mzZfPQEA7HrUBrazAYKaoa8P8diXap3o9lC1qlta7eGmA31gbKYXSEbTzvMueexLJvl+BzLXrnJYI+9C6WLxHFx1Ry+yjFfpyqhCNczpa0hZt1akLxBdlMIEZTG0bMgFHk1RV5N0ah3sixOr9zhBG3WHko4xIweBC6+v0jBDz8ntkxRCllUu8l7J+iKh1W9f1wW0uVaT9i2zfbt24FyEsPjjz/OJz/5ST73uc8BkE6nSafT7Nixg1e96lW0tLTw5S9/mXe9611XPKdbb72VBx98sPq5u7ubqanwczI1NbVuzOlSuOYIqV7+51K1RcEGe0GF7s20cDAMY93+85ea4/j4OM888wxbt27FcZyr8ievR0hKKU6dOsW5c+fYv39/KBljI+M3glOZcU7UBX01cHyp/GPvinWwI9VRrfsBMJCcK4TdRQPJTp5eGmXJy/PU4jk67WaUVgxZ/VwoXcSVHnYyVulkDcBwsp+TuZqLzBYWTy+fo6gcYvL/z95/B8mWX/ed4Od6k95nlq/nXXe/7teNRjcEkFRAwEigggqNONKKGmKH1CjIlRRyMaSoUFCUYkaj0awkKkJaMbQgRayGHEIRw9VOkCuSILgQDYAG+vn36pmqV/XKV2Wl9+aa/SOzMu/N500bCjwRCETXy2vyZubv+zvnfM/3q3DEnCEkqRz0q6Osa0ZJsdn3zDi5sN0a3/9+r0RUCbPn9kiRIqNHcOmxNgEcVctflpnRs9wZ9qTaTodSv8bdVgVZkJnVp9EEkd5EDydJnB3Xq2wQ84ERQMmqst8bPCtFMJgPHKXntKnZB9TtEnElwXbX38eqT9C201p2VPLr0UXQo+wO3WoNO0LAClBstlC0EL0hQEXkBDV7nA1klFn2PX2egWq5l+Ax4Cve96hIzGuv4AgWSWWavluna5dG1haHMdk/S6tH2fVkVKYY9ZkO9t0ONatAxaMSMa2dxnGqBMQAouAguTb1vl/QtTkBHKYUp+2M/xaTj1ET/HYXDXfsWeXi0Ou3aODx3FLOULH2UIUsuhRHI4TlWujiWWzK9O08uB3i6qfRJf9v78PqIT3OLfZhcTgO87BwXRfXdZ95vZuMK1eu+Naid955h6997Wv8zb/5N0d/++pXv/rQXtaT4mMFSF7fosPZosfFYYbkVei+cOHCaPDsaeJZe0heFt1hie727dsvVDJ72D10Oh2uXr1Kv99/rDAqPD8gFYtF/h/X/k9fv2bGSLDcGC+y+90quqRS6tqcDC0AfXRJ5kZ9vIiqSNybyEiSWoQbtcFrZEHi9eBRmnYTwRVwBRfXhYrlL8UdCeRYagyAr+v02e6UaVgdDDHEgpGk5zaREfFOK84rGdY9NGcZidXWYKE9sKocNKqcMGcJiRlSaoiaXcYUNTY8/ksSItsTpbi4EqXQr2C5FmvtbWa0HBudA6a1WaKyQbmzT5mKb9GMKTGf9NG0NsW25zqDc22N+lIxOUtMyqEKYYq9Hfp0mdJm2el6gUNkb8IrypQCo2fQpk0ykGFzSGYwrDgBy6TQaqKq4wxKmiCbTGmLbHXH4GOIQd8MFAzMCfMe9uCsdoK2UycmBwb23m6HfG/Na2o76iuNn0l2pPIxeM+zlC3/+ytbm3Sc2qhjmVVPUXYUQtIUphQhIJr03BKq69B1ysiCTsXyq0qIE3vPhHqSYn886Cs7IRrCqufzcukOxXh7bpWeVSWpvEK+N87CTGmRktXhfOAvMhkfZob0KED6qZ/6Kf7kn/yTzM3NUa/X+eVf/mW+/vWv85u/+Zusrq7yla98hc997nOkUim2trb4J//kn2AYBn/qT/2p0TlWVlZoNBrs7e2N/NIAzpw5g6qqfPnLX0ZVVV5//XUAfvVXf5Vf+IVf4Etf+tLoHH/jb/wNvud7vod/9s/+GV/4whf4lV/5Fd5//33+7b/9t8/8fj8WgPQk36JHhSRJVKtVrl+//kwK3ZPneNoe0qNYdKIovrBa9+HuRRAEisUiV69eJZlMcuHChccKo8LT+SF541Dv7vK9JWpBELoDkAAIyyYw3lkfCaRZbQ4W66XawAr8RHCK04Ej7PUOKPfrzCkJVvrjBT0oGdyujRcyy3VoWH2W6nmiSpQFM4Ek2tys3x+/BwR2J4Ykp/UkN+sb1O02N+qbZNUofbfPUeMoDbvKXrdAX7J9lhLTUoo1T5kpgM5KaxsHh/3e4Pxnggss6sdo2jX2e3mOBOZ85TtT1H39JgB5qFK+3c2z3YUZMUPHqTEbmMNy29T6JTYmaOjKBAgsGnOstseZZsfucLO5TN+1EJGY0hYwxAgJ2abY3x3QtqVpdjyioaYYZKvjL8VZnmHhttAiGx6TKHQrRqgbpCz10NQoHbGCIEDb8ZM1UsqUT7U8rmR8KhIAFeuAul2mMLzcrHaCnpskJiXRRQVVECh5gEJCpjzhA6WK/hJ6Wj1C3qN1pwoBDnr3cHGp2Xlqdp6UMk+pf8jUTBBTTmDTRsTGdusITpeK5S/5eWegAGLavE8vT7Vz/pKfK9CY6GtpYpS+UyemvMZkfJgZ0qM2o/l8nh/+4R9md3eXSCTCq6++ym/+5m/yJ/7En2BnZ4ff+73f42d/9mcpl8tkMhk+85nP8I1vfMPXU//Lf/kv85//838e/fch8KytrbGwsAAMaNzr6+vIssypU6f4yle+wp/7c39udMy7777LL//yL/P3//7f5+/9vb/H8ePH+Y//8T9y7ty5Z36/HzkgPY1v0eOOW1lZ4cSJE8zPzz/3UOiTAGmyRDfJontRpp7XU2l9fZ3V1VVOnTrFzMzMUwvEPm0Pqd/vc/36dWq1GhtTIkt7BUKCwawewZYsbtX8C7Eq+r8iJ0NT3K4PsiEBmJOSOLaEhDQaOI32NWrCuAeQUMLcrg/OW+k3uVJtciyQJSGnSaoBdrp5pvQYd3zlO5m1lr+UGFND3GpsUhyy6c4EjyIJkFTsIXNOoCq2/ZYLYpj7zhgsE0KIpWG/CQZeS4KrDywtunsguMzquVH5DiAuRx8AqI7bpU6bW8NS5qnAIn23jyoKFPr7qILM+gRjzzscDDCjT7E8FIF1cGg7Xa7UB6QDQ4wQ7BsIukFYSlC1iggCZLUcqx6NvaScYrc3yb4bEyY6QptcdIq1zj1wQe2HifYidBSHgJKiSQFBhMIDquVBKh6gn1IXfbYaChp7vXX6bpfd3kCZe1qdp9S3CEk5wnKMkBSg5RSwrF1s2uhChPyEXt6kAnlCmWe3N1ZICEvpkTQRQM9tUbK2fKoROfUUXdvFEMJ0Gz1S0SQ9dw8JHZsOIjK1CRmkkBGj0h9n9Vp/lr46vo7oGlT7dzkV/PGH/gY/Dj2kn//5n3/kcVNTU0+llvD1r3/9sf/+xS9+kS9+8YtPPM8P/uAP8oM/+INPfN2T4iMFpMnZoqcFlG63y7Vr1+j1eiwuLo6Q/HniSRnSw0p0k/Gis0yHgHT58mVardYzq44fluwOM6xHxaEhoGmanP/EBf7xdwZDa3W3x1L7gNcicyyYBpLgsNzYJmdEuV33L1Re5QOXwdzRzU6BkGyyqIYpd0oU5Y6Pxj1lxCl4pISm9TgrzUFZcLtTRnAFcqrOMWOejSGZ4WhgmpuesmBIMlhu+u+l59ijv01pWWbNGFudcblRRiIv+HtFpqtRZHwvJhqXaoeW3xFm9SSW6/gANqHEKPTHfZ1ZPcum5zqH2n0Va3zeV4PzRKQ0bafOfm+PaT3r09QTEEa9pcOIyVGKQ0p62+lguDq3hxlGVE6TVuNYDhhiiLYzuFZQDlPwWIfPavM+t10FlR0PYPXEHnrEZKt3H9zBwptoJhA0CCthWkIRRZDYnVAtt/ETf7LavM/6PSzF2OsNjqnbZep2mZicoTwsp2pWkmzoKH2aWG6TprVHUI77yncgULX8pd+gFKPpyXgTyhGKnp6UJKiUrPv03RZtymBA0AlQ6A97bGKOhLKI7bbRBBvHaeC4TSoTpoOGKVL3vEW5l6Mnb7F1NUQ7dmskgHpYgfm49pD+sMdHAkiPmi16migUCly/fv2BL8jzxuMA6bBEp6rqYwddXzRDqtcHi4sgCM+lOn74w3gcIB3OZB1meL+y+R51a5zFGMjcqu3RcQb1mKQaZU7P0rH6lK3BDnjOSHKvOV4cXBdaw9fXrQ5LVofTZpYmfeY1k/X2LuBydwLUomqQ7c64PLdgprgy7DdposIxcxrXEUf9psG109xsjBfalBLxAdROt4QsSGx3mkzrWdSuTdjUuesRMw1JBruOf+ap37NGC1PdbtHt9Vnq7aKJOvNGGk18UChWmTAZPGLMcM9j064LKnda63SdQRnXEEMExATzmkGhn6fpNB4o3xmC/sAMlOhp7lWsGgklzt1haTGpTJFSovSdHrpg0nEH/TivLBLAjD7HmoeoEJYibHvYd45g0zctKpQG8zoupLpJVBU0RaQv1lBEif3eJCnE/0xicpKmPc7MUsosBx4SRU9qsdW75ysVhuU0ASmMKsi4tNAEhb3e2MpewfARIh4WKeUIeY84q2QFKDJ+v22nTM02fVYbWe0szX6PgJhAE000VGy3jirO0LfzuEIP0agzp/4ppk6d96lzBwIB4vH4C5XonyWazeZzs3f/MMZHAkhe2/CnBSOvQvdhOevatWsvRfZnEkwmS3RHjx597G7oeUkFruuysbHB3buDnebp06efa7bh8PkdZpreOJRN2t3d5fz586RSKSzH5lc23vO9blaNc7s73mlbrsPvF1ZxXJdT4Vlk0UGa+JyOBzMsN/xltZLTZr9TZaNVRBZE3k4cpdyvc6+xiys4RJUAt+v+hdfrItt1LGzgUnWLkBxi0UzQsVusT5TvkmqEfG+c/cwZqRHzb7tTxAXinRAxJUdCNSlZJTJahFuecl1aibHnsfwGKHWqIA5IFXeb25wwZtjvdpkzZgjKGn279UD5rv2AyeC0r+SniypX68sj3b2MkkMmSE6dZq87eC4zxhTLLY+ckhKjgL+nVrfHpnWFfomYEmN5KLmUVmfIKFG6bgtNMOgOS2Fly3+OlJqi4aHwR+wYFWn8GkEQaJlNmk5jUPq0IdnLoCmzmIqOIPfQRJldT+lNRiU/QTGXRf/3ONhL0RTHn6EhBNns3sXxAGhGncYmSURKoIkahqBTtzZpOvsg2ASklC87Ape2R9cOBj2zjjzOVKPSHJWJgduatUXfbY1INRnllAf4ZDLqq1hui3nzzxJS/Orc5XKZUqk0Kn2Hw+GRgvcHYV/+JNr3f2nxkZXsnqX+2m63uXr1KpZl8clPfnIkxf6ydejg6Up0k/E8JTvLsrhx4wblcpkLFy7w/vvvP/cskTdD8kan0+Hy5cu4rusbpv3a/m2SaoRSt4mFjeQKbHlKUgALZpLLlcEPeam2S0oN4bhwNrTIfrdIoVfDsf0gfDo0za26V6nB5Xp1h0q/RVQJshhIYEoSF6vjHWxGjXJ3gqF3qO5Qt9pcq21xNjSL61qcMKeoWlXq/QYrE8fo4uTMU4RtuwZ2g61OEQUJ2Q1wzDhK1aqQ7xUH9HAPIM3rWdZ9pTjYauZxRJf77cFietKcIyimCDoKXbdFQFfZnFA/3+/5s4e0mqDsoZkrosyV+qAPpIkGM2oG11GIyXFK/dLAcl2J+XydJhl7A7HZ8b3mewXCUpDVIVim1GlySoKO26Qrdmk7TWRB8dlfACPx2sOY0xZY97DtdMGgrBYHJTsLsCBuxRHlNBE5gqpImKLMRufGKNMMilH2fIw9F3vCJymhzrDlkTCKyRkKw4yq0xtkUUEpTsMuI2IQkZMEpAyakMOmRdcpYophn16eiERP9bMlJ23ck+pxih4xVgWT8sQMlOV20KUYIWXGfy5FIZ1Ok06nyefznD17lm63S6lUGtmXH1pHxONxTNN8Yfvy7ya3WPgYkBqeFPv7+9y4cYNMJsPp06d9QCZJ0nMPtR6GF0yetkQ3Gc9asptk62ma9kzEhIe9B8B3D4dMvXQ67Xturuvy8/e+yXL9gLBscDacxO60WPLI0OiizN26f5GdMmJcqWxSKA0Wi7PGFM1GA0kUsYczQh3HX8Y4HZnhWnWwg6/0W9yu9QGRpJYhpZpsd/ZJqCF2u2MwXDCS3G+PF3TXhYNunUKvPupDvRlZxKJPoVem0K+QUEMsNyem+CecWo8Hp1hqbHKokzNvTOO4CjktzU4njyCALPo3ScfNWe569PEUV+JecwtLcDh8OqfceWa1wfzMfm+XaS3tK99pgsp6x39vmgc8u87gmVxrDBbWqJwgp8axHAfFVulLg2c6WSacHNI1RdM3pHvQK6AJ2khpIqHkmNUytN0GdatAzS4TliOUXH8fqz1BMshpM6x1PEaFUpzq0Oq9blXBAtMJ0RUDxOUEISVAUNIQ+lvUrMFzjYtTVJQxmAqIlB4gUYSoeWaNMuriSATWwaZuVWjZZZ+b7ow2jS4eRxcNRFzou9TclZEPkiaEH7Bxt10/MMbVBQoeqndATFGxVvh06Gd4XNi2jWEYJBIJpqamfPblxWKRe/fuIcvyCJxisdhTryfe+G5yi4WPMSDZts2dO3ceqtB9GJIkvXAt9xDUtra2nrpENxnPUrLb3t5maWnpAbbeixAjvCU7r4X5qVOnHhBS/EZhleX6YBGqWR0ulrZIySZTYoxwwORuY4dToRyXK157aJ1bNX9G0ui0WXdbGI7KghImHNK5WtkYqzIDxV7Td8yJ0BRXKhu0WiU2WyViskGj73IyMMtaa5eea6FPqDucDOa40/ASFUSWm3tUrcHCOaNnmNfiOM4W5SGpYEZLstH1l3KKHp07gJBscHXYt4orMRaMFE27geCKoyHcSVbcseDMiFUHEHA0bjU2cIfvWUAgqxgc0Y9Rs8sc9IosBKa447F2j8ohVifo4R1nvEhWrDoZNcmdYb8sRYasHqPrtlBQR6oRh5JHhzGjZ1lpjctoSSXhkz06VCc//P+wlCIlzyC287hql5pbJK1lfDJHAsKIHHAYMSVGzdMrysjT7A/7MwfWPsW+iCKI9IUeihAiIafQ3AB6B2SzT90+YEo/wo5nBkoXTPZ7/l6RM6GskdXm2emOM5ugGGO3t4y3IRgiRR3Q3CQhKU5YTtJ3G7hum65TRBV0Kpa/tNh8wI03heQI5LQ3eVQc/s68m+OH2ZdXq1XK5TLb29vcvn0bwzB89uVPGueAgXTQH2VIH0I8LpVtNptcuXIFURQfqtB9GC+jZHcYd+/efW4tuqe5D9u2uXXrFvv7+6NejjdeRG3hUM2i1+tx69Yt6vX6I5l6X171947ORXLcqA5lSHs1kmoI0VVIqqFRRnI8mOZS2QNQKGwzAJu2a3GnV+JMf4qMmialm2y095gyYtyqj3/sIgJbLf9syJyZ4OpwXkkXFc6F5mg5bR+ZYdLP6GRoipueHlSp1yDfbdBx+swbOeKqjiy64AGkY2aOFY9B4KTSRKnfIKvFudUoEJCCLBgJApLEcmu8eAnAXs/fj0lIEerO+DxR2+CGl1IuxbFslTltjr3eHj23R0ZL+th4U1r6gaHcvMfG4cAqE3ei3G3tISGS02dJKmHqdmXEBBQR2J8oG0bkMAUP/XtWm2GzO35uLbvN3dZ92kIb+qAKIQwhzbQaxaZDsb9LVs2NBm4BNEFnZ0JVQpYk3xzYlDLDjj04pu/2KLeL7Is7AzX33sARtu/opJQzCNh0nCoRKcxO36OXJ6dGluyDcGlY/g1GTEnT9jynhDxLccjY67ot+v0ObadC2xmXSmfUOWRBRReDyIKIKii07V1ENBy6SIJGxbrHueBfQhAevSE9/J0+ru0giuIIeI4cOYJlWZTL5ZE7bLvdHrnDxuNxIpHIA5tg13X/iGX3UcdhBvE4he7DeFFAOqRBw0Cf6Xk/+CeBiVcY9d133x35mTzLOZ4UgiBw+fLlkfngw9iHNys7fKfk3yG2bb8L5ZQR5ZuFwaJzOjyNJgncb/gXg+PRrC+Dios6S9VdXGCjVUYSRI6aIU4EJFaaOzi4nA5Nc8Mz46QKEqut8WLecfr0HJebtQIRJcSiGUcWba7XtnxKAKWef6DzSCDLtaH6+Hq7SMMKUrFaJIiSNAJU3JrP9A7gZHB6UL4bhilqoz5W0+5ws77NicAUjb7MojmFLomogsstz/Cs4krsuH6ATYbilFvjzEXpClwdLs4iIkeMeWxHJqWkyPcOEAQwJX8Z54gx48ugVJRRyc/GYauzjyqorLYPkAWNKS1FSg1R6RdpWm0cwcYQjAc09iYUfpg3ZrnnsYfXRJXbzWXfs0rIOjn1JCIOTadCXI6w7infReX4hOyRS0fwZ8VJNcu2PX5uumX6SoACAk1ZQBEWCEoBZAEMUaFtNegP66sZZYEDzyySJIz18kbPWvR7R2XUI+z7Bm5N8r0VbI/Mx0CHrwhIGGKOjDKPS58F47M8Lg5/p89SRZFlmVQqNdqIHvaeyuUyN2/exLIsotHoKIM6JDK0Wq3vKlLDx8Yx9tD99Pbt25w/f/6hIqKT4dWye9bY2toaOboenut543HAeOhSG4vFePvttx8KRvBigLSzs4PjOCNlh0dR4f+Pjeu8GplFGyoIHAumuNfw92vKvXGZ6lZtH1yZZhdm7QgpOYghKg/0l+Ki6evYTBtRvlG4z7VyHtUNcSaw8IBl9OnwFHVr3A8ISBq3h6W5ar/Nleo2bUskIsc4E1ggo0Y5Hsiy262MjhER2GxPqDsYMWzXIe82WWrlEV2DRg9OmQsklUHGWOr7QW3RzNJzxtv8pBpmublD37W529zlWm2bfLdHQp7imHGEjJpkWkrS86QGUTnIvdZErygwBhsHh1a9xZXaOmutKqIbYVE7ju1IBKXxRqjn+nuis2rG15uLySHWhoBluRYbnV12uxXutYu0HZ2EvMC8cZyEkkEa7jcTStznigsPavlltbQPjNJqmnvtNVZa97nb2mC7U2Ov2yYsHSGnniajHiEm+1X0c+osJc9MlIREyfVnf0HFv7jG7DRVq0Shv8/9ziqbnR2W26uUbReBDBH5JIqYJKGcJChlwBXJqov03DHwG2LkgZJf3/WXNFPKnA+MQlLKJwrbdiqUrR2C8hSa9PgS2dNKmz0uNE0jl8tx5swZPvWpT/HWW2+RSCSoVCpcunSJH/mRH+HP/tk/S6lUolKpPHD8h2FfDnDt2jU+/elPo+s6s7Oz/NN/+k8feM3Lsi+Hj0nJ7lChW9O0p1LoPoznyZAmWXSJRILV1dUXHmydBBPHcbh79y6bm5u88sorT1S+fR5A8lK6ZVl+rLLDRrPM/7F+DQeXgKzyWiSFMiEAdjqc4VbNs4C4sFErUrd71OlBG/5YapGm3WG5Mej5BESV+xMMvbBiwlCZrNJv07D63K3nmTNTpPUAm+0DdtsV3zFHA2muVMeLZkINcKu+i4NLvjsocb0eiXE6ME++V6LYr3MyOMVNz4yTLigP0NAjisnN+jYbQ5w9Hz6Ki4OrCux1S8iCwEbbz4rLalEKPkp5cvSaw/NMSRGmhCyqLrHd2WdKT1BpjIFuWkuy2fUTBrq6Oypv1e025VqNLXHwnHJqhik9RtNpoKDQpw8uFB8QWk2OemWD62TYHpbr+q7FRmePitWgatWRBJUpbTCvpAlBCv19em6XWX2aTQ/RQkJkrzc5kGrihZJ5fc5nZqgJKoLgoItJ4koUTZTQRAnF0ukPiQPT+gIbnXFfKyAGOXD9ZAZX8pNPok6Cgrg1fEZVBES2PYO+IiZNWyIsn0URRFy3gyHpbHWujzLpmJyjZI2/SwJQsyd6RVKCusf1NqksUrJWORv8r3hSvOyhWEEQCAQCBAIBZmdnR+Mbv/Zrv8bXvvY1/uv/+r9mbm6Oz372s/zQD/0Qn/nMZ0b25cePH8d1Xb785S/zAz/wA1y+fJmzZ89y4cIFfuiHfoi5uTlKpRI/8zM/w+c+9znW1tZ8pcYf+ZEf4b333nuoW2ytVuNzn/scn/3sZ/m5n/s5rl+/zo/8yI8QjUZHbrSH9uX/8//8P/P93//9/PIv/zJ/5s/8GS5duvSHTzroeRW6D+NZAelRLLqXIf3jVUrwCqO+++67T1UKfNZ7mKR0f/vb334sS+//de87OMM8pmn12Gs12GrVOBHOITt97nWKuBN1nTkpyLpn9kVC4FYtT6HbJCCrnAtPI/X7XG7tjhaDhBrkZtW/6EjDevxGq8xGq8wpM0Wj2WRWjrJLDQeX5aofSGb0mI8UMa3HuOQpEy4YaXTBICoHqAwHd48Hs1yvj18TFnVuNybIGFaX5eFwb0ZLcCyYYr9XotJvDUpoovoApdycKAedDExx53AotzEYuG1ZcNxcoNArUbZqBGQDr7XQUXOKe63xc1EFmaLUHPXkd3tlxC5sC2VkZGaMLEqzjyVb4DZAcFEFhfW2/9lOkkCOGrOstAfAYbs2hW6F/W6JntsfkC60aQwxxqyuUu4XaNh1ZpQpNj2KCQHRZL3tL/n1JzM3fZrVzj16do+aXSMqR6la1cH8lzJFRAoiopNSZin39rGEHmk1x7pXL09OU7L8GVRT8AOwbgepeYwiU0qWre44GxKRMCSdvhvCtMOorkpASyIKAXpOhaZdIKMtctAbkyhkdAqeEiAMvqM59QwJZZ4nxQctGySKIp/+9Kf5xCc+wb/5N/+GW7ducffuXX77t3+b+/fv85nPfOZDsS//pV/6JXq9Hr/wC7+AqqqcPXuWK1eu8M//+T8fnf9l2pfDRwhIvV6PK1euPJdC92E8CyA9jkX3or2owy+n4zhUKhWuXr1KKpXizJkzT/3FfZYMqVgscuXKFR8V/nHHF7tN/uPmDd/fUnqIrVaNu7XBLnFOCqOhkdHC7HdruC44kuib4TgXm+JKebCzblo9rpf3UEWJGEHmInHuN/PMmnEOumMgmTGi3Kr5d6elZp19OtAHQ9J4PZwj363S7JVAABWR2xOsvphistUeL0yyKPON0n0AjgQyRGSNmuVnxU2pEW53xkA3pUdHYASw362hCDJbnTJRJcycESekKFyueS0KQtydkCzqOv7Fed5MccMDhEfNWVxHYU7Psd3JY2Nju/7v11Fz2sfYC0smu3YFAAub++19km6QQqeBIQaY0ZMk1AB7vT3adndoMRFiteUvxbUdP615zpgaDem6uPQciyv1MSiYTghH1pnTjtO0qxT7B+S0HCvt8TNIKSl2ul7a9oMDtwklQWWonl3qlzBEnZvNO6MjQk6SjiqTU0/Td1vUrTxBOewDpGltfiQ/BANvpZK75+t/uX3/d3xaW2B7CDY1oYiCTrl1MJI6EgkQswMEpTMooozg9tFFjbzHIiMgxjno3+NPxP8OTxMfpn05QDqd5tixYz6V7sn7+SDsy7/5zW/ymc98xtcC+PznP8//8r/8L5TLZWKx2Eu1L4ePEJAOPTmeR6H7MJ4GSD5MLbp79+6xvr7O6dOnmZmZecJRD57jSYDkui6rq6usrq4+cI3HHf+/r13yLaIx1eB62b/gK4LE+8UB2EyLAabCEa55yl8uUOr66/Jnozkul7doAPniNmFZp2vB6VCOO/U9HFySWpAtT3kug8GexzS7bfdZb1fZ7lSJKUEWAjEUXC43xmSGoKuwVJvMusar1GqzwJlQjru1MkcCWSKqyk4jz8YEKy6mBNn23MvRQJp7QyXzSr9Ftd8ipgRwbY2jgRSS6KJLoo8yPqsnHnDB3e/6d/WGpHJtqMOnixqng1PY2MTk8GhAtjBR5pwxUiPrDYCsEmOPQ127HsutHQ7aJhW3RVCKMK3FiSsmO8Iuhd5gmPZhjL3JId2UGqXsMTzUXY073Y1RNmeKYeoWzGknsdwOJStPSA5y4JlTm9NnJ/TyFLa6fmBUJ5QadExW2uPMxhRMdt0GCfk4mijj0EVGGs0QwWHJb0yAMAhScHd8FhKNiecYdVMcCOPNQUSO+zT3wCUqJ6nZYIhJglKUsBwnJhxhwXiLp4kPS1i10WggCMIjWcYftH353t4ei4uLvr8dWpXv7e0Ri8Veqn05fISAFA6HR1LnzxtPGox9Fi26F7UxhwG54O233yYcDj/zOZ4ESIdSJY+idD/q+KbV4/+3c5/z0Vnu1vdo2X0Wg0kuFj39GsXgnqdnsu10iBNFF3SOhxPkuzXCqubvLwG7bf9icCyU4mJpcN6oEuBUOPkAKy4eDLNXHwPSqVCa2/XBecv9NtVKh6hikpDiTBlB9nsVkpLOkgcEkoLBHS9YutC0+rjAvWYBmnBEjKCKsBAIsNstYuNwp+4HYXmC2ns6NMXSsCe1VN/BEBUkQWRGnyKoKBz0KgRk/3foeCDHsqfEpwoSa63xvXacPl3HZqlxKPGT5IiZpGY3qAlNum4fBYn19kTvSw2y51FqWFDT3O8Nztuw26w0d9FEiY7bIyRFyGlxoopB17Ep9AbK4EfNWe55BnsfNqQruf5nMKVnWPHQ3QOiyT5tptVjyCK07AbuxIzQrDHLqgdswlKYzQmLjL7gl1fK6TnW2itUhuCYkBMUrSKaGCGuxDFFHdeViMvT1K2Ba29Gz7HRGX9PI26Kqnew14Wa4N+EhKQINY9fVlZdID8s17WdBj23Q9Mu8FbkC4jC04HMhy2s+qhrfdD25R9FfOxo388Sh0DyMFHRwxLd/Pw8x44deyJ9/Hl7SJVKZWRq9cYbbzwXGMHjAcmr0v0oSvejbMx/9f4NliqDhUyXZF6PzlHv+ss6Gdmk4GHXTZsRrlcGO5zDrOntZJxXIzPcqe/RdSzORXPcqHhnewTuN8aLQaXfxnLhbrVMSjRJqAaOCrcmGHr2xD2fDWe5Vh1ce7dTQxdlDNPkXHCO7U6RstUkrgYodMf3O6OEuN/yU9PLbodyt8vGMHt5J75I1+mx3ytT6NXIaBHfwC0M+kveOBbMcr22SWOYRcWUAHmnx0lzkWq7wp5TwZr4zI4HprjZ8O7QDV/JL9+rEpIN7rX2kQSReWOarBpmv1ekaXVBcAlJBisTjD1B8n9/F5QUa8Ohzrrdwmk6rNDFwSUohclpcTTBIK2kyPcKILgsmlPc9WjsxeQwB27F/wwmBm5n9TR3W2scDLPNlJJg2yqTUecIyQYuFn3H9mU2GS3FqmezEiNO2QMUIgKFnn9zE5ajFK0iXafLbneXaW1mYJkxjLico2EJZJQzuPTpunXCUoC6RzE91E9RV8f/LaOyP6FaPrlO5NQF8r01Xgl+H08bH6b1xOPkhz5o+/JHWZMf/tvjXvM89uXwMaJ9P08cUrW9C/khffxw0PVJs0zwfBmS67rcv3+f73znOywsLDyTYvnD4lGAtL29zbe+9S2mpqYeS+l+2PF9x+bfLb8/+u+OPRDUuVUusmikeC0yTVTSuNvy7yrTup+aOx+I8a2DDS4VdnEtmVdDM+goeLHkXHSKYm+8mOmizK0hqB04XW53KoTkICcCU5wLT6MKEnNGlOXGeAFxXaj0/aBwKpxhuVHgUnmH/XaXE/o0mmISksf0ecX176uOqnHKHokZBZGbtV0uVbbZbrVIK0nm9QxTWnz0HhbNFBvtMagJwK5HhBRgxoiz3alwpbrFWq9Bwo0juBonzFkCw3kiLzsPYNZIYXkyipwW415r8Fxs12G1lWe1XeBeq4xIgHl9nmPmPFE5PLq3rBpnre0FT5em6H9OGSkyIq007DblVp33qyvcb1dwXJOsMgeuxpQ6hTzch6bUhK8/M6Nl2fMwA0UE9iYsMqLKwOZ7u5vndnOdju1yp7mL64ZJygvMa6ewHJGQFBvdvyb4SSGz2hx1e/ycNEFnq+snUUgTP6WwHOF+5z7L7VVW2puUehbL7X1kponKJ8koZ5EJEXATiMPvQ9RKYjGmzJtE2Pf0qMCl49Q4GXgbU3r6jeTH1XriZduXv/POO/zu7/4u/f6YLv/Vr36VkydPEovFRq/52te+5jvuee3L4WNC+37eONyl2LaNJEk0Gg2uXLmCoijPpEX3rD0krzDqm2++SSwWY3V19YWZet57cByHW7dusbe391Blh4cdP3n939y+y2573P+QEbhfH5RIVmqDxfe4GCSjhzjoNyi6HWKqwY2KP3OIqAZQAaBl92n0+9wtFpkLJInJMmutA4oT/aUFNcxtz4xQSNa4Udkb9bJMSWFaS6AKKivNPAhwIpTibn3c8xCAnYmyoCIpvF/aRkTgeGiKqKJyb6Lc1bb8clLHjCS3PCW/cq/NXmeDnmOT1uJMG2EMSWDNPRgt0KeCU9xqjDMbTZAH9+kJVZC56TErvBA5hoONhMJ2t4AiiKy3/Qt6TAmy67H0PmpmRwDVtLssN/YIDAkaQTfATCBBXDNo2t2R2vdRc4o1D9tOQWIf/3MyBXXE4Os4Pfq9Ppfag3uVkJk3prAcmVgvRlfv0nJaD/R9jhizPosMU9S5P6F0fjg50HG6bHR2OWYusNIc9M8MMcqMlsbqdUiQw1a6lK0Sluv/fKb1aVY9JIqoHGVrQhGiYfuln7JalrXOMiWrSMkqkpTTlMV9sEFAJiwlkYwwKc7g2D26Vh3FkmmrlVEmFxdylK0d/lTy/8azxIfZQwoEAg9dKz8M+/K/+Bf/Iv/wH/5DfvRHf5Sf/Mmf5MaNG/zLf/kv+Rf/4l+MzvEy7cvhIy7ZParM9LThdVp9lhLdZDyrjfnly5cxDMNHyHhRpQXv8YdfjkmV7qc9HgY/mp+/8x3fa16J57hcHC9kkiuQF20qzcECeSKSYToY5JsH90evSWlBbpT9AKVKg4Vro1lhA5iXAoREk7Nhg1u1PRzXZa/j7x2dDKd5v+RRR5BU/qCwge26JNQwC8Eosoiv9HM2nOWGh6GnCCL3hqoRDi536gecj05T7tgcC+YwFRnL6XJnAjj2O/6sZUGPc31Yrst36+C6HPQaQ7uLODb9B5h0x0M5rnls2UOCxn0POcAFqlZnxOKLyGHOhaaoW00c94Cm3SH4EJPBycXmZHBq1G9qCD02O2XutfP0XZvsUJUhIEkEJGOktXc0MM3tpt/McNvxZ709jyKHjYNgCVxrrw+QtAsL+ix9R2FRP0rTrnHQK9JxJh1uc76SX0KJPtCTqnlmpNpOB1GUWHeGn2EXptU5mjZMqScRBIdWv0KlX/GdI6HEqdnj+8+q0+x5TAZFRPITc1MhOTgyA3RxCcoh7ntKfjIKkiIhuDECbgjZluj3BUL2MbYLZdrxtae2kPhusS+PRCL81m/9Fn/1r/5VLly4QDKZ5Kd/+qd9lPKXaV8Of8h7SIfT0rdu3aJcLj9VJvGweNoe0iHoPWxm6kWJEYcZ0sMo3U97vPc9/MH+BuV2nwuxWe7U92n0exQ6flmXVxM5LhXHP+zNeoWdRg1V0DgXTXDQq5M2guQ9x00Z4QcAyhHgenmwGAQEhRN6hJLUp9IZ7IRlQfQpQgDMBeIcDJlZxV4Loy2z1a4xbcTIGkG22yWatn8nfSac40plvKAHJZXbtX1sdwBOAK9GcizqOdxuh4LQZMaMcdtDgBBdgdWJe8noYfK9BjWrw9XqDotmgu1OjWOBGTRZYKddZK/rB7WcHOJuf3yeaT3mo5RXrTZrrSI7ncrA6t3MMqtHOOiX2Wwf4AouGTXywMxTpe/PNOf1BEvDftJetwKuy/X6IBua0jIklAAiog+gZo2Mz6Y9q8Yf0OE76FV85ToVmTvN8YZhTpuia8OCfgybPqVe0aexB5CYYOzN6Dm2Op6+oiCy0/W/P13SuedRKV8wZtjqbJNQcoTlIAoiPaePKYZo2nUE4UHG3pw+z4ZnFskQTHY8rL9BTNDD9XnWh0aFHdoEpDAdsc6fjv4lct3cyIQPGEn4xONxDMN4YNPwYfeQHhYfhn05wKuvvsrv/d7vPfY1L8u+HP6QA1Kj0cB1Xdrt9jMpPEzGk8DEtm2WlpbI5/OPpY6/qBZdpVJhe3v7uWjjk9nml25fZLdVZ7dVRxMlPpM5ylrtYJyBuLDb8mcxZ2MZ3i8MFr/3D3YIyioGBuej09yu7dFxbLJGiJ2WlwYdZtOTgTQcm4oI9+t1FoNJkoaBLMJ3fNmRwq2JQdikFmCrXWN7+L8jgTi2Ba+GZlhvF6n02+xPZF0nQikuVcY756Qa4EZ1b9RLEYFjAZNzwVm2OyXKVpOz4SmueSjkOiK3q/5ZF1NS6Tk2S0MCxqlgho7T51wwRrlfI9+tsWX5S2QxxWS7M16cjwcyI4Byga1WiWq/TaXfwpRMFow4SdXEcqHQqyIIcMTMsOoxIhRc2OpOzPuoYfZ6g2vvdMsYkjYioOS0NCk1hO1AWApSswfPK6oEfYB0xJhi1VPykxDZ6PifgSLI3PNkP8eMaUr9CtPqIqoo0ne6vn4TgDxhkbFozDxgkbE+obHnug4ODgf9Igf9IseMI6wMZ6tMMc6UksJ2BGbUE3TcJlWrQMfxg/aUNsV9r0WGnGC35y/51Sc+r7SWodh3OR9/B1mQRxYS9XqdUqlEPp9neXkZTdNGAqjxeBxFUUYtgg86vtvM+eAPccnuUIRVkqSRjtLzxuN6SIfK45IkPRb0XmSWqd/vs7+/T6fTeaRK95PCC4jXS/t8Kz/+4Xcdm7VigfVuk3kzRjJo4uJyuTTevQoubDQqvnOeiqb5zsFgUTJlhbdiM1R7bV9ZLaSo4CHtnQwnuVMbZA5rjTJr9TJzgSinAlPIEtyu73M6kuV9D+08phjcnAAoQ1K4MfybiMDbyUW6Tp96v0PD7iEhsNb0L9azZpSCR90howR5zwOER8w0qqiRUkMcDJXMT0WmfJJFIRSWJujhlutwv1Xi/nAdvBCdp9FuYAl99tw6hqQ8wNibrPqfDk1xY2he2LJ7bLbK3GsU6LkWKTVOTg8TkmVMsUJr6EA75YTY9vROAqLGcst/b6Jn977brRBTgiMPqpSaJKdFcFyXpBLloDfonxw61x7GMWOKZQ9QmGiDHpXnTfScHhWrQcUagNypwAL7nTwpNUNMCWKIEg2rjoyMhQW4D1hkTOtZnytuSomz2fWX/MrD4VqAltNCFCXuemw1MkqaUr9NQj6KLirg2vQcGxkNazhMFVWiVD2yQFl1hr3e+DMWETno7fCJyPf5QFQQhJE23MLCArZtU6lUKJVK3L9/n5s3bxIKhXBdl0Ag8FCH5pcZfwRIfwjCsixu3bpFPp/n/Pnz3Llz54UyE3h0hrS3t8eNGzeYnp7m5MmTHwh1/LAnJQjCSIb+ecILSD9/+33fv03JOuvdwUKy3qqx3qpxJpbiQmyGg26DjVaFBdlkzVOakwWRe7Xxgt+y+tiuy61SkblgjIwZoNxrcqvuL38pEyZ352IZbpT3GbpVEFE0cCSOBVMs1weK14vBOJfK44Upowd9AOXgUuy2uFsvIAkiJ0NZkrrBZQ+QmKLCnfoklVhjxyOkqkgS3xgqmc8aCdJ6gI7d8wHskUiaq1VP1oXGStOfCex0qiNTQUWQOB+aoeV02e+WKfTr5LQId5t+gJ0sxR0NpLk6VCk/6NURgGu1wf/PGhliikGrVkGV5JGI62Igw436eOefViK+GSiAqjW+zkGvRk6LjnyfwnKYo0YGW7CZ1jLsdgs4WFRtf+Y5H8z5rN7jboCtiYHbg14ZF5d8r0y+V+ZUYIGVVhERmbSWYkqL0qdLRpEo9PLYgs3exDmiSpiix1ZiTpthwzNgKyGx05kw8pMN1jr7I3HYeX2e9fY2IGA4UZJqnK6jkFNP0nfaNJ0y0kTmNqMvsNO9z1vhz/C4kCSJRCJBIpEABsP85XKZ1dVVCoUCv/u7v+sr7z2KgPC88UeA9DEPL4vuMFtZWVl5KTbmXqM/x3G4c+cO29vbnDt37qk49c+TIR1meYuLi8iyTLFYfPJBjwhBEHAch/V6ma9u+V0yA7IK/XEaczKSZKk8XmSPBONovT6qINIbUpRfjWe5WBgvdoYkc7s6OGajUWWjUeW4HGROCOFgs02bKTPEjYp/IZ70M1oMJXhvmL2l9RBzgTC13uTQZJi99niRXAjERuw723W4Wc0z14/S7sKJcA5FEtAlgYue8l1IUFieUAIXPFv+zXaFqGpwvXpASgsza0bo2j3uNfzgkw3FKXgypikMdjrj8o/rutyo7VIdPt+sHmdOTxAQDe63D7CwfYoQMMj4NibuLatHyPfqAwuPdglZSLFKE9mSmDPSRBUNy7ZHHkgAKT1M3qNUsGikWfOwCUVBYKsz3jDUrDY91+bmUOZIERRy/ShBPYypByn0i7TtDpsTrMV0ME6lOf480naYvIfVpyCzPmTwOTjsdYuEZYOV0VCuzDF5DlkSSSjZwTCqVWNjQoF8Mq1cNGZZ9VhkBCZccQH67pis0RY7SKLEXU8WFpHCbNoVwvIcAclAQkBE5vXgHyMkR3mW0DSNbDbLwcEB4XCYRCIxspBYXV31OcTG43E0TXvySR8TzWbzu8qcD/4QAdLh4j3JonsZNubeDKnT6XDlyhVs2+add9556jmAZ8mQHkbp3tzcfGGWnuu6/Ltbl4lJATKqxmqrTFDVWWn7G/LKRP1bFSVudSuEFJVX4kny7Rr7bT8B4mwszfsFb+9FYMNu03UGzy2umRwNpHAdcSQVdCQY507Vv8B77S3ynSbTRoTb5TLzgQQpw6DQq7NUnch0FP8P+1Q4xe1hWfBmNY8IZIwQJ80csiSw2jogJwa442FvTRmRkSLEYdSHIHLQbXLQbfJ6dJqeLXEqOIOAQ8VqcmtCPdw0A9DyDBFjsu7Jwhr9Lu+VBpRyVZQ5EsiQkAM01C573UGv6HRoipv1MXiaosrdieto4uCnabkOq60DzoSmWKrvoggK82aWsKzSsbpIiNjDBr4q+n/OAxFYbxap+TKqvmvTFRyuN8aveT10jJ7bI6sKNO0mLbvJ6sSQrhEMgOc7legH2VPGzzoiBR44pkmbfc+820lzgXavQFoJo0sKMu5AH88VBvVjXOoTVO8pPcs9Dz08qSR9GnvgUnMeVEdfbd+jPfzeZdUse+09/sacX3/tWcJxHGRZJhgMEgwGfQ6xpVJpRH4KBAI+h9hn7Ts1m82HOmX/lxwfeQ/pSeElFDyMRfcyXGMPs5tCocDVq1efmeF2eI6nAZRHUbpfhuJ4sdPm/7i3RNe2ybebKILImXSWrVaV5dpATmY2EOZGyb/4Hbbx6v0e7+d3OBfL0LEt3ohPs1TZo+vYbDT9P/STkRRXK/4F/vd2N+g7DkdCSeKGziTT6XQkzS0v2LiMCBLrzQrrzQoX4lOoaARVhdVmAU2SHugvCRNb6XPRLNcqe6OZq6Ck0pHgpJZk26rRsHuk1IBvpulYMMlKwz/ztN2u0rB6XBsqULwRnUHHJKDI7HbLGKLMSstfouypIp7ZSzKuzr3hothzbMq9NnfqeVwgqUaY0sNogkJA0mja3eG9ZEYmgwBJNfSASnlzqCLRd21WmnnOh2dYquVRBZVZM05c1anbLWQkLGzApWX7FTmOmBluNMYlv6QSYh/vou9y0Kuy4yFSnAvNU7NaRGQdFwvXtVhrbftME+2A4HsGga5MXRl/9nE3xL7tzwjzvdJET2qe7U4dRTBIqTFSahTL7ZJTdapWmbbdYr/n/x6E5RAFD9Mx2o9SETwCvILMbtdf8tNFgxltlnl9geeNh9G+vQ6xR48epd/vUy6XKZVK3L17l263SyQSGWVPoVDoievfd5tbLHzMM6SHlegm42UBUqPR4PLly8/FcDs8x5Pu43GA9zLmmP7PvTW6nnsIqRq/vzMAiYVwnKShgwibzfHudjEU5U7NXyrs2jYr1cECYsoK35OeY6NVZd9tIgggCwKbbf/u9Wg4MSJArNbLNK0glW6bc9EpEF1uV/aZsF/iXDTDdQ+oyYLAaqNEuTdYSCVB5NXUFDWtw0rjgLZjMWNEuFXzZ131CXWH4+EEl8u70BuIsJ6LTCG4ElHZoDJUBNcmsonJmSdVkLhbL/hMBD8ZnyWqhGnabdaaB8ypYTY8ygwiAoUJzbaQLXG4jBZ6TcKyzrXaLgIwb6aJq8aARuzJdKb16Mg+HmDBSHDfoyIhAjtDFYmea3GvmScgzXK7VkAWJGaNFGktRN1uYIgqbac3ANwJxl5ajVDwCMcuGhmfpp6IwFa7MLL3ADgTnEVww2TVKAFZQZNEtjq7oz6cLEjUtI5vL6Lagk8T5gFXXEFhY9gr6rsWO90DDFHnnscC41TgBB2nzYw2hYhD3+lyMEFDFybIGvP6LPc7HkFXMcBmZ4P/Jvt/eaFez9PQvhVFIZ1Oj+Z+Wq3WCKA2NgabAm9572HGna1W648A6eMSjyrRTcaLuMbCwAZjfX2dbrfLO++889w128dlOI9T6T6MFwWkYr3GbxT8NfmjkTjf2R/80O/XKtS7BpbjcCE2TaHXZL1ZIaKMVRgAjkcSLFfGP/Rmv89atcL9RpWMYjIbiyKLIu95rqUgcLviB4nZQJj9doNrw2zsZDiJhsbRYJKVYT+oZftLra/EMlwujUFBE0XeL+7SsvpoosSZSI6YrpNvN+kO7RyOBxMsT1ise9UpbNdFFmTeL+wgAEdDaZKawWbHvzhPWrmfCWe57Jl5iioGF8vb9Ic9NlPUCbgmp4MhtjpF6laHM+EcNzyUckOQ2ZwoO9Ef3LcL3G+VCMg5btZ20USVxUCcoKRQ7/uZjKY84ccUzHHHoyKhiworQxKF5TqstQoYkspS/QABmNLTzJsxGnYbXIFSv44pPahwMVnyOxGc5nbDX/JbaQ6MGQ/VJY4Hsux1ukTkCGktQkIJUrNrVPoVqladkGxQwF8yrjVqeA2Ej5hT3PXYw0fkkA+wYKCxt9Md3+9Jc4H97j5BKUpMCROWTCqdAll5hoZbo25VaU48+5yWY6+3x+uhN3iReJ7BWNM0MU2T6elpHMcZ0cv39va4e/cuuq6PynvRaBRVVb8rSQ0fqZbdw3Yptm1z/fr1kZX5k7ToXiRDKpfL/MEf/AGyLGOa5gs1EB+VIfX7fS5dusTW1hZvv/32I7Ov5wUk13VZWVnh/7u+QttzvCnJ3Cr5y0tHIjFqvS4X93dZL9c4H84huQKqR/XakPxDiMdDUe43BiWo/X6H9/N77DZbvBLJcTaaQXAF5iWTen9cswkpKjfK/nKeqai8f7DDcrlMVo3wbnyOStPfpzro+JlopyNpWtYAKLqOzVazzjf2tnBtiXPBHOfCWXTJv4iei2R8KhGKIHKvPgAfF1ipl+jZLtuNNjk5wfnQLOfD06x4QM11Ya/jX8yOBOMjMAIIiApX2gWulPcpti2mlBS6oDNnjPXxToazI+AESMgGaxOqBLVhr67rWNyp57Fdgdu1EjoBMv0w5wKzlIdU+8PoO37wPB7M0vIMEceVALeHRAwX2O6U2e3UuVbdZafVwSTKafMI82qOmGUiIpJQgtybUJFoWv6S36KZ8Vmsp9QIK0MaetVqsdzcZb1dZKm+z06ni0iEeW2BhJVmWpoiJkdJy3EKkhegXHYnlDWyWtJHTZ/WUj4wEoDCMDtq2C02O3v0XZtdpcpq54B8t0taPkrb1skoJ5jRTjGlHKHt9Hk38imUiUHbZ40XHYwVRZFIJMLi4iIXLlzg05/+NMePH0cQBFZXV/mbf/Nv8slPfnLkOO3VkoOXY1++sbHBF77wBUzTJJ1O8z/8D/+Drxf/9a9/HUEQHvjfpK3Ev/7X/5qFhQV0Xeftt9/m29/+9nM/F/iYias2Gg2++c1v0mq1+NSnPvVUqgvPK4y6trbG+++/P1JdeBnU8clz1Go1vvnNbwIDiY3HKYE/DyAdgt361hZfa9aIuhqfSMwQVw3OxjM0PCARkBWWipODjBIX9/ZQHYUjmLwSTXO96N81d9r+RelcPM16vcK14j43CgfEZBPREZg2x+/tVDRFx5P9JDTDd97dVoOtUolCr8+0FOKYFGJR0NlqectfsD4xF3UkFMNyHTq2xbXyPoVWi+VKhXOhHGdDWVRB9F0X4GwkQ8XDMAzJKktDG43NVpX3i7t0LYiJYV4NzXIikOaVSJZdDyB5JYtG70kal49dQBIl/qCwwXKthiEEOW3OILgSYY8I7Gwg4SsqTSthNvv+7GFrOFtVt7ps0sJ2RNYbdYJCmJPGLG+EF6lbPR9ATfoxzRjx0XAwDDyc1lrjz77cb7LczHOtvsuu28eyNGa0KY6Zixw1ZglLAeb0FJsdf49td7Lkp/lHFBaMjO81LbvDndYOa5S50ymw2W5hyglSyjSLxlGOGIuc0Bdpeax1RVfgftNPiAjI/nLWojEz8pWCQclvc4IeLokSu90DVlob3Grcx0LmXnOfd6J/jBeNly0dJMsyyWSSEydO8MlPfpKf/Mmf5C/9pb9Ep9Phn//zf048HudP/+k/za/8yq8AjOzLL168yPvvv88f/+N/nB/4gR/g5s2bwED5+9/9u3/HrVu3+M3f/E1c1+Vzn/vcaJ20bZsvfOEL9Ho9vvGNb/DlL3+ZX/zFX+Snf/qnH7i3O3fusLu7O/qfV3roK1/5Cn/7b/9t/sE/+AdcunSJ1157jc9//vPk8/kHzvO0IbgvIib3gmHb9giVn7ZENxn37t2j2Wzy6quvPtXr+/0+N27coFqtcv78eaLRKOVymatXr/K93/u9z/tWHrgPL6X7aazZK5UKly9f5vu+7+lk8L2WFOshg7/3B78z+jddkngllaFidbhbKYIAn0hP85398Q89rGj0bNu3gL+RylLr9whrKjdKe0QkhfyEUOnJaJI7lfFC9UoszfXS4At4LBInoqnkuy22WuNF8q3k9Ki/BBATFCpu37c4nwzFBz9012G9V2da0lnzDFZqooQqSb5M7PV4zjfceyKUQJMVBMHhTj1P33WYMSM+oLsQn+Jiabx4pbQAxW7Lt4CfjaQRBQFJhPvtIkeCca56rDZCskbH7vsyprPhDDdrY9A9F8lyY2ijMW9GSesmPbfPcmN/1Cs6F57ylfgWlagvg5JdAVWSaXkyolfCU1yv7RBTTGaMCGFVYatdGDH4VEFCEeURYQLgbGjax+o7Gcxyt+kpjQoykij6sqzXI3P0nD6aJNK0WwQkhdsexp4uKAjiQLh19PwD09z1gMnpwAx3PH5MAVHHpu/Lso6aU6y2dkipUWJKgCAylV6VutOgKbQwULHEPo6nKTWv53wAdMJcYMVDD49IIWp2w5dlzehpslqaH5v9Ii8av/u7v8sbb7zxgZbTXNfl5MmTfOUrXyESifDVr36VSCTCf//f//cPfX08Hud//V//V370R3/0gX+7du0ar732GisrKxw9epT/9J/+E9///d/Pzs7OyFzv537u5/jJn/xJDg4OUFWVr3/963zf930f5XKZaDT60Gu+/fbbvPXWW/yrf/WvgEHmODs7y1//63+dv/t3/+5zve+PnGX3JBbdk+JZMqRarcaVK1cwTZN33313JIz6Mpl6z6rS7T3+aTOkvb09rl+/PrJj/4f/n1/x/fuZRIrv7A1+sPOhKKmAwXbDvxM/GUv6AMoURG4UD+gNadyaIHI6lSPYrrFaK4MAR8NxHxjh4gOIlWqJC8kp9mpNXo3nsAWH9UbJN/MEMB+NUfaU9BYCUe54hnAVQSQWiiD3VVbbVWzBZU42WfY0+kOyOvJ5OgxNUkY9K0WQeD2UwpIlylKbpt0fqDs0yr5j5gIRn+X6fCDKzap3ZghcQ+J8eIaDXp2tdpXjoaR/kFcLslTzZ5YtD5CvtyrEVZOrlQN0UeVIME5YkSn2G75ekaQq4KnOTGOy7ozvLSxq3KoPgKTcb1HutzgeTLPebBFRQswYURKaznanNPRWgqhsPMDYsycM9k4Es1yve5UzTK7XNnwgfcRMk5DTxBQTUXAxZYnr9TEIxJUQK00/Bbs5Yae+GPBr7KWUCPdag2PyvQr5XplpPcHuUB9PFUymtBytfgvb6mPRQxZho73jYfm5PnUHGPgxVT3yVlk1xU53j7+Y+7O8jPgwxVXD4TCvvfYar7322iPv5Vnty7/5zW/yyiuv+JxeP//5z/PjP/7j3Lx502ecev78ebrdLufOneNnfuZn+NSnPgUMeu8XL17kp37qp0avFUWRz372s6Oq0PPERwpIjUaD73znO49l0T0pnmYOyXVdtre3uXXrFkeOHOHIkSMvVRj18Bz9fp/33nsP13V59913H8qceVQ8DSA5jsPy8jKbm5u89tprpNNp/vPmfe6W/eWkg/Y4s9ioV0kZJuVGhwvJKYrdFjutmo+4AJCTNe71x/M1YU3nGzvbWK7DQihGKmDiCP77OxVLcrvsB6h8u0nfcbhaGCzQn8xM03dsdutldqw2EVXjVtV/7Yjq/9wXQzEuDsVaTUnleCgKroPYbeAIg0VyWja47RlQTWkBX9+q7zqU+j1WazVkQeRkJEPK8FtrmJLMrYk5qaii45XpPBFO+bKwnB5BcCQW5AhbVh0LhykjzH533Lc6EoizOiFrtDOc2+k4Frdqed6ITbNSqxFTQ8yZUUxJZG2CUl7D3ztIo7Pi8XnKqSGWG4P3XO13qPZ3mTYi7HSqmJLBrB4jowfZ71bY7pTouxbTeox7LT+QH/T8/bI5I8H1+hgIZ/Q4q8NjDvX6UmqYnqUxpceIKDohWWFbOCDfLeMKLnN6iq3O+NkOSn7+zz2lRTnwDPYuGNmBpt4wLNdiyy5Qc5qj5sKinMWyegRtDR2ZkKJh2X1CQoiaU0cWJLYnBF1DsoEq5jhuHuFFw3EcXNf9wLXsXNd9LKnhRezLH2U7fvhvALlcjp/7uZ/jzTffpNvt8qUvfYnv/d7v5b333uONN96gUChg2/ZDzzPZr3qW+MgzpEwmw9GjR597x/E0wqg3b96kUCg8Uhj1sP/zMOfZp41DWuf09PQzzzDBkwGp1+tx9epVOp0On/zkJ0df1N9YXUFCwB7uZs8l09wo+Gd99poN2pbFxb3BD/XTM3M0+31u9vfpOjaGJLM94ZY6H45xMBTgXK9X6To25Xab8/EcfcFmqZxHmrAAP5dIc8PTpxKBe9USB52hCnUwyolYnOuVfQ6GMkVJzRhIC3lC8XwXWnYfG4EblSJBWeNYJEa732Gv6ydEJCWNPGMgzso6q0MQsFyHpcoB8/0opXaPo+EkUVVDk0S+5dG6i6sGN6qPr3+n9SDfHgrQKoLEuUgOwRVJa0HyQ1AyZb+J4mQ5TxUklodMw3KvTbnX5rVIjr12lyk9TtYIoosCNypbI/UCRRDJi10fnVrz4xXHAinuDXtFLbvPvUaB3U6NmtVBEkRmjTRTeoSgbLLfKVO1W+Tc4EgGCQaSUffb/mcQVgyfXuGJQI67wwHb9XYBtTMopzbtLoqgkdOjJJUIphSgYTfZaxdYNDOseYBCExRWJ3T5Jll+xwPTLHtKfqaosW0X6GHRlQab0FkSIzq75OockTM4oktKU3AFm57dZae7z5/Lfv9LkfU5/I1+0BlSp9PBcZxHAtIHbV9+8uRJTp48Ofrvd999l3v37vEv/sW/4N//+3//4m/wEfGRAlIwGOT48eMvdI7HAVKz2eTy5ctPNOzz+iodutA+bRxSujc2NtB1/bl9QA6VFh4m2FitVrl8+TKRSIR33nlndI9X9vf4f9+5TVw3mA0GWK2X6U08i1dTaa4d+AFqpVRmt9kgoCici2fodVtcb1ZGL3kYAWImEGav0eDqwWBhPRNPExAUckZoRLPu2xMZVDjOkqcUt9ds0Oj2qPQ6nIylMBUZWRIoePoB02aImxMU8sM+V8PqcaW4z/l4FrvV5XwkRdvustWqcK/lL0kGJ1ULPKKvK7USApDSA+SUKFkzQMVqE1d1LpbH9zJjhLk9MfPkJUj0XQdJEPnOUMEiZ0SZM8M07S6qINEbMuwOy6CHcSaS8dloxBRjBFg7nRo7nRongklqtsC8liSpmQRk2VdWC8s62xPipe1m0ye/cyqU4caQbWe7DqVei+12lf7wvhJKBM2ROBOZo9ZvstMtcyqYG/kxAYQlg7sTwrHOxMDziVBuJEfUd21q/Tbf6ZZGpUHBlXEcjUV9EUUQaLttwrLOzYbXTj3EvQl1h7YzsUkyctxq3h/9d1IJs9MfZ122YFNxGhR7tdGg7hE5S8dVeTN0npcRh4D0QWdIzSED9VGA9CL25dls9gE23KQ1+cPiE5/4BL//+78PQDKZRJKkl2pfDh8zlt3zxOOEUb/5zW+STCZ56623HrszOPxyPS/LbWtri+PHj6Moz08nPQShyXvY2tri29/+NnNzc5w/f94HmF+6egmAUqfN1UKBsCMTQOFUNDmgfrnQ7vvLma+ls+wOdcma/T6X9vbYqrfJuTqvRTODeZ/4mG4NEFY1rhf8XzxdVvjO3i57tSZTrs6nkjNsNvxsr6JH/wzg1WSGynDo9U65yJ1ikTuFMudCGV6NZlAFkbThHwQ8Goqx4gE1XCh22tT6XS4X9rhdLnMmnONMJMOZcAoRgaikstrzX5uJ53ouliHfabLVqvF+YZfNWp3dRovXQtOcDqZRBZGk7r+XE6Ek6x7gFhgw9Q5jt12n77rcKBewLYnjRoa3o/O0bcvHistP2GgsBuM+m/MZI8zdoYrEeqvCxfI295tVql2bKTXJudAsZ0NTqB4h25weZkfwA9RuzV82PBJIjsAIBoPId9wqlyvb3GtWsGyJvi1xypznuDlNXA4ybyaxPMfktOho5mkQLqXJkp+Z8PWpoq7OrdYON+vbXKltcadeYKNVRxeizGizHDePsGhMkVTiiO7gdzCjJ9nqTBgtTng6pdWYj7iQcEIU8TM1D6wyR1oZLn7rfZaWltjb2/PpVj5r2LY9okB/kNFoNBBF8anL/s9iX/7OO+9w/fp1Hxvuq1/9KuFw2Ff2m4wrV66MpIxUVeXChQs++3LHcfja17723Pbl8DEejH3amByM9QqjTjbuHhXeDOlpo1arcfnyZYLBIO+++y6VSuWFDfpgDEhecsTDSo2rlTJfu7/q+5sqilzNDxaL+XCEuUiEiweeRrMLjYkf48lQmDv1wY94L39ARNWQHJEjoSirtQoIcDKaGA3YAsR1g2segNq1eqR6Fk4PzsezVFp1bNdm05NN4ML+BECdjqe4eLDLjdIgC8kaAVxL4HQ4xZ1aAQcXU/aD/JlYkiVPz0wEVusVCsMZpqCs8Vo8y1a1yHqviYVDSta50/AvZo0JQdez0TSXirsjFYu0btLrubwWmWKzVaHUb/lKiQDHtAjLnnKXLsrcHWZhPcfmdq3Aa9Es67U6cTXIXCBCUFFYqj/cBfcwklqQLY9W3IlgiuWh4vj9VpnNVoWwolPp28yaCZKaSUhWaNk9akMlimOBlE+lXACWq/5MJ6kEyHuUGubNBNdq4yxFEgQkocOiMY0hyXScLkFJZbdbGT+DQIZ7Hg8nWRDZmLBtN12FsqfmdzyQG80vlftNFCRUSaFpd5AElYwaIS7HMcUwfbdHzaqRUIKseOzTVWEs6HoY2oSq9xFzhrX2Fv/X1/4calscmfAtLS0RDAZJJBIjhf2nLcEdVjA+aEA6lA36IOzLP/e5z3HmzBn+2//2v+Wf/tN/yt7eHn//7/99/upf/asjQdif/dmfZXFxkbNnz9LpdPjSl77E7/zO7/Bbv/Vbo/v423/7b/PFL36RN998k0984hP87M/+LM1mk//uv/vvnvt9f+Q9pBcNb4bk1Yl79913n8r6+/A+noXYcEjp9hIkXoYWHQy+8IcCr47jPNLC/BeuXvbRpnNmgPueQdPNWo2IaiD0Rd5MTVPsNtEUmdteRXEXOhOfwZFYjPe2Bz/8xUiUZMBkpzEhExSJ+QAqKkrcKB7guO6opHchnSMrCux3Gmw0q7wy0duSEFivT8zPBMO8nx8sMmFV50w8QcXqDLK94W06rv9+X4lnuOrR5rMcm4uFPRr9HpoociaaJqprNArbtIe25NOywZon0xmYFfrf42wgwkWPm+5rsRwqIouBOGuNEgjQdv3Z55lImkuekp+3J1XqtSn12pwMJym1+8wHEiR1A1OWeb887pOEZO0Bxp4i+RfLs5Es16qDe9toVSh1W4P5LMciNyQyRFSVWr/LfreGIMDZUG5UvgPQXJHlCXLDpHXI6VCOm/Xx+wlIKpbrEFFipLQgmiiiSyK6qI7o3yeDU9xqjN9PUNLZcyey1QmJn+PBKZaGx9iuQ9PucLG66ssaA0KUhJQlLBvIooApyWx39mnbPRBcQoLBvkdxBAZK4G+ET5PRE6Az0pnr9XqUSiVKpRI3b97EsiyfjI9pmo9cmz5Mc75HAdKL2pdLksSv/dqv8eM//uMjAekvfvGL/KN/9I9G1+j1evydv/N32N7exjRNXn31VX77t3/bN5by5//8n+fg4ICf/umfHrGKf+M3fuOpkoBHxR/6DOkQSA4ODrh27dpzCaPC02nRPS5reRladDBQj7h9+zaJRIKzZ88+9H3sNxqslyvIgoA1rAWlDZM9DyDNhsLcGPaOLu0OFqK3p6Y4aYa412pg4XImmeRWwc+SO2iOyz73q1UShkmh3ub1ZJaOY7Fer7BU8u+A45JCxSPkORsKc3F/vPgtRmLEZYO4ZlDqDnbwr6QyXDnwaMeJIsuVcRZT63Xp2w63CyXiWoCFSARBcLlY9Dub1iZ07M7EU1wqDM7bdRzu16u0yxaOC6ejaXRZRhBdtktjRuG8bLDusbsYqDv46eGSKPKdg8F7iqgGi2qANhYBSR1Zre9MqKovBGNcKvl7Uod9rEMx2VkzQr8vciSYIKxqGLLoMxXM6iFuTQBUre+nUx8Ppbg8tN7Y7dQHG4NKAxeIKSGmjBCGaDBvJNlql7BxOBXJcs0zmxRG5Xbdn0E1JpQajgXSXK1tke/WyXfrZNQQB8PB3owWJ6GYqILOgp7loF+haXdYNNJc9wi6ptUIKy3/dSp9P2DNGUlueo7JaTGWW35KeVaPsd9tIgsaKTVCRgxQ7zQwQwYtu4kiCGx29vhLU9/PZKiqSjabJZvNjthspVKJYrHIvXv3UBSFeDxOIpEgFov5SvEfJuX7UTp2L8O+fH5+/rGv+4mf+Al+4id+4onn+Wt/7a/x1/7aX3vi6542PnJAehHXWBiTAa5cucKZM2eYnp5+rvM8KcOZzL4ma7svSh0/ZPhdv36dU6dOMTs7+8hd2r+/do2L27tEdZ1jiRjFboulCS+lpBlgszbe9c+EQry3M/hRBxWFk8kkEyQ5TsXj3C5N0JXrdXq2zZVh8/Kd6Rks12G9UWW/3SCkqGxOlL9SRoDN2nhxlhD43c0NREHgTDyNKou0en6K2Ll4mksegArKCktD6aNSt00p3+Z8MkNSDjAfDlPpd5FEuDvRJ9mdKAsej8R5fwgkS+UCWSNAodPiaChJVFfZbdfRFBVqY4CaFTVWPTYZIVnlpodSXu11aUo6y+0aIgJHwkmmzRBbncporkgVRFbqE5+JHvCV4k6GktwZsu2W60UkBCKqjuwozJkRrFaLrBkj36kPLRngaDDhK/GJwGar4rvOlBEZ0dDL/TZx1eQPCgMyuyoqzJsxRFSOqGn2umVaQp+5QIIbHmuKrGCw7vFsEoCtjv86OSM8AqT9bo2ApLFUuj/695Qao2NDth8hEApQtuuktTAHnuHfRSPDmlfQdcLDCSChBNn3KEAcMbOstQffFcu1yfcqNIQGTbocipefDs4xr4U5E3w81VsQBJ+NhG3bIxuJtbU1bty4QTgcHmVPH4cM6b/k+MgB6UWi2+1y7do1AN58801isdhzn+txgHKo0p3NZjl9+vRDd0gvkiEdUtNd1+Xs2bOPVRuvdbt85cYNACqdDu9v7/JWbgozolBu1Njud0kYBtcn5DtUD7mh0e9TbLW5X6lwPJ4gpKlcO9ijb00w9NIZruW96s+wUi5x0BpkUafiSYKuw5XeOJuIazrXDvw7+uBw/sFxXZaKB5yOJ9mo1HktnqWPzZ1q4QEgORlLcvFgvEDGdZ0bxTyW6476RRdSOS5Ep6jZHZZrJV6Jp7le9pYFYaXqz3SmA2H22s0BUaIGC8EIjY7FG7Fpqv029+olepqMh0FO2pW551EkSGsBVoZWFg4uK7USIgL3alUiqsFCMEpM07ju6dlEFO0Bnyd54nt0Nprh2nBO6k69iIbAdmF/kHWYUQxFRhMFVt0S7hCgzkyolBui/IBzrrcPd+jT9J7HQn7WSGEjcy44R91qsd0pE9GD7HfGoDwnhln3KJsbosLypIfThK5gSgtxvT60Qm80MUWVtlUlp0wRUlQEHHRJRhXkkXrDgx5O6sTA7aBP5Y0TgSnuNP2KECvNHX509r965gVdkqQR+Bw7doxutzsq712/fn2UIW1tbY3Kex9EfDcKq8IfYkAqlUpcvXp1BELPMoT6sHgYID2NSrf3+OeZZWq1Wly5cgVRFFFV9Ylfwv9w8yZNj9hiQFG4eXBAa/i32XCE48kY39rZxhoCZFiSuN/1l1+iw+blyjAjmtU0gpLKQjjK/VoFgOYEAeLVdJYr+fHit1IqYkgykiNwLpmi7dqEVc3XX8oGglwv+BdIcag5d3VYUjyfyiKKAiFZ4261iCQKo3s4jMVQjIsdj3OrGeSi514SeoCwpHMilGC5NliwTwSiLHn08IKy8oBqRETTuVrcZ3vYQ3otnkUURGLRACv1Aj3bpiw54PlqRBzwvqOFYJS7QwuPaq/L1dI+02aIYqvHfDBOyjAIKDLvFceLZs4I+RQh4MHy44xocG9I7b5ZPRjJHOmSzkIwOqDNCyAijqjYp8Jpn0p5QjUfKPl1HX/vK6mZXKl4lSdCNGyBM4E5XByKvRq2i28GalYKseKxH48rAe5MlPy8skIAx4JprtW2KA/t3JNqkEpvUFpMaXESagBd0DlmzFCzmhz0KhwNZLlZH48qJ9QQKxPlu6bd9l1n3sxwv73P9ySeTk7scaFpGrlcjlwuh+u63L9/n93dXQ4ODlheXkbTtBE5IhaLPfPYyKOi0Wh811lPwMcAkJ61ZHf4pVhZWeHEiRPMzc2Rz+df2DV2sofU7/e5du0ajUaDt99++7HCqIfHw7MpAR9mXrlcjlOnTvF7v/d7j82yupbFl69c8f3tdDLJ+zvjhbrSbvPexkAd+lQgTKnXYSoW5YpnFikTCHBtIoOSBZFrB4NSyZFojJlwiIt5P4up0vX/8I+HwtweMvSuHhxgSDLZQJBPpKfZalbZaTaYCYbZ82Q/c6EINwt+UGj0e6xUBplMQg/wSirFRrNCsdMGYaDNd2dCWSJrhtjx9MwiqsYf7Ax21lFNJyOryK7o8xk6GU36bNmTmsHNkv859B1nJEkkCyLvZGZpOxZKq8Z+p4EpyWxNzMfIff9G5nQ0xa3hLNV6o8J2s0pI0XAtiRPhJAFFQZcldlr1kQTOsWDCpzguAAeuf0GfNQcyRy27z1L1gMVAjLVWCU1UOBqMEpQVcAdsv84QdBbMGJcq43Rv3oxNGBO67HX8va8pI8rlyhY0x8fs9erMG1lCikK716XrdH2yR0nBoMT485gz4g8oT+x2JkgsenREGc93axii4pM5UtCodB0W9QVUUcRy+4RkhXJvXMKc19NseujhhyKwn02+jiG9mIX4ZAiCgKqqmKbJ+fPnsW175HF079492u22r7wXDoefu+T23WjOBx8DQHqW6Pf7XL9+nVqtxltvvTUS/XtZ0j+HYDBJ6X6a+SIvdfxJgHSoNn7v3j1f3+tJZb//dGeZ+VCEaqeD5boDQ7uyvyR1ygNQd6o1gopCt2vzRirLjWKenuMwGwqz3xgvHrlgkPv1MWisVSoEFRWn5/JGOkfT7iGKAreKE9I2ExuJs6k0F3d3uF+tAPBKKo3oCoQVldpQ8y5pmGx4+ktHI7ERGMFgxmi1UmGjXiNrhpgOh9BkkW/sjVULworGzQliRVAZqyNUul1iosKdSoWArHAsGsPBZq/lLwvOh6IUPAA1Ewiz5NHqs1yHzWaD+/XB+5k2IxyPxtnr1FmpFrEFl5iqs9b1n7fT9gP3uViGK0Ofp1uVAkFZpe/YhORBeU+WBGRJ9C3wp0NJlurje9FFmTt1/3sOqSq0htYVtQLnImlulPJIgsCcmSShG9iO6zMmjCj+ebw5KcRGd9xrVAWRlcZEFqnqbLRLLA//fjqUYblZJCQHyGkhdFeg3+8RclRqQg9BAN31l9VOBrLc8Qi6qoLEvQnbiaCi+xQhjgTT3PEAlCbIKJJA19FIa2GiskFc0dFEnUqnRtVpsBDIsNLa4U+lP8EHEd4NpyRJJJPJEbmp0+mMynubm4Ns+EkmfI+KPyrZfcyjWq1y5cqVEUgc6jLBywMk27bZ2tp6pObdk46HJw/XWpbF9evXqVarfOITnyASGUv4Pw6QbMfh//ntS6xXqkR0jWPpOJIk8K3tcalFdGGl6G/yn0qluLg9JDOoKm+kU6Me0GHkgiF2PYA0GwpzY5hBXdkdLCIXcjnOBqNsturUHJtXUmmue7IuEdis+nfApqzwnZ0dZFHktUQGRRZZmgA1c6LEcTqe4FZpkCnstZrst5pkjADTWphcMMh+t0HaDPjKdSndHM0yTUbT6nO1kOe1RIZCvcO5aAZFFthp1x/IulK6yZbHTfdEOO4jTey06vRdh3y7iSZKLGhBZqMDMdaD7uCZTulB1iYGX/OTwraRBBeLu3R7NldL+2T0APluk5QeYjoQwsXFdv2kj9OR1MAFdxhx1Xig5Ncbfnds12WtWSaqGqNj0nqYOTOCgMucEWerXcbBHfWiRtcJZ7la9RoT6tyq+Utx9nAjUre61BtdXotOc3soWWSKBjNKiG7bIueE6Yh9yrTpWf73cyqU44bHtj0iGz7wgQGF3xsnQtmRIsRup0Jb7rHc2vMM4Yr0HYXvi79FVovzQcTjWHa6rjM1NcXU1BSu61Kv1ykWiyMTPsMwRuAUjUYfW977owzpI4onLfiu67K1tcXt27cfCRIv6hp7eB87Ozu0Wq1Hat496XhBEB4LSIc26bquPwCq8HhA+trKGuuVwYJf7XS5uLHLTCTEa/EMPWxuFQvM6xprnXE5SRFF7nkAqtHr4TguawcVTiYSmLrCdrM2Ap/DSJkmW54sZj4S4eKQOi4AZ1MpooqOIor0h/d7Jp7kpgdsZEFgpTy4tuU4XD/I82Z2CskWuZDM0bL7lDstn/bdw+KVRHrUg9ppNFAEEcNVeDORY7/TZLNRYy4U8Zn7zQbDrE2AQK3fpefYo8zqjWSWmtglEtbY7dRp9LsPmAqqE5nuK/E014Ylvq7jsN6qs9/vUO/3mAlEyJhBTFnmoNsaWVMcMcIjTb3D57dW82e1M4Ew+90m+c7gf0eCMVYbZeKixkIsiY3t87aCIaXcozg+Z0a4W/eDvVcRIt9pMmtGuFgcgI0mKpzWo/SsHqeCWXY7VapWm2LPrxF4JJDgcnVMMpjSw9xt+J9TyXNMy+kTMMxByQ/AgSRBSo0uOSJoiowlOtR6/k3RgpnkWn0MUFN6dEIE1qX4EEWI6/UxPTwlBrnd2OaHZ76HDyqetiQvCMLIQG9xcRHLskblveXlZTqdDpFIZARQoVDIt641m80XImn9YY2PtXTQYTaxvLzMG2+88UhfoRfNkNrtNqVSiU6nw7vvvvvMYPQ097G/v8+3vvUt0uk0b7755gNgBI8GJNd1+fn3L/n+9ko2zVa1zvW9PHf2imQlHdUVMTw/llczGSqdcQ1EkySWCwOQWC6WuLq9z9FgjFcTGTLqoN4e1/UHGHqih0ThAn3L5g/ub2I4Cm8mp8iKCvUJ2ZJXM1nKnmsb0mAot9nvc3lvjzsHRaJ9OCob5GQNXJg2g6Ps6PBizYmF+FwqzXKlzMW9PbYqdY6aUSRXYCEYGc1bJnV/aeRENM7aBElip1VnpVrm4v4eO9UmZ8NZXotkORlOICKQM4PcnCBAtCb6lMcDkZH9xlazzkqlxLf2t8GWOBVM80ZsimQg5JMNOmFEKHnmiHRBfEBxPDQsP5acPpeKu1g23C6XySgRXg1P8Wo4S3HCXTeu+dlep8JJtj1AKAsCq54eVdexsHG506txvXxAod3jXGCGkBTktfAsRwIpAqLCWmtSodvvqnw8mGKrPX62EgJrTf8xYUHhgA7rNLnbr9KzXJYbVRTLICvEOa5O4TgiU1oceehtHlf85arjgSx7HoUISRAeUISISBqzeoLXI4t8UPG8c0iyLJNKpTh58iTvvPMOn/zkJ8lkMiNfs9///d/n5s2b3L59m7W1NVqt1kNLdh+GWywMHGPfeOMNNE3j2LFj/OIv/uID9/Ky3WLhY5AhPSoajQZXrlx5ojAqvBggHRILNE0jmUy+EFvvYYDiui7Ly8usr6/zyiuvPFZ48FHDue9tbnNz3/Pjc6E5MccTkCWWGy10WeJCJkeh02Sn5t9Rnk2nubQzLr/oksTSQYF6d7CoLoRCHEkl+Ob2Jodfz7AksT7REzGGPbVGr8elnV1mdB2r5/JWeor79QoH7Rb5CXvys6k07++OSzKGILDe69EdlmXSmk7Cho6oUBwa0h2NRFkd9qMOI9/ynzeqG3xneN6sGWQ+Eqbc86s7qBMKBK8kUlz3ZGaKILJUPKA6nKcKKionAknSaoDVRpm61eNoeEJTDyhMDqhG4rw/7EndqhTImUF2Ww0SWoDZYBgXZ2Cf4Xmc81qQO90xcERljRsTPk+HigU7rTo7rTqvx3OsVmuk9TBTZhBZFCh2mr4elMDDKOV+k8Hltj9T67kOS9UxI+/VaI5yr8XZYBJRcGnZXZYnKOWT6g5nwjmue0wHA6LCtuv/zMKBANv1Og36NPp9FiyXG8NsSEBgTk/SseBMcB7btahZLeSJjehAEcJjGIjMplXmr8z8iQ90dsdxnJfCpDMMg+npaaanp3EcZ1Te+9Vf/VX+x//xf0TXdS5cuMAnP/lJPvOZz4zo5YduscePH8d1Xb785S/zAz/wA1y+fJmzZ89y4cIFfuiHfoi5uTlKpRI/8zM/w+c+9znW1tZG6+QXvvAFstks3/jGN9jd3eWHf/iHURSFf/yP/zEAa2trfOELX+DHfuzH+KVf+iW+9rWv8Zf/8l8ml8vx+c9/Hhi7xf7cz/0cb7/9Nj/7sz/L5z//ee7cueNzlX3W+EgdY2GQBU0uwru7u9y4cYO5uTmOHz/+xB3JxYsXSaVSzM3NPfV1Xdfl3r17rK2tcebMGRqNBrZtP1Zc8Enx9a9/nVdffZV4fFC/7vV6XLt2jVar9VQOkxcvXiSZTDI/P+/7+0/92m+zXatx/SBP33E4kUxw98C/Cz0Sj7FaGi8wr2bStPp9gobKjYM8luOSDgR8ZIY3p3O8vz1epHRJQhQGg8YL4SClTpNUOMR1z9BtLhhkr97wib/MGTobHqvzd2dnadl9bpcPaFsWAgJpM8C+B6TeSGe45Jlxius61U4X23WZMk2Ckoht9VnxLPpn4snRsCwM0vu4YVLw+D9dSGe5uL9HRFGYMk00Q+NaOT/qe8AAOJarY3B5I5n1DeWGFJWeY9O1bURB4EgkynQwyGqzwkajCgIcMUKstseALwsCIUUbgOHovDkueUgTx8IxVmplZgNh0qZJ2+rRdi3ue2SMTqhB7nqEYWf0EFsd/8ZiNhAeae4BvJnMcbG4Q0TRmQuGCcgKhX6L9WZ5yDB0WQhEWfcM0L4Rm/LJHGX1gX2G93NdDMRYa46/U2/Ep7he2WXGjBBVdVRRpNhvsN2ujJiM82ac9db42b4SzHDTQ2ZIa0EKvbrvOpPHLBLkvjB+zyk1SMVqkVKDxFQTVRQxZZl8t0KhV6XrWhyV4uy6Nf73N/8WhvRg9eFlxdLSEoZhsLj4wWVhBwcHfP/3fz/xeJzNzU329/f5C3/hLzw0S4GX7xb7kz/5k/z6r/86N4bzjgB/4S/8BSqVCr/xG78BfDBusfAxKNl5dzOO47C0tMTS0hKvvfYaJ0+efKr0+FkzpEOV7u3tbd5++22mp6efSjroae7Dy9T75je/iSiKvPPOO0/FmHlYhrW0d8CvL93lytYeAUHhzWyO4ATr70Qy4QOjwwzqXrHM1a19TBS+Z24e2fNxi8BGxd9nORoJ0+r3aVsWt0oVmn1od13eykwR0wYZ6lQw5AejcNgHRgDFVosr23u4XTifyPKp6VkOPGAkCwJrNT8BYjESHYHGTqtF3XFZbXeZ00OcNiOERYnqhKbeuVTaB0aaKHJ32Leq9vvcqlYRHJGAq/J6NMsrsTQnJ8Do0FTQ9zxjCbrD74LjulQ7XX5ve4vNcp2UFOCN6BRhQUHzDGi+Es/4wCj0kJmnwwHVzWaNiwd7SMhsVOscNRJciE5zKpikiP87qE4MK58MJ3xgJAkCq0OZo2q/w/Vynp7jslIpI9oSx4wU78YXCYgaIXlQlhXBp1oOMGWGfZ/r0WDCB0YDZfMKlutwv1nmSnkXy4F7tSp9S2JKTfBWeJGIZLJoJtHFwbfN67UEMKVHfNdZMBM+MBKAhubfIwe6gyxxt1tjqb5Htd/lW6V1VptVan0IChHalsBnzXMfKBjBs411PG+kUinC4TB/5a/8Fe7fv8+1a9f44R/+4QdeZ9s2v/Irv/JS3GJrtRo3b94cveazn/2s71yf//znR06wh26x3te8DLdY+BiV7FqtFlevXsV13UcKij4qnsY19jAeRel+WTbmjuOws7PDzZs3n5mp9zBA+sVvXx7fe6dLod5kq1pjwdRRTJ3lUuWBif+TKX8GVe/02ChV2S3XOZVKoKsyoiRwaXe8cxWB7bp/YT6VTnJxaxdKg4XvQi6LbbtIgjACj4Tpp3EficW4Uxhcu2vbXN3dZy4cxnQk5kJBurJIWNe4vO8vHd6ZkD7KBkPsNptsNgbZwkI4Aq7L2ZDBVqtB1bbIT7D6zibTXPKcNyBJLBUP6No2V4bZ2OvpDOfCKRRZYq1RYSoQ9GVdEg8O5XpJE4VOG1NW2GjUkASBU9HBXJHjur4y4YmJmae0HniACdh1bGzXZWVIcngjmaXarnAilMKQREqNKnsTs0ithv8zeiWW5mrZI7kkKaM5qq5jc7dWRBVlbgzp7DkjyvFIjIbdQ3UEdvtNTEl5wPfJlPybnnORjE8RQhdl7gyPsV2H9eZAgfxQnUIA3ozN0+i1CaGhBnSqvSZ3J9QdArJ/Vuh0KMutCar3gdzzDSbbrY5PzzClhbnT2OWvh76XDzo+TC27YDCIIAicOHGCEydOjP7tg3aLfdRrarUa7Xabcrn8gbjFwscEkPL5PNevXx8NiD7rB/60YPI4SveLqnXDINvb2NigUqlw/vx5UqnUMx0/CUib5Sq/deee7zWybeO4sNHsQLPD61MZREnEVGRaQ3mgSWmVU+kEt/ODBf/uQRHcAdi8mcmx12qwVa9zJBhgxQNIsiiwWhzvkG3XRRIkLm/vDGjnyThNq/cAAcI7DwSwGA6zNgSsW5UquHAuneIT6Sm2mzW2mw3OJFI+IAmpKksTw7MRXeOq51pvZbJ0rD49x6Vk9cCF9QkdvvlAkCVPJpYyTK4e5AfgwWBNOxlK+Bh751Lpkf06DMkYZT97La4bbDRq2K7LnXKJU7EEt8tF4prJfDiCgz0Y6vXEbDBMvjN+vgvBKHcnrNz3h/bvd4Z/P6EGsHo2J8IpQqqK49jcrPmZZ7sT0kgno6kRkw4GMkdLnp7UbruOqSjcqw+elSoonI/P0Hb69F1rMCQruA8ojnecSRp6mssTyubeY1wGZobLhwSHSoPXY1NUGhZzeoKQoiLhUu930AWZzlA6qD+hoH4qnOVabdwrisoGuxPGhNVGjRPECPVELMt6aWoJD4sPQ8vOdd1Hkhrgg3eL/SjjIwekvb09rl69ytmzZ5mamnquczwpQ7Jtm1u3brG/v/9YG/MXyZC63S6tVoter/dM1heT9+AFpF/8zpXR4gkQUWTWJrIYXLi8sYuhyBzTDfSgyc28fzEX8GdopzNJbu2PF9nFcBCpbyMLYA0v92o2w+XtMUhoksTdYeZT7XS5uLXLhakcs0YY1bHYtXqYqvoAhdyekB86m0757u9INIImSCQNg8KQPHEiHufinlcWyODGwSTjzWZpyBhcjETJBXRWKpXRv0vA5gSxYi4c5sBT4psJhfj27nhRzRgBgqLKqWiC5WoJ23U5E09y0dNfimn6A5mOONzYlLsdygcdXkumWS/VWAzHSBgGTbvHvQlCRFTTwDOuNPB58mdqO1aHrmOP5qUuJHO4tsjxUJywqiEJcL3qn91ZmSgTzgYj5D1274vB2AiMYEBkuFsrse+hiH8yOUNT6aLJMm27h4vNcsMPynttf/l0IRDnUsVLQ49OHOOy36nTsHqjv78RneHOMDtMa1EWzBi2YHE6OE2t32a/V+Vgguq9GEhw1TO/NKVF2OlW+RwDxZbt7W0ikchIzucwy3hZ8WGU7ODxg7EftFtsNpt9qBNsOBzGMAwkSfpA3GLhYwBIqVTqqXssjwpJkh7plthut7l8+TKCIDxUpfswXqSHVKlUuHz5MpIksbCw8NyCi945pmKjxZX1XV7PZbm+t4/lukxHQlQL4x1xOhjgxu4AANp9i9W+xVnd5EQ0TkBXuZ7fZzoc5lbev5hM0licfp/ldhdDlngtm6bYabJf8w93ns2mueQhQJiKzO2DwojtJwoCb2SmyJgBlgoH9B2HpKKw0fH3l+yJLDSkqry3OVjITsRjBDXVZ4EBsBCNcHFvnHFMBYMseWwz7lerKKLIQavLbChMyjToddrcaNRGpR1dEB/IuhKGyWZ9vOBFdZ1vbA9244YscywaQxVk4qpBaaj+fSQS80kqTQVCvpIfQH0IwvdrVe7XqryRztJpO5yJpDAVhYbdfQDUJj+T0+E4N2rjDCokKyxVBs/1sAf2SjxNtyswH0qQ0HU0SeSWJxtSELhZ8i8aYVXDo/DDUS3EvY5fqWGpmqdujX9P52NZEmKEjBFAlUQUSeRmzSPxI4g+OSKAmGqy4SFRnAqlueOZX5IRWW2Oj8l3G0wZIa56dPhOBtNUex2O6dNokozjWnRsG11URhlbQgshixJn7AxHjxwhEAiM1BLu37/vE0uNx+MPHbd4ljg06Pug41mUGp7VLfZ/+p/+J/L5/IgNN+kW+8477zxgTfHVr3511KfyusX+mT/zZ0b38LWvfe2FrSg+ckCSZfmFJTIeld0ceiQ9TqXbe47nKdltbm5y+/Ztjh8/TmmiZPSsIYriKNP7pfevsXIwOJ8pibySTZKfIA/MRMLkPRlTRJG5fVAaZVVhXWMxEqVn2SMlhoVYlNsTAKWZJrS7tC2by1u7nMumaVhd3szluFMs0uj12K76CRCn06lBf2kYpizx3sYWXctGF0WOhEKk4hF+f3Ms+bMYjY76S4dR92RQK6Uy5zMZdkoNTieSGKrEVrPOrYn+UsYMsONRlliMRlkeSiht1ets1etkdZ2EpDEfj1HtttEEfOW7sKw8kHV5HWHbw8/hUAljMRwlYRp0h6zBQ+vsrBlgpzle0I9FYg8ojO806nRtezRjdSGdI4DKfCSCLIp0XWsw8+TZyFetCWff2IM9qZulAxxc7tcr3K/D8XCccscia4TJmkGCksRqo8RurwkChAWZG2U/QNkTZnnnYhlfKS6i6NysDtidh1nUqUiKWscho0dIGwESqs5Br4FAnarVJizrLE24004mKQOTwfF1QrLGrbr/3kRRZK9TZ28ImK9Gclwf9sviaphpPYJtC/z56bdhvYUoipimiWmazMzM4DgO1WqVYrHIxsYGS0tLhEKhUfYUDoefGVw+jB7SoUfTw9bFD8Mt9sd+7Mf4V//qX/ETP/ET/MiP/Ai/8zu/w3/4D/+BX//1Xx/dxwfhFgsfA0B62a6x8CCl+2k8kp61ZHdYBszn87zxxhskEgmq1eoLlf0kSaLX69Ho9vjKxTHlsmU7yKLCfqnAq7k0Xddmp17n5p6/PJbWNWqeqXldlvn9exs4rsvpdBJFkRAmpGIW41FWiv4FtNu3WC9XWS9XUSSRTy/MUWi1yNebuMKA4LBenmDJRSNcHxIpOo5DoWuxvr5LVg8wG4+w22oQ0fw17BOJOHeLfsbbQbON47oj4Hojl6FlWWiKxEq1jCgK3DzwA+pk3+pUIjFyxi3t7SMwUJt4PZGl51gsV4pM6Qa3PWoOad3wKU3AGJRgkO3EdJ0b+QIhVSWrakiyyPaEIoQxYbl+LpHyqVGooshKtUSt1+P6MGN7PZUlKQeYOZzWF10uF8ZGhKIA6w3/857sSS2GoiwPy4J77SZ77cZgDqrdxpQ15gJhYrLCfrvObr9JB4eUqHLfp8PncjChy3csHPf1pKbN8IgAsd9psN9pMBeIsNEc3F9cDXIulKZlD3pS+XYV17a5PTG/VO1PCvUmx+oOQEYLctvXx3KpewwDS70W82acO/U8//dXT3F17f0HgEIURWKx2EjxYNJKwnXdkdZcIpF4qh7Lh9FDarVauK77UED6MNxiFxcX+fVf/3X+1t/6W/zLf/kvmZmZ4Utf+tJoBgk+GLdY+BgA0ssIr3TQoUp3s9l8KpXuw3gWQDo06wN8Q7svw8bccRz+t29cpNEd75A1WeLufgHHdbmxM/hhv3Nklo5lsXRwQLtvEdJUNhr+UtdMNEx+yMq6ky+QCQbp9vscNXSqrkuh0yWk+VlOxxNxVgpjkOjbDtvlGmulCsmAwUIiiiSJfGtz3C+QgPsV/4J5NBHj4tYuB80WB80WqYBJ3e3yVnaKtWqZQrv94FBlKsmShx040Merj7T3JEHgndkZ6v0u92plar0eadN8QD18Ml5Jpbh2cABDVl5IVdFUg9eTBmvVMpV+j7Ag+i0lQmGf6CtAfngf9V6Peq/H2UiUfK3NQjhK0jTouza3JggQvYnv1NlEisse0kRY1VgqDZiAh0SIc4kUSckkKoiEwoPB1/eLu+Pyoyhxu+K/Tlj1f45nY2luDst3LavPaq2MIStUhxYXU0aYFBJhVOpOjwO3x4Ie5n7Lb6y4OuGcm9YDPgWIE6GkT7Ko0m9zs5IflTgBTmlhAmqIiKohCiAJ+OSHBpRy/3VyHpNBgCOBpE89XAC2OxW+P3eWgKw+VW9n0kriYVpzh9lTNBp96Pk+jB5Sc9j7fBggfRhusQDf+73fy+XLlx/7mpftFgv/hQDSIZh4Kd3vvPPOU6l0T57jSVEsFrl69SrpdJozZ874dmUvw8a8Uqvzv33nhu/v53JpLm14qLCSxM3tPLVOF0NRuJDLoasy37g/bvaGNPWBDCquydyqN6gMN5pvzebouw6yKGA5g8xJn2AonUwluDMEiWKzTbHZZi4W4Xg0RtjQuVMokFZlVpvjBUiXpNExhzEXjXBxe5f7pcrg2tNTWK5DSFGoD6WJ+hPP7lwmzbV9j4CrIHB9P0+120USBE4nkmRCJlfyeSrDGaDZUGiUHR1Go+9niB2LxbjsacieSaYIKgpzoshGoz5Y7SbIGF7RVxiA5dYQoNZrVdZrVS5kskiWxNloAl2R6WNzrZD3leIOJiR/jkfjvp5U1gxys3iACxQBOi2ORWIkpQDToRCiKKDLEt/Mj0uhcU1/wEZjLDg6iLPxNJeL4zJaw+pzYDfpD8u7qigTQOWoEMJybeqiTVo3ue0BiqCssjQhczSpgnEumuV6xUMPFyTW+nW6vfH9vBLNUunYJNQQaSNAWjOp2x1MSWOvU0UUBO5OZFSBiczzdCjDrcY+PzjzOvDsvZ2Hac0dZk+3b9+m3+8TjUZH2ZNpmgiC8KGU7JrNJrIsj0po303xkQPSyyrZdTod3nvvvWee/TmMJ4GJ14fp0GL8Yed43pKd4zjk83l+b22XmGpyLBXkxv6AorxRmpi3mRoDVLvfZ2k7jy7LzOoGQVPjbrnKiXSCi5vjhS4gSywX/edxXLi2uU9Y15iOGnRtixsTICZN/PhOp5M+koQsDJ7/sVCY1XoNBzib8RMggqrC0gTzz3Zcru7sI4kCZxJJgobC9YnX1CYatWfTKa7sDYDEdl22qlU2qlU6fYuTiTghXUUUBR9R4VgsxsqERcf+BPvOlOSRZUfaMDkSi9Kw+yi97mjBrtcnSlnBEHc9g7qmLHOrWKRjWyNF8/OpDCnFZCYUxhFcBAGueEgGkiCw9oCjbdBnk3E0PO5JFTptwCUXCBIRdWZDYTRZQpflAUANYzYQ4nbVn0FN0tCPR+JcLI4/o4Rmcr3pv5eAazHlmgN9RFkkrOlcqu+P+kFpLcjNqr/v05rofR0xwix5rNCTmjmSJyr2WhR7LexwgmVPlvXJxAx1u4shydiuQ9+1WG/6+7M2Dp9KHGHWHJTjXpRsIMsy6XSadDo9ol2XSiWKxSKrq6soikI8Hh+RBD7IOFT6/jDIEx+3+MgB6UXDtm3W19fp9Xq8+eabLyyM+jDHV8uyuHHjBuVy2efD9LBzPI9RYK/X48qVK9QbDX5/r0a+1WW70iBsaLw2n+Hm3nihFoHNsr9vcXYqzeWNXWodoN4mHTKRHZF0MDAq2U0HDO5WxgtdxNC5OSz/1Tpdap0ux2MhjkZjREyd2wcHxAMmS/sTbLCJe58NBrhXawIdoobO0WSMnu34hkRPppJc9ABUVNdH2ZvtuNw+KPJqNo3bd3klmcQVB5P5tyesNCb18U4mk6Ph3uVimZiu0+j2OBKOYogDrTltorxyNpnkpoehJwkC9z108UK7zVwkwtJ+AVWSOBGLEdZVVqtl8CRalQn24KlE0jdLFdd1rhcGkkWHdPbT8QRzWoRUwKTrWGiyyEVP+S4gKw+U/CZVOc7GUyPR12rxAFUU0WUF1ZFZCEcIKiqGKlHutWkMLR9ORRLc9sw8SYLAfY+TLkDODLHbHn8/joXjrBzSw20QehDudNFdhbSiE9I0YoaBAOx1GggCHAnGuNfwfmYu+b4/I5wPxCh0x3+bMyM+MALYbFfZ8ZQFL8SnKHctEmqIpBYgrup0XYv/Zpgdua6L4zgvjd4tCAKBQIBAIMDs7Cy2bVOpVCgMvzfvvffeSKk7kUg8oNT9ovHd6hYLHxNAelbX2MM4pHQfCh4+LxiB38/IWyNutVpcunRpJPL6uDT6eTKkWq3GpUuXiEQiFOQA+dY4K6i1uqzuV6hUO7w6nabj2OiazLWt8SImAtsTADUdjfCdtW0EYDaooWsK+c5E2SoR5+LmuFkd1hTWKg2s4eegyRJHIzFMSRnMHwkPZ+jJmsYhj7jS7tC3ba7v5JmNhsmEA2zX6qyVK75jjsSjXPLMOKUCJjf3D7Bdl5vD+ahXsmleTaRwcLlbLnE0HuNWwV8yW59QaliMRbm0szfqZyU0lf8/e/8dbFl+1XfDn71PzjndnPrezj0dJE1LYDC2GGFhobIJNgWWy1S5qKKwgXoAGwyYUvECFpRROYBdwFvi9SNZyBLCmMcGSTwEIY00M919O9ycw8k5p733+8c5Z9+99+2e6TAzahCrqmvmnrDP3if8vr+11nd9v5VahxvhBJVem61y6VRZ8FIkwrKmLOgwm1XViK4ksZrP80IsRq7WYsLtIe5xYxLR+TEB7BrKhLO+AK9lNOZ/bo9a8jscuuzO+fzMOwIEHHYaUg+X1cKruZPn+EzmU/Tw/sNKcfnBuayVCngtNtpSn64sMen2E3E4cVstVB1dks1BOfJCMMpdTabmNJlVh1v1NiM5IxDl3tCeY7/bxNptIdbKtJFxiBYSDjdjNh8es51yr8Vxs8pZX5gHGmKCVRBPgU/Q5uBQoxZ+zhvVESDMgsj2UKV8lFG94B+j1GvzjuBA83G0drxVvR2TyaQCz/HxMS+++CLlcplCoaAa8Y3AKRgMPnOp7evVCwmeE0B6mtBSuqempvjSl770TMcbfZm1LJpcLsfy8jLj4+OPpav3pKQGrcTQ7Owsv/zrn9Tdf348wsrxYKG4fzT4kV6ejHFtPM5KJke7L3FxPMY9DUAJnACUAhzXO1wNBim1y9wYT3BQrlDpdNgwAMuE181K7qRk47Ja+dLOIZIsM+Z1MxbwIIgCexpwmQsF2Mzps5hae2jHUK5yVK7ywliMZrfHjNfLZrFEV+rrSBMAk36fbvZozOvmXloPEgGznYuhMBulIl1Z5kI0oivx2UziKXPCiN3OWqWqUsTPh8PYBBMXgxE2ywU6kkyprS8Lng2Hua0ZyvXb7TwY0sOT9TrJep0L4TCmvsCs24PX7QIkXsud9IrMwJqBaBFxujjSlPjOBIJsDnX3qAxo0XGXmzOuID67jXK7iUnqs65h0k15vKdMBfMP60kNQe2wXqUnS6Tzg2N4LHYmXB68oo1z3jB7tSItReasP8ItTfkubHeohIhRtA0brYuhmPqcliyRa9bZa1YYfftNgoBVsbBgDmIWBBSbiMdq45XCkVry81lsOnVxOE0Pv+iL6QwD3SYrq9Us/3LxG9SB5NFv7q0ucY02mw6HA6fTydjYmE6p+/j4mNXVVdxut86I70nPawRIb6Vq+fMaf+UA6WGU7na7rabtT/ul1FqQa1/jSRQkHpfUoCgKGxsbHB4eqhJDr+4cs5EtnTTAFej29IvAuUSEu4eDH7DTauHaWORU8/pMyMdG/iRzEIDjcpVio0Wx0UIA3rMwRbHdZiWdRQbsZhN7ZcNEfMiv9qnS1Tp9WabUaDHhtOH3udkslnEZRV4NGnooAyLE0VDE1SQK3JyZpNxps54v0JEkXBYLq4beUcztJqkZzI15XLx8MGD12c1mlkJBXCYzNpNJFUE9GwrrMh2XycSOoe9jMZm4MxwktppMvHssQVuSqNs6FDttBCBZ078P836/TjUi4XKpJb/tWg1qNRYCAWJWF+NeDz1FwqTI3CmdvA8u0cSDvH6BN5YSL4ZPjAhhIBRrEQQWPEH8dhtNqYfDYh6ojQ/jrD/EmgagTAinfJ/G3R7SQ/HYWq9LV5b5YlJLr3Zhkk1cDYxR6bU4aFSYdvvJawBqxu1ns6oFQoV0S//eLoVivKqhh/sxD5iBo2goTLl9eAUnCacbl9mCx2rluFUh1a7QkvvE7W5WDdJIlb6+97XojbBezfHt4yfabW8XII2qJ1qgEEVRVUaYm5uj1+up5IiVlRX6/T6BQEDNnh5naP5vMqSvcTxuya7b7XLv3j0ajQYvvvgiHs/ALGykXfUsDBhBEBBFkW63y+rqKrVaTfcajxOPU7LrdrssLy/TbrfVOQCA/++fvcak241ZlDhqdJgO+dnKGhq5GrBrdnu0u33WknmW4mGsVpH7ySylhv4HfHE8xr1jfQa1ni6QqzXwO+3MRQNYzCa+vH+ySLmsFtbShsl7s0heUUg2OiQbHWaCfsyKeGKFIYDZpH/vz8cjrGr6X5KssJkrkKk1sJvNXIlG8Tls/OXByWv77Da99xPgtdmBwULcMNq3BwABAABJREFU7vfpywpf3U9hNZm4FI4gmqBi6OlMedwD7bxhhBwnmQ4MynHVdpeV4UzTrN/PpN/LYa2i9r+soqgO3I4i7naT0vSy5vx+lTSRazZRgHGvh3l3AL/dRqXTxi4K3NeQF0JW6ymqestg8X3G6+d+uUh9SD332Wy0+33m3AECDgc9uY/JrH+/L4aiLBcMpThDT8plmNnyWqx8NavxLzJbqLX6XPWNoQgKxW4Tv0Vfgjrvi+jYdmZBOOk3DWMqEKJQPAHyMdHO4XBWqVJpIwrg1yhgROwe5p1h4jY/CjLVfnug3t44eZ2R4vjfHz+Py3xyHSNAeqszisdZXywWC7FYjFgspg64FgoFcrkcm5ub2Gw2FZwCgcBDdff+BpD+CkSlUuHOnTt4PJ5TlG5tue1JqN7GEEXxoUrgjxtvVLKr1WrcunVLvYbRl3H1OMtXtk4WZa/DxpjHQ2lIswaYiwTYyOjLNfKQqr0xBI8pjw2r2YTsNFFoDp5XNag7XByPqT2ocrPN8n6aoNPBvNuLIMgcNJucjYV1NHO7SWC/qi8NBZwObg9ZfCG7lUm/i6wBDCXJQOOOR1UWX7vfZyWVw++w4xItLESCNPs9nFaLzkQw4nKeoq+PmH9dSeJBJseFWITjYo3z4RA2i5mDakVVCR/FlM9HIX2yWI973CoYwWCOyiSK7BWrBOwOpgNe3HYrt9MaUzur9ZRqhNsgRXM+HFZZdjAoXUWcTs77w9jNJnLNBi5RoKChlU+6XKdmnnIGVtyCP8BrmTS7lQq7lQoJ18D8b8zlJeZyISMPNAs1ZJJzoYhavgMI2xyn6OHGntSSP8StvKZkabVRaLSZcwbx2ewoyFhNJkyIqgfSxUCMO1rFcbOVFUNPKuBxk6qefBenTA72NLNK9W6XV/MpmtIJMF8JxPAJHiJ2J06zBZfZTL7b4B9NvaA79qgy8lYD0pPOIAmCgNvtxu12Mz09jSRJqo351taWzsY8FAqpunv1ev2Z1Wv+qsZfCV7h0dERX/3qV5mYmODq1aungGKU3TyLSkI6nabf7xMKhbh+/fpTAdvrlezS6TQvv/wy4+PjXL16Vbcz+tif6wfQvA4bX1zbp1ptczkeYyESxGHVn89s2M9GWr84KohsF5tUqm0uRqPcnJnkQEv1VgYgpI2L4zHy9SZ7xSq7hTouxYJZFpgN+lVK3WzAR1dzXT6HTWXoAZTaXTo9mXSxzrwvwLVEnLOR4CkTwaZhHuhCIkqh2aLe6XLnKM1erkSu3OBaLM5SKISgDIBEa6435vWcYv51JGnA1ssWWD7O4JMgaLZxPRYn7nJhN5n0ihAMgE4bcwE/20NPqXK7zXIqy16hQqcts+gNcT2a4GI4Srt3wqIMWK26rAtOS/FcikZJNxqs5gvcTmcpNTuUujKXA1GuBCNEbQ6shuLAos9PRgNIZkFgR8MEhEGmpgDJRp3b2QyNbp876Sw+0cFFX5TrwQSypGDV7OinvX7dexmz2Nlp6kuURm+oBV+Qer/LdrXErVyKTKPBV9JJBElkxh7kijeBS7Qy7w5iH84kLfnCqhMwQNhiY7Wqz9QEmx7IJ8wOHRiFbA4eVDIUOk3WKnluFVJkWi3CVi+TLr/uuW+XvtyzziCZTCbC4TCLi4s6G/MRsen3f//3+Z7v+R6++MUvPvR1Xs++vFgs8sM//MMsLS3hcDiYmpriX/yLf0HFQPz5whe+wLvf/W48Hg/xeJyf/Mmf1DGD9/b2EATh1L+XX35Zd5xPfepTnD17FrvdzqVLlx5rIPdx4rnIkB61s3kcle5RPK1atyzLbG5ucnh4iNVqJZFIPPVO62HnMLIwPzg44MqVK6fsfQ/yZf7kwY7utqDLyVGhiiQr3D/MMOb30O/IXB2SGTp9CbeByTPpd3NUGmQFsqKwcpxlKR4mancxGfaxUyoS87pZTWkWBgWKBnWH2UiAV3cHJZyI3UIs4KFioLIvhEO8dqBh6FktbBUHfaLdofjrlbEo50MDuaK1XJ7JgO8UmaFsyN4uxKPcPkpzXBkskmNeN4I8kBjazBdRhIGgrNaafTboP3XcriiSrDU5qg2u7eb0BB2pT6nTZqdUxmO3smIgdTgNG5BzkRCrQ0DdLBQxCeCzOwhbnEz6PdSaDexWMyUNUEx6Pad8nYqGa1wKh7mVTquqDyG7g5oCl/1RZFki06rTbOo/k/PBMHc18kNus0WXhcEJK67S7VDJd7gUjnAvn8MkCAPVcbsDZIW4YzjnJIDXbCat+WjP+cOslvXZ3bahFBd3ekg26/Rkmd1amUVfUDdbNe70giRwPTBOW+qRbJSJ25wUNLI/s24/uwaDwAr671hUtFJUTt6HSaePjVqeHzn3bozxdgHSm63SYLQx39jYIJFI8JnPfIZKpcKNGzd43/vex0svvcQ3fMM3vK59uaIoJJNJfuVXfoXz58+zv7/PD/7gD5JMJvkf/+N/ALC8vMzf+3t/j5/+6Z/md37ndzg+PuYHf/AHkSSJX/mVX9Gd2+c//3kuXLig/h0KhdT//9KXvsQ//sf/mF/8xV/k27/92/n4xz/OBz/4QW7dusXFixef6T15LgDpYdFsNrlz584bqnSP4mkASdvPefHFF1leXn5mpQXtOWhljF588cWHpuGffWVlUHobYqDHauLBkZ55FPG6WN5Pc5AHl83Ktek4e4ZhWb/LpQISwHTYz/oQfHK1BiZR4Fwkwrl4hLVUDkWAc2MR1pL6HX5eA1CFdo9Js410qsTFsSiIsFMsspnVL7pjXidrGiJF2OXgQTKn7sYdFjNxlwuLILKeyyMz8GPSUcgVSBkUxhNeN7eGZcGAw85CJECj10MElc3lMey0F4J+toZqEDB4W3cKJdW6PeCwczkaJddqslkq0pVkIk6HrnwH6Gw/AC5GoyppotBqYRUELCYTC94gPoeNcqeN227hQEOKWAwG2dAI7grAYVVP0R8omadVeaQJr5dmt8uS04fU71Hsd0kaynmLoZCOdh5xOHV6eQCdodOspCjsVioEbHZuDckZPqudOZ+PVrPJGaePdK9Frdc9tRG7FIxyp6gtxZ12wTUqewTtTp0IrBWBlNxmwRnBY7GCoOC0mMm1G9SHGdEFX4QHmp6URRA46ukzNTciUw4vL4YmMMbbZZr3Vr6OKIqcPXuWX/u1X0OWZRwOBzdv3uSP/uiP+NEf/VFeeeUV/v7f//u65/zCL/wCv/7rv87LL7/MD/zAD/DpT39avW9+fp5f+IVf4Pu+7/tUj6hPfvKTXL58mZ/92Z8FYGFhgX/37/4d3/3d383P/dzP6frloVDokVYSH/3oR3nf+97Hj//4jwPw4Q9/mM997nP8x//4H/mN3/iNZ3ofnktAGlG6n8Sw70mHUiuVCrdv38bn86n9nGf1RNL2kOr1Ordu3cLlcj1SxihfbfDJv7jLTMCHz+3gQTJDyG6h1jnZTQbdDh4cnZTHGp0urXaPTKHOtN+Jy+Ok1Grz4FgPYl67PoOaCPr48uZgZiLicTIV9p3qH0x6HPqhWwUy1TrSMOMCuDE7hiQrFNstdgtl7BYT+2VDvybgo1A/KTn5nXa+vHWIwqDcNxsOYLGadP2OC4kID1Ini5JRwLXcaqPIsJrKD1TMwwEUZFYyeiCxGBbIi/GojkLe6HS5m8xQbnewmkxcDIcJu53cz+XUAdZJj4d1YzZnUI2Y9bpZr9TUMp/fbqNYb3E5EMVsFkg1Gzr1cICLkQj3NCU+myjqAAsg7HBwp1qlOCRpLAaDZJoNzrk9KLJEsd1ky0CImPLofZ5mvD42yoYBVU0prtLtIAom1honn9uFQASzLHIjmKDa77JfL1HpGbI7gwtuxO487YIr6X+DM3Y3G+0ahcrg/QtY7dT6HfqKTMjmIuZwEbQ4ecFvptrvkG5VWfKFuVPSqIyIZrbaFT5oS/CXf/mXKqU6FAphs9ne1pLd2+WFNDs7y/d///fz/d///Y88l0996lOPtC+HwRrn9XrV9kCn0zklIOtwOGi327z22mt88zd/s3r7Bz7wAdrtNouLi/zET/wEH/jAB9T7vvzlL/NjP/ZjuuO89NJLfPazn32Kq9XHcwFIo53Z06h0j+JJwOT4+JiVlRXm5+eZnZ1VX/9ZAWnUQ8pkMty9e5fp6WnOnDnzyBLgJ754l54kc5CvQL7CWMCNKPcIuuwUG4PFYDrs5/auZljSYePB0WAROCw3odzknQsTjHs8bGTz1Do9Yl63DsRg0JcaRb7WxGO3sp8rc34sgmgSWEll6RmFQMejPDg2iGAWqqpX0lTAy2wswPJRitZwR+4wi6ymDDRuj5tUZfCcSqtDsd7koFgl6nYyGfJSbLdodU/3l+4mNUOVJpHNIUhU2x2Wj9K8MB7DLMGky4nd5aTZ75/yfjrVt4pHuDM8bleS2C9W2C2WafX6zPh9hNwObBYTx7WamoWdCQROse1yhvml+WCA15Jpyu3BtSfcLoq9NtdCcfrI7NcqNA0bpvORiE5Tz2ezncrULCaRSqdDZQiIlyIRtkolFhwuTIpMo9dhwwBQfg0rEeBcMKxj25kEYaA8oQm7xcwtjRHhgs9PuyPxgi+BySRQ6bZO9ZemPD5yGtWFGY3i+ChKRikhb0BVDy90WtjNZlYMMkftnsySK4bTYkYBXBYze/UiP/pN70dqdSgUCiSTSdbW1nC73Tgcjmce+3iceLvM+Vqt1iPp4W9kXz6KfD7Phz/8Yf75P//n6m0vvfQSv/Zrv8YnPvEJvvu7v5t0Oq2qfKdSgzXG7Xbzq7/6q7znPe9BFEU+/elP88EPfpDPfvazKig9yuI8ndYPiz9NPBeABIPy2d27d2k2m09Mt4bHAxNZlllbWyOVSj20J/WsxAhBEOj3+9y9e5dLly69rntirdXhMy/rRVSjXjd39tKYRIHLkzG6cp/VIwNbySpQaWlcZJ12lvdSdPsSJkFgPugmHgmSKdfV7ONhAOW22VAUWBsO3o65rFgRmfB71bkhbQMfTlPIk6Uq7W6fWr3L2XgQUQRZ7rFeOClbua0WHqT0r+13OjgoVsnXm+TrTebCAZrdHtfHEmSbDQ5LVSqG3sv5eJQ7GnUHp8XMSipHV5bZrTah2uTaRBx3OILZLLJVLBH1uNg2WGvkDUzApWhY1d07KFeodTrUOl08FiuzIf/gPTTsJ85HQjpVcosonrLwiHvc3E5l1FLhrN+H1JG5HonTlvrsVkqnNPUWAgHdzFPQatEZEQI0e31a/T47w9Lg1WiUdC7HhN2JA5CROTCAp3E/dCkU5Y5GsshttpwyGXRarGxVsuow76VQhJ1SjnGXj4jDgck0YFF6LFZqvQHoBGx29jXJ8sN6UjuGnlTM4eZYQ6w44w2yonmOAITtTt43fgaXxQYWmyqIOpr5OTo6ot1u8xd/8Re67OnNtux+u0qDr8eyeyP7chiov7z//e/n/Pnz/Nt/+2/V27/1W7+Vj3zkI/zgD/4g3//934/NZuNnfuZn+Iu/+Av1usLhsC77ecc73kEymeQjH/mILkt6q+K5YNlVKhW+/OUvI4oiN2/efGIwgjcGpHa7zVe/+lXK5TI3b958pI350/aQ+v0+q6urALzrXe96QyvfT798n0bnZPduM5vYSg9+rJKscH8/g8tsJeF2c2UyjkkAqyiQaelBYj4WoKvpF2SqLV7bPGbM4+baVAKP3cZYwKPriQwASl/iczrs7JXbJLNV5v0B3j07SdowLKu1xIBBBpWvD2ZvNtJFNlMlKk2Zy7Eoi6EAAhB3Wulp6N9+jYbeKBxWC+lqndv7KY5zVa4n4kQcTiZ9XpXplzEMucZtFh3zz2+3cy+Z5UEqx/JhhlazR9zh4noiTsw9mOk4Fw1xpDEaFIFDg23GXDBAX5apdbrcTWbJVhvcP84x7/FzIxZnIeCnZXgfzodDagYDAxBeNTAM3XYbB5Uqt5MZVjMF5twBnFi4EUlwLhDCbbGwbWDSRWx2HWdvzu9n29BPyjSbyIpCstViu9XC6/ZSbvcIYGHWZOeC3UO92cYsnPzUR8roo1gKhmlrSm0R+0N6UrI0ZPXVWM5nUWSR5WyOerNPxOTiui+BWTZx2R8j4fCAwoCGrolLwSglzWu7TJZT9PBTflKBKPl2k388d7pZPpr5GRsbw+v1cu3aNTweD+l0mi9/+ct85StfYXNzk2Kx+Ey94VE8D26xI/vy69ev84u/+ItcuXKFj370o+r9tVqN973vfXg8Hn7v937vVKvgx37sxyiXyxwcHJDP5/mO7/gOAObm5h55Pu9617vY2tpS/36Uxfmz2pfDc5Ih9ft9JiYmnkqlexSvB0ilUok7d+4QCoW4cOHCI9Pupy3Z1et1bt++rWpYvdFQW7vb5+W1A10P5fxEVFeas5hEdtIlKs025MBhMXFtboz1bJFWd7B4OCxmNpL6hW/c62QzXyNdrpMu1wm5nSg9hcVoaDDHJMCY30O2crLARz0utnMnC/VutoTTakHqyFwZi9GWJRQU/RyUApWmvmx1cSLK8mGGTHWw84+4nfhdXmZFM7uFCggQNENZ1oCjx8WKAaBavb46mDvu8zAXDbBfKqvvlwCU+voFZi4cUAkQMKB1v7x7pC7oU34vYYeTuYDMTnGgiHExEeWuJnuzmUxsGhxtE14P6VqD3WKZ3SJMet3k6g3OBvw47FYOalW19zSKM8EgtzUzT2GH47TaObBTKsMQX67Eo9S7PRY8ARr9Lql6lb2mobH/sJknTQZlFgT2hzp5lX6fSr/PBaeLo1IREzBmtRNz2OkiEne4SDcbCMJAYkgbU14fuaxGANXjNfSkIKeRNMq3W0x7/byq0e6b9QRod/osmNw4nXZainyqv3Q2ENYpjoftDu6X9N+FjiTxTfEZJt0+HhWjUprH48Hj8TAzM0Ov16NUKlEoFFhZWUGSJJ0Z3xuRpB4Wb1cPqdlsPpV9ebVa5aWXXsJms/E//+f/fGSGKAiCqj7ziU98gsnJSa5du/bI17hz5w6JREL9++bNm3zhC1/gR37kR9TbtBbnzxLPBSCFw2F8vkd/4R4nHkW5Pjg4YGNjg6WlJSYnJ18X8J4GkLLZLHfv3mVycpL5+Xk+//nPv+EX9w9fWePOZoqZqB+v28Z6KjfoI2niwmSMOxqA6kkyq4d5yo0WF8YjKCLYbWZu72kYTSaRo4pBXTnsU4Fu3O9mPOxTqdmjGAt4yFZPFpiE36OW+O4dDBbWazNjXJ9IcFytka7WWYqHWDfMQeUNFPLxgJdbw9eOe11MhDyUWh3gZJfsMEzuTPi9OpWIVKWGy2rhKFcl6rLjMQv4fB5upU6046wmkU1DRjLu96jlMhiUrf5ya0DqCDnsTAV92M16+aHz8Qi3NWVBt9V6auZJ7PdoywobhTIAZyMhat0u16NxWlKf/Ur5lOjrpN9LPn0CWlNezykr93Krzb4mezsf8FPudIgHvbRliUq3fXrmSVZ0f1+MRrmT1ZTiLBa2h6w+CUh3u3jsNjaHRAyXaOKMy4tgsxCxO0k2ajT7PdZL+nML2R0caEDrXMBQiuO0jUbA4eDWaCi33WDBF2A1XyRocxF1OnGZLVgQmXcHSbWqNKX+QLKoc/J9nnL52KgW+L8unaZ6a+NhmYvFYtHZSYwUE7LZLJubmzgcDhWcHmXG97DXeZiywpsZT2tfXq1W+dZv/VaazSb/7b/9N6rVKtXhZx+JRNTr+8hHPsL73vc+RFHkM5/5DL/0S7/E7/7u76r3f+xjH8NqtXL16kBJ/TOf+Qy//du/zW/+5m+q5/Ev/+W/5Ju+6Zv41V/9Vd7//vfz3//7f+fVV1/lv/7X//rM1/9cANKbEVrXWBjsZh48eEChUODGjRuqjfHrxZP0kBRFYWdnh52dHS5evKi6UAKvWx7oSzL/9/97B4CDbBmycG1+DIVBTb7cHGiqHeXKuuddmIpxd3eo6nyUQxQE5mJBrk0l2MwUqHW6LMQCrByfLCY2s4mt1Mnf6XKdqNdJudJkPujG4rCRrjRUAddRxHwuUppy3UTQy63dk7mjhWiAiNPFsa1KfVh2PJeI6MgMggIZTRaWrTYYD3jZTZeYCnqJeJ3km01SNX0WYFH0u+hZjYRSvtEmD0ybrMTsTsYDXmq97kBR4egESFxWC6sG9l3QecIgLLXahLpOlo8zWEwi58Nh7FYT7a7+tZciIZ1thtds4rClL9cJgsBxpabOTl1OxGj2esx6/ZTbbVKN2qmh3IDDwYFmlmoxFGBD04MSgHSzRbHTITlU3LiWiCFIg8yvj0JXlgaqEZr9VdEgn7QUCul6UhGHk22NwGtLlil2Oxxp9O9eCIXpCgOSQ7Pfo9prn2LSCYaqlVGyyGW2sGp4zmjOq9hpUey0uBiM8KpGESLh9NLpylzzDySL6v0uPqsNsyDwYuQ01Vsbb1RKMyom9Pt9NXvSmvGFQiE1e3rYxlWSJKyGLPWtiEcB0uvZl//pn/4pX/nKV4ABnVsbu7u7zMzMAPC///f/5hd+4RfodDpcuXKF3//93+fbvu3bdI//8Ic/zP7+PmazmbNnz/LJT36S7/zO71Tvf/e7383HP/5x/s2/+Tf81E/9FGfOnOGzn/3sM88gwV8jQNJmN6MZplFP6nGbm49LHe/3+9y7d49qtaqzSR9NNb8eqH3hzhbJop5anS7WSRarmE0i0147bredB6my+hAByJX1C/fFqRh39wY/aItJ5IWpOJ1+91QZUJtlWU0iG8k8sgK7hTpQ550L4/Qkmf1imXy9RcBpP0WACLocHBVOzrknyXxp/QCLSeTSWBRZUOjJ+mvWKpXDsF8zVI04KlY5Kla5OhXHpIj4XQ4OSmX6isJhTV/+Egyfx2I0xMZwDio3HHxdiAa5Gh+QBTbyBZZiIW4dnix2AYddRymHAViPrmUtk+d8PMxaOs+kz0PU56be7ZzuL0VCqjgrwITPe4rVV+t02NXMQV2fSNDq9bBaTGSbTWrdzikmndnouhqNci+rLSUO6OH1bpejIZC9EI8RsToY83gwmQREUeCWZjZJBA4MM09TPg+5zMn3KGqxcqRRhFAYWGPkeyegeyUUoSPKxD1ubGYTMgpHzarue1br6Uu3S8HQSXYEBG02HhgAqmsYOYg7XTpHW6/Fxp5U4V9f/YY3LOM/aW/HbDYTiUSIRCKqGV+hUCCfz7O1taXqzYVCIQKBwCOtad6qeBQgvZ59+Td/8zc/lh7on/zJn7zu/R/60If40Ic+9IbH+a7v+i6+67u+6w0f96TxXADSm+Ua2+12yefzLC8vP9EMk/YYb5QhjfyRrFYrN2/ePLVjej1ihKIo/M6f3NLddn4qysrBYPHpSzKHxTbhjsRcwDcApuMsZ8cj6mMGB4K8RluuNzTEWz8sEnFZmYiH2MrmOS7oF6Qxj5W98sku2mY2sXKYoz60jBjzWFmYjPHlrRMr9IDLzoqB6ed32jksVOhJMg8Os8xE/BRrTa6Nx6l0OmznSqeyjQsTepsMsyiwmy8PpIyG2eDNhUla/R57pTLFZpuQ08auYcapb6ARnx+LsKIZ7vXYrAgSXI5H2S6UaPR6zBr6SzGPixUDQPWHxItRtnN5PMZRo8qsw4HZJNJAOMWkC7ucOpLEmXBQpaaP4rhSI60hZLxjcoxWv4dJFEg3G8gorOaMTDrDNUYjOksM75Ae3pUkVbPwQiSMXTYz5fPitlmxWszcL+j7Y+tFA9HCZCKrYcWfC4VZ1bDtRGC7VKQuS2qf7GokRq7awme1Meb2EHI6qPe7TLq8HDdqyMgcG3tSLh93NL2hSbfRRkM5baPhC7JZKfD+6TO8UTwL2UBrxjc1NaXqzRUKBTY2Nuh0Omr21Ol03ha9vGaz+Tfiqn/VQxRFKpUK6XT6iWeYtMd4PUAaDeyOj4+zuLj40B/B6+nZfWX1EEXmZHepcGr+JuG1ka52KDQqkK3gc9rw2WwE3Q6Kw2HTc1MRVg/0C2pxmC0UGl0K2ykuz8QQEHBbrezmSggC1Pr6H5ORSFFodKltpbArJi5ORCm32/icdu7UTxbDkNuhDsmOwm0bzDQtDzO2q1MxRJNIwqedPzLIBI3HWNZkMTaziXsHGZXJNxf24RT69G0ylWFZMOZ2sFPUM/9ahnmg2XCA2/uD45pEgUvxKCZlIHA6UkMY83nIaEqFM0E/GwZfp1KjSavXZ39Ifb86EcckCywFwzT7PfLN5qn+0ijrUq8xHtG5/ZpFgc1cgbLmnN8xmSBudyGIAplmA5vZxLbO0FA5TQ8PBlSnXIC428VKLj9gOw7Lg/PBALVGl4TbRdTlGmwiahVa/QqSouC32dk3CLieoodHoiznNKAmCKqNRrXbpVoscNkU5e7wNosoci02RkeWGHd6afZ7HFeKbBvcacMOJweNE9Ba8odZr+iBcL9e4R/MnTtlFPiweDPZbyO9uXA4jKIotFotCoUCxWKRSqVCo9Gg0Wio2dOb3VNqDD/rp2Ea/3WIvxaA1O/3SaVSNJtN3vWudz01QeJRGZKiKOzu7rK9vf2G/kivl2V97I9eY++wyGzMj9ttoyNJbBwbRCcNq0I04OYrK4eYRIGLk1E6cp92x8BWmoiwps1iFCjX2hwOiRJRt42FyagOAEThpIQ2ijGPjf3yYLFc3k3jsJoRJLg2lWCvUKLYaDMZ9lPQECmiXherhh5UT5JZHZIhZsI+xoJe1g09nZyhd3RuLMKd/ZPzS5WqIIh0+hIL0QBepw2TWSSjUYAY8zjZLep340WNDpwkK1hMIq8N+18zQR8Rr5NqR1/aNKpazIf8bA9JC6NIVmpkag21V3R9KkGj08Nhs5BrNuhIkg58AHp9g6ldPKoO5QK4LBbup3O0NGXJ6+MJ3AEL7VaTOgp+t5M1jT6eSRBOOfCOeTykNQSOGb9PtcRI1xuk6w3G3G6S9ToWUWTG52XS72U/m6VtEUk1GiTc7lP6eNWugeYfjels2j2iyH2Nh1NPlil1OjpSxJzVTqGnsOSK4LZaQFCod7s4TWaaQ9bdKUWLYIz7pSz/eOHxehJvVSlNEAScTidOp5PJyUleeeUVgsEgkiSxvb1Nq9XC5/Op5b03w1RvBEh/kyF9DeNZPsQR5VoQBDwezzOx9R5Wbuv3+9y/f59yucw73/nONzz+ozKk5e0Uy9uDhXw/U4YMXJmLcz4eYDdfodWXmY0F2EsbhhqHq6YkK6zsZ5lPBOl2+lydTrCeztPs9NRy0yjOTkZYPzxZHPO1Do5sFaklc2UyRqPXw2G3cG9fY4UuQKFpaOqPh7mzm4ZsGVEQuDwZBUnBahLpDl9zLOAhp2PouXUAdZCv4LBYKFVaLMaDOO1WZBSdDbsAJEv6zOdMLMT95GCB3MmW8DvsNLs95gJ+/B4HyUqVoNdFsnYCQBMeB0eG46Q1xIqDYoWw28lmskDQaWcq5EMQOVWK6xho3BcTEe6n9JnOdq5IuaXJdKbHSDjdIMJBpYLXbmfDUL4bldfU9zcW0lm5h5wObifT+pkxp4cL/jA2i4lSp43HZuWuhm3nsphPlfy8dptWqIFz4TCrQ3p4T5Y5KFcotlqqHJLbYmXeE2DMOTAYTDcbeGwWtgxzUccG88IzkaiubxU2m08x9GqyRKXfo9IdvNaNWFyVZYo4nMx4fCjA1UCcWr9Lpl2nJfX422MzjLu8PE7IsvxMtjOPG4qi4PP51BlGbfa0u7uL2WzW9Z6e5pwajQZWq/WZbdD/qsZzAUhPG5lMhnv37jE5OYnX62V3d/eZjmfMbprNJrdv38ZsNnPz5s3H+pI8KkP6//2xvnc0GfFxdwhQZpPICzMxLDazDpAmI342joxSMiZShSKpQg27xcy7FyY5NgywdgxlrKWJMOvD49zbHQDBxekY16YT7ORKlJttzk9Eua/pU4kCHOROVjVZUbCIJu7spHDaLJwfj9JR+qrSwyiiPjcpTd9nIuhVRV5Hg7+L8RDno2HMFhNbuSJzkYBq0Q6DLCBZ0WdQs9EAt/dT7OXLkC8T9jipVdtcH0+QazY5KFbwuN2gIUVMuu0cagRbRQH2hplPudmm3GxzbSpBp9nnXDSEqMiUW3WOGh0de61tzHQSUe4cGzKdVJaWRtliMRgiZLfTkSR2y2UmfV7WNNR0UYDDsj67G3e7dKA14fVyz1AWnA/5WfQGcdssNKU+LquZ1zQzT0GHnfuGmSdjs/tCLMqyYbDxtXSatiZTm4jFOOcN47Ja6CkSVpPIK5n0CdVeFNkyzCaN+QPkNAO1E1Y7R5pBWFGAvdrJdyrfajHt9fGaJuua8frIV1v81AvfwOPG18p+wuFwMDExwcTEBLIsUy6XKRQK7O7u8uDBA7xerwpQI6+jN4pGo4HT6fy6tC+H5wiQHtc1FgY/sK2tLfb29lSJnlwu90yyP6AHk0KhoA6EPQk54mEZ0tZxni892Nc/Tj7pHfUlmXy5SapQZdzvwOWxs5Up43PaONQ8ZyLkZU2T+bR7faqNDkfJMvPxAA6HmVylzF5Ov9DJhnmVpYkw94fZkUkUuDAewW4y61S0z46FdBRysyiwnx2AZbPT495emhdmE/gsNiYSPtK1Oo1O7xQBIuB2cKQpq81E/Gyk9Md1iCbmfE4Oay16ssKFiahq1Q5gNZvYMpgTTgS83DlIczg89vlEGLto5kwkyHauiAxYHQ6onyyIEy4bB5qSn81sYiNToC/L6kzVpUQEmSYJv4e21KevyKf6S6fkh+Ihbh3pWX2vHSbVOSEB8IVt3EgkaPZ7bBdLLEZDOtFXqyieyqgibidHGqbcYjioo5ALDGjgEw4PYacDWVCwW818JZlSgWPC69GV/GDg96SNs2E9PTzscHA3m9V5Jy2GgjgFC+MeD16bDbfNzH6tSrPXo68oeKxW1gwA5XY4QANIsw4X2xrrc7toOpVR+W12LCYTN6KPLosb43mwnxBFUZUtgoEyzCh72t/fx2QyqXNPwWDwkdlTvV7/ui3XwXMESI8bWs27mzdvqvRI4xzS04QoivT7ffb29tjc3OTcuXNMTLz+DMTDjmE8j//nS2vMxvzsZsoA+BxmDvP6DCDsc5IqVEmVW1BuMT8WxCqI+Jz2gVoDEPA4OMqfLFBjIQ+r+4NFbZRZTQZsXBqPUm61OSxWmYn62TSoOWhxX5IVZFnh9kYSv9PGWMhFulInbejNnJ+I6kp8FpPIbqZIpdlRGX8vLk3Q6vXZK5QpNdsEXXZWDBRyl8EuYjLk5bWdQaZoNZtYigdxmM3YLSbaveHA6liEOwcaHTurhXWDxbrNYubOsLflsVu5MB6l2u1gN5vUDEc2W4GT7HHcaWWnegIubpuF9VyRbl9S1SauTMQ4FwrjsJnJ1Bu47VbWs6+f6RhZfQmvm1c0/lGiADZMXI8naPS77BRLjDus7DZOFm+v7bSVu9VImohFuD98TLJaxyqKWC1mvKKVca8Hh9WMw2qm3GpTH4rMLgaDbJQ0oCacpodP+3w69Ykpr5f1oSr5qDc16fVyWKtiEgQm3R7mAgHqvS5NqUe62cAsCqwbhmX7BsyYcblZq59kTH6bnfvFHP/mHW9M9dbG82jQZ7fbdV5HlUpFBaeVlRU8Ho+aPXk8HvV6R5Tvr9cM6bnQsnvcqFarOs07LVf/WZW6R9Hr9djd3eUd73jHE4PR6Dy0GVIyV+HTX7jLwVGJab+bSZ+NmN+lUycIeZ2s7BmYa3YbdzaStOodLk/GuDAZZWVPX2YJe/U7Kb/LwmGpw4O9LMeZKvPhAOMBr24hm476TxEpRlbjlWaH1cMiEY+HgMPFxUQYh2VgE3Fo8EA6NxnVSQdZzSbu72dZ3klTq3ZYioQ4PxbFpmEhRTyuU2KxPY0GXLcvIUkKr2weo3ThYjzCxUSEckO/o19KhFT5JBjo42mZf7V2l0a7O2AidhTOh8N8w+yE7jkAVcPXJeGyq7qAwMCW4jjLejrPnf00qUINl2jhajzO5XgUj83KhUSUnEahwmYynfKLinn0MyUzoQFg3T5MsZEqIHdlXPaB7t65cAinZZDpdTXf55jbdQqgOobv+/l4hFq3S73bYz1fZLtQ5tXDNM1mn3GbmxdCUWJOF3M+H+bhgncuFFbZhzCwxFg3WGIEDDI7S6EQh0OJIklRSNZqrORy3EqlWcsWKNfbzLkDLHqCLJgdXA3FuBqOkevoP8diV19annA4cZrN/L0Z/WDnG8XzkCG9XoiiSCAQYH5+nne+8528+93vZmxsjEajwZ07d/jiF7/IgwcP+NjHPsbR0dFDM6S3wy0W4O7du3zjN34jdrudyclJ/t2/+3enzuWtcouF5yhDeqOSXTKZ5MGDB8zNzT1U8+5ZAanVavHgwQNkWebd7373UzcVjSW7T3zujtqkPsrV8DptSFKfq3MJNpMF6u0uk1E/herJDtpjt6jg05dk7u+keWE+waTfh9/nYPU4h9NuVbOjUUxEApQbJ7c1W11evn+Aw2bh/HSUYqOFx6G/rumIj+2UfgGSFYW9YTZnMYm8Z3GSfLVBpVVUgfQwYwSoCMtDJQlZUTjKVzjOV5H6EhfHB+Z+ZouoI0D47WaOqvpFShm+Qk+SWDnKcWE8QipX5UI8gtkislcss2+QWRr1l0YRcTtVYkVPkllP5jk7FqZcbjEb8hH0OhFEhVcPTnoiZlEgYwC+iMOqk0Ma93u4o2EqAliDItcTCWq9DtuFEucTEZ1qhNt2Wn7IZSjXnIkEWdG8n1aTSLPV43oiTleSOKhUGfd5dPTvmYBPN/OkANmGfpZnMRTkteTgXFL1Bn1F4V4mhwKYRZG42YTfbOVqOEah0+KoVnu4JYZBcdws6n97FyJR7mno4XaTiQf5HI2R9Ue7zQvRKO22RNThJOJ0EnI6qfW6eHodUo0abbnPfr3Kuxwell99Tc0e/H7/G4LN2wFII3uLN4PNZ7PZGBsbY2xsDFmWqVarHBwc8B/+w39gc3MTp9PJz/zMz/Bt3/ZtvPOd78RsNr8tbrEj+aG/+3f/Lr/xG7/BvXv3+Gf/7J/h9/tVG4u30i0WQFAet3HzFkev13soO02WZdbX1zk+PubKlStEIpGHPr/dbvOnf/qnvPTSS0+c7haLRVV8NZVKPdUxRrG8vIzb7WZ+fp5itcl3/uvf0dF/ryyMsbw5AB+rxcSFuRjFRovdzEl5Y2k8wPrRyd9up5V+V6IzLGE57RauLo2zcZgjMyyX+V12Gu2uTln7ylxCZfYBRAMunFYLXredjUyeZqc/yLw0ZIaZqJ+9bFl3TXPxIDupIgG3namYH8EMt3b0C3PAaaXUPKEJvzCT0KlEuO0WLGYT4yEftXaT/WJt0KfSlBMnQ14ODcO889EAO5r35uJklE5fwmG3cFAqU2t3sVstVDWMt6tTCe5oAGos4DnF4ou5rDT7CjOxIBIKFouoU3ewm0VA0BEazseCrGROQGA+EmA7V9I8x8S5sQgIAvlWk/1ShWtTcd1xw24nxUZLx6RbioV0ZcDLYzGdF5TTYibiduF3DdS/M40GUY+TZY1qxNnICZMOBsQQn8NOUUOSuDYW180vRa0Wspo5OKsoshQNYTKJyCiU2i1CLqeOdBB3ucg0G7oMf94f0KmQX4vHdfRwv81Ovd+hr/l9nwuHdTTzd8QT1Hs9fvVvfQu2bo98Pk+xWKTf7xMIBFSAepjqyiuvvMLMzMwj14Y3IyRJ4s/+7M/4xm/8xreU0fdLv/RL/MEf/AEXL17kj//4j5Flma2tLbU3pY1gMMhHPvIRfuAHfuDUfZ/61Kf4vu/7PhqNBmazmZ/6qZ/ic5/7HK+88or6mD/4gz/gu7/7u8lms3g8Hn7913+dn/7pnyadTqsD///qX/0rPvvZz7K2tgbA93zP99BoNPhf/+t/qcd58cUXeeGFF57ZLRaeowzpYdHpdLhz5w69Xo93v/vdjzStAtSdiyRJjz2sphVfPXv2LLFYjFQqhaIoz6Q6PgLW//t/v6IDI5fdwoZmoLXbk1BkODgssTQZxmQV2EkV2M/qF+UzY2HubJ5kUALw6oNDOj2J2bgPl9uB2SxyRwM+XqedFUMGlQh4VGaf1WziHfMJKq3uoKk0vF6nXd/jmYkF2BlmUKV6m1I9zWw8wJTPR8jnYK9QJupzsa4BFgHYM2RQC4kwd3ZTlIYkg5jfiVW0sBQPsZkuIAMBl0MHSHMGMIKBwd+hJkN6cXHQt0rV6qQq9UF/yaDCEPG4dIAUcVrINAbgORKPnQr7WAoGcTusZBtNwh4ntzVA4rKa2cjqz8Vq0u/KZyNBbmt6XSGnHXpwNREnXa+TqtaZ8Hl0WddkwKsDo8E1GkqUsTC3j9Kqg27AYee4W+NiOILNYqba6SCaDFlLLMpdDfvOYTazZhB0jfi8ZDXMv9mAj7uabE4UoN2RmHf58dntIILTaqbUaavlwlmf75QlRrqhV9eYD/h5TaME/rCZp0KrxUIgyITPPzi3oaxPo9Egn8+TyWTY2NjA6XSq4OTz+dSKxFudIY2qL2+1dJDVamVpaYmPf/zjSJLE3bt3T4HRW+UW++Uvf5m/9bf+lk595qWXXuKXf/mXKZVKBAKBt9QtFp4jQDICQLlc5vbt2wSDQa5fv/6GIDP6ooz8498oJEliZWWFfD6viq+O6qnPYsQ1IjXsHRzzyp1t4gEn6dJQc20izPLmyQ/TZjGxczRYELYOBz/Qs1N++gocl5vU212sZhPbx/qFJO53sJ0aLNz76QoOWwOf08HVmTg7qRyVjsRcIsCdLS1A2XQlvm5fot+T2T7IEw+4iYc91NodVg/1IOa06neDc/EAO0MCxVG+ggDMhYNcnoixmSnQ6vU5E/OzkS6rzzEJsGNQBk8EfGoG5XXaODMWotbp6ph+xtc+MwQvbexly6SHNPOJgIf5RICjYo3dfGlgme60nVKWCHrc5JqajNSgXC4I4BDNXE3E6SGzUyixFA9z6+Dk/fTbLKwZzsVYMp4MenUlvjGvi1qpyhmvm6qskKk1BqKvGlKEUX5IgFO0/tlwgNeOUipFfMznIZsvM+/343faB7qCiqIb/j0XC3Mrqcla7DbWDfNXggFgL0Qi3MvmoAFQwWE2I4gC/Z7MuGfA7PM77ThNFrKtBrlma2BeqGH1iSin3GnjLjdJDWjN+QLsVEr87Lv/lv58NKKoRkuJBw8eIEkSwWCQbrf7WBqUzxKjz/atJhs0Gg21h2QymVTVbXjr3WLT6TSzs7O6Y42cYdPpNIFA4C11i4XnCJC0cXh4yNraGmfOnGF6evqxvgSiKL6hsOko2u02t2/fBtCJr2qzrKdNy0VRpFwu83/+zx32MyMgCmGzm9lP6X+YZ6ej3NUAlNkkcJRtUG8NxDivzMSxOyx8dfWE/G0SIF3U9wqWJiMsb6bIDGV1zk+HQVYwCYJK3Z1LBFjWAJTHaWNtmK1lS3WypTqX5+IsRkNYrCbWk3mCHucpgLJZ9F+ZuUSQ26MSpNnExfEIDocVUaioZanpkJud/MkCZBEFtjWLebXZQZYUNg/y+Jw2ZmIBJFE+RSE3GbKA8xMR3WMy5RrdvkSh1iTgtDMV9eF2WPnq7rH6mJDLzqahJCkYeiLnDNbtdrOJTqvP9fEExXaLvXyZ2VhIlw1F7BY2svpeXKWlb9o7kNmtnJTQZkN+hD5cjcdJ1Wuka41TTLrzBvkhrZX7KGJuF8lKbSDqWoSFcICtQomA3ca434vdbEJRwGESaQ1LuvPBIK8lNVmLx33KVLBuUGpYCge5kxm8L6lanXa/x0oup37HvFYLXpONa+E4CArldhuh12FbI1HkMpt1enkwMDQ8FwpzNapf6IxhtJSo1+uqKOqDBw/Y399Xsyev1/umZk2j/tHbCUjGeKvdYp+HeK4ASZZlVlZWyGazXLt2jVAo9ETPfxxiQ6lU4vbt20QiES5cuKD7MARBeCYbc0mSyOfzVKp1bu2cLMA7RwUun0lgR+SFuQTrxzk6XYnjrL45f342rgJUtyexsp0h4HEwHwlitYmsH+eZjXnZSp3sqE2iwIEmGwGwmkzcW0/hc9mZHg+QqzbZOtIvNnOJoK6/NMigcmqJ0WW3ciYWwGkxD/pbgkAi6GH1UA8SZs2uutuX6PVlVtaOcTuszCWClJsNyoa5nYmAg93CCag6LGaV+Vdtdri7m+bKbBy3aGFmLEBHkmh0u6wZ2IGjnpr6/k3EuD+cXyo32zQOuzisFugqTHns+HwebDYLBY2VxnjAy1pSf1yjvuBiIqybi4p6XchdhRfG4xyXq+QaTRLhIDmN+kTcYWG/qP98q319uzbkcuiyrsVIAJMscDURJ99sclSu0jEM5Z5PRPWeTQ8hTTiGm6lKu0MlneN8LMzKULpp3OMi5vVgRmAhEOCwWqUjScS9A2mhUcwHA2wX9RuoVF0/qjDj8+kIEF6bja8cJ3WPidmsRMxOIi4XDosZl83CYb1KqlGnJfUJ2u08yOf4t+/5pida7EfKLB6Ph8PDQy5evEin06FYLHLv3j0URdHN/Tyr8sHbZV/eaDROZSCjGLnFAly/fp1XXnmFj370o/yX//JfgMdzi/3RH/1RUqkUgUCAvb09/vW//teqW+yjnGBH973eY94Mt1h4jgCp3W7z6quvAgO/jce1jNDGGwHSwcEB6+vrLC4uMjU19dAfwNPamI+yrn6/z3ZWoqIZyBQFSOWq5EsNcqUGdpuZd5+fOlWKyxT0pZnzszHub6cpDE33PA4LQY+XaFMiO1QyuDAT4972yQI18FIauoY22tzdSHFpLo5DNGGPWlg/ziGKAtvJ0wClLfGZRIFXVo/p9SXGgh5iITeiWSSlETcdC3pZPzRo8Q3/W291ubuTZsxnQ+mLXJ2KU2y1OciVaUr6H3bUZeagdPJ+ue1W1o5ydHqSqizxwlyCgM2BhMxmtshYwMN2Rp8pVA29l7PjEbVHdFRpU2wNvhszfh9Bj5Nyq43bYeG4dALws5EAOzn9QlwwGA9OBLw6Vt9iLIhZFriYiLJfLFPrdAn4faQ1s1KTLhuHGhbfSH5IGx6HTde3OhsLISJyfSxBtdNht1giZwCFxUiIW0d6p1wjPbyqeU6q1iDmcfPK/gA4REFgKRRA6MH1WJxyp8NhtXKKCXghGuaBRqLILAjsGC3XnU6ONaA26/WyO6SHj+aaYi6XyhaMOpyc9YdAEHjfzKMttN8oZFnGarUSCASIx+MoikKtVqNQKHB8fMzq6qpu7sfr9T5xpvO1tp54WLzZbrE3b97kp3/6p+n1eiqYfe5zn2NpaUn1k3sr3WLhOQKkVCqFx+Ph/PnzT70TeRQgaTOv69evP5SxMoqnyZBG/a5QKEQoHOHXfu//1d1/fi7Og62Thabd7rN3VCSbq3F2JoIiCpjMIis7+p1H0eD+OhkP8tqDIwQBzk1HkAWFvEFiZyJk57BwkpEIAiTzVRXUXHYrVxbiHOQq1IdmczaLiS0DOM6OBdUSX7pYo93p0Wr3WIwFsTssbKQLhLwOkhoSwkTEy4bhOFabnWSlwvIQNK/NJ1AY6OEd5quIIjQMKuRhp4m94km5yO+0c38/o2r22SwmxrwePDYbu7kS9U73of2lI8OCvzgW5s5eioN8hYP8QEm9Vhe5PBZDERT2CmWcdv1CvJQIq9JHMADcQ0Pm47HbVIASgCuTUUyiyJzfw0GlRl8Bs90OjZMS3rTXybbG48ppteiccgFsZjN3NRJF5+JhOpLEjXicjixxVK2yr/FeggFJQjtXFLFbOTJkqEUNcMuKgsdm02nqRdxOKvU2VyMxRJNAvds9tYBfjEe5o+kbuCyWU4oQduMgbzjMAw0TsNxucy+b43vOn9fNqz1pGEkNgiCo8zqzs7N0u12KxSKFQoHl5WUAFZyCweBjme69XRnSo6wn3g632O/93u/l53/+5/mBH/gBfvInf5L79+/z0Y9+lH//7/+9eh5vpVssPEeANDs7+8yDrQ9Ta2i329y5cwdZlrl58yYOw5CfMZ50nun4+JiVlRW13/XJ//klAjYLLrudo1wFFCgZgOXsbJS13UEtfmMvBwpcmI/zwlyC1cMsnZ7E4nSYjX3NAqVAfTiIqiiD552didJv9bk6n2AvU6JUb1NvG0o8MzEeaICu2emysZ8nX2kyHfPj99oxmUVuaVh8NstpIsVMfNCDGt0e9bugp3B2PMxmMo+kgN/lULMzgMmwlz1tWVKBcr2tqkqMBz3MjgXYy5VBaYEwyBxKbX2GGnKZKDdPbvM4bHx1/QhZUTCJAkvxEGGPi3KjpZr2jXttHFdPAOBh6uZz0SC391IUhnJCUa+LdrPH9YkEhVaTPcO8E8CFiahOd89qEnWyRgpgEkTu7J1YYLxjOoGkyJjDJvaKZXqyTEPSl++mvE7WNOcXcNp5kNL37xTQZW8Xx6Nkaw1eiMUQRYFyp82Wob/kt9vItU/AfTESYkPTKxI4rTQx6ffx2nFKvX3C52UzWyThdhFxO7GYRKyiiajTRbbRAAGWImFeS51kaiG7nfWSQanBYMp3MRrlfj7Hdz2kMf+4IcsyiqK8LlhYrVbi8biaPVWrVQqFAoeHh6ysrOg057SqCcbXeTsypHq9/jVzi/X5fPzxH/8xP/RDP8T169cJh8P87M/+rI4c8Va6xcJzBEjP0rsZhRFMtJnLhQsXHusL9biAJMsyGxsbHB0dcfXqVcLhMLKs8Id/vsVxZlC2WJwOEwg6+Oq9gxOzGQVaHX2P4sx0hJVhBmWzmJiLuOg2m4bHhNnSAZRCu9OlUG5SKDcRRYEXL0xykMpSVhQUQRjaUOh3x+dnYjwYlsEOM2WOshDzu7k4EaWnyGwe51mainBXUwa0W0ynelDxsJe7wwzK47RxZio88GvSUMi9LjtopI7mxoLsJk8WzHSxhsUkkspVGQ96iAbdmK0mXtk4OhHxNIukqnpyQNBpUeWKJFmh3uqq8kgTQTcWoY/D6eS4ciKSen4iyn0NQcNiEk+V/MaCHhVIAM7Gg9gwcXk8xkGpMuhLdfSN/nPjEZYPNEKrVouO1SfJCr2+pPagrCYT12fG6ckyXruDvWKJniyTNmQxCY+TUvMkkxnzeXQZlALUO10ytYbq7XR1Ik6yVWPe50PodxEtFmpD88bR+2AxMuniUe5rNPVsJhMbBnp4eKipl6k3yNQbLEaC3B7OSbktVsZ9biyKyPVonFq3y3GjRtxhp6BRZpjweFg3WLmX2i2+dW6OyOuMc7xRjMYoHzd7EQQBn8+Hz+djbm5O7TuNAEoQBF32NCpdvZ09pId5Ib0dbrEAly9f5i/+4i9e9zFvlVssPEeA9GaEFkyOjo5YXV19IqYePB4w9no9lpeXabVa3Lx5U02xv3x7j+PMSY9ley/HTD9IwuchGvGwdpBlIh5g+0BfmkEjftrpSTQbXXLlLotTIcw2M2sH2RMu9DDmJ8Nsa/o3sqyQK9RJ59v4nBZ8bjOCWWDPMNNUMagRnJ+JsbKTIVMcgGjY58QmmIgH3KRLg9uWJvUA5bCZ2dS8dq3ZodsZlCFDLitTiSBNqX/KRNBYwlkYD6mlwlSxRqpYYyzkYczrIRZ0k683CXgcqlU7gMNiYi+v77X5HGZGBMZksc5YwM3+YZGwx8FE2Ee736dp2AScn4iwrNHmc1otrBvIDQ6blbsaj6brswkUwBozsZMv0ZNkclX9xiHhsbFVOOmjBF12HWOvK0lUWx3WhmVAsyhyc25CJW7slspIssyuIZsLOm0kKyfXvRAJsJU3zP9U63T7kvrca5N+to5ShJx2Ej4PbruFaqeLx2qlNmTQtXv69+VcPMJtDT3ca7OdIk1YNRu7Zq+H3WzRafVZBIFcv8k5bwiX3YqEgsNiJtdsqvNLCwE/W+UyP/+N30i/31cX+ydd9Ef93qcFC5vNRiKRIJFIqKoJhUJB1ZwbZU9vlzxRs9l83XnLv+7x1w6Q+v0+KysrpFKpp2bqvR6poV6vc+vWLVwuFzdv3lRnnhRF4RN/8KrusXNTYXaG4JPJ13A5rEQ9Tio+l9r7mU4E2DIAlGW4cG8fDBbrc3NRrFYzfred8pAsYTJQlWfGAmr2UW32qDZ7zMR9zARFenKfZLnNRMTDoaGEVq3rASoe8nBrdUCTnksEcLutFA2L7uJERMfQc1jNbAzVHsqNLuWtNJfn4kx4PYQCTo6KVUSTqFMqf9g1aG0y0kPyhNNk5up0gnKrzW6mxNJEVKcA4bKZ2TKwDH0uO8lSnWKtRbHWYj4RJJWvcj4ewWIROSxWTgHJ4lhIlx35HHZWDcKwvZ7Eg+FtVrOJG3MTdPoSZlHkoFBBECBreD+nw3pZozG/RwUjgL4sk6001FKcKAi8c36cdr9PR+pzWK7Sl/qnZp7sBvr9uXiYVU0GZRIEdocsuVKzTanZ5upEXGUUxj0uZsN+OpLEUjjEUbVKvdsblOA0sRAJ6PpL0Ydo6rV7+hmgCZednUaL/LB86LFZ6UoSPUkm7nITdjkIuhycCYS4OKRwj+aIRkzX0X/fKJ4VkLQhiiJ+vx+/38/8/DztdlvNngqFAoqisLq6qmZPb7Zb7GgQ+OvVLRaeI0B6s/j9+/v7WCwWbt68+VQ7jdcr2eVyOZaXl5mamuLMmTO6c15ePWZlS09KMBvmZoJ+J1+9vY8oCFyYi9JRJCyGL3U04CCZN1pLC9xdTWIyiVyYjWK2mljeSOo8e6yGBWoqHtDNPQXcNvx2C1WHmUpr8OOfiXvZT+t34lp24H6qxIXZGLlsnQuTUSQUdtIFDnP650Q8Fg4KJ4uS22Fl/TBPp9vnePjYd56fZMzrZj9XptRoMx46zdCTDGWH81N6WaOo14kZgTOJENvpArIyVLHY1ezo7ZZT9HCLSaTTk1RAXBoP0ez0uTY1ALr9fOmUZNFcLMBtgzOuthTX7UuU6i3VSsNlFpmPeBFtNtLVOulKA5vFdIpoEfG5dJnOXFjP6pMUhf1ChaRmGPZdc+O0en0kWSJbr9Pu9XhgUKPoGGaGLo5HWdYQIpwWM2sa195srUHc62ZZI1F0YzJBV5ZIjLmp93pkqjVVHWIUE36PDrSm/T42NaU4Beia9N/FxXBInXnKNhooKKzmC/x/vvVbsNlsyLKs+6f9/YmiqP57WEiShCAIb8l8kN1uVzXn9vb2KJVKWCwW1e/ozXaLhSdj2f11jOcGkJ41KpUK+Xweu93Oiy+++NQNyIcB0uNYmH/q929xeS5OplwjU2wwEfexsatfNDzOwSyErCisbWeIhz10TT1mY24OcnUkGfxeJ9niCSDFwm7WhqQESZJZ3cpwYSHOmM9DJOxmK5nH47azsW8Q8DSwxXxuByvbg4VjfjyAaFJoGRaxubEAO0lNGUgZAFSvL7M6JGFcPjMoW3kdNvbSJQQBygYSwvxY6NQQ7u2NJL2+hCDAwliQWMhDvdVVrTWmor5TTL+mYR4oFnRzayM5vD4rc4kAtUodiyjQG5Y9ZxMhVeQVwO+wsHZkBD44zFdUCaLLs3EkWWbM5+GgUKbZ7T20v5TVCMNOhLw6X6dWX6bWg/3U4LOKeJycHQtT6XQ4LlUpNFq47VZWk/rPycjqO5fQZzqiILCZKVLU9JhuzI5RbbUxCwrVdoe21GXHYBdSfoT80Mn7Ytf1jgBavR6rGtC6lIiSrNa4GIpgt5rpSv1BX0vTk/I77OyXT0DL6NkkCrBvoIdP+n0gwHvnB6oAWsAZkRRG4PRG2dPbqfRtt9tZWFhgYWGBVqulZk+7u7tYLBadW+zTZk9/A0h/DWLEdPN6vbjd7mdiwxh7SJIkcf/+fUql0iMtzDd2snz19p7691jEzljYy1GypDb4YyE3a9v6DCrgc7C6NVgUXA4ri4sRDlJl3WMiQQ8ZjcpBOOBibTuDLCtk8jUsZhNzcwHsFjN7ySIIArGgm3WDnYXLcUJt3TsuMRn3USn3uDgdpVRvcpyv0TASKabCbBrKiYVyg+Mhky7gsnBmJsJ+tkJ16DNkNgmnbNjnNBRyRYFitclBuowsK5wZH9iaY4IDTTlxNh5g13CcioY23Wh3qdVq7OWaWMwi58bCWK0imZJeR20qFqKsKcWFnGa2DDNYlUabfY16wzsXJwa9nnaHnVwRu+V01hVwO1RzQID5WFAHYoVak51MUXXPTfhcnEmEKLc7HJcHABV2O1kxOO7K6LPEC+NR7mkGbm1mE6vJHA1NT2zaaydht+C1Wej1eyiCzF6hosugjysG+aGI3rNpzOfWgREMlBoKjRaFIRhenYizn83hspgZ83kIOO30UZhwOMh3OrRlWS03j+JiLMrdjJ40sZ4v8E+vXcHykN/pCFxGv+E3yp7eLrKBkWXncDh0fkcjt9jt7W1arRZ+v18FqMd1gJUkiXa7/TcGfX9VY6QEnkwmuXr1KqVSibbBDfNJQ5shtdttbt26pfovPWra+7//3iu6v1tNiVu39pmI+giEnKzuZYkGPWQ1wOLz2ljfPvmhNlpdpK5CKd9gIuzA6fWQLddOgdhYxEuheLJTdzutvHr3EEmSmYx6CYbcIEJW01iPBlwqzfzkeXYO0xW1zHhpfjBz0uqWqTZHw3b6RWxxKsyGBqAq9R7JdJ18vsFcIoDHa0M0iaqUEAx6LTtJfbYxHTuRMdo+KhD2OqnW2ywmgjidFvZyFexGHbvxEJvaDEqB6nDQtdeXWT/IcWU+TjZbZy4ewOexU2m3T0kfxUIBCs0TEIh7bDowgkH2NBoAdlgHPax6u0uqUiNTaeB32dVe0ihsFv3iem48zKoGxHLV5qDMNySVxL0uFuMhKq0OqWqdbLXBeNCr09QDqBns6M8ZzQrNIslGl54skxkyKs/GQ9jrfcJ2CxYB7DYLyVZHzWwsosiWYUYr5nWT1Ni9z4UD7BhJE7XB/a1en+18iRfGYyrbDmApHIC+wo14gr4iU+l0Tns2xSLcz+b4zovneJx4WPYkSRKKoqAoCq1WC0EQ6PV6T9R7etKQJOmx3GLPnDlDq9VS+047OztYrVZd9vSo49SHQ8V/00N6DuJJ66/dbpc7d+7Q7XbVflGtVntTqOOyLKsSQ9Fo9HWHdQ+TJb741W3dbR6XiWq9RypTIZWpMB73Y0LA77FTrg0WJK9dROuf5XHZWN/OoCiQyrUg1+L6pUk6/T5bR0Ua7e7gMTsGD6S4n3vrAwBIZqs0Wl16fZmL0zEavS67x0ViIS9ZDYhFAi7WDQClyHB/M40oCJydDuNyW9Rh1lHUjCoB0xE2h6XC/VQJUpAIe1iKh7DaLWynCixMhri79foU8vGIj0Klyfbw9ljQTb/V44XpOIfFKoVa89T3YzbmYVfDaBSFE4WKvXQJ0vDCfIK6tcNY2Eur36PUbLNuyHQ8Lifp2smiPxV0caBRo+j0+qwf5ikM55tiPhcTQSeZChS7fRrdPjGfW/VfGkXfMGd0YSLCPQ04Vlttbu2mVPZf2O1gNugn4nZSaDQ5KFYHWZdBHy9d0WeAi4kIdzQZVNTjYj1TQAGOa0NlioCVar2L2ywStFsJuh3UFQURgXK7jdtq0ZUJYUBf18b5eETHtjMJAps5/XPcdv2A7UzQx1aqwJjHRcjlxGo2YRFNfNeFcwTfYB7wYWHMnsrlMhsbG0xNTQE8Ue/pSUOSpMcaoIVB9jQxMcHExASSJKnZ08bGBp1OB7/fTzgcJhQK4XA4dG6xwNd1ye75UdXj8UGpWq3ypS99CYvFwosvvqiSF94M11iTyUS1WuXVV19lfn7+lN6dMf7HH9zSWYL7vXZSOX2WFgw4uffgmEalw2zcSzxgJVPS929mJ0N0NdpsToeFBxsp7q8kkVs9Ls3GODsd0T3G5bCwaSjNTY0FaLa6rGym2d8rMh8PYVLA6zrJ7uJhr86PJxxwqUAnKwqbezk6LQkHZq7MxJlNBBgLuUgV9WSLpqHEtzQTIZWvsXVYYGUzjdyWMEkCF6ejagaxOB2loRnUNFpyAEQDbnaOi9zbTFEuNHhhMobLbCbqPVnERJN+wTw7FaWgYc6ZRYHddIl8pcnd7TSb+wUmfV6WomGuTMUIuh3EAi62DPYWGD7ruahXBSOAUq3J2lGBZLFNp9Fnzu9nMRpkMRZS7SgmQ75TZAaj0OrZ8YiOit6XZF7ZOububprjbBWvyULM6eTaRJwzkSBWk8j5sYgOkEyCcEovbzzo0RX9poI+9obSSM2+zGGtTbrWZjtTplpr4xPMnAv4OBcKciEaIeRwEHTYWTGQJmTDUOuU20Fd+321mFnN6gHKax/4N6VrDR6kc7S6fb66e8wHz53lWWM0Yzg7O8v8/DxWqxWr1aoKoMqyTL/fV5XAJUl6KkmwUTztYKzJZCIUCrG4uMjNmzd517veRTgcplAo8JWvfIWXX36ZjY0NvvjFL5LL5bDb7af6T2+GW+wrr7zC3/k7fwe/308gEOCll15SVSsA9vb2VHKI9t/LL7+sO85b6RYLz1GG9Ljxes6xzwpIsixTKBSoVCrcuHHjDSnj2VyVP/+zDS4tJMiUamQLdcYTAcoVjTGd08rmcLGXJJn9wwoXl+I4rV0cLitru1ksFhM7+/of88J0hLtD+nW3J7G1m8ViNjEd8eHx2tk4yDM3GVazIxjMB20bjuNxWrm3MmDonZ+JgFlQs5pRjIW8FAon2c8IoGRF4f7G4FqmYw7OjQUoNLtkyw3Gwx6Oc/qSXrOpX3QXJsPcHT7fZjFxaSqKhQHrbWQkuDAR1imeu5021g0ApSgK9zYGO+9EwMX0WHBgOaEZwtWCHMC56aiqgweDzGzjKE+jfQIC7zg7wZjHS63bYSdTZDzk48CgzlBr6Y877rOzX2oNzwvylQbpcp12r4/FJLIYDRILerCIInv5MrKisBAPspXWZDoCpAyWEvOxoI7V57Ra+crWkbrZMYkCDsHEGa+LPgqVvsxkyMfykZ5JZyz5+Z12DjSgtRgLsaHxX6p3+2zlKlQ04PjCRJSWQ8Jpt9KTJfqKzJoGbBSgZWBELsXCOtHXgMPOSlr/OYoCXJ9IsBR9slEMY5RKJe7cucP8/LyaHT2s9zQCoRFJAp6cVj6KN4M8IQgCTqcTp9PJ5OQkkiSpdho/8iM/wu7uLoqi8J/+03/i/e9/vyp6+qxusfV6nfe973184AMf4D//5/9Mv9/n537u53jppZc4PDzUibB+/vOf58KFC+rf2jXwrXaLhefIMRYGZbhHnY5WGeFRzrHpdJrd3d2nEvrrdrssLy9Tq9XweDy84x3veMPn/Ppv/hmf/V93gMG6eP5cgk5fYmMnqy6Ul86Nc2/1xP7AajVhM5upDxv0Pq+Ds0txVrfSajlPFAYlvErtJNO6uJTg/vrJguXz2JmZDJEp1UkOS1WXlhLc0zzGZh2USBqaRfXS0hiHyRIT4wHS5RqNdo9ep6/LvC4tJri3oWHJOczUW311cZweDxCPeri/k6U23PknQk5SBYP2XszHYeZkMTw/G2VlJ4PDZmF2IkgfmUK1RU6j6XZlIaFj6PnddmrNDpJmePj8bIyV3YES+njMh8Vi4vZOSveYsZCHpEas9spcnGWNy63bYaXXP3HhddgsXFmI0+j0OCpWKNRbzMeDbKf1JbOAw0KpdbJ4X5qJclfjMxVw2am2Budrt5iZjvoJ+Zwcl2vs50vIytA2Q1PiM4kCHruNskaZ4cp0nDuaodyJgIcjg+vt2fEwJpOIxWyi0m7jc9p07rR+h516p6t3ah2L6LKfi+NR7mvo7BZRwCwKqk0FwOWJKOuZAnGvC6Hfw+O00xAEkrUajSETMu51ka6dfI7XxxO8dnzyOcY9g/t/9QPfyrec0XvuPEmM3J0XFxeZmJh4rOdoe0+j/x/F45b2bt++TSwWeyjD9s0IWZb52Mc+xs/+7M9y48YN/vzP/5zZ2Vk+/elPP3SxfxK32FdffZV3vOMdHBwcMDk5CQy8lS5fvszm5iYLCwvs7e0xOzvL7du3eeGFFx56jm+1Wyw8ZxmSIAgPBaQRWLTbbZ0ygjGeNkOq1Wrcvn0bt9vN3Nwc+Xz+DZ9TrjT53398X/1bUUBEYGs9Q8hvJRoPspcssmPIRs7Ox7i3cpLV1Btt1tfSNOptLizEBgtIr8lxVqMWLgocZ/Q798mxAHcfDAdYJ4M4XBbSOT31d3EmqgMxq8XE7mGBeqNDuTrY5d+4MkWz02XrqEC708fltJ7qL00mgqxoCBjNVo+v3jlAFAXOToURLeJg168BpHjQoQMjFIXqsKHf6vRY2c5wcT5Os9rh4tRgxukgW2Y3pQeAoNuiDgPDQElibVimLNValGotlqYjOBCZmQgimEQUQeG+ppQpAMmiISMZC+mGe20WE6+sHamgNhHyEPe6MSGwnSkgKQMA0LLtBAF2UvqMZDrqV+ei2r0+5UaLjWQeRQG71cxU1I/fbmcuEmC/UEaSFc5PRFVVchgOGhuOa1b0w6dn4sFTthkJv5tZrx+/246Mgt1m4as7JzJMcZ/rVCnOaLVxYTzGHQ093GESWUnm6CsK+0NW4QW3m+3hcaJuJ2eiQdqSRMzlotzukKs32DbIBI15vYiCyDfNT/O0kc/nuXv3LmfPnn0iYHij7OlxhnJfj9TwZoQoiiQSCcbGxvj85z9PrVbjT/7kT5ie1r9fT+MWu7S0RCgU4rd+67f4qZ/6KSRJ4rd+67c4d+6cqnM3ig984AO0220WFxf5iZ/4CT7wgQ+o973VbrHwnAHSw6JWq3Hr1i08Ho9OGeFhMVJqeJLIZrMsLy8zMzPDwsICqVTqsUDts//rDp3uyWtZrSZ2h+WyUrlLqZzm7GKYeqMJioVGq4coChwly7rjnF2I82B1AFCr6ykEIBaxc2E+xuZhnm5X4uxCjJUNvcVERiMJtH9Y5PxinHaly+X5OIVak1S+xrFh6HVx9jRArW9lqDU6WK0mLs7GcLltfOXuvprhuZxWtg6MOnYecsU6kqSwsZsjGnJTawyApafIbB4V8HncpLXzVH47RwZQLVabKjgBXF6M0+srKCHYShWQZZmkwYxwLOIlX9ECn5v1IeiPZqXOTIY5Ew3gctrIVhv43HadjJFJFNg39I6m4wEdQEmyzMsrByjK4PELiSBBl4OpUVlPgAtTMR2QmAVYM7D64n4PmWEG2O72aXf6vDw0XLSaTcxHfLjNFhZjIfYLZTp9iaWxMLc1VHWnReSoqu9LGunV58dPsq79/KAs6rBZcIpmJoJeXHYbLocFSR4MxSIMDAK3DVYbRnuLcxMxnWeTx2LSDeXm602CLoeuDHh5PEau3mAy4sVqNtNXJKrtNv/o6gVMT1n2yuVy3L17l/Pnz5NIJJ7qGKMwMvceZyj37RBX1coGeTwevuM7vkO971ncYj0eD3/6p3/KBz/4QT784Q8DcObMGf7oj/5IXU/dbje/+qu/ynve8x5EUeTTn/40H/zgB/nsZz+rgtJb7RYLzzkgpdNp7t27pzYu34j08CQZkqIo7OzssLOzw6VLl1SDqcfRsms0Onz+T1Z1ty0uxLj/4KQ0JwhwdFSm0ehjsZi4dCaO1Wnh1t1DzbMU8gZdtqUzMdY2MqSzaew2M4tzMfp9fTP27EKMtU09HTxfbNBsdXmwOlg8rl+epN3r02x16HQHA6kpg67d0lxULfF1uxKbO1lsVjM+q5lwyEG9oxCLeLmrATG3y3Yqg4oG3WQLdZVCPjMewCaIzI8F2UkWUBDwed1kyieLajxgU0uNo8gWGqSHZTaTKHB22g9mK7vpEo12D6fdoqOdA0QCbtLFk0b/RNSn09kDCDsdvDAdp9nvsZMqnuovPcx+I+x1kikNFmdJVmh3+7z8YPDZ+Zw2JiJe3FYLUY9rsMADF6bjLGuAxGYSTtHOvS4bDE+v25dAEPjK+pF6zXNhPxZMXByLcFCsUG13mQp5WdPII8W87lMDtl2Dkd+5iQh3h2C5mS7islkG19Hr47NbGQt4CPtcuKxWcvUGmWqDs4mwTs1BFGDXAFjz8YhuwDZoM+vACKDSapOq1EkNCRhXJxMki0U+ePHpyAyZTIb79+9z8eLFR5rXPW087lDuaE14KwdxH6X0Dc/mFttqtfiBH/gB3vOe9/CJT3wCSZL4lV/5Fd7//vfzyiuv4HA4CIfDuuznHe94B8lkko985CO6LOmtjucSkBRFYXNzk4ODA65cuUI0Gn2s5z0uIEmSxL179yiXy7zrXe/C6/XqjvFGbJw//H/u0ii1uLyU4DhbpVxtcnys/+GOJ1wcHw8Wql5PYmUlSSzmZWE8hMlmYnM3y+J8nDVN5oMCVU3fqN3pUyyUyWTbTI15sbttbB3kqdX15IGl+SjrW/qFb0A5r2K3mbk4H8duN/PqvUM18xEYmAZqY346xNr2YKGrNWtYzCJ+p4NLC3F2j4vUW13mJoI6gPK6bKwbFCncDhsP1gfXFfQ6mJsJkS83dBP+DqcTSifXMRF2cqQBZ0lWyJa75EslRFFgcSJEOOhmbT9De5iZepw21gwlUb/bzpF2wDYRUNXNYQA+NkHkykyM42KNfLXJ2amIrr/ktJnZMKg7+Fx2VTKp1uzQ7Up8dX8AJHG/i3jQjUU04XPaVfWJxfEI9zTSR26bidUD/eekddyVZAWnzcprmycbmzGvA6fFzguTcQqNJkfFKomgm0ztBISnw362DMoSxbqeEbkYD6uaevV2l1y1wVa2qJYoPTYLPquNa+MJ+rJMsdXCYzOzqqGd28wmNg3zS+OhAEVNxjTmtJ1i/h1Xqnz7xUU89id3bU2n0zx48IBLly499jrwtPGo0l4qlaLT6WC1WlWAerNp5fD69uXP4hb78Y9/nL29Pb785S+r5/vxj3+cQCDA7//+7/OP/tE/euhrvutd7+Jzn/uc+vdb7RYLzxkgjQbclpeXaTabvPjii0/EyR+BiaIoj8ymWq0Wt2/fxmQyPXTY9Y1ArdPp89nP3qLd7nH/3jGiKHDjxjTpbJVSeVhKUqCjxwyWzsRY12Q1waALj8OGy2FVSQfzc2G2d/QeSFaLHWhznBx604w5sZsh4LVTqg5kXFotfR/gzFyEzZ3BItHu9FlZTTGR8DEe9BIKu9lNlZiI+1g1aO8dG5QRluZiPBiCj8kkcnEuiiAPFtGRWd6MAaB8brsugypXW7RbfQ4OSkT9ThJxH7KocG8zrVMSQNR/FWcSHvZSA4CSZYWdowKFcoNytcVsIoDPa8cy7PuMQDbgsbNqoMHbbXp6+FQswG0NM3Ey7MUqiCyOhdhJF+nLChGXmf3iSTnW77afAhKrZhA2V24Q8ji5tzMAksmQh3DAhWAakBVGw61TYT8rmkws6B4442qjbejpRINenVZf2OOg2+pzbTJBq9fjqFTF59R/hxcTITY0bDsBODKAxHREL/rqddh4ZedY95i4y8qky03Q60YUB72tO5pBWI/dxrphTsrtdICGbTnjc7FbbfCdl588O0omk6ytrXHlyhXC4fATP/9ZQxRF0uk0W1tbXLlyBa/Xqw7ljrIoeHrmnjGazeZb4hbbbDbV89Ne24ge/6i4c+eOrjz6VrvFwnMGSLVajVdffVVV0jZ6wr9RjHY2kiQ9tNf0OMOubwRIn/vcA0qlkx6GIssc7ObJZmtEw3acXgfdfpdUSl+LbxrowwGfk9de3cNqMXFxIU6p3kI2DFPOTofY29eXQ0TRwvb2ADgSUQcen53NPYMRmqHEtzAXYXsIUOlsFVEUcIwHWZqNsrWfQ5IVxiJ2kpr5KQHIajMWScYkitxfSeK0W5iZjdCW+uwahlynxwI6pp/f62B9qMU38m46vxAj5nYRj3kpN9ogohOCBWh39J/B/LifzcPBY/ZTJcxZEafdQtzrJhb2UG93cTmtOpuMaMDN2r4eSIz7FJ/LrqqbW8wiCa8Vv9tDRzaTLtVAEJiO+XVDwrGA65RyuZbJlizUCHqdqrX8VNhL2O9CRsHrsFEdMhPDbgfFxsn3YizgYkfT21I4nelMhvzc0dDDAy47xVKTy+MDk75Kq63LumDgBaVVlrCYxFMDtzGfWy2xAUSdFlLNLjS7HA3lj8b8Hlr1HhG3g4jXRcTrotRqU2q3SFZqBFwOtgy2GYogcD7gYf/+MqUDL+FwmEgkgtvtft0S/NHRERsbG1y5cuWJFfvfrBgB4gsvvKC6TBuzpxE4jdaM0fzO02RP9Xr9LXGLfe9738uP//iP80M/9EP88A//MLIs80u/9EuYzWb+9t/+2wB87GMfw2q1cvXqVQA+85nP8Nu//dv85m/+pnoeb7VbLDxngJRMJkkkEiwsLDyVcu4IhB4GSIeHh6ytrbG0tMTk5OQjj/96gNTvS/yPT+stJhaXEmysDRaIQr5NIddmfMLN0lyYg2SFVrvHvAYQRjEiE3Z7EiurKaYmAwg9mXMLMTZ2skiycmphmZwIcHh0smBlsi0sJjNus4g/YKXSlPC47ewaSAiKEeimQizfHyzCToeZYNCKy+PWAdLSfIx1TQYlAJnh3FGz3WNlI83FpQQ2WWBuPk6x3iJTrLFjeO3JhF8HUEGfk7WdLLKskB/2aM5M+ZgJOlEsFvbTFeYmg+wcGUpQBqv2xekwKztZqo0O2WIdm9WE12Xn0lQMWVDYTZeIhzxkNdp2Y2EvG4b+ktY6odeX8bo93B+WP2N+F2NRL4o8GOAdzTDFAx61vwQwGdELwypARZMlHOWrBL1O7g7LghMhD7GAG0lQCLq6qnCq2TB8Oh/zs62RNXpophMNcGcvRXJICY/5XSTzNeaCfnyuAdtOEAWE4XnBAKC08kMum0VniQEQ8nnJtE6uaSkeUmecCvUWpUabbLWhnrtJEFicCFJ3drGYTXRlCVmRWcnl+eh3fhs3xmPk83ny+Tx7e3uYzWYVnILBoI4wcHh4yObmJlevXiUQCPC1iIeBkTYeJWmkJUiMHqcFqdeLR5XsntUt9uzZs/zBH/wBP//zP8/NmzcRRZGrV6/yf/7P/9FlQB/+8IfZ39/HbDZz9uxZPvnJT/Kd3/md6v1vtVssPGeAtLS09EyDraMPXnsMWZZZW1t7bH+kEaPmYWW/L/3lJuWyhvWlKBQNg5RzCxF2tnJAHbvdwqWlBIrB92dyIsiOoe9it1nYHJb0vF478wtRdg70i7LDoZcuGYv7VNZeo9lHEAZstkTIRqbYQVZgPOE9NXSrjWarTyziZX01w1TCjz/oZCdVOjXkujQf0+nqCUA6W6FUaVGqDBala5cm6UkS6WKdTKGO/SGDuuNxH0UNS87ntrJ5cPIehrwOYh434rjAznEBmYeLvB4beiaL0xHubabJDYHC67bTaXa5MhcnU6qTLg6ylqTGwXYmHtA52ALUNYOz+XKDsbCHu9tpBAFmY34CPifNbh+TKKj9F21/CWAhYRiEBR0wJgs1on63ms3FfE6CLgvtbpeEz0WqPGDBtdv67OjcRIQVTYlv4HprYEAOWX17QyCbifjZy5dxWMyMh7y47VasJhPjfg/Jcg0FWEyEdeU7v8POuuH9Nf4WLoxHuaextzCbRO4dZ3Sir5cnY8z5AtycmUAURZ0YaalUIp/Ps76+TqfTIRAIEIlE6HQ6HB4ecu3aNfx+P1+LeCMwMsabNZTbaDQYHx8/dfub4Rb73ve+l/e+972PvP9DH/oQH/rQh97wOG+lWyw8Z4D0rH4igiDoMpyH6d29UZhMJlW4UXs+sqzw8d/5ElYFls6PsX9UxOk0kU7ptcW0m9x2u0e11OToqMjSmRiSAFu7ORwOfSkyHvOqYARQrbZp1bvU8g3OLkTpoVBrtNk09Hx8XjvJk3WEWMTL9u5gYXS5rETCDvqKvicxkfCzvadf3EdU3ONUmeNUmbmZwcDludkomwc5+pJCo3WaSLFmyKD2j4oUhoAwlfAzPuZn86BAc7jIO+wWNg2vHfBaqdRPylZ2q5mvLh8AA9LC9EQAu9Oi61stTkdO2W3sGUgIM4mATgFifjyISYHFiRA7qRJ9ScZhsH5YmAjpdfYEVNdcRYH9dBm/28HGbharxcRCPIjLZaVUbyOgoAybYharnh58djLM2qGWvSboBF1zlSZui5P9oQ+W125lcSKEhILV2uKoWKUnK+QN3kTnJqM6R1u3zXJaq2/YX2r3+myniwMjwuFzHBYz40EvZkVgMeil1GxR6PSYjQW49TqmggB1Q5P03FiEO5qhXI/dxmoqz4++9+apxVcURVVsdHFxkWazSS6XY39/n1arhcPhIJfLoSgKPp/vbVHzHsXx8THr6+uPDUYPi9fLnl5Pb6/ZbH5dK33DcwZIb0aMAGk0v+T1erl27dpj+5No+1DaH8LLX9ricJix3F8+RBQF4qEgYsJHMjVYKCanguwaSnMOpxVFgc2NweJ9djGKSRjMLXW7gy9n0O8ko5kZCgXdbGwMLCY2hs974YVJYkEPe0dFao0OoaBLR5KAAVEiPaR2NxqDnko+12ByzIfJAkeZGrKsX0jGYj62DOcsigKbw0FYh8PCtQsJcuXmiVSPotAwZFBnF2I6ksRxukyz1aVYbjIzEcDrcWC2mri1ctI4d9hMJHP6LCAccJEe9q7qzQ6lcpPkegW7zczSRBTBLNAzlLbOzUbVGSQYDqwayAIep00nY3RhOkq13sDntFBp9obXrV/4zk5FdPNLoiBwkCkDg1Lr5mGeKwsJ9o+KuO1WJmM+HA4r2ape1sgotHp+Osp9jX26WRTI1k82DvV2l76kcHdIZjCJAtdn4/RlGb+zS7bWoNzqcWxgvC0k9K63AZedlSNjD+1kk9Xu9bFbzby2c0LycFktNGodXhgb9KTqnS4ep01nGDgXOa0EnqnqS6oLsSCb2QLffnmR14uRnI4kSfT7fW7cuEG321XNMBVFIRwOq2Kkjytw+jTxZoCRMbTZ0yhTetRQbrlc/htA+lqfgDbeDMdFk8lEPp9nd3f3seeXtDH6AkmSpJIqFEXhdz+hFxmMxdxsrQ120wsLUUSLiGx4mXjcy8a6fmhMNJlYvZfE4bCyuBSn0e6xvqF/TCzqpaCxqvD7Hdy/f0y/L2M2i5w/E8XptlPI19RFz+93sGEAqEjIQy5b5/h4AHbRiBuhJxEL2skUWiAImE36EulYzKsDqFarR7ncYn8nTyToIpHwoYiCTkMPoNYwAlSc1c3BdR0clTCJZbweO9MRDwo9yg2J6cmwrr/0MAq53+sgmanQ7vRZ284wOebnOF1hcTKEw2nlKF85pWN3dibCquY4ZhE2NcDS6UlUqzX2s4PSYSLkYSLupdrsYjWb1JmerqF8fG4mqqOQW80mtoe9o0a7y9p+jsvzCY6TFfxOGxNRH06nlWSxqgOoqiHbPDcV5d7eyXHddivrGkCVZIWeJPNAQ9C4PB2l3esSdtiptjsUWh12DTp2o/7SKBIB9yl1h5LBYmQhEWRZA5Zum4WjXJWI3UnE68JhNeOwW+j2JZKVGrKiDOaXDKaCe4UyH3zhLA7r6xOTFEVha2uLZDLJjRs3VJZZLBZDURSq1aqaPY1cWkcA9UbEiCeJtwKMjDFaWx42lJvNZvnyl7+s6td9vcZzBUjPGqMdx87ODpcvX34qfvzD6JB3bu2rGc4o3C4nMPgx72xliSd8KIrChXMJ1jfT9PvKIGNJnWQ+/oBTPU6r1WXl3jEXLowxPxkCk8DWTha3x6Er3wGMjwd48GAAAP2+zNFhiW6nx1jQQyjqYfewyMRYgPsaSSKvx34KoCxmmePkICOJRTxE424ODfNTdru+3KQFqEKxQaHYYGE2wmTYhz/g5ChTJhhwneoVVWv6zGdpqDYx6jdZzCK9Ro/LC3GOclWKlSbTE8GHMPQMPk4OG7KsqK83MxGg25J5YS5BqdliP12i2tAD1PxEiHUN2cJqFkiVTggcmUKNSMDF5m4Os3lAAfd77RwX9ZnOSPpoFGenIzpWn8tuYf1wNMfVYXUvy8X5OKlMFb/TxnjEh8dtI1msISgKyvC4WQNhY2EsxJ2dk/ch5HWwamD19WSZLY2Z49mxIMV6i5DXgqTIdGSZbYOlRMTnJlk+2ejEPXaSVf3nlKvqlTEWEiFu76Vp9/oUak2CbgeVZhtJUTCJAhN+LwGbnWvjCbpyf2A86HVyP5nju2+8frNbURQ2NjbIZDLcuHHjVHYgCAI+nw+fz8fCwgLtdlslRox8hkbgZCRGPEm8HWD0sBiV6/L5PP/wH/5DvuVbvoVf/uVfftte/3mMvzaA1O/3uXfvHv1+n/n5+Wca1jIy7f78CyuYTALSsPQyNh5gywBQ/oCTtQdJMqkKdoeZ+fkgmbR+8HRszM9K6QQ03G4bWxtZusNBz0jYzexClPsrSXpD0U+n08L2tn4xmpkO8eD+MZlMlUymitdrh47M3FRoQGAQBKYngjqAsttFsrmTnXkuVyMW8VArtTkzG0G0iOSLNfYO9ADldulnXMbiXraG2cdxsjxo9o8HubgQZy9ZpN7ssjATZsvQK8rm9e/F4lyMFQ34LEyFMCsDM8HssA81mfBzb+3kGrQ2GaOwWS3sHWVJDmWJLi4MSk3eKRs76QKdrkTJMEg8Hnaxmz5ZmF0Oi+qw2+/LbB3kOT8XI5UsE3DbmYj5cDitp5xmsyUDkEyETwnDjmjntWaHtf0sixMhjlNlHGaRqXiQoM9JplqnOFRAN/aXACYifgo1TaYT9LBu6Jl1JIWsBlyWxgIUMmWiDgtuuwWL1Uyl3sQkDCzcAewWfYlyMRFmI6XNdOCgoP/cpsN+lQAhyQqyovCVrSPdYzxmKx+8dJaE/9FGc4qisL6+Ti6X48aNG4/V37Xb7TqfISMxIhgMqsw94yzOo+JrBUajKJVKfMd3fAdzc3N86lOfektLkn8V4rkCpKdNv5vNJrdv38ZsNuPz+Z75Q9UC0vKtXT7/h/dwOM3MnEtwcFjC67Gj4RIQCrnZWD25pd3q0+9KVDI1zi7FaXZ6FEp1tjb1i+nMTJgH9056KvV6h/vLh/R7EufPxKi3unh8DjU7ArDZzOwaylqTkwOAAohHPEQTXrIGa4i5mSgrq5rdvMvK5nYWRUGlpF+6OE4i4qPe6rJ3WMDjsakDtqPweh0kNUCbiPu4szyUvjGJLM6E8XmcOOxmWu0B0E4mPBymNOejQKGoJ4O4nFbuDq9hMu4jFHRRbXR0GUoi6lWp4gDRkPsUQPV6ElvD7MlsEnnX+Una/T5yXyJfbSEKUGnqe1BRn00HUH6vXRVwrdbbrNTbLM1GqRRbjIc9RAJubHYz9zX9GlGAw6yedDCdCOgAKuxzsjEkTXT6MpuHeeaVELvHRcwmkfmon3jIQ6nRRpJlqs3OQNbIUGYL+1wqzRtgJhZg16DNV+v0kWSFfKNHvtHjTMzLYaaKSYCIy4rHYcbpdDMjWjgqVenLCgYyKOcmotzXSB9ZzSa2DKy+iNel6y/NRgJsZYr8X+//Bh4ViqKwurpKsVjkxo0bOJ7CrM9kMqnZkaIoNBoN8vk8mUyG9fV1XC6XCk4+n++ha8vXGowqlQof/OAHicfj/O7v/u7XPRjBcwZITxPFYpHbt2+TSCQ4e/Ysy8vLb4pJnyRJVCoVfvvX/xiAVrPP6vIRY+OBwU4+4lEX/VjCN+jnDMPhNHO0Xx6QEoZAde0dMzRaXTa2M0iSMgAWw2I/vxBRAWptJYnFImIXw1xYjLO5l6PblTizEFXBB8BsFjnQlKNyuRrRqJdCqsp43AkmkUK5w74h85mdCXNfA3ROp5WNzQydzjBbC7lYWIiyvZ9XrdddTvOpMqDP61BJHZIk02r22Nrex2IxcXY6QrPbotfTM/0W56MqaWIUGQ2AJtMVgn4X+zt5YiE3saiXVrfH1p7ByC/k0Vm1j8W8KhjBwPSuUG6wO5xpivqdLMyGyVeaVBtt+pKM2SRSqOnPz2MTKFdPiAixkJv14Wun8zXS+RrzEyE69R4zMT9+rwO73cQdDfg8zLrdZVbQQstE9GR+qS/J7KZKSNJA9RwGPZ+5iRD1dodCvUWyUMXpOK3u4DKoUSxNhHVsO1GAYnOoyaZArt7Fbbdwb0gEEQWBC2MhzJi4Ohmn3u2RLtd0BoIwsGVfPtD3l9aSp89lKRHmhemHVygUReHBgweq59jjZjKvF4Ig4Ha7cbvdzMzM0Ov1KBQK5PN57ty5Awx8fUYAZrFYvuZgVKvV+Af/4B/g9/v5zGc+c0ox5us1/koD0sHBAevr65w9e1b1+XgzXGNFUaRQKPDaV1fZ2Sjr7vP5nawMM4LFc3EwiWys6hv8Y+M+tjdOQMJmM7P+IEmz0cHrczCxGEK0mrl750Ro1WQSOTrUL2BnFuOs3hsc2+GwsLQUp21QfFhcjLOiARaTSeDoqIAsK6SSg2zi8uWJgTZcsUYmV8diEdk3zDjNzeoBqtXssnz7gE6nz8xEAI/fiWgRWL6vATGHSa/Fx6B3dZwaZCobW1nCQRu1Wp/zM1EUUWD7KE+/p/98lhb0WnyCAMkhmy1fqJMv1Ll0bgwbIgtzMXqyTK7cYMMg8ur3OklmTrK3qbGACkYwUIpwpKocpcsD2vZ4hGDQwc5xkWq9A8KAdl6o6RXjrQbix0TMp9qtH6bLHKbLTMb9SG2Z+XgAr9uOzWHm9tbJe2U1C6Qq+s/O59bPL82NBXUglinVQRj+l8G5XZ6M0ez26PQljks1zCbhFEAZp1LOTUZ5cKBXasg2TsBGVhSazQb7GvHbmaifaq3N+VgYu9VMV5KQh1nUyHbqjGF+Keiys3qc46c/+E0PzUhkWeb+/fvU63Vu3Ljxli3CFouFeDxOPB5HURQqlYo6kPvgwQMcDgetVotz5859TQZvG40G3/Vd34XNZuOzn/3sU2WIf13juQKkxy3ZybLM6uoq6XSa69ev63Y4zwpIiqLQ6/XY29tja0Xfe/AHnWxqSnObq2kuXpkgEfbgDjhYX89gsZpIHunLZeGojeTBYFGpVlqs3zvG53dydiFKqyuxv59naSnOikEtPJs6WVxbrR6ypLCzmmFmJoTDbWNnP0c2o6/xz86G2NrSe/YcHRUpDh1hZ6ZDRMd8qpcSDLOsw9MANSoVHh6VcBbrgMDidBizxcTWQZ6Z6Qgra5o5GJdZp+4AEA76KRQyrA97brPTQayiibNzUXaOCnS70iktvqX5mG7GySQKHCZL1OodVoasxcvnxml7e5isJg7SZUSRgTGiJgT034O5yRA7hwMg6fYkNvdyxBsecrk6sYCLWMSD023jrgZIXE4r6ZL+/EzoAWt2PMju8eD920uWUIBY2IPclpkMeRDpEQp5WT0qMnqq321nzeCMa7Pof45npyI6iaJuT2L9IEdJQxi5sTRBw9vDYjFRbXXoSRIbhlmk+kNYfVpVcrfdQrquv0ap26ZQa1MYvtbiWJiNwxwWk0g84MHvsmMRRM4lwhTqTbLVJtNhP3v5Cu+9pFcMgMFv9t69ezSbTW7cuPG2lacEQcDv9+P3+1Ujuq2tLbxeL2tra+zs7BCJRAiHwwQCgbfcYqLVavE93/M9yLLMH/7hH37d07yN8VwB0uNEt9vl9u3b9Pt93v3ud5/aXTwLII1UwHu9Hh5nlHopgygKyMMt4fh4kAf5kwau02VlZyNDq9mFg0H2dOZCgpUHJ6BlMgnUK/oFbGzSy+FeRQWJiYkANrOIxWqiN5xNWlpKsL6S0j2vNHz8wd5gUT17IYEoilgtIskheGUNfYylpThrGhA9PCjQaHSgLXF+IUqnJ2F3WXmwoj/no0N9iW9uNsL9B0m2h5mM3+dE7CsszkbY3s8P9PASfjY0YOj1WNkwAJTValHByWoxcf3CJM1OV9dzqhtVIgx+UGazyO6hXvX8xpWpAROs2uQoXcbrtnKQ1m8MzGZ9E//MbITNYT8uX2pQKDUIBVz0an3mx4N4PDasNjOvrp185n6PnaOcnommSPrPd2k6otqwH+dqCAI0OiK9hsRMzI/PY8fltHJvP0N1eK3RgJs1g4CrVh8PTtPObRYTKwc5He39ynwcpa8Q8DoQRAFJ6rOqASgFyBlnhozzS247xzX9Z9BqDa65J8kc5it4nTZe3TrZ1PjsVhrNHv/kPS9gNXg1SZLE3bt36XQ6XL9+/WvWKzk+PmZnZ4dr164RDAaRJIlisUg+n2d1dZVut0swGFQB6s0oJ2qj3W7zvd/7vTSbTf7oj/4Ij+fRpI+v13juAOlRrrEwULW9desWfr+f69evP3TY1WQyqSq4TxLtdptbt25hMpkIBAJ84fc2WL19iD/oYnw2RDpbYXNNX56aW4jyQFN2a9TbbNw/ptfscuFsgmKliT/oZk3T8wGoV/WlG4tVYPmVPRxOK4vnEuTyNaoVPR33zFKMzXXN4q4o1MotjofadrGYC6fXzHGqpXtMpaJfPBcX46wPs4y1lYEh4OxshEtLCbKFOpl8jbOLMVYMAKXV0AOYmPCrJT6Xy8bMbJhGq60jIYSDTmqaaw36HTqA6vYkGvUOG1sZzGaRpekIHr9dJ1EEqFTxUSzNn6iQw8CqfXUzTaM5eC2f08J42EkfK3upEt2eRDzsYcNABpEk/YK/NBdjbSgEu3dUxGwScDlsOBQzU+N+rFYzFoeJVx+cKIyHfQ72DWzKdlf/+Z6bjbEyPO5BuowlL2K3Wmg0O4wNlcG9bhsiDLydBJgw6OPB6Vmvxamoqo8HA1v21YMc3b7E8ZDVOBmwI/YFJkJe/B47DoeFTKWBRWX1waGRSRf1c1ujMB73uzgs60GsXNOTUmZjQVaPsrx0RZ8dSZLE8vIy/X6f69evP7Fg8psVD+sZmUwmIpEIkUhEJUbkcjlSqRRra2u43W617/QoYsTjRrfb5Z/8k39CPp/n85//PD6f7826tL9W8dwB0qNiZNY3NzfH3Nzc64qjPqlrbLlc5vbt20QiEc6fP8+f/+nLfOXPdgb3FRuUiw0uXZsiHvZynCxTKjaxWE0cGEgJZ84lWL072E2v3j1CECDoc3DmTJStzQwKAotn42xogU1RqA9nP1rNLqvLR0zPhRAQWVyMsbmZQVEGMkTamFuIsqPpu+QyDSZsAUx9hfOLcerNDhabie0t/TnWDYvamcU4m5rh3ZnpIHazGbfLpj52cTHO6uqjAarR6NBttdnbLOD32JicDtHu90+BmNttolg++TsScrE5BJ9+X2ZzO8uZ+QjtSpf56SAOlw1FVFRvpVHkDQy9M3Mx7mvo4b2+xP5hnXanPwC6yRChkBtZklWq9kTcf0oItmkYsF2ci7EyHO7d2Mlhs5gQLSYCdjtjMR+iWcBiMZMvnwBUJOBg3+DUWzPMLy1NR7k/nF/KFGrU6m1kBiaAfqeNsaiXgM+JzWziIF+m15dP9ZcUTnpLo1gYD3FH43rrtpk4LneQFYXDXIXDXIXFyTB7xyVEQWAi6GEq5qfV6xN0OUiXa7R7fTYNNvKxgIe0ZlZqIujmyPDamVKVb7k4S8hzQt+WJInbt2+jKMoTqaW82TECo9cTa9USI2ZnZ+n1eurM0+3btxEEQacY8STA2uv1+Kf/9J9yeHjIF77wha+ZYOxfhXjuAWk0yb23t8fly5ff0DHySUt2yWSSBw8ecObMGaanpxEEgZe/sK/bPdsdFnbW0jQbHUSTwLnzYzi9dm59dU99zKDno1+IzpxLsDokQIQiHqLjfpodQ//hTIxdA3OtXm1QyA4WMY/PzsK5OLu7+kXCmEVOzYY42B0ssKOM7MKlcS6eG+ju1Wpt5uYj7GhnmhROkSQcNgt3Xt3HZBJZmo8giwrVssHszQBQojhwxwWo1Tqs3E9y8cI4bouFxZkolUabQrlBOqM/jtUio72MeMzL5vD8dodlyfnZMFOR/z977x0f2UGe+3/P9N67pFHv29f22hCwwRT3XS6hhBAbckNIAuReQhIIl5aQxjVceoBAKAnxD8f2GhuDbRy864rb9l1Jq97LSDOarunn98eMRueM1n13tbb1fD58Pnh2dObMaHSe877v8z5PeQl3KZrGaNLIpOirJq9SlAmqfH6FQomFUJyJ6Qj5fBGfy4THbUGvVxMKJ8hVBBZNdQ7GZ+SfcbS2Sm32cKLijxdLZDAZNOTyRdxGAz63hZIgks1nCEk+L59dz1RNdHu4dhE26OJ4RaGXSGeZX0owMhWmUCyhVAg0e2x4LSYMajWhaIpQNEl3o5v+Gn+8yXX7S1YGJKIO6f5SSRSZDSfQalSMSXKwdrcHSGby6DwqcqUiiUyWoRrZud1slBFSo8PMRCRBiybLU089VV1UHRwcrDpLbxQZrcZYvFjncLVajd/vx+/3UyqVqsKIsbExTp48ic1mqxKU0Wh81hvkQqHAH/3RHzE0NMSBAwc2JNfplYQLjpCkLbvVZdd4PM6ll176gnquL5SQpKm0O3bswO12AxBbTvH0I5Oy57Z1+jh1pPxYqSgydGoWi1VPY4MdtV7DyOA8HT0BTksUaOXKZ+3CFF5MYLEZmBsP09PlIxJfYX4uhlgzJ2hodDI1tnbnnohlmJkIEQulaWpxotKoyeYLjNUsy2pqBuL1jQ5OHZ+pfCYKOts9GC06mUqqqdnFxFhNHEN2NbK5xNDgAu0dXqKhJL3tPtK5POMTYSIR+QXV7zMyM732mEqlYGIyTCKRqWZHbd/RQKFQIpbKMDkdwWzWEwrLyVCpkJN1nd/GSOX8pmeiAPR0+9na5iedyzM2HaajRW7yqlAIzEgcDACagk5OVJSQi0tJ8vki8VQWQYD2egd6vQaFWgHTa+3GtkaXTEKOQDVefRXN9U5ODM5Vc56MOhUruSJeqx6v20JJAJVayXwkXT2uz65lTrIiIAgwsygnrEaJMWyxJJLJFnjq5GSVvG1GLWathp3NPlK5PDPhOM0+h8wfT6NSMLUkr2Jcttr9JZuMjKDcMpyRtPB2tPpYWEzS7LBiMZZDEdO5HA6jjkgyAwIY9Dp2NBl5zzVvYWlpiVAoxMjICAqFAr/fTzQaPS+CgVq8VDKqhUKhwG63Y7fbaW9vZ2VlpVo9jYyMoNVqqztPdrtdZj/2Z3/2Z5w4cYIDBw6c88TbVwMuOEJaRTqd5vDhw2g0Gi677LIXPAh9IYS0SnSJRGJdKu0Ddx7BHzAzNb6MiIBao2SqZvbQ0Rtg4Pg00cqF2ekxY9Cq0epUZCuD+ZZOH6M1rSaxKJLLFqpV09bdQbL54qpfKQDamp0Sf52NucrFeGKkTFTBFgt1fj2JVIl4PIs/YF3nHKHXrX1exWKJdDLL0MB8WXbe5CC8nF6Xt9TY6GSiJhAwly2wspKjvzIv6u0NICgEVAqBmdkoIJDP1Wz818yg1GoFoyOLJCrx7E67gfZ2L3OLcSamIiAIWC065kPy1payRm7dUGenT1KZ6XQqVKUSdS4dy4kC6WyBzlZv1UMPyuQ4PiV/T/UBe9UBYmR8CbfTyFIkhcOsJ+CzIgog1hitdjZ7GJDIzBUKgen5qOw5HoeOsdkkS8tplpbTuB0mlqJJPFYDXpcFlAIKJcxH5qoEFXBomYmszflUSkVVsbcKr8vEgsTyx2LUcahfPpcUXCU6PTayuQyiSoPdauCo1NZIr1kXKmisiTPpqHPJFHqCUM5yyheKTIZiQIztrX4GKkRt1qlp8zsQBYH3/c52tFotbrebqakpnE4n9fX1RCKRqmDA6XRWBQPneu/mbJHRmaDX62loaKChoUEmjDh16hSFQoEf/ehH7Nixg2PHjnH06FEOHjwoyx3axLPjgiSkcDjM0aNHCQQCdHZ2vij7+ecjpJWVFQ4fPoxarebSSy+VEV0qkWH/jx4lncxic+gJtHgRlAKnjkxJjiASDsmHwHankaO/HUFn0NDTG2BhIU6xZtemvtHJ+LBcRZVJ5xjun8dqN1DX7CSdyTNcI5yw2AxVQgKwO/RMjazdUQfqzdjsWhbm1ioft9fCcA0ZGs1lxVA8tkLfsRl8ASu5RJbebj8TUxGSySwarfzrEGxyMjEuv5inkpnqYw67jtYOH5NTUdlzlmruzNvbffRJbIxSySx9p2ZJJrPYrXrq6u3ojRoOHVurTK1WHdOz8uMolfI2pcOmp29gbbmzpcGOUavG7zYzF4qDIJxRAFHru+d1WVgMl+PRo/EV/F4Lcwtx6n1WHHYjmVyhGn2xiq4WD32SykylFAhF5RWfz21mcTlZraACHguzoTg2o5aA14pKraCkEJlbDlV/d3VOPROhtWrToFUzWJMFVVb6rX0HmgMO+iRkKbJCIVei3mrGbtGjVCrQ6lQyfzy7WbfOH6+269Qd9NBXs780KpkvpTJ5EAQWoyle1xUkl8tx6NAhDAYDW7duRaFQ4PF46OzsJJlMsrS0xMzMDP39/ZjN5mpVYTabz5pJKpxbMqqFVBjR1dVFLBbj17/+NV/72teIRCJs2bKF73//+1x77bVcdNFF5zVK45WIC46QJiYmGBgYoLu7m/r6+hf9889FSKsR5l6vl+7u7nVfjl/919OkK1LiWGSFRGwCf4OD3m11TI6HScQztPcEGDolb81lK3s0mXSO/iOTNLS40CgFmlpcjI8sgiCgq8ne8QasDFesfGLLaWLLabq3Buhs95ArlhgbWcTpNsv2ngAMJgVRCUekk3kWZubQ6ZS4/EbiySJ2m55FifLL6TKtIyibzcDpU7PMTEVQKhVs31ZHJleUefZpNTUE1eiQEVR0OcPSQoLF2SgN9XasDiMoBNmCLcBSjY1Re7unKjOPxVbIZPKolAqMKjXBoIOCKKLWqWRefDarjoka4iuV5MudSqWSw4fLpOZ2GPF6LSgVirKRayXWva3Fw0kJQRn1mqr0exUOq4G5hTiz8zFm52M0BOzMLcRoq7NjNGmJpzPrxCFdLV5OSiozvU7NUE1mk91iYDYUJ5HKcno0RFOdnbG5ZTRqJfVeG3q9imKpiF6zwkqufL4Bl4Gh2TXysRp1nK45rlCSf9+l+0uzS3EUgoDVrKOwUqDOYcZhMWCz6FiIpphbTpDI5PDZTev88TK5fM1xPRyXyMMNlfylP3rbRRTyeQ4dOoTJZGLLli2yvy1BEDCbzZjNZpqbm8nlciwtLVVdvJ8rPfbF4nySUS0EQcBisVAqlTAajdx3332cPn2ae+65h69//es8/fTTtLe3n9dzeqXhgiMkQRC46KKLXvKXSaVSnZGQZmZm6Ovro6Ojg8bGxnX/nl3J84ufyiMmOrbUM3BsipnxMCq1kq4e/7ot+KZ2D+M1HnUajYrhykU50ODAFbBWHRdWYXOaWJBcaBxOE4OnZilVyMDnt9LQ5uLU8RzpipzZYFSxMCOXcdc3OOlbniaTLjA9EsNg0hANLVMXMLAQWqFQEPH45HEWdodRRnTFYol8rsjQqVkMRi2NbS5KCpGB/nlg7c61psNHMLhWQc1MLzMzvUxjk5NGvxWz1cD0XBSP11LNdFrFQqgm8qDNU13C7e+fQ6dTodWq6Woqm75OTC9TX+cgGpO4mZvU61p8Uo+CcCSFw26gr38OtVpJR9CFdnXXSSJNb2l0yQxcLSbdeodxg6Zs7VNR5bU0upifjxKwajGadGTyIuEaWXR7o6uav1Q97rj8uLpKUGMuX2R0OkxHo4vBSvXmd5qwmbWIQgmnUU0klUNEwO8yMjC59r5tJg2jNaq+Qk1eVFeTh75KvMV8OEEklkajVpKsCFrcFgMtbjt+q4lcsUQ4kUanVTEqmS+JQDgh/+611zkZnFnirduaeeaZZ7BarfT29j5vtaPRaAgEAgQCgWp67OLiIgMDAy9rF2gjyQjKy7+f+9zn2L9/PwcPHqSjo4OLL76Y97///RQKhQ0TdryScMF9Qo2NjS/LaaG2Qlq1uJ+enmbnzp3PqnL59Z2HiEflf3ARyZ19IV8knysw2jdHa7efkiAwNrSw7o/PX29jRHKxn5uKYLHq0QoCHVvrmJuLIgJDfbPrfm5ZMuxOp3Icf3y0vJNSZyJXBJfHRv/xtdmB0axbV/k0tXqq1kYarRJ/vYHFhbDsIhwI2IhKPOBsNkN1xyqdytJ/Yobu3gAuiwFvna0sBCgVGBuVt++0+poKKiht8ZVbO8GAjS3dfqZno0RjK3R2ru1BQfmU5mrUia2tZYKKVVRuZrOWbCJHb4ePqdkw8WSeujoncclxbFZNVQCxikKlKsrniwyPLNLZ7mV0KITXacLjNZMrFAktycmxsd4hIyin3cDpGt89EMnliiwsFWEpQ0eLm8mZKF31ZdJbTq4wW6P8awrYZQTltBnXZT9JFYcL4SQOq4H+isBFr1HidRgopDPUWbXEMkWS2QIWnRLJeImA2yJPvYX1ab9BNyck+0vZXJ4jgzNkJW3mrS0+mipCBoVSQKFUlGPZRUCo2DuFE7xtZysDp47jcDjo7u5+0a03aXpsZ2fnGXeBVsnJYrE86/E3moxEUeQf/uEf+M///E8OHDhAR4c8mHCTjF4YXnWf0iohrcYGHzt2jFQqxaWXXvqsNh35XIEnH+ijrcvHcH954BxosjI7Hl17kihSqLgojFYIp3tHAyKgVCkoVi5+ZpuBOYnLgd1lYqhS+fQdmkAQYNfvtBEJpxgdCoEgYDLryq8rQbDZSV9l6XZ2LIbeqMGgKs+oxsaWWEnnaGpxyRZz9QY1o4NrF89ctojVZGVmZAqX24jerCaWzDI0ICfDQNBB3/E1NwKrTc/gwBzFQolwhZSDrRbc7W7mFxLE4hk8HvM6IYWuJpq9sdHJSclxGxsdmPVq7HZDVX0nXdSFslhgdjYqO04w6JQ5nrc0uVALChrr7UxORxARCPgdRGMStwGrmrEagcZKpSJY9cfr7vSxPJ+ktd6B0VxuxY3XXMz9Xivh5bUbFZfDyGiND2ChUCKTzVdbf91tXsKhFJ11LnR6FYmVHFM1AoiA18KSxDHB77YwVDMrWpGYm2ZzRcwmI6eG196j06iilCvS7DJQFBUsJTPYLYbqUixAc6DcFpRiqUZ23lrv4phkf8lm0tE3sUCxtMaQnUEPiVgGq0GLx27EYzMRz2RoM+RxOr10dXW97DlQ7S7QamtvaWmJyclJFApFlZycTme1tXchkNH//b//l+9///s8+OCD9PT0nPdzeLXggiOkl/ulXv2SJpNJjh07hlar5bLLLnvORbaDdx/l5FPlRVhvvR2jTUckKh+oN7Z7mKhpzRVzRYZOzmC26Wno9pNIZeXzJcBXZ2c5tHYsg0nH8SfHyecKeANWnH4rCpWCU4fXiEWnV69T6DW3e6sEpdao6O7xlWdXksqnud1brY4AtDpVVUgRWUzBInRtDZBMrlCkxNxcCrVawfBpORnWNzg4JSESvUHF7ESSQiGOIJQrGKfXTDKRJV25yHs8ZoZqjFY1NXMzhULB4afHy59n0IHZpqdQkjdBOzq8DEiEHUqlwFSNz57JqKkSncWso6nZRb5QRKdVVWXrHo+d5dja78vt1DFZs6gbi69QLJYYrxBXT7efcDZFd6MHpVpBOJZmpCbXSauWt8Pq/esXbJPpHJlsvpob1dvpZyYWpdXvwGTSksnnma6Yx67CaTUwt7hGJI1+O+Oz8vNdrnHdqPM7OTmyAJQrIINWwdxMmFaXGa1OQ7YoYqj5HXQ0uBiU7S8hE0gANPrsMoLy2E3VmVQinSWRzlIqldBQoLe1h46OjrMqSlhFbWsvGo2yuLjI4OAg2WwWu92OWq0mFAqxa9euDSOjr33ta3zzm9/kgQceYNu2bef9HF5NuOAI6eVilZCeeuqpF6TSKxaK3PGDh6v/vTC9TIvZTyGWo77JzMJsinyuRLFmcOwJWBmqLKAmoiv0PTNBz64gnZ0+4skMs1PLmKx6hk/JL/aNbW76Kqq90GyM2HIag15Nd6+fWCzD7PQygUYbo/1rF1OVWsGUpB2VzxUQRBg5MY2vzobTa2FmZpnpmoqgtUNOUGq1kumJCMl4eQZhMGpo6fQwPxdjMVTeldFolYzULOo2tXjor+xYiWJZpDA9EaYkinS0eVColSjVCkKS2ZDHY5E5QACoJR5nU5MRmpUuxkeWqK+zYXeZCEWS1TZd9T20uhmUVH3lHac1gkokMojFEgN9c6hUCtqCTkwWLfNL8rRXk9nAYnht9hLwmaqxGVDxeAsnSaWynK68/y3dfoqZIq11TtLZDIvLCUIRuZLObJLPOJoanDKZuUjZJy9fKDJWeXxrp5/4Upqg14rNZgABFqMp2fkaDHJJdluDi+Ep+V7UQo1jRVujl+ND80QrRqlmnZLJbBGPWYfLYUajVaHWKDEbtCQqHnpdTR5OjT+7kg7A5zCzIJmR1bvMjM1H+cQNO84ZGdVCoVDgcDhwOBx0dHSQTqcZHh5mfr5igzUwUFW7PVdr72xCFEW+/e1v8+Uvf5n777+f3bt3n/PXfLXjVUdIs7PlC2dTUxOtra3P+/xH7zvJvPQOXBQp5AokYxmSsQxavZrOXi8zNXlCVruBUMWdYPW/B49PV6MVGts9uOvsHPrtSPU5Wr16nQCitdNH/5FJohXjVH+DhdzKCkqVQLFQrh7aewLV3SUot7XmK3f7CzNRFmaidG+vp1gUcblMjA2HEBQKZmsMUtsk1kYA2WyByeEw8egKbq8Fm8tAUSwwOrT2cxqNkolReZUQbHRWK6jhgXnMVj3FQomuNk95tja+iNNtIiSRx3t9VoZriE5ZuVGYm4kyNxOlpdVNPJ5ha6efRDrL+FSEhZpKonbHSaNRMlYh60KhxOjoIr29AULTUTwuEx6fBVGgWq1IP0MpmoM2xiQqPkEo5zJFltMsVeZtXR0e4oksDoeRbKFINLmyzmFcq5YrxNqb3DK1nQDMhuKIIszMx5iZj7G1y09oNo7TosfrNqPTa4ilVlApBQoVkUvt9bWryUO/hEhUSoGJmoXgYMDJqdEQ4XiGcDyD3awmUiErp0WPx27CotXSG/SwlEgRWk7R1ejhxFiNkq5Gfaco5alzGLnhiovPy4W/FoIgsLy8TDgc5qKLLsJkMlVbe4cPH0ahUMhsfs7F/EYURb7//e/zD//wD/zqV7/ikksuOeuv8VrEBUdIL/ULXiqVOH36NLOzs9X9hxfyM3d8/yHZY8EOL5MSE9PsSp5STiS1lKRtSx3JVJZkMltV0a0i0OSk//DaHk1oZpnFmSh2kxZ/U9kRIdjmpe/I2nOUKgWzNS0hpVpgZnAZo1lHsNvL0lJinSXR6mKuFEsL8arU2+400drjl3ndCQKEatRY7d1+BiqBgEsLcZaXEphMOlw2DQazjtBiGqdXx8zE2p24Vqta5xKxSlCDFaJwuk2QLdLR5mF0fIlCoYTDaWRB8vo+n4WRGnJGEFhaTFRl4nV1egxGIx6nlfGpMPl86Qw7Tl7ZfEmnUzFasRZaWkqytJSkpycA2RLtQSc6g4ZsoVg2eZV819IZ+eC/rcVdtTGCcutwdi5OPJGpVlZbe8sZTVa7gWyuSCqTW5fRJNboMjtbvTLzWJVSYGKmfAOwuge1tdPP+FgYlVJBg8+G06EnFIlhNaqJJXMgCGTycleLriYvJ0fXjqvTqBidkd+QuO1mIsnyzddyfAWtSqi6kgPo1UooiGxr9CEoBJIrWSxmHYclwYMGjYKZWJa/eNcbNmyn5kwzI6nNTzQaZWlpieHhYU6cOCGLNj8b2UOiKPKTn/yEz372s9xzzz28/vWvf9nH3EQZFxwhvRTk83mOHTvGysoKl112GU8++eQLUuo99Zs+VIJIY5uHiaHyBUpZ80fmDlgZPjFd9tSrkMDON7STiGfLS6wiaHRKhk7KCaKly0/foQlWUlmWl5LoDBoUpSJ1QXu12uroDTBwVL50m02WZxSpRIb+QxO0bwmQzxVxdvsZGZynWCixHK65KPfKd6OWlxJMjSiJzEZpbveiNWpAAQMn5e3DcM1+UFO7m5G+8gU1vLCCRqvEZjCja9UxPhGmWBBxerTMTq21bzRa5TqC8vlsnKpUdFqdmu4uP/l8CZVKUVW+2e0mFmYlUegBm4xAAdQqHaODZcLWaFTs2NFAaiXPykqORKJs/bNQ47S9qtBbhdGoZXg4RD5fZKRynt3dfpwmPX6/jYJYIlsorBMqhMM1MR5t3moWU/l8lIyOL5FK55iuiDC2dAdQFkVsdgPZfJFcsSC3HwJWagxcO1u8MqGCdHG3UCwxObOMWMoxPV/+zC1GLR3NbvLFEp0NbuYiceKpLMtJuQS+vdHFCclelMmgZbTmxkavlVdzPqeRUxJSE4TybMup02E36yjmM9htJlZKAm/fvTH7NFNTUwwNDT2rgKG2tbcabR4KhRgcHHxB0ebPBVEUueWWW/jkJz/Jz3/+cy6//PKz9dY2wauAkFKpFIcPH8ZgMHDppZeiVqtfkH1QqVTi9n95kNHKHKiuxY2zzsaJJ8dlz3N6zCxK7jTNdj0nnxwlnyvi8FrwBp0ISiV9hyaqz1EoYXxQfvFv6vRy6qkxABpa3ejNeqK1C6O9ddW51CqS8QxzlYulyaqn46L6dS7j6aT87r6121+Vno9X2mRN7R66u/2kVnJMji2VF3ylyj4RFmtaPs3tPvqOlolFp1fT3OWlBMyRRKzsJ3kDJqbG1i50Gq2yvAxcQTaTBxEGj8+g1apoa/Og0CiZrKkMrTY9cxJ1nS9gZWpi7XPP5QqEQ4mqrLyp0YEnYCuTQWX2IgisU+iVo9rXPlOLRc/Q0AKFQqmq9Ovq8tPktWGx6kms5EDBOoXe7LycsDpaPVUDVygH+Q2NhMjmClWC6un2U+8wY7cbKYoiJUQGalp80rA9gI5mDyckIhOdRsHs4tpzkqksmWxB5hKxrd1HsVTC1eIjnc0zF06wUFNJttQ7ODYkSXe16pkIyZ9T65LfXu9ksKI6jCZWUCoEommRG36ne93S9PnAKhnt2rULm832gn7GaDRiNBppbGw8Y7T5Kjm9kNaeKIrcfvvtfPzjH+f222/nyiuvfJnvaBO1uOAI6cXcsaxaDNXV1dHZ2Vn92ecjJFEUOfroIMMn1qqamdFF9EYtDrseT9DJcP88JouOwZrWWEOLl75D4wBEFuKkYisYLTq6t9URWogTXkjQ0uNn+Li0pSeyIJlTTY8s0r6tnsRSnEDQSDJeJL68Qiohv8tt6fYx2r92l5uMplmaXmZpapnmDi8ao5aCWGKkXy4eyOdqHMU7vYxJ2pAujxmzUYvDaayGBHoCRkIzcjlwXDLIzlQSa0+fnMVs1VPf7CSeyhBfll9Q6xpsjNXEt49VIjCy2QKDp+bo3VZPPpmjvdWNUqMkGl+RZz0BVquBecnicENQ7hIxNVHeiVmYjOCyG/DV29GZNBw/sUY+SqXAZI2PXTBo56TEBNdhNzA4OF8NYQSoD5qod+mxOawsx1fQ69UM1+w4Tc3Kj9vS6KoauEJZ/Tc4EqJQKDFXSfXtavfiNunxuM0olAoEpcCJwVmky8fzNTcpdT4zw1Nrn4Pdqud0TVswXyjKsp46mt2EY2l6Gtyo1SpWsjnCNQq9Bq+NSHyNoHxOE9M1lXc0Lj+X7iYP/eOL7L28l/ONl0JGtZBGm0sdvEdGRjhx4gR2u70qKzcYDOt+/q677uLP/uzP+NnPfsZVV131Mt/RJs6EC46QXigmJyc5ffr0GS2GnouQVveTbv/OAdnj3noHw8fL7bPwfAyjRUdrl4/Tx6dIVOIE9CYto/3y2VFLb4D+Z8aJLMQRBIG2rXWoFQqZYqqhw8XUafkFbXkpTiqRJVVpPe24rJV4PEN18xCqu02rCLZ5mKzMXcYrO0AdW+vo6Q0QjaWZnY7S0OJisqaFVmsvYbLoOfLoMAC+BgsKjYBGqwfWCKil08toDUmsxlAkYiv0H52mc0uAlXyaLd0BoolyWODSgvyiFmxxMtQvSTnVqRittNBWfft6ttUh5HOotEriiQJKlXKdQk9fozprlPjsLS+niSynqQvaEfJF2pucaPVqlBoVxyRiEI1ayXiNN58/YCMi2TOyWNTMTCcRgbm58ufR3eWnp8WDQqUgFE5itmgZkRxHEGB8Sv77bZQ4jAM4HUYGh0OURLH6em0tbvRKNXV+K3q9BrVGSb+kZaYQYCkmb/HV++yckFTfHqdpXfBgvlhiaTnFUiX7qbfNx/D4UlnI4DSh1akQS+CxGwlFkiAIuB0m5iSqvaDXWjFUXcNsKMKOFgeFlQR5o/a8he1NTU0xPDz8ssioFrUO3ul0umpnNDg4iMFgwOVyMTc3x2WXXcavf/1rPvShD/Ef//EfXH/99WflHDaxHq84QiqVSgwMDDA3N/esFkPPRkiiKFIqleh7Zoy+p8dk/2ZzGVmQ3E0rlAqOPXwaURTp2tbAciSN02+l75lxyesomJXcOYuiiFIh0P/kKN4GBw6flZHT8xQyckZw15tYnI5Lfg6iS0nGB+ZxVtqAuUKR4ZoIc3WNgquuySmr4OqbXXg8ZpbmYuVYdaCu0clYzQKr1OV7YSpOfbOT2eElOju9FEQYGw5VLYxW0dLhkS3dIookoyssh1PVaPWtu4OURIiY0sxOLyMoBGan5a2ulnaPzEZJp1cxPDBPLrf2+9q5p4ms18pSOMnCfKzs6VdDULVGsM2tbsYqF+ZVsYTPZ8VrN+D2WsnkCmj1Kk5JZPhSAcQqHE4D8eTahdjvt9I/IP89uKw+elu8oBSYX4pjtWgZlbQXVUqB0ZrZkd9rISyJ7fC5LdVF2lWHieagk0w8h8OixuEw4nRamVyIEounERHQqpWM1lR8HqeZkKSyqfPZ1j0nXgkIXBVNbOnwcaIiVDBoVDQG7CiKsK3ZR3Ily9xyYt18qbXOychMmD+5uJnx8XFOnTqFzWarSq3PVFGcDayS0c6dO88aGZ0JBoOBYDBIMBikUCgQDocZGxvjfe97H9lsllwux0c+8hHe/OY3n7Nz2AQI4rPlhW8gni2CPJfLcezYMbLZLLt27XrWP4LDhw/jcDhoamqqPrZaGZVKJf75j35IIppmJVNgenQJh8/C8kIcUdK26bmoSUZaGr2api4/+YLI2EDZzaFrZ5CBw2uzI0QRb71D1p5r396ASqMkNF9u5wG468wszqy1Q+wePcvzNT5hWwMIgkCuKDI+FMLX4GC+ZvDeviXAkKRF5a23szC9jFqjpLnbT65YQqVRyQQPvno78zUS9rYev4z8Wrq8aPVaEsksU+NLIAg0t3sYk6jiWjo8sjYglB0fZivn6PJaaOzwMDMdZXZ6uVxGCGU/vnRyraVY32Rmenzts9AbNJRKYnn2BLi9ZpravYRCcSYmwohieQk3VOOH19LhYUQiimhtk/83gD9QrkR0Ri3h5TQOp3GdQq9EeV61iu5uvyyMsKHBIVvUFSkr/ZQqBYIC5pcSmM1qxiU3HFqtEgGhurQL0NPll7mQNwRsTNXMv+oCNmbmoui0agI+Ky63ieX4CqHlJJFoGqNBQ6EokpWcb0+7l1OS+VJzvUMWZyECPo+ZeYll0rYOfzV/CcBq1CKKRZx2EyZTeXlZq1VSKIl8/S/2AlQzgRYXF4lEIhgMhio5vdy471WcLzJ6LjzwwAO85z3v4a1vfSsTExP09/fzhje8gZ/97Geb+UbnAK+YCimZTHL48GFMJhOXXnrpcw4gayukUqlU/d943yyHDw5U/62xO4AzYCMyG11bSjRpGT0lFxe09tbRX6mOfI1OrB4zy7UmoVvrq0q8VWTTWYaOLiAI4G20obPqmOgPyyTHDqdNRkhWl44hyXHcARv1QTvJaLq61OryWRiuEUDYnCYWppfJ54oMHpvG6bOAWE6OnV+IEw4lMFt0SGsNT8C6rhJTKpX0V+TpLq+FhlY3s5IIDGBdG7CWsJYW4mg0SuanlvF4LXgCVtQ6DUeeGa++d0GAyFLN3KzdU1XoQdnT79jT4+SyBQxGLQ1NTsw2HYl4hpUKaXn9lnXkU6p1gOj0MnhariDTCNDR7CSZThNLFmhqdnNK4jG4KoCQonZhtbnZxVDNa9sMTrqb3IiCyFI0hUEvMDm79vs1GjUM1e4vaeQVSXPQWV2kzWTzjE4skUxlq957DouOjjYvK5k8K7kCc0sJlApBltlUPq7876Sjyc2gROotCDBd05qzGBRMLWaJp6NAFLfDxGI0yWf/+G3V50gzgVYrisXFxapYYJWcHA7HS9oDuhDI6JFHHuH9738/3/72t/nDP/xDBEFgYmKC++67bzP59RzhgiQkaWoswOLiIseOHaOhoeEFbYZL/exWKyMo9433/8uDsufGFuNMD87jC9ixei0MnZyhqdtP31Nr1ZFSpWBOorqanwhjsRlIR+L07GhgejxMfDlFJiXv9zd2eJmotJpEERbGo7RuqcPlNOAJOpkYXsRkNTBSs9Pk9FqJLa5dwDKZLIcPDiAoBDp668gXRTQ6NUsSGa/VaVxHUG6/lYEjU4QrQ/W2LT5SiQQanZJcpvyZONxmQhLxgNtnYVhyUQ4vxHG5TSyOL1EXdGBzm8kWiuuEFLW/EylBLS3EWVqI42+w47TqcfnMLEXimKwGJkbWqjVBARM1LbSmVneVoNKpLDOTEbKDeYrFEs0tLgwmLUqtivn52Jp5bL2NsZrjZGui4zu6fJyWvAeVSkEmnmVLp59MrsDkTIRgg10WpeFwGNcRlEolJ5K2VjfDI/ILvs5vpa3OjqAUiSczqDQwvbD2XbGatYzUqPpq27PtLW5ZdHs8kWFodJFliSHwzi31pDJ5NBoVK7k8mXxhncN4qaYh0tXspX9s7T0pFbCclLe7vS4zCPCGnc2cCSqVCq/Xi9frrYoFFhcXGRoaIpPJVMUCbrf7Bbl3Xwhk9Nvf/pZ3vetd/N//+3+rZARl8+cPf/jDG3JOrwVckIS0ClEUmZiYYGhoiN7eXgKBwAv6uVVCWiUlKJPR1NA8T9x3XPZcf7ObaGiU+Ykl5ieWcNc7UFBCb9BU5zDt24MMVJR1lRMjsZwisZym78kRlGolO1/XJouTAFDWXKy8DQ5GKqSxNBdDrVVRv60OlVJgZqzcGrO7TYz3yy96Dq+JRGQFSiKDx6YwWXUYTDp6dtQxO7lMNJKmrtFJX3ht6dZs068junQqxdxoHLVWRWe3HxQKmTM5lCsvWZaSx1xt+c1NRpibjNC5rZ5ggx2TzcD0ZASjRcdozZxqHUF1eKuzrOWKJNlmMtHT7SebLzA+tkRTm4uR02sXXYVSWEdQjS2uKkGNDy9itelJJrN4HEY8fisr+QJqnYpZotWfqVXoQTmqXor2Dp+sNac3qMkmcmzt8pNI55iaieD3W2Xx7W6PeV11tK4ya/dWrYigrPyzmPXU241otAIr+TxqjYKYpNj2uEwM1VQ6xZqZXmebl35Ja06tUjA0viTLaert8pPU6XA7TeU8LgFmI3GZ4CZdsxfVFnRyWvJZGSq5TjfecBHK2vyRM0AqFljdA1pcXGR+fp7Tp09X3bufLZjvQiCjp59+mne+85188Ytf5E/+5E82xI3itYoLlpBKpRJ9fX2EQiEuvvjiF/XlVCqVZLNlA0iFQlH9Qt3zbw/Lnme06hk5NiV7zBWwcuKRQXQGDd07gyzMRFmq2c9p3drAyPG1i38xX2Q5FGd2cI5gpw+tSUcqmVvX9rO5TLL5ksmi5+jDpykWStS1uDE7zShUCpYlljsmm4HZ0RrbIo+emcEIoYpwoH1bHaVCEYVSqIoRGlo89EnmWxqdknAlSymfLTB4bIqe3Y0Y1ArqOn0sL6dIJLLr2nfegJXIwtr5lN3LZ6qvIwjQ2u7BZtUzNRkmGc/ib7CvI6haSAkKyrMjk1ZDR5eXifEw2UyBhiabrIJSqRTrCKq+0cmpY9MshRIshRKVpdQC7U0uNHo1C4sJ9DVR3YE6C7Mz8oXaaE30SHOzmz4JoVttegqpPFu7/MSSGaZnlnG7zIQW1wQFAb+V0Rp5+Kr57Co62r30y8xjQaVRYdOqMJlUCEoBg0nN0vJaHEWd3yoTSYhAKl1z3FYvpyTmtnqtiuHxJTLZPNF4WR3Z2+EjvJDEqFXjc5txOY2kcwXqHOWI9EIJEil5KF9r0MXgxCLX/s5Lc7Be3QNqamoil8tVW3urwXyr5GS325mdnd1wMjpy5Aj79u3j//yf/8Of//mfb5LRecYFSUj5SvpkoVDgsssue1F2H6IoYjAYGBsbI5VK4fV68Xg8ROeTHPyvJ+nY3kBsOc3CZJjGTj99T6x5zSnVCmYqd52ZdI6+J4bp2NUIImi1rnIVI4rkavJl6ls9jFfaXJOVFl3zVh91LRaiSzlS8QwOr1k2FwLwBR1V8pkZXcQUTqJUCnRvrycSTrEwvUywzSNT9umNGsLTaxdBsSSSTCSYGylL1et7fCQTWcZrnLebOnwMSmYzeqOG0f45Mukc8Ur1t/11reRyRWany1WXyaxbZw7rb3BUKxwoz62OPzlKqSgiKARa2r04fBYS0TTJRLbyM/Z1Sj9qWkeBoIMTz5QJVKlS0Nbqxmw1ELdnqwusvjoj0xNrpYRGo6zuOFWP01iO0hipvJ7TbSIWStDb5SebLzIxuUSxKG/ftbZ5qi4Oq1is2Qeqr7dzSrq/5DSST+fZ2uUjnswyNRvFatXLDFuDQQeTNU7l0Rrz2LZWDwNDITIZiCdy6PVqQqEMyiI4rWrMFh0ms5ZsxshSRaLdFJQbuAJEagi1tdktW7A1G7XV/aVMNs/4dAS9Ti2rsnZ0BcgVCrhb/eQKRSKJNPPhBG9/fRdmo5aXC41GI7P4WQ3m6+/vrwqZmpqazpli7/lw4sQJbrjhBv7yL/+Sv/zLv9wkow3ABUdIoijyzDPPoNVq2b1794saiK4KFzweDzabTWYZEhlPYbLrOf1MeTbUeVET2XQWURSrX7z2HUH6KzEUlZMhvpRkvuIqEOzyYw/YOf7YsOx1dUb5HbjFaWD8xByiCCq1ks5tDRgsBiLzQ2vu01a9bDEXyj56fU+NEQuXz7FlSx2URFRqZdW0tbnLLyMotVZFYql8t5yKZzh9aIL6djsmgwKH20JoNoUowuyY/ALW3OmXVVBanYqhY1NV14emTh/uOjt9R6aqi7ZGk3Zdi09KUGJJJBpOMjG8gCiW4zB0Rg3pjPwiHGiwywQQUE6trf7/QgmFQuDYE+XPoT7owOYyki+JIMarn6HTq2NOYmOk06sZrZnxeH02+k5Ms1ip8mx2LTqFhi09NqKxNDMzy+tSgNs7vAwNygUQczXtWH/AxknJzM7lNpGvVFCpdI6puWX0NdEPLc0ueQUlQLhmsbi12c3JymccXs6RycHkVIJSScSgVeJ2G3FZdGia3ITCCaKJDG3NboYlzheCAHMheQXY1ODkxGkJodrWBw9msnkGx9eIuavFw8hUhP/x5q2cbUiD+QwGA8PDw/h8PsLhMOPj41gslmr1ZDQazzk59Pf3c/311/PRj36UT3/60xtKRt/5znf4zne+w/j4OAC9vb187nOf4+qrr96wczpfuOAISRAEduzYgVarfcFfijOJF6QqoFwux2L3Ii3b63ny3hMcu3eUfD7H6NEZGjp86Ew6Rk/NsFCTa9O2Pcjw0bXW3OTAHEqVEofDgLfJzdjAHFaXieGatp/VZSC+VL5QFvJFZkdDZBJZ6oNOjA4jI/3zBNu9Mlm51qBmvOZir9Nr6HtiGINZR/v2emLRNNM1Lau2LXX0y2yLBGKhFRKVC51SpaB9Vx0rqSKpxAqiWH5spsa6p7UnILM/mh1fYmkuSjado63Lj0KlRK1Tc0piIGswaRmp2dHxNdirBDV+eh6TRctKKkdjswuDVc/cdBSz1QASJ/K6Rsc6F/S8JL10djKCwaRluG8Oh8OIr8FBNp8nmZS3rVw+nayCMhg1jNRUil6/g9N9c0D5d93c6kaDQE+nj4XFOOFIWib7Bujo9HFa1mZTMFkjwfd6rZySEJTXayGbzLK1szwjm5mPrXMYb2/1MCghBYVCYKbGb6650cXJSvWdyRaJxTJMStqNNosOq17LtvayGCMUSeD1WGQWRSqlwOSs/HwdVq2sqvK6zTIyAsjmi+zqrafBZ+NcYWpqipGREdnSazabZXFxkcXFRUZHR9FqtVVystlsZ93UdXBwkOuuu44//MM/5Atf+MKGV0b19fX88z//M+3t7VUj171793LkyBF6e8+/S8b5xAW5h1QoFF5wjPkqEa2+DUEQnvMLVSgUCIVCPP6rQxy85TCzp8sXpu5LmxFLAsMnpsrJsKJIfbuPackFra7Nw4xkiK0zaNjy+g7GT88TrjhZG206MokcxcLa+fdc3ELfk2utQbvXSl2rh7npSHU3qXbvSalSYLLqiYXXKoCuXcGyVZHNyNjgArlcAbvLREQiP2/fVsfQ0bXKSxDAZNeTiKxgsGjwBB3ozQb6D0viLJQCVptB1orr3hWUuZerNUrMNgMuv42iWPbI69zeQJ/kOXpjZYdoZW0O0dBuZ0oSZ+FwmzFadJhtBhYW4iyFEnT0BhiUzGvqGh3MTMgvoMEWF5OSGIz2Xj/jgyEaWt1o9BoWFmIUSiVi0bWKo7nNwdjw2nGMZi25TEFGdl29AQYkr93Z40dQKSmKIjOzUZLJLPUNdqYlBNrVI99N0miUqNRK0hKVZe+WOtmOk89nJZvLYjCqMJpMRGIr6IxqWbZTV6ePAUllplYr0GrUcqFCT4CTEgcIq0VNLCGf+3S2eSmKJXQ6NbliCa1exdG+mWplqVYJKASBbH6tKu3t9HNS4gDR4LcxNR/jS399Pbt65U4oZwsvRMBQLBaJRCJVgiqVSjL/uZfrFjE6OspVV13Fu9/9br785S9vmIP588HhcHDzzTfzP//n/9zoUzmneEUTknTZVSpeeKEoFos8c/A4d3/vALODC8QWUugtOho6fSAoGJRUDFBu6Q1JKian30pkPgaiiLvZjlqrxeq00C+RjOtNWsSiSEZyUem+pKXaGmzZWo+gUhIOxYlKBuRdu5tkyj5BAKfXwlJleVJn0NB7WRsLM9Fy1SQIgIjFriceXrsod+xoYPCovIIzO3Qo1UqsbhNL82nqml2y+ZIggN1tlhFd184gA5LoDIvdQH2bh5WVAuPDC4gl6NkVlBGURqdEQFFdcgXo3hms7jgBtPb40Ro0LC+ny0u1grCOoBqaXbKAQoD6JifTEjVYx5YA0UgKp9dCOptnejqCRqMiJami2rs8DA2s3VCsKvSkFk0dPQEGJWTTu70ekXK1MDOzTGoljz9gZU5SyfT0BmQCCL1eTUmUS82DjRYmJ9Yqm/p6O9FYGp/fhkanIrmSRRQExiUE1dPlp09Sgep0KkRBICP5PHu7/ZySPMdh0xCJyivHQMDGciyNz20BRRFBKLCSVzIfSVIolDAaNOQKRXISou5p95HO5PnXv3/3OakYXoqaThRF4vF4lZxSqdTz+s89FyYmJrjqqqu4/vrr+cY3vnFBklGxWOS2227jpptu4siRI6/6ePRXLCG9XDKqxczIArd/814e//lR8tkCnmYbeqOeZDRDeC6ON+hc19LrvrhZNnMyWvTY3WbMLjOj/XPkMvl11ZFSrcBkMRCT2L10XdTE/OQS/hYvM+NLxCNp3AEbi5LN/Y7tDQwekROkr9HJ/EQYb9CJ2WUktZJmbrhm1tHkZE5y4W7bJl/eFQTwt9lRKFTMzyQo5Ip0bKtfZyrr8llYksjBpQRltOgIdngRRYGBkzPVpdmenUFZ/tOZKqjunQ30VxJ07S4TDa0eEskM4yOLVQl1e4+fIYn6r7HVzUSNCEHqEgHQsTVANJpAo1eTTBWJLqfQaFVkViQuDFsC1SRcKAsVotEVmXS7rdPHcEWoIgiwdUeQQqlEJldkenaZlUwet9ssE0HUVkd6vZJcriSTbnd1+2RR7U1NTiYnI/h8Vqx2AyUBSoicHlqoOqvXVkcmk5ZsTl7xdbS6GZR8Nl6PngXJ8rEIuJxGliIpFIKA22WiMeggncmTzRcJx8vptol0jv910+VcfXk3ZxuTk5OMjIy8bDXdyspKlZyWl5dflFvEzMwMb3vb23jb297Gd77znQuOjE6cOMFll11GJpPBZDJxyy23cM0112z0aZ1zXJCEVCwW11nhSyF1XjgbZCRFbCnBg7c+wc+//QCJys6Jp8WOxW1h6Jnp6mtZHEZSsbTs7rpnTwt9vy0LHgxmHU1bG0jGMkxJBu1dFzczUOOj5wpYqxEXCqWCHZd3EQ2nGO2fK7+eKJaJRVIltG6pZ0SawSSKBFpdGEwGUAiM9M/T3OVntE++i1Tf6mFaMrdo7Q1Ud6PUWiX2OiN6s4GJ05EqsbRvrWeoRoBRS5hdO4IMHJ1Ea1ARaHIiKFVEllLVJFxYX0EZTFqKxdIZCUpv1NDQ4katUzM2skhKErHR1u1jWLLU2tTmYVzSShUBm0tPVBJZvu2iRvKFEtl8nqmpCKViCYVSIJeV/P621dMnsWJye8ws1loUtXsYrcy7BAG27gqSL5TIFUrMzkdJpXLY7IaqMhDWV0c2m4F4Qk58HR1eBiXtutY2D8Mji+j1anx+K0ajFlQCU7NRIsspEAS29gY4Ifn92qx64omM7LhNjXbGJUm49QEzU3Nr70kQyj+3LFH/beupI18s8s9/cwNa7dk1UD1bZFQLqVvE4uJiNTV2tbWnVK7tBM7Pz/P2t7+d3/md3+EHP/iB7N8uFORyOSYnJ4nFYtx+++384Ac/4KGHHtqskDYCz0ZIteKF55sXvRxkV3I8vP9pfvHdB0nF00RDMaweEzqrjoWJOHUdTqb71u5EtXo1SqWCdHztD7t7Tyv9TwzTuj0ISiVj/bM4vDbCkr2m9p1BBg+Py167rtXDzEgIp9+Gt8mNCAw8I39OsNNXlZgDNLR7mJJc0Mx2I+07gsxMRliozD8aO7xM1MivpW4SAI1dPiYG5tGbNNj8BnJZUKrVhKbXKq+2LXXrXCGcPjPheWmLr4Gp4UUa2jzkCyWmJsLo9Brikgt1LUEZTVry+SI5Saure2cDp49P09DixmDRk80VGBmYl1kvtXb5yo9V4A4YCc3JZdAev7WavKtQCmy/pJnMSo5oLMXcXByVWgBBQT63RlDdW+volxCUL2CVRWIABFvcTEhuFLbtaiCfL1EslZiej5BOFzAadSQk0SLlCkpCfG4TS0tJmRK+udXNqGRm1tnl43Rlnmk26/BVHMJTmRyL4STLsTRbeuuqAggoL9iGIvIFYL/PyOzC2mNtTQ6GJfM6lUqBTqfm+rdt5aZ37eFs4lyRUS2kbhGLi4tkMhlCoRAzMzNcccUVfPjDH2bXrl385Cc/OSfx5ucCb3nLW2htbeV73/veRp/KOcUr47fBmlN3qVS+YJxLMgLQ6jW89fdfz5W/dxnHHznNz7/5a449PABzCSweI6VCAZ1RRSZVvng2b6lnQNKaExQCCxXV0six8kV3y+s7KAGZ5AqpRFlynqxdyOytY6xysQrPRQnPRWnuqaOt209JEBjtm6WhwysjIwC1Rn4na3UaOXygH4BAiwer20yNiQD1bR4ZGcGaw8JKMsfKUI5Aq5PEchJ/0MhKukh0cYV0TTppQ7uLqSH5jCcSSpBKZKptve7djRSLJbw+S7UdN10zF2rs8MoJqrIHVSqKTFSqkq4dDXhcJlx+KyuZAtlMXkZG5c9CA6x9rm1dvmrUBZTl6ZPDi9XEXJ1eTe/WILF4inAkSSS8glavlAcYAja7UUZI9UGHjIwAIosppiW7R1t2NJDLF1DV2VmOrxCOJKuu5KtweywsSuaHfr9VRkYgT5pNJDLU19k5LlF3elwmiisFtnWW963CyyncbrOMkAI+KzMLckKNxmscK5rdDI4tct1btnA2sUpGu3btwmq1ntVj1+JMbhF33303t956K5///Oex2+20trZy4sQJduzYseGquheCUqn0rKbTrya8IghJOi8SBOG89nsVCgU7Lu9mx+XdnHr6NP/fV+4mE80xcmgKlVpJY4+fRHyFiX55S6tjVxOnnx6VPRaeXWZubBG1RkXHjka0Rg3HHh2S/UHUFqz17V7GJK05u8eCy2tmORQlGa0snja5GK2JUNcb1zzDZkdDlIolFmcitPXUlau10/Po9HISq2txrZee67TMRsJl6yKgodtNsZjFbNeSWC6/fipRs5TZG1hnWxSejxOqtCXVWhU79rSUBQX5IqlkFpVawVTNXKix3SMjKJNVz0jfLPlckcVKtdOzK4hRr0ZUiMxOL2Ow6JmZiMqOUyjI55Ht3X4GJTOpXLZcdUUrF2+LVU9zl5tYNEU4nCYRz2EwaRiqIT6DSe7L1tjsWkdQS6E48xIBRO+2elKpLMaglkyuwHIsvc4Y1mo3MiuZ1wWD9nUy81hN4J7XY+GU5Hdn0KuZWlnEZ9PidNoQBQGdXsX8Ypxi5c6ksd7BRI0T+OxChN4OO/FoCK367OwAnU8yOhOMRiNXXXUV3/rWt3j729/Oe97zHn71q1/x1a9+lcsvv5x77rnnvJ/Tc+Fv/uZvuPrqqwkGgyQSCW655RYOHjzI/fffv9Gnds5xQRJS7QX6bIoXXipCoRALiRk+9KV3YzXY+fW/P8J9P3yI8WPTdO1pJa1bQVGvYKJ/Hkoi85Pyi0zr9mC1UsrnCpx+aoTG7gB1DXasHisjfbN4GhxVx4dV6A3yDXmNTsXh/+4DytWUxqAFpYI5yVjKXWerhg2uwuowMD++yHDlHOrbvagUq6F/CyAIGC1ylZKv0cloDbFolBpG+ssVnM1rxOzWsxySV0y1ibVtvXUMS1pU+WyBqZEQoZkoCqVAU5sXZ8Ami7NQqRXrggaDrW4ZQVnsek4fn5bN8drb/XhcFlYyeSbGlvDX2xmvcXNYWZHLpNt7/JyWiBvSqSzjpxeJV+YqdoeBQKOVaCxNNJollchjsenXZTQpVfLvZmv7+giMhbkYS1IBxNY6VCUBR9CEoBRIZ3KM1jiB134HmptdjI3JrYQWayLLPR4945Nxksk8odAKFrOO1EoOBeBzm7Fa9ZitOjQqJUvRJMvRNO3NHoYmFvlfb99KNBqt7gB5PJ7qDtCL/fvbaDICiMVi7N27l0AgwP79+9FqtXzwgx8km80yOzv7/Ac4zwiFQtx4443Mzc1htVrZtm0b999/P29961s3+tTOOS5IQlrFhUBGqwavo6OjbNmypZqB8u5PXMs7PvZ2HrvrEI/sf7rarrN5LLRsC3L6GXl1lErIWyP1HT7GT5WrmpnhBXRGLR6/lWI2z1zlbtjT4GCoRlmnkFybxk7N4PRbya7k6N4ZJLacYmZsCaffzqIkLsLuMTNUs7xrsuoZqCgEnT4rdR1eFqbl7Ryrw8i8xIVaag4LEF1I4XBbSYaWcNVZ0JjVFEWxmmq7ilyuxh9NUkGViiLjp+dJJTJEZqP4gw7sXgsavYajvx1d253RKKttu+pn2CwnKKvTyKlDE1XXB61OjcdtxmLWsbiYYHE+TkPLegn5aqTHKtp7/GW1YAWpZJaJoUhVWGG16fB49RiNAslUiXgsi8NlYnRITny1w9mOLh+DkipLoRCYnYmyvJwmVHGS6N1eB7kizXU2jGYdCJQD+CSGqLUmp+3tHoYkpCsIsBSWO0AEg46qAGJuPlaOkx8KVd2/TQYNZp2Gt/9OF6+7pLx8WSwWq0KBY8eOAeByufB4POuEAmfChUBGiUSCd7zjHdjtdu644w602rU/IK1WS3PzmR3MNxL/9m//ttGnsGG4YEUNuVyOUqlUtfbZCDJaTaddXFxkx44dz/pHJYoip58Z45fff5DH7z6Ev9nDwvgSbTsby/HnSpHZmotVU2+AMYlyzRN0EqoYaDZ0+TE6zAhKZZU0AAxWLZlETqai6r64hf6n1mZXLVvr0VsMTA4tkKzc4Xdf1ES/RNlndZpIxlcoSuTC3Rc30//0GIEWNzaPlVgszdx4WY22iq5djbJAQnedTUZ8AM09PhKxNFqzmvhyFq1Ry9KMXKkWbPfISKutN8BwTSXm9lvJ5Qr4G13kC0U0ek1VHg7lxFiFUiCTXiO7WpGE3W1iOZKuBi863GaaOr0kEhlmppZJJbPrFHoAvnob8xIFYfe2evolMnidXg2CgkzFONVgUuPy68nnRbI5CC+l8QZsslYdrG/pdfYEOC1ps6lUCnRGjVwAsbWeUydnMBq1eP1WzFYtqXSexXCirOQTBJqb3YxKnDfq60xMzyblx9VrSEhmf1t6AlWLIig7NcwvJfjsX1/D6y5poRaiKBKNRmVCAYfDUZVZSy/0cGGQUSqV4p3vfCcKhYJf/vKXGI3GDTmPTbxwXJCE9K1vfYvl5WX27t1LS0vLhuwIFAoFjh8/TjabZceOHS/Y4DU8F+WBf3+E+3/8MNGKn9i2yzvJZQqMnJymkCti95uJzMgvVp0XN3NaQj42j5VCLk+wu46lUIzF6RhtOxsYllyUTXYD2WRW1iLrubSNvieGUaoUNG9pQKVVMTm0wIpENt1zSQt9ktcy2QxkV3Lkpeq2S1pIJzLozXqmRkKoNWoS0bTMc65rdyMDkuVhV8BGeDYqm4O17agjk82RiGWJhTP4Gu3MT0Zl7z3Y5mFSQgpnUvH5GuwYLXo0Og1zM8tY3XomTq9Vb1q9GoVCYEXiltC9M0ifZCnY5bUQDsWrxUag0YmvwU44nGJqIkwhX6Kl07vOD8/ttVS98AB6tjfQJyEojVaBKArkKzHsGq0Sf6MZBCWFAswvJPD5bUzVzIHqgg5mJA4Q3VsC9ElatjqdCkGhZEXiGC5dwjVbdDS3uCmI5dTYudAyiUSe+gYH0zOS43bLF2y1WhUKpULWuuzp9hOOpPjBN9//gmImVmMlQqEQ8Xhc5j0XDocZHR3dUDJaWVnhd3/3d8nn89x7772YzeYNOY9NvDhckIR022238f3vf5+DBw/S3d3Nvn372Lt3L52dneelUlpZWeHo0aNotVq2bdv2kqSh+VyBJ35xmMfueoYn7zkCgMlmJNhbj1Kt4sSjp6vPNdh0ZOKZaqQDrBHLKpp66zDaTIz2zZKpRA/07GmVPUdv1iEWS9V/Lz+nhYm+WRq7A8TjGcILMUCQOUf07Gmh70nJgq9ZR6FQrO4HKVUKei9rJTQfIbyQJp8pYnEYSScyVdNXqBCURJ7uCtgIz8WqBGXzmHA2mIksplleWAFBoK7FxUyNoux5CUoAT4MFu8vGykqeqbElunfIqyO9QVNWNEp3nHY00C8hKE/AWg0nVGuU1DW7cHjNhBbiTE9FEEtlAYRUbScIQtmuSTKzaevyMCxxgLBY9aRSuSp5KxTQ1OFEISgRFUoWFxPY7EbGJQvLIuCrs8oFEFvrZA7jRqOGfL4k89qrtTFqbXNTEsFg1FIolYhE0yg1CmYk6sDa6sho1JArlPjg71/Gvmu382KRzWarceZLS0uIoojP56O+vh6r1XrebygzmQzvfe97icfj3H///RtGigD/9E//xP79+xkYGECv1/O6172OL33pS3R2dm7YOV3IuCAJCcotgkgkwl133cUdd9zBb37zG1pbW9m7dy/79u2jp6fnnHzRY7EYR48exePx0NnZeVZeY/T4JPf+20Eevv1JTDYDsaUETb31CEoFI8en6N7TWl2oBdAa1RQLJQrZtYt972XtnHpsEI1OTcuORnK5IvNTYVYSEmK5tFUWp6HRqVGrlaQkiqztV3STzxeZn4ywvJgoP0ejIiXZn6olKK1BQylfIJ8totaoaOwJYPNaOf7kKLlM+eJothtYWUdQcvsjKUGZbHrsfhOoBWZGYpQqP9bQ5maqRoRQ3+KWmcr6m63Mja1dYI0WHY0dPkolkfnZGNFIip5dQU5JqkmjWUc+V5DtOHVtr2dAYpnkD9qZmy5XFjq9mkCjC6vTyMJ8nNnpCKJI2dZIotBTKATMFj0xiXy/d0eDLIbdateTiMkXVlu7PSAo0WhVJJJZNDqVPOxPAKfLTFhCfL1b6mQGrharnmQqK6taO7p8sqj2llY3k5NhPF4LFqsehVIBCgVj02GSlap5S2+AkfEl/uN7H8BQkx31YjA5Ocnw8DAtLS3VCgpe3Nzp5SKbzfL+97+fhYUFHnjgAex2+zl9vefDVVddxXvf+14uvvhiCoUCn/70pzl58iR9fX2bLcQz4IIlJClEUSQWi/GLX/yCO+64g1//+tfU19dXyWn79u1nhThCoRAnT56ktbWVYDB41quxVCzNYz9/hrv/5QFmhsrD7UCbF7vXxvTQfNVOqOPiJgafHq/+nFqrRKVSsSKZLfRc1s7idAR3o4uZ0UXSyQwGk464ZO+k55IWWQWlVCsxWvTEK6/T2FOHu9FF31NjrFQqJrVGidagle1H+dvtzJ1eazdpDRoUCoFCvkhTTx2olGj0Gk49WdMGTOdk7cRnIyiNToWrwUpRLCGolMyNSSTPNfMmgECzi1nJLKbW6ijQ5MTps5JIZJkcD1MslNbNl0xWPZl0TkagndvrOC1ZhJX65ekNGvxBBxaHidnZCKG5OCICXVvqZAIItVqJRq8mJb1R2F5Pn4SgbA4Dy9EVmeqhucNNPlfEbDNQEkVUGhUnTkxXhQwKhYDFopcFCXb3+umTkKPTaWS51vqo3cOwhOjaO7wMVj5Pi0WH22PGaNKyZWs973v3JbxUrAp/pG261b/bUCj0guZOLxf5fJ4bb7yR8fFxHnzwQZxO51k9/tnA4uIiHo+Hhx56iDe+8Y0bfToXHF4RhFSLRCLBL3/5S+644w7uu+8+XC4XN9xwA+94xzu46KKLXjQ5PZuS7lxBFEVOPDLA/T96iNhSkpOPDKBQKmjb2UixKDIztkBWktzZvL2OsSNyd26z3URsqSwWUCgEdr5lC4nYCqOnZsp5QkoBq8PIsmT2ITV1hfLyrs1lJhFN0bylAZQK1DqNTAAhKAVMZh2JiMRhoWYGpdWr0Zt0uOsdCEolE8MLtG6tp09iMmuyVuZUz0FQ7oCNSCiOu8GKQqsgEc1hcRiZkSTm1rbzoExAs5L2V+f2Bk5XVIUarYpghxedSc/ifIz5mSgIwjqfPavDQDKRkVcbW+oYlJCN1ENPo1NR1+jE6jITCZeXYYuFUlkAISE1rU6FQqFgRdJG7d5eT9/xtec4XHoiEbkqrrHZRWghji9gQ2/SojWoGR0Ns1wJ6VOpFShVApmMpIqu8dDzeC2EanKRGptdslZhV6ePwaEFvv+vN+H1WngpOBMZnQnPNXd6uftOhUKB//k//yf9/f08+OCD5/xv+KVieHiY9vZ2Tpw4wZYtZ3f5+NWAVyQhSZFKpbjvvvvYv38/v/zlLzGbzdxwww3s27ePSy+99HlbBKVSidOnTxMKhZ5TSXeuEJmP8pufPsqvf/IIi1Nh6no9JEJp6jsCzI6ESMbSmG3GqkACoK7Hy0yfZPAugDNgJzyzjNFmoLGnDo1Ry9GDA7I/cne9g8XptUqn86LmamAhVIxWWzxYnGbiiRRzYxHadgQZllQWCqWAxWEiKtmlqSU6o1VPfbsXhPIu0UoqS8/FzbJ4jRdCUE6/lWKpiN6qIZcrEQmt0NDmZnJwrX3X1OljvGYfyB90VKXzUDGCrcyObE4j/kYXCrWCybEw8UpcRc+uIH0SJ3e7y0Q0kqoq9AAaWhxMja4dt7nTV03CVamVBIIObG4zqWSW2Zko6XSu7I8nqd4MRg35oii3R9pWY/Lq0hJZkm/lBxoczE4vYzLrcHvNCKoCmZxIOlMivJREp1cjKGqECr1ykURdvZ3pGlVkfb2dYIODT3/6Wl4KXigZ1UI6dwqHw9XMI4/H86LnTsVikT/5kz/h8OHDHDhwAJ/P91LeyjlHqVTihhtuIBqN8uijj2706VyQeMUTkhQrKys88MAD7N+/n7vvvhutVsv111/Pvn37eP3rX78uO+WlKunOBRZDi/zi3+9n9kiYw/edqph/Ktj5ll5iiwlGj09Vvc7cDU4WJRHW3nYHC0MSBZco4mtylYmqzsn0aAhvo5uhGs88X5OrmoYL0LG7iUEJIZgdRpq3NhBdSjI5uIAgCOtJTCFgc5uftRJTqhS0bKlHa9IxMRQiUWk5vRCCat/RwNAxqTTeilKtQFRALJJjJZmnucvHmGS3p7nbz1iN24Sn3k5IciGWZj156+04/VZKIoyPLFYVbT07GmQKPZvTQDSSlrXZWrr8jErIsK3bL7Mo8tXbcPms5Atl0lhciNOzMyibL5mtelZWcjI3ic4efyVEsAynR094Ue7YbXcaWK5UVUaTlq7eACuZPMVSieXYCslUlmy+UFX+AXR2+2UO442NTiYmwnzpn3+X3t4ALxYvlYxqId13ks6dVo1Rn0tUVCwW+djHPsZjjz3GwYMHqaure8nnca7xp3/6p9x77708+uij1Nefm4ypVzou6MXYFwu9Xs8NN9zADTfcQC6X48CBA9x+++184AMfQBRFrrvuOvbt28fll1/OxMQEN998Mx/+8Ie5+OKLN9RkcXZ2lv7+fq5635sJ/GWA8Owyv/nPx/jvnz7KVN8MocklbB4Lde1+FGoVJx8dlP28oiivAn3tTuYre0/zY4sIQrnV1bEzyFjfLPlsQeYcsYpaXz1v0MXxg2U/PLvXiq/FDYiy2PeOHUFOS3aTBAFZTEexUEKlVnLy0UEEQSDY4cPkMJKIyJ0Fgh3yBF2jVb/OJcLhtslk5nWdTjIrCVw+I0vzSWB9y6elJ8BoDUEtSZRsC9PLODwWBg5PICgEGprKbbhcroBGq6pWMkaLiqgkfcRbZ5OREUBB4hgBYLEaOPnM2vna7AZK2QJbtgRIpXPMzkQJNjs5Jamg7E7jOosiq9UsIySv38DC/FqLL53KMj66KBdAbK8nFl3BbNGBQiBXKDAzHZUdV6tV0d7moafHv+5zez6cLTICUCqVeDwePB6PbO40PDzMyZMnn3XuVCqV+Iu/+AsefvhhDhw4cEGT0Uc/+lHuueceHn744U0yeg68qiqkZ0OhUODhhx/mtttu46677iKRSJDL5di9ezf79+/HYnlpvfOXC1EUGR0dZXJykm3btq0bwhaLRY4f7OeBnzzMU786QiFfpK7Dj0arRmvUMnJ8imBXHaPH5cQSaHMzK9ml8bd7mKsMsrUGDc1bg2jNOo4/MlR9TlNvgHEpAYgiDZ1+pk5LJMUVEnMG7PiaXGXps6CQV1m7GhmsISiHz0pYQgKrS7jeRifOgI1kLEN4MUFK4pgQ6LAzOxSt/rfFYSCdyMpVfJJFXa1BjavRjFgSiEVypOLllldTl1/W0mvbEmBY0h4TBHB4LISlFd7uRvoPT6JQCjj9ZjRGBVqtkemJMNmKqrBrewMDUiFF0MGsZKcI1gcLdm6tk1kUaXQq/HV29GYtoiAQXU5hc5tlMyi318xiSE7edY02pifXPs9gs53J8bXXVioFTBa9LD23Z1tZoedwGHE4TRjNOjK5PNdfv4M3Xv7iJMhnk4yeD7VzJ71ez7333svevXv52c9+xi9/+UsOHjxIS8v6Zd4LAaIo8rGPfYw777yTgwcP0t7evtGndEHjVVUhPRtUKhVvfvObefOb38zb3vY2fv/3f5+LLrqIyclJOjs7ueqqq9i3bx9vfetbX3Tq5EtFqVSiv7+fcDjMRRdddMbFPaVSyc4rt7Dzyi3EluI8dufT3PuDA4ydKBOQwaLH6jRQ1+5lenC+XIF0B5jsm6450to9RzadIxFJMPDkMFa3hboOP8vhBMmU3NqosbuOiX75cuoqGYRnlwnPLtOyrYF4OEn37kZikRQzo4vrqqz2HY2yYEFBgFBFWr0wEWZhIkz3xS3EQjG6tteTSmeYn14mOi8f8te3yisoi8PIkIQQsuk8Rq2xmo5rdeux+kzkMisoVYqq3510dgPlHachCQEolEJ1/lQqiixOx+na2cDAkSkUSoGGRhc2t4lsrojBqCVdUSearQaQENKZUm7jMfl7au3wyRwgtHo1mUSOpgZHWaZeLKEzalhcSFTVdv46ORkBZCRO4ADNbW6GJXM2tVrBROWmIRJJEYmk6N1Sx9J8nNe9vo0Xg/NJRlA2RjUajTQ1NZHL5ejr6+Ppp5/mG9/4BgA33ngjU1NTBIPBCzJK4iMf+Qi33HILd911F2azmfn58s2R1Wrd0BHBhYrXRIW0ijvvvJMbb7yRf//3f+cd73gHpVKJJ598kttvv52f//znLCws8La3vY19+/bx9re//Zxtd0tnVzt37kSn0z3/D1UgiiKDz4zy3//+CGMnJhk6VL5I+5rdOOudiKIoi8EItHmZHZY7D3jbnCwMr/WfbAEzlAQCrX4WZ5dZmo3Rtr2BYcmQv77Dx/SgvJXU1Ftf9eMD6L60FUGhIBFbYWoohCAIBFo9zEoCAdt3BhmSqNvKFZQ8I6pjd5BSAVQ6NbNTETLpXGVXSiJ7r5lBWV0mklF5YGLLlgCjp+ZQqhQ4/CasHhOJSI6FmVj1Al+749S5vZy/tAqlSoHBpKvOvgB6djdWJeT+oAOnvzwnmp+NEq3kPbX3BhiSVJxN7d51FkXSjCYoL+5K5eFGk5ZcoYBCAS6vGavDgs6oZWy1PScI1Dc6mK5xgLA7dSxH1kQR6xwg9GoE4F3vvYTffc8Ll3qfbzI6E0RR5Itf/CI/+tGP+OxnP8uRI0f4xS9+QalU4uTJkxecoOHZlIM/+tGP+MAHPnB+T+YVgNcUIcXj8WpAWC1KpRKHDx/mjjvuYP/+/UxOTvKWt7yFffv2cc0112CxWM7KXlImk+Ho0aOo1Wq2b9/+su7qVpIZfnv3IX7z00c5+cgAvmYPocklWrYFUWpUjJ6YonV7I4MSo1dPo6vqmbcKb5uD+cE1guq+rB2FSsHs2BKxylyifWejzOi1rs3LTA3RNW9tYOxERc3mNtO6vZFwKMHk4HxVkFHX5mFGuhdTc1wEcNYQ1I4rusjlCiSiK0yNLq2FIUrtkC5qok/iEmH3mIlF0jIvvoYOF1ODS2gNKtz1VswOE6GZBGFpBdLolCv0djRUFXpQ3tPS6DVycpTsODncZupaXRSKIsvLaeZnlhFFaO32y3KbakMFBUHA7jZXM5oAOrf6OX1qrWVaFkDkKeSLGM06PD4rTq+ZWDzD8nKKxVCcxlYP4xLnCxGw2NXEYxL13ZY6RoYW+OFPP4TZ/MJuhi4UMvrSl77Ed77zHR588EG2bt0KlFvbhw4d4uKLL35FZBtt4tnxmiKkFwpRFDl58iS33XYb+/fvZ2hoiDe/+c3s3buXa6+9FofD8ZK++MlkkiNHjmC328+608TC+CK//cVhfvm9/64STl2HD6vTRDqRZWJgFkEQ6NrTKqugbF4L0YW4XN68xc/UyXJ8emNvHVaPlfH+ORLLa229jl1NsqTb2koIoGVbA6PHpzDZDNR3+NGatPQ9PU5Bovx6PoISFEJ5BjVfriRMNgOdFzWTiKaZGVsilciiM2hAgIzEx67n4mYZQTm9FiKLCdn79DVbmR+LYbbrcdXZMFlNjJyeI51cu3j7GuzMS/3mdgZl9kNn9NDbtfYcnV5Na2+AEgLZbJ65mSjpVI6mdg/jkoXf9l4/g31yJ3CtUclKaq3FWOsAYXcaiUkWYbVaFZ1b6sgXiogCJJJZdEaNLBodwGLRsH1nPR/93297QW2j8fFxxsbGNpyMvva1r/GVr3yF3/zmN2e8qdzEKx+bhPQ8EEWRgYEBbr/9dvbv38/Jkye5/PLL2bt3L9dffz1ut/sFkVMkEuHYsWMEg0FaWlrO2Z1cqVSi7/FBHvzPx1icWuL4wXJ2kqvOQaDTz+LUMguSCql7Txt9v10TN1g9FhLhpKyyaN0VZPToFE1bGtCZ9SRjK8yOhmQX946LmhmUyMF9TW7mx+UWQC3bGpgZXiDYFUChVlEsiYwcl8+76ts8TEsIqmNXI4OS1qGgKFcSkYU4gkKgvs2Lt8nF3ESEmcrMRm/UICLIPP26dzfR/yw2RqtwN5pZnEpi95hw1zkwmPWMnl6Qxa67A7ZqOCBUCErSgtQbyx56Wck+kHQPCqBjax2CQkBQKohF08zNRqlvdjMpqWx8DUbmZ9ZuAFRqBTq9lqTUraOmxefymllakDurN3d4ScRXsDlNZccPtZLJqTC/d1MvSlUWk8lU3f8xmUzrvperZLR79+4NFf98+9vf5p/+6Z+4//77ueSSl+4osYkLG5uE9CIgiiIjIyNVcjpy5Aive93r2Lt3LzfccAN+v/+MRDM3N0dfXx9dXV3nVZqaTWf57S8OceCWxzh+4BTdFT88R9CGO+AitpQmMh8ln5G0c17XTt/jawRltOvJJLKy2Uz3ZW1k03m0Jh1TwwtodWpiS3IS67yoRZYJ5W1ysTAubxX6210UCkVcPieh2RgWu4nxfrnUu67dy4yk8urYWSOSUAjYXCaWQwmMVj11reXF3uGTs9UEWINZSzFfIit5n7VO5Ra3gXhNhpAnaCE0Gcflt+IK2NCZ9EwMh1heKh9XECiTY2iNBHp2B+mr8dDL5Wr2gbbVy+ZUjW0eSpSl7tlsjvm5ZYxWA6G5teN2batnoNYBQqmUOUDULuH66mzMzcoFEMFWFx6vhc/84/8gn8+ztLREKBQiHA6j0Whky6mTk5MXBBl9//vf5/Of/zz33nsvr3vd6zbkPDZxfrBJSC8Rq3ZDd9xxB3feeSdPPPEEl1xyCXv37mXv3r00NDQgiiI//OEPaWpqYseOHbhcrg0736XZCHf8y908ffcxFituA72/00kmlUWt0zB2chqVSkWxWCQrucj1vr6DU4+t7T3pzVpymTzFfMXJWqlg55VbWEllmR4JkYymsXksxGuqrK6LWxiQRLrbvCaiC3I585bXd1ASRVLxLJNDCzT1BBgfkO8QBVrczEpFCLsaZXtQCqWAxW4iupTAG3Ti8NvQWwycfGrNCNZo0ZPL5mVxG409HiYG1o7rCzqYrxEL+JodzI8v4/CYcdfZMVoNTI0tsThbFkmUXSyMRMMSP8FdjXKLIruBZFxuUdS+tY5BiRy8rsXO8lIab50dvVFLLl+ghMDI6fnqrKunxn7IYNRQLJTISs1jt9bJHCDqGx1MT0X42y+/i+27GmXvrVgsEolEqr5zpVKJUqlEW1sbDQ0N59wU9UwQRZGf/OQnfOpTn+Kee+7ZcO+3hx9+mJtvvplDhw4xNzfHnXfeyb59+zb0nF5t2CSkswBRFJmZmWH//v3s37+fxx57jO3bt5PP55mYmOC///u/6enp2bDzW1X15XI5du7cycLIIgdvfZxn7jvGREUlp9Gr2f6mLURDCcZOTlEslNAaNWUfNmlgXA1BaYxqSgWRQraAoBBo7KnD0+Rm6OhkVRBhc5tJLKdkVVZDj5cpif2RN+iULdQarQY6L2ohlcwwPbpIOpktE1RNxLu/2c3cmJSgmjgtmW0pVQqMVgOp+Ar1bV6MNgM6g44jjw9XW44Gi5Zctig3Wt0R5LSkVegN2lmYispfu8nB3HgEk1WPL+jE6jYTmosxOxmhWBRRqRXojToSErl3rYeew20mUmNR1NrrZ0SyzNvS5WP09EJZyBCwojdqUaqVzM5Gyy06QVhn4Gqy6FnJ5OXvaUuAbCbPV79/43O2jMfGxhgbG8Pj8RCNRslmszidTjweDy6XC43mpTuCv1CIosh//ud/8olPfIK77rqLN7/5zef8NZ8P9957L4899hi7d+/mf/yP/7FJSOcAm4R0liGKImNjY+zbt4+RkRFyuRy9vb1VZ/KOjo7zqgTK5XIcPnz4jKq+UqlE/2+HePi/fstT9x4ln8mTiCQxWPQ09jZgtBs5/MDJqkJOrVOj0alJSSXQNS0+jUENIuRW8jR0BbC4LKgNWo4/PFB9jtGmI5PKyxJruy5pkaXjehudLFTi0xVKBQ2dflxBJ7NjYeYmlhAEYf0yL+BvcjEnaQ12XdQs88dTqZXoTVry2QIWjx6T1YTFaeXoY8PV6sPmNJKIrcgItGNHkEFJDLynwUpoSt4O8ze5mZsIl33tmpx46h1El9OE5mPEoytotCpUaqVMHVgbIuj2WVisMUSVeuYBtPX4Ga5YC+n0anz1dkw2A/lCiUQiw8J8jI7eOpkAwmY3EE+s8JFPvI0rr97Ks6F2ZiSKIqlUqlo5JRIJbDYbHo8Ht9t9TnZpRFHktttu46Mf/Si33347V1111Vl/jZcLQRA2CekcYJOQzjIWFxe59tprMRqN3HHHHYiiyM9//vNqplN7e3vVmby7u/uchpel02kOHz6M1Wqlt7f3OV+rkC9w9MFTPHLbEzxxz2HymRxmh5lioUhDdx3pRBajzUjf42vVkUqjLFcAEvVd+8VNDEmiM7QGNSBgcZnQWjXksyLugEsWi2F1mUnG0nKCqmnxeRtd1QrK5jbja/Ggt+g5fXiyGp3R3BNgrKaC8jY6WZDKuC9qZkAivlBrVWh0ZWNSf5MLlVaFxqDlmISg7G4LseWUrAXZtrWeYUkEvbvBzOK0fLnYW29nobIE7PBaaO4JkE5lScQzzE1FUGtVlESq7g8A3Tsb6JcQn6/eXnYol0DqOg7QubWe0xJXco1Oha/Ogc6gQaVRksnmMZj1TIwv8oOffRi15syrBi9EwJDJZKrOCcvLy88ringpuPPOO/njP/5jbr31Vq677rqXfbxzgU1COjfYJKSzjGQyyc0338ynP/1pme/WqkfX3XffXc10CgaDVXLatm3bWSWneDzOkSNH8Pl8L7oqy67kOPLfJzj4s8c5dP8xcpl82eetM4DJYSIdzzDRP0vPZe0yhZ5SrcRoNRBfWhvGN+2oY/yoZBhv1GBzWXDWOcjmCkyenqfzomZZQOEZCeqSVhlBrRrDKpQK6jt8mB0mlBoVJ367Jmlv2VrPaE0UutN/BhsjiTy8vOOkRKlW4GssE5TWqJNVUE6fhchCQqbQa+mtY1RiiOqqN7E0LZmRCQKugLXqo6dUKejYUU80GkdvMBKPZUmnsuQLxfUhgpJZUV2TkxlJfET5MRczE5JIiRoBhEarQqlWsu99l/CuD7yeM+GlqOlWRRGrSbFqtbpaOdlstpf0fb7nnnv44Ac/yE9/+lPe8Y53vOifP1/YJKRzg01C2iDE43FZppPH46mS0+7du18WOYXDYY4fP05zczNNTU0v6zzTiRWevvco/b8d5IGfPEyh4sZt81ho7G0gFk4x2T+DKEL3pW30SwMBVQoMFj0JSWhgXa+HmVNrqjmry4y/1YugVDAzskgylqbnsrb1BBVfkRFU58XNnJY4Nfhb3MyNLmK0lq2UlCololIpEzwEu7xMDkhjOwRcARtLs9HqQ6s+e6vQG8s+c0qVEn+TC41ejVav4egTo9W5T9lNXN6+a+z0MiFJbvW32JgbX3uOIAjoLRrS8TUByZZLmkkmMhhMWnL5Iul0lvm5uLx1eKaMppoIeG+9nQWpu/mOBob65/jX/X+Kzb4+pfRsSLtXRRGrjt2iKL7opNj77ruPP/iDP+CHP/wh73nPe17SeZwvbBLSucEmIV0ASKVS3HvvvdVMJ6vVWs102rNnz4tSOK1KzHt6evD7X7yL83OeZyzN0/ce4dH9T5GKpqvtO7PTRH1nAJVGRd9vR6qtrZadQUaPSLOUFFicJlm2U6DHzWxfuf0kCALN24IY7UbCc1Hmxsuzop7L2mTR7GcSSdTGYgRaPcyOLeEJOnEF7KTSK6ysZFmcXHvttu1Bho+vtccEAeweK5GFNeLouaRFtmBrNOvI54sIlEnQYNahNenoe2ayKiuvzWMC8Lc4mJMYoHobzSxMrlVQSqVQjrePyC2KJodCeOpsaI1aSoJIeDFZ3oOqVGttvYHqPAmgudPL2GBNFLrXyo6Lm/jI31xNLc7FnpHUsTsUCr0gUcSDDz7Ie9/7Xr773e/y+7//+xe848ImIZ0bbBLSBYbVTKc77riDX/ziF+h0Olmm03NZDU1MTDAyMsL27dvPeXxzKpbm6fuO8tufP8PhB47T2NvA0KFRDFY9we560ukVktEVlmfXCKDrklYGnlojljMRVHCbn8nj5Qus3Wsl0OFFRMHoyRlylQv+ugrKYyEZScoriYtbZNlO9oCJ6HyK+jYvZpeZlVQWURCYkNj3tO8IMnS0hkBdZlkY4bocJ5uB7EqeQqGIv5Iga7DoGRtYIBKKl/3mWtxM1+xgOQNmwnNrhNS6xc/IqbVzUWuUaHUaknGJQq/ioac3avDU2bE4jeRyRaLLaRbmo4ilNUVe9biVjKav/ccf0tjilp3D+Vh6XRVFrM6dVkURLpeLfD5Pe3s7Dz/8MO9617v4+te/zgc/+MELnoxgk5DOFTYJ6QJGLpfjN7/5DXfccQd33XUXgiBw7bXX8o53vIM3vvGN1TvNYrHIiRMniEaj7Ny587zbu6wkMxw7cJKHb3uSQ78+TiaZwdvuYnkqRuOWBpQqFVODc1icZualEu1LWjktIShBIWB2GIlLcn3aLmpk5PAkKo2KYFcAndVAYjnNVMXdHKDn0jaZSMLutRKLyEUIrdsbGJGIBRo6fMyPL1HX7sVoNZCIZxAEgUlJbEfnriaZ9FupUmCy6olJ94wuaVnnQp6KZygWilidRjz1ZTn44lyMmckwhXyJ+hYX02PyOZDVbSC2tEY+tR56Wp0KpVol9+/bvbbjpFQpaOsNlPehVOWF2cXFOE6vFZvDyOe/Km+BbZQDw6oo4uTJk7z3ve/F4/GwuLjIX/3VX/HFL37xnIp8Xi6SySTDw+Xv2c6dO/l//+//8aY3vQmHw0EwGNzgs3t1YJOQXiEoFAo89NBD1UynbDbLtddeyzXXXMOPfvQjisUit95663mLzzgTRFHk+NETHPnv4+RCIg/f+kQ1iK91ZxOlYgm92cDCxBKR+Rj+Fg9zo2vtpVrpt6AQMDoMpCRtrFUvPoffhrfJQ7Eosji7LK9iLmuj78m149i9ZqKLSdmuT61nXmO3n7nxMHVt3vLcK7aCKCiYlrhE1C7hqtRKdCadLHKjtoKSmrwKCgFvg51Aq5dUIkM0kmJhJkpzl5+x03K/ObNDS0Lq2L0rSL/EAUJv1FQUes9uUeQPOkgms3z87/ex/ZLm6uNjY2OMj49vqAMDwAMPPMB73/teurq6GB4exuFwsHfvXj772c/idruf/wDnGQcPHuRNb3rTusdvuukmfvzjH5//E3oVYpOQXoEoFos8+uij3HLLLfzkJz8hn89z7bXX8r73vY+3vOUtG0JKpVKJEydOkEql2LVrFzqdjmKhSN/jgzx5z2Em+2c4duBU9flb39hFSRSIh5NMnS4bua4jqD2tnH5aTlB6i5Z0VOLn9rp2Bp4coaErgMluJJXIsDATlRmtdu9ppV9iKOsM2IjU+Ni17WyUxW009dQxM7JAXVu5gkqlshRKIjPDaxVe10VNMvshjU6FSq0iLVkkrlXxufxWwhKFns6goWNnkEKhVI46X0hgc5sY7ZdEfQhgseuJL0ved41FkcmiJ5vNyyyKOrbXk0pk+fqtf1ytJsfGxpiYmGDXrl0bSkZHjhzhuuuu4zOf+Qx/8Rd/QS6X48EHH+Suu+7iy1/+MiaTacPObRMbh01CeoViYWGBa6+9FpvNxic/+Unuvfdefv7zn7O4uCjLdDoff9iFQoFjx45RKBTYuXPnGYfWoigyfnKKJ+85zFO/PEypJDJWSbq1uMy0724lHkkyOTBLrmJMGmjzyghqfYsPDFY9qWXJnOV17Ywen8ReZ8HisBFfXmF5MSGzQ+re00K/pIJy19tZrNn1ad3WwIhE8NCyrYGJgVkCLR7MDhO5XJF8ocSkZGG1+6ImGfnoDBpKiORWCvLnSEjM2yBXxAF0bG8gny+iN+nI54oo1UoGjk1XhQwoBMw2PQlpIuwZLIoSiSx//KmreOu+sjP2hUJGJ06c4JprruETn/gEf/M3f/OKmBlt4vxgk5BeofjCF77A4OAgP/7xj6sEUCqVOHToUDXTaXp6mre85S3s3bv3rGY6SZHL5Thy5AgqlepF5TstTod55t6jPPWrIxx/qJ9gdx2jxyZQaVQ09tRj81qZHJiT5SLVVlAdF7cwKKugQG/RySqo3td3Mj9RVtsVSxBdShALp6oCCYDuS1rply7h1tgYATRvrWfs1JrcunVbA6MnZvDUO3D4rYgKgUKhxMiJmSpxNPZ6mehbO1+DWUuxINaYvDYxIGkd+hudzE3IXzvY4SU8H8dTb0dr0CCoBWYnl4lFVoCyh57BpCMpyWjq3hVkeizM937xUbQ69QVDRn19fVx99dV85CMf4fOf//wmGW1Chk1CeoWiWCwiCMKzDoFXW2irzuTDw8NceeWV3HDDDVx33XXY7faXfTHIZDIcPnwYo9HI1q1bX/JAuiyKOMXT9x3l0H3HWF6I0bI9yOixSbxNblz1TlQ6NX2/HZbtItUSVKDbw2z/2n8rlAqMdiMJiQih93XtROZj2H02cvki8XCKaCQpM1rturiZAemOU7NrHUk09dQzIXEmX1XoGS16vE0uihQolEoszaSqURQ9lzTTJ3GxMFnXt9k6dwY5Lal06lvdTNfsGdW1eJgZW0KtUeH0mzG79STjK+SyJRKxHGKpbPN07Xsu5r0fvrxKRrt37z5nKcgvBKdPn+bqq6/mgx/8IP/4j/+4SUabWIdNQnoNQBRF+vv7uf3227nzzjs5deoUb3zjG9m3bx/XX389LpfrRV8cUqkUhw8fxul00t3dfdYuLqVSiZGj4xy6/zjP3H+M4UNjiKJIy/ZGZgbnaOipQ6PXIigE+iW7SQD2gEUmMw9uDTB5cm0WU17UNVSFFlA2i40uJbC6LeSyBeLRFZYXYnJT0oubOS2RkNe1epitIYlgp4/J02uv5W93MDeyjCAIeBud2D0WVFo1obkYC5XAv55L5CGCFruBVCLznB56jR1eJobkOVO+RifzU2t7T/UddgoFkZs+eTlGi5ZQKMRFF120oWQ0MjLCVVddxXvf+15uvvnmC0JN9+1vf5ubb76Z+fl5tm/fzje/+c3NrKUNxiYhvcYgiiLDw8NVclrNdNq3bx833HADPp/vecklHo9z+PBh6urqaGtrO6d3urHFOEcePMWh+49y5L9PVF0fWrY3EY8kcTc4iS7HUKqUzJ6uuVA3e2UhgYFuN7P9a/+t0ijLgYMSL76ey9qJLcaxeqzk80WSsTSLczH5Eu7uZgYlarv6Di/TNamsgTaPPCZjd1NVoafVawi0ujFaDGRzBcILCSKh+LqUW7vbQjQiVwe2bWtgWGIL1NztW6fQcwdstG8P8IZ3NhOLxVAqlVVLH5fLdd6jJMbHx7n66qu5/vrr+cY3vnFBkNGtt97KjTfeyHe/+1327NnD1772NW677TZOnz6Nx+PZ6NN7zWKTkF7DEEWR8fHxaqbTk08+yZ49e6qZTvX19evIZjX59mzYEr1YFIslhg+PceKhfp6+7xinnx6pXqxbdzRSyBcx203EI0l0Jp1MNQcVg1ZJWq6/28Xc6bVWnFqnQqNVk4rJRRKRuRh2v5VSCdLpLLOj4RoJeZAhSZst2OmT7TNBJSZDshzbfVEz/c9I5eEWXHV21Do1uQpJ+ZpcMgGEy2clHEog/Ytt6Q0wKomqaO0NMNI3xye+dgM5Ic6uXbsQRbHqmpDJZKquCW63G7Va/fwf/MvA9PQ0b3/723nb297Gd77znQuCjAD27NnDxRdfzLe+9S2gXJk3NDTwsY99jE996lMbfHavXWwS0iYAeabTHXfcwWOPPcauXbvYt28fe/fupampif/8z/9kamqKG2+88bwm354J6XSaxw4+TmQkQWJqhSd+eZhFiRCh4+IWRBE0Og3huShmp4mRGoJyBR0sTa/Z+QS3+GQtPq1eg1KtlMm4ey5tY25sEU/QiVKjIpctMn56npKkgmrbIbckau4JMNYvDxr0NDgISdpstfJwnVGD0WbE4jCV4zLyJQxmHcd+O1oVTXjr7SxIfPgAmrr8qHUCV/1h5xlnRslkskpOyWQSu91edevW6XTP+nm/FMzNzXHVVVfxhje8ge9///sbEvJ3JuRyOQwGA7fffrvMaeGmm24iGo1y1113bdzJvcbxqiWkG264gaNHjxIKhbDb7bzlLW/hS1/6EoFAYKNP7YKHKIrMz89XYzMeeughfD4f8/PzfPazn+UTn/jEhg6kk8kkhw4dkjmZi6LI7PACRw+cYvjQGE/88jBpSaXTdWm5tSgoFCxMhnHWORg+OiE7rs1rIbqwNoNq3dnAyNG1iAmdsezenklJ3BIua2f42AT2gAWn14mgEJgcDpGSKN5atjYwenLtOC1b6uQu5GcweV3noWfRkc+XUCgEPA0OjBY9RquRuekIodko+VzZumhuMsL1H97KO//gbc87M1pZWala+kSjUcxmMx6PB4/Hg9G43oT1xWBhYYGrr76aiy66iJ/85CcXDBkBzM7OUldXx+OPP85ll11Wffyv//qveeihh3jyySc38Oxe23jVEtJXv/pVLrvsMvx+PzMzM/zlX/4lAI8//vgGn9krC6Io8sUvfpF//ud/pqenhxMnTtDR0SHLdDqf5BSLxThy5AgNDQ20tLQ862sXC0WGD49z7OApxk9O89S9R6tO5QBde8oEJQpCRRbuYkiSNIsgYHYZSCytuTB0XtLCaYmThN6so1goyRR63Xva6H9qBE/QicNnQ23QEFmIMzcZqbb5apNv27Y3MHx8jbAEhYDdayUiIcdaiyKT1UA2kyefKyf1ugM2HAEzBTHPp7/9AazWFyftzuVyVXKKRCLo9fpqW+/FrgssLS1xzTXX0NPTwy233PKCVwHOFzYJ6cLFq5aQanH33Xezb98+stnsOe+bv5rw93//93z961/nvvvuY9euXUSj0Wqm0wMPPEAwGGTv3r284x3veFnS7xeC5eVljh49+pLmV9l0loGnRjj+UD/Tg7M8fe8xmddd1552BIUCBAhNRXDW2xmSCBcQwGCV7zg1bPExLdkzMloN5HMF2Y5T155WBp4eQ6NT42ty4/BbSSezhENxwnMxBEGgscvPhESh176zkSGJsk6hFDDbTcTCa+rAdRJym550IsuNn7qK6298w4v6bGpRKBQIh8OEQiGWlpZQqVTVtt7z5RxFIhGuu+46mpubufXWW89L3PmLxWbL7sLFa4KQIpEIf/qnf8rMzAyPPvroRp/OKwqPPfYYLpeLzs7Odf8Wj8e55557qplOXq+3GtX+cjOdarG0tMTx48fp6Oigvr7+ZR9vJbFC3xNDnHh4gNmRBZ65/4SMoDouakahVCKoFETm49i9Flm8RdnGSMdKXN6+k5q8muxGMis5CtI9I0lMhtGqp3V7kGJRJJstsDQfI7qYoKHDL/fQ29m4zuTVYNaTkHjoBTrsJBazfO/gp9Dqzt4NV6lUIhKJVCPMRVGskpPD4ZC14mKxGNdffz1er5f9+/fLAiovNOzZs4dLLrmEb37zm0D5fQaDQT760Y9uiho2EK9qQvrkJz/Jt771LdLpNJdeein33HPPOY9leK0imUzKMp3sdjs33HADe/fufdGZTrVYWFjg5MmT5yTjaRXp+AoDT41w6rHTzI6GePpXR2W7SC07GlGqFKi1ahbnI+gsWmb611RzCqWAzqwjHZP77ElznKwuE8loWr5ntLtJJiFv2xlEFMvzqlyuSHghht5sYHZs7bW6djcycFhKUAJag5Zr/uB1/N6fv/XsfSg1EEWRaDRaJadcLsfS0hLLy8tcddVVfPCDH8RisXD33XefdYHE2catt97KTTfdxPe+9z0uueQSvva1r/Ff//VfDAwM4PV6N/r0XrN4RRHSpz71Kb70pS8953P6+/vp6uoCynfVkUiEiYkJ/vZv/xar1co999yzuSF+jrGyssKvf/1r7rjjDu655x50Ol01cPB1r3vdi5opzM7O0t/fz9atW8/rfkg2nWXw0Bh9jw8xO7rAU786KhMzNHTVoVAqMNmNZDN5lDoFg09LSEKtQGvUkY5LFXqtMoKye6zEIklZZda+q1GWydTUW8fi1DLuBgcGs55iqYSgVDF0YopSsfyn27GzgdFTc3z3wb/G7j4/y6+iKJJMJrntttv4yle+wsTEBHa7nc9//vO8+93vxufznZfzeDn41re+VV2M3bFjB9/4xjfYs2fPRp/WaxqvKEJaXFwkHA4/53NaWlrO2Leenp6moaFh3SBzE+cW2WxWlumkUCi47rrrqplOzzXPm5qaYmho6LwEDj4fUskU993x34RH4xSTAs/cd4LIfLT6794mF4V8EVednRIiqAVGjswgVrhGrVWh1qhqJOStspgMZ8BGZCEudyHf3igzeV311FOqFJidelwBB0aLkWCnnw/8zXXn7gN4FqTTad71rncRj8d55zvfyS9/+UuefPJJrr76an7xi1+c9/PZxCsbryhCejmYnJyksbGRAwcOcMUVV2z06bwmkc/neeihh7j99tv5+c9/Xo3N2LdvH29605tkM4dTp04RCoXYuXMnNptt406acsV36NAh7HY7PT09VZn50swyA08OMzkwy9EH+xg7OVVtx7kbnURDcTyNLjRGFWgEFieiJMPlIECdUQOCQi4h39NKn8Tk1VPvWOdCXmvyWnZumOb//eoTNHadm3bmsyGTyfCe97yHZDLJfffdVw2GnJ+fp6+vjze/+c3n9Xw28crHq5KQnnzySZ5++ml+53d+B7vdzsjICJ/97GdZWFjg1KlTZ2XYOj4+zhe/+EUefPBB5ufnCQQCvP/97+f//J//c0Eqiy40FItFHnnkkSo5JZNJrr76am644QZ+/etf8/TTT/PAAw+c9/TbWqysrPDMM8+8IM++bDrHyLEJxk5Oc+rxQQYPjZXdygUBZ8BOeHYZvVmLxWNEb9eTTxdJRjLEwykMVj3FYqlqxArQfXErAxIhha/JyfxkRPaajT0BbE4zn/v3Pz7r7/25kM1m+f3f/31CoRAPPPAAdrv9vL7+Jl6deFUS0okTJ/hf/+t/cezYMVKpFH6/n6uuuorPfOYzZ81h4L777uPWW2/l937v92hra+PkyZN86EMf4g/+4A/48pe/fFZe47WCYrHIE088we23386//du/kUwmefOb38xNN9103jKdzoRUKsWhQ4fweDx0dna+pNnj0uwyo8cmGTw8xuDhcUaOTrCSymHzWIiGyntGOrOG+m4vYkmAkoKl+RiFXJF8rijbcWra6mf81Jo8PNDiZnZsic/8+EPsfON6FeS5Qj6f58Ybb2RiYoLf/OY3G95O3cSrB69KQtoo3HzzzXznO99hdHT0+Z+8CRmKxSIf+tCHeOihh/jKV77Cb3/7W+68806mp6d561vfKst0Oh9YdYPw+/20t7efVTfzudEQw8cmGT46ycixCSb6Z1FqlCQlUe1tFzdSyBQxWAwU80Viy0kW52KUCmt/rp27mkglM3ztvr88b0KdQqHAH/7hHzIwMMCBAwcuyKjxTbxysUlIZxGf+cxnuO+++3jmmWc2+lRecbjjjjv43Oc+xwMPPFC1dyqVShw/frya6TQ6OirLdLLZbOfkQpxIJDh06BD19fW0trae84t9sVhkdjjEyPEpho6NM3R0jKXZGNGFtUXYQJeTxbEYvkYXJrsRpUZJKp7h6g+8kbe8+/xEJhSLRT784Q9z5MgRDhw4cMEq6f7hH/6BX/7ylxw9ehSNRkM0Gt3oU9rEC8QmIZ0lDA8Ps3v3br785S/zoQ99aKNP5xUHURRJpVLP2p4TRZG+vr5qbEZfXx+XX345+/bt47rrrntJmU5nwmq0RjAYpKWl5WUf76WiVCoxM7rAI/c9wciJKRKhNPNDyyQrce09l7YxPbzAvz75BTRncRH22VAsFvnYxz7GY489xsGDBzfcXPe58PnPfx6bzcb09DT/9m//dl4IaXx8nObm5nWPX3755Rw8ePCcv/6rBZuEVIMXu+sEMDMzw+WXX84VV1zBD37wg3N9iq95iKLI0NBQlZyOHj3K61//+mqmk9frfUnkFIvFOHz48IZEa5wJIyMjTE1NcdFFF6HX61laWmJsaJLTR0aJzafwN3h4y3tef84qxVWUSiU+/vGP85vf/IYDBw7Q2Nh4zl7rbOLHP/4x//t//+/zQkjFYpHFxbX8q/n5ed7ylrfwZ3/2Z/zd3/3dOX/9Vws2CakGL3bXaXZ2liuuuIJLL72UH//4xxdM3strBaIoMjY2Vs10euqpp7j00kurmU51dXUv6GIdjUY5cuQIra2tBIPB83Dmzw0pGdVWjaVSqeo1t7i4iCAIuN1uvF4vdrv9rH4HS6USn/zkJ/nFL37BwYMHN7RqfLE4n4QkRSaT4YorrsDtdld37zbxwrBJSC8DMzMzvOlNb2L37t389Kc/vaAs9l+LEEWR6elp9u/fz/79+3nsscfYvXt3lZyamprOSE6RSISjR4+eNZ+8l4vnIqNalEqlqp1PKBSiWCxWveacTufL+k6WSiU+85nPcNttt3Hw4EHa29tf8rE2AhtFSO973/s4duwYTzzxxIbGxr8SsUlILxEzMzNcccUVNDY2rst7uVCHva8lrGY63Xnnndxxxx08/PDDbN26tWr+uhq9/qtf/YpCocDu3bsviLnIiyGjWoiiSCwWq5JTLpfD5XLh8XhwuVwvyrJJFEX+7u/+jp/85CccPHhQ1qLeCLyUVvpGENLf//3f89WvfpWnnnqK1tbW8/a6rxZsEtJLxI9//GM++MEPnvHfzvZHuqkaenkQRZGlpaVq4OCBAwfo7OyktbWVX/3qV3z729/mfe9730af5ssio1qses0tLCwQCoVYWVnB4XDg9XpxuVzPubwtiiL//M//zHe/+10OHDjAli1bXta5nA28FNuw801Id9xxB7/3e7/Hvffey5VXXnleXvPVhk1CegVgI1RDr1aIosjy8jJf+MIX+Jd/+RcEQaC1tbWa6bRly5YN6fmfTTI6E1KpVLVySiQS2O32ajqs1LlEFEW++tWv8tWvfpXf/OY37Nix46yfy/nC+SSkkydPsmfPHv7iL/6Cj3zkI9XHNRoNDofjnL/+qwWbhPQKwkb1xF9t+K//+i8++MEPcsstt3DFFVdwzz33sH//fu677z58Pl+1rbdr167zQk7nmoxqsbKyUiWnWCyG0WjkwQcf5J3vfCcPPPAAX/rSl7j//vu5+OKLz/m5nAtMTk4SiUS4++67ufnmm3nkkUcAaGtrO2ef77N1TDZl3y8Om4T0CsImIZ0dfOITn+DKK6/kmmuukT2eTCb51a9+xf79+/nVr35VzXTat28fl1xyyTkRrZxvMqpFNpulr6+Pj3/84xw6dAiAP/qjP+LjH//4hs+NXio+8IEP8JOf/GTd45vGyhc+NgnpFYRNQjp/SKfTskwng8HA9ddf/5IynZ4NIyMjTE9Ps3v37g3z64Nym+7HP/4xn/zkJ/nzP/9zTp06xf33309LSws/+9nP2LZt24ad2yZeW3j5f1WbeEl4KaqhTZw/GAwG9u3bx759+8hkMtVMp/e///0olcpqptMb3vCG58x0ejZcSGT005/+lE996lP84he/4E1vehOwlgB8ISwIb+K1g80KaYPwSlANbWI98vk8Bw8e5Pbbb+euu+4in89z3XXXsW/fPq644ornjTYRRZHR0dELhoxuu+02PvrRj3LHHXfw9re/fcPOZRObgE1CekVhk5AuLBQKBR599NGqhVEqleKaa65h3759XHnllej1etnzLyQyArjzzjv58Ic/zM9+9jOuu+78p81uYhO12PS0eAVgcnKSo0ePMjk5SbFY5OjRoxw9epRkMvn8P/wc+Pa3v01TUxM6nY49e/bw1FNPnaUzfm1ApVJxxRVX8K1vfYvJyUnuuecevF4vf/3Xf01TUxM33XQT+/fvJ5VKUSqV+Nu//VuefvrpC4KM7rnnHv74j/+Y//iP/9gko01cMNiskF4BOBeqoVtvvZUbb7yR7373u+zZs4evfe1r3HbbbZw+fRqPx/Myz/i1jVKpxNNPP13115uZmSEQCDA/P8/tt9/OG9/4xg09v/vuu48bb7yRH/7wh7z73e/e0HN5NmwmMr82sUlIr1Hs2bOHiy++mG9961tA+SLa0NDAxz72MT71qU9t8Nm9elAsFvnTP/1TbrnlFtxuN3Nzc1x55ZXs3buXa6+99pw7ddfiwQcf5L3vfS/f+973eN/73ndeX/vFYDOR+bWJTUJ6DSKXy2EwGLj99tvZt29f9fGbbrqJaDTKXXfdtXEn9yrD5z73Of71X/+VAwcO0NXVxalTp6ozp/7+fq644opqppPT6TynBPHwww/zrne9i2984xt84AMfuGDJ6Nmwmcj86sfmDOk1iKWlJYrFIl6vV/a41+tlfn5+g87q1YlAIMCBAwfo7u5GEAS2bNnCF77wBY4ePcqJEye44oor+OEPf0hrayvXXXcd3//+95mfnz/rfoiPP/447373u/nKV77yiiQjKOdVbdrwvLqxSUib2MQ5xJ/8yZ/Q3d297nFBEOjs7OTTn/40Tz/9NKdPn+aaa67hZz/7GR0dHVx11VX8y7/8C9PT0y+bnJ566il+93d/l3/8x3/kQx/60CuSjIaHh/nmN7/Jhz/84Y0+lU2cQ2wS0msQLpcLpVLJwsKC7PGFhYXN6IwNgCAItLS08Fd/9Vc8/vjjjI6O8s53vpO7776bnp4errzySr7+9a8zPj7+osnp8OHDvOMd7+Bzn/scH/nIRzacjD71qU8hCMJz/m9gYED2MzMzM1x11VW8613v4kMf+tAGnfkmzgc2Z0ivUezZs4dLLrmEb37zm0BZ1BAMBvnoRz+6KWq4QCCKInNzc9VMp0ceeYRt27ZVAwdXM52eDcePH+faa6/lr/7qr/jkJz+54WQEm4nMm3hubBLSaxS33norN910E9/73ve45JJL+NrXvsZ//dd/MTAwsG62tImNx2qm0yo5rYokVslpdUa1ir6+Pq6++mo++tGP8rnPfe6CIKMXi81E5tceNgnpNYxvfetb3HzzzczPz7Njxw6+8Y1vsGfPnrP6Gg8//DA333wzhw4d+v/bu5eQqPo4jOPfEKmxGsFQMHJARAYKBkQKx5WSRbUQCcVKGsUbVBK4iDAI2kSE0GooWmkWQrcRbwxOoDNQQSsFRXQRKTQGBtnpRpKNLV4ailq8pjPnzPH5gJsDcp7d4//i+cX/2v/1Zp+s3c+ZTv39/QQCAZ48eUJ+fn58plN6ejrHjh2jsbGRq1evpmwZaSLz5qNCkoQKBoM8e/aM4uJijh8/rkJKAMMwGBwcJBAIEAwG+fbtG62trfj9/pTd4krmRGaxDhWSJM2WLVtUSAn24cMHbty4weXLl7XFJSlH4ydEbMTpdHLlyhWzY4j8k9Rcz4uIiO2okERExBJUSCIiYgkqJBFJmMrKSlwuF9u2bSM3N5fTp0+zsLBgdiyxKBWSJNSnT5/iAwUBXr16FR82KPZXXl7OgwcPmJ2d5fHjx7x8+ZLq6mqzY4lF6dq3JFQ4HKa8vPyP5/X19XR3d2/Ye65du0YgEGBmZgaHw0FpaSnXr1/H7XZv2Dtk/QYGBqiqqmJ5eZn09HSz44jFqJDEFo4cOcKJEyfYv38/KysrXLp0iampKaanp9m+fbvZ8QR49+4dZ86cIRqN8vTpU7PjiAWpkMSW3r59S05ODh8GBosAAAM5SURBVJFIxPSR4ZvdxYsX8fv9fPnyhZKSEoaGhti1a5fZscSCdIYktmQYBoAGuiXAWkdIXLhwgfHxcUKhEGlpafh8Pn3+R/5KKyQb6Onpob29nYWFBbZu3Rp/XlVVxc6dO7l7966J6ZIvFotRWVnJ+/fvtTWUAGsdIfGr169fk5eXx/Pnz/F6vYmKKClKnw6ygZqaGs6fP8/AwAA1NTUALC4uMjw8TCgUMjld8p07d46pqSmVUYJkZ2eTnZ39T78bi8UAWF5e3shIYhPasrMBh8PBqVOn6Orqij+7d+8eLpeLsrIy84KZoK2tjaGhIcbGxtizZ4/ZcTa1Fy9e4Pf7mZiYYH5+ntHRUU6ePElBQYFWR/JXKiSbaGlpIRQKEY1Ggf8+39/Q0JCSs3D+xerqKm1tbfT19TE6Okp+fr7ZkTa9jIwMAoEABw8exO1209TUhMfjIRKJ/La1LPKTzpBspLi4mOrqag4fPsyBAweYm5sjLy/P7FhJcfbsWXp7e+nv7//tf48yMzNxOBwmJhOR/0srJBtpbm6mu7ubrq4uKioqNk0ZAdy6dQvDMCgrKyM3Nzf+c//+/YS8y+Px4HQ6cTqdeL1egsHghr9HZLPRCslGDMNg9+7drKys0NPTQ21trdmRbGlwcJC0tDQKCwtZXV3lzp07dHZ2Mj4+zr59+8yOJ5KyVEg24/P5GB4e/uMKuCRWVlYWnZ2dNDU1mR1FJGXp2rfNRKNR6urqVEZJ8v37dx4+fMjnz591c0xknVRINrG0tEQ4HCYcDnPz5k2z49je5OQkXq+Xr1+/smPHDvr6+ti7d6/ZsURSmgrJJoqKilhaWtIXrpPE7XYzMTGBYRg8evSI+vp6IpGISklkHXSGJLIBKioqKCgo4Pbt22ZHEUlZuvYtsgFisZg+hyOyTtqyE1mjjo4Ojh49isvl4uPHj/T29hIOhxkZGTE7mkhKUyGJrNHi4iI+n483b96QmZmJx+NhZGSEQ4cOmR1NJKXpDElERCxBZ0giImIJKiQREbEEFZKIiFiCCklERCxBhSQiIpagQhIREUtQIYmIiCWokERExBJUSCIiYgkqJBERsQQVkoiIWMIPJ4eBqcygUvkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGiCAYAAACyKVKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZQd2VXni3/OieHOOU/KlJRKzVNJVVKpyqWysY0L+2cepv1eY7pwAx5oaLANC+hlAw2vMdBtY9NtYLkNtuHZNH4Y8xoacAMGDxjjojxXaSzNU6aUc+bNzDvHcM7vjztF3ExJmSmpSi7Hdy2tqrh540ScuBHnG3vv795baK01ESJEiBAhwn0G+UKfQIQIESJEiLASIoKKECFChAj3JSKCihAhQoQI9yUigooQIUKECPclIoKKECFChAj3JSKCihAhQoQI9yUigooQIUKECPclIoKKECFChAj3JSKCihAhQoQI9yUigooQIUKECPclIoKKECFChAj3Je4ZQb373e9GCMHs7Oy9OsSLGvXrF8Qf/dEfIYTg6tWrL8xJPc/4xje+wdGjR0mlUgghOHbs2HfcNVgvoufv9ljN/fVC32/vf//72b17N0qpF+T4H/7wh9m8eTOVSuUFOf6aCar+g9X/xeNxdu7cyTve8Q6mpqbuxTk+r7hy5QrveMc72LlzJ8lkkmQyyd69e3n729/OiRMnXujTu+d4+umnefe7383CwsKqvt96P5imydDQEG9+85u5cePGus/DdV3e8IY3MD8/z2//9m/ziU98guHh4XWPt1qsdf7PN17Mz9/zObcX6v5aC5aWlnjf+97HL/zCLyDlC+PsevOb34zjOHzkIx95QY5vrnfHX//1X2dkZIRyucxTTz3F7//+7/N3f/d3nDp1imQyeTfP8XnD3/zN3/Bv/s2/wTRN/u2//bccPHgQKSVnz57lf/2v/8Xv//7vc+XKlRfsRv6RH/kRnnzySWKx2D07xtNPP82v/dqv8eY3v5mOjo5V7xe8H7761a/yR3/0Rzz11FOcOnWKeDy+5vO4dOkS165d4w/+4A/4d//u3615//VivfN/vvFifP7qeD7mdrP76/l4xlaLj33sY3iexw/90A+9YOcQj8d505vexAc+8AF++qd/eplX515j3QT12te+locffhiAf/fv/h3d3d184AMf4K//+q9f0Au6Xly6dIknn3yS4eFhvvCFL7Bhw4bQ39/3vvfxe7/3e7d9kykUCqRSqXtyjoZhYBjGPRn7TtF6P/T09PC+972PT3/60/zgD/7gmsebnp4GuK9JYrW4F/fEi+35C2I9c1vrNb7Z/XU/PWMf//jH+f7v//51veDdTfzgD/4g73//+/niF7/Id3/3dz+vx75rdmP9xK9cuRL6fGFhofE22t7ezlve8haKxWLj79euXeNtb3sbu3btIpFI0N3dzRve8IZlPt9cLsfP/uzPsmXLFmKxGH19fXzP93wPzzzzTOh7N27c4K1vfSv9/f3EYjH27dvHxz72sdue//vf/34KhQIf//jHl5ETgGma/MzP/AybNm1qfFb38z/33HO88Y1vpLOzk5e+9KVrmhfAU089xZEjR4jH42zbtu2m5vTN/OGrmXP9XC9evHjT3+Pd734373znOwEYGRlpuFrW439/2cteBlSJvxW3O983v/nNvPzlLwfgDW94A0IIXvGKV9z0WGv5zW/cuMGP/diPMTg4SCwWY2RkhJ/6qZ/CcZzbzv/ZZ5/lta99LW1tbaTTaV71qlfx1a9+NTT+re6Je4l7/fzB6p7B9T5/a5nb7a7x7X6nW91fq405rXeef/iHf0g8Hufxxx/n2rVrjc+11rzyla+kp6eH6elprly5wokTJ3jiiSeWjfG93/u9bNmyZdnnWmsOHTrUePZuh/Pnz4dcqsF/QeI+fPgwXV1d/PVf//Wqxr2bWLcF1Yr6QtTd3R36/Ad/8AcZGRnhve99L8888wx/+Id/SF9fH+973/uAaqDy6aef5sknn2Tjxo1cvXqV3//93+cVr3gFzz33XMOk/8mf/En+/M//nHe84x3s3buXubk5nnrqKc6cOcOhQ4cAmJqa4iUveQlCCN7xjnfQ29vLZz7zGX7sx36MpaUlfvZnf/am5/83f/M3bN++nUcffXTNc3/DG97Ajh07eM973kO9/+Nq53Xy5Ele/epX09vby7vf/W48z+NXf/VX6e/vX9Wx1zrnW/0e/9f/9X9x/vx5/vRP/5Tf/u3fpqenB4De3t41X5P6A97Z2bnm8/33//7fMzQ0xHve8x5+5md+hiNHjtz0eqxl/uPj4zzyyCMsLCzwEz/xE+zevZsbN27w53/+5xSLxVvO//Tp07zsZS+jra2Nd73rXViWxUc+8hFe8YpX8KUvfWnZfbPSPXEvca+fP7j9M3gnz9965rbSNV7N77SW+2sl3Mk8jxw5wjvf+U7e85738F//63/lgx/8IAAf+tCH+Kd/+ic++clP0tfXx5/8yZ8ANNa21jE+85nPkM1mQ8/Xpz71KZ599lmeeuqpVc2jra2NT3ziE6HPzp49y3/5L/+FV7/61aHPDx06xL/8y7+saty7Cr1GfPzjH9eA/vznP69nZmb02NiY/tSnPqW7u7t1IpHQ169f11pr/au/+qsa0G9961tD+/+f/+f/qbu7uxvbxWJx2TG+8pWvaED/8R//ceOz9vZ2/fa3v/2W5/ZjP/ZjesOGDXp2djb0+ZNPPqnb29tXPJbWWi8uLmpAv/71r1/2t2w2q2dmZhr/gmPU5/hDP/RDy/Zb7bxe//rX63g8rq9du9b47LnnntOGYejWn6d+7a9cubLmOa/29/it3/qtZce4FVa6H/78z/9c9/b26lgspsfGxkLfX+35fvGLX9SA/p//83/e8hqs5Tf/0R/9US2l1N/4xjeWzUMpdcv5v/71r9e2betLly41PhsfH9eZTEZ/13d9V+OzW90TdwMv1POn9e2fwfU+f+ud20rXeLW/02rvrzt55m6FV7/61fqxxx7TWmt96dIlnUqlQuvPr/zKr2hA53K5Zft++tOf1oD+whe+0PjMcRy9bds2/brXve62x74ZLl26pAcHB/VLX/pSXSgUQn/7iZ/4CZ1IJNY99nqxbhffE088QW9vL5s2beLJJ58knU7zl3/5lwwNDYW+95M/+ZOh7Ze97GXMzc2xtLQEQCKRaPzNdV3m5ubYvn07HR0dIddBR0cHX/va1xgfH1/xfLTW/MVf/AWve93r0FozOzvb+Pea17yGxcXFZe7AOurnkk6nl/3tFa94Bb29vY1/H/rQh5Z9p3WOq52X7/v8wz/8A69//evZvHlz4/t79uzhNa95zYrneqdzvt3vsV4E74cf+IEfIJVK8elPf5qNGzfe0fnerfkrpfirv/orXve61zXiG0HcKvjr+z6f/exnef3rX8/WrVsbn2/YsIE3vvGNPPXUU8uu30r3xN3E8/38wa2fwbv52653buv5ndaKuzXPBx98kFOnTqGU4q1vfSuxWIzf//3fb/x9bm4O0zRXXJOOHDkCEDrORz/6Ua5cucJ73vOedc1rbGyM7/7u72ZoaIi//du/XSZG6ezspFQqhdzDzwfW7eL70Ic+xM6dOzFNk/7+fnbt2rWigCC48ELT5ZPNZmlra6NUKvHe976Xj3/849y4cSPkDllcXGz8//vf/37e9KY3sWnTJg4fPsz3fu/38qM/+qONG3FmZoaFhQU++tGP8tGPfnTFc64HRluRyWQAyOfzy/72kY98hFwux9TUFD/8wz+84v4jIyPLPlvNvGZmZiiVSuzYsWPZ/rt27eLv/u7vVjxeHeuZ8+1+j/Wifj8sLi7ysY99jH/+539epoS6k99oJaxlvJmZGZaWlti/f/+qxw8ep1gssmvXrmV/27NnD0opxsbG2LdvX+Pzle6JVjiOw/z8fOiz3t7eVQXpn+/nD279DN7N33a1c2u9xuv5ndaKuzXP/fv3k8vleOc738mXvvQlPvGJTzAwMLCqcxgYGGBoaIhnn30WqApEfuM3foMf/uEfXtf9PTk5yate9Sra29v5+7//+xXXgfp98W2j4nvkkUdWfBNtxc0etvqEf/qnf5qPf/zj/OzP/iyPPfYY7e3tCCF48sknQ8lpP/iDP8jLXvYy/vIv/5LPfvaz/NZv/Rbve9/7+F//63/x2te+tvHdH/7hH+ZNb3rTisc8cODAip+3t7ezYcMGTp06texv9djCrYKmwbfQOlY7rzvBeuZ8u99jvQjeD69//et56Utfyhvf+EbOnTvXeAu8k99oJdzt8e4mVronWvH000/zyle+MvTZlStXVgyAt+L5fv7g1s/gQw89BNyd32K1c1vNNb7buFv3XJ1IPvCBD/B93/d9y15+u7u78TyPXC7XeIEO4siRIw2C+sAHPkA2m+XXf/3X1zQXqFpqTzzxBIZh8LnPfY6urq4Vv5fNZkkmk8/7Nb9rIon14s///M9505vexH/7b/+t8Vm5XF4xUXLDhg287W1v421vexvT09McOnSI//Jf/guvfe1r6e3tJZPJ4Pv+isqX2+H/+D/+D/7wD/+Qr3/96zzyyCN3MiVgdfPq7e0lkUhw4cKFZfufO3futse40zmvhLvxhmQYBu9973t55StfyX//7/+dX/zFXwTu/vmuZbze3l7a2tpWfAkJYqX59/b2kkwmV/xNzp49i5QypO5cLQ4ePMjnPve50GerfYu+W1jL8wc3fwa/9KUv3fV7ca24V79T6zHuxjzrVl5HR8eKqt3du3cD1ReWlQjvyJEjfPrTn2Z0dJT/+l//Kz/1Uz+15vzMxcVFXv3qV1Mqlfjnf/5n+vr6bvrdK1eusGfPnjWNfzfwgtfiMwxj2dv7Bz/4QXzfb2z7vr/M3dDX18fg4GCjBIdhGPzrf/2v+Yu/+IsVF6GZmZlbnse73vUukskkb33rW1fMWl+rhbGaeRmGwWte8xr+6q/+itHR0cbnZ86c4R/+4R9WdYw7mfNKqOeS3GklhVe84hU88sgj/M7v/A7lcvmenO9axpNS8vrXv57//b//N9/85jeXfbf+W600f8MwePWrX81f//VfhyzpqakpPvnJT/LSl750Xe7Rzs5OnnjiidC/5zvnZTX3Kdz+GbwX9+Jaca9+p9Zj3I15/sEf/AEA3//938/g4OCyvz/22GMAK96rAA8//DBKKd74xjeiteaXf/mXVzsFoBrOeO1rX8v09DRf+MIXlsX3WvHMM89w9OjRNR3jbuAFt6C+7/u+j0984hO0t7ezd+9evvKVr/D5z38+JCnN5XJs3LiRH/iBH+DgwYOk02k+//nP841vfCP05vebv/mbfPGLX+TRRx/lx3/8x9m7dy/z8/M888wzfP7zn1/m7w9ix44dfPKTn+SHfuiH2LVrV6OShNaaK1eu8MlPfhIpZSjof6fzAvi1X/s1/v7v/56XvexlvO1tb8PzPD74wQ+yb9++VZVWupM5r4TDhw8D8Mu//Ms8+eSTWJbF6173unUlmr7zne/kDW94A3/0R3/UCGjf7fNdy3jvec97+OxnP8vLX/5yfuInfoI9e/YwMTHB//yf/5OnnnqKjo6Om87/P//n/8znPvc5XvrSl/K2t70N0zT5yEc+QqVS4f3vf/+ar839gtXep6t5Bu/2b7sePB+/053O89KlS/zH//gfgapltxK2bt3K/v37+fznP89b3/rWZX+vu0D/5V/+hXe/+903TQURQvDyl7+cf/qnfwp9/iM/8iN85Stf4f/+v/9vnnrqqZA0ff/+/Tz44ION7W9961vMz8/zr/7Vv7rlvO4J1ir7q8suV5LqBlGXgs7MzKy4f122mc1m9Vve8hbd09Oj0+m0fs1rXqPPnj2rh4eH9Zve9CattdaVSkW/853v1AcPHtSZTEanUil98OBB/Xu/93vLjjs1NaXf/va3602bNmnLsvTAwIB+1atepT/60Y+uan4XL17UP/VTP6W3b9+u4/G4TiQSevfu3fonf/In9bFjx1Y1x9XOq44vfelL+vDhw9q2bb1161b94Q9/uDH2ra7dWua82t9Da61/4zd+Qw8NDWkp5W0l57e6H3zf19u2bdPbtm3Tnuet6XxXKwNe7Xh1XLt2Tf/oj/5oQwa/detW/fa3v11XKpXbzv+ZZ57Rr3nNa3Q6ndbJZFK/8pWv1E8//XRo/FvdE3cDL8Tzp/Xqn8E7ef7udG51rOZ3uhOZ+Z3MUymlX/7yl+vOzk79lre8RafT6UaKQys+8IEP6HQ6fVPZ+pYtW3Rvb++KUnSttc7lchrQTz755LJzSKfTGljx34c+9KHQ93/hF35Bb968+abneS+xZoKKECFChAjrw3//7/+9kWP2p3/6pxoI5WwFsbCwoLu6uvQf/uEfLvvbpUuXtGEY+nd/93dveqy//du/1UIIfeLEiXWfb7lc1gMDA/p3fud31j3GneAFj0FFiBAhwncCrl69yi/+4i/yute9jh/5kR/hgQceALhp3lR7ezvvete7+K3f+q1lispf+qVfYsuWLbfMt/viF7/Ik08+2TjOevDxj38cy7LueV7fzSC0fh7qsESIECHCdzC01jzxxBM8++yznD59mg0bNuB5Hp2dnQwODvIf/sN/4N/+2397y1jvwsICn/nMZ/inf/on/uAP/oDPfOYzq0ro/3ZGZEFFiBAhwj3GRz/6Uf7xH/+R3/3d320UozZNkw9+8IMUi0V+5md+Btu2bznGF77wBd74xjfyd3/3d3zkIx950ZMTRBZUhAgRIkS4TxFZUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvkREUBEiRIgQ4b5ERFARIkSIEOG+RERQESJEiBDhvoT5Qp9AhAgrQSmF53lIKTEMAyHEC31KESJEeJ4REVSE+wpaazzPw3VdSqUSUkqklJimiWmaGIYREVaECN8hEFpr/UKfRIQI0LSafN9Ha43jOEgpUUqhtUZrjRAiIqwIEb5DEBFUhBccWmuUUriu2yChUqnE3NwcnZ2d2Lbd+B7QIKw6IsKKEOHFiYigIryg0Frjui6+7wMghGBqaopTp05hWRalUolUKkVnZycdHR10dnZiWVZj3/o/pVSDlKSUWJaFYRiYpomUMiKsCBG+DRERVIQXDHWryff9hivv7NmzTExMsHfvXrq6uvB9n2w2y8LCAtlslkKhQDqdprOzs0FaplkNpbYSFtBwCVqW1bCwIsKKEOHbAxFBRXjeobXG9308z0MphZSSQqHAsWPHMAyDgwcPEo/HGzGoIBzHIZvNNkirWCySyWQahNXe3h4RVoQILxJEBBXheUWrSw/gxo0bnD17ls2bN7Njx46GNbUSQbWiUqk0CCubzVKpVJYRlmEYjWPX/83OzjIzM8Pu3bsbrsCIsCJEuL8QycwjPG+ok07davI8j9OnTzM/P89DDz1ET0/PmseMxWIMDAwwMDAAQLlcbpDVmTNncByHtra2BmG1tbVhGAZaayqVSoMMy+UywIqy9oiwIkR4YRBZUBHuOeouvbpKT0rJ4uIix48fJ5VK8cADDxCLxUL7rNaCut1xS6VSI36VzWbxPI+2tjYsy6JYLHLkyJHGMVrdgfVzjQgrQoQXBhFBRbinCOY21XH16lUuXbrE9u3b2bJly4qL/d0gqFZorSkWiywsLDAxMUEul0MIQXt7e8PCymQyNyUsqMaw6i7B+n+FEBFhRYhwDxARVIR7gvrCPj4+TkdHB5Zl4TgOJ06coFgscvDgQTo6Om66/70gqCCmpqYYHR1lz549IZWg1rohZ+/o6CCTyTTIJ0hY9XytIGHVSSsirAgR7g6iGFSEu456uSLP8zh27BhHjx5laWmJEydO0NXVxdGjRxu5TGsffAFExx2fY51E0uk06XSaTZs2obUmn883COvq1asAIcJKp9PLVIL10kxBwqrnYdVdghEiRFg7IoKKcFdRz20KyrqvXLnC5OQke/bsYWhoaN3WhVAXSJaeRIkRfOMIvnwE33xo3YTV6jwQQpDJZMhkMmzevBmtNblcjmw2y/z8PJcvX0ZKGSKsVCp1U8JaWlrCdV0GBgYiwooQYR2ICCrCXcFKuU2lUgmlFNlslscee4x0On1Hx7Dc/xcAqa8gvSsIeZGY806U3ImSD+MZj6KMAyAyd2NKCCFoa2ujra2N4eFhlFINwpqZmeHixYsYhtGIX3V2dpJIJBqElcvlyOfz9PT04Lpu9dxXKMsUEVaECCsjIqgId4zW3CYpJZOTk5w+fRohBA888MC6yCloaQk1g+n9ffOYWBjqEgKNoc5V//lfRujrKLmnZmE9ijIeAJG45dirhZSS9vZ22tvb2bJlC0oplpaWyGazTE1NceHCBUzTbJBVnZRaLSzXdXEcp+ESjAgrQoSVERFUhDtCa26TUornnnuOqakpHnjgAZ577rk7EgzUxQim92cIvMbnvtyLqY43t8VODH0eAEOdRqgZLP4YkCi5H1++BN98CCUfABFrPcy6UHf3dXR0MDIygu/7DcKamJhgcXERKSXPPfdcg7Ti8XhIJVh3idbJrJWw6irBCBG+ExERVIR1YaXcpnw+z/Hjx7Esi6NHj5JIJDhz5syyWM9ajiGEQKsCwvsqSoOsrdVSz4a/LAwIHEbJIUw1DSgMdQwQ2OUPo4mh5EEy5iEy8QzoB0GsU7DRgqC7D+Dy5cssLCwQi8Ua1TJisVjIJRjM/woS1koWVlAlGCHCdwIigoqwZqxUgXxsbIxz586xZcsWtm3b1rAShBDrJqgGvL+i4j8LZBBiBCm6sPQookZgikEMdaZ5fqQw1NnANgg9UT0fKhjq66TNLIe3XkAXP4RvPIQvvwtl7EPJnVWyuwuQUhKLxdi2bVt1Gp7HwsICCwsLjI2N8dxzz5FMJkOV2uutRWBlwqp3GA6KLiLCivBiRURQEdaEutUULFd06tQpFhYWOHToEN3d3aHv3zFBaR+cT9Q2cmh1Al/uwleXgU6EHEbShaU9DD2FEAJf7sJUzzSGUHIfhjrd3GaQmLxQPT+KGP4zGP6zCLeIJoMvH8I3X4JvHEKLbSDuTkzINE16enoaJZ1c120Q1rVr1zh9+vRNW4vAyoRVj2ul0+mIsCK86BARVIRVIZjbBFXrYGFhgePHj5PJZHj88cdDb/911ONS64b/BdBjzW2xBdS52kYW7Wt8TuPjgugDNmFogE5MsrWTr4TnIvtAjTe2ldyNoZ6tDk8OoaeIOe+vfpdOPOPlKGMPvvEwWgzDGgjgVmRhWRa9vb309vYC1Urt9YThK1eucOrUqVu2FgGYm5vjwoULPPzww1G34QgvOkQEFeG2aM1tgmp85fLly+zYsYPh4eGbLoJ3bEE5/6NlwI5QrAm5HdQ3q/+vp0EM4vtP4wOIIYTchkkeoTNIkUPTjlTPNXbXCIS+0XrWgf/LIvUolvNXACjRi2f8/9Cymoul5eD659YC27bp6+ujr68PCLcWuXjx4oqtRYJxKmiKViqVSkRYEb7tERFUhJuiHmuan5+nra0NKSWVSoUTJ05QLpd55JFHaG9vv+UY6yUoIQS+fwytXUydQIgS0APqZOBbNqgLLSe9EPj/G2jdg6uOU9XIDSONbRh6DtO/hiHLKLEfQzfHVAxh6GD8Ko5sWGwg9Qym/2WkV3U7KjGIZ7waZWxDyYer1ll93zuMvdm2TX9/P/39/UC4tci5c+eoVCokEglc1yWbzd60tUilUsFxnOr5R4QV4dsIEUFFWBF1csrlcnz961/n1a9+NbOzs5w4cYLe3l4OHTrUeGu/FdZDUFprLl26hOJ9dHQcR2uJ0FuImSOYehJDXUEIF+R+CMSakLsC7j+AXlCnAgOPo7xFFAs4WlIu9pFKJTDZgamvIYWDlr2gmhaVknsa7j8AX2zH0Beb89MFLO+TCK9KAIphPPMoyjiIIXqB5W7P9aK1tUipVGJsbIzJyclbthaptxcJElbQwoqaN0a4XxERVIRlaG3FrrXm7NmzXL9+nb179zI0NLTqsdZKUHULzfOusnX7sdoYCt+/TtEZxzDKaG0hGCGGjSm21QhLsex2NjaDPxPYfgD8ZxpjKgyU/884gIMJYh9SKUyxFVNdQwgfocfDY4pYi5x9G0aAJLVMYnt/Ct6fsqcXFsu7sSsPVhOHjUMg2lZ9LW6HRCJBV1cXCwsLHDlyJNRaZHx8vNFa5HaEVe+FFRFWhPsNEUFFaGClckX1xWt+fp6jR4+SSqXWNOZaCGpubo7jx4/T3d3Nzl3HqTjN/WzrAH4t1iSES6FQgdSXqQBaJzA4gK0FptiMVNcQIgX+mfAB1HR4vipo3XiAhVJfrxFWDMQRDBxMkcBQ10D0t8SvTKS61DILP7QlAMv7FJb3KTQCz3gCLTeg5MP4xkMgkqu6NjdD/doKIUgmkySTSQYHB0OtRbLZLNevX8f3/WWtRW5HWFG34QgvJCKCigCsXK5oYmKC06er8uxHHnlkXRXIV0NQWmsuXrzI1atX2b17N4ODaeayfxEcBaVHQ/tk0nGUrh+jxFIuSzpzsTZeBosHMY0ipp5BqusIYz8EpOa+7iWVuBoY0WqJZ1WAKXz/Qo1ykjVJex8mWUw1im/sx1THmmOKzRjqfGNbaZukfS0wC41UVzD8zwF/jMaoCS768Y0jKHkARPyW12qla7cSYQghSKVSpFIphoaG0FpTKBQaldpHR0dXbC1Sz7MKthYpl8uMjo7S0dFBV1dXRFgRnjdEBBVhWW6T7/s899xzzMzMsH//fo4fP77+CuS3IahyucyJEyeoVCq85CUvIZPJsFj8ONrYD/4ogikMeQA/UNZIihGUDsaa2klnggSWp+gcw7YXAdC6E0unseRBTHUDySxKD2LIld1/1RPf2kJYBtr/Gj5lfKBCG0JpPPEApp7B0BMgOyFApCV3Kym7KbjwxUgofgUWpv9PCL8A7sfQWHjGd6Pllhph7V9VlYvV/Da3ay1y5coVhBDLWovUCWthYYFEIoFSikqlQrlcjroNR7jniAjqOxjB3KZ6uaJcLsexY8eIx+M8/vjjDatpvblMQoib7lsXXfT09DREF1pXyBY/jK+q5CHZQEy2IcWDCH0NQRYhO0KeNEPuxFffaGybxkGEONbYdp0YIvZUo5KfVpsR2sMvbaEjlUWyuMz9h8iE5ezGLvC/2dyWQ2j1NTyqzkHECEI5GGI/pp7AYA7LmGsZM90SvwoLMJQYxPL/oTo39yNo2vGNAyh5sEZYu0GEH9n1KgXX2lrE87wGWdWPW3cJ+76/THQRdRuOcDcQEdR3KFpbsQshuHbtGhcuXGBkZIRt27aFyOVOFsLWfZVSXLx4kWvXrrFnzx42btzY+Fuu/OkGOQFI2U7J+5fGti0OYCgLKQ8g/IsI4aJapOaaXGg7kdiAryYb28VSglTqGEYSchpQh7FMgSXaMNXVavwqqP7DAHWldWYtm91o9c0mYckjOF4R4aZpi2cRGC3xq2b5peYY7S0ENoLpfxn8L4MLvtiBlgP4xsMoeQQld9zUxbdW3K61SKFQ4Pz588zOzq7YWiRIWJ7nRd2GI9wVRAT1HYZguZz64ua6LidPniSXy/Hwww83ip1C0320XguqrgKso1wuc/z4cVzXXdYjSmvNYvH/Ce0vWiuPyzilhiUjicvHEaKEofOgLmAYI6hAHAi68UO5Uwbp9DxBzixVZkCO4kJV0q72YpsbMSlhqssIYy8EYk2IjRAgm2o+VvCYAEvYVtUNWVKA8TiSCgY+lhpDG8Mt5Zc6kYFtAKFnCH+QwvS/XCUtwJOP0B83UR3DCNWFFlvWVOXiVmhtLfK1r32N/v5+tNYrthapV2pfTbfhVpdghAg3Q0RQ30FYqchrNpvl+PHjtLe3c/To0WXliuoLy92woGZmZjhx4gR9fX3s3bu34S6qo+T8M47fXOgNsQHXD1oySdyQMk/h6iv4/vXatkVc9yNlB1JnQV3CNLfi+033nyEfwA+QjRDDJBJNIYPWFko/i6PKOIDWBtL3sY2HMMlh+FcQshf09cY+y/KxQuWYAOLgn0CRQwEuAtQIUjyAgYOlRtHGCDIwhi93txS8zYQsMKgmDaetK+wYeBpKf4pnvBRI4RsPV6tciI13jbAA0uk0PT09jdYii4uLLCwsMDExwblz57BtexlhBVuL3Iywom7DEW6GiKC+Q7BSblNdObdr1y42bdp0y3JFdxqDOnfuHKOjo7fMo5ou/R2YjyHVDL5/CcMYxPebbjDb2IsTiANZcj9uwBVniF7K/tPU/WSCTmzlYcpHEHoa1FU0i6FjStGNr5sEZVkHQoTmuhux7Weo+FVdn1I9GOSJGQ9h6CyGuorQUy2T7mgpx7S3hcCGQX0DBTXCSoJaQIoDmLqIqUfD+wO+3BEqgOuLbRi6KXHX2Bj+cQQ5TP8fAPDkY2jZjZJHqnUE5cDyi75KtLoSDcOgq6uLrq6u6vn4fqPwbb21SDweb8Sw6q1FbkZYQEOgk0gkGqQVEdZ3NiKCepHjZrlNJ06cwHEcHn30Udrabp082uqmWwt832dsbAzTNG/Z9r3onmWu/OnGtiU24yqw5CMIPYFWN/DUaMteXmjLkBvw/WZirWVspeJ/i3qpWFs+iNACUz4M3nU8P4dtnQiMIFAtx0jE2/AD3Fwp95JIPke5JtLwvb1YpsQ2HqxK2nUREYpfAXoyvL2MwHaDegYF1RwssQVUCUMewCCPqa4j1dWWMRIt8aq9tb5XtW0GMNVXqgzI36ABJQ+i5NZa0vDDIMKV52+F28W6DMOgu7u7Uc1+ta1FWgnr61//Onv37m1I3qNuw9/ZiAjqRYy6S+/kyZOk02mGh4eZmZnh5MmT9Pf3c/jw4VWXK1qPBTU9Pc3MzAyZTIZHH310mUsviKnCH4W2Y+ZG8m7TWkoaL8EXLqbYDGoUUyZxAy4wQQbXD8dwfNVaBUJT8U80CKtc3EtHRwxDaIS6hik3huTsQgy2xK9MkqmJUPzK84oY5tUGYSn/MJbpY0sL7Y6ivE4SsWAyb2eLAINqkdvQeXaCehbfrwr6HHEIQQUpNmKygNSlZe4+0TKGlhsgIAypEthxDHUcy/tLNBmUGEQZBwNVLjq4GdYqxrhZa5FsNnvL1iJa60Yli6jbcISIoF6kCLZirz/oZ86cYXx8nH379rFhw4ZVj7VWC0opxfnz5xkbG2u4d25FTo4/xXz5bwOfmJS9cIUGX89T9JtKurTchZD9GDigLmEZu3ACrjlbPoATIBdDDOL44UKzVuIqZb/Y/ESMYMgjGFQQ/hWkMRiyyAzjAH4gV0qIYWLxq41trS00Z/F1gZIPSCj7nSgewJJgqjGk3Nasvg4191+QbNpCCcXVAy2g1WV8aup6+QiCDqRIILwpXDdGJt60/DQpZIC8a1cwvFVzGRreOSzv/0OxCS0SqJp1VSWssIDlTshgta1FPM9jcXExpBCsHz/qNvydh4igXmRYqRV73c2WSCQ4evQoyeTayuusRSRRLBY5fvw4SimOHj3K1atXb7vvdPH/JeiuS1kPUHCb+UExYwcVvyklN+gm732L5qJrkRAOpnwJJnm0fxFNuAdUq/tPsgfMprVkyu04QfKhDdPPYcpHMHQB1EW0CreZb41fmcZBfNEkH6cyQDxxFk+D51cJDH8K2zyIJTwM/xqyNdhk7GzJt9rRkjAcB/UcmnytpQgU/Z1IsRsDC1NPgRjC1IH8KjZiBEQbGolsqcyhZVfVwvLOY3l/gi/3A7pmXR2pWnB30b12s9Yip0+fZnR0lPPnzy9rLXI7woq6Db/4EBHUiwgr5TbduHGD6elp2traePTRR9e1yKy26eDU1BQnT55kw4YN7N69u7FA3IqgPFVgvPQtbPMxpM7j+hdxVVheLVsqgsfNLRS8bzW2E8Y+Sv6xxnZMbKWsJbZ8SVXNp2dw/LBbTRN2iUkRrjFYt8jc2rQtuRe0hykewWARoefw1YnQProl1iREF9D8zKlsJxY/g6su4wK+twFDL1bjV5Qx1XWEutxyhVpKH8l9oJpzd/0BUonzaJ9aDpYAGUOwB0MYmHocIXtANVWHSuzF0M3rUVUIttQt1BUMfaEqhXf/iENbt5ORnwDn0VrS8AMg7l6l9jphnT59mkOHDjUUpsHWIq2EFbTKb0ZYUWuRb29EBPUiwEq5Tb7vc/r0aebm5ujt7SWZTK77Dfh2JFNX6d24cWOZ+/B28avx4l+T85pv9xlzPyVdIWZuQqs5pCpSCsSWBHFK3rnQGL6eD21Lmabkn6Bc204aDwMFLBFDMINJEi8QB5L0tbj/DLxWohAC1z9f6ysFtvEIkMcUSaSexRBJVCi21IVphXOjEol8o34ggOe1Y5hncdQ1HMBz92FZFWxjGFPnMXRhBcFFOLlXqW4wAsQo94M6iaZOWO2gxxFyHyYaS10HUQpfv2UKwc0Yumm1aSAZn8EWi+CeAPcP8OQRBDQsLCX3rKos060QLHy7UmuRukvwVq1FguNEzRu//RER1Lc5WluxCyFYWlri+PHjJBIJHn/8ca5evdqwqtaDW5FMsVjk2LFjACu6D+suxpWgtMdY4U/D88El711s1IJoNx9C0YstbLSeJC66KQZccXG5m3Ig3mKK3hChgUFFXcLX2cYnCeMAWj1IpVCioy2PKTfg+E2LyjYewAlYZIbY1CLAsPDUeZRewGnscxAhHsQUFkJPYIoNofJLUu5DhWJL7cTiYRLUOotmvCFp97yDWGYC22jD1AsYItVCWGlss6VhY4OW6ye/A/xvov1qIrIrRkDlkHI/Bh6WuoFU18L7iHBNQSX3kbCb565JYKhTCEoY6hvVKhfyUDWGJR+uEdZOEDePO66EOrGs9CKVSCRIJBJs2LABrfWqW4sExw0S1uzsLKlUio6Ojoiw7mNEBPVtjNZW7EIIrl69ysWLF9m2bRsjIyONN8e6Emo9uJlIYnJyklOnTjE4OMju3btXXFhuZX3NlL9IORAXShibyXuBRF3SLHmn0Q0aECRlCksewUKj9NiyRFTb2IznzQTGfCDk/rPlMCW/5ppLwYKfxNJZbPkIJj6oKygdzpUyZC++PxY4xgEcv+lmM8Uwjl+NZ1UjXxamsPCcvUg0ydgsrYlNhrEzlG8l5S4sOxAn0nGkPIem3CAs39+DZezCNpKYehYp+hFBwcUKBW5pbQci2kEdQ/mj1RwscRDI1ZKGy5h6YZlCEO2ENpXcHa4hSC9SPYtAg/8vNcLajxbdDUm7FttA3NqCD97Ht8LNWovUC9/eqrVI9dpqJicn6evrI5FIRN2G72NEBPVtiJVymxzH4eTJkxQKBY4cOUJHR0fj+3eSaFvfP0gyvu9z7tw5xsfH2b9/f8MNs5p961BKcS33x6HPbNlByW++uafMHSx5zYUwbe4l752u5fZAXA5R8Msk5KMYOGg1TtkLx1Ja3X+m6MChaTEkjN0U/WdwajGamNyBVkVi8lFMyqCWx6/8Fkm3lF3gN8dsEJhVPdWS3gT+EpbxMIb2EHoM1UIcgnBJJ9Pcjx8QS3jeIKZ5BgWU/WpJJq1dtL8d4QvaEjmkaEOE8qseCJdoomu5xF3kQV1GcblKWPIIkECKDkxdQKIwW9x9rU0cldyIGYgb+mIrRu04pv8lNAIltqHlSKDKxeZlLxe3sqBuhWBrkY0bN66qtYjv+w1Bxe26Ddcl7VGl9ucfEUF9m2Glvk3z8/OcOHGCzs5Ojh49uqxv050k2tb3rxNcoVBotN9YjSLwZgSVdU8y7+VJm0eQuCg/y5IbdIGZLFUuQMBLpHQxNIYtu1nyTlBR1UoObcaDuHqOuOxEksfUmkrArWbQRTFANlqDo8ZCY0phU/Iv4NTavieNw/i6jZjsQJLD1CIUvxJ03pbADNmL4z+D743XzvshlM5iiW1IUUKqXEu+FaiAqAEgFgurED13J5Z9FiRgwaLXgZQVLLkfS8qqpL3FEkRuDUvcxXZQwfYfBuhLoOcbScPIw8AWcouKrjYwZAZTB919sVAPrOq4qRWSiE+DfxHT/xyaGFpsQMm9TQtLDq7agrodVtNapK5sdV13WWuRqNvw/YOIoL6NEMxtqpPOhQsXuHbtGrt372bjxo0rPjCrVeHdDHWSqTcwHBoaYteuXat6070ZQV3MfYqyP0O51pK9234QpWwSRiees0Cl6GCkrzbnXuqnmGjmQZm0kwtZS4Kyvo6jZinVSCdt7EGLB4jLFOgsNilKQTFAaQsi2TyGJTa0xK/MWvxqgUrt8iWM/SAewBYppJ7HFO24gViTJffiBquWqzQOYQJTZPHUVTyqx7aNh9E6jiU7kHoJQ8RQIcunA98PKwZjcZfgT+p7GzFip/D0NJ4PnjuMYeawjQNYwsdQk8iWqu+tRLLc4moHdQJwyWTA1eDqAwi2I0USkyyCnhZJe9cqXIR7MNQxpH8V0/87NO1o0Y6hH2BjTztSP4AWvdwttLYWUUrx1a9+lXQ6zdzc3LLWIp2dnQ1RUdRt+IVFRFDfBlgpt6lUKnHixAk8z2s0+rsZ7pSgAK5fv04+n+fAgQON3JXVYCWCyrtjTJSeap4fcRbdC3i6QN6rWg7xxCCm2IstksACZtKmEKh55+Q7kemmhZA29pIPkEtMDpKvFZYt+FUXmiUyxIyHsLHx/XG0DAsKLGMA12uq5JLGfoqB+JUlN1KqWUtVHZyFJStY4iEsYSP0JFqHr7NyhzFipwNj7MINFZJN4vrPoSkGJO37EGIfpkgh9RyG6EKFBBc7Qi1GtLaIxcZCXKNUDFNcw1UTVXGEuxfLzGObI5jawdSLyxWCLIU3awKLxnHYiFAn0BBIGgbBTgwRw9SzIDZg6psrAmF5lXZfbsNUzxBnlIe2gSr9I4g4vnE4UJapk7uFOpH09/fT1dW1rLXIxYsXMU0zRFiJROKm3YYhIqx7hYig7nNorZmfn2+olKSUTE1NcerUqVC+0a1wJzGofD7P4uIitm1z9OhREonEmvZfiaAu5f6M4Kt7p72LOaeZNNtm7GDJv0C5lrsbl714OkvaOIglLXx/Bj81S3BGucJMqFt6TPZQCZQ6ypi7WfKO43jVZNs4WyjJaTrkEUyh0f4MJS/85u/pcMNBS/bgBlxvSXMfRe8Ybi3XyZIbUXqBuPEwFgLXvYpphV2IoiV3qLUArim34NbcklW7w8QQFUx5AEPEkHoKrcO/geNsJxYLWpP92LGLhDEPYhLHH61J2h/AtAxiRk9V0o5EhKpPGNAitdeiBxGq4r63ljRcl7RbIHyE3I2BiamnqrlgAUWgL3Zh6HDSsNHSa0vJDZjqWaR3Fcv7C3wxgsCoxa8eqVW5uPkL2WqglGo8N62tRZRSLC0tkc1mmZqa4vz589i2vYywgGWEFXUbvruICOo+Rt1qunHjBo7jsHfvXs6cOcPExMRtxQlBrDcGNT4+zunTp4nFYmzatGnN5ATLCarsL3Ct8A/Bb7DktCziklBlnoQxQNY9yUJN4ddpPUDJq5A2dmIKjdAexXgzhqO9JEvquWp8poaKCifRShFHmEUWvSoZtJkPUlGChOzHFA6G9qkEEnEl7ZS8cAkir6WyhCV6KarrFLyqpF14u9BylrS5GxMPqRZb4lUCf1kMrBNqrj+oS96fbcSfJL0gJrHkIUwh8NyrGEY2NIZhbMb3m9amlHuwrCaBaW0h5WWgQMW/VJO078Myt2Ib7Zh6EYM2hD7W2Mf1EphmSzJvK4z94D+L9kdrhNUGWiPkXkwEhh5HCBmOT4n9GLp5nT3fxiCc54bIINUJpHcRy/sUvtgNQtYaNz6MbzwEYm3VUepu8pVQd/d1dHTctLVILBYLEVY83nw7CjZvzOVyXL16lX379kWEtQ5EBHUfojW3yTRN8vk8X/nKVzBNc83litbq4vN9nzNnzjA1NcXBgwcZHx+//U6rPPa53N+S1xk6rN3YgFsqUrGaC1LK3MiiGyxrlGLRDQfhy/4Mjl5k3q26+NrN3Xh6C0mjBykqWIZFLpArpYobqSSbb/42PRR1cExJyb+Gq7NUaq3f08ZufHY1BBe2SFAKyMJb868k7S3xK0AugTFH3qtaYknjEJ4WxGQPBkVMbeIF3GGCrpaEYVA6TD6mMYzjf5OKP1tt/+FvA7FAUjyMgY9QE/h+SyHZlsfcNA7gi6ZMXvmdGMYZNKrZVsTfgWnsxDZSGGqWfDFGZ1vAKhNDLTUEAdXS4r5Wtkn716tuRjaAnkHKfRhoLDWKEOHux0ulTXSlg21EOpbHtISBoU5jqOeAP66VZapbWA+j5AFC5vQKuBVBteJOWovU3Yf15PmVug0HC99GhBVGRFD3GVpzmwCWlpaYnZ1lZGSE7du3r1mGuxaCyufzHDt2DNM0efzxx4nH40xMTNxRP6i6BeUphzNLn8ZReaYrVVKy/V4McxMdVrXwqy0NCjTJpM3cStZrLtrt5k4WA7lScdnLoncO0JTUFAITS6Sw5U4SRjvoHDLlUwy8tZfzaWS6af1U41dNyyYmN5D3q+RTFVyYWKINW+4nJtII5tEtLd8T5vZQ+aW43EU5YAkI0pT859CUG8rBuNwJYi+2aMPQi5gi3SK4aI1XxXH9liKwWiLNOcp+lRxseRjFNJbYixQVhJ9fphDULSpDy94eysnyvM2Y5oWApF3gmL3k9B5sI4appqs5WPpGcxC5q6VJowEtrjuMQfC/hfKv13KwtoEqImW1caPpXyNhhwnZl1tDVS6qOVcthIWLoU5hqOPg/j/48iFANuJXSu5fVuViLQTVipu1Fslms8tai9Tl6fV/sPpuwxFhRQR13yBYrqj+8Hiex+nTp5mdnaWtrY2dO3eua+zVFnu9fv06Z86cYXh4OESEdyJTDx77cuELlFWgooO/gZI1AQpKlTnisgNH5cmYO0mZbSgvRzHgqgJQLT2gEsYA5UAOTru5mwXvFI6/SN4fI2VspuRPkTb3E5MJlL+Al7reEr+aDL1w26KXCk2xRJu5hyXvJK4/T4Fq/pWjpkmZVcGFUtOUvHC8Rojwo5Uwd1EMEFhMjlCuybOrYXYLU3RgyYPYIoHQM2ha41X7QgnChhgEKyxA8PUEvh7HY6y2z8NobWDKTgydR2KgdJCwYvh+2KUWi3XhB/LRXHcn8cQ5FNOUfVAqifArWOZ+LGFgqhvL6iVWSy4dD3yQBL/FRSgytaThayigqHbieXl07ACmLmHq68viU1puQgZ+79ZCuABCLyH1JQz1LXDBk4dBWI3Gjb7Y1RAb3Q3cqrXI1NQU5XKZr33taw3rqqOjA8uyom7Dq0BEUPcBVsptWlxc5Pjx46RSKbZv387s7OxtRrk5bmdBeZ7Hc889x8zMDA8++GCjJUIdd6Plu9aK00t/EfpbKtFGyWkSQbu1ianKSRa96yx60GPtZt6doN3cR0LGMYXHonuykd+5kvuv0ipsEGkKuCzV2nd0WgcoeFlS7KCUL9DdniYXCyykXoIl9Vyo6IGjwsm+tuymrG40aghmzAco+SVSxsOYQiBVvsXdJ3ECibwARkuQvy648PwZSoAlBlBMEpeHsISJ9m/g+eE6fMsaNMp9DYFF7Qrj+qfRlJoKQeMAsAdLZpA6iyHaUcHcKHrwW9yMMdsLKQRdd4RY7DSemsQDfL8bKcexjQOYQmOqUSSF0BjIPaEityv1xRJAIj6O8sdrjRsPAmWk2IRJHlNNIVvISLcUwvXFllCnYQCpZ6vlnPyvgguueIQjO3Mk9HXwH0XJHbetcrEWBFuLtLe3Mzo6yvDwMNlslsuXL1MoFEin0yHCqltacPNuw9+JzRsjgnqB0dqKHeDKlStcunSJ7du3s2XLFsbHx+9IJn4rgsrlchw7dgzbthsuvbXsfzvUCerK0tdZqNxorAMpo49ZJ1jWKMa8E7ZCKmoJhUfWu0IW6LZ2U9RdtBtD2EISEwbz7jcbhNVm7mQp4P6LiS4WvaBLTFD0r+PpAov6AiShqHfhMkRKDmAIvxa/arq7dGmQcqLpyjLItORfgasW8PQSizUVYJt5kIoeRjjtGLi0JZKUgpYPXRT92wgujEGK3jMUat9LGHtx1SRx4wgmCu1PL2vQCOHfyDb2hBSChhjEreVT1QnLlNuQ4gFMEUfqGUzRix84Fym2oloW/Hh8rqVp4wCx2GlcNYkLeN4mTCOHbT5YlbSrq8uqT9DaF4tBTNma8JsHdanZaVgeRlBCijQmixhqfnnfK9EWEmH4YtsKhHWDgc4bVYvOB894DEg0Ct9qsWVZlYv1wvd9TNMMtRapVCoNC+vChQuUSqUVW4u0Ela9Ujt85xBWRFAvEG5WrujEiROUSiUeeeQR2tvbgTvPY1ppf601N27c4MyZM2zZsoVt27bd9Aa/UwvKcRz+6fqnKMWT9BibiBs2MWGR96Yb60B3bAfTleYbdZe1jXm3ubDERAfz7nk0iln3AiCJyzYEG2kz+jCER2tTvpS5kYrbtH46zD0sBKXkTjuLtThRRc034lem3ErS6EboIkZKUwjI1d18NzKQQJyU2ykGqjEYpMl751CUway6orQaQTcEFwViIk7xFoILQYpSCwlqFJ6eJ+9V55M0DuNqE13JYAqHlK1wW1pm+C3VKAw52GJx7WnsU132bAzhY8qHMIWB0OOIlgVfygdQoZhWnFgsbB36XhLTPIfjX69J2ndiWi4x4yEMXcRUNxCqRQYvN0CwA7IYWV5HUE+j9VggB+sIgjJSxLH0PFLnl7cNEckWwtqJocNEKNU1pB7H9P8RAM94KZAKlGXauG7CCsrZ64jFYvT399Pf3w9UCWs1rUWChLVSt+Ff+ZVf4e1vfzt79uxZ17nej4gI6gXASi692dlZTp48SXd3Nw899FCoOZthGHe1ll49tjU3N8dDDz3U8J3fav/1HF9rzdTUFPPeNQqJakxk2r2M7aVQuJiij05rABNNRYVdQqLF5dJmbWTGaRJYj7WLWbe6GJWceTLGIDl/nIyxjZTRgVQFlrywhNvV+dC2dNtQdjPZNxi/KvoTJOQGymqatLmHuEyj/AVUei4UBcvnS8iAoDJpbCPnN12GhjdEkWocpaTGENgYIkmsIbjIEqrnBCSMXaGK7ZbcRNkPW4KOGsXTM2BVc5CkeAhf7yImOzHIY2gTLyAThzRuS0mm1mrjVUn7t/D9G1SoqgqlmEbyIOV8nvZMFghXhTDkfvyQJdRFLB4mFqVc4AqVWkfkqqTdxTZGMPUShp5BLFPqtbdUudgNrdaSHkXrqQBhvQQhShjYmHoagbOCAtBqIaxwXhaAVJdrhFVNh/CM70KLtkYMS8vVpXcAIc/IzXAnrUWgSVh/9md/xo/8yI+s+ty+HRAR1POMem5TsFzR+fPnGR0dZc+ePQwNDS1T7txpsdegBbW0tMSxY8eIx+McPXp0RZfeSvuvtV2H4zgcP36cfD5Prje8MPbEtjBePo2nHSYqS/TbO5lyxmkzN9NmdmOiWHCCUvM4WTe86FVUuOpBTLaT88fJ+RPk/Al67X3MOTfoMPeSMBKYKJbc4xCIX/mJcEzHaZF0x41uSmqCnHeVHNBh7ifnzZA2D2BLG6mKFBKBN3YtWCpfCgnGhA5f34y5hyXvOJ6/QIGqYtBVs6SMB7FlDOVP4vhhy8cS3bg0ybZaoT1Q+kilKFGt+l5RV2vnvhvEfmyRRuoslsjgqlZ3361rCFrGNhz/G/hMYqSgrIfRfhHbOIKBA+rysiaNhrEtpAgUYiN2rCURV4Xbivjeg1img/ZtpJojZTsrVLloWark/pYYlgR9Aa3majlYgHwMQbnWuHECiVjBwjJWQVgXkXoc+BsAPOOVaNERqHLRzc1QL0q7FqzUWqReR/BmrUWklI3Y1osJEUE9TwjmNgXLFdXboz/22GM3vbnuhovP931GR0c5d+4cIyMjbNu2bdUS1rW6+LLZLMeOHaOjo4PhXQOcKgXdVwbzTqtlU9WxLXnTLHnTbIjtYVFBp7WDhEgSFzbTzjMNcukwR1jwmoteTLQz7wbVbIKCN4XGJ+tdJetBt7WTvO6kwxjCFgaWFizoZxpi8Yy5jZzXJEGTNItueKFydBafCote9Vid1n4quo+0MYQpwEawFMgv0k4G17oSEqTX86wa5y77qKgJcv558CFt7iPnjzUEF/hzFL3nCA7SWjRX+sMo2bQUbDncsLhqhXiw5RCmeLDatFFPI0UXvl7Z3Ve/Al5L7T4pu3H8Zyh5N2r77EXrEpZ8BEMXEepaqARTdZ9+/ADhSrkT22662LQGpcdQzIEBvgFZ9yFsqw9LxjH1DFJ7CNUabwurOat1BIOqQQPUGTQLTcIyjiLoB9/H8EexrfQ6Ces8Ut/A8v4SANd4AkRXjbAOV62/GlZy8a0FwdYiQ0NDK7YW+Y3f+A1c16VUKnHhwgV27doV8sDcTXzoQx/it37rt5icnOTgwYN88IMf5JFHHrknx4KIoJ4XtLZil1IyOTnJ6dOnGRwcZNeuXbe8ie/Uxef7PlprLl26xKFDhxr5G6vFaglSa93oR7Vz5042b97MF6//MUIZaKO6/0BsJxOV5qLQZW1m3m1KmuMiw1TlAhrFvFslspTsokKaTmOImLQwqS5sDXGEtSnk/uu2djAXUPclZQ9z7gVAM+teRGBgixSu20NPchMWCtkiMGiztjLvNq2UlQnsAooKWbdqzaWMzfh6MymjD4mDh4snAhUcioNUkk1SkKTJe2G3ldLlFsHFg5SVT1IOYAoXqctUgm4rLVHGjdAYpuzECTQhTBj7KPmnAl210hjCI1YryVTNZ1rJ3dcsAut7qWVFbxECz7+CV5OC2/IhtC5gip0YLCL0FH6LkEOIcDUSw9iPEMEK8xLNRXydo260K/9hbKsHS5iYahwpYsvdfYRJG3kAAj2rwAb/FLpWb9AzwBN7kPRh4GOpURCrIazlMSxDnUfqUSzv/0Mj8IzvAdGLbxwBnUHKu2fVrNRa5Dd/8zf53//7f/Otb32Lt7zlLfi+z8te9jJ+6qd+iu/7vu+7a8f+sz/7M37+53+eD3/4wzz66KP8zu/8Dq95zWs4d+7cmupzrgURQd1D1H3D165dI5VK0d7e3qjSMD09zQMPPNAIlN4Kd2JBLS0t8eyz1Qf1scceW5VLrxWrcTG6rsvJkydZWlpq9KOq+EW+Wf4irorRZ28lKeP4KNASRHU8S4bPpyu2mfFyc1HrtXYwU7OOZtzLZIxecv4McdlHp9mP1JqiH5aBezpcBDZl9FMMKNO6rZ3V+JUJ0845UkY/BX+atLGVtNGJ0CUKXjj/SrQs4BlrK9kggRlbyPlXASirGSQxkBLT2UJbvBcoYKZVSHDh5XtCgou43EzRD7oyDUr+VVy9gFPL/ckY+/HYSVx2YVDALbsI+2xgj45lJZl0rY1iHQlzJ0XvGTyvas1ZYgDNInEj2LQx7O50K0MYZkB1KQaXqQgVC3jqCvXWmLY8AqKAKZJIPYvQOfzWOFjLi4FT2UEsHmzcaKM5jadKDZtJ+0ewzU5MIaqSdtHR0qgRoKXViLEPgoSrLAxOoMhVk4YRCLEHIfowcLDUNRBtKxBWawxrO4ZuCj4EGkNdQOrPYnl/woENkoXyUSxnRy1p+CC0kPSdQAjBoUOHGBgY4L/9t//G+Pg4Z8+e5Ytf/OIdWW4r4QMf+AA//uM/zlve8hYAPvzhD/O3f/u3fOxjH+MXf/EX7+qx6ogI6h4hKIQYHx+nv78fwzAaku61FF5dD0FprRkdHeX8+fMMDw9z+fLlZX2iVovbJeouLi5y7Ngx0uk0R48exbarSZvHlr6Io8sgYKoyxkBshMnSFWKykx5rA0lpk/duNKwhicWcE1aEuboU2k4Z3eT8GcpqiQlniQF7D5POPG3GZjJGJ5aQLLjNRcUkybwXVoy1xq+SRjcFf4q8P0nen6TH2sOcV6Dd3E1SpjBwWXKDbjZJwQ+7KWXLotNu7STrnsQxSsy6UySMIcr+FBlzHzGZxPfn0OnFkKOqmAOZam5njD3kAgu6JTrJ+2fQ+JRqCj2DQaS7k0y8C6EXai1Fmm5GW26h7Ifdn07Ludcl7fkaYVWbNpaIyUcxKKO8K1ixllhTSw6WKXfitfSF8vUovppqWG4x41GgiCFspJ5AaFAtIgZphC2halmmZuxMqQRwHFc5DSLEH8EyO7CEh+FfRcqBlj5XgAoTbqG0hbZU8LrYaHUc3SAsAyEPIBjA1EVMfRVExwqElWghrBEM3XQ/C6FIWNex3afA/TgaE894NVoO4VpvhZbiwetFoVAgFosRi8V46KGHeOihh+7KuHU4jsO3vvUtfumXfqnxmZSSJ554gq985St39VhBRAR1D9Ca2ySlZG5ujnPnzt1W0r0S1kpQruty6tQpFhYWOHz4MG1tbVy+fHnd/vCbxaC01oyNjXHu3LlQi3kApX2+nv1M+Pu1J7miStwoX2ZzfDfjlRwZc4hOq4eUjDPjNN/KO81NZANKvJhIMeOExRJ5v2oZLfnTLPnT9Fk7WFSSTnMHSZkiLiymnG/dNH5lkWLeaSWwRTSKBW+UBaDX3kteZ2g3NhKTFjaCrPuthosxJnpq5ZaaKLVUwIjLTkr+DZZqFSc6rL3kvUXSxoNY0gB/iVIynAe2VJgKVbhIGMMsecca20ljK0Uu4wPz7nXAJCa7sEVVcIGeRhJOCK67++oQJJd1IZYiVmvaWCVBS++l4s7TYe9FsgRqArel3l8rQVe7Cgd7WFm46iwq0EQxZrwEQR+GEAg1hu/FsazR0DjLyjJZ+0MiDN9PI8QzuMrDpVqWSahd2MZD1WoU6irC2LTMwrKt1tYi+yCgnAQD7T+LJlfNwcJGyG1IBjHIYaprINpXUAlmQoRVcvtIWFebf8ZD6ivgX8O1f5K7hUKhQCqVumelkWZnZ/F9f5nHp7+/n7NnW92tdw8RQd1FrJTb5LouS0tL+L7P4cOHGwUn14K6BbOa+mF1ayaVSvH4449j23aD3O4k2bZ137pUfX5+fsV5ncl/jUWv6VbrNAeYqlxtbMdEkolKdUHOeVlyXpZ2s5dFT9Ftb6PNzBDDQOpJlKi+K3dZw0w4zQWh19rGTEDdl5RdzLgX0WjmvTGytVwplza6jEFsaWIiQvGrDmsLM4FOvh3mVhYCZYvqBObjMFc7VpuxkQoDtMsNmEIREwaVwFzbzV0hwrLILBNcuCqPp4ss1L7XZR3A8Quk5QYM4SO1RzEeiM0og8XyOYIVlAzCpJAx95DzTlJhGnww6UAIh4TxMLYQKHUDpVvcfbWW93WYom9Z0VtNARmbZMmrWlFJ4zCaXK1p4xzo1irtoFuaFFZjWkECSOH4x9A03bHKO4jwMqQTFkJfwZCDqBaLRbVUf7ftPSHCUn4GaXwdx1c4gNYG0m/Hlg9hijyGfxlPDRO3wy8DtCRKVyuzB89Xo/1j+CziAw4JhNyJpITJAoYaRazgEnTcNhJWk2QV/Uh1Fsf+Ve4m8vn8mgpIf7sgIqi7hJVymxYWFhrt0Tdt2rQucqqPBbcucKm15tq1a1y4cGGZNVP/73qTbVtdfPXqE7FYjKNHjxKLxZady+mlZ7BFEqemOEuZbWS9ppuoPzbMaLn5MG+IbW0Q1pwzQcWvkPfmkcTpEJtImXHKqhIiF1+HlVztZj9FpxmP6rO2M1UTS0y7l0kbveT9GRKynzbZSyGXpdQWjlXIlvyrTnuE6YAAo90cZtGruiGn1RIGcYQQxOQWMkY3kjK65bwy1khYcGGMkPMDbiAsct4VXJ1jvuaKqlZoHyFl9CBECUta5AJBf+1kyFlhdZ/X0uI9aY6w5D2LW2v/EZebUKpE0ngEU3j4/lVcFRZY2MamRmwKICa3UmnpC+Wq67h6irrzNWUeQesilrAQegJDg6taxR8t5aJaqlwIuhDWKYTwKdTEEXHRiRBHkKKM8C9hGNtakoQlqiarb4xr78JXYQsL42tUlKICaB1DeRlUeQcdaRdDXUMYO6C1bX1rZXa5v0V04aD9E/hka+nhGYTch0EeU89h6BsgUqTjLRahHEKoCp75au4m6hLze2VB9fT0YBgGU1Nhz8DU1NSq2/6sBxFB3QW0tmIHuHTpEleuXGHHjh0UCoXbjHBrBAlqJQQFCg8//DCdneHuo/Xik3fDgrpx4wbPPfccW7ZsYfv27Ss+EFeK5/nm4jcRCHrMYXRBUbY8hDbQwkcgmXPDpW98Hc6zkkUbYqDwmWcSJ99PPj6FpbvoNHrJWAlyAaWaRYIZN5xvU9Hh6542usn7M5TUIiW1SFwPMOFO0mYMkzE6MYQK1fYTGCy2JPuaIkzGXfY2ZpzTeH6pJrQYpOBP0mbuQlQMhMyTF2ESMFpaQXRYu8m6zYW36TLUlFTdahlCspuEkUHrJax4gnygPbsqDlBKBhdDk6IfJhZbdrDkjTWaNqbkbso6R9wYwdAFfHWDcour0hBhBVrc2Ec5ZGHZlP1z+LrpMkuZR4B+LAA1iiXbcVvjUy1VLuo5V3VI0U/Z/xpNf5lBXGeQ8hGkzoG6gGnsxw+1qDeWlWWKxXaGXYJeHMN6BsNWFBRoncJSndXqGXoWqUYRxs7logu9EN5eVgw3j1an8PRMLa7YiZAHKRYnaE/mscQMiBhSnce1fgBa7qM7Rd3Fd69g2zaHDx/mC1/4Aq9//euB6nr0hS98gXe84x337LgRQd0BVmrFXqlUOHHiBOVymUcffZS2tjbOnj17x3lMsDJBLSwscOzYMTKZTEigsNIY6z2H+r6nTp1iampqxYKyQfzz3N8D1ZjTjDdFB31cLo1jiRQDsQ10Wm3Mu6NovYgQ0G1tYDogjpDKohALv8EaKQU+uKLMtBqjsNhLIV4hqTfQYXbSFksyHYhfdZmbmfeaC7YtUsy44QXbN6s2wJI/xZI/xYC9m0VlVONXRgpbSGYqxxpWSkJ21+TqTbSq/eKynbw/XiU2A1LeCEtiiQ5rPzFpI1SBBfd8yPIpt7iXUuYgFbf5WcbcQa6We5X3QRLDlEkS8gHckodpLZFOZSgGkmZVYQgv1bymJu3kWiTtCJ+Sf4NSzYpqMw7ikyMm00i9gFbzy2oGtuYfVYvcNi0LSYaidyKkHEzJ7UjZiYEL6jKW3IQbsoRMvBZRgyk34QTieIbYQNn/auAbNnGdrBHWPKjLmMYDLYRlLsvLisXDhOV5Jpj/glfzEGjdjqV7sGQSQ01VxRxyB+gW0cWyYrj7ITSnLFqdI5GsFb6lFyH2Y5LDN3+Au417TVAAP//zP8+b3vQmHn74YR555BF+53d+h0Kh0FD13QtEBLVOrJTbNDMzw8mTJ+nt7eXQoUONZLl6nb31oiE8CBBMMOeoXlT2Vub9nbTMcByn0XTtdurDmcokZ/LHGtsmFjmr6mJytcNY+Rol1c+ss0jG6KPb6iVjxsn7eSqq2ryu397ChNdcWPqtLUy5VxvbSdlOMV4lsKJYpOgtMlNJ4BmSNjFMxkpjCwv09YacvcsaZjIQv+oyhpm3mwu4XRNgaHzmvTHmPWg3BynTRmctuTcmDYqVuYaLscvayXzA4oqJtpaEYfBkvha/qpJjr72Pou6m3RzEAix8FgPVwyXxRiJwHaKl91RDIaiyYIGpOyn5WdLmQ1gIHP86dsoLFSVyC12IVNMFGJdDFPzwcSp6moqaaLjY2s1DKJ0HT6C8KZJxg3JLa47WIrcJc2eoL5Ypeil4zxCUk6dkBkO+BEkR/AvY5i4c/1hglOV9rww5EEr4NcVgiLAEKWI6iZRHkHoK1Cim+QC+H3TLWSg/bMnFlxEWwFN4tftG6x5s+jFlElNdRzJfqxPYSlhueFPugWA8Ss+g1RVcYxtCbuBu4/kgqH/zb/4NMzMz/Kf/9J+YnJzkwQcf5O///u9XlSqzXkQEtUYECzVqrRsKt7Nnz3L9+nX27dvH4OBgaJ+7UUsvaAE5jsPJkyfJ5XKNnKPVjLGec5icnOTcuXMYhsEjjzxyW5HGl+f/oaHWAxiMDTNaaT7Mg/HNjJerlk3OXwJHcLWUQ6NIq376k71gKAzPwq899FqEibXLGuB6pbnYbohtY6Km7ltkhlKxiGMWMMjQKXtJmjYVVQ7Fr0RLHbruFgFGlznMfD3W5F7CIoEWClsM0G72YQh/WaypmjDctDgS/gZKRrOckkGMrHsZT5eYqVVy7zS34ejNtJm9SCrEhcV8wCJJyP5QhXaAsh9Wttm6j6I+10gYzhhbKeslUsbDSFxcNQap+VAp3XLegkBMPW3sIh8iH4uCfxFPL1WtPQtMcQhEP1ZNcGGJNJWQ605SaWkrEjM243nN/k2W3BgiMJCkdRIpX4JTnsI2x4hb4b5X1bYhYRGGlF1Qyzurbve3EFZXzcI6jFA3QE/WCCsofDBRLSTdSli+V8bhn3FrhIUexDaHMEUSwx9FihyIjSskDrc8J2J71QqzfoV7geerzNE73vGOe+rSa0VEUGtAayt2IQTFYpHjx6u+6KNHj674FnOnpYqCY2SzWY4fP05bWxuPP/74qnOb1noOSinOnTvHjRs32LJlC9PT07clp5ybY7w8RUKmKalqYdYFL/yG3WoNtIkucrWkyrxcpFv0cqlwGUPE6Le3kJFJimqmQS4mdsgdCOC05Er1poe4UTmPj8usHie91Ec+MU1M99JpdJO0LHKBhVRgkPVaKn+3NBzssUeYcJ7D0xWKzgIdxhAL/o1q/MrsRPtFcm44V6i11XqXvT1EYCmjn2ytOkXRqV6npOzFlDtJyQyQJyZsSqrp6mptKYKyKYvw9ZDCpuzPNlyH7eZePL1IQu5EUMBXM3jJG6FarPlCAQKhsTZzN0uBTsb4SXKcQgXssnZzBCE7qmTtXyZmbKQU6iUVo9RisViiFzfQMTkmt5CvE5YJZZ1AaRtDvgShp9HqCjGzVVCRWaYaNER7iIAN2UPJa+bnSAaqFpZ4COVdxjQWMYxWC8tEtVhGsXhYJej5Cyj9ZaSsvZzoYWJyBINMVdIuSkA/LJOfp6uWl/ES7gXy+fyLrg4fRAS1arS2YpdSNgQDmzZtYufOnTddwA3DWHOx1VZIKRkbG2N8fJwdO3YwPDy8JsXOWgiqVCpx7NgxtNYcPXqUYrHI5OTkbff78vyXOJOvLrh99iYG7F6WvDmEu4SWim6rlxvl5mJqYDHpXA+9bBb8KrH52mO8Msbm2DbGKvMkZBe9Vj/tZpJp5xLUqkX0WBuZdZsLni0STDlXQ+dlZQR4UBEFJlWB9EIf+YRH3OmnK9FNxo4z4zYXvJTsaYlXCRa9cGHZmJECPxy/mnNu0GntJCGToCssqHMhOi60WD71BOE6uq2d1RJNCpaoJhlLIUmb+4iLOL6eQ+uWnk/eRpyAZHqlnCxP5yj4Nyj41VhTl3kQWCIuU1V1nSrjxMMEvVScJNgk1/CG8I2mtWGLXha9YwSTftplGmm8BEMX8f2LJKxdofhUve19EK2NG6XaSN5rWjmSbnxlY8hHEHocra5jm7tDggpBJ05Lk0XZIu6Qsp2S93R9B7S7gZTMVJNx/csIkV+BsCSqRcEYi+1rycOapOhPYBgOWkskI7Uq7e0Y6gpCuGg6q8VvY++6Zyq7YrEYycy/E7FSbpPv+5w6deqmHWhbcacWlOM4eJ7H9PR0qE/UWrDac5iZmeHEiRMMDAywe/duDMOgXC7fNn7lKIcvzf1TY3vamUYKg8nKJFLHGIoN0WW1oTCYdyYRAtrdbuatJvFtiG1motIUNqRkhuu13KmSKjJavkKb0cmSX6bDHKLL6iAhbQxm8Wv5NH32MNcrTXdLn7WZ6UCtv5hIUkpUY2JlO8e4nyO21IZj2nSIjaStBCkzRj4Qa+qztjMdiC0lZDvTLcm9RT+LwmeudqwBew8lnSHt9dIWT2ICM+6JxpgrJQj7OhzH6LRGmHFPM+9WSTttDDCvFukwD2JJiePdwDPC8u1ki8AibWwlH1LzSfJqtBq/qqHLOoihe7Ckia+mMbAp2001nNYCT06GyDZuDOEEXHdxuZlFL6hqk/jKxjRegtSLeP6FGmEFGzd2UmyxhESL5RozNpEPNXvcWLOwHgZ1FZjFNrZTCRFW1zILS4qwZ0PrGEXvqcYeltiOpTNIsRfURYRwMOSBFtGFQKmwtWpbDzTajQih8NU1it4EhllEa4tyYYC2zHZiYhbD+lfcKxQKBTZsuPuxrRcaEUHdAlprFhcXWVxcpK+vDyklS0tLHD9+nHg8ftMOtK1YT7uKOubn5xu5VHv27FkXOcHtK5Irpbh48SLXrl1bFkdbTfzqGwtfI+/nGtuDsUHGK1UpuRKKeWee8coEvvawVYYu2Ukmk6HkFCjVxBGtOUh9sQ1cKTVdRBtjWxqEteDNobQi5y8gkPTaW8nIJI6qhGr9tcaa+uzNjAUIrMfcyGzN5ZRlksWyBRWNFB3V+JVtoVuUax3mUChe1WONMBuQuFskmHUv4QuHRXGdRaca01KN+JWHjcWM21zQ08ZgqMIFCHJ+WIqfkF3k/clGbcIucztL/hRp9pO0Ba6aJNdS1slokTN3WLtZcJvnbpBkwT2LCqjuuqwDWKIdU2gcNYb02nGtAGH5FkvqbMjytWU75cAtkjK2hVyEgja0MjGNR0HP4PlXiFlbQ4Sl3U58MxwT0oTvWdvoJ+c13X2W2IavbQz5IKjLwBKWsXVZjlUrYUGQsDQKAoRlYYs9WLQjxM4aYalas8YToVGUDlvWlnkAX1UtQCFc4snrlCqLLFQeRy7l6OqyluUN3g28GFttQERQN0XdpbewsMDly5fp7+9vJMJu3bqVrVu3rtpcX49IQmvN5cuXuXz5Mjt37mRsbOyOWjrfyoIql8scP34c13VXbPtxOwWg0oovzH4+9Jklw3L3gdgGLpWqi6cjHeKJBM8Vqtu99kZ67S7Kfg6DqjjCxGKiEnY7OS3VCTqtHpb8LBrNlDOOHd/KWGkMW2TotwdISpucN9mIXwkks25rTlL4ERhMjHDdOY/CY0ZfJ77UQTm2QEL302F2YxmKRS/sqqMlrtZtj4QUg+3mhobgougsAIKEbMeWW0gbHaAL2FjkaRJS1d0XrEaRYt4Nk49G4Rk5Fsix4ECvtQ9HZUkZ7UABrZaWu/taGkO2WdtDRW9jood59xRB1V1Sb0CX95JOmVT8y6TMLRR0YMH3kizpM6HLIEQ4Npoyt7IYICyTDaBMLOMISo3jqxtorxdhNS07SwxS9ls7C4fvAVN2BghLEJN7UDqOlPvAvwiisizHSvltCKOlInkohuWidIWC9+XaqAksuRWbLhBbQF2t1o6Ue5fVEtS01PzLD5POXCW39P3Mzl7nzJkzJJPJRi+nzs7OddfIDKJYLEYE9Z2A1twm0zTxfZ9nnnmGXC63YiLs7bBWF189lyrY+n18fPyut30HmJub4/jx4/T09HD48OEV+8jczvo6nTuHLdpIGQUKfo5Oq5PRUkCEoAVjxdGW3J/mG/uMM0Ob2cbl0jiGsNkQ20yv3cGMc4OSX0QI6LU2MO00F/CYiDNeCbtbSn518XV0hbHKNYbj2xl3cmSMfrrMbtJGjEknsOg7Kaa4Gpwp2ZYaeh3pLibdBUoiR8nPkc73k48XaRObaTMz2KZizrkQmJtgqSVeFZftLNL8rM/awbR7npKCRW+SuMjg4dJu7iIhE/gqi6vCFdk77C0hgUXa2EDWC8dHCmqGoj/NUs3y6rP2I+ggYSRQah5TaPIB5RsIii1WWquLMGVspsBFkFByqvtIyyYuj6D1EhX/CklzK8VgKw63nXwLYbWWPkqYm0KEFRPb8JRNWj2AIW+gmMcyBnC95vnZcjPlFtGFCglkNFKkWfK+UZudSUzsRusYQuxCq4sI4eO7G7HiTWIRtC93CQZUgpoSvlokr6vXX4gObDGCRQeIRVA3aoS1Y1nelWF4mMZLGBl5FSMjNF56s9ksV65c4dSpU6TT6QZZdXR0rKuXUz6fv+cy8xcCEUEFsFK5omKxSLFYJJPJrEk1F8RaXHxzc3OcOHGCzs7OUOv3u9G0sDWPqm6h7d69m40bN97UIrzdsf9m8gucyVdjL/2xjfRavcRllpnKDTxcOitdzMebibcbYoNMVJoLT1ImuVYjNF97XC9fp+AXybpZkrKTXquXNiNB0S9QqFUi3xDbxNVyMFdqI1MBsURcJLlRI7Ccv0jOX6Tb6mPe1fRYw2SMNKXcEr5VQQmvNuY2JgKS+LTsYKqlOoVIeTURwyxL3iyZfD+FWJJO2UfKipEwDSYqgViTTjLTEmtyWipcdFqbmHCeY86tnm+HsZGCmqPL2o8lJBVviiU3bE0mZCd5v0l6XeYO5gP5UxKbrHcZVxfJ1jyUvdY+TNlOTEhcPUlctrEUsLAksVDPKwBbZhp5UQBt5vZQtXhJCtOyiYsjKD1XI6yNlEQgwdftrZJcAF6g8gRAzOilkjhR1XMqSMp9CBXDlAfw/IsgipiiG4dA8rXcQqVFdacC11bjIYTNYo2wJBnicisV5SPVJqQYQwiwjJ0toosMTkuCshFovKj1Eq6apKJPUCXFPmyxCYs2NPMI6vf6RhLJ69j2LzTGsSyL3t7eRtzacRyy2Szz8/OcP3+eSqVyy/buN0OhUCCTydz2e99uiAiqhpVasV+8eJErV64gpeTBBx9ctwJnNS6+ekPBK1eusGvXLjZt2hQ63p0SVNAKchyHEydOUCwWG9UuVrtvK64WxziTby6MObfASWcRR7uY2LR5HXjKpNPoY96bRgiwW9x/g/EhLhabY2yOb2G0fBWAoioy7y5wrTyKRtNlbaDb7MDXGosYbi12YsrwrTwQGwoR2IC9saoYBGbcKXLeEk7MQaoE/fYAcWGB9lsKyfaTryw0xui3t4QUgjGRpBifQ+Exp8eZcyBZ6MQzu+k0esGrEJcGC2ZzEW2t0C4wmG8pp2QbSRb860zViK3f2knOn6HdHMbAw/Fnl1W00IRfgLqt7cwEYk1x0cGse6YWbamix9qAbRzCFB4Vf5Q2c1Oo5JIl2lloKXLb6s5ss7aSDRzHFoNYZpyEOIynxnHUBAmjmzJNQYVwNlCyw9av05Lwa8o2sg3RhSQtD1HWMUy5p0ZYLqbswAk8EjE5QkWFCTZIWIoSGgM/fpocYNBHXAwjtA1iA1pN1AhrVyiGBcll1duDlS6UnqXiK8osAR6G2IhtbEB7MdyKoj3zKm4G27bp7+9vJLvW27tns9lGe/f29vYGYWUymRVd/c9Hou4Lge94gmrNbZJSUi6XOXHiBI7jcPDgwYZIYb24HblUKhWOHz8eKo+01jFWew71PKr29nYee+yxVVmEtxJJfGbqi6HtTYlBzhWqi4SHTyqRYcwdhzJkzG6G4xtQ2iFpZCj6OQyMkDUFy9VsPXYPS6VqrtS8O0/GaOda6QoSyUBshHYjRcHPghYgNBLJTEtOktEilui3h7hWuYjSPjcqY/TZg0yXx0nJHnqsXkw0i15YIdcq8e61N3G90lzAu8xB5mtxpCk1CkJg+jYxPUiH2YlhOljLRBvbmQq4HeOiY5nFVdFFiipL0anGNwbsvaBStMl2CsUZbEstc/cVWxb8NmtjqOht2hhk1m0tfSSJG4cRFKn4V0ibw6H4VHyFpOHWmFbKHAqRXEruQJlp4uJBXP8aPllsI0Ml4PKUzibKdpikKyr4+ymkiDNfazUiSZGWO6loA0NsxVNXEEJjyLZQ/8OqhdVKWM1+U75eRKHJ1mJYltiELQZr+WudUIsn2cbeFsKycVsqatjGtoaS0NfjlLxF0D6LS9/LYP/ql9lEIkEikWBwcDDU3j2bzTI6OorWmo6ODrq6uujs7GyQUhSDehGiNbdJCMH09DSnTp2iv7+fw4cPN/5erxqxHtwqD6oeA+ru7g6VR2rFnSgBoTq32dlZzp8/v+Y8qvobW+s1mHXm+Vo2WIdNcqPcki9l0KgCk/MKOEpxvtB0B26K97LkZ6n41Rbp/bF+blSaQoaYiHG9HF68SrVFUaEYr4wTT2xjtDJLXLYxYPXTZiSYCkjLO8zuhrsPqsnCsy019Oxa47iCylMo59kS38GNyhJd1iY6zDYsATPOhcAYknm3NdYULgHV6Q+SNW/gUaHgL2BVEviGQ5vYQsZKo8US5YDyEaDD2sCks9AcY5nFJVn0blBSi9W4lgldehsxs424jOOpLLawyQbUfBKLhUCpqOq5VmsGNo+zLWSVSeIICQnjMBVnCl+Mk7D6KAeShlPGMPmWyhFlfya0HTO6mAuQXLt5AOwYcb0Px7+MEiVMwwpJHwx3mIoVHFdQDhSXVTgIYTLnHqt+X/SSFlupaI0UQ/i1mFCrhWXL4WUuwWDNQFdPY9JLtjauLbdhix6kNkAnQVTJzTb2t7QOkbgt+VK2sQfHO0Z56ZWsFyu1d8/n88zPzzM3N8elS5f4H//jf7CwsMDs7Czz8/N3tE7dDlu2bOHatfDv/d73vjfUTffEiRO8/e1v5xvf+Aa9vb389E//NO9617vWfczvSIIKliuqu/SUUpw9e5bx8XH27dvXyCkI9lJabwvl+vjBm6fuQrx69Sp79uxhaGjotrX01mtBua7L4uIinuetS+QRPOfgOX5p9lsMJ0aYdafJeTk224NcdZoLyWCsj7FyMNaU4GqxudhOVWZRWjPjzGEKm43xzXSYGTwlmK3lSg3FNnK53HwLHrQHGQ+IJRIiwVitdFJZlblavkav1cuMW6TTHKDL6iAlbQpevuEO3BgbYazSXFAyRkeIwADmaxUw5t0Z5t0ZNse3seBZ9NubSBlxYlIyWj7VcAemZDsTTjhe5chwd9iexBAT7kUWmGbBnSbpdFGxCnTKHaQsG1fPM99SJcOS4TSGYAsRAKliLMhRlNu0OvutnSTN/dhCUPYnSRs91Rb3Ndgis6xmYIvnji5rW2gf0+/F8g2SxiF8NUW5VuooiDZzO0shmbug4IdjZ1IkmHVO1P4q6TAfRlqCGCYl7xJS+sueA9MdwbHCuVzFQFdgX+fRQjYIyxabSIlNONpF0IWmagmbshMnWAFfblomugi6Sh11HSnT5P2zgCQu9mCJNnwkWtsIUaVVy3gA1z8eGsdX40j1SgTra7GzEoQQZDIZMpkMw8PDKKUQQvCZz3yGf/zHf+SHfuiHGBgY4FWvehVvfOMb+Z7v+Z67duw6fv3Xf50f//Efb2wH415LS0u8+tWv5oknnuDDH/4wJ0+e5K1vfSsdHR38xE/8xLqO9x1HUCsJIQqFAsePH0dKydGjR0MZ2XXrwff9dRNUfb86ydVl3Y7j8JKXvGRVwc31EtTS0hLPPvssWms2bdq0ZnKqH7t+/vX/L/pl/nriSxT9qtqsS3SRX3ToTw8w58/h4ZIwwpntQfcfwJbERq6WqguYp32ybo7R0gQKRcbsZoPVg9KCpExTrJVOao01DcYHuVQKEFhsiPGaBZb1spT9Mh4evpb021tIyXhVcq4lulFItpecv9AYYyi2hRuB5ooJmeJG+RoKnwmnOnaP1Y+rO+izqrXp4tKgUGm60FoThE0s5rywxD2ZSFP055nVN5h1oM3ZgGP5dJjDxMyqC2q5uy/sUku6feRjzcU6Y/SGCAwA0UfGPIjEpeCN0m4NMxNw96VkH1k37ApzVNiyi+teZgPjthk7KCqbpHEQR43h6XkE4eej2rix6UYUmOS9q41tjQJhMFO3sFSKDrELM6YRSuGo0eoLgAjnoVneCK4ZPF9JKUBYjp4jITaRrTWijMvtJEQ/jipSzX+qXkNL9ODS3K8qaw+7PZt5dIqyuow2tpNzLyKIEZe7sUUSpUFriajdT5bcg6vOIN3/eEepIbeDlJKXv/zlHD16lN/7vd/j1KlTjI6O8o//+I9cv3799gOsA5lM5qb9n/7kT/4Ex3H42Mc+hm3b7Nu3j2PHjvGBD3wgIqjVoLUVO1T7G505c4bNmzezY8eOZTdUnVzuxL0WXODn5+c5efLkLWXdNxtjLQSlteb69eucPXuWrVu3UiqV1m36r9Tw8AvTX2uQE4DhSUatLFTAFAY7UlsA6LV6mXZmMIRkohJ2q6mWJMyBeC+L+aq6K+cV6LN7OJm/CkCfPUS/3UnZz2Fi4eEikUw54TGNlkUySGATzkTVAiuPE5NpkqUE3Zl2ct5SSBzhtcTA+u3BFsXgEFO1fKrR8lVMLAxhEDcG6TI7q1UIRPi3GoiNcL3SXOAzRhezfkszu5hDWeeZ9PPgQ4cziG9tpM1qwzDKGMJnPrDACyRlMxwnSxnd5AJutm5rS6jrsMDA8H3azQdRukDeu0rS7KXgNHO72o1hFoOuOw2OCB8nZnSGYlpd5gEq2iJp7KXsX0VRDNXtA2i3drEQ6F68TDUo3WqLlpqc3hL9dBjbIVYCVcartX9v7Qps+VtxjSCRhy2sshrHNvvIeucACZUttMX7qjUctQW1js2tsvZqd+GW0ky1Crsah5J/Dl9uxlGjSDqIyy1YwkIhMOVePG8XhhHOi7oXyOerL2+9vb3s3LmTJ5544p4d6zd/8zf5jd/4DTZv3swb3/hGfu7nfq6xhn3lK1/hu77ru0Itf17zmtfwvve9j2w2u66X4+8IglqpXFGwZflDDz1ET0/PivvWK4nfDYK6cOECN27cYM+ePWzcuHHNY6yWoDzP47nnnmN2dpZDhw7R3d3NmTNn7qgfFDTdnZ7y+dupL4e+k0qnmKkJGTztA4KTS1WXV1yl2JbZhCcdfK0p+AUGYr2MloKxJptrxfBbX9Fv5rhMO3O0m21cKE5hihiDsU302Bnm3Am0ziMEdFldjAVKJa1EYHULrKIqVOwK7XQyVsnSYfbTbXUSE4KJgFLPwGDKCYs4LBkWlgzFh7lWvkjFK7PozdNhdrHkLdCmB0mJBIZdIeeFF6p2s5ec31z0+61hptxwncKCPY9LmZw3Bx50eIMY5lbSVgJfLpKUSaZpkp5FclnPK9lC2H3WtpCFFRed5HxNu3UQT82T965jyjhBUWDC30jJbP42AoNFN+yKNGSMyRqxCCR91sN4WhM3tlP2roLwcFVYWl5vG9KAb5ELyNFdvYSHQ9apuhrjcjNtxkZ0LI9WiyiqVp6vSgSnGfO3UTGCLkxBueFqVBCbxqefWe8SkhRJOYxNAkctorVA1Krnt3YXrpZmCsvP69J3RYGifxpT9OHpGTYmf40l/+YdsO8m6g1R77VI4md+5mc4dOgQXV1dPP300/zSL/0SExMTfOADHwCqnQ9GRkZC+9TViZOTkxFBrYSVXHqLi4scP36cZDLJ448/ftvSI3faLqPeC2p2dnbFSg2rQZ1Ub4d8Ps+zzz6LbdscPXq0UYrpTjvqQtOC+sr8cWYDgfyBWDdXS81FPC5srhSb5FOWDhNOlmm3uiAPxjfQY/diihgT5Ql8fLakNnEu33ybHrIHuFFpCi5i2FwtVd+KPe0xWh6nrHqYdpZIG9302920m3HKvkux5p7aHB/markZF+o0OxkLCi40zHvVnJUFb4EFb4Et8REWPE2fvZk2M0UcgyvlZmv1NqNzWbyqVe3Xbnax4M2zIOZZAIbYwrSzRL+9i7g0cPwFJgMuxNpFDm1uaLG4kqKNBXMC0MzXDLx230b7w2QSMTxjlk5zIFSCKS27lxFWq4uwwxpi0mnGmtqNLZS1Rbv1AGV/koqaISSNA7qtHSEFoEE85CLUKHyhmaqNa4gMfeYutHCJSSj71fyj1kaNojyASo0Fxk2xGIiVldUMCaOfbO2zlLGDtNGHL+dx/Bl0LSbk+MUwYentVGiOozU4onpvKRzy/gXazIMsedcwRC8puQlTG7gqG7Ks4+bWUKuQavHbcKUL29iE9iu0x17DgppYd1hgLSgUCiQSiXUd6xd/8Rd53/ved8vvnDlzht27d/PzP//zjc8OHDiAbdv8+3//73nve997T8o3wYucoHzfx3GcRrdbgKtXr3LhwgW2b9/OyMjIqtxed1KNvF58VQjBwYMH1/2WsxoLanx8nNOnTzM8PMz27dtDb293YgUGW8Z7nsffXPoq3V43lViZvCrQbmWYrDQTcbemh3gu1ySGXr+NaZqLeNEr862Fc/haYYsYmxJ9oG26rW5mnWqR1kqxHLo7u1UH47L5Njtg9DFZc0vl/QITZcU17eJqjz57iE4zjUA03IEAnVYX2YAl0+F0siCa2xkjw2j5Wq100hRTDvRYPTg6xYDdT1yaxIRk0cs2Fq0he5gbAWFDTCQYr4RddwofVztcrxHblvgOHN+jx+rBEB5KF5dVYM/5YYuryx6kGKgh2CEHWGASDFjyAQ/KlSIpcy+W6ZP3x0ibfeSd5u/SqgisHqe1wnpniOR6zX04yiHmb8U3pvAo4NTigc1z2xaqcmGLdKgQrq8rOLrCXE1OHxP99FrbUTqPJVxcXSUqbS2Gxm2ztoVk7iZpFgPWX8G/ji07yLpXEcTImDtIyA78+CRlvxkTcpwiBNZPXRrCTYbjgVUirgoulrwztJkHmPduYIlNpOQGpPZCBXYBEsZOiiE1n03ZP09X7F8jRTwUSriXKBQKJJPJdbnw/8N/+A+8+c1vvuV3tm7duuLnjz76KJ7ncfXqVXbt2sXAwABTU2GPRX37ZnGr2+FFSVD13KaJiQkuXLjA448/3mjyVygUeOSRR1bV5K+O9SzuSikuXLjA6Ogo+/bt4+zZ1oZma8OtCMr3fc6cOXPLdux3I9G3WCzyl89+nuP1fj4V2J7agqcsNsU3NayhifJs686hzcF4H8/lq2/2jnaRwuDZxeqClpFttJfjWGmLhK5QUiUkkpxVDLmdPMcNvSX3mz1cdqqL77QzR0zanCtOYIoYQ7FNpA2bvJcLx5pk2CLts/sb9QKhqiC8UasHOFoeIyZiaDRx2UuP3Y3EAxG+LzbENobiVRk6mXDCpDDnzpD3l8j7VZfXcHw7tpC0m234uoAtBZNO0/IxsZhpUfclzTQLgRBPj9zMrB5l0Qd8MJSN75Vps/aBLJLzRpcpAnut7cy4YTn63DLXncVMXZCgBIP2IYRQZIiT966ihUehRVrebm0JiTDioiOkGqzoHEWVb3yWMobpNDay4I5i2x6Kqvqx5Idl/G3WVuZvQlgajyXvMoa1n6w7jik6ScuNxGQSNzGG4wdvw3DsM842yi35Uq5eqP13jgVvjoyxn3lvsiq4MLqRqoTbQlhJYy9F/zjdsTdUL9cdKH/XgjspcxSsarFWHDt2DCklfX19ADz22GP88i//Mq7rNvIrP/e5z7Fr1651uffgRUhQwVbsdcunXj6oq6uLo0ePrrlc0VpdfKVSiePHj+N5XsOld/78+TsiiJudQ7FY5Nlnn20oEG/Wjv1uNE189tln+Vb7WKi7dcKIcXyxai3ZwuZg+wiurmCKGNOVWQbi3UwFrCtbmFwphWM6Jb8Z9M6pEgOZHi6UxxAINsQ2MBTrYt7LUvCKKKHosbqYDVhkAsF4eSrcxFRVVyNPe1wrj7MjOcKl4lzDHZiSBmNekATMhvovOG4QQ/GNXC5dwvEdlkpL9Fq9zLqz9NmbaDPSOCpP1g2Tc4IkuUAB0WBFdqhaXDcq1/C0y6w73fhO2thBUtqU9TxtRibs7pPtTDhh1x2mCv0uXXKQGa6yUPssofqY9zUd9n5cZsn7k8sSovvsbUw6zRcpmxQzTnDh1njaZbqWD2aQYNDeA7oC0qbgX0cIQa6l+WNrknBCdocK3xb8GWzRRj4+B76g3dxJu9mHq6YRegEtXKqS9fGWcW9OWJ4usuCdp9PaT9adw5aDpOUGTC3Jm+GXxXKpAoHHJs4WSqGaheBTjYeW1ThlNV7rQDxD0thLXLaBWsRTOTLWd2Eb1fiy7/vrqqu3VtQrmd+r/CeoCiC+9rWv8cpXvpJMJsNXvvIVfu7nfo4f/uEfbpDPG9/4Rn7t136NH/uxH+MXfuEXOHXqFL/7u7/Lb//2b6/7uC8aglqpFbuUkkqlwrPPPruqXKObYS0uvunpaU6ePEl/fz979uxpvEHdDaFFK8FMTk5y6tQphoaG2LVr1y3dCeuNQdUtQaUUbVv7eG6muYjbwuRyofmW62iPicoC10vVN+pOq4s+awN+AQpWnpKusC21iTP5pvtvU6KfsVLTLZCQMa451fiARjNey5WadOaIyThDsT66rRS+1sy7VVfbtsRmLgaK06Z1irGAsEEAU5XqOeX9AheLBbYmNjOvBb0M0m23kZIGl8tNEuiyurleabV8wuSTNjPMuDNMOdNMMc1wfAszTpYBexsJabFYmmVGToZyjNwWUqjWFGwet9PsCREYQL+dpMPcgy00OX+SbqufsUDL+3bRF2raCFA2lkIWZ0p0MMs15mpWV5saoahjdFh7KKpxHL1IMSC1B+i2h0PuvoTsCCkCfVxKKs9sLc4VEz0M2NtRuoDGoKLmEJjLkoTT5gClgOsxKfsanYVBs+hdr9USvI5BinZrIxnZTkWNBUQMywkrY20NuQQNko0YlqOyzKssHcZ+ioZHQo+QNHow8SknzoeibKWCItg+KiaGKPphC6tqjimK/lWKPiSNrZT8WfanmnX3ni8L6vkocxSLxfjUpz7Fu9/9biqVCiMjI/zcz/1cKC7V3t7OZz/7Wd7+9rdz+PBhenp6+E//6T+tW2IOLxKCahVCCCEolUoN5dpLX/rSO1K4rIag6i3Sr1+/zv79+5c1D7tToUWQoILt2Pfv378q/+7tWmashHoJpkqlgmVZ/It3IfT3nZkhTi01iWEk2c+VYpNsfO3zjYVLeNpHOLApMYTWMYZig4yXJ9FCYfhhUh1JDfFcrmkdbI4PMFqrTlFRLlPleUZLU3jaqxFgJxKTuIhTrnXZ3ZDq40IxGAPrCsXA2mSaKzXBxYw7z4w7T7fVSc6rugOThkXCkMw5zaaFw7FhrgXEEUmZYrQcdoeVVRlXu4zV3IIb9CC+8tmQ6EOi0LrCpNOMTwkEsy0lmdrMDrJekwgHY5tDMS0TE60deqx9aF0hW7lGzEqGvFYD9giTgaRhA5OcMRPSOphY1XJMNeO1V+9GYdBhZMj5o/g4y7oIt5sbKAXEMWmjt0FOABWdJ+fNM++N1v6+kR5rE45awPeu4VNEYrPQUoA3ZfRSVNOB7YFG6SYfh3n3MsocYcGbxRa9tJuDJEWSot/aNLLVwtoWUglKYuRqRFNSk5TUJJ3WARZ9TdrYTcLIIHSRcvJSyAlYypvIwPpv00u+pY2JIVLE5QDt1pHGZ89nDOpeE9ShQ4f46le/etvvHThwgC9/+cu3/d5q8W1PUK25TUKIhmXR29tLLpe74x/vdtZPsVjk+PHjKKU4evToise7W7X06u5D3/d57LHHVj23tR4/m81y7NgxOjs7OXToEH//1D9ypbDIztQWJirT5Lwik+WF0D5WS2+lzcl+Ti1dBarrZ8KI8c2F6sKTkEk2yU5yuSLtiTYW/CUMIbhRCgftjZYmhpsS/ZwtVMfMujnajBTniqMIBEPxITrMBCW/HErElQmTYEpOomKzZDUD/ZvtQUZrFte18jhJmcDVLjFZdQdaUqFaLJ+B2ACXAwnCA/YAk06TbCSSLPOUKXO5VD3fLfERknJjtVqGLhITJmMBF1q85u4LovWdYii+hWvli0zXTifmp1mU0Gvvw9WLLLg3UC2qu4HYCDcqzZeLuEixKMPE6CiHGW8SPBDaYoPYiWFpMkaGJXcMKQ3m3bD4I230kA/EnzrMwQY5AeT9WQxhs+iNA4JOcxudZj8lfwrPu4YWXlUB2FJBPWl0UfCb55c2BhrNHB2dZ8Y5T4c5woKXJyk3kTF7SQibnBeWgJdaWqe0ytqricOXAUXev0beh07rAHlVFVzYMob2F3GSYyHCKudTyHRz3ibt5L0zjKR+GhG4X+8kuX8teLEWioVvY4JaKbdJKdUQC+zfv5+uri4mJibu2NS+lfUzNTXFyZMnGRwcZNeuXTc9zp0oAYGGu/Lpp59e5j5c7f6rISitdaMxY7Bm3zcY53Sh+YZ6uGMXCo+0kWKsNEW3neF8oen+s4TB1UJ4gSir5iJfUg4l32FM5qACvXYv29P9LHk5yr5DRTv02p2heFW11l+YwGQt01+juV6eJp3awvnCFAmZZCjWS8awmQzkQtnCZjFWCFkTuUIOAmHJwVg/F0tXcX2Pi8UCG2J9TFSm6bOH6LIy+KrIrBN298VaBAjD8WGuBCTuKZlmtHwNhWLGnakdZ4hOcytJw6boL9BuZkICiw6zmwknTApL3kJoO+W3MeNPMlNLGeszR6j4Fn3WHgr+NHl/joIfVsf12BtDRW7TRheLNK+RFoolb5E81Tkaqo1etZFYCgw1TVHNYItEyHqqXoNwRZQuc3OAsDRZ7waedsn50xgiSZcxRJvRQd4bxa3XzyPJfEtVi3on4eb5NgmrqOYoOnN0WlvJ+j5t5g5Ssg1bSJbc4y09yMK/WYe5m6wX7AMlKXijKBwWayWbuqwDlLwF0sYeLKpdi1VqOvQK4OQ7kckSlan9LHYuNiqOByuv3Eu8WLvpwrcpQa2U25TP5zl+/DimaTbEAvW/3+mbzErkEqzdtxo3251YUFprJicnKRaLPPDAAwwNDa15jNXEoDzP49SpU2Sz2VDNvorv8nXCAoJ5J8+VYnWhjck4g/FBuuwu5pws05UsO9s2cjrg/hu0OrkWcP/FMJk28g2imHEWsYsmN8pzSCTDyU1siLVjaItJZwaEZntqY6PQLECP1cGVQLKvRDBeqS5CJVXhYvE625IbmagU6LZ66LM7SJsWF4rNBbDX7GImKLjQMFYYDwkuEjXymXbmmHbm2JbYwlRlnsHYVlKGhaeLjJbCDRnzfliKPRDrD5Vk6rcHQqIMgcBRFn32Lgw0i94k7WYnC16gj5a9KaQIlBjkzIXQceJmktFy0/U1HNuHFNBrtbPo3cDV5WVFbjvMXvKBpOFOc4AsTULwpcuCmqNcqaoO47qfLnMj2ihQUGO4ukBMpFsEFWDKcG5Mt7WFuVo8ytcOM+4VSqqXvD9HTPRgFFP0dWxg0buAX6sWUSWssCsvYYQJK2X0k62R5ZJ3gyVu0GltY1HFabd2kBBxTKFZdJ8NCUodHb52HeZuFrxw5YiiP4mr82RreV+d1n4qvkFK7kXi4vpjmOklEv7LKeR8ro8eR2tNZ2cn5XI5FBO/V3ixVjKHb0OCUkrhOE7o7WRsbIxz584ty/8J1tG7E7QSVPH/z96fBkmWp+Wd6O/sx/fdPfYtI/esLau7q7NaMCAhuq9aVyN96JmRTBiIRQZi7gygYSQbMcwgDMmQkDDuaGzQmBjgA0gX7CLuSOgKmkbcYanq7qrMyD0zMiIjY1993896P/h2zolcIpcuuhpes1rcw/348ePu/+f/vu/zPk+rxdLSEsAx7b6THuOkMegDtVotdF1/IXCCZ/egBgO+mqbx7rvv+gbvfnv/Oi0PRWw+nBuCE4AqSHxYfoTh9GjbeTUDjsZieIatzh4dx0APeECdjk1xq/5oeHshMj4kXDg4HHZrbLWPMF2bqBRjSksjoRGTYtT7CuAZNcGRWRke41R4mgetEYCllTgP+wPDRbNK0aySVuLUTIEpfQq70SGVSHJolnvIBCyEZ1n1EC50R2OttekDn7rdGA4LA5wJL+C4KcbUDLLgIAk2G11vD0hitxtUPvdnXDP6LOudR0Mmni6EEOgyrp7HoU3R2PaVjwCm9Dk2Ot4SYfiYy7CFxXb//QgInAq9gYuJJjaomJtIgsRBkMIuxShbHgCwsjTlUfbRoc5OdwPDboILcWGGmFLAlIvUzA1cwSIkJo4BVlDVIisvcNTvNXXdBmgN9kybpt0kJk0Tk9OEBJ2i4WXqHc+wwlKGpqecFxZzw8HhsrlGGcgoZ2i5GaKMYbbapGM6Veu2D7AsnzsvxOUzx+xFuk6FjnM0zMYS8jlMt85r6e8iWljAdV3q9frQhHBlZYX19fWhPUY6nX7lQ62NRuNEa9DHMT42ABW0Yh8oK9y6dYtKpTKU9PGGIAgvXVoDfw/qeZhzwWM8bwblpcfPz89z+/btZz/pBV5/d3eXW7duPVaP0HEdfm3zPd/jdckPNgvRAtero0UurcX4oPyo97oIzAg5uo5Lyo1QFpuIgsB2YFYq2GuajxS42e9fNewOhuvw1Upv0R/TCowrcbp2FxkZC6v/OL96eE5NUzJH8jqnwlOstgZzTfvoosJes44mRpnUsshCj5bujenohI9wkTTjHDA6dwWZzc4ObafDSqun0jCnTxESJtFNESSTZCjCmgdIYlJ8qMA+iE7A4n1Cn+Rhe4WDPvU8q+Rp2SKT6jnaTo2SuUMzYNURNGmMSykfwcLFpWZVOOhnULIQZjF0Bstt03FKVK09wmKEva6fxCC6fmAZ0zwkDAFqbpF2p4kptRHdEEkxT1RMIUm71K1e6S4ipo+pWgQV1ENGgabQA5q6fUjdPiQiZWg5kJQXiUhRdBQOjGvD50roxwArIudpGaMNVEjM9K1EXMruQ9BB4ywGU8SlPBImAh0adkDhPRBRaZ6G7b82DiaamCWq9IZZBUEgHo8Tj8fZ2tri/PnzCIJAqVQa6n6Gw+EhYCWTyRdy6fZGs9kknX51qulfT/GxAKjHlfQqlQrXr18fWrF7BQq98SoASpIkTNPkzp077Ozs8Nprrw01pk4az0Mz99qxD9x1q9Xqc7Pwgq8fBCgvG/D1119/7Hv646NVwmKUSdemLLaIKjr36qPSlIzIWtPfFzKd0ft0cHFslxW31weJiXFei0/Rsts4rkDVqlPQkjxo+I+53vIf0zuTtNctk1Hi3K7vIQsKs6EJMmqYQ+NwOIirCyqP2v6ypOH4iQ4pJ8quWKbldHjQ2mJaL7DZ2Sen5smqcRzHYL/rB9JENEalOwK9pBHjUB3NOaXkBOudbdxBW90Co6uQlhYISwotp0xKjrNqj44RJFgICBwa/vcflxM+UsaMdhoRgWhHxAm1aLt1jkx/zy+tZKl5FClyyvgQnKAnirtn7A3LiBEpR0adpevUqVu7dNwaUTFFXQ6K/Pq/xxPaAjv9bMkRbMrOPtV2EVsyUNw0KSlHTIljsUK3P9waZAACuIL/+51VTnE0yISsLcpWTwy3S5iUNIUmKmiCzH73w2EmJKENy32DiEpjtJ1RqVS0w5RYwcWmbZT61+YCNqeISClEmrhu/Vj2JAv+GcOQOEHdWuWtxI/zuHAcB0VRiMViw3K5aZpUKhXK5TKrq6u02+3h39Pp9Ikt3r3xZz2oP6F43GwTMFy8T2K8J0nSiTTsnha2bbO/v08kEjlxSe9x53GSDGqgeNFoNPjUpz5FIpEAXo1hoRfgOp0OS0tLz2QD/sr6e1yv9hZ6wYazsTFyWoam1WKjdcD55BQ3q6Nd+kwow6qHHKG6InvCqB9TtzpstspstnsLxmSowJSeISxF2GztY2FxJjbNnfooIxtTk6y2RgurhMBmp7dDtlyb1dYeAhOsteok5BSTWoqkorHSesSgZjah5djsjM5LRqIk+vtEitDbyR4aZQ6NMmcjsxx2DSb1aWKyhuN2We9s+Xb+dtgBz9dLaUu4yug6F4Rsr4c2+DsyTUWmoJxBFh3K5t4xgsWw3NcPTdCPZVwIAo866z1yhwWnQxdxsYlIWUrGNgIck1zSpZBvmDdIYW/ZDdY768PMLKNMk1IKWO1NDLWEI5gk5DwHAeKG4Qazv1ND1qApdDi0dzhq7uGIJmF3nKScIiaGaduN4QBsmAwt1Q/KQQ3ArLIwBLVBNhaVclhCjqQ8hoyLKkgcmiNvJhGFikcBHkCzcrQljy8UEUrmCjYG9b56RV65hCDECUlhHLeEY5epBqjlupTBoUtB+3M8Lh5HM1cUxafe0O12KZVKlMtlbt++PbR4H2RYsVjsmf2rP+tB/QlE0IpdEAS63S43b96k3W77Fu+nxctmULu7u2xsbKBpGu+8884Ls3JOUuKrVCosLS0Rj8ePKV68Kpo6jFx8s9ksFy9efOKO7W5th6uV0WIUEhSuVTaHbLyIFMJ1FC7EZtnvlCiadWJKCDyl/PlQjvseYDgVKfgArGa0+Uq3179SRZW58ASKECKvptnvlnoq5Wrc5zJ7OjLFveaILJBTEqy0ev2gqtWk1miSUmKUTJspfYK0GiYsiex1ijh96vlCeIrllqcsqSR8hAuAolHFxhnOYZ2NzCIQY1LNIosuMrDiYerpgkZFrftmkizT9P3KZsNTrLQecdQXzk3IcQ67FpPqOSy3TdHcoev47SQm9Ulf9pSQE8cAq27Xh1mYiMi5yFkst0vHrlE0d4hIUbY9oAfHKexBI8eqWaFh1+lKHURbpaDOkpCS4CpUrB0EwSUtT3Bk+q9bK1B67AFWLxtpCVXaZpM9E1xBJCHMEVMiKK5A0ykhiL2Tikl5jgLzUkGJIm8Pa8+oD5+HMENMTiG4XVRB4sj0lsZFDNkvzZRS5jkwb3keoVKyVrHcNuX+5iOvvIZEG1WQsNx9LLtC1VzmVORvIArHl9HB5vpZ2ZCmaYyPjzM+Pu6zeC+VSkP32kF2lUqlCIVCxwDrz2jmf0LhLekdHh4OfZTeeuutE0uIvChAefXtpqamaDabL0UZlSSJbrf72L95qd2Li4vMzc0d+xI+zpX3eWKQgT18+JDV1VXOnTvH1NTUU4/1K+v+wbw5Pc0dj+rDdDjNB+XRIn82OonjyEyKKfasKo7ocOj41bNl0f+D9faveiQLgfeLvUUno6aZ1lJYjkVI1Gj3F+6q5T9mTktwaI6o1GciU9xv9npNW50jGlaEmtVCEUPMhLKERBHTtXy6fDk1RclzjIXQJA89gBUSNdZaOxiuyXLfFXhWHycmFsioMUy3Q0RSWPb0q+JEKMp+ivd+89CXgRXUDMutNfb7tPVJbRLDFplSz9JyypTMw2MKFhklS9UaHTcn5XwlQgeHne4elb4wri7GyasLdN0WNeuAhl1+LIW96/hJAgMbkd4xbUpmkUNzH8s1CYkpckqeqBSh47Rp9Ut3OWWaQ9OvwNEMCN9OhBaGgFXhgGpX7l+SGGmpQERVCUkKNetg+Pn0SoIBwAp8db0swYEIblKeRBFPE5Yi2G4V0RCoSf4SoJcR2DvOIoeml80nUrU36Dqjaz6mvgGYTOv/Nx4Xg83g86wZQYt3x3GGhIv9/X2Wl5dRVdXXv9J1nWazeSLT049jfO1J+i8YA4IDwL1791haWuLs2bO8/vrrz6VvJcvycwNUo9Hg/fffp9Fo8O6775JMJl9ax+5JGZBpmiwtLbG2tsYnPvGJJyqsD77oL9qHGmgUbmxs8KlPfYrp6emngtNuu8LvHYysBERgy/Avtk7gXDRB5lpli1WjjuEqvBU/w7iWJU0E14VxLcH9uscQDpFHLf9u1htFo4ENXK/uUu665OVx3oieRUJBcHvnHhE1Vpp+BYGWHcxAsji4dB2TB81dmrbDzdo+ohFjSpljXps5JnBru/7Pai40geEZ1i2oGdY7u+wbJe401nnQ3Ge70ySvzDCvL5JTcsTw72qn1HHqwghcRVdgveXPPnRRY72zw93mOuvtGmPKOUJCgUl1kbAYQ0Vlu7MVeI6/NzKtzQzBCXq9t4ftRzxoPWLfaKEIY6SUGcbUBRShxyjLKWO+/hQcn7ka06aGZo7t/izYneY99ow2IhNklIuExCwyo5JlXpmhYvk/43rAnmRSX8ARLRzR4sjdZrO9yXLjIV0rR8g5T0o6T0zy90cjYvZYD0sM7LfT8gwVa5uStclW9x67xi51V8Q15kkobxAWJ0jJp2kF5qPaARHYjHLaB04AdXsXTcqhy4/3kRv81l9mvEUURRKJBHNzc1y+fJlv/uZv5vz58yiKwubmJn/7b/9tXn/9dVZXV7l9+zb1ev3ZBz1B/NRP/dSwlfEkUe2NjQ0+//nPEw6Hyefz/OiP/uixVsrv//7vc/nyZTRNY3FxkV/6pV967nP5ugUo6KWu77//PsVikStXrrwQxfp5M6idnR3ee+89stksn/rUp4Y+K6+SCTiIWq3Ge++9h23bfOYzn3mq4m/QNPB5ol6vc/16bz7j3XffPVFp9P+9cZ1zkRnORycJiQpzUpKax0F3OpRmuTHKpnRB5l59tMCZrs12p8qH5S12rC46UaZC45yNThOWeovi+fgUVXPEvJvUUyw3RseQEVlv960YgPV2kZLR5kGjjOBGmdNnOReZJyyNFuiZUH7Yn4KBOK1/hzy8LmKXe60dHFT2OiYZeZKF0ClOhWdZb/tJC7vdoGK3v+Z/KjzFoVHmUXuX2411Drpt9q0uOXeSWX2OsBg5tpue1afoeiQudEdjre3PatpOmwetDe41t9jvmoypZ8kq8xSUWWQUVFtjO6DDFyQxzOoztJzRdW7bbe43H7Da3qZqCcSlWWLyOFllCsHtneO4Ou2TXAIomf5rkFfHh69VsUocGkfcbt6jbAmExHlyykU0MQnu6H0XlDlqtv+4Nbvouz2uz+OIFl2hyZ6zznp7iwfNTWxzihgXSUiLvVKeJ8Ji2qcTCPSMFz2RlCeoCVs05F22uvfZt0p0CROVXyMhX0IVkiTlORoBFXUr0GNLyQs07QPOhD/Pk8Jb/XlVIUkS6XSaxcVFPvnJT/JP/+k/5Ud+5EewLItf+IVfIJ1O85nPfIZ/9a/+1Uu9jmEYfOELX+AHfuAHHvt327b5/Oc/j2EY/PEf/zG//Mu/zC/90i/x4z8+Iousra3x+c9/nm/91m9laWmJH/qhH+J7v/d7+e3f/u3nOpev6xLfvXv3SKVSz0XnDsZJwcW2be7cucPBwcExy4qXJSgMzmMALl479vn5eU6dOvXMst1gJ/a8ALW9vc2dO3eYmppifX39iWxHb9TNDv96/UOaVm/xFBHIqzKnlTE6sslGq0hSDbHpqQgVnBDrwmgHtxjJs+Jh91mOzZdLvV6TiMBseAxZ0HqA0jrEFVzSapTtzmj3ei4+ya3aqFw0piVYbvaAo2l3uV/fI66EqZhdxrU8eS1KWJbZFUqYfbr4YmSCO43Roh8kXADsdss4uKy3D6EN56PTOG6UaT2LKoAuCtxtjXbrUSnMw4D7b5AhOBsa517zETW7BQ3IKSkqhs2cvojptNkz9qgHyp/jWp41T3ks6cTY6vrBdc84pNif/ZIFjUInSTQZokONorlPVsmyHVBlb9j+1/H2tFxc6laDfeMABwdNiFJQC4TFCHGpRdXq6RGOy9PsWt4hYZFDw38ds0qeRl+1Yt/YpS2lqNsVFCFGXh1DFyVkwfWVVsfUOfaOeWH5M6xxbZ4dc4UGJRpWCcGQkFGISgvElDCOUCUiRmg5o+fpQoJDjycVgCbGgVG2HZVy7BsB4oOcJS4ngA5Na52QlKZq+efEBEEiJS+QVc/zpBjMaX4tB3QLhQLf+Z3fyY//+I/zm7/5m+RyOb70pS+9dD/qJ37iJwCemPH8zu/8Dnfu3OF3f/d3KRQKvPnmm/zkT/4kf+/v/T3+5//5f0ZVVX7+53+e+fl5/tk/+2cAnD9/nj/8wz/kZ3/2Z/nsZz974nP5ugaoy5cvvxS1Gk4GUI1Gg6WlJRRF4TOf+czQhfZ5jvGsGJT4HmfHftLnw8kBaiD7tLe3x5tvvkksFmN9ff1EPazf2Lw+BCeA07E89+v7Qz27uXAOy5I4H5lio7lPC5OG6rd7UAKljWk1yb1+FuLgoooy7xV7PYWoHOZMNI/jOqTkCOV+j+nIQ+cGyKox9jwq3ueiE9zp09N3uxVM16ZkNBAFhbnwOBFJxnT8vaaUGvMRLk7p46x2RgttTArxoLmN5Trc7x97Ws8SEfPk1RiW2yUqKdz19JrGtayPISgg+AwcoUf0uN9cZ6+v4r2gT+PiMK+nqdllKmaF/UBmEVOiVDyEgzzpoSsx9DY6h0qV7X6WGZUypORJdDFJ2dqn5dQZVyfYDVjWB3taBW1s6IPVdbvUrTobfRJGQs6jtmXkaBRNCNHtD7NOafNsdEcZi4TMnuEHxlSf5m64Xba66yT7TsMxqUBaziAJFkKA+PA4wGoESm4FdY49a5Wyu0fZAMEV0V2TmHyWkCLRdQ9IynmfErsqRDgKDA4HtQRDYpKd7h3cPntQQCSuTJMQ8jjUqJuP0KUkJXOFdxL/j6f+jj4qoVhg2IOanZ3lu7/7u7/mr/fee+8dG7X57Gc/yw/8wA9w+/Zt3nrrLd577z2+7du+zfe8z372s/zQD/3Qc73W1zVAvarM5Wk0862tLe7evftYF1rvMV5FD8owDN5//30URfHZsZ8kvK62z4p2u83S0tKwpBcKhYa2889iFpmOza8++sB/7sFmtBblw/JoN/1OegFbcIgrEdZbh+T1OHdrflr4tumv4ftkgawuLgJXy70FbjKUZVKOstc8QhJEbMFBdyXu1f0Lbc3yN/XH9SRHRh3HtVlp7nMmMs5yc5+kkmRKTyEJNrsd/+684xi+2zOhPLcbox3zjJ5jo18y3O9WkBBJKGHyyjQxWaVu14gESkmnwlOstEbXJyzqQ0WLQbiCy1p7dI0uRhexXIucYHNo7Pc8rgJut4Ig+lXLhSzb4ggYHdfhVmN1mD3m1UkiYpaColA0d7AwmdFnfSrsIhK7Xf919ToPV60qUaLc6z5EQCCvzhATe+6tXkHeSW3WB1gyCnsBo8aEnKFilajbVep2laScpmqVySiz6LaC5TRwFf+XraDMsR+w62jj37jk5Vn27TXaTq2nzu4KtLoNovIFFMWmYW2SVmZ81vYSGsUA6SIpT7Dr2bzI6Gx372D3d16yECctnSUim8yGvpmnxUdltWEYBqZpfqQ08729vWMzk4Pbe3t7T31MrVaj3W4/0bcuGF/XAPUqQpKk4eLsDW8m8yQXWu8xXhYoq9Uq9Xqd+fn5Y2oNJ42TUM0HFvNjY2OcP39++DqD3d6zMtLf2b3Hfme0a58KJblb8/o1Kdyt+stOB90ma81eZhCWQszqBbJKgr1umSOjzrySYsWz858KpbhfHx1DEURWm6Od7Ha7guMa7AodVEFhPpIhLWqstw8oOk0EAcaIsuUBm5Co8KDhPy/L7fdHzBYVs8Xr8Wn22gbToXFSaohmtcyOWxqCpYzIRkBNPRRQzTgdmeRec5OS2ZuhSsphyoLNjLaAJDgcmAd0AjTxmdDYUIEdeuW+oGnjoVHhwBi9nzdjpzFcA8Nts9fdI6Mk2Q9kPq2ANE+WFBvu6LiGY7JUX8bFRRY0JrRpVCKk5TxFs8eQm9FneOShyquobHX8wKK6GtDAxWXf2EdQx9jr7KEIYcbUMXRBwsafqXoZgAAKKruBuaxEP6MaDBhHnBhHnSPyas+sseuURgPP/cgrMxwEVNUNwa8gkhWnOXI3er0uG3AFsCziyiW6ZomuuE9OX/ABloBEyfK/76w658vCHNdi11jmXOTPH+tvBeOjVDIHnglQf//v/31++qd/+qmPuXv3LufOnXtl5/Yq4usaoF5F/fZx4FKv11laWkJV1RNlMoNM7kUo3rZtD0VlNU3j7Nmzz/0evOfxJIByXZfV1VXW1ta4cOHCMULJSUqEruvyf27c4Y3EDF3H4GHjkIwWYatdGT5mVo1zrzMqX52O5njQGIGLJAi8f7Qx1OWb0NPIjsqMlGLPqWO4Fmk1wlZ7VLa5EJ/genXU00mjs9tfdAzXZrVxxJ6iUTW7ZNUk41oMzXEpdToYQu91xonx0NODmNLTPPSoUUgIrLeKuMBGu8hGGybdGI4TZi6cQZNENEngZn20WKeVGA8CDMEgxX1Sz3G7sU65D1jTWpa66bKgL1Jtl6hQZTegRpFW4z39v37M6RM86oxeR0JktbVNvS/dpIkaaWWMqJSkapUpmiVmQuNsdvw9oCO75MtME8So9LMNy7XoOAbX+lloVMpQUNJIqITFKC2nd/5ToWnfzFVICFFR/CW2gY6g6ZpsdjaZUCfYMXaISTlyahrBtYcjAYOY0GceA1h+QAgTp+nW2enfn5BTWGaTrHoeWXBp2HvHZo5yyhSHAZKIK9t+d2FhgiLbFPv3CXaYUFsgqVzCokTd3qGgLR7rR9UCGWxOPcW+scyF6LN7KB+Vknmj0fvcntV3+rt/9+/yXd/1XU99zMLCwolec2xsjK985Su++/b394d/G/x3cJ/3MfF4/MTZE3ydA9SrCC9AeckJc3NznDp16kRfIi9B4Xl2RQNRWUEQuHTpEsvLy89+0lPiSQBlGAY3btyg1WrxzjvvEI/HH/tceDpAfbW4yR8dPhreLuhR2qbLm8kZtmqHHNltdrt+Kqsq+b9CZ+J5PiyNFp6EGuJ6PwNTRYkLiUkER2BcS7LTqSAIcNj1KzpMxjOUaqOS2Ln4OLf6t4+MBhIC+0YdEYG58BhRQcawOr3yV3+BVi3/RuJcbJLbdQ8IKlF2jDquA/f6mdeEliQuZilocWzXICxLlMzR+50PFVjzzIEpSKy3/T/CsKxzv7nFdh/EF+RxJEEiE8pTtcq0rBZrgXJfcNNzKjztGyKWkLhVfzgs3aXkNBExxYyust3cxpYsFkIzPPQwAGUkds0DH2CF3dFGrGE36TgxVuq9zyqvTpKWoziui4yCNVDg0CeH/SkY2Ib4MxhZ7A2U1+0a9XaNSW2K7c4BeWWahBLFsBo0LH9ZbkKfZd2jGyihUBb8gJCUs6x3HtDs9L4fMSmJ6fTNGulQNbdQAorpaXmcYmBwWFb9fmARO82e8Gh4n+pm+u7CF2g7O3TdCjnl1DFWYNdpMKO/RUJ+tkHoR9WDarVaRCLHGaLB8KpXvGxcuXKFn/qpn+Lg4IB8vsem/OIXv0g8HufChQvDx/yH//AffM/74he/yJUrV57rtf7UAJRlWdy+fZtischbb71FNvv4+YUnHQOeD6C8PlHnzp2jVqu9kj5WMBusVqtcu3aNeDzOlStXnig8eZIe1i+tftV3eyqS5MPiaFE/LSaJxmLY2Kw1DkmoIe5UPbRwQeRhw08O8BZoDMdGQuQrxd6imNUSnI8XKHWrqK6EIdgk5BD36v5SXdnwZy0FPcG+UcfB5WHriAuxce51K8TkCDOhFKJts2/6d/1HbX8PbCqUGpbpAE6FC6z27UD2uzU0QUaVZCbUKWKKQtWuIwWmMk5HJ30MwaQc4UEzoKrgGuy1KsPbb8bnMV0LAZO97j5ROXRMwaIeYN0FS4SCIHCtttIrf7kCE+o4ihBhXB1nr7uPKzjMh2d8Irc6as+U0QNYXhHYA6NISAxxr7WFLPSchSOSQsfu+Ep3Ba3gy7DijxG+FfvCvwfmAQfmAVPaFHtGiTH1FGFJoW4WqZj+70mGAgfC6LumoLIXyLAySo5HnQeU+vT3uJSiakJeuYjhVKlY24SkqE96KiHnjqm1a7KGd0ukumG2nJWhu3DEncQW4iSk0zTsTWw6pOQpytYWVxLfyUnioyrxDZTMXyVbcGNjg1KpxMbGBrZtD50bFhcXiUajfPu3fzsXLlzgO77jO/gn/+SfsLe3x4/92I/xgz/4g0Ol9u///u/nX/yLf8F//9//93z3d383v/d7v8ev/dqv8Vu/9VvPdS5f1wD1qkp8A76+rut85jOfeW65+8EXzbbtZyoPO47D8vIym5ubPuv3V8kEBH82eOrUqScO+HrjaQC1Wj/i/9ofUak1UWK55p97aUsOD0q9EpEsiLyZyPWICd0GG60Sl1LjLJVHi+10KMU9T/9KFSRfOfCo22SrVmKtW0FE5FQsz3Qkzma7yHrrCEGA05E8Dzx09Yikcj/Qa2rbvd1+3epyu77Hm4lpDloWU3qWtBJCsCweGPvDxVlBZDkAglLg2p2OjnOrvknd6s3A5NU4JafNQmgOUXDY6x76sivoDQRXPASLPDH27MrwtgCstw+H5UARgdnQOHE5Q8dpstPZZyZUGEor9Z4jsBcoEea9Ku1C77twrdbLcnQxxKSaQ0AjKSWp9F9/JjzFsocqH3Z1NrvbPsBy+j07y7VY7+z0s7J9NCfGVLiALLpUA+85q+aotUfZUUJOHuthCYhYrsVWtwdAU9o0FatMQT2LKDiUjV2aTs13LsGSYI8l6C/lpfuANXxtaZymJZFTztOyD2nYR8SkFFXPoLDqRCiJ/g1BIpSm4WFd2q7Fmtkr9wmuTEKYRxKzFJQ00/qbnCQ+KpLE10Lm6Md//Mf55V/+5eHtt956C4D/9J/+E9/yLd+CJEn8+3//7/mBH/iBoY7nd37nd/IP/+E/HD5nfn6e3/qt3+KHf/iH+bmf+zmmpqb4V//qXz0XxRy+zgHqZcN1XcrlMvV6ncXFxRPNGz0uBEE4EaPQK8AatH5/WS097zEGM1uHh4fPTVV/Eknil1f9zL2LibEhqw5gRo2xYYwWp5Ck8JXiFt1+rymlRJFdlUvxSdZbR9StLmktzKan13QxOc618miRKUhh1roVoEc9f9Qost+pUzM7JJQoc+EUMUkhLtWp2T1CwGI07+tXzYezrLVGC7gqSKz2AW2rU2GrU+FcdAzbVZkLZVBcF9m2uWvuD7OCjBgezlcN4qDrz7gKeoKbtU2q9V5faDFcoGOZnAkv0HXaHHSPeBQo92mC4kshvRJMAJqocKu+Qbc/QxUSI4TFFAuhEEWjSNWuHWMEaoLCowDBIiKFgd4C23EMbFyWar0sZ2DU6Lg9N2HD7dW1piITPsCKOWE2A55V3T7DsSuarHa2OBWe5VG7NnQWdpw2+11/WS6jZKh6FChScorNADkCeoaOjXYPqCfVKRpWnZSQRtGgaG4dU7GY1Od8RowiIgdGkH2Y8QFWRp6hbatklTNUrU1Mt03YTlIRRxmqLhy3F8mGJoaOw67g0HCqVLuHzFbf4W7xHul0mnQ6/dSZwo+yBxWJRF5pBvVLv/RLz1R9mJ2dPVbCC8a3fMu3cO3atZc6l29YgBp4RRWLxaHUxsvEswDq6OiI69evk8/nuXDhwrHd08tq6Q2O0W63ef/995Ek6bmp6k8CyaNOk2sH+7yVmKFut3nYOOJR1Z89aaL/q3I2nuOD0mixHQvHeP+otxAJwKXEBBIyC5EsDxtHIOBjBwJEBRnvkn4xOcFSH8CqZoejbovrlR5QzIZzZLUwpm0jIuL0Z1VCkj+jPRcb44anf1VQY8Me0/2+8kVeixGXkkRNAVkVUVyXIiMm2LyaYc0Y7ahDonqMISgIAlud0pBJ+FpsBsM1mdREimYF2zHZDmjQtQMSTAvhcR+lPSxpfFhdHWJaXs0hE2FGn2avu4/hGsyHJ33lPt1RjpUIvdYkRbNKSolzt76JiMikPkVc0nvn4gpDo8axaIG6V0fQjrIdGBJuWr1rNHAWXgzPcWS4TGo9K5GOXWO7E5yFGlHWoQdYW4HSnSiIVKlSdavQgSl1FnCZ0LK07Qolc4+m7e9hTWpzPmHb3nv1g2VUTrDWBywBgYJyiq5tE1Mmabh7uIJNVp0aghH06PFBtfbx0Cy7xhrfNP1/p1nusLm5yZ07d4hEIkOwSiaTvt/8R1XiG/SgvlHj6xqgXnQhr1arXL9+nVAoxOuvv86tW7ee/aRnxJNmoVzXZWVlhUePHnH+/Hmmpqae+Hx4udTfsiyWl5eZnp5+IXWNJwHUr64u8aA2WpAX5CiSJDMdz7HVqaCIIisehQdZEFkN9Jq84QKarPCVox7YRESd02ocUVVpml2qVoe4qLIesEU/6vhv57Qo2/3e0XqrTELRuVHdIyRpLEbSRBSZna5/runQ8B9j0K8axLno2BCwDoGIqeIILpP6OBFBomLUaBt+aZtZLc09j/TRmJbgQSDjOjRqviHitxNzhJtVRNnl0KmQ1xLDeSrogfhe4NzHtDRFTwlNExU+qPYWYVkQmdanwNUoqHn2uj2aeNKOsCdWhs/JKsljgDWgvTs4bHb2ORuZ5X5zj7AYZULLookiJc/8D0AumqHWHl3LhBVlD/+mpWbVh+VAgNPhOTqmwZg2gyw61M3iMd3AxwFWMMMSBNF337R2GkkQGVeT1Kw9mk6NTkDYdkqbY6v7yHdf1aP55+KiSjob8ipYoAgRCsoYtqsRkwrUrF5GXdDmh0K2gyhZ+1yIvMt4Zgr6xQrDMIaq4/fv36fb7Q5tMtLpNJZlfaQZ1DdqfF0D1POG67psbGywvLzMwsICCwsLNBqNl+79wON7SN1ulxs3btDpdPj0pz/9VEVhL4vueQHKcRxWVlZoNptMTU1x/vyTJVaeFo/rQbUtk19dve67z1FkHrZr0O8tfKYwQ8rVaVhdduwGryXHueYt/4WT3K2Odq/B/lXTMSlZXTaKfQ8oLcGZVJ7dTpW1xhE2DufjY9ytjRb9hKJzp+YHgarZA462bXK7ts9byUm2Gm3G9TTjoSi6JHLDw9R7XL/KdP2f4Zye5nZrbziHNa2nKDltToWmcG2LfaPEdtsPJCkpwh4jMDodGfMBlipI3Gvs0rS7YPV6TYvhNGfDMepWnZ3uIaejkyx7CBWaIPMwIMEUlkbZseU6SILEB9VelhOTEkxpGdrdKlEpMpQzyqhJjvpSSNDzwdrq+DOLch8EW06HldYW5yJzbHZq5NQcWTWB61rsBLKndDRF1bOBSJoxDvBvUipmjYbdHDoLnw7NYdp1JtUYltumbh0+E7DiUuKxGdZa+9Hw9rx+DkkQKKgaRWMHC+OYE/K4OnNMrb3lIZ+YroEriNxv9cAoKuVIS1lwVTQhRtet94+zwK7xkMtxvyqCqqoUCgUKhQKu69Jut4e+ThsbGziOg6ZpbG9vk06nn4ta/TzxjWxWCN9AAGWa5tD+/e233x5aIA+A5WVKa97jDKJUKnH9+nVSqdSJ7D+eh2jhjW63y/Xr1+l2u0MDsxeNx/WgfnP9DhVPxjAfTrLmYZ3FZJUPj3bo2L0FICQpiI7Mm4kpdjpVDrp1MlqYDc9zLibHuFoaLb4TapQNT2ZzZLapFbepm13CksrpWIa0qpPTokPK+WIs56OrL0ayrDRHvaaQKHO/3lt4dzs1djs1zkRzGKbEfCRHVFHQZZGvlh8Ne03Teso3ECwA2wGF9oQaZrNT5nafRHEhOkbd7jIu6zTNJhWrzoPmboBc4Af9M9FxbnmAMq6EuFp5hNMv3kWlOAoRTodmOTCOqNpNTgU0A5Ny+JhKu+NpaNXtNo4Lj8Q6dGBCGyOvxujYXSQk7L6Ia0TyL4yz+jjrgfmpwYDwoVHh0KhwLjJPxXCZ1KeJSirl2iHrrp8BmIgmqHhGDlJmnEP8QF62ahyZJQ765dLT4Xm6Tpdc31m4blXY7voBq0e6GH0mscewBF1gpd3LLCVk5kOnEXBIy+OUzD0QXMTAbz2njHMYUGt3PJuVhl0nIiVY75c5M8oMCTmGJEjMaBfIqzM8KQRBIBwOEw6HhzYZN2/eHBqdLi8vo2naMLtKpVIvbfM+iD8DqD/BOCmgVKtVlpaWiEQix+zfJUnCdd2XBijvsO7a2hqrq6tDO/aTHPd5pIoGUS6XWVpaIpVKcfnyZW7duvXKTAuhZ5fxi/f95Ii4ruNpx3A2meeDIw8pIZbmy4ej22cTBXAkzsUKrDaOMF2b3ba/16RZflD0AljLNqkZHW5VeoAwGU4xEYpj2w6qIGH0FxE14CN1Ll7gWmUEglOhBMt9huD9+iEiAkk1RFxIMBWO4woOiiSw6SlVThNjwxqda1IO+RTZAdqOxWa7zAAq30pM07YNFNfl0KgguA6rAXv6I8P//qdDGW56RWCVMB9UHg1vT2h5BFdjVh9nq3OAjT0cAB7EmJbiYcuf1dSs0Qe10y2RUmLcbuyhCBqzoSwxSaVqVnw0cUnwl51OhaZYbY8+TxGBne6hz6hxzEniAlNqFkl0MewWGwFB2mgkStkY9YnSVoKjIGCZ1aFRI8C5yCK2ayHJDoedLWzRZDdw3LyaY9XDEgyLYR9g2djYOKz1ASskJphSJ3GxiEhJmn0WY9BNOCVn2Q1IManCCDSK5gGO61C2jvgvCt/L84QoisiyTDKZZHZ2FsuyqFQqlEol1tbWuHXrFrFYbAhYiUTihcuBf9aD+joOr9Hfk6jWg8zFsqwTKXk/KQaGg1evXj1mx37SOKm2oLdU6bW1f5WuugD/9s5VrIbBhXCapuTQtS1ulry26AIP60/uNQHEFY2vHvYWFU2UuJKf7TnuurDTrhEXZNYdvxTNXgDAvBnYdqtGXotxrbyDKkosRnMkFJW9bnW40Aow7E0NoqdOMbrvYnyMm309wCOjSUoJ0bQNpkMFkppG1WzQ7rR8WcFcJMOShyE4F874GIIisN4qUTJHpaJPJGfI2SYds8OuWSLjhny9KBmRtaa/d5NQwj6Zpqgc4oNKD4xUQWMhksN1ZXJKigOjjCD0WJJ73RG4zobyrAdkmfb7fzddi5XWHhejszxs1UgpaSa0FKrosh1g6lmBkuep8BQPPKxBCZGy1KRrj4waz0XmiIiQUWPYbpeu02IroGweDoV8BpBZO3kMsIpGhUMPYC0Kp5Blcegs7OCwGzjfcW3CNzisCbqP1t522ti4PGw9AiAlj5FTMlhOBwUNsz/sFJdTPjuRiBhju+ufl4rLSUzX4EL0Ms8b3kFdWZbJZrPD2cuBzXupVBravKdSqaFz7vOw8hqNxp9lUH+SIQjCY6nRpmly8+ZNarUan/jEJ57opeQtrb1MOI7D6uoqqVTqmB37SeMkorMD9mG5XD72vl4WoAYZ3EAW6RfufMi23WW73vvRXilMM64nsHF42ChyOpHlWnFUZsrLOncq/l7TveroR951bA7aTe7370sKOueSGcpWm/VuBROHi4kxbnu0/FJqiJsVf2Zw1O0BgOHY3Ksd8lZygvVGg5wWZyocJ6IoXK94M5KQr38FvZkob8xF0lyrbLPaLEITTkWzFM0mC5ExNFXmoFvhYdM/bxSR/PNy52Pj3PZkWFFJ40ZtG8PpfbdkQSKbyBO3kpSNKgd2nTEnwhYjQE7IIe43gqW70WdquBayIPFh//1llDTToSS2Y/tchTXR//07HZ7gQcsvlzTwxSqbDcpmg4vRGQ67NlP6BCk1hIjNw9aGD6SDEkXz+iQrHgBQkNlo79FyOsPS4PnIPDklQkRSadhVLNdky/R/Hpqq4bWpyropHzgBlJ0axWalfy01LkROYbkddLtM0TpAFAQODD+V32sdAiAjs+PJwspWmbSSYbW9hYhI1MyRj6R7xBEPizGnjvOoMyJHqGjsdDf4c8lvR36Mpfuz4mm95qDNe7PZHPavHj58iCzLQ7BKp9NPndtsNptDNYdvxPi6B6jHRaVSYWlpiVgsxrvvvvvUzGjgzPuiADXIZqrV6tBu/mVo4k8DmIHtx0AjMPjFfBUZlGVZXL16lVvlA1Y9JaKorLB0tEu732sSATEq8onUFEWjxcNGiYSocMCoX3UpVeBDD4DNR1NDcAJo43CrUaJuGkiInEnmSckRpkIpNlu9zOBULMsHxdECeC6e515tBIJRSeVu//Zht8lht8liNEPLFDgVLRBTVEKSyHul9WEZ61Qk0wOifqiCyErDDz66KNPG5m7zCJrwenycitVhJpKn6XRo2C3uBsp9DcsvOrwYzbNUHZ17TovxQWVUfooSQtOizEth9owSbUwShkJVHDHQxrUkK03/olv2ZGhFs8FkKM2N6hYiAjOhCbJqiKrd8C2wQfLHQNR2+H4FhYetPVxgs3PEZgcuRGcwnTDToSy6JIJr8jAwZBtUtViITHK/Oco0VEHmUXvHB2wXIwtEpDSy4HJoHqAJMjuWP9tTJQUPLpOy4hTlyvC25VocGGX2jN7zYlKGeX0Kgya26w61A0sBkJsOzQzLfdCjl+/3Qc3BoabUSJPhUXsXTYwxphRQEWnaTV8pdFyfZrPzkE8mnq5a/qQ4qdSRIAhEo1Gi0SgzMzM4jkO1WqVUKrG9vc3du3eJRCJDwEomk75+d6vV+rMM6uslXNfl0aNHrKyssLi4yNzc3InA4kUBypvNDGrFr5Jo4Y29vT1u3rzJzMzME9XOXxagBmzARCLBh5r/PM6n8sNSHcC5VI4PDkfgMx1K4FoObyTHWW0UaVjGsV5TTPZvFC5lxvjwqHdMG5eOZfH7u48AyOox5mNJHBvCkkKrrwYRbG6fieW46uk1zUfSrPQp7sv1IxRBJCyrJKQoM5EkLg5y4CM6nxjjesWTCWrRYwzBktliq11lo9Urk72dmiIuJtBlkf1uhZiiBcp9PfFZb+TUKLudUVkrKerc9jjxzofHiEgqE4bIrlXFFVyUjuPLYBbCeZ/IrQBstnuv4+DyqH1ETJnmQb1MWIyQshQmM+ljKuwDodnhcSPjPhJGRNR40NzBdC2W+2SMc5EpQkKOghbHwUDAHlLIB1EJKEnMh4OApfCwve0DrDdiM8TlHKbTYc/YJS5H2A3YwEv4s40sqSE49d5Pk6JZHRo45tVJJrUMDbuKTGOoHVi3/Oc3o82wHijdVfv27V2ny3pngzl9nkedQ5JygYySAtegaTW5GL1MXE7yIvGi4ySiKA7LfdCrFA3o7MvLy0M6+4CdXK/XXylA/dRP/RS/9Vu/NdwoVyqVY4953Br4r//1v+a/+q/+q+Ht3//93+dHfuRHuH37NtPT0/zYj/3YM8VqHxdf9wA1KPEZhsHNmzep1+t88pOfJJlMnvgYLwJQ9Xqda9euEQqFePfdd1lZWXmlUkWDcByH+/fvs729zeuvv37MQyX4fNM0n/j3p8XOzg7VapVMJkP+zCJf/K0/HP5NQuBhrfyUZ0Na1blePYTDJqIg8G5hDsOx0ESFh/USGU3nVsWfCew0/cOVSXVEmz7qtJiNpvjwcBtJEFiMF8jpIXa7teFOtqdA7j+vmOIHwYuJAkuVXqZTMtoUtChHRovZSI6UqlMxGsfmqyZCCQ48ArVnYznu17028RL36we+jOmTqSwXI2EM12S9fciZaJ5bHn+qqKQN56sGEQTbqKxxrT9EHJZ0Tus5cG3ihkmtb51htP0zWOeiE9z1lAQ1QR4qZbQcg5ZokLRS7HW6jGs58loMVYL7DT/z7SjAVpwPj3HLQ8KISyFWWjtYrsNh/7HnIlOkxQmEtoEcE9FF6RgDsBwArIXwBPcCGdZyc3MIWIqgcjo0TVLuUrPLHBlFknKMouv/nJXA0pQWkj534Z52oM56Z3+oHZiSw5TtA18mZLj+30vcSFAO9MI6Tu+aV6wKFavCpDbJTrfMf57/Dl40XpVYrKIo5PP5YRlvQGf/0pe+xM/+7M/SarUol8tIksRf/It/8YXVcgYxsHu/cuUKv/ALv/DEx/3iL/4in/vc54a3vevxwO79+7//+/mVX/kVvvSlL/G93/u9jI+Pf2NKHZXLZa5fv048Huczn/nMc/d/nhegBiaGXjv2V2Va6D0PrzTSQNPqeZ5/kvACYCKRIJvN8q+Xb3IxXkCVJTaaFaaica4djRaemWiCO+XRgq2JEqv93gD02H9HnRb3K72MIiZrjJsqhVCELatB3ezyeqrAjfIIsOKCws2yH8D2Wr3FzXZd7lePiMoTrFaqpLUoc9EkMVXhuid7ymphblf9xzjq+jOFiXCc/W6Dh41+fySe56BV5UJ0ElGAw25tSE8fhBAQgT0fL3C9OgKFrBrhw/LWkOYtI0BY5VJ0hqJZZ6dTPlbuG9PibAQcgcvm6FxbtokoSSz1X2dMSzOlxaiZTWRDwhJ6n3O55QeAgUbgIHRXYrnR++x2u1V2u1XORSdoW31XYVlGFlxuNUZ0ewHYDjj+TgeMGlNylOXmdu89i0ATLkZnmNbmkUU4Mg7JKHGfTQhA0fS/5/nwFPc9yhe4cK+5QasPCgk5xaQ2idTZpa02absdolKYfdt/fpqt4P2YkmKM9b5qxWBYWArNsN6u9axE1AxhUWI/YMUh4l+8c0qevQDBQxJkxrVx5kKneNH4WmnxhUIhJicn+dEf/VF++Id/mE9+8pOcPXuWX//1X+eHfuiH+Et/6S/xb//tv33h4z/L7n0QyWRyaK0RjFdl9w4fA4B6+PAhDx488LHZnjdOClBejbug4vmAxfcy4QW5UqnE0tIS2WyWixcvnujL/Lwlvm63y9LSEqZp8u677/LgwQNqRpd/ff8mLWu0s5zUEnwiPUXT7vKgViSrR9hojHbcl9IFPjwaLUQL8dQQnAC6lsVDCVq1BgKwEM+SkMOcimZYrRdBgDFFZ9lDv76ULPgyroSiDwGs1G1T6raZ0qJUuzbjUoSUphNTVY48zLtzsRz3PJlPWFS4FxC4dV2XutXlRp+I8VZyAslocSYS5qBeAlngXt0PegcB+4/pcJIjj6L6bCTNhx5NwZyawLYkzkUm2egc0rINClqcPQ9AnYrkfDNYIrDRGu3k97o1Clqc5XYFRZCZC+dJiCq73ZIvI9ht+hfuvBthw/XQu5Uoy41dHFwe9HtbpyNjhIQUk3oSQbBRRbjTHGVYEsKQUDGICT1DuTG6Dhklxp3Ghk+dPqdEmddPYblddrt7TIXyx3QCywEn5fnIJMueDKtptbnb3KAptMGECW2cST1L2Sqx193DwSYk6hwJZZ+uoW5oII++T1EhzKM+XX4wLLwYnme/aw61A12ny57tzyyjUpRDj0TSQJ39C4X/8qUykY9C6kiSJERR5G/+zb/JX/pLf4lWq8Xu7u6zn/gK4gd/8Af53u/9XhYWFvj+7/9+/tbf+lvD6/Wq7N7hYwBQsiy/EKXbG8+yfYcRQeFJduyvwn5+QFJYW1tjZWWFc+fOMTU1deIfwtPEXoNRqVS4du0a6XSat99+G1mWEUWR39p95AOn86kcS0ej0sl4OIplurydmWSzWeGg02QnsIuPK37yxqVMgavF3jEGZ/d/7fQWobgaYi4co9vpkFR0Kn01CDs43JrI8NUjrzhthI0+UOzYHY5aBmIbFFdhUgujqjKSG/B8SuS4Wh4tkFOhhA/AevT0GgfdxpDW/oaWJ67G0SSR3U6FrBbhrgewNEFiue5fvIP6f2N6nA/6gCUicDY2ieNI5IUoB04DhF7Z0HeusQnueEqEIVFhuV+6M12bB81DLsYm2DbapJQ4U3oC1XFZ9ZS5BKAo+CV/JvW0z0bEK8s0IF8shPPk5J6rcNtuElVU7ja8TL3jPldBGaaMGuNm/dHw81YEBZU4C6EQdavCgVFkLnR8KLhq+sF/ITLJsgcs97pFGnabmtVEFTSm9BwZJcausUPRLCEIvT5XWa37SBYRI0RDGWWouqCx3gesgXbgKX2Wuq0xrY4RlhQMp85mgBSSU/MYXZPL8U/wMvFRisUOhvfD4TCnTr141nfS+If/8B/y5//8nyccDvM7v/M7/J2/83doNBr8N//NfwO8Ort3+BgA1Ozs7EsDw7MyqN3dXW7duvVUgsKrKPEJgsDm5iaWZX3N5qhc12Vzc5P79+8fyzot1+X/7JMURufkf/5ULM5X90cL5zuFGWwcoqLCar1MJhT2zUoJwE7Lv+h4+0Q1o4sQjnO/3wdaiGeYiETZ7zQQXAFXcJEF0acFCP0ymicupQtcLfUWu5Vug7ytc1jvkJfCZDSdjmCx1fLv1rNa2D8blShwy1MiDCFyt1kcDgMDTGhpXo9N03EM1lpHXEiM+QaCs2qEOzX/4u2ltDu46JLMB/1B5IgY4mKigOlaJOQw1T5zshUQjj0TLXC9NsrKkkpo2NMqmy3KZouz0QJVC2bDeeKSimCa3PfYiMiIrAY0ArNqzDeX5XUa3uhj22K4wKw2iy4JHBhFxvSkD7AkV2Ct7T/umJqm6MmI40qYa7WHQ8BKyinCYpI5XeXAOKDltJnVx1jvBMcBAmQOj3q74Zo8bO9QtuKUzTopOU1BSxGTNVY9TD0Rkabe8dHYY90Ih+ooQ5WQ2DH2cQRnSPw4E17AdLqMaRlk0aFmHrHb3eGdxKfRxCdTu58Vrut+ZIaFJ7HbeNV27//j//g/Dv//rbfeotls8k//6T8dAtSrjK97gHoV8SSAchxnaMf+xhtvPHWe4GX9nOr1OqVSCU3TnkmNf1I8q8TnLVF65Z4G8V71kKIxWhhnYnHulPy9pvtlP1CUu22WK737VEFkQYkRM1yqskPR7PB6ZozrxdGik9MjPgAD2G2PymMPa2WSqs6DcpmYorGQSJPSNG6UR8fIyjprAdHX7UAWNxlPcVDaZd/ust/qMi9HKFkGs2oCXZVpCAZ3av5e00CuaRBTcoQHHtbXVCjBhx6NQU2QsG2RN+JTHHRr7HRqx8p9C5EMDz1lNwHY9Mg+NR0T03W51i8xzoSzTIXjlM2GT5V9N2DvMRvKcr3m72kN1Ngf9UuDM3oK19E4Fc4hujaibbHsYcdpyMdU2INDwrOhLCst/+cVl0ROhxaw3C5bnX3G3CibHl8r9TG6gWNqygdYkiDygUeZfUofJyalmNQEdjs9oJjSCmx1/a/dCcxhLYQmedgXvy1bdcpWnbyaomw4TGgTJJUwuiRxr/HAx4a0wrbPuDBtxjhUKr5jHxpFn3bgqdAcDbvBu4lv4mVi8Bv9Wpf4XNel1Wo9U/7sVdq9Py7eeecdfvInf5Jut4umaa/M7h3+FAPUwI4d4N133yUcDj/3MU4aOzs73L59m0gkQjabfWFFi6cBVLvd5tq1awiC8NgSpeu6fGlvl3N6Ei2sszroNdVH/YtL2QIfHoyyp1Px9BCc+gdhqXxEt1+em4wkiEs65xM5HtSKWK7DXCzJYWe0gL+WLvgAK63p3OjfrpsG14/2mIkmKLW65CWdsViMVCTKHx486jnGApeSeW55BoQTisbtih98xJBGp95k1WiAAaekMBFXZU4PYUougiwM6enQ67vs237GXDDjWohlAiXDNLYtcj42xqPmEW3HIhyg1l+Ij3HbQ2HXkHykjI1WhYQS4m61hC6qnIpmyGo6qx6auIzIWstfVswHelpz4fQQqO4MLOv1JGk5Q1YJ0zZbKLbDQw87LiKo3G8EFB9kf6YwH85xz/MYCYkuMmejC1StKrvdIotRv25gD7ACGZaW8pUEm3aXr1RWcXDRxBCzoRwpOUTT7lIyKz0lcSVzTNjWO8QMMKOPs9EvG253D9nuwqSWx3JDTGs5VFFCERyWW2u+6oAYln1SR2kzQQn/pqDltMipWfLay1mjf1QA1e12sSzrmTTzV2n3/rgYyLEN5jZfld07fAwA6lW56nrB5eDggBs3bgzt2E+Sir8og+7u3bvs7e3x5ptvcnh4eOIe0pPO4bF+Tn0vqrGxMc6fP//Y9/P+zha3qpXejVqNbChEq23xyewkh50mjxoVdpoBv6YAkE7LOqvWaFEPKwp/sN1bqHRJ5vV0FsERyOsRDvogZQSu2al4xjdvdT6Z426ltxgf2AbtRp3lehVd0DiVSCGJx8VYF+MZ34DwQjTFat1bzhEoSg4Vw+Cw1aOKL4ghpuU4EVXl0G0xEY5z06NoEZf1YxlXsE+W0yNDwJIEkUvxSWRXZFpPsdHuDR53bD+teUFPcbczIpRk1PBwBqvjWNyp7XMmmmO70WZMTzEeihGVZa7XvDNLx1XZI5J/A+J1Ht7pz2JN6AlmpAk0QaDUrRJzZR5RGT4nIencr/tJDUGFikk1zbpRZL3aA8e4lMB1VBZDM+wZhzTsNosBoVtFkFgL9LAmtMzQSbjrmBx0K6w297BxyChZQh2XTChDxarT7Zsq5pQUj9p+QFUCvbwJLcd23zRxpdX7Xs2HJgiJGfJaElwT17XYDJgbhsN+KaaEHWO3e8C3h74Jy7KeKf78tBj8Rr/WJb5ms/cbe5VzUM+ye/93/+7fsb+/z6c//Wl0XeeLX/wi/+gf/SP+u//uvxse41XZvcPHAKBeRQxIEo7j8ODBAzY2Nnx27Cc9xvP0oNrtNktLS7iuy5UrVwiHwxSLxZcqEwYByitc+zQvKoBfuOl3tpxPpPjq3uhH+4mxSRwgp0VYqR0RVTRuFgOUbsdfIgvLo8WsY1uIgshX+seciiZZSCQ57DaRELFxeiXEil/Rod3y9yDOpXJDALtR3Gc+mmStUWEmkiIXDtOwOqzX/TMz0cBs1GupAkuekmFGC7FudLANF/rluXCnwZwQw1UFduwmi7GMz0F4OpRgue4/V+9gsu06SKI07DWl1Cjn41matkFUUmnYvUX2wPIrMcyEUxQro/fsFbnd69TZ69SZDiVpGSKnouOPVWX39qcGERSB9fpeQY+8IYcjnJamMe0uu0aJpKVSFUYbjrQcGVLWB6EEjpvX4lytjsBoSi8guhoz+hhbnQMcHE5HJn2AJSMeI114xXCLZg1NkNivt7BdgenQFElFIyxKHBqVoVpGSo4Ny32DiAbU2jNKkrU+k7DUp7yfCc+QkScJuTK1bgUlJB6TYkrqcTBB2nL5gwd/QDweH0oNxWKx5wKbQf/pVbrcPi4ajcZQSf1VxbPs3hVF4X/9X/9XfviHfxjXdVlcXOSf//N/zvd93/cNn/Oq7N7hTwlAybJMq9Xiq1/9KqZpcuXKlefedTxPiW+Q0RQKBc6fPz9M9U/CJnzWOQwAyrIsbt68SbVafSbh4kG5yB9sjRYMTZS4X/IvvrWuwXK//yQJAp/M5ChJDfZaNQ5tg9cyOW56+lWFcJSbxYDigYeavtWokdXD3D0qoksSU5LOQr7AncoBNbPXZ8hKKo88/RwJgbUA+MTVXtlgo1llo1nlzcwYzU6Di4kxVEmgZna4VfZnPiXDz2ybi6Z8GdepWHqUcVmgIVAsNzirZii7HfaNZt+ufvR+zsfzQ8ml4TX0sPvKRpuGZXKjso8AzEdzxC0oC11w230m33HJpUxA5PZ0JMuDvibg/fohApDVIkSFODPhBK7gEJYlH0gU1NixDMsKZH/nY2M+HUFNkCAS4wxxamadPatKxBApiaMMP6PEeNj1lxrFAGDpospX+0K3uhhiNpRGQiOjJDkyeqW709FJP+niMbT2rBNlW+ybU7YP2O8ouALIQoxpLYMqgi6JlD09w4gYOgZYOTVJ0eOHFZVCrLa3sT1EmIvSPJqQRBUFymYR0zXZtvb4a2Of493sFTqdzlDMdXOzd95ebbxn9VE+KoLEQMn8o7R7/9znPucb0H1SvAq7d/gYANSruPidToeDgwMmJiYea8d+kjgJQA1EWNfW1h6b0bwqNfJGo8G1a9fQdf1EhItfvLnku30pl+fD/dFidSqZGoITgCZJfHl7m05fBDWjR4gKGjOizqFg0bYtpqNx9j3svdezBa4fjXbJOT08zMA6ts26bWOWSuw324yHYoRth3Q4QqVxNFxMX8uMsVQcnVdWCx8Dn3K3Tcs2uVXq3f92ZpwJ1SUfjtC0DSRR4M4x80Q/KIQDNPGzyRw3KgfQF44YF8M0ax1OaWm2jCpd18YJlGYvxAtc88gnpdQQt/uv6wIPGyWm5SibVpOYHGY+miKlar7+VEzWfJR2ACXw3fT2tEpGCxmRqKIxqRaISRJHrQoFLe5zDZ7Uk6w0/detFSg9no6Ncas2WtzTShw9lOSUHWHfKNNwu4S7UPSsszk11vPC8oQXsDqOieW6fKW83n98hoIWQ0ZCE9Rh6a6nEzhiLApARfRvKgbSTF1M7jW3kRHRJZWInCffV1GPSDJ3+6rl0OuFrQdKgtN6gbueQWHJFXnY8msHvhZdBMHh3cQnAdB1nYmJCSYmJnpzdH2C08DbSdd1n7dTsBz4tRrSDcbATfdrnan9ScbXPUC9TAwAY3t7m0gkwmuvvfbCx3pWD8owDG7cuEGr1eKdd94hHo8fe8zLMgEHc1Tvv/8+09PTnDlz5plfzsNWk6WdPT6Zm6DUarDWrLHTCPSaAiWyaVXnvgd8MqEQ7+32FmNZEHk9O4bkikxHEr2sSYBmQIJpNp7k8GBUyppRdDb6Pa7ddpO4orJZKSMLMueSaVRJPLbrn4snOTocHeNcIsO96ghI9b6aetMy2ezLKr2RLnAhWkCTJbbbVSYjca6VRotWXoscI1jUTL8IbD6W4Hr1ADq93f5pJQFdhzElyq7RQBB65ThvzEfSx0qEgwxsMCg8FUpw1OkyE86Q08OEZZkvl0ZDqzk1yt0Ahb0bKKteSIxxo7pDxewt6CoCRqPJmdAUstjzhUqrEbY7ldFnEUr7dAQBqqa/tDoZSnHTA1hzoQIRWWO8I7FvV3FEl1BXwDt6ln0MYMke365Do05U0rlV30FEYDY8SULREHF8w8enwhOstPw9osOANNMgC2vYHfa7lV5mqSbIKzPEZIW6VSWpRFhuja6ngMBO1/++x0iz7fjv2+zs82b8LDHlOF1bEATi8TjxeJy5uTmft9Pq6irtdttXDozH419XFPOPe3zDAtTAjr3dbnPq1CmOjo6e/aSnxKC89jjjw2q1yrVr14jH41y5cuWJUkwvk0EN5pssy+LNN998osxIMH7l1k3WKhXW+qKPi5EoYS3KRDjGWr2CIorcPPKX6vYDC7bu2SFaroMqyXx5u7eg5MNRzmYyVIwOuiTRsW1Ckszdkr+EYwcykLOpLF/tMwZvFQ84k8ywXCkyFU0yFonSsg1Wq37NtGCf5UIqz1VPxjUeinI9QHHPKVEuJydp2QYrjSLT0QQH3VFZcT4UZ80j4yQLAhsegzwbF0nTuN1nAMYFjYVQlK7bc/VtO9bjS3eBEqFX72+jVWG7VSWhhpBclTPRHkBrksihh14/HUoeO+4AmAYxJUZ52K0PnYhjssYRBhcjM3ScLo/ah0RlP6FiIZzlYQCwSoa/VxZXQiz157JkFM5E8qgupLs2RaeJIEDUkPAeJaNEj9Ha9X626uCy1jpkJpRho10kJseZ1nuK527Arv1UeJzVAI29FpiXWuzbi3iBbCEcZkZbQBIdDowDxrXMcKZqEE3Bz9w8FZ5itbXFt2c/zUki6O3UbreHYq6DcmAkEsFxnOceSn3e+LMM6usgXuTie51o33rrLYrF4jFe/vPG45x5Xddla2uLe/fuPdEw0RsvqkZhGAbXr1+n1WohCMKJwallmvyb27d893Vsh5WD0bX4c1PTzEYTHDbrPGrUOZdIcrdWGf59PBLl5uEIwCQEHlVHfz9otRiLxLh5eIgsipxP5RmPRVmuHvWyKgFmIrFh9gS9xvuDAPjoUu+ruNWosdWo8XZ+nHbH4WKigCqLtC2D2xU/6AUVLsbDMXbbowX+QjLHLY+mYErV6XYdLicn2G7X2O82jjn1Xkr6CRYJReOBZ66p5lrUHIeHrRoiMCFHGQ9HOHDaVN0ugtBjBAY1A6XA9+JisjCUX7pV3UcXZSRBJK+mGAtF6ToGuiix2R699mI0ewywyq5/bmgxmuVaZZtHfZHdgp6gYwpcjExzaFTZN2pD0Bg+J5JjJWCqeOgpGVo4yILMUt/GPqsmmdLjmJaB2pUxhB7AJGyVIqPrn1Iix2jt0T77sG51uFPfYUJPsdMpk3bjTCeydN32Mb28GT3HRqBnFcy250OFY1T3nKKxEDqF4bTZ6e5TEJPsOv45P8u1OROZZS48wYtEKBQiFAr5yoEbGxs0Gg3ef/99QqHQMLsKWmW8bHyju+nCxwCgnie8dhxnzpxhZmZmKPT6MuQE8BsfDoBmMBR7+fJlMpnMiY7xvBnUIDtLJBJcvnyZP/qjPzqxff1v3r9H1aMfOBuNse4p70UUhat7e0Ppo6iskArHuKzprFUrlI0Ok7EYu83RonMpl+f64WjxHYtEudm/bTkO94pHlNpt9ltNCuEYhVAIq9NCdgWsPhvrtWyBq4ejhWssHD3GGNxtNujYFrf7mdjl7BiTaoKxSJSm3UWVRG54+lNRWeVOAMCCfaP5WMqXcc0qERRX5nwsx2qjiOE6lAMEiyClfSoc52Grl2E5wJbVxmzDvtkmKqhMaGHSWoi7nSJmn8k3pkePUdjrgSz1fCLPtfIOzbbBTrtGQtGxXIfT4THCssxht44WANPToQwP2qMFt6fvV/E9ZkKP+5QwTkfGwFE4Ex5no31Ip2+Q6Duuh7I+CC9gHRkNJvQkt1tHiAjMhceICTItq9VrwPW/mhk3RJlRZhaXQywHSoJpJcJOp0xJ6FCqbZFX49SsNjOhacKyTMksEwoYRxbU1DFlC0X0L2XjWopbdS8xSEcRYow5CqbW5cgok1dTrLd3+a9n/0teRQzKgZlMBtM0ee2114bZ1YMHD+h0OiQSCR878GWyn0EG9Y0c3zAA5XXYDdpxvGzvB0YzDbZtY5om165dQ5Kkxw7FPu0YzwNQ29vb3LlzZ5idGUZvUTsJQNmOwy/fuO67LxwoPZ5NZ7i6P/qhT8YTvL81al5fyuaQXZHFRJrVSglXgGrXXyKZisXZ8wDY67nCEMD2W01anQ4t1wFX4EImR0iVMW3Ht5BNRePseXper2XyPoZgVFG5XT6ka9ts9zOxC6ksF2MFNFlkq11jOhrnQ48i+3Qk7nP7heMZlyZK3Oz3tDRR4tPZSQzXxtQdttt1ZEHgYd2f6eX0CFutUQnwXDw3FKhtuDarnTq7RoeGYzMmhkmoKkklzF67MXy/C5E0D5v+4+4FvLVORXu097v9Y2fVCF2rw2uxKSwsHjWPhoPMg7gQH+dWzTtkK/hULnrXUudaXzdQFkQuxWeQgAktxXanN8sVLKVOizE2O/6e0FG/FOng8rB1xGvxSR40a8TkKDOhJK5lUbH9aiBjYpRla7QBiIgaywFppoKe4KBWY7kvdJuUQ7StNouheVwsdrr7ZNQY+8aI7ZmSo6w0/T2slBJjtzt6TEhUuWf0RHRpQVrJUFDGSCtZPpW4yKuMwSZWlmXfkOzAKmMwZyQIgo8deNJ1ZBDNZvMb2qwQPgYAdZIdRrVaZWlpiWg0+lhWmyzLrwSgBEHg8PCQ+/fvMzk5ydmzZ5+rGXrSEt9Agml3d9enqj54rZMIUf6ntTUiyHwyP8Feu0HHsrhfHi2KIrAS6MupAeZRRFH5Sr/XlNR0xgURRdaIqyo1wyCqKNw+CrDFLD9ZYjGd4Vr/MXeKR1zMZLldPGIsEmcqFsPE5kHFv4gaARA/m0jzoUfQdi6W5E55dO4SAikpzNupCVq2wYN6iaweHhInAC6l8j5GYFiSWTdGfY2uY1M3zeFjxkJxziYzHHWbtCyTrmMTf5yCReDreSk1xvV+iXDX6VLumDidJqqgMqGGUFWZUGC3fz6eGwLR4P08CgDYTCTJ1fI2+/1e00w4gWEJzJPA0kU22mXatj8ru5gY40Z1BFi9XtnodSzXQRAEPuzPcqXVOIvRNIZrEpE0mn29wCC1fDGSP8YSHPSw6laH2/U9LsUm2Gp3mArlyMg6daPBnuG34phSk9zveIV5ZVYD7sIzoSw36pvDDC4qaVS6DmfDCzTsBtudg2PK62FRPQZYk6EslfqIQNGyOizV1/nPxz6NLL7aZfBJLL6BVcbk5CSO4wzZgbu7u9y/f99XDkylUs9kAn6ju+nCxwCgnhZeYdSn9YBeRQY1UIC4d+/ecw/5es/jWRnUwCPKcZzhgO8gvAD1rPilq9e5fzRa+K9MT9HQwlTbTXaMLpOqyponG5qIRrnl6TXJgsBqZbQDrXa7xFWNzYPebM6ZVIbpZJy1aoWH1TIIcDqV4oEHBDVR4oGnXwXg9tOIvWaDvWaDT45N0G45XEwXCCkyXdfkZsnf81qr+3fvSdVf8rmYyXPDUyLMh8KYhsvl1Hiv19RpHlO0OJ/M8aGn3DcWinLbA2B77Qa6JPOo0SOSnIvnGQtHWG4csd2qIwgwEYpyp+ovK1ZNf4a5GE1xq1HEcHsitwlToVE3yQ1EbiUHx/FnQhcTBW54VC6CM1cAGS3CtYEMU6M356SJEhdjE6y3izSs7rFzOR8f8/lcBZXaS0YLw0mxNJjliuSJuwJlqzUU9gVQApujoJUIQK2vOLLVLrMFPWX2Zpv58CQKLoftMjvtsk8/b17Pcq/tHy5eb/s3L/PhPDc9flgJOUHXEjkdnuOge0TVbjAfHvd5W0kIxxyHFyLj3Gts8tnc27zqOAmLTxRFEokEiUSC+fl5LMt6Yjkwk8kQjUaPrW1/VuL7OomBq643vHbsjxNG9caA4PCiEvgDRiDAxYsXXwic4NklvoFHVC6Xe+y8lrfM+LS4vrvHNY8vTFRRWNrdo93vw0lAOhkjk0ix3ayz22wwFo2x49mFvpYvcM1T/puIRtns/90F1iplKp02R+02WT3EbDKJLglsCBW6/c/qtXyeD/ZG5zEVi3On6PdEWqtWMByb20e9+9/KjzGuxpmMxWjZBpokcs0DPmlNH85ADaJu+IkC09EEH3p6XG9kxnoEjniWB/UStuv4siuAyXCsV4brx5l4huW+wrrpOCxXihy0mxS7bfJ6jKlojJiiUOy26fbnxU7HMjyo+xfU3a6fHbeYzPFhaYc9u8teq0tWVNl2mj2RW01mz2r61NHh+MxVVFJ9s14AqiSzVO69ZwF4Oz2Di4sYEllr9Ty5ikZAtSM+xvWqXxz3QR+wXOBhs8R5PcO60SYqh5gPpwnJIhttf3anBjKQ+XCm95qeaNkGXcfiXl/w9lx0jKLR4IxWoG202DVL7LcqPsA6HR7jfoDNtx8Q1Z0MpblZH72HcS0PrsqcPsF25wAT69jcFfTUKz6dOk9WfXEbnyfFi8xBBcuBA6fcUqnE+vo6oij6sitd12k2my9lQ/RxiK89Wf9rEPV6nffeew/DMHj33XefCk7gJzg8b5TLZf74j/8YRVHQdX0oiPgi8aRMbkDu+PDDD1lcXOTSpUuP/YILgoAgCM/MoH7p2pLv9tl8dghOAAvpFNf2D7m6tct+ucHZWBrZETifziL3d2mljp8sMB71Kya/ls9z1G73H9ths1zm/e1dbEvgXDzLp3ITmJbjM5nLhfySLG/kCxy1R4tmWte5eXjAbqPBB7u73DkoUm9bXIjluZwep6BHmI+nsDybldOJNGv1yvC2LAisVv1qFAICHx7ucbdYQrIlPpOdZSoUJyX2SsERSTlGsNAC1/9iOk+x23u/B50my5UiXz7YxTIEzoRzXE5OkFJDePdRC2qUoieLUQXxmHzSdDJDB4dVo8HtegWlI1Ctdjgjp5nTUogIw7LeIM7Es775qKTiZw26QNe2+bC0w4N6hZAQ5p3kPCk5QlIefQaHgeOeT4zR9JQJNUHiUR8QGpbBzeoepi2w1+qQl7JcjMxwITLBasN/7cIBUsN0KHVsDst2HQ6NBjfquzzoVok7ccJ6irOhKXJiHNeFYqPie85iuMBBoExYt/xZYlTW+aCyzt36EW1LYUqdRhPCFNT08LOZD42x363w+fwn+VrEq5iDCofDTE5O8tprr/FN3/RNvP7664RCIba3t/m5n/s5Xn/9dX7v936P3d1dWgG5sBeJR48e8T3f8z3Mz88TCoU4deoU/9P/9D8N+96DuHHjBt/0Td+ErutMT0/zT/7JPzl2rF//9V/n3Llz6LrOa6+9dkw49nniY5FBeWNgxz43N8fi4uKJelRegDqpXbzrumxsbLC8vDz0VfqjP/qjl1aCCAKUbdvcunWLUqnEJz7xCVKp1DOP8bRz2KxW+d3VkVeOJAisFf0LthqguiY0nQ+2ejv0kCxzZXKclm3R0A2KnTYxVfWV/wAfOxAgIYgc0btuy6Uir+Xy3Dw8IB+OMB2PUyqXWK2UAsfwf/lPJdM+fcDFRIoVT5lRFUWiQpe30xM0bYOVWmlITx/EpXSeJU/GlQpkXF3bZr/VHNLcC3qEc+kcB90GD+olLNehoEePKVg0Aqy7s8nskJRxv1okp4cpdtpk9SjT0TiWa9MI+GRdTBV8Q8OPYx7mEiluVvY56Ivczohh5DacVbMcuU1KZpvNgO/VQjTtU13vCdKOrkHd6lI1u0MvrJlwhtlIgkOj7rP8OAgMH59PjLHkYQCqgsSDPhhttitstiu8lZzEMGUWonlCskzTbnK3HtC5U8Jstkef47iWOMYSlAXRVyY8E5lAFSXitsmeUaKFQaPR8G2pZ/TeTJU3vKuB6dp0bIv3y48AiAkxxtQYSSnK2YjCpdgcX4uwbfulNrLB8JYDFxYWmJ+fZ2Jign/0j/4R//E//kdSqRTf9E3fxF/5K3/lhT2Z7t27h+M4/Mt/+S9ZXFzk1q1bfN/3fR/NZpOf+ZmfAaBWq/Ht3/7tfNu3fRs///M/z82bN/nu7/5ukskkf/tv/20A/viP/5i//tf/Ov/4H/9j/vJf/sv86q/+Kn/1r/5Vrl69yqVLl577vD4WACUIApZlcefOHQ4ODnjzzTefSz5eEIShCsNJwrIsbt++fQw0XraXFZylarVaXLt2DVmWeffdd0/0pX4WQP2/rt3i9UwBQYSVSonpaIQ7pdHikFYUbh+MFgJZEFgtjYCjbVmUWx3uHPYeM5dMsJBJsVWv86BcxBV67L/7JY80kiCwEyBHdPvX6ajV4qjV4pSm0+kYXEjliGgKDm5Pbqm/ojxOH9Bo+3eGU7LKarXCwCVhKhrDMeFyepzNZpXDbotSgGW4EE/5yn3zsaRvBuug08Yt98p3miRxNpEjFw4BLvt9RfbFeJqV2ug5ArDR8IPETCTBYafFUf+fuWiSzXaH+XCSVCTCQbvGYdtf7jubyPoo7BktdKx0F45EuFcvDkVuz8gJJEsipqmsd6u4OKw1/BuQ2UiSYnl07XJqxHfcjVaFqKxxr1YiJKmcjqZJqdqxPtJBxw+wF44BVm9AuetYQ53Cy8lJ4oLNRDiO5ZqUzBr3AoCV02I+/6uUFGLT9oOjKik+KaZL0WkkASRTY8cs4wouTtvwIVJOjR1jBcaVEPS/EnW3i2gKrJaL/NcLn/2aDbh+rd10M5kM3/Ed38Fv/MZv8Ff/6l/lc5/7HL/927/N4eHhs5/8hAhq7C0sLHD//n3+t//tfxsC1K/8yq9gGAb/x//xf6CqKhcvXmRpaYl//s//+RCgfu7nfo7Pfe5z/OiP/igAP/mTP8kXv/hF/sW/+Bf8/M///HOf18cCoAbac5Ik8ZnPfOa56ZhwcnAZWL+rqnoMNF6FVBH0vsClUmlo+fE8bMCnAVS10+HXrt+mbY6A2HA7vJnJUbVM1ioVErJEySNL9NpYgWu7ox/1VDw+BCeAnWqNeqdLudMhLIosZFKkwxH26g2qfdHXS4UxPvT0mhaSSZY9AKaIInumMZyTAng9X2BcjzIVj9N2LEKyxFc9+oApSWYz0FvqKPJQLw9AMyxue+a6PpGfwBUhHFd4UC/1mIqBgeB4gGBxJpbkfr9E2LVt1qpl1mplWpbFRCTBeCRCSJFZr1cwB5qB6Tw3PFmZLkrcr/p38klV5xGV3sxUq8a5RJbDTpM34xPYgsNao8h6oIQ1F0nxYXcEWBOhaA+cPGFrMst95QsFkdNyDEFQUBSRfaOJKorH+mDTkSSHHqWIMW0kqdS2TW5X97kQz7PbajMR6g0Ka6LI9aq/bxMsCZ6L92SXBtGjtZeomO1hWfKt5CQR0SCmKJTNOiWjznLDz9QbV+OU26OSckzSuR8ANUmUho7DIVHnbDiH69okDZuK0wPjiCHhXaIjkn5MnX1MSWBaFb4t9/y7+ZOGbdsfiRZfs9kkFouxuLjI4uLiKz9+tVr1tU/ee+89vvmbv9nHkv7sZz/LT//0T1Mul0mlUrz33nv8yI/8iO84n/3sZ/nN3/zNFzqHjwVA3b17l0wmw5kzZ154Z3IScNnb2+PmzZtPtH5/VQC1srLCxsYGFy9eZGLi+SbYn8YE/PXrd3zgNBXWedjsQLO3hZxNxBEsg9dzBR6Ui7Qti8OmP0vJRSJs1UZ1fi+AtR2Ho1aH24e9BXAmGqGQjGNYtm+uKR7IBF/L57m6N1pwxqJRbh7s4wL7fU+buUSCS8kctmGw32kxk0pR9lDYL6Sz3PFkWGFZZicggHpYrbLe7xOFZJlPjY1TMw02hQpH3TYZXed2gGDRDbL70rlhxrXTrGPaNsVuG0WUuJjIocnSMX+qoORSUtWPlQglQaDYbQ/7WK+n8nQcm5lkiqLRZLddOwYsY6EYOx7ixkwkwapHlsnEpeSa7PXJKylRZ0GN0RBturaF4dqPZQBOhOPsecCmB1h9L6l2jZ12jQvxPJYtMaPE0UWRUFhnqbLtMwGsBPT8LiTGuOmhtQ/chb0OxJ9ITWG6NggOW50jurbJetefAS5Esz5w1ATZR2tvOyaCIHG972VV0NKMqREsy0AxJEyh95kW3DAPXf9oxbZZ4bOF1wlJL2YaepL4qMRiv5Y085WVFf6X/+V/GWZP0Fsf5+fnfY8rFArDv6VSKfb29ob3eR+zt+ffcJw0PhYA9fbbL08FfRq4OI7D8vIyW1tbvP7668cu8CBeVKrI+zoAu7u7fPrTn36mVfOTzuFxAGXaNr969Ybvvlg0Cq1RySsbCXNtpw7NA2RR5M/NTNOxbVzHZbteJxnSuRWQhDpq+ckSSVli8IitRpNMNMbNvQPSus5cOokgCsd6TYeBJu5kLDZcVAEu5nLc9mRtEVmh2jb4ZG6ChmnwoFo8pgpxLp3l6sHoSz8eibDeHC2Ebcvi7sEBB/0sbDqW5FQiyW67zkqtjI3DhKrzKDC8u9XwN+FnYr3SXde2uV06ZD6WZK1eGWZXTbPLUcf//k7FU76h4fFQ9JhMU8u2fGXDT/WHhN2ww8NmCdd1uRugsKe1EBvNUWlsVo+x7ukblR2THbPDrtFCQmBSiTGmRth1GjRcA0EAXZS5H1B3nwgnHgtYLvCw7+J7US2QluNMhRNYmLiOw71AH6lxjH3odxcG2G7X2O30jikA72TmaXaaVJ0GB24TBJctj7wTwNlYgRuecp8IPibhfrdGXotxu11EFiTmw3nCgkTHauPaI1HaSTfGplPn87k3+VrGRyEW67ruiQZ1//7f//v89E//9FMfc/fuXc6dOze8vb29zec+9zm+8IUv+Hye/iTiYwFQr2KO6UnH6HQ6XL9+HcuyuHLlylPnCl5EqmgQ9Xp96I/y1ltvvRA4wZMB6j/cfeDLhqbice4ejBYiRRR5WKoMb1uOQ6nV4V7/MROxGOcKGfYaTZZLR1iuy/lslrueYd6QKPCw5l/Q632yRKXTYWlnj09MTtBsGJxLZ4iFNAQRvrK7M8yuooriKyECGKa/N3g+l+OD3R3Wq73FeD6eQHZF3s6OsdmscdhuHQOS8UiMXQ9AnU2kuO9h8+3Wa5RaLZq2RUiWWUymkEyDluxS6S+sr6X9nle6KHE/MESc6JcId5p1dpp1LqZy7NdrXEz0FNR3WzUe1vwZQVAjcD6a9IET9OauBuAjIvBuYYqOY1EyWjxslkmqx4eEvYaR4KfG27hsmC06rsOB1SEhaIxpYVIhndtt73uUuReQYQpmWGlJ4061l/Ee9mnzryfGWAgViCsqRaOBJAqsBYaLjYAS+9lYnvv10Wu5wG67xnpfNzAqh3gjMUHL6eA4LuW+2WMxIGR7LjbOnbq/dDcYFLZchwfNQ87HxrjfqZJUYkzpSRzbpNmqc0pK8fCrtyglk8MZo1ctuPpR2m08C6D+7t/9u3zXd33XUx+zsLAw/P+dnR2+9Vu/lXfffZf//X//332PGxsbO6ZpOrg90Ad90mNOqh8ajI8FQL2KeBxADeaOstksFy9efOaX6kWBcnd3l1u3bjE3N8ejR49eanf1OICybZtf//I1FkMh0FTWqjVysbCvVHdpvMC17dGPeiaVGIITQKnV4tqmSbXTRZMlzmfTpEIhjkItDvtkhQlNZ9XTKziTybBc9NhfyBL3Do+wXXd4//lclrwSJoaDHosQ0VW+4pnRmoxEeeBh6ongE6MFSOg6Sx6B20+PT2K5DilVZ6VSJqTI3C76QS/4WZ5LprnVz+zalsV6uUzDtnCAmViSXCSMIomICD05HOBCOsdVj4JFkBEIPb2/QXYF8GamwEGnyUIqzVGjStkxhpb2w/ej+nuoZxMZXw/LwWWlVh7OZSXUEG8kClTMDmvNEnXLIKOFuB8gRwTnkc7Fs9zrZ0tV16LaqZE1uzRtlwk5SkLTiIU0vlrdGWYZj8uwxtQIpfYoO8qoYW7X9n0K9Z9IT3EpFgYcHrWLJBWdBwFhWyEgArsQyfikmBqWwUGnOWQKToV6bMOK1URGwqL32wtakDxuUNjq/0YqZpuK2WY2lGaDLv9g8pt5J3+WUqlEsVjk0aNHSJI0BKt0On1ipu+T4qO023gWQHlnq54V29vbfOu3fitvv/02v/iLv3jsPVy5coV/8A/+AaZpDq/RF7/4Rc6ePTskkl25coUvfelL/NAP/dDweV/84he5cuXKc7yzUXwsAOpV7G68ckdeUdmzZ88yPT19otd43hKft3T4xhtvkM/n2dzcfCWmhYMwDINf/b3/HzcP+4tVvc14PIprubw1PsZaqUKl22G/7m9wp0MhNsqjctHFsTzXtnuLcdeyqba73N7r/ejzmkouGqZjGb4FXJMDs0L5PB/uePTw4nHuHvYWqSNAbHXIR6NcSGQJqwobtTJqgFn5WqHAdc8OLKnpwyHeQRQ7bVbKvfcbkmU+ke31mh7Vq5S6bSajMV+/CqASYBlOR2Pc7mdYG/Uatmmy3WkTUVQWkkkkUaBh+J8TZAROReLcDVjYV4wOO80GO319wtcTaSxJRJdltls1DKxj/SklIAJ7MZXjtkeFvWEY3CwdUuq2EYCFWIbpaJw1jtjo1EHo+VzdqQT7Xv4F5nwiy92+PuGW1WbLapNpq4TcnsitpEhENZVrHj0/BYFHXX+2GmQJJhWdpfLOUGFcAM5H0mSUnvDro2aRvB7hXsCcMSz7+0CTocQQnAC22lUSSojbtSKaqLAQLZBUNLa7JZ+flHZMKPY4jT2mhEi0NT6RmCUcDhMOh5mamsJxnKG/0/r6Ordv3yYWiw3BKh6PPzfYfBQZlOu6r1TNfHt7m2/5lm9hdnaWn/mZn/ExAgfZz9/4G3+Dn/iJn+B7vud7+Ht/7+9x69Ytfu7nfo6f/dmfHT72v/1v/1v+s//sP+Of/bN/xuc//3n+zb/5N3zwwQfHsrGTxscCoF5FDLIf0zS5devWiazSH3eM4ODak6Lb7XL9+nUMw/CVDl+2j+UFqIHS+e9uBZrgiTgfbo7YVVdmJzFdB02SWCtVSIV0bu35f8D7dX8ZJRcNs1XtLUxHXZOpTIi7xSphRWYxl0FVRJ+sEcB2oPyXi4TZ9GRxF7JZbh0dDftPUUlCDYX4ZK43d3W/fEQ9OBuVSvkYgvOJxBCcALqWxZ2jo+HQ8Fw8wXwiQViSWa1WcHCPESxUUWQzQPmO9OepmqbJzcNDTscTPKhVmY2nyIZDNMwODwOMwFwozJZHkeJ0In3MRmSn3eLIGPUB3x2boutYtGyTlXqRjB72SSzBaPc/iEvp/NDnyqVHcT/qtKiaXSKiwmIqS0rTWKrsDeWNxvToMcp6MIPxAtZypw4dyDYU8lKEtKbTFExCrsCyOdrIKILISsNf9lzoC9uOrqXK1fLOMNOJySFOhQvk1ARb7TIVq0VKCR0zZ8xqUbY9HloZNTx8zIDK/mZyko1Gk7yWZDIcR8BhLQBG+QCNfcAK/AtMogTm5rwKDdD73Q4EXW/evInrus9l9w4fTQbVbrdxHOeFWwXB+OIXv8jKygorKyvHnMAHKj6JRILf+Z3f4Qd/8Ad5++23yWaz/PiP//iQYg7w7rvv8qu/+qv82I/9GP/D//A/cPr0aX7zN3/zhWag4E8ZQLVaLd577z3C4fCJrNIfd4yTZD+VSoWlpSWSySSXL1/2ecC8TB8LRgC3s7PD7du3kTN5bh7dGf5dlUQeHPoXkHK7w/JB776YLPJaPkula7BSKtEyLS4WctzeH4FcMqRzc8e/eJT6ZImWaXFjZ5/LU+PUal0WM2lSER1JEntK6P01MKnr3Nx/+rDrmXyOq7t7Q4mlc9kMkiDxdn6czXqVcrfDSgAEYwGa+KVcnhueIeJyp8P+VpOubRNVFOaTKeKaSlLVqfSB4mI2x7UD/zDvwwBgdftAuV6rsl6r8lo6i9mF15MFRFHgsNvgTsCUMTg0vKBHeNgZHVcWBO6UjobnoUkSZ6JZJvQ4O+0ae50G05H4Mcp68LpdTOdZKvay3aZjc798hCxKNCyDhViatB5CVyT22z3SAfSIGkHdwCBgDZXZLZOdvkLDhKAxK8fRdIU9u8F8NM31il8xPShseyae8wGW4Vh8WNoZqlTMhDMsRJPsdWs8bBZxcAghcT8AWDPhNEVjxOaLSCr3+o856DY46Da4nJyi1oWFyBhxVaVutY7R2BeiWe7WdrnsZp8JHJqmMT4+zvj4uM/ufW9vj+Xl5aGgayaTIZlMPjZT+igyqGa/3/qqWHzf9V3f9cxeFcDrr7/OH/zBHzz1MV/4whf4whe+8ErO62MBUK+ixNfpdCiVSiwsLJxYgSIYJ+lBbW5ucu/evaH6RPB1XsZVF3rXYn9/n3q9zptvvsn/8ys3fX+/OJ7n2pZH+TudHIITQNd2WNrap2GYSKLI+WyWjB5iMhbrZUAC5FWZSnu06z+Xy3LvcJSBRFWVO3uHPZZXsQxFOJ1Nk5FDzKWTmDiEVGnougswoak8qo6yDVUUWSn5eyiKJHPTU967MjNF17Ko6V1WqmVSeuhYua8RyGjPpNJ82NcQbJgm5U57aLi4kEiSDuk4bm/dHtiXn0qm+MAzgzUdi7NR95e19mpVGpbJjX7p43KugOIoZMIhqmaHhtU91p8y3eOZkFflQkTgg4PdoQL8eDjOqUiamKTxoF7EdB1OxVKs1v3Xqdz1MyvPp3Jc6wPWw3qFnWYdSRQJCxoLsRSS1Nu4eIkajwOsoKni2XiG+7UimF3oVzvTRpOzWoaOaLPRqXIhWeBm1c/U2wooXZxP5Ic6gQDbrSp1s0vZbBOSFGaUCElRYZsmnb6Nh4zIw6a/fHomlvN5Ww3sRGzXGfa73kxOgt3lXGQMBIedTpHtdoVvy19A35GeK7N5nN17uVymWCxy//59DMMgkUgMy4GDKslHkUE1m00kSXqhmdCPU3wsAOplwnEc7t69S7lcJpvNcvr06Rc+1tPKc7Ztc/fuXQ4ODp5qYPgyjETDMCj3y1tXrlyh5cDD3SJvT4yzXauz12iwV/P3muKhgC5aRGet0QMf23HoWhZ/uNozdhuLhomJLrggiwJWX2VbDC5c+QwfbnkGc9MpHhz1dtHl7T0UUSSma5xPZoloKnutBlIgC7g0lufqjn82Kkhx36rW2ewz+cKKwqV0lqphsN7PrhaTSVb6VvbQE8Fdq/oXx1wozFa9V3p8VK0SkmXuFoskNJ28oiDKIrsNf2kyq4fY9ADUuVSGe+URyAvAg+IRdcfmUa33ep8sjFNQYwgirDXKJDT9mNpE2VPqAzifyvpIGE3T5I93tzGc3vzShWSWXDhM0zTZ66s6eJl6gzgM0Ny9c1k3SvuEJBlBEJjV02RCIepWh5ii+gDrcSXBoAngqViKlXoZ+m1DHRmzbnBWzbDvtKhYbS7E88fMGYM0fK+bcNu2WLGrZGWdI6szHBSOyDIfljd8zxvQ04fvMzB3Bb1h4orZplLpgfiFWIG2Y/LXxt9iZ/vOSwGHV9B10AMalAMfPnyIoihDssDLbEJPEs1mk3A4/JGQMf4k4xsaoNrtNktLS7iuy/T0NKZpPvtJT4kngUu73ebatWsIgvBMA8MXzaBqtRpXr15FkiQKhQKRSIRf/L33ubMz2gV/anYCB5e4qrFSLJEK69ze8S8WZcNPSkjoIwA7aLRIZ5PcO6qgyzLnc2kiusoDD1NPBB556OoAMc1fKr003iNcDMqCaV3Dti0uJdK4qsSDUpH9hr+kNhn3z0adz2WHBAvogem1nf1hxrSQTDAZjuE6Ag+rZVwBLuXzXD8Yvd+YqnKn6N+FD2qQtW6XWrfLhUSSvWqN08k0CV2jYXaPMwIDpk+vZ/Nc9wwRK8DNg306nozpYjxPyHDpiC7r7Tqnk8f7U7sBrb7TyfSQhNF1bPaaDZbLRSzXZTwcZyISRVdl1urlYXY2q4ZZDyize1XZoWctcrW4y6NGhUeNCiFJJqKoXIqNIUsCG80Kk+H4EAShR7q4XfFvGCJywNk2HOOWJ1vKS2HktsuclmKjW8XB4Uwse0wgt2n5Nyvzapy1vgjsYFB4PpLCsiVOR3OEZRlRdLla9g8KB49zOprzkSygR7ePyBqnIzl24JUt6IIgEIlEiEQiTE9PD8kWA3LBl7/8ZeLx+LAcGIvFXimYnIRi/o0Q37AAdXR0xPXr1ykUCpw/f56NjQ06nc6zn/iUeFz/qFgssrS0xNjYGOfPn3/ml/BFMqhBv2lhYWH4HtqGya9/cNv3uGq7y4N+OS+iKlzI5al1u6yVK1Q7HS6N57m1O1pY0+HQMbJEzeydW8eyuL17wJtTY5RrbebTCTQcQprK0kFx2GvKRcLHjnHY8O+Y07LESqdL9aiX/V0q5HEFl7FClM16laZp+sAIjpd1z2czLHl6Wk3D5I/Wt3Bcl4SmMptMEhEVYoo6tFP3lvsAJqMx7gYAq2wYuDD0vnp7bIyooDGbSWDjUDM63A48J9gTei0/5hsaDgsiX9nbGaqux1WdMTVKOKWw1qhQM7tcTGe57SFuiMAjjyo7wLyHNbjbamA5Tk/VQuhlV6JtYzv+TdeFZJY7AWbhbsCtdwBYg8wmJMlUZIPLyUkaVofVRpnpaIIDj1VIRgsdA6ykFmLdA1CSLHO1349SkZhRo0QtibQcpmT1Xms2kmK14QfqYMxH0sOZqoGR44V43jcobNomKwG3YDXAhpzQ49yvH/ATFz83/N1+rTKOAdkiEomwvb3Nu+++OywHbvVdqlOp1LAc+LKluWaz+Q3vBQUfE4B6nn6R67o8fPiQhw8fcv78+SEj5VUP+3qp6t7XeVY8TwblpakPBHIHqsP/n6V71Dqj2ZT5bGoITtCbz7n2aIemYSIAi7kUSVUnr6kcdHoim3PpBFe3Rv2Mi2O5IbUcIBHSud0HtPVSbyGaiIZJKBpzmSSuAJoi+waEL+Sz3PHMV+miyHbHv6BbrsO9/dFj3p2bomvb1M0uy6USE/EYdw78O+H9pj/jmorFhgoVta5BxzS5uX+AKAicTqZIhLWe7JNHgikfCbPtKefNhMJseARpJWCt0qPlV/Z7G4G3C2NoMYWYprLf6WndrQbmtLyW9wDnsjmuHo4Wc8F2+MPtreGpnEqmychhFqJJHtYrIPRs7q97bO5lQTimIzhUtXBt7pSOyKk6h0ZnmF21HZPgL+V8MndsDut4hpXlanEEsElFwzJd3kxOsFY7pOqYzEVTPmHbhKIdKwmOReJD/ysDh4prsVY9wgUyYoiCHiIuaGwjYvUV1At6lLVA6S6m+DO1MS06LBsOBoXfSk2wEJKHg8Itu3uMFZjXY7Rtk79QOIPT33h9rUtig/6TruvHyBbFYnHonhsOh4fMwCeRLZ4WA4r510rw9uslPhYAddIwDIObN2/SbDZ55513iMfjw7+9Ktt327aHZomVSuW5qeonpZkbhsH169fpdrvHaOqGafIrX77ue3w0UGY7P57j6kZv9+32//XHD3o1/XRIYzYdp1quoYoCRr/XZAaAczGb9tHVp2MRNvt09Bvb+4QUGVkUOZNKEw9p7DebvuFNgAvjBa56B4STcd+AsACsHJU56Jf8IqrCqViKrBbiUa1KpdvhYi7LbU+GFZIln5o69Az7oAfMq+Uyb6h57u4fkQ3pzCQT2Lg8qvh7QnKgdHcpX+C6h90XkWXuFI98XlqfHBsnkdExXYcH1SILiZSPwi4JAms1/+vMJZJc7z/GBWrNFqv93llCDTGfSBCRFKKKOszOLmUKLHn6U49TtchrIQ6NDrutBrutBhORKMVOrw+kKzI77doxwHpchrUfYDDOx1ND0gXAtB5HckTOxLKs1kvYOCzGMz7AikjKMWmm+XiGUv8xRceg23HotGoIiEwpUaKaSkRV2feUFhOKzp2qH2iCyhYxWeN2dR/DGf2OPpWeZly3GAwKW47Ncv2A/3L6Mqoo0+5nml9rgHqckrmXbDE/P49pmkMzwnv37mGaJkmPskU4HH4m8PxpcNOFbyCAqlarLC0tEYvFuHLlyrFp8FeVQVmWxfvvv4+maV8zqnqtVuPatWvE43HeeustH01dFEU+3DwkFwqT0DRWjkrEQ/5ekwBslv270ogHwCrtLql6nbVaB0USuZDPkIjoPPSw6hRRZCVAV1cCC/r5Qo6rW7vUD3s7/alknGKlwYKuI+kaW40GGwFQyITDbFT8Chc3dz3MNkHgyxvbQ4v2U+kUGS3MQjLJw3IFBDifz/kIFrlw+Jh8UqWfXZbaHUrtDm+Pj9FodDmX7vXV2rbJ3eKoVAm9vpQ3zmWyvhJhRg9xdX9vCMKyKJKUNT6RG2e31WC7UedSNufrT6mCyErAsj4fjnBY7QFR1ehyWKuz1B/CXUxmiGtqjx3uyf6CqhYhSeZhoPc0Fo6y02xwp9yXrwpHqTS7XE5N0LZNVutFeMos1CCCpIa4ovLlg53h656Pp5FdibwWGZYBzyZyXC2NAEsRRB4EyBxnU/khqD0ym6hmC6EhEBN0coqGqEvENI1rHuJDT+zWf36nY1kfjV1G5H79cDgDJgBXsjOYrs1fm3wN+NpbYAziJAw+RVHI5/Pk83kf2aJYLA7JFgOwSqVSj1W2OImKxDdCfCwA6lm7iYGJ4alTp5ifn3/s418FQFUqFUzTZGpq6rFq5yeJZ5X4BrJICwsLLCwsHHsvkiTx/72/zWqpV6pSJJHz0xkaiThblRoHjSaXJvPc3B4tkrlY5BhZot5PCkzb4d7uEW9MjXFYajKVjDGWiKJpCu+vbw4fPx6P8rA62sUKwHY1AIKiwFa7Swmg0eGNiQKG4zCbSLB6eIQjCtwKzEa1AzTx05m0D3xsx+EPH/bOYyBIq7gSEUWh2Se9TCfiPkHaxVTKN8wrAo8q1b4EUw9ML4+PkRZUxqNhXEXGFlzulfxMvc0A1XwukeDD/VFJdCwS4f2d0aI8FooQlVQuprKsVEt0HYczieRQYgkgqqisBHQEo6oC3TYusFIpMxeO8qjVIKWFmU3E+70wP3ieT+e46lG1CEsydwPqGWORKFcP99jpkzFmogmwBC6nJoZzV2Jg0/E4lmDNo8LRti1A4P39HkBMhhOMhSMIbs90cKAmcTFZ8FHLRThmL3IpPcbV0i5d16FsmAgGJASZCTlGTNOo0mUsHGWp4mfqbbX8x7mYLPhms1xgvVnlbDzLWKhXRfkoAep5ynVBsoVt21SrVYrFImtra49VthAE4U9NBvWx5ijats3NmzdZXl7m8uXLj13QB/EyAOW6LsvLyzx48ADgufybTnoeruty//59bt++zRtvvMGpU6ce+17uH1SG4ASgSBIfPtplaW2Xo3KT6WiMuKpzOpsefrjTqbhPDXwxE+fIo3KejoS41QewnUqdq+u7bBxUCLsyb+QLvDU+xlRiVC6F3ryVV30iqkisBLK2etfg7t4h1zZ2qbVNzsQTvFEocCaTQQROZVKseNx+JUHgUbniO0bKM7lf6XSxbIevru9gtGzOJTJ8qjBOtdP1Wcvrin/fdSGXpejREAzLMncPjygbBndKFe7uHxFyJS4msrydHaMQinAxl+PAA3qqKLIcGBoOWtjHNY33tre5e1hEsETm5TC6IDEWGi0kZ1Npn8VHStdZDdDcpf6bKXc7LB0c0G6bPCzWWAxneDs9wWw4fowafz6d7YNH/z0+BrCyoTB3ykdcPdhjr97iQjSHjsKFeA6lL4sUtLqflHU2AySLjud1tlt12pbNBwd7iLbEhWiBtxLjxzZhF5MFjrr+zOyg4y8tXkoWqLgWG2aL240yW40WB8Uai2KK01qGkChzMVHwkTcAaqYfvM/Esmy3q/wXM28M7/uoAOplh3QHuoCnT5/mnXfe4cqVK0xMTNBsNrl+/Tq/8Ru/wV/7a3+N3//9339l53wSu/dHjx4hCMKxf95//33fsV6l3Tt8TDIo6O00XM8iO3CjlSTpmdRueHGAMgyDGzdu0Gq1uHz5Ml/96ldf6ssuiuIxuvug39TpdPj0pz/91NT9391a890+N57l6vpo9xhSVd5b7vWaYrrKYiGNbTmEJJG23Vs0DNvfJ5rLJIf9Kuj1r+7u9kpmN7f2iekqlu0wHYoQ02VagkA7oFM3EQmzXBktZIvZNCtHowVdEuBBsUK9/7yIqjARiRFT1B7LsNvl0lie655yXzKk+xQuYOTfZLsuy4clLk+OsbZfoRCJMJWM44oudwLDvK2A3t+ZTNrHCMyGQ9w8OPSB+FQoytvZMZqWwYNqmYu5HNc8c1qPo7CHPMBoODYIcLXfO5uMxhiPRsF1kQVhyPBbiCf50MMAzIXCrAWchE3DwHFdVvpMw3PJFPVum/N6CtO12LM7bAeIGl5fK+gB1r2y/7qEZJUPD3qP0USJT2TGcOnNRA0o53qAGTcbTRwr3Q2ia9vcLh8Os7AeeSNG2zEwHf9v72w8e0yUNigCeyaWYbleBLsDnd5u2nC6nFMz1AWTrU6NhWjqmIq6KkosRNN8Mj0iLn2UAPUqX0fXdSYmJpiYmMB1XVZWVjhz5gy/9mu/RqlU4tKlS3z2s5/lc5/7HH/hL/yFF3rtk9i9D+J3f/d3uXjx4vC2d97zVdu9w8cIoLxxcHDAjRs3mJycPHE2M+gfPU8MekGDvtYgXhagvEBZr9e5evXq8DW8/aZgbJaqfPnRaDETBYH1or+/4RVwrXcMbMvhxvYBAnCmkEZ1LY5Mc9jf0GWJ5X3/ghP0Xjqdz3B1Y5dt0/r/s/fnsZLl6V03+Dlr7Psecff95lZVWdXVVe2VRdjgdk9ZrwUWA7RQ81poGI+EJWxLgI3/GmzLIBAgNLY8WOCZ10bd+AXbMm5ow+B2VS+VN5ebd9/jrrHve8SZP2K555zIqsqsyqru7PYjpVT31okTJ+Ke8/v+nuf5Pt8vlGAu6KNYaXAnEKRQq5Btt7kyMfVspixm1u1kT1citKsKbx8m6WlaXwDV78EpK8x4vf0sSuj3n97VESxmfJ7RQDD9y+e02AfFdLVGulrjbiIKLYGbwRBWVaatdXmYMvbnzkzCuZMut8H3asbrYe3yGoyssoTSE3klGOG4UiTXaLDk9/OuzoQtaLPxOGNccPVZ3UWlQtBm41E6jUWSWPX5UCSRfMOoCjHlco/U46FfRjw2MRir1Rq5dpPcYOTghj9AW9NI+N2km1VOKkXOqsasZ8U0FGyVJLby19fb7HXREEaAFbO7mXK5uSrlUARxNHflt9g41g0gx+1ONkwsQevgHh6SNyYdblL1KqvuCDZF4qJRRjE9P3GLc6y0aDE9C1Gbk816eeSq7BRUXE2JRYuf806ZardN0GJno5jiH6z+gKEC4llztgAA/E5JREFU8UlZYHycbrqCILC4uMgv/dIv0Wg0cDgc/MAP/AB/+Id/yC/8wi/wF//iX/xQ530au/dhBAKB97TOeN527/CCAZSmaezu7nJ8fMytW7eIxWJP/VpJktA07anB5ezsjI2NDUMvaFi26Ha77wskH3QdeuPC9fV1Zmdn37Okp4///I1NbkYCXJXKpGstbk2GeZi8XkgjHgcbul6TKMDhgHquAXtXOWZ9DlL5OlG3g7jfjd2q8M7hda9pyu9h+9LISjvKFAzX4bCoHGTyZKv9xfXlySiNTod5n5+zgWqDft4KoGjKuCa9ntG8lEafhff2YX9eJGC3Muv3ofX6auVDFp3HagWuF8db0TCPdDNYNllmK5Wl1e2yOaCx346GmbS6ibgdlDstLIrMQ10mZJUkdnJmW3gj8WXa4+WbOqCc9bhReiKLHh/7xTw9YNrtGQnWQj9jOjaV4Yafo9nt8jiT4eVwmKNciSmXm7DDQbXTGmVJo/M4XFzqACrucJI0ZUulcplT3WzW3XAMDQipdvbLOWrdzthQ8A2fkXRhESV2dCzBPivQxVG9gSqKfQV6RSHVqBjIGzGba9TjgsG8lEn8Nmi1k6yWRkAWstjJdpu84knQ7LXZLWfwK1bOm8bzmNXZzQ7DgijxsF6gM9jkxGUncRx4bFb+SmzZ8NpvJ5LE84harcb09DQ//uM/zo//+I8/9/Ob7d6H8bnPfY5Go8HS0hI/8zM/w+c+97nR/3vedu/wAgFUq9Xi/v37NBoN3nzzzWdmsAx3NR90A/V6Pba2tri4uBjNHg1DFEUEQfjIauTdbpft7W2SyeTIhuODolhr8H/8yUMaA3O/sMuOQ1ZYjYbYS2dpd3vEvW6uiteL2YTLyknputcUcTs5yvcf8FSpSqpUJex2oPYkVsJ+VFVClAROcjoQSER4oNP281pU1s9MrruVGqe6/tObc5NMul2UWy12M1mWI8ERYEAfSLZTxmxDlq7/Jvlag2mfxv3TS2RRZDXYNz+8KBsXx7rZ6DAS5N6ZrlzmsPP4ql+6Gyqtz3tdzMhWXC4Hp7Uqs34v9y50nk9WKxsZ407exCPAbbHy9dM+OcKpqiz4vYi9vplhcUBmMM9cmVXYAfIDpuFpucxpucwr4QidVo87vjCyJHBZqz6R+HCuA6iwauXUJKGULhRJDn4nCQJvRidpaV1kQSRZKYEwTi2/4Q+xpgMsSRBGxoutXo+NfIZXQzFOCmWig7mrptZh32S8OOPy8W7mmjjilNWxDGvK5eHdzAXnAzdjlyDRamvc9ca5bJY5q5WZdfr4po7GbhNltkxswyVPkHcHzEENuOo0KFbbvKp4efdP3xkNxgYCgRemB/W0MZQ6+jjiSXbvTqeTX/3VX+V7vud7EEWRL37xi7z11lv87u/+7giknrfdO7xAAHXv3j0sFssY7fppQw9Q72VI1mg0uH//Pt1ulzfffPOJN8BHZQNqmkaxWKRer39gv0kfX/ra4xE4AficNr620884rIrMrXgYUQOf3Up+QIDQZBW4XrziPhdXOq2+WxNh1k/7u9SNsxQ+u5VKs8Wsz0vAZSdTrZI3Wb77LRIFXU96NRpiUzfc61AV7p9ejnpUDlUhYLGx6HJy0WhSabdZjgS5rwOSiMvBxqVxEcsMhn87vR7bqSx3J2Kc5UrE3U5ibieCKLB2Ybzxz4rGjGXK6zEMEccdNvaHfbJaEwHoODRei8TINRocFvLM+X0GT6uY08GmCbCquuZxX3pJ4N2zy/4Qrs9LwG6l2GwZwNRtMQ6fLvr8Y3YlqVqNeqfD+lCQNhLBgkzA2xekvaxWxgDLr6qkdAA14XCR1JX3uprGRT7P0YA6HrQ5WA0EybfqZKUajcG9nDVRy2+bhG0F4GRAl7+sVbisVbgbilJv9Ljh6c9dXdVL7JmU2Je9Ad7N6PylBHFsADmqDMwXB7dm3OaGrsBNd5i9SpZmr9tXv8hdn0cATqoFw3lu+iI8yF/y99/8S4RFlWw2SyqVYnd3F0VREASBbDb7oQZjnza+ncwKn6fdezAYNGRHn/rUpzg/P+dXfuVXDFnU844XBqCGthUfdnL6g7KffD7P/fv3CQQC7+uu+1HUyMvlMvv7+2iaxhtvvPHUzp2tTpff/lOjarmsewga7Q6iKLC2P+gfuKzMxUP9BXuwSDosClvnRhAwEx1mQz7uHV9wnClwnCmwHA1yVarwSixKs9vhJJfjrGpkTPUw9quWo0ED4cLnsPGne/0SogAsBL1YBYlpr4fjfBEEiLtdBkbgSjhoGObVW4hclvqCuHfiEaxIzIV8yLKEKMC7Onq6VZbYNsknWc3ySZGgQaYpaLcjdOClUIT9Yo5Kq03M5eJCpxs46/VwoBOoBUgPSnAacJgv4LdG2U3lcMsyk24XqkUZE7G1msweV/wBA80d4KJS5aJa4Xgw+PtaNEaz1+2XbstFmp02B6bSXdjh4FQHUDG7nSMdGzFTr3Oez7NfrSCLIsueECGHrU8B1wGqmRl3yx/mkUmt/bJWpdnrjuauXg5E6NarzHsDNHr9uStzL0xvFTK6po7xvUI2B98YEDxkQWTJ3WcbTtg8JGtFBKHP+Htkkl4qt5u8EZxkzt0vTTmdTqanp+l0Ouzt7RlUyL1e74i6/TSDsU8bn2QG9UnavT8pPv3pT/PlL3959PPztnuHFwigrFbrR55jepKahKZpnJycsLOz81Tuuh82g7q8vOTRo0eEQiEqlcoz2Ur/1/u7ZMvXi4zfprB5dg02kihwcHm9K70qNwhUG5xcFgg4rEyFvDhsFr5xdO2tMxfysZ+6LjmpssSuiSwhigKFWoPCSX9BWfA7aXZ7BPwezotlFEU09KtE+kQOfQSd9lH5TwO6rRZfPyj0/5/DxkzAS7vbwyJLNDv979X89d+Ihg0Zl89m5fFlim5P4/GAbbgY8jPr8hBw2sk3GnjsFkO5z63IHJuywW7PCK6THjf3BuVMURC4HQkjayKTLnffeFHol/f0fbDlgJ/trJG4cTKYD6t0Omxm87wai1KttFj2+3FaVWqdFo9Ng8VmxfgbgeAYSzBZKnFVuwbLl31+mr0uTUlgv5jHoShjr4k53VzoACpstbE/KBF2ej2281m0jodkuULY5mTC7UKRRR6YQKRlYuGteoNjbsKldnOUXQHc8ofoahpxn5uLepmLeplC01iOvOENjZUA9VqHHa2HAHz1qn/vhqxOJp1u7LKMTZSpD5h/Mw4vB5U8/4/VcWtxWZZxOBy0221u3bpFrVYjm82SzWbZ399HVdURWPl8vg/dX4ZPtgf1QXNQz9Pu/Ulx//59Aw/gedu9wwsEUM8jzODS7XZ5/Pgx2WyW1157bSSV/yzn+KDQEzvu3LmDJElsbm4+0+u/un7E7USE/XSWWquDS5XI1a+zn/mQh52rwujnmNfFxsBlN19tUKxd4XVYoaUx63ViUWScDhsH6WuAupEIcf/4elGKe11s6jIuAcg1OuRqDZLF/oL3+vwEYZuDSqvFbjrLzYkIj06vd1Aem2VsQBjd7jJXrRO0KuxkS31Fi1AQt8PCoWkWKmVSPp8NeEdAAjDj87I7ULM4HtjYzwd83A4EKNeqpFptFsLG/tSkx822SSkjp/PA6mkaFknim4NsMOxwMOf3Uu21sUjSiO4umR7km6Eg62kjyWQvl6eraezqhoQDso1Jj5uW1qXcbo0BizkzvRkMjXlhnVQr5AblRo/FykuhMIVWg4NSgXK71Z/3MpUEJ90eUjrmoF9V2R2U7lL1Gql6jZs+P92WwIo3RLteRXXa2MwbVTfMA77zbh/7JWOPratpbOqYgi8HooiiiN2tsFfO0tLGKxGzTu+Y/5Wso7qnGzVUUeKsVh5lV05VxSKJNLodvj8yM3ZOuCZJ6Adjp6am6Ha7I9mhvb09Go2GQXboWfXuer3eM6vLPGtomka1Wn1ubrpPY/f+m7/5m6iqyiuvvALAl770JX7jN36DX//1Xx8d+7zt3uG7GKCGc1SyLPPmm28+tbrwswBUu93mwYMH1Gq1EbEjl8s9E8B9bTvJ/3h40H9vUeRWIki9ViHido76SdmScQGPeJ1c6GaSbk6GeXTSB47jbAWfXWXvqsiU303I4yBfq5MqGs8Rcjs4153j1mSER0njjNLa0TntwWyVXZVxSAovJSIcZguUGk3mgz7uJa9BYTbg5TBbGP0sAKlqHxTa3R5blxlWQt6RokXE40SWBb6h0wPsl/uMPQyPzQK6Ne1GNMjGpZGU0Wx0eDUWJVWtkSyWCDjsJHVKGEvBADu6XpMAJHWSTJlqjSmvm8dnaRRR5EYwhNumjspvw2iY/rYrfh+PdRmWKorsZLNUWm2yg4zu1VgUh1vBpiqc18sICGxljeA5ZgMfDLGuA6xSs8lONsdVrYpA37pjwu3iqFzksFTojxRIEpumMuKs109ON4fllmU28zl6MCo53rY6iCguEi4njV6Hcrcx5ibsUoyLctzuNIATgIbAvfTl4HuQ+FQwRhcNn6CQ77VB6AMtuqplyGpnwzS/FbE5OauV6Wg9totZXIpKs9vl7934lKH0rY/3IklIkkQwGCQYDAIYZIcODw8NskN+v/8Ds6tvpx7U08bT2L1DnzZ+fHyMLMusrKzw27/92wYG4fO2e4cXCKCeR414CC7pdJqHDx8Sj8efWRXiaXtQ5XKZtbU1HA6HQRvwWS3f/z//4/7ov7u9HooosZntL+ohh0rYY6EhyOTrfbqzy2Zh49RE8a4Zyyohp418rcVptsRptsSNiRDZYp2X4lF6Qo9UucrjU2MtuWqac5qL+Ll3dA0cMa+Lr+/1yzDDmStJE5j0uvu6gAI4rSbfKJMkk0OR2R/MdZ0XypwXyiwEvTgEhbmgDyQBRRH5ZlLX47JZDQrsAPWGsadhJmXM+b1IPbgRCrGXzdLq9VAk4z1gprCrojgaPG73emylMrwSj3KVr5Jwu4i5nSDC2pWxNFbpmEpjwaDBs8ouy2ykjYK0b0wkiNmc1LsddgpZok7XmDiuueSmz7CG9iHVdovLahW/xca014PLohhsQVRRZKdgBPslf5Bv6o6xIrBVyNHWtFF58bVwFKfLil2RuWhUqLZbrJsAK+pwGujnPouVx7oeVqvXpacxAqyI1cm0x0O920EVxFF2NeX0GgwZ7ZI8ps6+5AnwMHfFWzOrvFc8LYvPbrdjt9uZmJh4ouyQ2+0eMQOdTufYuvRJ9aBqtdonavf++c9/ns9//vMfeK7nafcOLxBAPY8QRZHz83MymQw3b94kHo8/8zmeJoMa9ptmZmbG7OWfhWSxe5bh6zvXfSNVEjnU9Y1y1RZBr5ujswwum8pMxIfbaeXe8TmtwcK4GAuwe3G9uFllieOcsXHd7vQo15s8GpT45nw2LDYbQZ+bi3IFu0Ux9KsUSWTP1K+y6coaGv1B3HcPB+Uxp53ZsJdqu40qibQGWVfFBHrLOgV2gLDdyt5gBmsIZAmPiwW3D4/DSqZWI+CyGcp9EbuVw4Lx86VNJUK/3ca9gSOwKkl8Kt7fyYft9pG8Ud2k9nEjGua+joThUBU2B0SOi1KFi1KFl2IR1I5IxKridjtBEgxDwoBhVgpgKRDgvq6x7FAU7l9e0RgAlkWSmHN4CFtsJCsl0o06ky7X2OyWOcPS97CG9iEJp4tms8uyN4DLoqLIIm9fnI1KdxKMWYkkLBb2dX0jGVhPpwzmjG/GEjR7HRpah91iFlkUDUPAAHM6bysYHxS+atSYdHl4lE6jihKrniA2WaLYbBjIGysDLyt9JCsl/vLEIn6LjfeKD0MzH8oODeeB6vX6KLs6Pj4e/f9hdqUoyieSQfV6vT/zg/pOi3a7Ta1We6IVx7PE+wHUUIrk6OiI27dvP5G98rR2GwD/3/9ptNRYnQrz4PB6kZwIutk56z/klXqL7WQau1WlXe+wHA3gsKsIomB4wGeCbrYur8FmOuRl99LomJuqdag025wW+ov1q/MJPBNWivUah9kiNyci3NfJK4VdDjbOjAtxrnK9EGcqNSYDHjaSaVRZ4kY4iNdhZUfnXyUJAocZY+8h5veSqun6Ri4bySGVPNNXXBe68EokSrPXYTeTxWHKhMyMQEkQONKptre6XXpaf+YK+nYgUz43qVoNERguw5mqkYa9EgoaVC68Vgvrlym6msZJtQHVBrejYWYdXgJOG4VmE0UW2TSpTVxUjCy8Rb/PIMOkSBLfODsf9bym3C7mXD5sksxePk9P6HtjmTMscw9LzxIc0tun3G7Cqp0Jt5u21kORBIOPFUC2YwTq26EIa2kj/Xw9dUW5ew2or0XjVLstzmtlLhsVJIR+mVEXN/yhUfY0PM/RoBfW6nXZzGd4ORBhL1cgancRd7ho9FrkTHp+t3xh1vMpfmL+/ctIvV7vI5EfAGw2G4lEgkQiQa/XG2VXx8fHbGxs4HK5aLVaNJtNNE372LyaarUamqY9tx7Ut3O8MAD1Uf7Yw3IbwPT09IcGJ3hvgGq32zx8+JBqtcobb7zxnjfPUNHig27gVKFCKlthMuAhmenTsU/TxgXc57Rzmrnuk6xOhXk4ALC98yxxv4vzXJmEz0nU76LUbJIy9avcNuN8znLcz+b59e487HZw7+CMYSnaIgkommjoNSX8blI6mvhyNMC2DvQssjQCwVany9Z5hpuJMLlinWm/h4DbjqqIfO3wejfvtllGeoDDsNvtUNapNThUjnLF0WCxxyJjU+zcjbk5LZdJVapjjMCbsTAPz68XWLsiG8wTTwsl/HYbe1c5HGq/tOi0Wgwq7AKM2YiEFHlk8QHGIeEhcePleISXg1E0QeOgmGfK6+FxykhEMcswLfp9BtmlYqPJO8m+HYlNkphwOoi6PVRbbfKDTCfhdI31sMykBv0c1jCrW/T5WXUHcVgULmoVvBaLwfUXIGOSZroVCPEoe/0Zmt0uW+kU6cHAcszhZsnvI9WoUmo1R2rneiFegBu+II9NWddw6PmyVuWyVmXFG+C8VGPVEx6UF8t0el1u+8Lc9hsHRM3R7XafK3lBFEV8Pt+IWNVsNslms+zt7XFycsLZ2dko+woEAs/1vauDsYY/s9v4Dgh9ua1meig+TDwpA6pUKty7dw+73f5ELyrz6+GD5ZK++P97xL2dvqVByG0j7FIoNtrIokCnp+F1WNk4MZWPisbPF/I4Oc+VucxXuMxXuD0d4aLWZd7jxOHqkyPM/apSw6jOkPC7DaAWclh4d79/XYIAN+JBpB5M+Nyc5vq9pjG79niI+yc6hQeXfcQQTOaKJHNFpgKevlNvyEsXDYsi882T6x7XhNfNtqms2JYU9IPIflVmU0eOuBMPo4gSiwE/+9l+47/YMPbjliNB1nQlwiGFHfq28o/OU9yIhqhUmywEfHjtViRJ4GvJc0Np7NLU95r0ug1DwlGXg/s6YBQFAZffwmuRGOl6jeNikZuREOsmwEqWjArxCzrAqne7nFeqnFSqNLtd5rwe/A4bFlnivFxGG1xf1OFgw5S5meewZj2escHhaMTBvGzD4rSzX8oz4/GybTpGr6AOsOTxsqMrE15UKyiaxkmtikWSWPYG8dks7JoUKMxmmU9iBcqiNMquoE/EKHba/PTLr/JB8XErSVgsFuLxOMlkkvn5eRRFGdm9b25u4nK5RmDldrs/0rXUajVkWcZiGv7+TozvWIDS26UP5YQ2Njaei2mhvod0dXXFo0ePmJqaYnFx8QMzvWED9f36ULVmm9/9k43Rz9lSHaskcJ6vY1Vkog6JqUSQx6eZEQFiZSLE1un14ua2W9hImsCn3qTe6nCUrkC6wkszUTRLC6tFoqaJuBwWts+vFzK7qhio5mDQP0XTwKoo3Dvol7pCLjvzUS/FRgtFFEeLzmXRmBUkfG7SurmuxYif3av+gvXw5ApJEPA6rCz7/ThsKpeVKgGnjVMdq245EmRbl/nIokCuYyxr1aoVDgag7bAo3JmIUGm3yal1ygN69pmpXzUb8I36U9AHlqHKxUE2D9m+UnvAYiXudlKsVHDYVDZ1Uk8WSWLHRGGPu91c6rLMuMvF10+uTfdCdjte2cqtYJi9fJZGt8vNcJh1k9Bt0uTBNeVysTkYHD4qFElXq3Q18EgWZnweNAFURTLo+YWeIGxrVrqYcLmu1dsbDVRRIqTacQZVzgcisDMuz5h2oGLadE3YnZwMyBLNbpfH2QzLbg9XpTpxp5uo3U6hVODAVAI0swKfxOaLOZwclAr8ucQMHxSftB+Ux+PB4/EwNzdHq9Ua9a4ePXqEpmkGGaZnBZqhF9R3ut07vEAA9Sx/jKFuX6vVMtilPy9X3Xa7/VT9pifF8CF5P4D6vbc3Kdevd+Qxn4OzfH+BabQ7pEodio0rqo02c1EfHpe1X8LR9ZrmowHWDq4zkIVYgD09WUKR2DpN0excX0fM5eTuZIxau81uKstyIsTa4fU54l4nZwWjaeGpTk09W64x4XezncxgkSWWoiG8TquhVGdXZMNwL4Bi2s3fnOiL4GYHfSy3zUKuK3A3EaXabrOXztFuGwkWN+NhHuiYh06LwmnlOluqNttcZvMcFvo07IWQj7jX2beBH3xviiiynzHu7OMeI7DM+LwjNt9QUmrOYmPVH8BuUTirlIm5XKzpCBV2RWYzZVxcQ047p7rsyKEq/OlgkLqvPxjEp1qJOZxcDAZrb0XCPDIZPl49gXSxNiBZPLxMYZUkZEli0enDY7WQadUJ2Gykda/zWCxjgBW2Ozgtl3XHqLxzfj5Suk84Xcy4vNglhZ1ilo6mEbE7xua5Qg4Hp3o2n2phZ0DNP69UOK9UmFOtyF2JFV8QVZbItWpjrMApl8fA5rNKEpv5LD+xeBOL9MHL2LfSsFBVVaLRKNFoFE3TKJfLZLNZzs/P2d7exm63j8DK4/F84HV+t5gVwgsEUE8bxWKRtbU1vF7vSB5pGJIkGUy4PkxIkkStVuPevXsf2G96UgyNvt4LKDvdHr/zP4zkCL/HyUVet/v2WjnJ9RfHo8s8k10PyXSRsMdOIuih0WmTNCmQm0Eg6lQ4yus03AJu7h9cZw4Oi4LY0XhpIsphNk+p3sTnsHKuA6gbEyEe67M2m2U0INzsdNk8TbMYDVAoNpgNevC57FgtEn+6dzoC0ojbaVDFACiYaPHzYT9rxxecDbKUmNNKt97iViTIaalCod4YgcUwFiMB1nRlxaDDxlHxWpLoIJ2n225zWqgQctiY8Htw2GS+oaOwOxSFTZMflXnmyux7BRBU7X31iHab3WyOlXCIezpChVNV2DABlt9u52SQIXZ6PRqtDl8dOAknXH2XY1UWDV5SSx43O6aM6qxszAhXQ0HWLq+o5Pr3vSqK9JwadwMR2lqP/VKeBZ/PYB3ikOWxkuCU22MAtUqrxTunZ7R6XSySxIrPR9BuQ9M0UgO7EJei8tgEWHNe/8jSA8AqiJy2m7Q0jfXBe94NhukoEHE6qHSaHFcKY/p9N/wh7meu+GsLN3ma+HYRixUEAbfbjdvtZnZ2lna7PcquHj9+TLfbHWVXfr8fm22cmfjdYvcO32EAlUwm2draYmFhgZmZmSfapX/UDKrdbpNOp/H5fB/Yb3qveL9ZqD95sI86YFS1uxpBt50tU6+pWDfW/b1OK8l0kUyxRqZY485clFq5xc14GEkWqTQbbJrKfeWO8bvxu+2cZq8Xu9mon/sDbT9BgNuTISQEglaZTL0DQj8r0cd8xM/a0fXiMxX0jMgRx5kiJ5kiQbcDv9qXX+poXVRVMgjY6st9MGDdmcghNlnkoFCDgVL767MxuhoIPoHjXAFRgBOTT9ZkwEumer3Axt0Ojgdgm63WyVbrxN0OaGncCAWxWGRUReJrujKc12YdsxGxmkpaK+EgG1fGjFHswSvRCMeFgZdUKGgALLfFYngN9EV/jwdEjItyBVWSOC4UsUgSCYuMy2lHsiigA6iboSCPTfqDlyaK/Y1wiPuXV6PsTRVF2s0urwajXNarnFXKLAeC3NPNcymCONafWvT5R8c0u132czlOSjKVVotJl5uIw4FdkfjqxZnhPHumuauVQID7GWPfbTeXpdzrcjpQg78bjtDq9ZhziCRrBTLNOul6jR+ITxN3PN3m8JMAqGex8xmGoihEIhEikQiaplGpVMhms1xdXbGzs4PNZhuB1VDktlarPVf9wG/neKEt34fR6/VYX19nd3eXu3fvMjs7+8Q/3kcFqFQqxcnJCaqq8uqrr34ocIL3noWqVqv8v774JyQvK4gtWIkGWJ0I4XNe76JuTIcNAOVz2dg4NimBF2s0Wh02j1Os71/isdiYC/hYCroI2BQmvVayOjacx25l0wSClfp1pqlpYFFkHh2myJc6+GSFl6MBFATkATtMFgXDjNbwvPq4MREmXapSqDV4eHzJ8VWB/bMcq6Egr0xECbkcyKbd541E2JAd2WSRs4qRkFBrdlg7uiCZKhCwWPme2UmiLueICGCVJXZMZcWQ27gDnfI4OC9VR4oWD48v+9mp3cWrsRiLfj9hVaarm6wPOe1jwGK+7WYDPu4lL3hwekWh0mDe7UUVROZ8PoTBqRaCPlq6+9JjtYwNH/sG32Wz2yVZa1JpdXmUTDFj9/BaOMaizz9mNLkSDIzR2LMmPcLlYJD1qzRr55dc5MtEVTuqJnLDH0QdLLQ3QyFKusqDACTLxsztRjA0UHbvZ3Frl5dsZ/NYkbnjC3M3GOWVcHTEzBvGpYm4dDsYpmwaQj7P51nPpFm7uiJTbvKaL05YdfLXF59eoeCTAihN0z70oK4gCLhcLmZmZrh79y7f933fx/z8PN1ul62tLb7yla/w2c9+lt/5nd95rp/lc5/7HFNTU1itVmKxGH/zb/5Nzs/PDcc8fPiQ7/u+78NqtTI5Ockv//Ivj53nedu9wwsEUO+1W6jX63zta1+jXC7z5ptvGiyIzfFhAWrYb3rw4AGJRAKbzfaRdi9Puo5sNsvv/N5XSGYGNhPdHmdXRdY2z8hnqkx73bwyE8OqyKBbiKbDXro6sFuZDHGuy4ScNpWtkxRHl3n2LsrkS22knsgrUzFW4kFkUWAu6htJFgHMx/wcmQdzddTzUr1Nudrg4CyP3IYFj4u7k0aar89uHSvdmYdfF2MByvUW2+cZHhxeIvegUm5ydyLGQsiPABTrJtZdPDwSlQWIuB0GIke+2uA8X2YzmUZradwIBnl9egKHjubrtVnZMFHYnSZrlWm3nXSlxlmhzNrxBYeXOfLlFreDIV6KhHGpKpNejwEUYm6nwfcKxgdoHRaVrx+dcZTO41Mt3I1EkBFx6DY7CwG/gdXmtlrGMjf/4HpPCiXunV7SbHS4yFZ4ORjh5VAEt2pBEoyP94LfN8YKrJl6eUG7na+fnrN1mUFowSQKDkkhYrvuedwMhkibgMVMPx8eM7QPuX95RaZS6wNqMMaSx88Nf5DLmjHDa5pYgXNuL5ema8yVSlwWS6zaXAYpnveLTwKghs/083ofWZYJhUKsrKzwmc98hjt37vD666/z4MED1tbWWFhY4Kd+6qf4/d///Y/Uuvhzf+7P8Tu/8ztsb2/zxS9+kf39fYOEUalU4i/9pb/E9PQ07777Lr/yK7/CP/kn/8SgsTe0e//CF77A2toab731Fm+99Rbr6+sf7Tv4SK/+hEMQBMMNmc1mefDgAeFwmNXV1Q/cuXwY2/dOp8PDhw8pl8u88cYbVKtVSqaH/FlDn0Fpmsbx8TG7u7s8OjMt4FMhHuz2dzKnqSKyJHJ0kcdlkZiMehFkiZNUwfAa8y56Juxl/fh6cZsKujjJlDnJ9hcYt91Cr61xZyrKcaZAsdbAYrJrX5kM8ejomoAQcjs4yfVf3+5qHKbLlGpNytUWCY8Nr9uGw2Hl6/vXVOyZkJeDq2vQEwVIZo3fY9Tj4sHxJWe5/u9vJkJ0e12mHBbSrQ7NTnesdBfzurjS0eDngr6RCG6722PrIkO01iBTrDLp62sP2iwybx9cuwhH3I6xmSvFaoXS9SI86bRyXGmQHYChTZGp11q8GouSrtU4KZSIupxc6MqVk1432ykjm0/v6VWoN+n2NO4fnyMJAstBP06rhZrJSypmVdnW0dhdFnUscws5HZwWyzwciPPGXA5ajS6vReJk6lWOikVssjHjn/Z42DcJ8/Z0Cu/tXo8eMm8f98kbEy4XUZcDWZGQBGGUTS75fOyYzBjNwDzv9bE/YPydDJ6fl8IRbrmD1OtVsoKGy6KM0djN7MKAxcpRo87fTMzw4MEDBEEYEQyGag5Pik8CoIbP9MfxPoIgEIlE+Pmf/3lcLhf37t3j7/ydv8Mf/uEf8rM/+7P8+T//5z/0uf/+3//7o/+enp7m537u53jrrbdot9soisJv/dZv0Wq1+I3f+A1UVeXmzZvcv3+ff/bP/hk/+ZM/CXw8du/wggHUMDRN4+joiL29PVZWVpicnHyq1z1rBlWtVrl37x5Wq5U333wTVVWp1+vPhQnY7Xbp9Xo8fvyYdDpNfGaJb37x90bHiAKcmsDHPtCyqzW7bB9nubMQo1ZsciMRRLXI1Dtttk/1qglwcGFcIG0mPbyZqJ+HB9e9ppdmIkiixETA3R8CFiBjEpKNB1ykdaCwGA+wez7wayrWyZTqyJKIV5KJ+Z30JBGL1Xir3ZgIs67rizksioHiDtBsNdlP9xczSRR4Y2GCRruDRZa4KPQlmLYujK+xW40L1Go8yObgvGf5ElfFMg6LilNUmQ170QQBVZEMIDfl87CbMi6UqBb0M1cRi2wYRp7yuhG7cCMcZD+bp9nt9gVpddT4aZ9njFBRG2SVXU1jN53jTjzM9mWWqNNBzOMkVyqSqhqzk8Wg36DM7lCVscwt5nb1jxlc4oLfh6KJ3A6G2SvkqHc6eG1WjnU+VTGnY2zAV9UN+J6Xy0gCJEtlbLLMnN+HIosIkrGaMOFyjXlbOUzAEbE7eJi6Mowt3PSFiFicFFoN9ov5fqkzawTiGa+PejbD3/3eH8Auy5RKJYOag9vtxu/3EwwGDVp5n1QGJQjCx/4+1WoVj8fDZz/7WT772c8+13Pncjl+67d+i8985jMjsH/77bf5/u//fsOw8Q/90A/xS7/0S+TzeXw+38di9w4vIEB1Oh3W19cpFAp86lOfwuv1PvVrnwWgUqkUDx8+ZHJyksXFxdFN96xir08KURRpNpt8/etfp9fr9VWA/+gBMb+b80wRBIHV2QiPD3RZi9fB1pHJMC5bpt3psj3oQd2ajzLj8+D32rnIFZHFHkkdUy/ocbB7Zlwg07oZJU3rK6bfH2RtYbed+Qk/uUqdtFil09OwqfJIXmkYZsuJG9NRHh5d0uj0KF8UcFokWp0ecz4nNpuFs1JljGCxGAtw/+h60fXbVQ7S14t7t6dxka9wnC4AEPM4WYr7uShV2Uvn6GkaQaedDVNZ0ez5dCPRp7ADPEqmsCsygiiw6PPjsltIV6t47VZO8tcL90LIz55JQb0pGh8dtdcesQZVSeTlaARZEwg57KOBXa/dOlKVAJjxe9g3yTsNv5dUpUqqUmXO7aDeanMrFEJVJJKF4ojtN4zlUMAAWFZZYsuUuXlt1tExsijyciSCoknEnU7OyxUQIOZyG8wZPYpC0jSAHLDbSZbK1DsdHqfSBGw2Co0GM24PQYeNYruJ06IaKOo+q3XMKmTC5TJ4WzkVhbXLSxqDEp9HtfByIEKh2eSgnKfUavVt6At5fnR+EedgsfR6vXi9Xubn50dqDtlslpOTk5FWXjAY/MQ08j4ps8LnTTP/2Z/9Wf7Vv/pX1Go13njjDX7v9643y5eXl8zOzhqOH1q7X15e4vP5Pha7d3iBelDQ/8O88847o/mmZwEneDqA0jSN/f19Hjx4wM2bN8fUzp8HE3A4RGyz2fj0pz9Ns6Pxf/zBGpeXRaJuJy/NRrEMXGKHEQ+6DeW7hbiXVP4aXLwuK5uHKZJXBR5sn5NKV7ErNl6ejrKSCKJIIhOmc6xMhrjIXi8kDqvCVvJ6IcmUauSKdXZPsqiaxM14iFdn4yi6hzDqcxoGhAHSpoxrPh6i1dU4zlTYSmaxtLs0S3Vuhv1MB9x9o0NTuc9rVQy767mwbwROAKliha2zLHtnWezI3I6GWY0FcVqud3kTfjc7l8aF2kxhX44FqTbb7Kdy3D+6oFppcZUpMWe3suD3oIjieMkzGjCU8gBKului1e1Rr1W5d3RBNl9jyuHm9USMRrNjeODcJouXWb+X/awRsARFpdXtsnGZ5n7ykpjDhV2QeW1A3BAZt7pfjYRGmRn057v0mVun10MWJd5NXnCZqxK3OvlUOEa320PR3eshVUG/FXMqCpsmluC0x9PXHywWuTcgWpznyrzkC/NyIIxHtTDn9RnIJRZRHCvlLfsDI3ACKLdabKQzPLxKUa21WXT6+b7oJF7Vyk8s3+BJMVRzuH37Nt/3fd/HzZs3UVWVw8PDEdHg6OiIcrn81L2rZ4lvJ6uNn/u5nxuNtLzXv62trdHx/+Af/APW1tb4oz/6IyRJ4m/9rb/1sXxHzxovTAalaRr3798nGAyytLT0oW6EDwKXTqfDo0ePKJVK7yko+1EB6vz8nFKpRDgc5s6dOwiCwP/5x+s0W/2HM5Wr4HJY2N/J4rCpzCT8IMKJzpAQoNE2XsNM1D/KfAAWEn72Tq8XAa/LRrfR5dZkiMPLLNV2b6xftZgIjqjlAImgm92z/gLfaHXYOk4T8NiplpvMRXx4nFZkReQyVxn1S5YngoYyo0WWDAPCAEGfh62zLFcDmvhc0IGsyARCPg4yeSRR5Lxs3LnbVFPpbiI8kmmqtdrsXWRR0hLVZov5UF/tXFHEPnV+cG0LET97V8aF0awkEXVZ2EoVSQMUGyS8LoSOxivxAU281sDg3AfcjIVGzr7Q3/WldSzI03wJpySwmynitKjMhrxIssChyX3YZTX2W2b8njHAanQ6nBZKI1WNl+IRemh9VYVCgVKzyVXZuEG4GQlx/0InswQc63pPl+UqcbeLR2cpLLLElN2OQJeOqWe1FAxw7+J6RywLAnum3tNyMMja5eWIRCELAk1bm9dCUbKNOoelIjeCIdZSRlHacxPb8KbO72poHwIQttlZ8Pr5oNBr5c3Pz/PHf/zHhEIhSqXSSIlc37v6qEKy8MlmUOaMxhzPavc+9MRaWlpidXWVyclJ3nnnHd588833tHKHa0PDj8PuHV4ggBIEgTfeeOMj7VBkWabX6z1RqLVarbK2tobFYhn1m54Uz6JGrg9N09jZ2SGZTI4cOwVBoNXu8p/++yPjdQ5u8mq9xeO9S15ailMpNFiaCGCzqRTLJY7S1wurRZHYSRqzGNH0oExHfSPCBcDdxRiaIDAZdJNMFxFFcYxw4XPZONOL0U6H2RgQLo4u8zhtKq12l7DDTjzopt7uYBLRZmUyZFBgD7rs7JwbQaLdEzi86C/WkiiwGvfQFkWuKjUylTpBl32MEdgwMQJXEiEeDOxCDlN53DYL9VabkN3ORMBNs9tFMK0dN+IhNs6NwJLMGxfKsMfBms5p+KWJMJIkMRfogykCI/uQYdyMh3mkcxIWgfMB4aLSbPHoNMWtiJ9yucli0IfbbqHcafH4wviAe6xGe/kp73gPq9HpjIgYAvDGdJxOT0MRxX45UYC8SX/wpsnrChhlhM1Ol8NSldvREI8u00x7PYScDgrNOhcmIdub4RAPTMoWF2ODwiEe6eSafBYLNkHmTiDEQalApd1m2mbjuGo8t9nvasbjYb+Q5/929y/yrDHMBGKxGDMzM/R6PQqFgsHnyePxjADrw8oIvah27+YYtjCazf4m8c033+Qf/sN/OCJNQN/kcHl5eSSW+3HYvcMLBFBwDTAfNoa7G7NQazqd5sGDB0xMTHxgdva0auT6GDrr1ut13njjDQ4ODkYg9+V3tsnp2GKxoIttXa9JFAVOLgt0ez32TvqZyXTESdRpIxb2Uqg1sKgCWyc53Tnc7JzoFt4nEC66PY31QbYU9thZnAqSLtUoVht0B2K0WydGUKg1TIO58QAP9i9GA8KJoJtcqdYfEJYEjjMFLvPGBSsR9JDR6fDNRnwc6th9vZ5GMlelUOtnIFGXhUmPE6eqcJwtojHOCATGVNqHQ8PZco1suUbY7aBUb3IzHEJRRE4KRQO1HmDaa+ewcH1tFlkaKxFKosj9wTCyz2ZhJR6k3GpjV2RqA4Ze1QSetxIRHp7phWLhMFekp2nsDxiHqyEvzp7EZMBDTxLJ1Gtjs1B+h82goj7hMbIENaDSaI8YfiG7jaVIgGKzabCpr7eNTNbVcIBNU8+q0up/hmShRLJQ4kYkSKpY5aVABEESOMjnDLNR0B+6NZMszDT2sMPOO8n+8K4kCMy73DgF6DllkuUyDOxDzH5XXouViKPDD05N86xhZteJojjm85TNZsnlciMX3SFY+Xy+p86uPqkMqlKpPDclia997Wt84xvf4Hu/93vx+Xzs7+/zj//xP2Z+fn4ELn/9r/91fvEXf5EvfOEL/OzP/izr6+v8i3/xL/jn//yfj87zcdi9wwsGUB91ctoMUJqmcXBwwMHBwVMbGL4XyL1XDJXOHQ4Hb7zxBoqijGjmmqbxzr0jZEmg0+3v8oJeJxeZ60V9dS7C4z1dBuJzcJKqoGmQyvcX05DHwo2JAJoosn+eI+hxcKHPfEyEC7tFNBAussUa9lSJ5FUBqyozE/fj89h4cHQ10gQ0A4kkChybQMI/yLg2B1nWymSQZrtLfNpFulwjXaqwa2LqSRhB4sZUmMe6oeFSvc3jkwzNTg+nKhH3O/E6bFwVKqOFdjkeNDAAJVHg0KQ+Efe7SB1VR5nYZNBDu9Hh5XiYi3yRq1qTrmRmABpV2B2qkTVYHIjvbiRTSKLASjiA32njIGd877KJaHArEeHhqbnkVqLW6bFx2V+YX5mMErI4sKgSyVKJ5qAPpY+g086pTkki4nIY6OfZWp1Ko8XGRRpFElkNBvDZbByaBF7NrYY5v2/sM/S0Pmg9Gsxjzft9aB14LRIn26hxWCiMbeym3O4xGrteN6+raZRbLY4aDTQgbLcz4XHhsKqka7URoLpUlY1Mhv/95Zff09L9/eKD6N82m42JiYkxF939/X3q9Tper3cEWO+n4PBJZlDPywvKbrfzpS99iV/4hV+gWq0Si8X44R/+Yf7RP/pHIxFbj8fDH/3RH/H3/t7f49VXXyUYDPLzP//zI4o5fDx27/CCAdRHDVEURzp4w35TsVh8JgPDZwGoYWY2OTnJ0tLS6MYelgm//uCYr359H6tFZnkigGIZn2sqlo0U43jIQ0any5cI2jjL1EkX+4tg0Gun2+xwZzZKMl0gX2lQrpmYWE6VZPa67DMb93M4KLs1Wh32TzNYUwr1epP5mB+304KkiBxe5kZSCatTYdZ1s1Ee+3jG1e72ONSZI766lKDd7VJvd9i7yuK0KOxfGfswdRO7b2Xy2qSx1upyVahycFVEAGb8DhwO67j6xESYRyfX12ZTZXbOjTt7n93Kw5MrBkkptydCSJKIK6ZykMlTb3cM1HOApahR389ts7A1AMZuT2PnMsvtiQipXJWE10nE40SUBIPjL/RV5fUx5bJyVL7+ewjAzkWKqk7I9425CZrdLqVWk/1srq80b5qFintchv5T0GEbgVq722P7KsvLiQhXhSoJt5Oox0Wr0+KxSXldTzQBiLudBtNH6A8cP7y4GtHYF/1+rEjcCUXYy2epdToEHPbRzBP02Xxmw8aI3UZmUILM1GrUWq1+lbinccMfwKYqqIrEN68u+N+W39vS/f3iWeaT9C66i4uLo+wqm81ycHCAqqqG7EqfMX2SPSi7abD8w8bt27f5yle+8oHH3blzh//1v/7X+x7zvO3e4bsMoKB/A1YqFXZ2dlBVlc985jPPZCY2BJn360Npmsbh4SH7+/tPzMyGRIv/+Ad9E8VGs8PW/hV3VuKUMjUWJgI4XRY0ER7snI9AwWFV2DFRzVWLDdCZ+IW9/dcM4u5KHA3QQhrJVAFVkUmVjGUXi2J8qFamwzza7y+qR+c5gh47uVKdqNdBNOim0mxSNrHhZmM+A8FiMuRh39RrSqYKpAr9BVSVRRIOlUm/h5NciVK9yUx4vHRnLhHOx0MjUdtktkqg3iJbaxNxWgh6HVS7XUpmpl48aKCwe+zXorbD0BB4eNwHNVkSeXM2QaPbpdPtkS73FdCTeSPTcChiOwyf3crGoPd0UahwUahwayKMQ5CZDfsQJIF2r8uGSXapp6joZ6xuJSI80pUEBeDx6SXlAZHGZVF5ORbtU7BzecqtFlZZGvPLmvJ5DPqDbqtl9N5Dm/o5pw2rJjEf9iNLIpl6ncemvlLU5eRcx1r02axjx3hs1pG+oCQKvBSOIPcEEi4XZ6V+6W7e7+Ob59fflyqKHJjEbpeDgZHf1Vam/3nCDgc/NrdM4AnCqU8TwxmoD1OBMWdXw97V7u4ujUbDYJvR6XQ+ETmlarX6XeGmCy8YQD0PcURBEEb9JjOF/Glf/36zUN1ul/X1dfL5PK+//joej2fsGFEUOTzNce/x6eh3sixydJpD0+Aw2X8wl2ZDxN0uImEXxXoTl9NqAJ/pmI9D3VyTIoscnJmUC5odtg77i0nIY2dpJsT+6SWpToueBmGfg21T5pMpmAZzQx4yxRrpfJV0vsp8IkAuW+VWIoQgCSSzJQ4ujGDkcfQFbIexMhUyZFiapnGSa1JrVhAEmIv4iPtcdDq9EfNudTLEpo78oUgi+yZGYCIcIHt0SabSJFNpEnGqlJpdlgMeREXmJF/k3NwH8zrY0IFn0GVnS0fC6HR7FGrNUdlwwu9iJuzjslQhV67Ro284eGSaYZoJ+QyA5Xf05Z66msb6gHF4ayLMvNeL1OtQaLVwOOwcZguG81SaxgzrZizEuo4lWG62WE9ekm+0EAWBxaCPuN/NQS5PrdAeWYfsma5vIeg3eF0pApw3WjS63REL8e5EFEUT8Tts5Bp1LssVNk3Z05zfZ7C77/tfXR/T7Wkoksi7yf6mIOZ0kvC66HX7oNQaPDuzLifbJoAyi9uuBoNsZjL86PIiHzae15CunvkH/VLbMLva399HFEVUVSWbzY6EXT+O+DM18+/AGGY17Xab2dlZlpeXP/S53otq3mg0uHfvHqIo8uabb76nEZkoinzlayeG363OR3i0ff3Qx0Judg77i8ZVpowoCoR8dqY8VgRV4jxfw2EzZn4rMxEe7V2fI+x3GggX2WKNg2SWVK6JIouEPCpum0ilKlMb7M6XpoLsnFwvNjaLzK6JISjLIrVGm80B8N2aj1JrtJgP+7goVGh0OmPis+2O8ftanQ7zcNAX0zQoVRucpAr0ehoRj4NY0IWqSkiiMBq2XZ0M8VBXVnTZLGyaMiG/18PVaZq9yz44JjwWhC7civpJV5ukK1WO0say4kTASNyI+VyGntZ5roxNUTi4yuG0qsyEfbjsFh7oFntZFDgwqU9MB42AFXDY2DhLG+j9U4EA3piVZq/DXibPhM/dZwfqom6S51oO+dge9NiGRItSrU662iDstDPhc2Ozynzj9HozI4Jh+BhgKejnsW4AWRIEjnIFcrUGR7kCAJ+ajNPqdemgcZDL0+h0ODT1p25EQgb/K4BT3WzWVaVKxOXk4cUVqiRxKxig3arTNJEsloMBtjPGDYim9VgJBFj1+z800HxcKhJ2ux273c7k5CTdbpeNjQ1qtRrb29u0Wi18Pt/IRfd5leTg6Vh83ynxXQFQevUJh8PxzAO+5ngSQOXzedbW1giHw9y4ceN9H4hiucneUcHwu3TOSLMN+Bxc6JQUpmNuDs+uFxif20Kv0eWluRjJTJFcqUa6YDxHNOAipTvv0nSInYHqRLvTo1jrkilWaHd7RNwqNpuM1mn1EWOQrS5OBnmoI2lE/M6RcsUwcsUa5zpSxmurE7Q6XUrNFoeXORJh71i57ypv3ClPhr3kBiXCdLGKVZVJpotYVZnZuB9RfIK9R9TP/cNrAAi5HYZMCEC1WDlMFSHXf7+5gBXFYqWFwFE2jyJL7JrkksJuBxe6rGsq6GF/MD9VabRYP7liJuSlUe2wFPHjtKlIssQ3Ds9GI1KKKLJvAqyEz0VWV3ILOGw8OL4cDbGqkkTM6cSjWkgWS2SqNWYCnhHTbxia6d6a87s5GOgXZio1MpUaEx4nYlvgZiiERZUQJIF3dYAKkG8Zv88b0dCIBDGMs2KZ81L/u5AEgTenE9S7HWxKtT8gLEBGZ20PcDMc5LEp66oOwKjV7bJxlSFhs3JWbzLl8RB22Sm3m4YhYehb1W9lc/zj7/9egJGO5lBO6GllhT4JmSNJkrBYLFitVhYWFkbZVSaTYW9vD6vVOsq+Pkp21e12qdVqf5ZBfTvGhynxDc0Fh/2mtbW1j6wEYZ6FOj09ZXNzk6WlJaampj7wOv/4T48p55vMJHx4vXYEWWBt43QECm6nle0D40xMqWLsq/jcFnYPrxfj125O0NX6SgDJqwJOh4XtI+Ni3TFlMfMTQR7uDkGhRVRWObks4nMouB0yrR6cmgaEwz4nV3rQmwyyk7xejBRZZPs4PSJmOG0qQYsMbguZRod6q8vqVIhNXblPlSX2TSSGYYlwaBuyNBHk6CzHfMSH22khXa4aFNcBEgG3QSNwMujug5Mu6h1xVFKzyiLLUS/1nkayUKbSbOO0KGMg17cNuT7PbNg3shbZG7DupoIeYg4HMb+LaruN1SLzQEfUUESRXVPvaSroJavLsBwWha/vn44yxim/mymPB0kQOczk6QETPjc7pl6TOVOfcNs5HUhYDUVw54NeYqoNuwQ9i4rVMq7fVzMB1kokyJbumK6mkarURrNYUaeDxbCPbL2BIoojBfauaRhuxjc+cOxzuzirNzgtljgtlgg57TTaHV4KRBAlOCwWSXjcNLpdfnR1BXXwzA09l/TPnyiKo39Pik/SrFBVVQRBwOFw4HA4mJqaotPpkM/nyWazbG1t0W63Db2rJ5kSvldUq/37+896UN8BkclkePDgAfF4fNRvel62771ej16vx9bWFhcXF9y9e/d9rT6GUau3+J9vHwGQPMuTPMszNx0k7HIQi3qotdrYbCoPt6/LM7GQnYu0zu5alTi9MkntVBrsH/cXk5DXzvJchFSxysF5hk5XYzLi4UDXrxJFgeRlwXCOgNfJZbZCsdqmWG0zF/dQzFSY9FgQZYliszvWrzKLoegJFgCiprF+kKan9Zvnywk/XpuVkMcxkkRamQzxUDfM63VYDZJLo/fSGLECb81EaDcqvDwVpdbucJ4vsmOisHudNpK6zG4u6uNAxypsdHqcZipkq01EAaa8dqIBF8lClYtiXx3DYxu3DXFYjHT0+Yh/lGFdDT7TfMTP7WgYURI4yOTxW0SOS9ebjCdlWOYeVqXe4p3dUzq9Hi6rykyoP9Sbr9apDsDkSUrsXpeTU91sXchmYd/gsFznpYkIL4UjIMJBLk/AaRsDEdGkmGEWu01VqoSdDrYuM1hkieVgqM/MNNHYPTYr6MqLPpt1rK815fHw7tnFKIOzyTLVaovPv/TSyBRyCDLDEY0hYGma9r7Z1Sdp9/6k9xnaZoRCoRHJIZfLkUql2N3dHZkSDrOr97vWIUD9WQb1Aode7fzGjRskEonR/3teANVsNvnmN7850gV82hrzH37lMXXdwOtE3MvBAFiyuSqKLOL12Fme8FOt10iX27icDgNATSe8bB9e76Inot4ROAEUS3U2dy8plOpYLTJLE348HiuFUp3yQIJndSZsmI3yuqyGfhVAD5FGq8tZpv99zcVdVNGweizk6x0sqsJu0rjQmAkWQbdKOTVQ7O5pNJodvv6o33+bDLoJ+uz0NA0BDW2wIM5EjYzAmN/FzqnxfUq1JulidQRyL8/HaHW6iJLAUaYAAgaCBYDVpKitl2XqaXCer1Gqtyg3OgTtKmGfA5fLxjcPx4kPxvMaH6OFqH+UWQ1jyuXn7oSPTLXGSa7IjUSIB8nr7/9JPazZ8DVglRstDlN52gNm4VLYj8uuIstyHxQHWOK3Ww3+WABem0paR213qzIPT6+VxEVBIBEOE7DYSdWqJAslIi7HGI3dLHYbdNhGc1fNTn9O65WJKNlinWmvm5DLQbXTYst0HjPJQhFFdk29p5VwkPvnl/zzH13AHHrhZmCUUb1XdvVJsOuG1/FBpTtBEHA6nTidTkN2lclk2NzcpNPpGLIrq0mvsVaroarqhzZLfdHihRKLfZoSX6fT4cGDBxwfH/P6668bwAmeD0Bpmsbu7i6KovDGG288NTh1uz2+9Pv3Db9zO4034PJChHS2wt5BlouLOmGnA63Z46WFGEGvA0GAq4wRBDwu4zlW5iMUSv1eR6PZIZUp8837SRrFFgthP3dmx/WxpqI+OjplhZm4j6NznX+TKJAvd7jKNzm+qFIqNHFJGjN+KzGvDTSNpcmAQXxWEiFdNpaNPLrPe54p0Wx2Wd+5xKtYuDMZ4cZEyCCvBH0ld33Mx/xj82IXuTIbxynWD66olpsshbxMOlXCLhtoEHTb2Tw1ArBmVjqfClNu9Hfi+VqL3fM8G/uXWLoCi143NyIBZkI+g0L6k2SYVNm4SM0G3Wxe5Lh/eMFpqkjQYsUmyaxGg6hS/xG8kQhT1IHIk1iCi1E/zU6Xrqaxd5VjM5nm8fEVMbuDu/EoK5EgMwGvQZjVLkscmnqT89GQIfO1ivD1wzPWji84S5cIW+ysBAOshkOj63NZVDbNJUqf10D4sMnyqCSYLJS4l7zAJkjIHVhyungpEsZrsYwNAd+MhCg1jYSJTLXG989Nk/B8cClLFEUURUFV1dE/SZIQBIFer0djMGfV6XRGNjcfR3yYQd1hdrW6uspnPvMZXn31VdxuN1dXV7z99tt87WtfY29vj3w+T7fbpVKpfGgppifFB7npHh0dPVFo9p133jGc5+Nw04UXDKA+KGq1Gl/72tdoNpu8+eabT6R4f1SAurq6olgs4na7efnll59JZPJPv3nAVep68fV77WztGXtNZxcmdQavnYOjDOsb5+RTFV5bniDudxDyWEDT8HpsbB0YF94hOA1jIuql19PoaRqHySyNWoutzUviLicvz0WZj/tGg7rDsJnKWKszYfK6oWGnw0Iy3eDkqs5VuoZTkujVa0z47QzWNG7MRA3W8R6ndYxgMXQDLlWbPN6/REWklKuxEgnw8kyERMA1NgBsUY3f+epUiCudhp4AbJ2kOc40yOTqRBwOVmMhFqNBpIFEfDzgHhverZt6MDenItTaPZqdHgepEnunWXYPr5i027kVCRD3upjwGxXinwRYNpMIrN9p5+u7Z2wnM4gdgdVQEIeiELBf9yJuJsLkq8bh3dOcEbhX4iFqrTZXpSr3jy85PM9xnilzKxzipVgEpyyRcFrp6ADVIkvsmHpPi9GwAdSK1RrfPDhj6zTdJ1oEQtyNR/Hoel1mhXSAlWjQIKMkAIfpHPVuj71CmUdnKabdHoIWG6/Gokx73KBBwaQVuBj0kyyW+Gsv3+RZY1jGV1UVq9VKuVzm6OiIRCIxKgt2Oh3a7fZzB6uPOqg7zK6Glu/f+73fy+zsLO12m/X1de7cucNP/dRPoWkaZ2dnz+WaP8hNdxj/7b/9Ny4uLkb/Xn311dH/+7jcdOE7qMQ37DfFYjFWVlbecyfzUWzf9/f3OTw8HAlLPssuRtM0fuc/fgOfzUo06qJQrhCKeMnptN8SUQdnl9fZkdtpZXvfCD7pbIXkWR/Egh47yzMRMvkq+2f9XtP8VID9k+uF16JIhp8BpAGCXGXKXGXK3FqKkm1WuT0doaP1KNQaYwSLkkmNYj7h58HOdZnG63ZwcNFfQGVJIOJWaFYruGwK5Xp/4Z+J+nigo8EnQm72To3XlivX6HR7o9LhnYUYUlcg4LWTrzWoNFrjihUd4yIz4bNykrte9Mq1Bmu759SabWwDVqDHZaNSa45UHabCHkN/CqBoGvi9MR3h0dEVtUKN80INWYBevcWNoJe2IHCQLTDhdxso60/MsHQlwVanX7L72nZ/Jm4m6MHvsveFbXWuuquJ0JjXlVnpYjUR4mHyaqRLKACqz8arCRfZep2jbJHVWIj7SV2PEEbK6MNYCvt5POiptTpdNi/S+AoW8vUm0z43QbcDVZX42vGp4XVmFfVJu5UT03dYa7cNHlh3YmFkScQZVtnN5mh2u1hlmWmfhzemJvgokUqlePToETdv3iQajRp6V89KtHiaeN5SR4qiEA6HCYfD9Ho9fu3Xfo1//a//Ndvb28zMzHDz5k3+8l/+y/z0T/804XD4Q73HB7npDiMQCLynMvnH5aYLLxhAPQkQ9P2m1dVVJibe/6aWJGmU8j9t6G043njjDY6Pj58Z5NY3ztnZ7WdLxVIdRRFo1rKszoTQBDg6zdLtmthPU34eblyn27NTAQ51YFOrN3n0+IxqrYXVIrM45cfltnJlK48yl8XZMOs6IAkHnKP5qmGkc1XK1SYbO/2F685KHI9qQbX2qd5+j519HZDIkmAo/wE4LNc7x05Xw+VysTu41rBbxW6TyBVKBgq7z2XnTEelX5wMsJu8fh9REEheFciX65wN2Hh3lxMkPC7aWpe9yzxhn4M9UybUFRX0ygzLkyEeHPQ/W73V4SRVoHWWpd3tMh/14Xb0bUNOroojQJiP+tk39ZFyJtmplckw6ycp0gNrEIcqUswWmXXbyLS6lButsRkr81AwgFWXEZ5kiv3yXrqAz25hOuSlo2ljFurLsSDbJnq82etq1aTW7rdbsCBxMxpiP5Oj0elyIx5m/dy4CSq2jHNXCwE3ewO/rmS+RDJfYtLrwiX0iRuI0KPHI5NWoKgY/w4zPu+YQaMoCNwfSEEpksir0SiCIPDXX76F+BHKWFdXV6yvr3P79u3R4v1evashcH1YGvswPk6pI1EU+cxnPsPV1RVnZ2d8+ctf5o/+6I/4gz/4g+diFQJPdtMdxuc+9zkajQZLS0v8zM/8DJ/73OdG/+/jctOFFwygzDFUbcjlcu+p2mCOZ82garUaa2trKIoysuH4MFnYF//Pdw0/h0M2zs5rFIr9RS8SdmBXrNxZ8nCZKZMr1Tg8MS6QqkmSaHEuwvpWH8AazQ6lYp2dvRSiIDA/6cfhVGmYZofCAReprI4mPhsyAJbVIrN7lDYQOeYjPl6ei5Ep1zhNFViZibKuY+rZrTIH5wXD+2g6Blim1GLFF2DrOIvHJuN1KiBJYwPAomBcDFZnwjw+vC6BWlSJrePUSFVdkSUmvR78NiuHVznKzQ6zUZ9B/w/g0mShMVRhBzi8yON1WinXmkTcDmIBF/V2B1kxLo4LscCYr1WuYgSskNPCUa7/OwGY9tvpNVpMeF2c5gdK3SbA8jttY4DlsvVLacVak4fHV0z43VwWKqxEAtisCmfF8tjiPR/2sW+i3bdN92jI5eQbB/3SkCKJrIaDeFQLEZdjlP0shgPsmpTNRZMvVNxlIznw0Xo0EL29EQ2y6PVjU0TOCgUkRebIZKTotVtBd4lem9UggNvu9hAEgc3LNP/8rR/iw8bFxQWbm5vcuXPnfS0n9BnTkJU7/PdhsqtPQix2qGTu9/v5iZ/4CX7iJ37iI5/z/dx0nU4nv/qrv8r3fM/3IIoiX/ziF3nrrbf43d/93RFIfVxuuvAC9qCGWVStVuOdd96h0Wjwmc985qnACZ4NoLLZLG+//TY+n4/XXnttpNk3VCN/2jg9y/PO1w90nwEKBWPJzO9zcXiUYX39jMxliZeWYszGfUwnfKBphIPOsXLfVdpYmgn4+9TTnqZxdJKl0+yxv5sm4XXx0kKMhUk/uyamnjlrW5wJGcAp7Hdwf+OMR5vnXJwWCNls2CSJxYnAqJ8T9lgMxIF4yD2yBhlGsdo/Z7neIZmuY1MUhFaPCbeFmaCduN8+RmGvmERVl6fCBssPmypzb+uUx3tX1MptZrxuYh4XUyHPSKJ7eTJo6E+JQl8TUB/TkT7xIV2o8nD/klyhxslZkVvxMLcnI7htFhTJ+KgsxYOc54wLcLl1fU9ogF1VeXyS5SJVxicp3Az56LTayDqr5Omg1/Ddee3jLMGAy06n12PnIsuDw0ukLpRLDe5OxFgM9V11VdPCOOF3s2syZ1Tk62Pa3R61Zou3d5Okc1UmnC5eTcQI2q2GRWHCOz53FTAJK3tUmc3LDPupHOtnGfLVDrNeP3ejUW6E+kQQp0UdU2OfC/gMmaEkCBxm8/yVG4tj5o1PG2dnZ2xubvLSSy89kx+SKIrIsmwgWsiyjCiKo+yq1Wq9b+/qkxCLfRq79+fpphsMBvnpn/5pPv3pT/OpT32Kf/pP/yl/42/8DX7lV37lY/2cw3ghM6hsNsv9+/c/sN/0pHha2/eTkxN2dnZYWVlhcnJy7Bwtk0zL+8Xv/pf7BkuDxfkwO3vXQOH3OdjeNZIlLi6KXF71AcjntjE/EcTnsrGfzNLp9IiFrVykrhdel8PCjoks0Rw0/S9TJS5TJW6vxrELMktzQdrdHo1Om30dkAjARcoIeuGgm1Tuurfg89i596jfe1AVkWjIgcfpxllsU2n0vxO/x865vnQ3FWRX9z6yJHCVr9Pq9DgfqKrPxVxE7Ap2m0Kp2cVuVzk2zWldZo2AMBXxsH54/ZnrrQ5fXz9G0yDotpEIe7BaFRRJHHk/rU6FeXx8/RpZFDg06QhOhDw82L8YmTNGfE5a9Q6vTMe4Klc5z5Yw33JTAScnWWOmVm5d32elRptgq83BWR5FEpj2u7BaFcNgMQyo5UfXJVmnVR0DrJjPxf2jy5HGYNTroFaqsBz0cl6uUW62CDjsBlJF0GUfKa8Pw++wkRwcc54v02p3yVXrOFSlL24r9mWt9D0qn806Nnc1Fw2xdqIXgYUHJxe0BsCryhJ3J6KUWy1OiyXStVrfYmQgpzSMoZLFX33l2ckRAMlkkt3dXV5++eWR19OHiWelsQ//fRIZ1NPIHD1PN90nxac//Wm+/OUvj37+uNx04QUDqKGe3u7u7lP1m54Usiy/L0D1ej02NjZIpVK89tprI8dIfTxLFlYs1vmfX95geTqEYpE5PsuSM6lix+Necjrpn8X5MLu6bKnT7bG2dkyr3cVikZmbDNDu1LBZJOrN/nXMTAV4tHndr5pM+DhK6nTWRIHkWZ5SucHGVj/1vrkSY2UyhKxKnFwViEfcbOne125T2DWRJSRdJtFq93A6HDzaOEcUBBYm/DjdVtJF40JtjpWZiKFE6LApnGVqNNtdKPZBzqOKzPistBC5yFdZnAoZNAIlURgTxo0H3aM5rHypjk1VOM+UsCgSS4kgkiKN1A5G1zIdZl1XRlRliT3TeaM+56iHBbA8EcAqysyFPByli/QAm9UK6Eqn8eDY4HCj28+c2l2No3SZaZ+Ni3ydhMeGz22j1OpwaJqFWoj6DUrsNmXcOsSqdTkqNqHYRBQEbsZDyAgkPK6+pb0Ak35jadFpVdk09bAmAx4ylRrVZpv1ZAqHqqABiz4fLruVdLVKyGXnno5koUoiO6bM6EYiwn3djFer02U9eUFhkP1O+z1MB92clyrka/WRI1i93RlkhR888G6Ok5MT9vf3uXv37keWMjOHuRSoHxIelgTh2uHg4xwMfhqzwufppvukGCYHw/i43HThBQMogHK5zKc+9akPfRO+H7g0m03W1tbo9Xq8+eab7ylB8iwA9fu/94BqtcneTv+BDYWsCF2BibCVtqZQLNXZN2U+XdN8ztxMkEePzwbX2KHZ7JA8rSIIEA3akBWNlKn/4LAbhWSXFyIjEgSAx21le/fKMPtkjfp4aSFGqlDhIl1ifjrEo61r0IsEXWMEi8JAHWFIYb+9HOfytEgi5CIUcNGhx8ahcXdVMJEN9JJLAAGPnZNUfUTftqkS3WqV6YCdy1KDZrtHzGfhVOdpZVXlsaHhgMfen7Vqd9k6SjMT9XF0mWcu5sPjsnJVrIxdy8pUiIc6MLKqMjsmwLKrCg8GAGtVJG7ORmh0u7islpE5oSgae0RL8cAYsPQNEutcFvv/Jj0WaHRZDXrpiSLHuWJf2V0Xy/Eg94+NLLxs8/pv2NM0LIrE2sCSJOp2kAi4aXd6SIIwopMvRvwGK3tFFNkzlfKG/lfD3pYoCKhIvBKP0uh02MvkmPd72DRpBaZKRm2+5bCfbR3wJnNFhG6Xk2IFl6VPtLCoEhupNP/7Z+7yrHF0dMTh4SF379596lL/h433yq6GTrySJNHpdD400eKD4mlKfE8bT+Om+5u/+Zuoqsorr7wCwJe+9CV+4zd+g1//9V8fnefjctOFFwygBEHgpZde+si2708Cl2KxyNraGj6fj1u3br1vLdmsxfde0Wp1+L3/ct/wO5vNyslJYfTzK3enaXW6lGtNjpIZEnEfBzoQkCSBk6RxV20fgI+mQSpdZ2UpwtbOFQGvBbtDoofAjmm+qmiajZpK+A0Z11TCxyMdYzAecqFqAnOJAEdnWXqAyyGjH6GZnwoaSoSyJHAymKe6TJe5TPcp7G5FZTLuo6NpdOkZMiFBgFOTaWEi7CFbvF7kAl4nhwN1clEUiLpkbJKE16FSqPYzrqUpo6it025hyzRzZR+ovx9f5OGiT5UvVhq8PB2l3m6zd5EdKVMMY2kiaAAsmyobZJga7S7tTo/HB1cIAsxHffjddi4KZQNN3LxIzcf87JtKi4JqpVwsUh4QTia9VkRBJBINcFGukavWx6jly/EAmzrgE4AzXW8sVaoS9bpYP7nCqsjMRf2IokahamL8DSjq+rgwZcI3EqGRbQiAIgp0ag1uRYKclyvkag2WI0G2TXNWgon8EnXZORmcu9xs8ej0ihsRPy5R5QcXZniWODg44OTkZDTg+kmHKIocHh5yfn7O3bt3sdls70tjH/73h41arfZcSmfwdG660KeNHx8fI8syKysr/PZv/7ZhVurjctOFFwygnkc8CaAuLi5YX19nfn6e2dnZD5xvej8/KH185b9vUtDNOQWDdgM4CQIcH2XIDXo8HpeViYgHh1XlIJmh3e6xvBhjQ5fF+H0OdndNtOBif7HJF5rkC7C0EKQotfB6FboayKpC8uIaBFRFMtDV4XrxHr2P1879Qa/JaVeJhGw0qg0sqkRz0FuRTFnC8lyEx7s6kHBY2DlM02p3R9nb6nyElXgQ1SKTTBeIhT1sHBiZenumTMjnso1o5r2ehs1mZ3+g7B5wKThtMtVy1UBhn4/7DTNXPpeV7WPj96bIMplijcwADFenQyAIhKbsHKULlOpNA8ECYCLgYFf3XdotykiGSdP6rEC3zcL5VYmIt88K7NFj88z4mSwmavBMxMeRyaxRUiwDa5D+NaxG3IiKDE4bF+U6CIxsUobxpHmp/EBBvdHu29PfSIQ4vigwF/biddhIV6sUqqZMMhY02NtDv8enj4BNYb9Qh0L/tTMBD2GHnXbAx2EmjyZAzOM0CM4CRL1uLnXlRrsssZPO84MxLw/v3x/1RN4vUxjOJZ6dnfHqq69+y8RT9/f3SSaTvPbaa6PS28dFY4fnm0E9jZvu5z//eT7/+c9/4Lk+DjddeAEB6qNKfOgBStM0dnZ2SCaTvPTSS0897PY0Jb5eT+M/fclELY94yWSuH8yFxTC7O9eLpiSL3PvGMd1uD1WVmZ8JYVMkXE4L5Uq/dBSPeQz9qoW5EHsHRpp48rRIvdGmVuvX/Kcm3ST8FgRJIFtqM5nwsnNwDVB+r50dE0OwUr0mgVRrLTodlfPzGrIksjwVxOm2jKlPmBUs5iYDPNSBazjgZHPfuEufDnoNFPal6TCPdOU+t8PClglY9MoM+XKbgMfF3mkOl1XC51LoCSKnppLnVMQ4JBzyOtg2eVZ1NW1kRyII8KmVBJ1uvzR2ni2BIIwcgYexmAgY+lM2VR4BVrpQJV2o8tJcFFWTWI4HESSBQr3OlsnHymk1bhAmg+4x36p2T+PwtP+du1WJuYiXBn11iOZAqd7cY3uSLuCQMHKUKgAF5sI+CtUGLyeitLod9tLG46HfwzKL2/rdbi6r1+BTb3X40+0TNMBrszAd9OKyWyjWGtQGChN2VWHLJJm0HAvx6CzF3/uRv4BWr5LJZEYiqkOw8vl8o8V8KDU2VDT4VgmnPgmc9PG8aezw3WVWCC8gQH3UGIJLq9Xi0aNHVKtV3njjjWf6oz8NQL39J1vUCxWmE05aXZFSpcmeialXrRgbkRMTPtYf9XtNrVaHXrfH/W8e9x1npwM4PVZyeWN9XzO2q1iYD7OuK9VFwi5Oktd9DEGARrnGZMhKud6jUGkRC7sNihYzk34DwUIQoFTuf95Ot8feYZpbKzGK6RrTcS9erx1Nog9Ggw2EJAqcmIZ5I0HjDNZ0wmcwaQx77VgQWUwEObjI0u1pTMd8PNKV7kI+x1gmpA3es9roUm10mU94SWWLxD0qqipTbHTYN/WRYkE3aR3YRP1OQ+lR06BcaY76WgGHSsRnoSWqVBr5US/nwkQ1X5oIGgDLqkjsnGWpN9sjVuBL8zEsSLicVq5KVWrNFptJ42cyK7GHvQ4O09fvVW11qdSbHGYqSKLArM+J12MjadLdM2dqE343u5em7NmicJDKj+a6JvxuxC68nIiSLBTJVuv4nTaSuWvA9NqsYxbzE3436cE8VbHeZOcigyiKtDtdVsIB7FYFRZH42pFRpue8WOYvrM4xGQoAgZGIai6XI5PJ8PjxYzqdDoFAgGAwOLJdf+21175lxn0fBE7mMIMV8KGyq6chSXwnxXclQAG888472O123nzzzWdWBv6gHlSxWOQ//L//J7lMnVym/9C//No07XaXar3N0UmGQNDG+fn1A2+xyOzvj1tMQH+xPD7KcvNWgoujHImoh0DISYcemzuXDBsdggAXl8ZddzDg4ip1vbAtzBkZguGAjXKhQNhnJZ2voyGMad2tLETY1IGrw6GOKO2n5wVOzwsszoUIOe0Dy5AOVqvMuq7c9yRGoN2UNQR8DtbW+2VFm1VhKuGlUixhVUUagxmjWNBNWpdBJsJu9pPGhbLTE+h0NS5zTaDJbMxJudoiGLBRa2sUaq0xQkXI5+JS53MVC7gNxxSqrX4v7CSL3aowE/fjdKg8PDb1bUyApVexgP4s0v551qBR+NpyglanS63dZu8yh92qsGVSb3fJAnoI8zqtnAxKw92exkm2gqj1yOfqRF0WAh4HXUFg63x8pkpPP/c9QZ096LYbmIPL0QByD+KD0qImwFzYxz2dNYgqjZMsluMhHpz0z7MzAMWox0nc7iTqc1Ftt5AlkccXaf7qa0ZquSzLI5kfTdMol8uk02l2d3dpt9s4nU4uLy8JhUK4XK7nJp76NPGs4GQOcy/qWbKr7yazQvguBKh8vr+rDwQC3Lhx40Pd2O/Xgzo/P+eP//s3SB5dL1SyLLK/c0V5wHhzOC14HDJup5/kWZFWq8viYoT19eudZTTqNgCWIMDFoHl+eVnk8rLI6o0YPquV+ISPZreLrEpsbht7QLsmskTXdN3RsI/1AVnCYVcIBhRKhf6cz/DQsinTm5sKGggW4ZCL3UGZcZjhzU0HuTkTQRM1js7zzE8FDdmS32Nn28xe1A0N1xttqpUKp6k6oiiwOOHH7lDJFY0ZpM9l50w3uzWT8HF0Zszcmh2RTKkFpT4ozEbtdHoaXYfCeb6GVVXYMalaBL12LnQMunjQzf7AT6vWaLNxeMXCRIBWtc1SrH9tgiSwprMJAbgylQRXpkI80vXcZFFg9zRDsdr/jm0WhZcmo5TqTY7SBcqNJqokcFowfu6ZkM/gJuy0KlwMJJfS5SbpcpNpnxV7TyTudyIqEleVusHKfnge/dyVVZHG2IYOi8LawK/LY7MwE/FCD+yKPCrdrSZCBoNGgIxJm08vz3Q5IEncmgjzl5bmuJMwKhHoQxAEXC4XyWQSWZZ55ZVXqFarpNNpTk5OEEWRYDBIKBTC7/c/N+mfJ8X+/j6np6cfGpyeFO9HYzdnV+Vy+bvG7h1eQID6sDslvWYf8FRkiPeKJ5X4NE1jb2+P4+NjDneMzeSl1Rgbj67Bx+GwcLBdAEBVJZbnQiiiiMtloTxYZHw+B5eX1wvk8nKUra1r8HG7bezuXNHp9CgO5JLm5kKszoQRZJHjsxwz00HWN67fNxHzcnBoZNBd6hb3Wq2NGnFxkswhyyLBgAWLTTIMyA7nqfQRCjhJ6cpPs1OBkccV9LMGrdnjzkKM80yJTKHKRNRjAJt4xG1gBAK0u8OHVuPgJMvt5RjnyQITYTfBgJNau82OuT9lMWZlC1MB9kyEkFpLHLkCq7JIwi3T7omkyn3SgcOqjKlaDCnro+sNXgvdDsuHi5NBEi4nYb+TcrOJrEhsmTK1bNHYp1udDvNIR8NvttrsJDNkSzUEAWJuCyGPnUyj01euEAbDxSaViIVY0ABYiiSSa/SotbrsDbLqGb8Nj9WCI+AhVa2TrdZHzsDDWI6HeKCjnwMc6jKjUr2J1oX7RxdIotCXX7LItM2KJJEAu6aMyizPFHE7WD9N8X+5u/q+z2Kv1+Px48eUy2Vee+01rFYrHo+HeDxOr9ejUCiMsqt6vY7P5yMUChEMBp/aCudpYghOH2ff6/2GhHd3d9nb2yOZTH4s7/3tGC8cQH2Y6Ha7PH78mGw2y+uvv843vvGNj2S5McygNE1DEISRmGy5XGZh/hb/8v/5HwzHZzPGvkAw7CI1UIlotbqIgsCDbxwhCDAzHcDts5PKGV9TMWUxU1N+Q8Y1NeXnQEeWUFWJbq3VX9RTJbL5Kh63FZ1PHIsLkZGALYBFFTlOFgDodHpcXtWZnw3QqlSIBGyoFgHVprJ/cr1QO+wqu6ZMSDFpBs7PhAalyH7MTfiRNIGpqJeTizwIAj63nfOr6/NOxdycXBhngC4HIHiRKnGRKnFnOYZDUFiZ9tLSeuSrDbYPjdcimSjOy9Mhg+VHu9OjUIVssYIgQMSt4nWrXBabDN03nHb1AwFLXxIcAvrN2Qh3JsL0BDhI5fugZuqFDTOnYaxMhUe9Kk2Dq2ITQVS4zFeIeh1EAy6sFpmv7xn7OGdmK47JEI+OjBlNpT3IarL9zGY56kKQFfx2K0eZAj0YU7aY8tg4MYFqdeDd1O1p7FxkR47CEz4XYa+DcrM18pEaRsjlGCs3xn1u6q0OP3RrnveKXq/Ho0ePqNVqvPrqq2P29qIo4vf78fv9LC8vU6vVyGQypNNpdnZ2sNlsI7D6ILfa9wpN0zg4OPjYwelJMcyu9vf3+bEf+zG+8IUv8Lf/9t/+xN7/Wx3f8QDVaDRYW1sD+hPPVqv1I3tCDW/ybrdLu93m3r17I/PC3/nNd7ixEqXe7HB4mGFuITwa0gVwOq3sbRt3qLVa/4HXNDg5ynLTbSN1nCcW8xAIu0ASWV8/HREQFEXk6Mi4M7eZaOJz82G2Nq/RaGk+hIzIZMxL8rwPCk2TkGwkbOfk9BoYQ0EnB0dZNA3Sg15aOCTgtys4HBLNDrg9NvaOrnfhIb9zDLD0+nkALqeFhwNwDXhsTE36aLS6SKIwGlK22ayALoOcCxtKgpIocHJRoFRp8Finwu63WlBUmZN0AVWVn+A/ZdzpL8+E2Tq6BoRMsUW92aXS6OJzKLidMg6Hlc1knmGv70mAZS4JRv1Og9CtJAoEJ204Z6Kc5cuki1VmYz4OTf5fDROVe2kiwM4gU0sVqqQKVabCHmyCzGzchyAKIMIjUy+saJpzWpkIjvW1Ks0eZwOGn12RWIh6aCJQUOURfV0zZTbTQQ8HpqzLNuhZnufLnOfLBF12Wp0ud2JhGOjr6QkUAKoksXOZ4a27q1jVJ/eAe70eDx8+pNFo8Oqrr460MN8v7HY7U1NTBqJFOp3m0aNH9Hq9EdEiGAw+1fm+leA0jKOjIz772c/y1ltv8S//5b/8RNyBv13ihQOoZynLFQoF1tbWCAaD3Lx505A+f9QMCvr9rEePHhGJRFhdXaVRb/N7//Gb1Ib9BLuKx2lheTnC8XGWRqPDzHyQ9QfXPjqTMwGSR9e7akUROR5kQlcXRa4uiiwuR/E5rCQmfdRbHSw2hY0NnfJCwMmuiSFYNPUsbDaV9Yf99w36HczMB8kX60gidHv9pbdSNfanImE3aV32NzMd4Oi4f62FQl94lY7GRNBKV4NUvonfbyOty/6mEj5OTo3lqJTunIVinYmYl52dKxRZYHEqgNWhcmB6Tbtt/Hstz0XY0LH7VEVi/zhDVU8+uDNF3OsiU6pymi4SC3nGZqxaHeN54wErZwOFimK1TanWxmXvYhMkAm4FUZaw2S1sJa8XaYdVYccEWGG/kXThd9v55mZyxLqcDLqJe1wIPTi8yqEhMBnycGAe3jXd73q19o0BsC5NBFkI+nA5LFyVqlhVmQPTTJUJl5kJewc0837U211KtRbH2QqiAAmXisuhUmgbX+ixW4FrIo7vCeK2kwE3a0eXrA9o/FZFpllrc3cixlW5wlmh3Le8P7nkxz/1ZN29brfLgwcPaLfbvPrqqx/K4txMtCiVSmQyGZLJJBsbG7jd7hFYPYlo8e0ATmdnZ/zIj/wIP/zDP/xdB07wAgLU08bZ2RkbGxssLi4yPT1tuPmeVwa1trbGysoKU1NTAPzRf3kwAicAf9DJ2jt9FXNZkVhejCABbreV0oAwYbUY/wSLyzE2dKW7YNjJ3s4lmgbFAQFhYsrPynwYRIHjZI5ozE1WR9+emwsZyn2KKnGo6z3lc1XCYRdHOylUVSQacxGM+gyyRnabYmD7wbjdx9JSlC0DKUOhmisxEbKSLbWpN7vYbMaFZXEuNCJUQF8p42CQ5bQ7GrsHGW6txKgXmgPLEAvtXpdNU1ZWNmUISybfK5tVYX37nEaznwmEfQ5mI16cVoWD8xzdnsZE2MOByTBRUizoPYxWZiJsDjKhs0wXAfA42sScKharTL7WIRH2sKFjKNos8hhgxU209nqzxdfXT+j1NLwOC5NRH4oMF9kiQ//FiM/BtglQ7San45jfNZq7GsbdxTjuKcuIFRj2OtgxDQo7bcZSWdBt52QAqD0NLkstbIpMOlsj5FAJex10RMZJFiZxW1kU2DeB41I8YGA7Rlx2rKLMZ19eJuEfV3/odrvcv3+fbrfL3bt3PxQ4mUMQBDweDx6Ph/n5eZrNJplMhkwmw9HREbIsj8AqEAiMymrDQeBvBThdXFzwV/7KX+EHf/AH+Tf/5t9814ETfAcCVK/XY3t7m/Pzc1555RWCweDYMR8FoDRNY3t7G4AbN26MBGu7nR7/5Xe+YTjW6b7W8uu0u8iyyKNBrykac2JxSGRNw5iZtJGmHI54yOhUyxeWIoaSoctlpV1pcXMlxvllkXyh1i/76GJxMcLG42vw8fnt7A7O0Wr1ODkuovUktGqHxekAFruKYpFYe3Sd6QUDzjHAMs9xzUyHRjNYggCTMTu1UgmvS6VQHvQtTM30eNhO8uJ64bZZZfYOMyPLEIDVpShxj5NQyEWx1kSU4MAk/5QxKT4sTId4tH39mRvNNmuPTmm1u9itCtOTfXPHXLFGbVDqTITdnJho+nVTGXRldgBYVYD+5y9KJWb8Nho9uMzXWJgI8kgnhmtRJHZNIDIZ8ZEfDA6Xqk2OzjL9MqcgsJDwY7XKSIrElY5S73VaDTJL0J+P0lPbvU4r9/cv6A1LpRaFhZCfkNPBUTpPudHCbbeMDQpPBD1kdBp6NlXmYvA3y1Vb5Kotpn1W5LbGtN+NbFE4K5Q5MunwrU6EeWRi85lllTwOK1/fPeWff/4vY45Op8Pa2hqCIHD37t2PjZFnsVhIJBIkEgl6vR75fJ5MJsPOzg7NZhOLxUKr1eLOnTvfEnC6urris5/9LK+//jq/9mu/9rHbeHy7xgsHUO9X4mu1Wjx48IBms8mbb775ngyeDwtQnU6HBw8eUKvVkGXZIK/y1f+xRVrX5Pf6HezqqNgA+UFpS9MgdV5hYSVM8jKF12fB5bWg2qzs72ZHvSaHU2Vv20QT7xrLcFOzAR4/vM64btyMIyoisaiHi4sCCMIY6Pn9NvK568VoairAyQAMDvbTCAJ4vXamQx48fjuZYg2fz05GP2Q7FeBYx44zz2BpGvi83hFg+b0W3G6ZSqmCgDYyNGw0TcoHM2FDJud2WdndT9Hp9rgafI5bqzFuz0ZoaxoHZ1mmEz52TT25i5QRaOYmAyOae63R5uyiSO0oTa/bIxGw4Q96kFXZQFmfino5MqlljANWmC0dMcNpkajkC0wF7FwU6rS7GstTIR7qAEuWxDEVjoBT4STTATR2TzJYVRlBEJj2uvEP7O69Lhv3dTR2u0UZYwlOR3wjM0YANI213XPqrU5fcT7qJxZ0sX+VG7ECFUlk15RhLSWCPDi8vmYBqHZFGu0e+4P7fNJjoYdIIhIg22hyUahQMnl4zUV8Y+VGiyIz4Xfz6QWjjU273WZtbQ1Jknj55Zc/sUVZFEUCgQCBQIClpSW2tra4uLjA4XBw//597Hb7KLv6sESLZ4lMJsOP/uiPcuvWLf7dv/t3Hytt/ts9vmM+eblcZm1tDafTyRtvvPG+f9Sh4vCzRK1W4969e1gsFt544w2++tWvjmahNE3jnf++wcpqjOOjLPV6i8Skn4LOR2l+Ocq+rhxmd6gkD/uLVCnfpJRvEk1oOFURT9BKDxGn287u9vVONz7h5dA0G3V+WjBcpyjAxv1+5hMOOZleCJHO9PsKPQ1UVSR5YlwwrDbjd7W0HGV765J8vsbpaR67XUFs9bi9GKPabHGUzGIxlSaXFiIGTytVlTjQgUah0CQa9nJycoXDJuPxKiiqyGnKuLs2A8v0hFHUNuCzs7F1OVI6VxQJr9XKrfkoJ1d90sTKXJgtXUlQEODU5C01lfCyPiBXXGbq1Jsa1VqLiYCLYMBBsdbEZjeWliYjnjHAapl6Y5MxP9uDcp8sCcTdCvVyBadVoTIgi6zMhA12IwJQbppo2lNBHu1dcpoqcpoqIokCWrDHS1MRWt0e+1e5MZklSRQ4MskaLerEbnuaxtFljkKlTq5cH7ECJRHWjozEnSuTIsXKZIhNswOyaiGZLnE2KD3PBxxYEVgI+TjMFOhqGg4TEcHnsLJ1lub//sNvGBTfh2QjVVW5c+fOtyRjGOr7pVIpXn/9dZxOJ+12e6RooSdahEIhAoHAUxEtniVyuRw/+qM/ysLCAr/1W7/1XMqbL3J8RwBUKpXi4cOHTE9Ps7Cw8FRir8+SQQ0NEuPxOMvLy4iiaDjH43vHfPXLG4NziyzfiCGi4fXaR2Kx5sHe2YUwj3VkicSUn7OBxXut2kYUoeFpEAtbkFSVdLqG02U1nGNpNca2jizhdFnZ1WVcmXQFl9vGyX4ap8uCL2BBsUoc65h6gYCTPZP4bM1EfZ6dC/F4/ZyLgUjq5KQPpQfL82GOTnM0mx0aJqbe4nyYxzoWoctpHWkG1uodavUOszN+pHadcLCvE6haVA5PrzMYWRI4NpEl4lEPWZ3cU8Dr4N7D67mQ2Qk/HruVeMjFeaqvn7cyFzFoAEqiwIGpRzQd9/Fw+2JEYfe4rFSKInemI7S0HvvnWdxOK+iU15/Uw9KXMDtdDafTxd5A6SLsVrHZJBpVo7Dt0lSQbdMMmN4kEvqg9vjgitMBgKuKhNiFl6YjJLNFcpUGq1Nh1k3U8pSp9KmnsQ9ZgQGHMmAF+hFE0ARGBIfrz2K8fyeDHo5N5WlVUdgazMhZZJHpkBut3cVtVSkNzCxnQj42ztL8yN3l0etarRb37t3DarVy586db0mvxSw+OyzrKYpCJBIhEokYiBbHx8c8fvwYt9s9orE7nc6PpGhRLBZ56623mJiY4Ld/+7efO/i9iPHCAZT+BhiybA4ODrh9+/ZTy9A/C0Alk0m2trbGnHX15/jd//DO6Pfdbg9Zllj/+iEAU3NB/BEPZ7rhVlEUOD0xLrxj4HMjwdb6GcV8E6ji8loopnJMTjjJF5pUKm0qZWP2MW0q9+kzrkq5SaXcJBB0IrZ6LM+FkFQJ2SIZCBbT0wGOj42lu/OzguF9PG4bjwc9LVkWuXs7QbPdxeOyUhxcU9o0+zU95TdoBAYDTo6Oc2gaXF72KezxmETEY0FVBcqNHoGAg30dhd2iSuybSnkBv4NLnXtvt9vlm/eOAYgGnEQibkRZRISRMV40aOUsdT3bI0sCxybdwOm4n4fb5yONwoDPjtbocXs2wkmqSLHawOu2jQAD+jJMZpagfrHNlFpM2T0cJIu4bRJep0JXFKk3jBuCxcngmBRT2bxpiPkMHlozEQ8uRWEq6OEkXQBBYGkiOEagMNPYw06VVKUPHkNW4MpUiIWQH5fdwlWpgobGrkldwuu0ksxcf3a33cKh7u/Q7PTQehqbJxkEYNJrx+OyUq23+KE787gHJI1ms8m7776L0+nk1q1b31bgZA4z0aLRaIyIFoeHhyOixVDR4lmywHK5zI/92I/h9/v54he/ODbv9d0aLxxADaPT6bC+vk6hUODTn/70M3nBPJ0aeW9Ui3711VfHLKSH5zg9yvCN/7Uz+r0gwOXp9WKXPMhgd1jInOSIxL0Eox5kq8yDbx6PdtD9fpVRIsdME5+cDrHx4BQYMPlmnAhaC7/PSi7fQJJFTo6Mi4jbbeecwujnxeXIKMPa3brEalMQBYHZhA+H28plqjxeuluKsq0rTVqtikGCqdPp0ai1R8fMTPkJx9ycnOVHWYIkCRyadPgiEbehpzUR93J6XjAc47bKTIasNDoamXyD2ekAW7psz2FX2TUN5npcNs4GmV46W8FmVTg5y+O0q8SiLsrVKoJg/IzLsxEe7+l7RAJHZ8YNRCLs4aFOqunGbAhFE4gHXX17e0Hoz0LpBV79zpE6+jCG+oOVepdKvUvUbyeVrTDhUZEVhVS5iWbKtqejPo4v3582LgkiX3/czyRDbjuJsAeLVTbY3T+Jxu71OElVrn8X8jrYTqYNIsSvLSeIuJxU2232L3PYLQrbJuCbi/gNShaiIJCp9rNqDTgv1JAFjZN8nf/tRoTj42PcbveI7q0fA/kk42nB6UlhtVqZmJhgYmJiRLRIp9Nsb2/TbDbx+/2j3tV7mZ9CX6H8x3/8x7HZbPyn//SfsFqt73nsd1u8kADVaDR49913kWWZz3zmM8+cCsuy/L6Wxu12m/v3778v2UIURXq9Hv/5t94x/H7xVoIdnayRx2dnb1CGS50XSJ0XiE368DotxKcDNJodrA6LoV81uxDmcO964bVYZY72jAux3epkbyB95PGqBKMOKpUu5WIfFDxeGzvbRtBrmXbPcwthNh6dcXwwUOwOOqnmatxeiZEv1zk9zY+GiIcxPx8aZU8APp/dMIOVPMkhSyLp0yLRsItg2EWjVWfvqDACZJtNYd/ECHS5bKAD09mZIIe6bMlhk2mUysSCVtL5Jp2uxux0gHVTGXHHREcfOgtXay32DrIkYm6uzissTwVRbTKnVwWKFWMmagYsSRzPsFRV4eEgI4z4HcSjngER4Ro8IgGXQRHE57aNAVbA5+YyV+M82xe29btUyvkyswEbxWaPXKWJw2rsQ0QDrrEMy6Eb1M6VasiSQCpfxaLKLMVDSLKIpIgkdWU5r8PCnmlQOB5wGejwNlVm/fBqlHnZLQovT0Up1hscpgpUmi1EAU4yBcN5VidDPDaVCWWLjVtTLl5Zmubq6oqdnR1kWcZisVAoFD4RAoI+Pgo4mUNPtNA0jVqtRjqd5urqiu3tbRwOxwisPB7P6HPW63X+6l/9qwD85//8n7+rdPaeJl44gOp2u7zzzjuEQiFWV1c/1A39fhlUtVrl3XffxeFwvC/ZQpIkCtkyF0cZvAEHhYF8TK1sBL7ETICNNV2PZCnC4YDiXcxVsdgU7A4LK8sReoLA8VFmzC58finKxkMd5TviMhAuyoUWVquF9GUZh0PGG7RidaiUdRI1k1N+jg+NpbtLU8YSiXnYeHTGxaCkt7IaRZIl5meDHB5n0TRtTC09nvCS1/WEYnHvaOYqnSqTTpXxB6x4LCqTUwFa3R4Wm2xw7/W4bWOitopsLI8k4v4RzV2RRSJBC5V8AbtVptboL54zkz4e6QDL67Gyc2AEBJfDxlm3xN7AtXh6wk+30+OlhRjZco3TyycAlmkoWBQFkrqFPZOrEgu52d1N4bCpTE/6QBJGJovDcNtE8jpFIpfdMqYlmIgG+n5Yxf7GIOazUCuViPvsXOSraAiEvE6DPqLHaR3zzIoGXKTyVZqtDltHKZx2lXa7y6Tbjiz1aAoyIb9zZF0PoMrSmBTT0mTQcEyt2Wb3tO88PGQFRvwODtMFg4Nwo23cDE0GPRxc5vjF/+tfIBgMcnx8TDweJxgMkslkePjwIZqmjRbxYDD4sRIE9OD0vG07BEHA4XDgcDiYmZmh3W6TzWbJZDI8ePCAVqvFr//6r/P93//9/MEf/AGNRoP/+l//67fMdPHbOV44gJIkiddff/0jiUC+F0BlMhnu37/P5OQkS0tL79vwlCSJ//X7mzwaDOJOzgUJTfg5O8mOSlsWq8zRjnHhMM8ozS1H2byfHFHQ41N+aHdZvRHj9DRPudTgygQK4YiHzJVOnHUxwuEgi6lXO7RbNUSxjqJp+MM2ZFVBUU2zUStRdjZ1pTubwoGJLIEGm4Ns0GZXuXEnQbnapFZt0Wi0UVWJwwPjTt7rtY1U1wFiMScXF/3Ptvn4vK93F/GwMt3vgZ1c5Jmc8I31p3ZNxoZ6FfZ2p4fb5WZ7t2+zHgnYUFSNdLpgeM1kzMejLZ2rrsc+lmFZrTLbe6lRefHmUhRJErFNyhyc9T2pzEPBy3NhNnWAKgDnA/JErd5ic/eK28sxKtk6SxMBVItIMpUjXTD1kSb8PNQNF1tVmT0TWSISuj7GrkoE3DLVUgmLItJs97+TmajRjNGiSCMh22HMxQM83LvgfLCRkkQBqyBf291f5lieChqU1oGRqO4wViaDI2p7T9M4uMghCgKXqfKIFYgAD0+MrECf00at2ea12TDf/OY3iUQio2dsSEAoFoujwdnHjx/j9XpHPR273f7cLDU+TnB6UiiKQjQaJRqNomkayWSSSCTCL/7iL1Kr1XjjjTf4t//23/IjP/Ij3Lx58xO1Dvl2jxcOoACcTudTWa6/V5gBStM0Tk5O2NnZ4caNGyQSiQ88R6+r8Se/vzn6+fQgg9WmkjrKEo55CCa8WBwW1t7eH5W2IgkvBzpFckGAKxMBwe2zszVg9wkCvPzpWdrtHmiQTZexO1RD9jQ8Th+RhIOzgd3H1WkVt8dKrVYiHLRitavk8q0xpt6w3DeMQNBpGAiu11qkr0qcHGWRZZGF2SD+sIudvStqgwTK5bKOBoCH4XTaGVqWAywuRdnZvuRyALqqKtGptLm9FOMqVyaVqRA19adiEbdBhR36g7fASCdweTHM9m4Kv8eCwynR7PTYPTReSyLuIb+pYwD67OyaPLi0nsbjnT5Y2qwKq6tRqo02dqsy0hSs1Y1lz+X5MFumkuVVpky322N/oOo+P+mh3tRYSjjJ1+okrwokLwqG1yxOhwxuwubSYr3VxesJsr5/hSQKxDwqFlUklTVuYJamQoZBYQE4vjAC1sp0uK8VODjMqkpYNJHbU2GO00VK9eYTSRbm3lci4Gbv3KgVeGcuil1QmIn7EERIlWpsnab5a99zgwf314jH42NsW0EQ8Hq9eL1eFhYWqNfrI9HX/f19LBYLoVCIUCj0kUqBnzQ4mUMQBGKxGJlMhsXFRf79v//3vP322/ze7/0ev/zLv8zJycmflfl08UIC1EcN/RxUr9djY2ODVCrFa6+9hs/ne6pzPPiTE6ql60U+GPWwP8gC0hdFMpdF/GE3XqeV2EyAZquLalMMgLR4M8GOTtbI6bGN+lXQX3zz6Qong0U0Nuljcj7MWTLHWbIv+BpJeDkwgULTKD7NxEyQjQenZC5qQI1gxE69WGZq0kGl1iOXrY+V+6Ixj0GFfXLKPyJhdDo9DnZTlEt1SlcVpqb8ePx2ZIvM2trJCDFDYSd7pt5Z00RHn58Ps6kry81O+5F6Og0/QcDnc3ChG4KeTPg4NrEghxb1hWKTQhEm4g6q7TYTQSs9IFduGeayYJyy7vfaDWoZ9UabWrXF9t5V35NqKoDXax8bsm22jNn44kxozJyx0YLzVKlPfQfuLMfooRH2Ojm4yNLu9MYU7IfUcn0MzRq7PY2rfJPFST8nyRxBl4LTrlDr9LjSidYCTIacnKRN6vgmkE0EPawNlDdEQWAh5iPksFHxu0Z291GfcwywAh47Z7r3c1gUtpNpmu3uiBX40lwUt6IQk6okErPMz89/YJZgs9mYnJxkcnLyPUVfn3UW6VsNTtAnd33hC19gf3+fr3zlK4TDYW7fvs1P/uRP0ul0vquHcp8U35Xfht72fW1tjU6nw5tvvvm+TBt99Ho9vvr7O4bfBaNuMrpS3MKtBLuDjKSYq+Ly2gCB5ZUYPQGO9lNjWczUXIiNtZPRzxMzgRE4AaTOCtSrLYq5Kv6gk+ikH6vTQuq8MGJdzS9H2NfNQlmsMoem0p0/4GFn44J8ul+6mpx1oaGhRBykriqoVoUDMynDYaS96iWXTk9yXJwXsFpkPFaJ2ISfRkfD5lBJ62SaJiZ8Bgo7MJoTG4bLZR2J6fo9NqZm/DQ6XSRJGM0YOU3XohexHUat3qXe6FI/HxgoznipN1r4nTK5cpt2p8e+ifWYiHpHtHIAn8c2Kgn2ehoHRxlWl6LkUxUmox78fgddodcf+H2fBXduMsCByfW3XG1yNJjxUlWJuysT1Fr9ebKhEnnZpMqwNB1k59gIEEMfply5Ta7cZjLkJFeuM+W1ooki54UabdNQ+lTEO8YKVHUuyj1No1JrcnTRHwOI+ZxEgi6sNoV0ocJw1MtuUca0AhdMw8MA59kSEafE7eV55ubm3vN7eq94L9HX4SySx+MZlQIdDscTwW/o13Z+fv4tA6dut8vf/bt/l8ePH/PHf/zHhMNhw///M3AajxfyG/moNVpJkmi327z99tu43W5effXVZ7o57n91j163O+o1OVxW9jeMjLmGif02OR9m491jyoMFcHopgiyLrNyMc3qSpdFoG8AIwO400k0Xb8bZHoBePvP/b++9wyO9y3P/z/Te+0ga9bq9eNdrOMYOBtu47JoSYgg2JcAvYCeQQic5QAgQc4CDnRAHEptAcmLs3fW622B73dZl19vVey8zkmZGI2n6+/tjpNG8r+S+u9oy93X58iXtlK9Go/ee53nu575jpFMZ5mcTqJUy/BV2lBoNGUHcg5EKLOzOJfXfIuSCOu+ortcr8fq1zMdzqr9MRsBq09MpaStKLZdKyswM9IYBmGkZR69XozOoaar1kMoK9A2Elu16VVY5l82wxgtCGiOReYQMdDaPodEqKa9wodQoVlDUiX93Pq+B0THxouvcfJax8dxrL5NBVYWZeDKNRqlmeiaJSiWnRzL/KfHbmG4tFHNo6ViosEbGIoyMRVhT78Wu01HqtxLPpInFU8uqJ6nJbpnPmicnyGWCRaLx/P2qSmw4nUaGghHRQm9egbCAnBWT+LUwGPQMBmPMxnNltMOkRJbOUuHQE5pNEYunMEkI3mbWLYsl8RWY205Mx4jOxpHJQC9TUuG3gyJnQny4S/y+H5N6IvptdI1M87n3XfS2yEmK19pFCgaD9PT0oNFo8mRls9mQy+VnDTndeuutHDx4kP3797/pnc0LHeckQb1TRKNREokE1dXVb8p5Qord//oUk/1TmBw6PGUOjFYjR1/syV9IyqpdDBaQjUqtYEBSxajUSroW2nsyuYyNl1QTj6cYHQ0zHZrF5jTSWSAcAESqPAB3iYnulnlIQ197EH/ATnAsSm2tG4VKyeDQ1DKBhbfEylRh604S9zE/lyYcSjEdmkWlluN26zDZNcTnk8QX1HK+ErHlUu5sYiFBZY2L5uPDTC60llxuE0I8TWO9l8GhaWKzCZSSULvaOo9ohiWXyxha2ClLxNN0tI+xdm0J81Pz1FQ40Bk1zMwnlrURjUYDC26uAFRVuujpXTqvIEBsFsYncoRlt2iw2VVE5zLMzeV8AlVKed6sdhGBErHtktGgoaMnSCqVIRLN/W5qK+3IrBpMFhPDwRnUagUdvVIloZio3Q6jiNT6h6cx6NSMj0Rzy8YuExkEWiVKPSnROK0G2iW38bkdnOweZ9HYtsSuYS4SxWXWEozMg0xGwG3lWHSJaNRKRT4leBF1Zc68n2DLwmzP5zBR58rF3Y+FZ7CYdMsqqrnZOcqcJq581yZOBwp3kTKZTL4V2NzcTDqdxuFwkM1miUQiXHTRRatCTtlslr/6q7/i2Wef5emnn35TM+4icrigCGox9r2zsxOZTEZtbe1bfoyuE4M0L7hEzEzOMxseRq1VotfI8VY4EJCjlMSOV6/x01YgNXd4zXQ3L82ehKzAcG+IiYX5VEmFA3+lk8H+ydzSr0xGRa2bvgKSUyhlDPeJZyEmi46RgSm6FvaUatf4SSUzeNb4GRuLMDuboEeiKtTpxWetbfTSuaDuSyWzTE/EiUwmSSfSuN1atAYNaol3n8dnYLzAkVwmIy9VX4Tba6F5oZKTy2WsXeMHhQyHw8DkgrJMmvlUV+cRxdwvBjVms0K+8lqzxo/XokehzpLMyskIMrokggWFVLZf6aS7QHQRjiTQajRMTsQw6JRYrWo0OgX9o0vtvpVslyoDDhFhadRy+ganSaUFxiZyFUfTxgDzzjRjUzNMTMUwG7R0SJaLPU4TEwWiEItJS/sCqQUnYwQnY6yr96FHSXnARlYGoZm5vOffIvwuM6GCHSa9VkWnpLXoctjzDhQWvRKbUUk0MiPa36ovF4ssANFuFOQIq0NCRiVWM5vKvcwkEvSMTWHUqhiJJPjbP952RpRpCoUiL6RYbAV2dHQQiUQQBIHm5uZTZkv0ZpHNZvnqV7/K448/zv79+ykvLz/tz3k+4ZwkqLfzxspms5w8eZLJyUk2bNjAkSNH8pHtbxaCIHD/vz8r+l7d+gBtR3LWOj3HRzDa1KQSAhXVDhSqXOtsalwSoeG3MlnQyqpq9NFTIBSYmogyNTFDfC6Jy2vGVWJDpVOJXMC9ZWaGewuWLu16kcACcoKEwrbhxh1VJJMZpqbmGB2exu4yLWv3JRPieUV1g4/WBWIJjc1jMGaJz0dw2DRojSpm5zIL6bdLF7Daeh8dBfLuwhBGIB8FsWhqW1JixVNiZSI4I2ppSWPua2o9tBb8jGq1gu7uiXxlB7BhYxk+u5H5VJregclcmGP3G0j9CyqsRZ9At8uIPCXgd2qRK2SotUp6Bpd+jzIZDEnaax6njoGRpddBpVTQ2j7G7EK71+8yUVnuZDgUpX9kEgEZWo1ymRN7eYmd4wWO7ou3iSdStC6sE6xr8GFVa9DqVAxPRpmZT9AtIYzqMqdIFSiTwVCBl+DMXJoSt5W2vhBqlRynWYVcqWQ6KmnTlTqWydalr6HLauBY50h+FqpTyan12MjKFbxvy1v/IHgqMDExwdzcHDt27ECpVBIMBgmFQvT09KBWq/NkZbPZTos5bTab5Vvf+hb3338/Tz/99ClpcV5oOCcJ6q0ikUjkCWnHjh15iWo2m33Tb0xBEBgbnOTAYydF358OicmnpMJD+5FB+ppzF35flRWlMkttk5eRwWkEAXokRJKVaHcrG3y0Hs6JJUJjUWRyOcGRMCarDrNTQzItkE2J22P+cvFCcIlEYCGTwWB3kMmJ3HmdHjOVNS4mxjUM9IYQkFFabs+7SiwiNC5WhFVUu2g+NsR0KA6hOFa7junRaUpL9KTTMsbHY8xLFGI19V5aTxaEIerVdBe08kaHw1itekZ6J3HYDfhKrcjVCk42i1uc4WmxoKIsYKG7a6mq0WpVtLeN5Y1rdTo1lSU2HGY9fcNTzMdTuF0muiTtSWmFVehiMTaWe06Py4DHrEGtyfkE2m0GeiSu8HPiLie1VW6aC9w8gpMxEsk04cg8FqOGshIbBpOGw61L1bRCLqNfYrNUW+7iRIeEaEbDTBe0fDc2+ZkKR5jTKBkPz4FMxvik+L3ZUOGmVVK9zS18IEmmsoxMJihzqxkdncFrUaPTKokmssgQvz9dVsMbBjJmstA5FOYDOxrQaU7fwu1KeK2ZU2ErcNGWqLW1lVQqhd1uzxPWqfDBEwSB733ve/zP//wPTz/9NHV1de/4MS9EnPcEFY1GOXz4MDabjbVr14p2oDKZzJsiqGw2Szab5andB8kWiAOq1vjpKbiI6k0a+lolO0ooGOzI/THLZFC3tRQhq2BibIbw5Cy+gJ2+dslu1KD4wufwmAiOhJkJzzMTnqeq0ctI3xT19V4EhYyx4bCo/QdgkAgSahr9oplWLDpP88E+5ueSGC06Siud6E1axkbCpBcWQGsavKIKS6mS0yepRnylDlqPDzGz4Hzg8RvIJGYpKTEyNj5LJi0wNSluDy3OpxZhMuvyIozpqVmmp2apb/Shl8kpq3GQBbIygc5O8UUxKJFOV9fkXNeXIHDi6BCJRBqFQk5thQOH20Qqmc5f3N2u5RWWUikmf2n2FYBVp6LMqSWezhKcTlBd4aC7X0wsU5K2WH21O18BzcQStLSP4XaakCcFGgIuVGoFcpWcY21iYl4mP5e4swP0D4WYjuZ+Bw6zjtoqF+FYnKnIXN6JPCFpoZb7bPRLrI6MBh3CxAwT4SSQxGxQMxWMUmHTkhTkjIZn8UnskFZyoKhfiBTZeenKke6nC29GEKFQKPJuFYIgEIvFCAaDDA8P09raislkyrcK304rUBAEfvSjH/Ef//EfPPXUUzQ2Np6qH++Cw3lNUGNjY5w4cYKqqiqqqqryb7TFCuqNDGMFQUAQBDKZDLMz8zz0y/2YDEpKqj0kkxkkgjkq6n20HOrLf11S6WS4oCKRyWUMtQfz+1OuUgtur5FMOpObP8lk1K4rpaNAdWcwaemWVBKCAPH5ZP52jZsDJOIp1BVqhgamUKjkdEkEFglJ0F51vZeWo7mKKxaZZ3RgipnIHCqVkqpaN3KFHGliVmmFjb7OpQvRSkvDVquFjoXnVqrklJYbyQoZtFol8Xh6xflUoMIuIiyb3UBn+xjZrEB7c65yqGv0UlvuRKVV0jc4idmszLugL2JcUu1VVS35BmYyWUZHwgwPTZNIpCkvteV2t7RKJiZm8m1Fp8O4bIallRjolpXYGCgwBDbqlAjJOH6nlokFn8Cqcgc9y6Tv4t9BTaUrb7m0SJKBUhuVbitmi45gOIZer6ZL8jjS0ES3TcPE9FI7NBydJxyep7MviFqtoK7Uhc6oXpbqa5TMH1dS81WUODjeMcp0LPecJp2C8OQ05Q4DY9F5EqnsijOr8Mw829eUUeq2cKbwdtR6MpkMk8mEyWSiqqpqxSj4xcrqzTiUC4LAT3/6U+644w6efPJJ1q1bd6p+vAsS5yRBvdEnmsIYjvXr1+PxeJbd/40czReJSVhgoSfveYX5WM7Qs22qB1+li3AwSt1aH1lBxnB/iGGJ75vBIt6rql1fRnvBntPcTIITz3eRzQpY3QacfhtKhUw0h/EELPQ0L31a9gZs9ErmRqHRCMEFB2+ZDDa+q4Z4PMX4eJTJiZll+1QA4yNidV9JuYOWI7MkMik6Tw7jK7MxMRKhqsaNRq9mYCDE9KT4k3xFjXvBYT0Hq91AV8HsKZ3KopRp6O0KIpOD263D7NAzMb7UC1vJhd1famW6wDzX5TaJbJkAaspLcVqtBKdijI9HcwpASRU59jqENTQ0TWhBzeg2G/B4Lcwlk2j1apGLhc2qp1O6EyYJMjSb9fT1555LqZTjd2qRZeIin8Ayv3WZyEL6NhYR38L/1zX52VDtJZZM0Ts0id8jlqgDGAxaKCCoQlVgMpmhvWeCtbVe5qbjVPntmM0aovMJURIwQJnXynRBK1GpkNMjFYaUuDix4EuokMvwmVXMR6O5JOFE7u+p0m+nd2SKL37oEs4UTpWUfKUo+GAwSFtbG8lkUtQKlLqOC4LAHXfcwf/5P/+Hxx9/nE2bTo9y8ULCOUlQr4dMJsOJEyfeMIbj9QhqkZyy2SxyuZxMOssjdz8nuo3Zpme0N0jHq30ANGytIJ3O4i21MtQbQqVV01VgHQQQnRa3fMprvfmKKzwxi0IlZ3J4CINFi7fCwexcglGJY4LVZmSsYPZRs9ZPV0FbS61R0n50kLkFgYGvzI7XZyGbzjIymHNmqF3jp7NZfJ++TnHLyGwzMDo4Te9CheTyG1Cp1JSudRAMxpiYiDIiaUX6y2wiV3a3z0LvQltOyOZEFiqVhlhoFodTi8GsQWPQ0tkWyl+t1RoFvV1iMnV5zAQnluYpHq+Zk0eXiNHjMWExaCkvszMwmBMfSCXrsJywFp3Z4/EUk6EYGo0So0nLmioPaZlA39AUJSVWpguWd01GzTJ7JLvdkH/sdDpLKiVjvDd3Xo9Dh1ojQ60Q7425nUY6JR9opAvILodBZKpr1Kspc5ox6dT0DE+SSGawmDT0D4t/Lqkq0KhX09GXi9DoH56C4ZyThVuvx+0yEUskGZgIL9upkib/AkzPLFWtmayASq2mZyT3XItuFhpZBrdVz5YGP2cCi+Q0Ojp6SvecCh3K6+vrmZ2dJRgMMjIyQltbG0ajEZvNRjAYZMeOHfzqV7/iH//xH3n00UfZtm3bKTnDhY7ziqDi8TiHDx9GLpezY8eO1x12vlbsu5ScZDIZLz5yjMnRpYrD4jLReWxQdL9IKMbowmBdrpBT/54G5meTjAxMEpmao7LRR2+BUk+tVYpmTwA2u4XJ4RlmI3G6jw3jrTKTnU1QWeNEplARnpqjs1lMeimJzU51k5+Ww0tVWnw+yZHnOslmBBxuE54yOwqNEtlCoQYLSr2Cn8ds1S1rEZpMRnraxxlZmLOs21pONgsmk4bBvknUWhV9EmJxuIxMFLxupeV2hhbuPx2KMx2KY3elMOsVmO1a0hkZJquBzralT/Y6nUokqABwOE2ihV6lQs7hl3PSf4tFhz9gR6NToVTKSadzxLASYY1PSAirxk1L80je4kmvV5OdS7O2zsvgaJjITByLWcFMbKm3a9Crl4kufB5LXjofDM1jMmqYG4tgN6oxGBQksgJGvYLC+sVi0i6bhXncFoKThfJ9GUdODJFKZZDLodJvxee10tY3wdTCHpZWo6RL4jZRWebgRLtYZDEwGiYcnc8T2bp6H5msQMZhpndsivlEOu9osYgKv31Z5L2QWfobmppJkc7KiQUjvH+Lh+eeffZ1K45TgUJy2rJly2nbc5LJZBiNRoxGI5WVlSSTSUKhEIcOHeIzn/kMMpmMRCLBd7/7XTZu3HhaznAh4swnhJ0CrNTii0QivPjii5hMJrZt2/aGSpyVKqhsNruMnARB4OG7xdLykkqXSCxR2eTPkxOASqOk9ZVuWl/uIjI6TWnAis1pwOlb6sdXryllriAR1+G10H1STD7ZpJzEXIrek6P0HBvAaISSUhO1TV50ejX+Cgf9kovuhMRTzx9wkF20w5mYIToV4+SBboxqFY1Nfqpq3Xkn9UWUVrrIpJd+PpfPQk+7+HnCk7O0HO5nqGMcq0HNho1leH1mFIrc78Zg1CyTsBskzhgVNS6mgnPEIklGeqNMDEQIj0/j92opKTWiUMooq7CTKJC+G4xqOjskcy/b0kUpGpknMjXLsVf6UKUF6qtcNNYt39qvqXUTkogsQkGx6q2iwkF72xitJ0aIhebwmFSYtDq8LlOe3SsrnaKcLbVasczzrzzgIJMRCEcSDI/MEZ1KMj0xR6lDi9+pRamQ4fOYRLHqGrWCbsmCb0XAkd8Vy2ZhZCxKS+sokdAc5U4LG2p8rKnxLlNRjkqIuKHKQzgqnt9FZuK0dI7R3jFOdjbD1ho/Nr0Wh3kpNUAvyaXSaxWMTYtXASr8dpQKOZ//2FVcfPHF2Gw2RkdHef7553n55Zfp6elhZmYm3zp/JzhT5LQS1Go1fr+f6667jn/6p38ik8mwc+dO/v3f/x2Hw8F1111HKpV64wcq4nVxXlRQo6OjnDx5kpqaGioqKt6U6qaQoArFEECenACaX+xk4MQgdWv9CDI540PT9EmqC+lOSPXaUlpe6cl/nYqnOfyHZgA8AQcOv410Ki2aNblLbEwWuD5UNProK6i4lGoFwcGZhTkYyBUyTFUW6pq8jI1GiU7PUbO2JO9OAQs+fJLQQoMpNxeLRedpOzJA9Ro/4dEwdfVeZAo5o8PT9EuymZxuU37GBblokcEC8Udkeo7+znGCoxG0ejWBOjcmu4ETR5eqMqtNv4ywlJLMp+o6L90dhapBGbPhMCUlBqamEszPp6modNFc0Do1GDUi13UAq1XP6HCYRCJNZ+sYvhIr46MRqiqd6I0aRiciedLOP3eNm27JrGlaIms3W4x0tC4Y97pNuDxm0qmsaD+tptpNS8HvTS6XMTgkbp3VVntobh0hssAbarWc2fAMpS4tUzNp5uJpqitctBS8FjJgULKLVFflzt9maCTM0EgYj8uEy6DH57Mwl0qhVCmWOa3HJbtuAb+NgYL2XjqTJZFI07LwPgh4LTidxlx7r+A9W+m301zQppTLZQyMhbliey0WY+59tpiJtFhxBINB+vr6UKlUIvHBW3UnFwSBzs5OxsbGzjg5FZ7h3nvv5atf/Sr3338/V155JYIg0N7ezssvv3xa86wuFJzTBLX4Caq/v5+NGzficrne9H2VSmVeBFEohpDJZCKC2/eLJ4nPJmg/lGshNe2oITmfQqlVMdg1gclhpKeAFGQyGJO0WGweM+MLG/3jA5OYbHq6jg1i91rwlDuJx9N0twyJ7iP9g61dV0brwrwLwGDW0nlkOH+hdQes6LQynB5zfnepqsmf36cCsDgMdElahJlUhsR8is4FRWDVGi/RcAyPz0loYpZMOkuXRKAgdZ+obvDSvUA+8bkkXc0jmK16MrMJqms9qHUqVBoVxwvO4nCblikApZ+q7S4do/25FteiyGJ2Jpob8i8oISuqnCIFoNGkXeYbuEhYfQutOK/fQmImzrpGH1PheYZHppFKMisrnfngxUUkE0sVzsTEDFarno6OcSwmLaUBO8lMhojEjqqu1kOb5DxBye5cVaU7fxuZDDx2LXPRCDazmulIAmQyysus9A2GRfeLSoIVqyucdC9Ub4umt/U1HtaUu0Eho29kGqtFR6+E6Ix6cbfBbNSK7JmGxyI4LHoG+qewGtRYTEqUWg3jU2ICry9309o7zs7L1yLFYsXh9/vJZrN5S6KWlpa8JdEiYb2RO/nZQE4A999/P1/84he55557uPLKK4Hc9aOhoYGGhoZVOdP5hnOSoGQyGel0mhMnThCNRrn44ovfclzz4gxqsaUnk8mWkcJQxxivLlQ+ueeFsb4gUwvVhFwhp25DGTa7gZH+ENGpOWo3BugoUOoZbXq6j4vnVckFZdfUWISpsQjVG0qQp5NUN3oRBDnz8yl6JEQyKfHUK6vx0nKwN/91NpPlxPPdANi9xlyVlkyJPvGWVDhpebU/fx9fwE6fpPoIjYWJTsYJDefaXxvfVUMimSY4HiU4Hl3wCHz9ReNCU9ue1lFUagUarZryUisGq57geBSXz5JfGgbw+C30SIQaapUGyF0EhSzYbJa8DZPdocFg1RCZjop+xvJKh4iwVqqwbHYDrSdHGB0KA7n9KZ1SSVVFzhU9K4BSYvAaCNgZkAhWFtttMzNxWptHqK52MTkcoaFiKYxxblaytFzloksijpgrMBYWBDCZTXlnC7tFg96gIJtKIBMEhMWfs9S+TBWokLx/vS4z7QXVsFwuo7Tag8OkYzQ0QzA8i8mgoaNPXGGVl9g50T4iut/AQnbVzGySmdkkjdUmRqdnaCrLxcn3TYRJJFOsqfZSG3j9D4pyuTy/h9TQ0EAsFmNiYoLBwUFaWlqwWCz5PSQp+Zwt5PTQQw/xuc99jt/+9rdce+21q3KGCwHnJEGlUql8Cb1jx443nQdTCLlcTiqVEs2bpHjgzqdEX9duqqDjcF/+a6NFx/Fn28gsXKjK6r3oDRrsHjNTC1VMeZ2X5peX2n2lNW4GCgfWchjtCxGPpeheaImt2V6NyeRDQEZ/1wRlNR7RfEqtVdLXJiYJu8tCaEHNNTUWQ6WVM94XxWTX4QnYSadl9C9T6ulFKkFnqZHQ0NJcRq6Q0ds6SmRBmecttRGodTM8OJ1LDpbJ8Jba8hH2i5idEX+yr2n00XpsiNjC3EOnV6NVKVizxk84Os/wwBR2p1EkffeWWhnqF7fGCi2NwpMJ7A4zPR1BTGYVFruWdFbGoGRnSFphGQzLCUunU+cd3/UGDdX1HsLRGEqljHRayN+mEIXR9vnXSy4jlczkxRhlZTbkGYF19T7GQjMEJ2NSQ3LKSm0MDEqJZulG4UgCGWqmI8m8T2BWBjLJlprDbqBTIht3OAyMBZfmTzqtiuMnh0kuvF9LPRYCZTaGg1H6R3IKT2mcPSxPEIbcLlYimaZ9oX1Y4rUgSwp85Nr1vBUU7iFJ3cm7u7vRarX5yspisdDd3b3q5PTYY4/xqU99iv/4j//ghhtuWJUzXCg4JwlKqVRSUVGBz+d7W8magiBgNBrp7u4mHA7j8XhwuVwiogsHozyz+xXR/eYkLZWyeh/NL3blv5bJZBz5Q84KyVflxua1MBudF3n+6U3i3ShftZ2RzqULlNGqp+NIP6mFwbtKo8SoV1G/voSh3hCzMwmq15SK2n0Wp3GZpF2j1gFRZqbmmZkaxldtITs3T1WtE0GuIDw5lzeVzT+3wUCoIP22Zk2JaGk4HJohOj3L/Gwyl0dV7kBr1DA+Mo2w0P2SOrkDTEnECJV1ntyS8MIF3h+wI0tn8foNjI/GEAQZVquBsYUKB3IKwMHXaLnNRlPMRlMEqmxEYrP4vTrkCiUToXmGJFVPRZVTNMOS2i7NzSaYiUQZ7A6jVMqprXKhNaoZGhZftKXR9i6XcdkelsGopa1gHtVQ50atUIrCGKXScqfDSJcklt7jsTIdmcj7BJpNWqZDM/htGuRKGVMzaRxWLZMFEn+dVrlMZFEZcHCy4IPN2HiEeCLFdHgOu1lHid+KVq/iSJv4vRSOiH9/JV7Lsl0sm1nH8HiEHRsreCeQupNPTk7mgwoXVbc1NTVv60PpqcBTTz3FTTfdxJ133skf//Efr8oZLiSckwQlk8koLS19y0qgQjFEeXk5brdbZHFitVrzwWiP/cd+AtUulFo1g51jOEvsDBQaoGqUy8QSmoJP2aM9E1idRnqP9OEqteMKOEil0nQdHxDdh7SklVTvpaWg4nL6rBx7rh3ItRQrGnyolDKsdkN+56ik0kVLaKndV1LlYkBSJSRnBeZjSXpO5M4caHJiMplIZ7MEx+awOY30tb9+JVQ405oOxUilMiTmkxg0KkqrXWQEAblE+FBV76VHYuU0JnGSsNoNtC60RfUGDZUNHlKZDGqNMm9eK1UAllU6lxFWNiMnMZ9hbCB3QfWXm0inM5hLjYQmE8TjKUYkz11R7RJF3StVckaGcq3HdDpLd8c4a9aXEhmPUV7hwGTREZmdp0tCRm63WWS9ZDbr6JJUrCqVMk+OuTBGB/OptCiMURp3b9Cr6emVxH6U2TnZMsLY+PzC48qJTccoc2mJJbJMRxJUBhy0SN4DUjVfXbU7XwFFovNEovNUBhyo0zJqAy7kSjnh6AzDQfH+ns2kY7ig5azXqejoC/KRqzaiUp4601WFQoHb7cblctHR0cHo6Chut5uRkRE6Ozux2Wz5VuCbDRt9J3j22We58cYb+fnPf87HP/7xM+KG/lr4xS9+wS9+8Qv6+voAWLNmDX/3d3/H1VdfvWpnOh04Jwnq7UAQhLynHuRIzmAw5FVG8XiciYkJJiYmaD7Rwr5/fpz56KJiTo51XRn6LeWM9AaJTs1Rs7Gc1pe784/vLLHRdVRMPotzo+DQFMGhKZoursaoV2FwaclmZOj0BvoK4hqUKgWDEgm12WHMS9izmSxKpZzjz7YBUFrrwew0EZU4PBjM4j/WmnWldJ1YqoSUagXBgSjzseTCzyfDXu/EYtUxOhgmFo1TXuumX3IRDkok7IGaXAhjKpmh/eggNpeJ+ViC2joPCqWCgf7JZS2t6kafyHVdLpcx0C2uYBCg4+ggKrWCmgUni0GJMatUqBGodDIgISyFTM3I8CQwh0wGgSoTAjKyaQ2Rhd/t+Kh4tucrMTLYV7BjpZTTv/C4i7lZa9aXkDKmcHrMRGNxxoMz9EjmSmUBm8gXUKtV0lNQWebCGAW6WpbCGGUqOaOSWWNlhZOTBR+EFApZrvoqQG21h5aCD082s5q5aBS3TUNwOp5bXK5y0ympzFJp8ZqF32uhd8FzsGNB0VjmM1DltmKy6BifijEzl6BDEvNRHXDS3DnGtX906n33FmdO4+PjbNu2Db0+J3ufm5vLtwI7OjowGAx5sjKbzaecPA4cOMAf//Efc9ttt/GpT31qVckJcsa3P/zhD6mtrUUQBH7961+zc+dOjhw5wpo1Z9b/8HRCJpyKhYRVwOL86M1AqtR7o7bgQ//2B371lf/Jf21yGYiFZhdm8TICjX5sPjtD3eP5WVPj9moRYVVvCNB9bImwtAYNgiCQKBiIN26rQkBGOpOlr2OM2vUB2gpad2a7gdmZeH7GBVDe4KO/4GLUeFElrQd78/L1+fk0/Z1jIhl1eb2X/oIqpmZDKV0FFkV6o4ZEIkUmlQUZeMtteAJOhnqn8oGDNWv8opagQiFDb9LlE4IBmjYHREvC3jIbWr0anUnLyFCY8PQs5TVu+gvk3L5yM6P9S4SgUMrRGzSicMamTWW0HhsiUOVCb9YRi8UZGpwWiTPqmnx0FBCfNIhR+j2rQ4PNZSASTRMKzuZFFi6PiWBBPErjGj+tBT+3TJbbuyq0Ylq3qYx0OksinaG3fxIQMBq1IkXfmjX+vM0S5IjZZBLfprHJR1vrKG6PHpvTwvjkDAIyUeuusd5Lq0QV6PdaGCkgtuoqF90LhKlfmFuptQoGxuZIL7wvfB4zoxJnjTX1PpH7ukYtJyvIRDldm9aXkUpniM4l6FuIDHE7jNRXufm7W6/iVKJQELF169Y8OUmRSqXyrcBQKIRcLs/PrRwOxzuO0jh48CA7d+7ke9/7Hrfccsuqk9NrwW63c9ttt/GZz3xmtY9yynDeV1ArOUO8HrLZLI/829Oi77kDTmYW2hyCIJAhw9EnTwBQUuvFXmJnWrLkWbjoCuCvddFTYM/jKrPTWrArpdGrUcqgdn0pA53jJOZTlNZ4RPtUJdVuETkBBBdmI+MDk4wPTNK0rQqbWYO73MlsLEE6LYjICWBC4jxd0eij5WDfwgsGs9E4x57rBAEcfjMOnxWFWiFSy9WsLaW9wH0it3MlkXc7TbQVKBqbtpQjk8lw+yy5hWKZjExKogBs8tNWMPdSqRUMdAcRskKe2Jo2luF1GbE5TUyH55idSy7bsdJLZjslAbuIsMKTCYxGPVMjUUwmFWa7Bp1RR3enuFJbJhtv8NHeKv4djI9EmFi42Gu0KtZuKCM2lyCVTOcNYick7w9pGCPA6OgUggDjY3OMj81RW+smNptkfb2Pqeg8QyO5JOJCVJTnlIeFkBe8x+fm05iMOvp6Z1Aq5PidubmVRiP+OzDo1ctEFjWVbpolv9PB4el8C9Ji1NBQ6yEym2DnFafWFPXNkhOASqXC6/Xi9XrJZrOEw+F8ZZVIJPJuFi6X6y1HaRw5coRdu3bx7W9/+6wlp0wmw7333svs7Cw7duxY7eOcUpzXBPVWyQng4KPHGClQLBksegYlYoJUfGlDfLhzDKNNz1DzAJ4KJ85SJwLQeqh36flkMC7ZjXL6bQQL1FslNR5OPJ+bNanUSurWlyETsujNWuai8YWzSFp3GwJ0FVRpaq2KvtYR5mbi+fbi2h01mM0lJJMZejvGcZYYCRYE7ymUcoYloobSKg+tCx6BkyNRMpk04fE5LE49rlI78USGGUmURFWjPz9Hgpy8W+rCnk1naF+o3Mx2DSVVLmIzYil8NCzeralu9NF2TExY/d1BZmfieQXihu0VJFMWZueSDPRNYrHq6ZSQiNEsnmF5S5ZUgrMzKWZnUpQEFGgVAjanDplSiUKpZGCZklDiCl/rprugFZqIp5gYjTA4MIVcLqO60ondbaRL0n4slJYDeLx6xsfEP3t6wYF9UYzRWO9BqVaiLnfSNzhJJiugUYv/hFcSWTidJsaDM6QzWcbG59FplWSyCTxmNWqNnFgii9NupFOS0DwuIdXaKpfIP3AmliAcmSeZzLD+FPruCYJAR0cH4+Pjb0hOUsjlcux2O3a7nbq6urx/3ujoKG1tbW8pSuPEiRNcf/31fOUrX+Gv/uqvzjpyOnHiBDt27CAej2M0Gtm7dy9NTU2rfaxTinOWoF7vzbIohlicOb1ZcgJ4fvdLNG6vZqhzjJmpWSrWltL8Qkf+30vrfAwVOD7LFTIG2nOD7/G+EON9Ieq3VWG36/FUupgMRlDqlIx2LH3KNVh0dB1d2keCXOz7IlLJNHKFnJPPtSOTyyhvKsFkNzAsaVklpRfLdaW0FuxGme0GWg/25Ks5lVaJx2PFYjYx0D1BMp6mZl2pyGFdq1fTKxF/ePxOwuMDREJzREJzOEoMzM+kqapzIAhyBnpDIqcJyLUVC3euzDadqEU4M5UgWwJD7eNY7QZ8FQ5UWhUnj4jneGFJltSiZH0RKrWCrpZRZmdylYXRrKWuzs3U9Bx9vSHSqWzOW1BSrZjMGsYKxGour5nhgdzPMDa4JLLwOtWodRpCk3EsNkN+HrUI6fuqLGBncIE4s1mB3u4gcrmMyNgMZWU2LHYDGZmQSwYuuK/UVcPrs+Rj7Rchl8vzgg6dTk1Ng5tkJotOq2J+4b0gFVloNcvVfNWVbk62jhAMLbXu9EoFZU4N8bRAKJygssJBj4SwpMMAp91IV2+QL37qPafs4v1OyEmK1/LPk7pZuFwubDabqPXf0tLCtddey6233srXvva1s46cAOrr6zl69CiRSIT77ruPm2++mWeeeea8Iqlzdga1uGQrxUpiiDf75uo83MvfXPq/8/erWF+G2W5moGOU8EILp+6iKjoOLrXdGrZV0/bK0uxJZ9WSmEmIZkDVmyvQaNUkEmn62kZp3FZNy0tL8nRvhZMxiX+bq9ROsGAY3rSjhpYXuyir92Fy5HzbpIa1rhJbvuUH0LStStQidJfZmVio2lQaJYEGHyabkc6Tw/kLfNPWClGmldmuZzaaIFMwUK9s8tFbMO8pqbGj0qhRqtQM9E6SSqWx2AwicmnaEqDl1SXysTqNRKZmRcRcs9bPSN8kZdVuMghkIe9QsQhPiZXxAiVe44ZSEWEpVXK0OjWxaByNVkWg2oXZaaTl+HC+ajEY1MTjqbxyDqBpfWl+FwrA5jAQmZ7Lz7lkMiitNiMIciLRNJFIHJfbJHJZB2ho8tFW8NqseJs1/tyystdEaCpKIpMlGkmKCKCpyU9LwQcFs1nL3Fwyb34LsHZtCSdPDqNQyCmvcKAxKJmKzDNSYKS7ptFHs6SadDlNIjcL6fKwTqfE49EST2bz+VZuh1HkkA6wtsFHT/8k//WLm9Fp37ns+1SS0xuhMFU3GAySTqfp7u4mlUqxYcMGPvGJT/DpT3+a73//+2clOa2EK664gurqau68887VPsopwzlbQa2EtyqGkKJqfYDvPfw1XnrgEC8+cAitXsOxp3N7TaX1fux+GxOSvZqI1LamKUDzgaWKyxGw0F2w3Gt2miCdpnpdCf3tY6STGaxus4igVmzdLThLDLaPAqPUbanA6zNj99mYCsUwWMWOFSq1Ytm8yu4x5wkqlUiTSWQ4ur81J1+v96Iz64lJWmyl1e6l+RQ5U1tparCQleUj7hVKOfWbS8mkZaSSaWZnEihV8mXzKX+5g3CBSa3DbaK7eQRBID/bqltfSk2NG6VGyWD/JO4S27LHmZIY3dY0Ls2wEvEUPe1j6Ic0JGJxqmo8yFUy5tNxhnuXWmw6/XLHdH+pjekCgjWYdIz2xfIEYbNrsJhlIOgJTuREFharjk6JVF8aFWIy6+hqHyOdzuZd09dtLCXlzJJBoHdgEqVSTpfEFzAQcHCyYFlbqZTTt/CeyWSy9HQHaWryM94fzocxTkzHCEpfn2rXMvf12Tnx79xk1NHXlzvz4txKpxeYnVUyu7AsrVLK6R2Y5H3vaTjnyAnEqboNDQ3MzMzQ3NzMnXfeSW9vLyUlJVitVjo6Oqivrz+tZzlVyGazJBKJN77hOYRztoLKZDKiuIy3M296PWSzWToO9fDi/Qc5sO8QE/0h1ryrnuYX2vFWuXH47ciUilwbbjHLSKdCoVQwX7A/VLUhQE8B2ZSt9TJ4MneR1ejV1GyuJCtAX+sIiYWBesWakjwhwXKFoMVtZmYyJnJUb9hejVwuZyY6z2DXBA1bKmg/vNRiM1r1JOaS+QVggJr1ZXQVkFrtxgCdRwdy8nWHicmJGWZnE8TCBUqzrRX5+RSAr9zBqGRI7ywxERqeQSYDb4Udg1PLSF+UuZncz6fWKFGqFPnMKliuAHR6zYQKKgGZXMb67ZUkU1lGR6eZDs1SWedZ5mLhLbUxVmDOWr++lPaCyghZLk7EZNFjcRiZnIxhd5loKXCbUKkVqNVKZgvPt6GMFokoBCART2MwqbA4tBjMejrbc1ZJi7eRIRPNrdasLxE5W6jUClQqRd4SSaVSsGFLgNhcksGRaWZmEisq/hoafaIlYACfz8JoQau1qtpFJDKPx2thNpGkb3CSqioxQVnMKiJRcat4baOfkwXrD2q1AoUiZ8HldGrRaOSotSq6B6Lc8cMPU1O53C3+reBMk9Nroa+vj6uuuoo/+qM/Ytu2bTz00EM89dRTfO5zn+PnP//5qpzptfD1r3+dq6++mkAgwMzMDP/93//Nj370Ix5//HHe9773rfbxThnOC4IqrJzeSkvvzUIQBHqPD/DKI0d47t6X8jOo6o3lRCdjuMtdRCdnUZvU9BReZEttTA6HRQvFzjIboYKgv5qt5XQd6kelUVK+phS93UTPicG8MAJyO1ahwtbdQrtvEf5qNyMFjtVmpxGL30A6KWN8IIyQFZa1+5x+K5OjEdHZAvVeBgoqlPotFYSDMzj8uSDCqeAMgkCeSAEaNgdoK/iZy2rcDEo+/ZtdOqLBeVylFmxuC1qjnuMv9+RnMBqdCplMRrxQgr85IDK6dXothAqk1P4KB75yB0ODUzlCksmoqHXTJ9nd8gfsjBRUvVUNHnraxKRWVe9Fa9AwE4sz0DdJ4/pSWguWd+VyWW5Bt8DdXNoSlCtk6HQq0ukMNpcWuVKFzqilsz0kehyDUcNMwe+2aa2flpPimZ/TZSQUjCGT5aTxLp+FvoFJ0SJwSamN4QIiXsnctrbWQ2fBsnBpmQ2jSUsagb7BXOBhRcBM38DSB4FCMsqfsdEncmgHcLsMuF1a3n+ZO7+D5Ha7MZlMb+nv72whp8HBQa666iquvPJK/uVf/iXffYnFYoTDYUpLS1flXK+Fz3zmMzz55JOMjo5isVhYv349X/3qV88rcoLzoMW3OG86VZXTSpDJZFRtKKdqQzl/8vVdDLQOc/CRozy/52WCg5MEF5zKnRU2arcESM6l6W8dwV3mJFRwEalaX0ZPQcWiVCsYWiCEVCJN1+E+ardWMheKUrG2FK1Jh0yRy5ZaRGG7bxEmmxEK4u80JiWDx3MXJoNZR2BNCUImg1KlIL2w0+IqsREqWLwtqXGLyAkgHJzJy9cB1r+7jlQqw9xsgv7OICabbpnFklYi73YHLEwMLC4sRwgORTA5tFgtKlyldubm0pjtRhEZafUqeqRzE7+YoJLxNK8+k2ulurwW3CVWlDqVKPoiUO1aFnWfSorl/zWNProKnsti1aFRyKiuddHXO0kmnaWm0UtHs0TeL9khqm3w0b4gAhkbzLUGbU4dHqcajU7N5GQCt99Mb5e42pyakohA6jx5r0BBgIHeSWTA5FAEn8+Cw21CUMhoPjksElmoJOa2DoeRLol/nsWsy+9iKRQyyktMmPVGLKYkkYWqv7bavWxmFZbEjpSX2ekfnOLP/+xyNm8szQsPDh06hFKpzAsP3ihGY5GcJiYmVpWcRkdHueaaa7j88sv553/+Z9GZF0UWZxv+/d//fbWPcEZwThPUYksPOG3ktBICjSUEGkv40F9fw1DXKPf/28MMtYzQur+bUF+OkDwVLgQhQ+W6UvqahxGyAjJphMbmSloLxBIGq47uI31kM0K+LVixppTSSgcmh4nxwWk8lU5aXypo9zmNdB3tEz2uRr1EErPReYS0QOvBDjR6NbVrSpCrlAxLMoKk7hOVa0roLSBCmQyGOsfyi8kmu4H6daVMTczQ3zVBJp3F5jKJHCsATGYjEywRS2WTP68SDE/kLs7pcivV9U4yGRn9PUGqGnyidp/OoH5dwgqNRcgKWaYnZjBb9fgrnSRTaeQq8du7pMLBoMTxIZMRE5bDbebYQjqvVqciUOtGp1Wh1amIL1QV0twqgJjUFqreUxDyOAcySFkVlJbqicWyhMNxKqtd9EoIVOoMX1Jqo3/B6mh8NML4aIT6Jh82g5aSMhvxZIZIbH7ZzMrrNTNZIGpQqxX0FKgCMxkBs9FA84LApCJgx2TRkkpnRbL/lfasdHo1bpeJrZvLUSjk+Hw+fD4f2WyW6elpJiYm8jEaTqczvzRbmI9USE5btmxZNXIaHx/nmmuu4eKLL+aXv/zlO17qLeLU4pwlqO9+97uYzWauv/56/H7/qiht4vE4Q6F+dnx0E+vX30xkYoaXH3yVA/cfAhmcfC5nSaS36KjdUs3czDwKlSLvDDE5It6xqVhTJpK0W0tM9DWLL/g2h57GrRVMjkcZH5ikpNYrave5y+0MSQb1i0KOxFySjld7abq4htlQhKrGElR6DZGp2WWRINLXs2ZDbj61iLmZedoP9TAzPYfOqKFsrQ+T3cjxl3tJLfjnOX3LU4Klv6XKJi+9LWOM94cB0BhUpObnqa73MNAbIpXMUFnvo6VgnqbVq+htlar7bEyNzxCdniM6PYDVaWR+Lo6/xIDeZGSwfwqjSbwL5VnBiV2uWPoQEZ9PMReL03FyGIVSTnWNG7VeTVaQSMtXcK2QSRrnVruGkb4lwrDZNciJ43ItiSw8Pgs90vaoRSdq5VmsOrrax8lksvmW49qNZbnkW4WMgcEpUpksvRJVaE2NmxZJTMpUQZ7T4MBUvk3odZtwe8zMzCdQS/asLGYdnV0T3HTjxSgU4g9ccrkch8OBw+HICw8WJd3Nzc157zyn08ng4OCqk1MoFOK6665j/fr13H333UVyOgtxzhKU1+vlt7/9LV/96lfZtm0bO3fuZOfOnZSVlZ0RspqZmeHIkSM4HA4aGxtzGTcldq75/97HNf/f+5ieiHDw4SMc2HeIE8+0kJxP0HmwG61BQ/XmcgxWPS0FlZBap6L3hJgk3H4X4eElBZi31kHnq0t7Tv5aD7JMGkeJmdBQBJlMht1jZaJ/aeZSubaE3sJARbmM0Z4J0slM3oppzY4aNEo5eouOkYEp1FoVPSfFxJiQxIjXrA/QvmDLNB9L0Nc8jFwhI5tMU1bjQm8yotSoCBUM7d2lNnokO1aC5GLvLrHSeST33Eq1gkCVA5mQQW9Q54UE0gpLo1PRK91zsqkIh2KM9kSACDa3icx8ioa1foYGpohF49gdRsYLLv4Oj4keifLRsEBqmXSWnrYxXD4LofEogQonJpueiYmZZa4VLo95mSrQ4bIQnlwiH4VcRV9bbj5pWhBZ6E0KgmPkRRYrZVmVBuwikYVSKaevO5iv4BQKORu2BojH0wyPRZheUGVOSvbJqqqcoooKcoINgODEDMGJGaxWHYIAa2s8JDMCvUMhykpttHeO8/4rXn/XRiaTYTabMZvNVFdXMz8/n5d0t7fnhEUlJSWk02mR2/+ZwtTUFNdddx21tbX89re/RalcvUvhD37wA/bs2UNbWxs6nY5LLrmEH/3oR+eMevB04pwVSUCuTTAyMsKePXvYvXs3L7zwAhs3bmTXrl3s3LmTysrK0/LGX7T/r6ysfFMR87HwLIceO8qB+w9x5A8nSMZTVK4LMNQxQsXaAAqVEpVOzckF13IAq8dCNDQjUuqV1nvzMyuA8vV++o/nLvg2r4XSxhLmonHRoq3UE7BuSwUdBX5/Ko0StUbFbHRJIbbp8iYSiTTBsTChkQglNW6GJZ/sfZVORguG8lUbSug5tnTh1Bk1gAxPuQOdUcvowDS+SietBcu73nIHY5L2kdQ30FdtY7R7Gplchq/KjtFiJB7PiGZLUkGFQilDqVKQmF9SLBbuYclkUL3Gj0avZnQkwuSCY0LTpjJajix9SDBbdczOJERtwMaNZbQWRNlbbHp0Bg12t5nIzDxD/VM0bSyjpWA3y2DSEJ9PieyvmjaUim6j0SoX2sBgc+mQq5Q5kUXb0musUMgwGLVEC9V8a/y0SRw7fCVWRhd2xUrK7Di9Bvr6Q0yHE/nWXV2dh44C8rPZ9EQi86IW45q1JblZ1wK0WiWV1W4amnx8+pPv5q2iUBBRXl5OJBJhcnIShULxpudWpwLhcJjrrrsOr9fLnj173rL90anGVVddxZ/8yZ9w0UUXkU6n+cY3vsHJkydpaWlZtcyrswXnNEEVQhAExsfHuf/++9m9e3d+o3rnzp3s2rWLurq6U0JWg4ODdHR0sGbNGrzety6vnY/FOfKHk7yw92UOPXaM+IK3mrfShcFiQG3QMNwxTqCxRLRPVVLjZbhLUiW4DcxMLH0yrt1WQecrfZidJkrrfMiUcjqODIgujKV1XoYK5ieN26pFIgyDWUcqmc67VHgrXJQ2+BjuCTLaP5lbYG70i1zYAUwOHTOTBXL0bVUir0GjRYfDZ8VgNTAxFiU0GqFhczltBa07X4Uz79y+CClhuQImggMzuANWrC4zk8FZ5AqFyMmirM7BYIFzh0IpR2/UMFMgl2/aUp53uvAF7Ni8JmKxZM7vb+F90rQpQEuhy4ZOlVMxFsjGpbdx+604vRbCkRgjw1EEAdZsLKO5gNRUKgVqjUTGLlEFApitGjR6RU5kMZXEX2ajU6JALCmzMVygCi2vdC5zu/CWGBgbnsXhNOLxW0hlM3T1hESLyotLv/nXTCHDYNAQLVAc1td7aW8f46c/+xNqaj28FbzWzGlxbhUMBpmYmHjdudWpQDQaZdeuXZjNZh544AG0Wu0b3+kMIxgM4na7eeaZZ7j00ktX+zirivOGoAohCAJTU1N5snryySepra3l+uuv54Ybbsi35N7qYy5m0mzcuBGr1fqOz5mYT3L0qZM0P9/GH37zHLML7RitUUNpnQ+1TstoX5DweHSZY4Wnxs5411IrT6GSo9KqiM8sXfQattcw0DpMoKmETBYyWWGZArDQXQKg6eIakcuF1WViZnqWTDqLw2/FW+FCqVNz7PnOPOG7KiwE+5YIQiYDm3spVRiWu1pUNPkxWPRMhWZze1QyGQ2bymk7UkBYK+xYLScsM5mkgM1rYTI0Qzg4j6fMLmrd1W8ozXsAQi7F2Go3Ml2wxNq4KUDrkQEcHjPuUhtzcwmmpueIFijYpNXTSs7rhbfR6dWU17lRqJR0doyTWFhybVxXIpKxAzg9ZkIFr1dto0/sJygDf7kRuUJBNJYhPB1fcfZV1+Clo6DdqTcqmZ9Ni1wq1qwvpa8nSFmFg7QgMDg8jVKpYKZA6FHf4KVd0jatqHCi0Sj58U8+yluBIAi0t7cTDAZfd+YkCEJ+bhUMBonFYqc08ykWi/HBD34QtVrNQw89tGqzrzdCV1cXtbW1nDhxgrVr1672cVYV5yVBFUIQBCKRCA888AB79uzh8ccfp6ysjJ07d3LDDTewfv36NySrdDrNiRMnmJ+fZ+PGjafljZ1Kpjn5XCsv3n+I4PAUh584nv+3uouqUGk1jPdP5oUV/jo3Ix1LbbfGi2tEikCNQUUmlSWdzIhuk8nkQgX728corfOK2n9yhQyz3Ui4wCRUSljOEhuTI2FMdgNWv4lEPI3OaKC/4GJaszEgysaSyWVY7EbCBa4bTdur8sGMDq8Ff7WbWCwpmiVJd6y8ATtjEiePsjo3gwWvQ6DBhVqrIZkSGOwJIQi5namRggt57boSOiUE4fZbcw7rC6jfUMZwX4jSKhfJTIb+niBWu1FEIvXrSmmXqBYtDh2Rgkqybm0JHSeHUakVBGrcKNVKEqkMvV1LLcqVVIEV1S76CtqYJQE7wwU/u9mmweHRMxPLMDGeE1lYbXqikjZdVa2Dnk5JNalTi8iocY2fVDqLUqNgYHiaWCxBoNyRy/NawOIS8F/99ZVc/kcNvFm8WXJaCYVzq+np6XeU+TQ3N8eHP/zhXFrBI4+cldJxyFWU119/PeFwmOeff361j7PqOGdFEm8WMpkMq9XKTTfdxE033UQ0GuXhhx9mz549vP/978flcuXbgFu3bl1GVvF4nKNHj6JUKrnoootOecthESq1kk3vXcem964jk8nSeqCDFx84xIsPvIpKo6L5uVYALD4T/lo/0yNR0XB5elxs1lqzsVKkCDTYtLS90p33vlOqlRiMauo3BxjsmmAuGqd2UzntBS4RKo2S/hbJhbzUTmh4muhkjOhkDE+5g2D3OHXrS8hmob9jjOS82JmgdkOAjoLKSKGUi2Zak2MRPOUOeo/1Y7IbKKn2kMkK9Eqk5VanSURQnjKbiJwgJxvvWog10RrVVDb5SCSyKJTyfKszITHZrWr00iNRBcai88Qi8/m4kNq1JSCX4XAYGOidZH4+SWxGHMUhzbYC8svHqWSG7pZRymvcDHRPUFHtRm/RMT4aRUD8GdFbYhWRE4BRsgaAIKe/M0w2I2A0qrA6tRgsOqKRpYpPrpARHBOLI2rrvctmVrGZeN7gViaDdetKEeQ5Z/RF41mb3cDcXJJ3/68a3izeCTkB6HQ6AoEAgUCAVCqV37c6fPjwW5pbxeNxbrzxRhKJBI8//vhZS04AX/ziFzl58mSRnBZw3ldQr4fZ2Vkee+wxdu/ezcMPP4zFYuH6669n586dXHzxxRw8eJD/+Z//4bOf/ezbagueCmSzWTpf7eGx/3ySVx87QWR0hoaLa2h7qQt3wIkr4EShUnL82bY8WckVckx2I5Hg0sWy4eJq2gpUgza/memRaP72gaYS7H47Pc1DRBcUX9I5ks6oIZsRRIq+hm1VtBXcprzRj1qnRqZSMNg5QXwuSWmNh6GCpdH6zeUiGyaFUo7BrCNasLTatL2K3uZhyup9ZAUZU8EoM+G4yKqpep2f7hNLF1unz8LkWFTkjuGrsjHaM41Ko8Bf7cRgNdLTOp7faQKoavSJ9qxWWvCtbPDmqzuFUs6arRUkUxmGB6fyogVPmYnxgiiTknIHw5IWZe0aP50FBOHyWlCqFNjcJqan5xgZml7mZGE0aYnHU/kla4A1G0rzO0yQmxlpdCrSqQw2txaZQpHLt+oQP39pwM5QAcmXltkZGhRXpYUhjV6/BZfHTHQ2wdbtldx087t4Mygkp61bt57SSPbCuVUwGCSVSr3m3CqRSPDxj3+cYDDIE088gc1mO2XnONW45ZZb2LdvH88++yyVlZWrfZyzAhc0QRVifn6e3//+9+zevZsHH3wQyEnJr7vuOu66667TVjm9EbLZLG1tbYRCITZu3Eiob5qXHzzMC3tfYbAtdxGp3lTB9FgEX7WHWGQenVFH+8ElMtLo1cgVcrFH4KYyegoUa74aF6MLbadAYwkmp5FkIkN3QQur/qIK2guMYw0WPcl5sb9f/dZK2g/lpPAKlYI1l9SQSmYZ6gkSW7iQl1S7RYvC9ZsraC8w1F2JsNZsryYRT6FQqxjqDZLJZkklM7kU4AVIfQKtLhORyZjIMd1bZWGiP4q/yonOrCchUQRCzqS2o0Cw4Cm1Mj4Ufs3bOEuM6K0aZqNZQgXGsFIfQOuCQ3rheZo2ltFSMNfyB+xYnUZm51L09+ValFLFn1wuw2jWEi0QfdSv9dMutUzyGpDJBDR6NZPTCaw2o0hQActVgAajmmQyQ6qgNdy0roS25hHu/M1ncHvMvBFOJzmt9FzSuVUmk+HgwYPs2rWLf/iHf2BgYIAnn3wSh8Nx2s7xTiAIArfeeit79+5l//791NbWrvaRzhoUCWoF/PznP8/vV7W0tCCTybjmmmu44YYbuPTSS1Gr37l785tBOp3m+PHjJBIJNm3atExxNNQ+wisLlkvdR/ry36/ZXIlaqyI+l6KvZZjGi2toOdCZ/3eT3cB8LEG6gFhKGj0Mty5VORXry+g7Poi/xoPNZyM4Os3cXIK56QIfOcl8yuwwMhuZE6kGF2XtMpmMQKMfm9/KQPu4KIF4OWGJKyy5QobJZiCyIGqQy2WUrXWhVukJjkQJT82i1ed+J4V+ftLoEKNVT3w2IapESursZJICZoeZyYkYmYxANDIniktZFFAswmo3rHCbMlqPDOIps+HwWJiLJxnsy+VR5c8jkbGv5EFYSFgGk5ZAtQuZSkFH61g+er1+jT9vq7QIX5mV0cFw/uvSCgdD0sj7ahMCCmZiaaan47nKbF4c4bFmXQnNkvmcy2OiutbD1//39bwRziQ5rYT5+XkOHDjAd77zHQ4fPoxareaLX/wiN954I1u2bDkrozO+8IUv8N///d/s27dPtPtksVjO+Ot3tqFIUBL89Kc/5R//8R/Zt28fl1xyCel0mmeeeYZ7772Xffv2kUgkuOaaa9i1axeXX375aZOpJhIJjhw5gkqlYv369W9YwY33B3lx3yE6Dnbzwt6D+e8bbQYq15cTn03Q2zxMJpVhzbvqRPMpu89KeDwiGq67Km0Ee5c+bXtqHaRm0/iqvESn5xjtD4lIA5ab2FrdZqIS1/XazRV0Hu6jpNaD1W0hA7QX7EbBcsKq21xOx2HxbawuU17MUVrrwVvpoq9jIr8YrFIrcvtdBVVj00UVougQrV5NNpslGV8i6trNJchQEI0mGBucXmprFkrLCyTqucdRgSAjXtD6bNpSzujAFN6Anbn5JCNDU6jU4vNIVYGQix2ZLKjCFluCao2S8ho3cpWSZCZLT8EOk6/UwuiQeAYpraiMZh3zc4n8hwezTYPDuyCyGJvNS+sdTmM+BgSWEoO/d9uHWb8pwOthtclpEZlMhs9//vMcOnSIL3/5yzz77LM88sgjOBwO2tvbV60b8lp4LdK86667+OQnP3lmD3OWoUhQEgwODpJMJqmurl72b5lMhueff57du3ezd+9eotEoV199Nbt27eKKK644Zeq+WCzGkSNHsNlsNDU1veXZ1+Rorg144P6DJONJ2hfk6VqDhor1AZQqFZ1H+vJihqZLakUVlqfSxbgkhdURsDA5sHQRXHdpA5mMwFwswUDHGEq1Aq1BS2y6YI4kqbBsbjPh0IyoxVW7uYJoaAZnqZ3w1BwKjYJBiVWTdIZVvb6UbsnOkNNvJTQSxhNw4PDbUOnVHHu+K3/hlStkmCx6IoVzLkmFpVDJUWuUzMdyRGN26Klo8jM9OcdgTwiQoVDK0elzgYiLkC4Ky+QsD2zcWk42kyWVEejvDZJKZnD7LEwU7G9VN/noltgRlde4c7tZCygpdzA6NEWg2o3OqGV4eBqdUc7Y0NJzSckIlrcJZQuxI5HpefQGJRanFp1JR09XWPRBpabOQzye4o5/v/kNU6zPFnK69dZbOXDgAE8//TQlJSUAJJNJTpw4wZYtW1blXEW8PRQJ6m0im83y0ksv5clqYmKCK6+8kp07d3LVVVe9baXQ1NQUx44do6ysjOrq6nfckoiEZnjl4cO8uO8Qx55upmZLJW0vdaHSqqhYW4ZSrWJ8YJLpAqdwqWTdV+1mVGIu6wzYCA3kKiyT3UjDxTVMjUfpbx8lmxFWdKiQVlg2j5lwUExYa99VRzYrMBtLMNA5Tmmth6FOMWEF6n0MtC9dyFciLE/AQSqZxlvuZDaWQGvSiaLtISeqKLRiatgUyKv2FmG0aYlNx9GbNfgqnOitek4eHBDtFbl8FtGisHSGBeKdLrVGSdPWCubnkgz0TzK3sKwtzbfyldkYlcyMpHMtrV6BzWHC5rYwOTnL2EiYNZsCosVgmRwsVgPhAnJetmcFlAQsBMdj2FxaFGo1ybRAcDzG5275Iz6wcyOvhbOFnLLZLF/60pd46qmn2L9/P4HA61d8RZz9KBLUKUA2m+Xw4cPcd9997Nmzh6GhIa644gp27tzJBz7wgTe9szE2NkZzczP19fWnJX9mNjLHkT+c5Ln7XuLwH06QnE/SdEkd7a90U7GuDI1Ow+RElOnRcN7wFaB+W3W+CgMobfAyJFnidAXsBAem0Jt0BJpKMDpNnHihM/84aq0qF1I489ozLGmFZbYbqNlcwfDABMGhKEJ2efsPoLKphN4COXzFGj99khlNzYYcGSdTWfo7x6ls9C2LCpE6WdSsK13mzm5165mLJvFXOVFq1MgUCjol4oRAjZuBgqqnvNZNvySnqrrJT3fLCHKFjPJaD0abgYHeEOGCCrRhQyltBVWP0azLzYwKZmi1a710nlz6Xbh9FjxldsKReQb7QgjIqGvy0SGpzCpq3PQVnNHlMS+LECmrtpBOZbjx8xspK/PjdruXdQnOJnL6yle+wkMPPcT+/fupqqpalXMUcWpRJKhTjGw2y4kTJ/Jk1dXVxXvf+16uv/56rr32Wmw22zKyEgSB/v5+enp6WL9+PU6n87SfMz6b4PDvj3NsfzPP3PNiXuHX9K46psanUepUxILzyORyZqZionZR7ZZKsWmtZGkYwF3uJDIRpXxtKXKlApVeQ/OBJTJakbAkFZbFaSQ6NYuQFdCZtAQa/BjtRk681J0nPk/Akc+rWkT1+jKRO7u0Rag1aGi8qJKZaIKB7gmS8fQyhwqAikYffQVVhsNvZHJEHKHuq7ahVCjRmQwMD0xhcRhFS8GwfDHY4c25bBT+5S0KMUqrXJgdBiKROcZHoyKFpNRWSSZbaCUWVEaLi8GQa+H5K5yo9WpOHhvK/w49Pgvjo+KZldRqSamSo9GoePd7G7j2o2uYmJhgampKtCxrMpno6Og4K8jpW9/6Fvfee29RBXeeoUhQpxGCINDa2sp9993H3r17aW5u5tJLL2XXrl1cd911OJ1OMpkMv/rVr2hsbGTTpk2YzW8s4z3VSMaTHHu6hRf2vszx51qYLFCDbXn/euJzScYHJpkcCePw25gaFacE12wqp6tgEddT7WC8W3yR9lW70Zv1qPUahromCDT6RTH2Ko0SlUbFXEFLsLTRxVDr0izMZDcwNxNHoZBT3lSCQqVEoVbRcnBpD8vhszI1Jk4KrttULloULiQ1lUZJeYMfs8tM+9EBZhesojwBO+MS14ryBjf9bUtELG0RymRQt6UUUDAxNsN0aBaLw8BMWKL4k8ystHrVsqTixs0BJsejOHxWotE5hgemcvZMBRlP0p0qWD6z8pbaGBuaRqNVUV7jRqaUI9eoRNJ2jVaJXC5nvkBN2LCuhLYTw9z+m89QWp6TZ6fT6fyybDBYYNbb2IjH41mVPUFBEPjud7/Lr3/9a/bv309Dw5t3uTgdePbZZ7ntttt49dVXGR0dZe/evezatWtVz3Quo0hQZwiCINDV1ZUnqyNHjrB9+3bGxsaIx+M8//zzuN3uVTvfompQIVcgj2p45cHDHP79CWYjc8wuuBP4azyU1Jcw2DbCWF8ImUyGq9ROcEh8Ia/eWE730SVCcFXZCPYszVLkChn122qQKRSM9oeIhGI0bq8WEZZcKUOjUzNf4C0obQkazDqyWQFflQuNQctwb4jSOq9oudjiMBKTSN8btlbSdmipAlxsLcpkMgL1XnQmPQqNkpMvL93GtOBsXqhIbNxSLnJn15s0JApcy12lOQun0cEIE8NhkMlQa5QolHLmZwsUf5sDovgQALvbxFSBmq9xS4BEPEEkNsfk+DyCsJyMVppZNWwoo+3YEhlpdSoUCjmeUhtqvYaR4Wn8AQetkpmZv8yGy2Pmf6/gu7f4wWtiYgKHw8H09DSZTAan04nb7cbhcJyR+ApBEPjhD3/Iv/7rv/L000+fFb51jz76KC+88AJbtmzhgx/8YJGg3iGKBLUKEASBV199lQ9+8IOEw2FmZ2e5+OKL85lWpaWlZ3RfY3Z2lsOHDy9TDWYyGdpf7ubAvoO89MCrRKdiyGUy5mNxPOUunGUONHoNh59szp/XXe5kol/spl2xrpS+glmOt8bBWEH0eVmDH2eZg6HuIJOj4YX7+OkrcIlY0W1CQlg6kxZfpQutUcfY4BTTwRnWbK+i+eUlwtKbtKRTmbxbOyw3sjWYtKTSGRxeM2hkxGNZfBVuWg4uEZZWr0YQBFHVI1UFyhUyVBoFibk0VrcBV6kdg9nI0Re7RXHtTq84zr5mjZ8uSWXkr7AxspDWrDdqqFlXwtxckr6eYH6ptnFDGa0FZKQzqMmksyQL5okrSdsbNuTasMFQjImxKIFKJwO9Ib72/RvY/r/E7TJBEPKL44ttPUEQiEajeUfy+fl57HZ7vhV4OuIsBEHgJz/5CT/72c948skn2bhx4yl/jncKmUxWJKh3iPPei+9sRHd3Nx/96Ed517vexV133UUoFMpnWn3zm99k06ZNebI6XZlWi4hEIhw5coSSkhJqampEz6VQKGi6pI6mS+r4zA8/RveRPl64/yAv7jvEaPc4M9MxMqkMDo8Jb6Wbmcg8RqtBRFCecqeInABUKvGis0CGI78/AYDVZ8JR6kCtVou8Bms2lucdKiBnQDvSI557VTSViKqwQIMPmSDgLrExPjSFTCajvNEvqrBUagX9kpDCwMJtRhei1pUqBWajhqZNZYSnZhnpm6SyyS9yrZDJZYxIokJq15fllYPhiVnCE7OYnToMOjm+cgfpjAyFRkW3hIwKqz0Ah9eUJyeAuViCZDxF17EhVBoltbVulFoVoxLLospaj6iVB4jMbgEqat0iIYbHZ8HtNmEyati6Q7xqsRI5Qe5CbLFYsFgs1NTUMDs7SzAYZGRkhLa2NsxmM263G5fLdUryjQRB4Pbbb+enP/0pjz/++FlJTkWcGhQrqFXAyMgIv/71r/nqV78q6tsvZlrt3bs3n2m1du3avJltbW3tKSWrUCjE8ePHqampeUuSXEEQ6G8e4tj+Zp78zXP0L8TSGyx69GYdroCT+ViS/pYhGi+upeXFgh2rcifjkgrLV+ditGNpphFo8jPQMoKrzIG73Ek0PIeAjBHR8m4FHQX2SMCydmPDRVW0Lcyn3AEHrjI7qVSWjmOD+ddR2u6TyciJFEIFarotFbQVhDzavRZKa72Ep2YZWLCHqt1QRucxMRn4K52MFGQzVTR66ZOY0pbWOVCp1ShUKvq7Q9jdpmW2Sr5KM6O9S8SiN2pyVWBBZdS0OUDr0UHKaz3oTBpGR8MoFAoRIUll7LB8jmWy6JibTfAnn72UD31yyXfvtcjpjZBIJPIzq8nJSfR6fZ6s3qoj+eI57rzzTr773e/y6KOPsmPHjrd0/zOJYgX1zlEkqLMUgiAwOTnJvn37uO+++3jqqaeoq6sTZVq9E7IaGRmhtbX1bQcvFmK4c4wXHzjEQMsQz9zzYv777oADZ6mDZCJNX/MwmXR22Y6VK+AgKFHhSbOuAo1+ZqZm8dV4mZtNMNgxRlm9j4GCykeaHAzgr3KLqqzaTeV0HunH5rHgq3IzE50nnREYK6h8yho8DEpCAX2VLkYLFper1pXSs1AVLrqvq/Uamg/15aufslo3gxJpuVS27vCamRxbIhClWkHt5lLSSRjqm2J+LolKKwdBLpL9S50sABweM5OFZNTgJRFPYXWZmAzNMDYcpqbJT1eBKtFiN+TIv9AbcFOAjpPD/PLBW7HYctXO2yUnKdLpNJOTk0xMTBAKhfKO5G63G5vN9oYiC0EQuOuuu/jGN77BQw89dNaH+RUJ6p2j2OI7SyGTyXA6nXzmM5/h05/+NOFwOJ9p9ZOf/IRAIJDPtFq3bt2bVlAJgkBfXx99fX1s2rQJu93+js9aUuvlw399LQB/+vcf5qUHX+XF+w8hV8o5+VwbADqjlrqtVWQzGVRaFamFGZDRoSNYwCuOEjsT3eJBfzKTYHo8ko8UqdoQQKNTUrnGz0D7GJl0VnSRhZyrer8k9TeZyD3n4mNVrCklPB6mfkMpyVSG/vYx5mbnRPcJ1HsZkMjPC9MxZqZmiVqijPSG0Bo0VK/1ISBDLhEJ2N0muk8ujy4pJCiFQk7n4SHSyQxyuQxniRF/lYf+jhCRAoIqDGOElR0oZDIZI32Tecl7VYMXjVKeCznsDYFMRmm5g+aCmZ5MDiP9k7z7fU2nnJwAlEolHo8Hj8cjciRvbm5+Q5GFIAj89re/5etf/zoPPPDAWU9ORZwaFAnqHIBMJsNms3HzzTdz8803E41Geeihh9izZw/ve9/7cLvd+Tbgli1bXpOsFlOBx8bG2Lp1KyaT6ZSf1R1wcv0Xr+T6L17J1NiC5dK+Q5x8rg0Z0PZiB2qditqNZSTTKcZ6xJZKnoCDyeGl6snmsYiqKYBUJkXPgRyr6Uxami6uYn4+hUqjXFoM1onnXL4qF/0tYsJSqhTMTM/StjC3speZsZoM2NdZ6O8cJxlPodWLB/yuEhs9JyXR7HYjI70h4rMJOl7tw+o0Ep9LUtPgzbuvewMOkSpPo1PRKyHQqjUl+blWNisQGpwhPpMkFk7kI+6VGs0yxV9WQs5Or1kUHwKgM2hoOZSruqx2A/4qJ9l0BoVClo9+r2nw09kywtUfztkBLZLT5OTkKd9zksvlOBwOHA4H9fX1eZFFd3c3J06cwG63Y7VaUSqVlJWV8bvf/Y6//uu/Zvfu3Vx++eWn7BxFnN0otvjOcczOzvLoo4/mM61sNls+02r79u0oFAog5/Lc3NxMIpFg8+bNZ3ypMjoZ4/ATx3hu98scfaqZdDJN6Vovo+1BKtcGUOnUBIemmIvGmY8tLe+uuaSO5gNLxrYmu4G56LxISFC9pZzuV/tRL9g3qY1a+lpGREvAhfMoyM2RpsfF2VF1WyvoWCAIlUZJ3ZZKMgIMdo4zF8vJ3RsvqqK14HFWckiXqgK1ejWltR5UWjWjA9OEp2aXSdRh+V5V9ZoSupslzuIBE5kkOPw2ZmNJUqmsyGYJlu9ZrWScW7+hjPZjg+gMaspq3AhyGelsFrlczj/d9WkROW3ZsuWMvl8WRRZPPvkkX/rSl/D7/YyPj3P77bfz+c9//oyd4+0gFovR1ZVrYW/atImf/OQnXH755djt9qL10ttAkaDOI8zPz/PEE0+we/duHnroIbRaLddddx1XXHEFP/jBD1i7di0///nPz1hcyErIZDK88uJBWp7pIDYY54U9B0ksLIg2vauO+WgcnUXPSPc4czMJVGqlaHlXSlhao4Z0Mi2Ott9RQ8eh3hxZ6TVMh2JMj0XErgwr7FQl4ynxbRacLeQLi8F6s46J0Qihgmh4KRkpVHL0Ri0z00utQqkQo7TWg8NvY7h/Kk9IVWv89EjUfJVNfnoLqj6X30qw4LkBqtZ7kcuV+Yh7lVqZc+iILe2PNWwso02i5iutcjFUUL16Sm1MTUT54nd38e4r16waOUlx991386UvfYkNGzZw4sQJKisr2bVrF3//939/2pIE3gn279+/YoV38803c/fdd5/5A53jKBLUeYpkMskf/vAHfvOb33Dvvfcik8n46Ec/ykc/+lEuvfTSVYkcSKVSHD16FICNGzeiUqlIzCU4/PsTvPjAIXqPDzDQulQxbH7fOhLzKcb6QkyNRXK7UBY90QI3BWl0iEItR6FUkJwr2E+6pJa56Dx6q4HRgSnmZ+IoVApRgKOUsJRqBRqdJr+kDNC0vYbWV7opq/dhtBsYH8lFrocLsq2k4YsA3nIHYwXJuoXEk3NftzKfTNB7ciK/H7USGUn3rNRaJcggOZ8jVa1RTc2GEuZiGfq7g/kq01/uYKTg+UsqHQz3ioUpDZvKGOmb5F8f/RI9vV1nBTk99thjfOITn+Duu+/mIx/5CLFYjMcff5xnnnmG//t//+9Zme1UxKlFkaDOY3R0dHDllVfy7ne/m49//OPcf//93H///aRSKVGm1elYpJQikUhw+PBhtFot69evz7ceC5FKpjm+v5kD+w7x8oOH0Zt1jPflPuWX1Pnw13oZaB1lYkH1J5OBzWtlamG5F3LVU2uBnx8yMFh1zE4vVWGbrljDZChMJDTHzOQ8MrkMq9PE9MSSYEEadw/gLLERGl4SKNRurmA2MofNYyUUjDI+MEVpjUdkZlvR4KevTVwZSb0CLS4DkeAsdo8ZT4WLudkEOrOetoIWoEanQiaXES9woFipTWh1GwhPzOYj7s12E53NY6KIe6m7hM6gJpsRuPpPLmLrlaVnBTk9+eST3Hjjjdx555187GMfK5LRBYoiQZ3HuOmmm/D5fPzwhz/M/4FnMhmee+65fExILBYTZVqdjovS3Nwchw8fxmq1vul8q3Q6TcvzHRzYd4iXHnyV6bEwJbVehjvH8FS4cJY6UKpVHHumVXTx8la6GCuQhNduqaCzYIcJwOIxEhnPVWG+KjclDT5GekKMLtg35b7vYrSgBbaSjF2qFKzfVo1SKScanmewewKZTEbtxgCdR5fu5/BaFoxil/7sShucDLUtSd01ejUmqx5niZ1kMkN/1wR1GwK0Sn4Od6mNiQJFX3mdh37JnpOnwkxwcAZ/lRO9WU94ep7pUEwU6d64OUD70UG+/NOrySoSq05Ozz77LB/5yEf4+c9/zic/+ckiOV3AKBLUeYxUKvW6rbxMJiPKtAqFQvlMqyuvvPJtZ1oVYmZmhsOHD+P1eqmrq3tbF5tsNkv7wW5e2neIA/sO5Z0qKtaWEZuexVPlZmZ6DqVaSe9x8awl0OhnoIBEXFV2gj1iVWBpvY+h9lFcpXbcFW7kagUnD3SJzlq1royeE0uP7a92ixaHYSneHnJpwmWNJcxG5+lrG807l0tnVkq1AqVKIa6MLqqktcBWSWfUUL0+QCKRpr8r575e2eilV7L0K10WNtv1zEbiZAr8A0vr7aQTuYj7UDDG1EQMl8+Cw2/g6k81rjo5vfDCC3zoQx/ixz/+MZ/97GeL5HSBo0hQRQA5Enj11VfzZrZDQ0O8733vY+fOnVx99dVYLJa3/JjhcJgjR45QXl5+yiybBEGg+2gfhx4/xrP3vMhw59JFes276hDItcH6mofw13oZ7hBfxEsaPAwXLOI6y6yECtzbAeq2VjIxMIm/1kd8Lsn8fJLxfsnMRqIKNDuMzEpMaRfnWkarntI6H+mswMTwtERAUUFbwVwJlldGhTMrlVpJeeNy93WL08jM9JzIzLbpokqRf2DudmKXjKp1XtLZLFuvruCDH79yVcnplVdeYefOnXz/+9/ni1/84llBTv/8z//MbbfdxtjYGBs2bOD2229n27Ztq32sCwZFgipiGbLZLMePH89nWvX09PBHf/RH7Ny5k2uuuWbFTCspFm2UamtrKSsrOy3nFASBwdZhDuw7RPML7Zx4pjXfOjPaDDRcXEt4Ikpv8zDZdBaLx0RkfEb0GI3ba2h9uUDNZ9MyF0mIFn/XXdpAOpUhlc7S3zaK1qAlOZ98XVXgSiKLhm1V9J0cwhGwIMgVhEZmsLnMTBR46EmVe7B8ZrWS+7pSp+LEi0uEKVfIMFkNRAoEJSsFMHorLcRnU/zpd96Fx+PB7XZjt9vPeHTG4cOHue666/j2t7/Nl7/85bOCnO655x5uuukm/vVf/5Xt27fzs5/9jHvvvZf29vZVTR64kFAkqCJeF4Ig0NLSkq+sWlpaeM973sOuXbu49tprcTqdyy4mo6OjtLS0nBIbpbeC0e5xXnwg1wYc7w0yF50jncqg1qnw1Xlw+V0cf7Ytv8xrsBpIzifENkKX1NFSIGNXaRWAjFR8USmnZd3/aiAyFWOgI7fMu5LT+koiC6kPYdX6MuQKOUqNiqHuCWZnEsvIaKWZ1crSdh0WpxGzw8TEWBS7x0yHRFpe2eijt2CB12TXMTM9zyf+5kouvWEdExMTTExMnPHojOPHj/OBD3yAr3zlK3z1q189K8gJYPv27Vx00UXccccdQO6DW1lZGbfeeitf+9rXVvl0FwaKBFXEm4YgCHR2dubJ6ujRo7zrXe9i165dXH/99Xg8Hn784x9jNpv50Ic+dEaSgV8LwcFJ9t/7Ak/f8zwjLeOo9RrkMhmZTIaKtQHkCgUqnZqTz7Xn76PSKFFr1aKqp357Fe0FcR3Icu20SDCGamEx2OIx0/pKL/MFu0dSkUV5o49+ibtDzcZyuhZys+QKOfUXVSKTKxjpCxFZILtlMyuVAo1ezWxkSZVYv7mc9sNiNV/jtipkcjnh6TlGekO4Sm0Eh8Oi25TU2ZgcmuWXz34NvTG3U/Ra0RmLBq+neoeupaWFq6++mltuuYW/+7u/O2vIKZlMotfrue+++0ReejfffDPhcJh9+/at3uEuIFzQVkfXX389R48eZWJiApvNxhVXXMGPfvQj/H7/ah/trIRMJqOuro5vfOMbfP3rX6evr4/du3fnbWh8Ph+hUIhf/OIXOByOVT2rwiDDsdHI1z58C2aNhSNPnWT//xzgxDOtdBzsRiaX4fDZqF5fikqrZrB9lEBjicjIFmBKclEPrPEzcDLXgkvFU3Qe6qGkzkt8eoaKtWVoDVoyWeg8KiaMRDop+trutYhUgdlMFhmyfPVWVu/D5DQSDYkj5qvXl9EuUfMVOkQA+CqcourN7rVQXu1Cp1Pl3dflChnhsXnes3NTnpxg5eiMiYkJhoaGaG1txWq14na7cbvd73hRtr29nWuvvZbPfe5zZxU5Qa5Fnclk8Hg8ou97PB7a2tpW6VQXHi7oCuqnP/0pO3bswOfzMTw8zN/8zd8AcODAgVU+2bmFTCbDn/3Zn7F3716qqqo4fvw4W7ZsyWdaVVRUnNGLTzAY5MSJE9TX11NSUiL6t5mpGAcfPUrbK1089dvnSS0YyMrkMpouqUcQYKR7nEgotizKHqB8TWk+XgTAUWZlUiKyqL+oisRcEoPNyMhAiHQ6vWyuJZ1ZrRR537CtirZXevBVubF5LUxORFGolIwWRHiUVLtFe1ew3LlCo1cjA+JzSfRmLVafEaffSfMr/fyf+2+lrEZ8EX4txONxJiYmCAaDTE9PYzKZ8pXVW1V8dnV1cfXVV3PjjTfyT//0T6sSF/96GBkZoaSkhAMHDogiPb7yla/wzDPP8PLLL6/i6S4cXNAEJcUDDzzArl27SCQSq+K0cK7i05/+NM899xy///3vKS8vZ2xsLJ9p9eyzz7Ju3bo8WZ3qTCspxsfHOXny5Juaf83NzPPq48d5cd9BgkNTdBzMmcbKZDICTSW4Ai56TwwytZB266tyMyoJSWzYVk3bK0shiTqrlnhUTEa1OypQK7UER8OEhsMrklHjtmpaCx4n93ziNmGgwcfcTBx3wMlMJLdr1bC1UlRRrZQYLJWtA/irXHjKHHzr7s++7mv0Wkgmk4RCISYmJpicnESr1eYrqzfKeerr6+Oqq65i165d/OxnPzvryAmKLb6zBUWCWsDU1BR//ud/zvDwMM8///xqH+ecwiOPPMKWLVuWtUMEQSAUCokyrerr6/PO6+8000qK4eFh2tvbWbduHS6X6y3dNzGf5OiTJzmw7yAHHzmK3qonuCBoKK3zYfFYUKnVHHumNX8fk8PAXDROJiX2ASx0spArZWh0mrytkrfSRVlTKcM9QUZ7g0uLwZLMqZXiQuq2VNLx6hLR+Kpc2DxW5ueS9HeMIQjLZ1YA7jK7SClYWuthqHOcv/mXm9lx9fq39DqthEwmkyerxZynRbKyWq0iAhocHOTKK6/kqquu4l/+5V/OSnJaxPbt29m2bRu33347kBNJBAIBbrnllqJI4gzhgieor371q9xxxx3Mzc1x8cUX89BDD636/OR8hCAITE9P5zOtnnjiCSoqKvKZVmvXrn1HF6uBgQG6urrYuHHjO864SiXTtLzQznO7X+aVhw4TCc1gsOpJzidx+O04SuxMT0Sxe20i41qFSrFgFFuwZ7QpQM8RsQOFp8LJeF8IZ6kdT4ULuVq5bDFYmhhsthuYlbi4F7YJDRY9ZQ0+lBoVbUf6yaRyt6to8tEnyYqq31xBaHSaXzz7TRTK5ZZT7wSLOU+LisDF/DGlUsn27dv50Ic+xHve8x7+7d/+bUW7q7MJ99xzDzfffDN33nkn27Zt42c/+xm/+93vaGtrW/ZhrIjTg/OOoL72ta/xox/96HVv09raSkNDA5Abhk5NTdHf3893vvMdLBYLDz300Fk1sD0fEYlE8plWjz32GF6vN19Zbd68+S0FMPb29tLf38/mzZvf1kLx6yGTydJ6oIMTz7fy+7ueYXIkt0ArV8gpa/BjtBmJTs0y2D5K4/YaUbsPwFftYbR7aTHYU+1gvFu89Fu7tZLgwCT+Wi/z8ykik7NEJ2PipVvJzEomA6vLLPIPXLRj0ujVlDeWgFJBPJFgsG2pLWm06ZmPJfjjW9/Hh29936l5kV4DgiAQiUS48847ufPOO5mYmKC0tJR/+Id/4LrrrsNms53W5z8VuOOOO/KLuhs3buTnP/8527dvX+1jXTA47wgqGAwyOTn5urepqqpaUS47NDREWVnZssFoEacXsVgsn2n1yCOP5DOtdu3axbZt217zk7YgCHR1dTEyMsLmzZtPSwBjIbLZLJ2Hejiw7xDDHaMcfPRo/t+sbjOBNWWMDIwzORABYbmgAqBuaxUdh5ZacCvNrNa9p4F0cmExuH0MIZvFZDMQKVD0FUrUFyG1YzLadcRjSQINfjR6DYM9Qcob/XQc6effXvg2Fufpfb0WEQwGufrqqyktLeWSSy5h3759nDx5ks9//vP5HaMiilgJ5x1BvRMMDAxQXl7O008/zWWXXbbax7kgMTc3J8q00uv1XHfddezatYtLLrkkvzSayWQ4duwYs7OzbN68GYPBcEbPKQgCvScGePH+3GKwQJbhhWh4k91AaUMJerOeo0+35ishq8dCNDQjrowuqaXlQGf+a5lChs6oZW5hz0lr0LD23fXMROL0t4/mxQ8Va0roKwgzdJXaCEqi4EsbXQy1Ls21FCo51RvKadxezc3f2nVqX5DXwNTUFB/4wAeorq7md7/7XV581Nvby9jYWPGDYBGviwuWoF5++WUOHjzIu9/9bmw2G93d3Xz7299mfHyc5ubmUxJB0dfXx/e+9z2eeuopxsbG8Pv9/Omf/inf/OY3VzU08FxBPB7nySefZPfu3TzwwAMoFAquvfZarr32Wu68806y2Sz/7//9v1X1j4Ncu/L3+55isjVK27Pd9Bzrz5OR1qAh0FRKJiOg0WvE2VUrzKxqtpTTJYnQKKnzMNwxjkqjpGJtGTqLgZ6Tg8zNLC0GN22vpuXlpfaiXCFDb9IRCy8tHdduKqfzSD8/eOivqd9SeTpeChHC4TDXXXcdPp+PPXv2FN/zRbxlXLCLunq9nj179vD3f//3zM7O4vP5uOqqq/jWt751yvKR2trayGaz3HnnndTU1HDy5Ek++9nPMjs7y49//ONT8hznM7RaLddccw3XXHMNqVSK/fv3c88993DjjTeSSqXYtWsXzzzzzBnLtFoJi4a4F71nM+U3lQMw1jvB0adO8tR/PU/7K920vdSJQqXA6jZTuymATCGnv3WEyjVly2ZWidmU6GtXwMbwQoRGKpGm89VeGi6uYX5qhoo1ZWiNWoKjEXol0fDVGwJ0Stwl0skMVevKqNtccYpfheWIRqPccMMNOJ1O7rvvviI5FfG2cMFWUKuF2267jV/84hf09PS88Y2LEGF2dpYPfvCDTE1N8e1vf5snnniC+++/n1gsxgc+8AF27drFe9/73jNWUU1PT3PkyJHXNcSdHJnipQdepftYP0//1/NkF2ZNCpWCNe+qJ5nIMNQ+wmw0Tkndcvf1hu01tBWY2ap1SrIZQRxxv72GuVgcmUbG5EiU2UiC0jovQwWP5Qk4GB+Y5Is//Tjv/ZPT21aLxWJ88IMfRK1W8/DDD696hVvEuYsiQZ1hfOtb3+Kxxx7j0KFDq32Ucw633XYbDz/8MA8++GBeEJHJZHjxxRfzmVaTk5NcddVV+Uyr0zWbmpyc5NixY9TV1VFaWvqm7hMJRnn54cO8uO8QU2Nh+hYEDXKFnIq1ZThKHbQf7GFmwYfPYNaRTKZJxQvj68VmtgA2v5npkSU135p314FMTmgskp9LNW6vZrBjlF+++g9odKevmpmbm+NDH/oQAA8//PApyRQ7Hfj+97/Pww8/zNGjR1Gr1YTD4dU+UhEroEhQZxBdXV1s2bIlH8ZWxFtDJpMhmUy+5ifybDbLoUOH8ma2IyMjokwrs9l8Ss6xGCXS0NDwtn0bZ6ZjHHrsGC/uO8SRP5xArVMTn02QSWUIrCnFYDWg0qo4vl/s++YqcxAcXFKpBpr8DEjiOSo2lNB3LNfy81S4cJc7mYnOs+nyNdz8dze8rfO+GcTjcT760Y8yOzvLY489dspe79OBv//7v8dqtTI0NMS///u/n3aC6uvro7Jy+dzvPe95D/v37z+tz30uo0hQbwNvddcKci4H73nPe7jsssv41a9+dbqPeMEjm81y7NixPFn19PTw3ve+N59pZbVa39au28TEBCdOnDilUSLzsTjHn2nmuXtf5uBjx4jHcq4TDr8NnUmL1W1lYmgKk91IjyR2vrTJy1DLUitPb9GRmEvkF3UB6rdV0XGwl18c/Ue85W/NYePNIpFI8PGPf5xQKMQTTzyB1Wo9Lc9zqnH33XfzpS996bQTVCaTIRhcUlSOjY1xxRVX8IUvfIHvfve7p/W5z2UUCept4K3uWo2MjHDZZZdx8cUXc/fdd5/V9i7nIwRBoLm5OU9Wra2tXHbZZflMK4fD8abIatHnb926dactsC4ZT3L0qWaan2/jD795jliBwm/de5rIZrJMj0cZ6ZnA5DAwG54X7VCteVedSCkIYHIbcJXb+PwdN+LxeLBYLKd0ET2ZTHLTTTcxODjIk08++Y6dPM4kzhRBFSIej3PZZZfhcrnYt29f8XrwOigS1GnG8PAwl19+OVu2bOG3v/3tWW/vcr5DEAQ6OjrYvXs3e/bs4dixY7z73e9m586d+UyrlS7eiyGM69evf8s+f28X6VSak8+1ceD+Q3S82kPf8YF8cKHFa8ZVaSM+nWGocwyZTJZzl3BbmB6P5B+jan0ZPccH+dJ/fApXvZVgMOf/t+iVZ7PZ3tEFMpVK8ZnPfIb29naeeuqpM/banCqsBkF97GMf49ixY7z00kunfbn8XEeRoE4jhoeHueyyyygvL+fXv/61iJzOZNJsEStj0SZpkawOHjzIjh07uP7669m5cyclJSXIZDL+53/+B5vNxtatW1fNpzGTydL2UicH9h3kufteYmYqhsGsZ2ZqFpvXiq/ag1qv5djTLaL71WyuYC4yzx0Hv4dcLl/RK8/lcuWj3t/KB6h0Os3nP/95jh07xtNPP73q/nRvp/V+pgnqH/7hH/jpT3/KK6+8QnV19Rl5znMZRYI6jbj77rv51Kc+teK/neqXvahKemcQBIHBwUH27NnDnj17OHDgAFu3bsVms7F//3727t3LpZdeuupnbGlpYXp6GpvcyaHHjnPg/oOMLUSAVK4PEBqeoqzeT3w+xczULJMjYT79jx/luj+/YsXHi0QijI+PMzExQSqVwul04vF43jDqPZPJcMstt/Diiy+yf//+syLk8+3YnJ1Jgtq9ezc33ngjjz76KO9973tP+/OdDygS1HmCM61KOp8hCAKjo6P85V/+JXv37gVgw4YN+UyrmpqaM24mvEhO4XCYLVu25NNsBUGgv3mQVx45wnP3vcJAy5L337r3NAIyvvZft2K06t/w8WdmZvKV1fz8PA6HIx9IWJiPls1m+dKXvsTTTz/N008/TSAQOC0/85nAmSKokydPsn37dv7qr/6KL37xi/nvq9Xqc2pmd6ZRJKjzDKvRUz8f8eMf/5jvf//7PProo1RXV7N371727NnDU089RUNDQ56sTnWm1Up4LXJaCUMdo7z0wCFefugwoz0TXLLrIr7w80++5eeMxWJ5sorFYigUCl599VU+8pGPcPvtt/PII4/w9NNPryidPhcwMDDA1NQUDzzwALfddhvPPfccADU1Nadld+u1uilFmfnro0hQ5xmKBPXOkc1m+dSnPsVf/uVfsnnz5vz3FzOt9u3bx549e/j9739PZWVlPibknWZarYRFBWIkEnlDcpJiYiCEQqXA4XtnsRbz8/O88MILfPOb36S5uRmVSsXf/M3f8LnPfY7y8vJ39NirhU9+8pP8+te/Xvb9olH02YUiQZ1nKBLUmUMkEuHBBx9kz549PP744/h8Pq6//npuuOEGNm3a9I7J6p2Q06mGIAh85zvf4e677+bP//zPOXDgAPv372fjxo08+OCDRdFPEacFF6xZ7LmAt6NKKuLMwWKx8Kd/+qf86Z/+KbFYjEceeYTdu3fzgQ98AIfDwXXXXccNN9zARRdd9JbXCwrJaevWratmhrt4lh/84AfcfffdPPXUU6xduxbI2T09+uijp20nrIgiihXUWYyzXZVUxMqYm5vj8ccfZ/fu3Tz88MMYDIZ8ptWOHTteVx0HZx85/eQnP+FnP/sZTz31FBs2bFi1sxRx4aFYQZ3FcLlc59ziYxG5KJcbbriBG264gXg8zh/+8Ad2797Nxz72MZRKZb6yeve73y1Sx8HZR0633347P/3pT3niiSeK5FTEGUfRY+M8wcDAAEePHmVgYIBMJsPRo0c5evQosVjsje/8Ovjnf/5nKioq0Gq1bN++nVdeeeUUnfjCgFar5dprr+Wuu+5ibGyM3/zmN8jlcj796U9TXV3NF77wBR5//HESiQTpdJovf/nLDA4OnhXkdOedd/LDH/6QRx55hK1bt67aWYq4cFFs8Z0nOB2qpHvuuYebbrqJf/3Xf2X79u387Gc/495776W9vb04d3iHSKfTPPfcc9x33335TCuz2Uw8HueJJ56gvr5+1c4mCAJ33XUX3/jGN3j44Yf5X//rf63aWV4PxcTq8x9FgiriNbF9+3Yuuugi7rjjDiAnvy4rK+PWW2/la1/72iqf7vxBMpnk+uuv55VXXkGn0zEzM8OVV17Jrl27eP/733/aMq1WgiAI/OY3v+Fv//ZvefDBB89qyfVjjz2WT1guTKz+xCc+UUysPk9QJKgiVkQymUSv13Pfffexa9eu/PdvvvlmwuEw+/btW73DnUfIZDJ86lOf4uDBgzz99NO43W4OHjyYd14fHR3lfe97H7t27eLqq68+reaigiBwzz338Bd/8Rfs2bOH97///aftuU4XionV5xeKM6giVkQoFCKTySwzAPV4PIyNjb3GvYp4q5DL5TQ1NfH000/j9XqRy+Vs376d2267jY6ODp577jmampr40Y9+REVFBX/8x3/Mf/3XfxEOh0+5n+PevXu59dZbueeee85JcoLcblrROuj8QZGgiihiFSGTyfja17624qKrXC5n8+bN/OM//iMtLS288sorbNmyhdtvv52Kigo++MEP8utf/5pQKPSOyerBBx/k85//PP/1X//FNddc844ea7XQ1dXF7bffzuc///nVPkoRpwhFgipiRTidThQKBePj46Lvj4+PF10DVgEymYx169bxne98h2PHjnH8+HEuvfRSfvWrX1FdXc11113HL3/5S8bHx98yWT366KN8+tOf5u677xa1c1cLX/va1xbyrV77v7a2NtF9hoeHueqqq/jIRz7CZz/72VU6eRGnGsUZVBGvie3bt7Nt2zZuv/12ICeSCAQC3HLLLUWRxFkCQRDo6enJZ1odOnSISy65JJ9p5ff7X9fM9sknn+TGG2/k3/7t37jxxhvPuEv7SigmVhexiCJBFfGauOeee7j55pu588472bZtGz/72c/43e9+R1tb26qH0xWxHIIgMDAwkM+0evHFF9m6dWvezDYQCIgI6Nlnn+UjH/kId9xxBzfddNNZQU5vFcXE6vMcQhFFvA5uv/12IRAICGq1Wti2bZvw0ksvnfLneOaZZ4Rrr71W8Pl8AiDs3bv3lD/HhYZsNisMDQ0Jt99+u3D55ZcLSqVS2Lx5s/Dd735XOHbsmPDEE08IJpNJuPPOO4VsNrvax31bGBoaEmpqaoT3vve9wtDQkDA6Opr/r4jzA8UKqohVx6OPPsoLL7zAli1b+OAHP8jevXvPilnI+QJBEJiYmOD+++/PZ1pls1l++tOfcuutt56TlROc2cTqIlYHRYIq4qyCTCYrEtRphCAIBINBfvnLX/KNb3zjnCWnIi4MFM1iiyjiAoJMJsPtdvPNb35ztY9SRBFviKLcpYgiiiiiiLMSRYIqoogiiijirESRoIoooogiijgrUSSoIoooYlVx/fXXEwgE0Gq1+Hw+PvGJTzAyMrLaxyriLECRoIpYdcRisXzAIkBvb28+fLGI8x+XX345v/vd72hvb2f37t10d3fz4Q9/eLWPVcRZgKLMvIhVx/79+7n88suXff/mm2/m7rvvPmXP84Mf/IA9e/bQ1taGTqfjkksu4Uc/+tGqhgMWsRwPPPAAu3btIpFIoFKpVvs4RawiigRVxAWDq666ij/5kz/hoosuIp1O841vfIOTJ0/S0tJyRkMBi3htTE1N8ed//ucMDw/z/PPPr/ZxilhlFAmqiAsWwWAQt9vNM888w6WXXrrax7mg8dWvfpU77riDubk5Lr74Yh566CEcDsdqH6uIVUZxBlXEBYtIJAJQDLg7DXirkRl/+7d/y5EjR3jiiSdQKBTcdNNNRbuiIooV1IWC//zP/+TLX/4yIyMjaDSa/Pd37dqFyWTiN7/5zSqe7swjm81y/fXXEw6Hi62k04C3GplRiKGhIcrKyjhw4AA7duw4XUcs4hxA0eroAsFHPvIR/uIv/oIHHniAj3zkIwBMTEzw8MMP88QTT6zy6c48vvjFL3Ly5MkiOZ0muFwuXC7X27pvNpsFIJFInMojFXEOotjiu0Cg0+n42Mc+xl133ZX/3m9/+1sCgQCXXXbZ6h1sFXDLLbfw0EMP8fTTT1NaWrrax7mg8fLLL3PHHXdw9OhR+vv7eeqpp7jxxhuprq4uVk9FFAnqQsJnP/tZnnjiCYaHh4FcXMEnP/nJC8bRWhAEbrnlFvbu3ctTTz1FZWXlah/pgoder2fPnj28973vpb6+ns985jOsX7+eZ555RtSKLuLCRHEGdYFhy5YtfPjDH+b9738/27Zto6+vj7KystU+1hnBF77wBf77v/+bffv2iXafLBYLOp1uFU9WRBFFrIRiBXWB4c/+7M+4++67ueuuu7jiiisuGHIC+MUvfkEkEuGyyy7D5/Pl/7vnnntOy3OtX78es9mM2Wxmx44dPProo6f8eYoo4nxGsYK6wBCJRPD7/aTTaf7zP/+Tj370o6t9pPMSDz74IAqFgtraWgRB4Ne//jW33XYbR44cYc2aNat9vCKKOCdQJKgLEDfddBMPP/zwMsl5EacXdrud2267jc985jOrfZQiijgnUJSZX4AYHh7m4x//eJGczhAymQz33nsvs7OzRWVaEUW8BRQJ6gLC9PQ0+/fvZ//+/fzLv/zLah/nvMeJEyfYsWMH8Xgco9HI3r17aWpqWu1jFVHEOYMiQV1A2LRpE9PT00UH7zOE+vp6jh49SiQS4b777uPmm2/mmWeeKZJUEUW8SRRnUEUUcYZwxRVXUF1dzZ133rnaRymiiHMCRZl5EUWcIWSz2aJ9TxFFvAUUW3xFFHEa8PWvf52rr76aQCDAzMwM//3f/83+/ft5/PHHV/toRRRxzqBIUEUUcRowMTHBTTfdxOjoKBaLhfXr1/P444/zvve9b7WPVkQR5wyKM6giiiiiiCLOShRnUEUUUUQRRZyVKBJUEUUUUUQRZyWKBFVEEUUUUcRZiSJBFVFEEUUUcVaiSFBFFFFEEUWclSgSVBFFFFFEEWcligRVRBFFFFHEWYkiQRVRRBFFFHFWokhQRRRRRBFFnJUoElQRRRRRRBFnJYoEVUQRRRRRxFmJ/x+yzIRGIIdnRgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "source = tx.position # Location of the origin of the incoming ray\n",
+ "target = 25.*r_hat(PI/3, 0.) # Target position\n",
+ "\n",
+ "# Configure the RIS as focusing lens\n",
+ "ris.focusing_lens(source, target)\n",
+ "\n",
+ "# Visualize the phase profile\n",
+ "ris.phase_profile.show();\n",
+ "plt.title(r\"Focusing Lens - Phase Profile $\\chi(y,z)$\");\n",
+ "\n",
+ "# Configure the RIS as phase gradient reflector\n",
+ "# Source and target vectors are automatically nornmalized\n",
+ "# in this function as only the directions matter\n",
+ "ris.phase_gradient_reflector(source, target)\n",
+ "\n",
+ "# Visualize the phase profile\n",
+ "ris.phase_profile.show();\n",
+ "plt.title(r\"Phase Gradient Reflector - Phase Profile $\\chi(y,z)$\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b09ce357",
+ "metadata": {},
+ "source": [
+ "One can see from the visualization above that the phase profile of the focusing lens is designed such that it achieves perfect constructive interference at the desired target point, while the phase gradient reflector has a linearly decreasing phase in the z coordinate.\n",
+ "In world coordinates, this corresponds to a constant phase gradient in the x-direction.\n",
+ "\n",
+ "Note that phases are not wrapped to the $[0, \\pi)$ intervall. The reason for this is that the computation of the phase gradient along an RIS requires continuously evolving phase values.\n",
+ "\n",
+ "With our scene set up and the RIS configured as phase gradient reflector, we can now compute the electric field at the desired positions.\n",
+ "\n",
+ "Note: As a small experiment, you can configure the RIS again as focusing lens and observe the differences in the simulations below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "1dc071d2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAGkCAYAAADQeke0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFfUlEQVR4nO3de1xU1d4/8M9AMmg6g4gwkIB4zwvq0ZwwK00UyMckzdQ6ieSlDCrj2IUy0fQXZWXaOR45mYp2NI1KPXUKUxKMI+qR5DGrwyM+KJgMXhIQFFBm//7wYXLkOrPXZjbM5/167ZfOnrW/s/YMzJe19tpraSRJkkBEREROwcXRFSAiIqKWw8RPRETkRJj4iYiInAgTPxERkRNh4iciInIiTPxEREROhImfiIjIiTDxExEROREmfiIiIifCxE9EROREHJr4165di+DgYOh0Ouh0OoSEhOCbb76xPF9ZWYmYmBh06dIFHTt2xJQpU1BcXOzAGhMRUVuUmJiIu+66C506dYK3tzciIyORm5vb5HEpKSno168f3N3dMWjQIHz99ddWz0uShMWLF8PX1xft27dHaGgoTpw4odRpNItDE3+3bt3w1ltvITs7G0eOHMEDDzyASZMm4aeffgIAvPDCC/jyyy+RkpKCjIwMnD17FpMnT3ZklYmIqA3KyMhATEwMDh48iD179uDatWsYP348KioqGjzmwIEDmDFjBmbPno2jR48iMjISkZGROH78uKXMihUr8MEHHyApKQmHDh3C7bffjrCwMFRWVrbEadVPUpnOnTtLH330kVRSUiK1a9dOSklJsTz3yy+/SACkrKwsB9aQiIjaunPnzkkApIyMjAbLPProo9KECROs9hmNRumpp56SJEmSzGazZDAYpHfeecfyfElJiaTVaqVPPvlEmYo3w22O+5PDWk1NDVJSUlBRUYGQkBBkZ2fj2rVrCA0NtZTp168fAgICkJWVhbvvvrveOFVVVaiqqrI8NpvN+O2339ClSxdoNBrFz4OIyFlIkoTLly/Dz88PLi5iO5ArKytRXV0tK4YkSXW+97VaLbRabZPHlpaWAgA8PT0bLJOVlYW4uDirfWFhYdi5cycAID8/HyaTySqP6fV6GI1GZGVlYfr06c09FaEcnvh//PFHhISEoLKyEh07dsSOHTvQv39/5OTkwM3NDR4eHlblfXx8YDKZGoyXmJiIpUuXKlxrIiKqVVhYiG7dugmLV1lZiaCgoEa/65ujY8eOKC8vt9qXkJCAJUuWNHqc2WzGggULcM8992DgwIENljOZTPDx8bHad3OOqv23sTKO4PDE37dvX+Tk5KC0tBSfffYZoqKikJGRYXe8+Ph4q7/ASktLERAQgNsAyGnvX5NxbK12AmIAgFlADBF/m18XEEPED6Cabk0R8Z6I+HzdBMQQRcT5iCDiPRHxs3ZFQAwA0AmIIffnVQJQDqBTp04CavO76upqmEwmFBaehk5n35mWlZXB3z8QhYWFVjGa09qPiYnB8ePHkZmZaddrq53DE7+bmxt69eoFABg2bBj+/e9/Y/Xq1Zg2bRqqq6tRUlJi1eovLi6GwWBoMF5D3TgayEv8Ioh6fRFxGEMZajmftvaeiKCW97WtfQ8AUOwyau0dXy0ZIzY2Fl999RX279/fZC+GwWCoc6fZzTmq9t/i4mL4+vpalRkyZEiz6ySamhpLAG50sVRVVWHYsGFo164d0tLSLM/l5uaioKAAISEhDqwhERG1DLPMrfkkSUJsbCx27NiB7777DkFBQU0eExISYpWjAGDPnj2WHBUUFASDwWBVpqysDIcOHXJoHnNoiz8+Ph4REREICAjA5cuXsXXrVqSnp2P37t3Q6/WYPXs24uLi4OnpCZ1Oh2effRYhISENDuwjIqK2xPYEbn1s88XExGDr1q3YtWsXOnXqZLkGr9fr0b59ewDAzJkzcccddyAxMREA8Pzzz+P+++/He++9hwkTJmDbtm04cuQIPvzwQwA3ekIWLFiA5cuXo3fv3ggKCsLrr78OPz8/REZG2nle8jk08Z87dw4zZ85EUVER9Ho9goODsXv3bowbNw4A8P7778PFxQVTpkxBVVUVwsLC8Ne//tWRVSYiohbTcol/7dq1AIDRo0db7d+4cSNmzZoFACgoKLC6e2HkyJHYunUrFi1ahFdffRW9e/fGzp07rQYEvvTSS6ioqMC8efNQUlKCUaNGITU1Fe7u7vadlgAaSZIkh716CygrK4Ner0c7yLueJe+mkhtEDbji4D5rarpexcF9dXFwn7W2NrjvMm4MopZ7Lf5mtd/bpaXFsgb36fU+wuvWFjh8cB8REVH9Wq7F70yY+ImISKWY+JXAxN9MIt4oEZcLAPV0j6vlkoOaiPhsRLyvImKIuGwBqOeyg4iZ0UWcS0cBMQAxn4+Irn5lMfEroa197xIREVEj2OInIiKVYotfCUz8RESkUkz8SmBXPxERkRNhi5+IiFRKgv0t9zY9RY0sTPxERKRS7OpXAhM/ERGpFBO/EniNn4iIyImwxU9ERCrFFr8SmPiJiEilmPiVwMRPREQqxcSvBF7jJyIiciJs8RMRkUqxxa8EJn4iIlIpJn4lsKufiIjIibDFT0REKsUWvxKY+ImISKU4V78SmPiJiEil2OJXgtMkfhcAGpnHy6WmN1stvxIi3tdqATEA4LqgOHK5O7oC/0dUPdTys9bB0RX4P2p5PwDAU+bxZgBXRVSEWpSachEREdFN2OJXAhM/ERGpFBO/Epj4iYhIpZj4lcD7+ImIiJwIW/xERKRSbPErgYmfiIhUiolfCezqJyIiciJs8RMRkUqxxa8EJn4iIlIpJn4lMPETEZFKca5+JfAaPxERkRNh4iciIpUyy9yab//+/Zg4cSL8/Pyg0Wiwc+fORsvPmjULGo2mzjZgwABLmSVLltR5vl+/fjbVSwlM/EREpFItl/grKiowePBgrFmzplnlV69ejaKiIstWWFgIT09PTJ061arcgAEDrMplZmbaVC8l8Bo/ERGpVMsN7ouIiEBERESzy+v1euj1esvjnTt34tKlS4iOjrYqd9ttt8FgMNhUF6WxxU9ERG1WWVmZ1VZVVaXI66xfvx6hoaEIDAy02n/ixAn4+fmhR48eePzxx1FQUKDI69uCiZ+IiFRKfle/v7+/pXWu1+uRmJgovJZnz57FN998gzlz5ljtNxqNSE5ORmpqKtauXYv8/Hzce++9uHz5svA62IJd/UREpFLyu/oLCwuh0+kse7Varfxq3WLTpk3w8PBAZGSk1f6bLx0EBwfDaDQiMDAQn376KWbPni28Hs3FxN9MIqaCqBYQA1DPhyaiu+i6gBiiuq06Coojl1p+1kT9nLkJiiOXWt4TUe+Hu4AYct+T1jBFjk6ns0r8okmShA0bNuCJJ56Am1vjn66Hhwf69OmDvLw8xerTHOzqJyIilWq5Uf32ysjIQF5eXrNa8OXl5Th58iR8fX1boGYNY+InIiKVarnEX15ejpycHOTk5AAA8vPzkZOTYxmMFx8fj5kzZ9Y5bv369TAajRg4cGCd5xYuXIiMjAycOnUKBw4cwMMPPwxXV1fMmDHDprqJppZeYyIiolu03O18R44cwZgxYyyP4+LiAABRUVFITk5GUVFRnRH5paWl+Pzzz7F69ep6Y545cwYzZszAxYsX0bVrV4waNQoHDx5E165dbTwXsTSSJLXpCY3Lysqg1+uhBaCREUct110B9fy1JuI9Ucu5AOq5Fq2WnzVe46+rrV3jlzvGxgzgAm4kQJHX0Wu/t0tLP4NOd7udMSqg1z8ivG5tgZq+d4mIiG7CRXqUwMRPREQqxWV5lcDET0REKsXErwSO6iciInIiDk38iYmJuOuuu9CpUyd4e3sjMjISubm5VmVGjx5dZ1nDp59+2kE1JiKilqP++/hbI4cm/oyMDMTExODgwYPYs2cPrl27hvHjx6OiosKq3Ny5c62WNVyxYoWDakxERC2HiV8JDr3Gn5qaavU4OTkZ3t7eyM7Oxn333WfZ36FDh2Yva1hVVWW1+lJZWZmYyhIREbUBqrrGX1paCgDw9PS02r9lyxZ4eXlh4MCBiI+Px5UrVxqMkZiYaLUSk7+/v6J1JiIipbDFrwTVTOBjNpvx0EMPoaSkBJmZmZb9H374IQIDA+Hn54djx47h5ZdfxogRI/DFF1/UG6e+Fr+/vz8n8FEAJ/BRhlp+1jiBT12cwMea8hP4bIRO18HOGFeg10dzAp96qOZ7NyYmBsePH7dK+gAwb948y/8HDRoEX19fjB07FidPnkTPnj3rxNFqtYosu0hERC2Nt/MpQRVd/bGxsfjqq6+wb98+dOvWrdGyRqMRABy+rCEREVFr5NAWvyRJePbZZ7Fjxw6kp6cjKCioyWNqV05y9LKGRESkNLb4leDQxB8TE4OtW7di165d6NSpE0wmEwBAr9ejffv2OHnyJLZu3YoHH3wQXbp0wbFjx/DCCy/gvvvuQ3BwsCOrTkREiuNc/UpwaOJfu3YtgBuT9Nxs48aNmDVrFtzc3LB3716sWrUKFRUV8Pf3x5QpU7Bo0SIH1JaIiFoWW/xKcHhXf2P8/f2RkZEh5LXMkDeqX8SIYBGjcAGgUkAMESOLRfzwyB1VDIj7IW74JtHmU8t70lFADBHvByDmfER8hYt4T0T8DotKRyK+BzxkHl87qp9aF9WM6iciIrLGFr8SmPiJiEilmPiVoIrb+YiIiKhlsMVPREQqxRa/Epj4iYhIpZj4lcDET0REKsXErwRe4yciInIibPETEZFKscWvBCZ+IiJSKSZ+JTDxExGRSnGufiXwGj8REZETYYufiIhUil39SmDiJyIilWLiVwK7+omIiJwIW/xERKRSbPErgYmfiIhUiolfCUz8RESkUkz8SmDibyY3ATGuC4gBiBmYoZbBHSJ+AEX9EIv4mhARw11ADBGfbwcBMQAxP/ci3hMRMUoExDAIiAEAOhXEuA7glIB6UMtSy/c/ERHRLcwyt+bbv38/Jk6cCD8/P2g0GuzcubPR8unp6dBoNHU2k8lkVW7NmjXo3r073N3dYTQacfjwYZvqpQQmfiIiUqmWS/wVFRUYPHgw1qxZY9Nxubm5KCoqsmze3t6W57Zv3464uDgkJCTghx9+wODBgxEWFoZz587Z9BqisaufiIhUquWu8UdERCAiIsLmV/H29oaHh0e9z61cuRJz585FdHQ0ACApKQn//Oc/sWHDBrzyyis2v5YobPETEVGbVVZWZrVVVVUJjT9kyBD4+vpi3Lhx+Ne//mXZX11djezsbISGhlr2ubi4IDQ0FFlZWULrYCsmfiIiUqnaRXrs2W4s0uPv7w+9Xm/ZEhMThdTM19cXSUlJ+Pzzz/H555/D398fo0ePxg8//AAAuHDhAmpqauDj42N1nI+PT51xAC2NXf1ERKROZvONzd5jARQWFkKn+/3+Ba1WK6Jm6Nu3L/r27Wt5PHLkSJw8eRLvv/8+Pv74YyGvoRQmfiIiarN0Op1V4lfSiBEjkJmZCQDw8vKCq6sriouLrcoUFxfDYBB1U6d92NVPRETqVNvit3drYTk5OfD19QUAuLm5YdiwYUhLS7vpdMxIS0tDSEhIi9ftZmzxExGROgno6m+u8vJy5OXlWR7n5+cjJycHnp6eCAgIQHx8PH799Vds3rwZALBq1SoEBQVhwIABqKysxEcffYTvvvsO3377rSVGXFwcoqKiMHz4cIwYMQKrVq1CRUWFZZS/ozDxExGROtWYb2z2HmuDI0eOYMyYMZbHcXFxAICoqCgkJyejqKgIBQUFluerq6vxpz/9Cb/++is6dOiA4OBg7N271yrGtGnTcP78eSxevBgmkwlDhgxBampqnQF/LU0jSZLk0BoorKysDHq9Hu0AaBxcF1EdTyLiiJiCWC1E/fVaLSCGWj4bETFE/bxyyl5rbW3K3gMASktLhV5Hr/3eLjUtgE5n32C8srIq6A2rhNetLWCLn4iI1KkFu/qdCRM/ERGpk2S+sdl7LNWLiZ+IiNSJLX5F8HY+IiIiJ8IWPxERqRNb/Ipg4iciInUySzISf5u+YU0WdvUTERE5Ebb4W5Ca7uMXEUPEX40iYoh6X0X8Moi4Z10t76ua5noQcQ9+mYAYAQJiXBEQQ5RuMo+/JqQWjZBkdPVzVH+DmPiJiEidWnDmPmfCxE9EROrEwX2K4DV+IiIiJ8IWPxERqRNb/Ipg4iciInXilL2KYOInIiJ1YotfEbzGT0RE5ETY4iciInVii18RTPxERKROTPyKYFc/ERGRE3Fo4k9MTMRdd92FTp06wdvbG5GRkcjNzbUqU1lZiZiYGHTp0gUdO3bElClTUFxc7KAaExFRi6ldpMeujYv0NMShiT8jIwMxMTE4ePAg9uzZg2vXrmH8+PGoqKiwlHnhhRfw5ZdfIiUlBRkZGTh79iwmT57swFoTEVGLkOxN+jJuA3QCDr3Gn5qaavU4OTkZ3t7eyM7Oxn333YfS0lKsX78eW7duxQMPPAAA2LhxI+68804cPHgQd999tyOqTURELYFz9StCVdf4S0tLAQCenp4AgOzsbFy7dg2hoaGWMv369UNAQACysrLqjVFVVYWysjKrjYiIiG5QTeI3m81YsGAB7rnnHgwcOBAAYDKZ4ObmBg8PD6uyPj4+MJlM9cZJTEyEXq+3bP7+/kpXnYiIlGD39X0ZdwM4AdUk/piYGBw/fhzbtm2TFSc+Ph6lpaWWrbCwUFANiYioRdVO2WvvRvVSxX38sbGx+Oqrr7B//35069bNst9gMKC6uholJSVWrf7i4mIYDIZ6Y2m1Wmi1WqWrTERESuN9/IpwaOKXJAnPPvssduzYgfT0dAQFBVk9P2zYMLRr1w5paWmYMmUKACA3NxcFBQUICQmx6bVcAGhk1LVaxrG13ATEAMTURYRKATE6CIghqttKxPsqoi4ivq5E/KyJel9F1EXEF5WIn7WOAmKMFBADAO4LarpMUyIj5R1fVgWk/FV+PahlOTTxx8TEYOvWrdi1axc6depkuW6v1+vRvn176PV6zJ49G3FxcfD09IROp8Ozzz6LkJAQjugnImrr2OJXhEMT/9q1awEAo0ePttq/ceNGzJo1CwDw/vvvw8XFBVOmTEFVVRXCwsLw17/yT0wiojaPiV8RDu/qb4q7uzvWrFmDNWvWtECNiIiI2jZVDO4jIiKqgy1+RTDxExGROpllzNzHxN8gJn4iIlKn2kV67D2W6qWaCXyIiIhIeUz8RESkTi04Ze/+/fsxceJE+Pn5QaPRYOfOnY2W/+KLLzBu3Dh07doVOp0OISEh2L17t1WZJUuWQKPRWG39+vWz9V0QjomfiIjUqQWn7K2oqMDgwYObfQfZ/v37MW7cOHz99dfIzs7GmDFjMHHiRBw9etSq3IABA1BUVGTZMjMzbaqXEniNn4iI1KkFR/VHREQgIiKi2eVXrVpl9fjNN9/Erl278OWXX2Lo0KGW/bfddluDU8w7Clv8RETUZt26THtVVZUir2M2m3H58mXLsvK1Tpw4AT8/P/To0QOPP/44CgoKFHl9WzDxExGROgm4xu/v72+1VHtiYqIiVX333XdRXl6ORx991LLPaDQiOTkZqampWLt2LfLz83Hvvffi8uXLitShudjVT0RE6iSgq7+wsBA6nc6yW4nVW7du3YqlS5di165d8Pb2tuy/+dJBcHAwjEYjAgMD8emnn2L27NnC69FcTPxERNRm6XQ6q8Qv2rZt2zBnzhykpKQgNDS00bIeHh7o06cP8vLyFKtPc7Crn4iI1KkFb+ezxyeffILo6Gh88sknmDBhQpPly8vLcfLkSfj6+ipet8awxU9EROrUgqP6y8vLrVri+fn5yMnJgaenJwICAhAfH49ff/0VmzdvBnCjez8qKgqrV6+G0Wi0LCtfu6Q8ACxcuBATJ05EYGAgzp49i4SEBLi6umLGjBn2nZMgbPETEZE61c7Vb89mY+I/cuQIhg4darkVLy4uDkOHDsXixYsBAEVFRVYj8j/88ENcv34dMTEx8PX1tWzPP/+8pcyZM2cwY8YM9O3bF48++ii6dOmCgwcPomvXrgLeHPuxxU9ERE5v9OjRjS4Vn5ycbPU4PT29yZjbtm2TWStlMPE3k7ujK3CTDgJiVAqIIaK7SE0/gG4CYoj4ORFxZVLEuYjqDvQQEEPEezJcQAzvpos06b9GCggCYFz8MDGBZNBcqQH+mqPcC3CRHkWo6XuXiIjod5IZkDT2H0v1YuInIiJ1MpsBs52JvwVG9bdWHNxHRETkRNjiJyIidWKLXxFM/EREpE5M/IpgVz8REZETYYufiIjUiS1+RTDxExGROtWYgRo7E38NE39DmPiJiEidnLzFbzabkZGRge+//x6nT5/GlStX0LVrVwwdOhShoaHw9/e3Ky6v8RMREanI1atXsXz5cvj7++PBBx/EN998g5KSEri6uiIvLw8JCQkICgrCgw8+iIMHD9ocny1+IiJSJydt8ffp0wchISFYt24dxo0bh3bt2tUpc/r0aWzduhXTp0/Ha6+9hrlz5zY7PhM/ERGplCRj6t3WO1f/t99+izvvvLPRMoGBgYiPj8fChQutVg1sDiZ+IiJSJ7PZ/hWaWnGLv6mkf7N27dqhZ8+eNsVn4iciIlKxyspKHDt2DOfOnYP5lj9oHnroIZvjMfETEZE6OWmL/2apqamYOXMmLly4UOc5jUaDmpoam2NyVD8REamT2SxvawOeffZZTJ06FUVFRTCbzVabPUkfYOInIiJSreLiYsTFxcHHx0dYTHb1N1O1oyugQm4CYlQKiCHq7/qOAmKIOB8vATFE1EMnIAYA9BAQw1NAjGcmyY8xNPYe+UGKz8mPAQAdBfzE/vIfecdfVbhVza5+PPLII0hPT7d5AF9jmPiJiEidmPjxl7/8BVOnTsX333+PQYMG1bmn/7nnnrM5JhM/ERGpU40ZsO8ydpuZq/+TTz7Bt99+C3d3d6Snp0Oj+X1CI41Gw8RPRETUlrz22mtYunQpXnnlFbi4iBmWZ1Pi/+WXX7Bt27Z6FwwICwvDlClToNVqhVSMiIicHLv6UV1djWnTpglL+kAzR/X/8MMPCA0NxdChQ5GZmQmj0YgFCxZg2bJl+OMf/whJkvDaa6/Bz88Pb7/9NqqqqoRVkIiInJRklre1AVFRUdi+fbvQmM1q8U+ZMgUvvvgiPvvsM3h4eDRYLisrC6tXr8Z7772HV199VVQdiYjIGUmS/S13qfXO1X+zmpoarFixArt370ZwcHCdwX0rV660OWazEv///M//1Ls60K1CQkIQEhKCa9eu2VwRIiIisvbjjz9i6NChAIDjx49bPXfzQD9bNCvxNyfpyylPRERUh6xledtGi3/fvn3CY9o1qv/f//439u3bV++CAfZ0OxAREdXhxIk/ICAADz30ECZNmoQxY8bgttvE3YRnc6Q333wTixYtQt++feHj41PnnkIiIiKS5+OPP8Y//vEPPPPMMzh//jzCwsLw0EMPYcKECY2OtWsOmxP/6tWrsWHDBsyaNUvWCxMRETXKiVv8999/P+6//3689957+Omnn/CPf/wDf/7znzF79myMHDkSDz30EB566CH06GH7pNg23xjo4uKCe+4RMF81ERFRY2rM8rY2YsCAAYiPj8fBgwdx6tQpzJgxA2lpaRg4cCAGDhyIf/7znzbFsznxv/DCC1izZo2thxEREdnGiZfl/e233+rdbzAYMHfuXHz55Ze4cOECli1bZvPEeTZ39S9cuBATJkxAz5490b9//zoj+L/44gtbQxIREdFN/Pz8EBkZidmzZ2PcuHH1lunQoQMefvhhm2Pb3OJ/7rnnsG/fPvTp0wddunSBXq+32myxf/9+TJw4EX5+ftBoNNi5c6fV87NmzYJGo7HawsPDba0yERG1Ri3Y4m8qH9UnPT0df/jDH6DVatGrVy8kJyfXKbNmzRp0794d7u7uMBqNOHz4cLPqs27dOpw/fx7h4eHo3r07lixZglOnTtl0Tg2xucW/adMmfP7555gwYYLsF6+oqMDgwYPx5JNPYvLkyfWWCQ8Px8aNGy2PuRYAEZGTkMyAZOfgPhtn7mtOPrpZfn4+JkyYgKeffhpbtmxBWloa5syZA19fX4SFhQEAtm/fjri4OCQlJcFoNGLVqlUICwtDbm4uvL29G43/xBNP4IknnkB+fj6Sk5OxadMmLF++HGPGjMGcOXPw8MMPw83NzaZzrGVzi9/T0xM9e/a068VuFRERgeXLlzfaVaHVamEwGCxb586dhbw2ERGpXAu2+JuTj26WlJSEoKAgvPfee7jzzjsRGxuLRx55BO+//76lzMqVKzF37lxER0ejf//+SEpKQocOHbBhw4Zm1ysoKAhLly5Ffn4+UlNT4e3tjSeffBK+vr52LckL2JH4lyxZgoSEBFy5csWuF7RVeno6vL290bdvX8yfPx8XL15stHxVVRXKysqsNiIick635gNRi8hlZWUhNDTUal9YWBiysrIA3FhVLzs726qMi4sLQkNDLWVsFRoaii1btmDz5s0AYPdAe5u7+j/44AOcPHkSPj4+6N69e53BfT/88INdFalPeHg4Jk+ejKCgIJw8eRKvvvoqIiIikJWVBVdX13qPSUxMxNKlS+vsdwHQVqYXui4gRgcBMUQQUY9qATEAwF0lMSoFxOgjIEY3ATEAYMGD8mPc9eL98oOMniU/RkmO/BgejXfxNtf3Y1+THePr7+Qdr/Q6rJIESHbej1/b0+/v72+1PyEhAUuWLJFZM8BkMsHHx8dqn4+PD8rKynD16lVcunQJNTU19Zb5z3/+Y/PrnT59Ghs3bsSmTZtQWFiIMWPGYPbs2XbV3ebEHxkZadcL2WP69OmW/w8aNAjBwcHo2bMn0tPTMXbs2HqPiY+PR1xcnOVxWVlZnQ+eiIjUT85debXHFRYWQqfTWfa3pnFiVVVV+Pzzz7Fhwwakp6fjjjvuwKxZsxAdHY3u3bvbHdfmxJ+QkGD3i8nVo0cPeHl5IS8vr8HEr9VqW9UHS0REytHpdFaJXxSDwYDi4mKrfcXFxdDpdGjfvj1cXV3h6upabxmDwdBk/GeeeQbbtm3DlStXMGnSJHz99dcYN26ckKnxm3WNX1LJusZnzpzBxYsX4evr6+iqEBGRwsw18jYlhYSEIC0tzWrfnj17EBISAgBwc3PDsGHDrMqYzWakpaVZyjQmMzMTCQkJ+PXXX7F9+3aMHz9e2Ho4zWrxDxgwAIsXL8bkyZMbvX3gxIkTWLlyJQIDA/HKK680Gbe8vBx5eXmWx/n5+cjJyYGnpyc8PT2xdOlSTJkyBQaDASdPnsRLL72EXr16WW6VICKitsss2T/lvq3HNZaPAgICEB8fj19//dUysO7pp5/GX/7yF7z00kt48skn8d133+HTTz+1mj43Li4OUVFRGD58OEaMGIFVq1ahoqIC0dHRTdbn2LFjtp2ADZqV+P/85z/j5ZdfxjPPPINx48Zh+PDh8PPzg7u7Oy5duoSff/4ZmZmZ+OmnnxAbG4v58+c368WPHDmCMWPGWB7XXpuPiorC2rVrcezYMWzatAklJSXw8/PD+PHj7ZqekIiIWh8R1/ibq7F8lJycjKKiIhQUFFieDwoKwj//+U+88MILWL16Nbp164aPPvrIqmE6bdo0nD9/HosXL4bJZMKQIUOQmppaZ8Dfrd566y08//zzaN++fZP1PnToEC5cuGDT3DrNSvxjx47FkSNHkJmZie3bt2PLli04ffo0rl69Ci8vLwwdOhQzZ87E448/btN99qNHj270MsLu3bubHYuIiMheTeWj+mblGz16NI4ePdpo3NjYWMTGxtpUl59//hkBAQGYOnUqJk6ciOHDh6Nr164AgOvXr1sa23//+99x9uxZSy9Ec9k0uG/UqFEYNWqUTS9ARERkDznX6pW+xq+kzZs347//+7/xl7/8BY899hjKysrg6uoKrVZrmUNn6NChmDNnDmbNmgV3d9tuJLZ5VD8REVFLaMmufrUZPHgw1q1bh7/97W84duyYVS/7kCFD4OXlZXdsJn4iIlKllhzcp1YuLi4YMmQIhgwZIi6msEhERESkemzxExGRKjlzV7+SmPiJiEiVJMn+BK6SeedUyeau/gceeKDeRXAuXbqEBx54QEiliIiISBk2t/jT09Px448/4ujRo9iyZQtuv/12ADeWIMzIyBBeQSIick7Oejuf0uzq6t+7dy+eeuop3H333fjyyy9lrRJERERUH2cd1b9//367juvevTsCAgKaLGdX4vf19UVGRgaio6Nx1113ISUlBXfeeac9oYiIiOrlrIP7oqKibD5Go9FgwYIFeO6555osa3Pir10dSKvVYuvWrVi+fDnCw8Px8ssv21xRIiIispafn69ofJsT/61zGS9atAh33nmnXX+htCZquv2h4fURm69aQIwOAmKImEhC1GfTUUAMEZ/NQAExHmx8DZBmmf9q89fdaNRzts0jXq9jG+THgPw12S8vWy07xqcpskMAAPYXyo/xg8zjlb6Mzmv8yrD5ezc/P9+yWECtKVOm4NChQ9iwQcQvJxER0e9d/fZurdmnn36K6urfm2hnzpyB+aaTunLlClasWGFXbJsTf2BgoKW7/2YDBgxo861+IiJqObWD++zdWrMZM2agpKTE8rh///44deqU5fHly5cRHx9vV2xO2UtERKQyt15Wb2zJYFup6dI1ERGRhbOO6lcaEz8REakSE78ymPiJiIhUaPfu3dDr9QAAs9mMtLQ0HD9+HACsrv/biomfiIhUSTLbf1ue1AZa/LcOmH/qqaesHtc30L45mPiJiEiVnHXKXgBWt+6JxsRPRESqxGv8yuDtfERERE6ELX4iIlIlcw1gtrN52pqn7A0KCrLr+r1ii/QQERG1BGft6k9OTrbruO7duzerHBM/ERGpkrMO7rv//vsVjc9r/ERERE6ELX4iIlIlZ+3qVxoTPxERqRITvzLY1U9ERORE2OInIiJVctbb+ZTmNInfBYB9sxrfIKLXSFTP03UBMdwExBBBRJeTt4AYANBLQAw/ATGenig/xrDXImTHqNr1jfyKANCWp8uOceiVHbJj7N0jP0aBgF++A/JDAAA6CohxTubxSvemSzJG9Qtcvr7NcZrET0RErYtZknGNn4m/QbzGT0RE5ESY+ImISJXMNfI2e6xZswbdu3eHu7s7jEYjDh8+3GDZ0aNHQ6PR1NkmTJhgKTNr1qw6z4eHh9tXOUHY1U9ERKrU0rfzbd++HXFxcUhKSoLRaMSqVasQFhaG3NxceHvXHU30xRdfoLq62vL44sWLGDx4MKZOnWpVLjw8HBs3brQ81mq1tldOILb4iYhIlWqn7LV3s9XKlSsxd+5cREdHo3///khKSkKHDh2wYcOGest7enrCYDBYtj179qBDhw51Er9Wq7Uq17lzZ3veDmGY+ImIqM0qKyuz2qqqquotV11djezsbISGhlr2ubi4IDQ0FFlZWc16rfXr12P69Om4/fbbrfanp6fD29sbffv2xfz583Hx4kX7T0gAJn4iIlKl2q5+ezcA8Pf3h16vt2yJiYn1vtaFCxdQU1MDHx8fq/0+Pj4wmUxN1vXw4cM4fvw45syZY7U/PDwcmzdvRlpaGt5++21kZGQgIiICNTWOm2iA1/iJiEiVRFzjLywshE6ns+xX6vr6+vXrMWjQIIwYMcJq//Tp0y3/HzRoEIKDg9GzZ0+kp6dj7NixitSlKWzxExFRm6XT6ay2hhK/l5cXXF1dUVxcbLW/uLgYBoOh0deoqKjAtm3bMHv27Cbr06NHD3h5eSEvL6/5JyEYEz8REalSS97O5+bmhmHDhiEtLe331zebkZaWhpCQkEaPTUlJQVVVFf74xz82+TpnzpzBxYsX4evra1sFBWLiJyIiVWrpUf1xcXFYt24dNm3ahF9++QXz589HRUUFoqOjAQAzZ85EfHx8nePWr1+PyMhIdOnSxWp/eXk5XnzxRRw8eBCnTp1CWloaJk2ahF69eiEsLMyu90QEXuMnIiJVkmRc45fsOG7atGk4f/48Fi9eDJPJhCFDhiA1NdUy4K+goAAuLtbt5dzcXGRmZuLbb7+tE8/V1RXHjh3Dpk2bUFJSAj8/P4wfPx7Lli1z6L38TPxERET/JzY2FrGxsfU+l56eXmdf3759ITWwIlD79u2xe/dukdUTgomfiIhUyWy2f+pde3sKnAETPxERqZLZDJjtXE+dib9hTPxERKRK9g7Sqz2W6sdR/URERE7EoS3+/fv345133kF2djaKioqwY8cOREZGWp6XJAkJCQlYt24dSkpKcM8992Dt2rXo3bt3i9dVxF9IHQTEEKW66SJNEnE+bgJi9BMQAwAWPSg/xl0fzpUf5I4h8mOgRHYEbWcP2TEAYLX/e7JjHCiRXw8R06WUCIgh6ku36Ulkm3Zd5vFKN6rZ1a8Mh7b4KyoqMHjwYKxZs6be51esWIEPPvgASUlJOHToEG6//XaEhYWhsrKyhWtKREQtTcRc/VSXQ1v8ERERiIiIqPc5SZKwatUqLFq0CJMmTQIAbN68GT4+Pti5c6fV/Mc3q6qqslp9qaysTHzFiYiIWinVXuPPz8+HyWSyWiJRr9fDaDQ2ukRiYmKi1UpM/v7+LVFdIiISrCWn7HUmqk38tcsg2rpEYnx8PEpLSy1bYWGhovUkIiJltPSUvc6izd3Op9VqHToVIhERicHBfcpQbYu/dhlEe5ZIJCIiovqpNvEHBQXBYDBYLZFYVlaGQ4cONblEIhERtX61U/batbHF3yCHdvWXl5cjL+/3u2vz8/ORk5MDT09PBAQEYMGCBVi+fDl69+6NoKAgvP766/Dz87O615+IiNomyQzYm7/tWZ3PWTg08R85cgRjxoyxPI6LiwMAREVFITk5GS+99BIqKiowb948lJSUYNSoUUhNTYW7u7ujqkxERC2EU/Yqw6GJf/To0Q0uZwgAGo0Gb7zxBt54440WrBUREVHb1eZG9RMRUdtgltHVz2v8DWPiJyIiVWLiV4ZqR/UTERGReGzxExGRKplrZAzuY4u/QUz8RESkSuzqVwYTPxERqRJv51MGr/ETERE5Ebb4iYhIlXiNXxlOk/hdANi5yBMAoFJAHToIiCEqjogYPQTEGC2gIi/uELR2Q79+8mPs3Ck/xh8KZIdY98hu2THSz8oOAQAoFxAjr+kiTboiIMYFATG8BMQAxJyP3O81pXvTzZL9CZxd/Q1zmsRPREStiyRjWd5GJoV1erzGT0RE5ETY4iciIlUySzJu52OLv0FM/EREpEpmGV39TPwNY1c/ERGRE2GLn4iIVMlcwxa/Epj4iYhIldjVrwwmfiIiUiUO7lMGr/ETERE5ESZ+IiJSJXONvM0ea9asQffu3eHu7g6j0YjDhw83WDY5ORkajcZqc3d3tyojSRIWL14MX19ftG/fHqGhoThx4oR9lROEiZ+IiFTJbJa32Wr79u2Ii4tDQkICfvjhBwwePBhhYWE4d+5cg8fodDoUFRVZttOnT1s9v2LFCnzwwQdISkrCoUOHcPvttyMsLAyVlSImgrcPEz8REalS7Vz9dm12XONfuXIl5s6di+joaPTv3x9JSUno0KEDNmzY0OAxGo0GBoPBsvn4+FiekyQJq1atwqJFizBp0iQEBwdj8+bNOHv2LHaKWNfDTkz8RETUZpWVlVltVVVV9Zarrq5GdnY2QkNDLftcXFwQGhqKrKysBuOXl5cjMDAQ/v7+mDRpEn766SfLc/n5+TCZTFYx9Xo9jEZjozGVxsRPRESqJOHGqH57ttoGv7+/P/R6vWVLTEys97UuXLiAmpoaqxY7APj4+MBkMtV7TN++fbFhwwbs2rULf//732E2mzFy5EicOXMGACzH2RKzJfB2PiIiUqXaJG7vsQBQWFgInU5n2a/VauVWyyIkJAQhIb8vCz5y5Ejceeed+Nvf/oZly5YJex3R2OInIiJVsre1f/MfDDqdzmprKPF7eXnB1dUVxcXFVvuLi4thMBiaVd927dph6NChyMvLAwDLcXJiKoGJn4iInJ6bmxuGDRuGtLQ0yz6z2Yy0tDSrVn1jampq8OOPP8LX1xcAEBQUBIPBYBWzrKwMhw4danZMJThNV/9tAOyc+REA4CmgDtcFxACADgJijBIQY93qzvKDPPec/BinTsmPAQABfWSHuHb2vOwYy2N3y46xTXYEca2CagExRNTljIAYuqaLNEnE+yGK3PdV6cnxRHT12yIuLg5RUVEYPnw4RowYgVWrVqGiogLR0dEAgJkzZ+KOO+6wjBN44403cPfdd6NXr14oKSnBO++8g9OnT2POnDkAboz4X7BgAZYvX47evXsjKCgIr7/+Ovz8/BAZGWnnmcnnNImfiIhal5ZO/NOmTcP58+exePFimEwmDBkyBKmpqZbBeQUFBXBx+f3PpUuXLmHu3LkwmUzo3Lkzhg0bhgMHDqB///6WMi+99BIqKiowb948lJSUYNSoUUhNTa0z0U9L0kiS1KZnNC4rK4Ner0dnyGvxi/gLSVSL31tADLb469G9n+wQ116Llx1j+ZuyQ7DFX49TAmKIaPGL+roX8X1yRebxEoAKAKWlpVYD6OSq/d5+HoC9Q/GqAKxWoG5tAVv8RESkSi3d4ncWTPxERKRKTPzKYOInIiJVYuJXBm/nIyIiciJs8RMRkSqxxa8MJn4iIlKl2rn67T2W6sfET0REqsQWvzJ4jZ+IiMiJsMVPRESqxBa/Mpj4iYhIlZj4lcGufiIiIifCFj8REakSW/zKYOInIiJVYuJXBhM/ERGpEhO/MniNn4iIyImwxU9ERKrEFr8ynCbxt4O87o0OAuowUEAMAHj3Mfkxem95T36Qr7bKj7H9U/kxunjKjwHg//XeJDtG5nX59fhf+SFQLiCGgFMBIOZ3p0RADBGJ4IqAGKISkogvb3eZx5sBVAioR2PxmfjFc5rET0RErQvn6leGqq/xL1myBBqNxmrr16+fo6tFRETUaqm+xT9gwADs3bvX8vi221RfZSIiEoBd/cpQfRa97bbbYDAYHF0NIiJqYUz8ylB1Vz8AnDhxAn5+fujRowcef/xxFBQUNFq+qqoKZWVlVhsRERHdoOrEbzQakZycjNTUVKxduxb5+fm49957cfny5QaPSUxMhF6vt2z+/v4tWGMiIhLFLHOj+qk68UdERGDq1KkIDg5GWFgYvv76a5SUlODTTxu+BSw+Ph6lpaWWrbCwsAVrTEREojDxK0P11/hv5uHhgT59+iAvL6/BMlqtFlqttgVrRURESuA1fmWousV/q/Lycpw8eRK+vr6OrgoREVGrpOrEv3DhQmRkZODUqVM4cOAAHn74Ybi6umLGjBmOrhoRESmMXf3KUHVX/5kzZzBjxgxcvHgRXbt2xahRo3Dw4EF07drV0VUjIiKFsatfGapO/Nu2bXN0FYiIyEGY+JWh6q5+IiIiEkvVLX4iInJeXKRHGUz8RESkSuzqVwa7+omIiJwIEz8REamSI27nW7NmDbp37w53d3cYjUYcPny4wbLr1q3Dvffei86dO6Nz584IDQ2tU37WrFl1lpcPDw+3s3ZiOE1Xvw8AVxnHPypgMsD4yr/JDwIAJT8LiNH4YkfNct99skOsDnxfdox/lMgOAQA4IyCGiF8oAZ8MOgqIIapVUC0ghoj3VScghohzqRQQAxDTlS03htLX0Vu6q3/79u2Ii4tDUlISjEYjVq1ahbCwMOTm5sLb27tO+fT0dMyYMQMjR46Eu7s73n77bYwfPx4//fQT7rjjDku58PBwbNy40fLY0bPLssVPRESq1NIt/pUrV2Lu3LmIjo5G//79kZSUhA4dOmDDhg31lt+yZQueeeYZDBkyBP369cNHH30Es9mMtLQ0q3JarRYGg8Gyde7c2Y7aicPET0REbdaty7RXVVXVW666uhrZ2dkIDQ217HNxcUFoaCiysrKa9VpXrlzBtWvX4OnpabU/PT0d3t7e6Nu3L+bPn4+LFy/af0ICMPETEZEqiWjx+/v7Wy3VnpiYWO9rXbhwATU1NfDx8bHa7+PjA5PJ1Kz6vvzyy/Dz87P64yE8PBybN29GWloa3n77bWRkZCAiIgI1NTXNexMU4DTX+ImIqHURcY2/sLAQOt3vIzyUur7+1ltvYdu2bUhPT4e7u7tl//Tp0y3/HzRoEIKDg9GzZ0+kp6dj7NixitSlKWzxExGRKolo8et0OqutocTv5eUFV1dXFBcXW+0vLi6GwWBotJ7vvvsu3nrrLXz77bcIDg5utGyPHj3g5eXV6PLySmPiJyIip+fm5oZhw4ZZDcyrHagXEhLS4HErVqzAsmXLkJqaiuHDhzf5OmfOnMHFixcdurw8Ez8REalSS4/qj4uLw7p167Bp0yb88ssvmD9/PioqKhAdHQ0AmDlzJuLj4y3l3377bbz++uvYsGEDunfvDpPJBJPJhPLycgBAeXk5XnzxRRw8eBCnTp1CWloaJk2ahF69eiEsLMyu90QEXuMnIiJVaum5+qdNm4bz589j8eLFMJlMGDJkCFJTUy0D/goKCuDi8nt7ee3ataiursYjjzxiFSchIQFLliyBq6srjh07hk2bNqGkpAR+fn4YP348li1b5tB7+Zn4iYiI/k9sbCxiY2PrfS49Pd3q8alTpxqN1b59e+zevVtQzcRh4iciIlUyA9DIOJbqx8RPRESqxMSvDCZ+IiJSJSZ+ZXBUPxERkRNhi5+IiFSJLX5lMPETEZEqMfErg4mfiIhUiYlfGbzGT0RE5ETY4iciIlVii18ZTpP4M8/HQaeTMUWiWwf5lSj5WX4MAPDoJTvEyZnPyo7xyseyQ0DEOyLqF7xMJTGqBcQoFxBDTd2Bavmi4ntiTQJQoWB8Jn5lqOnnmIiIiBSmhj8aiYiI6mjpRXqcBRM/ERGpkpzuenb1N4yJn4iIVImJXxm8xk9ERORE2OInIiJVYotfGUz8RESkSkz8ymDiJyIiVWLiVwav8RMRETkRtviJiEiV2OJXBhM/ERGpEhO/MtjVT0RE5ETY4iciIlVii18ZTPxERKRKnKtfGUz8RESkSnKW5WXibxiv8RMRETkRtviJiEiV2OJXhtMk/kldV8o62b3CakKkvEpHV4BIACZ+ZThN4iciotaFiV8ZvMZPRETkRNjiJyIiVWKLXxlM/EREpEpM/MpgVz8REZETaRWJf82aNejevTvc3d1hNBpx+PBhR1eJiIgUZpa52cPWfJOSkoJ+/frB3d0dgwYNwtdff231vCRJWLx4MXx9fdG+fXuEhobixIkTdtZODNUn/u3btyMuLg4JCQn44YcfMHjwYISFheHcuXOOrhoRESmopRO/rfnmwIEDmDFjBmbPno2jR48iMjISkZGROH78uKXMihUr8MEHHyApKQmHDh3C7bffjrCwMFRWOvCmW0nlRowYIcXExFge19TUSH5+flJiYmKzji8tLZUASKMBKVTGBm7cuHHjVu9WWloq9Hu/9nu7petma7559NFHpQkTJljtMxqN0lNPPSVJkiSZzWbJYDBI77zzjuX5kpISSavVSp988oktb4lQqm7xV1dXIzs7G6GhoZZ9Li4uCA0NRVZWVr3HVFVVoayszLKVlpYCAK7L3IiIqH6SJDm6Cg26OR+UlZWhqqqq3nL25JusrCyr8gAQFhZmKZ+fnw+TyWRVRq/Xw2g0NhizJah6VP+FCxdQU1MDHx8fq/0+Pj74z3/+U+8xiYmJWLp0aZ39mYrUkIiILl++DL1eLyyem5sbDAYDTCaTrDgdO3aEv7+/1b6EhAQsWbKkTll78o3JZKq3fG29a/9trIwjqDrx2yM+Ph5xcXGWx2azGb/99hu6dOkCjab+G0PKysrg7++PwsJC6HS6lqqq4nherU9bPbe2el5A2z235pyXJEm4fPky/Pz8hL62u7s78vPzUV1dLSuOJEl1vve1Wq2smG2BqhO/l5cXXF1dUVxcbLW/uLgYBoOh3mO0Wm2dD9bDw6NZr6fT6drUL24tnlfr01bPra2eF9B2z62p8xLZ0r+Zu7s73N3dFYldH3vyjcFgaLR87b/FxcXw9fW1KjNkyBCBtbeNqq/xu7m5YdiwYUhLS7PsM5vNSEtLQ0hIiANrRkREbYk9+SYkJMSqPADs2bPHUj4oKAgGg8GqTFlZGQ4dOuTQHKbqFj8AxMXFISoqCsOHD8eIESOwatUqVFRUIDo62tFVIyKiNqSpfDNz5kzccccdSExMBAA8//zzuP/++/Hee+9hwoQJ2LZtG44cOYIPP/wQAKDRaLBgwQIsX74cvXv3RlBQEF5//XX4+fkhMjLSUaep/sQ/bdo0nD9/HosXL4bJZMKQIUOQmppaZ7CEHFqtFgkJCW3u2g/Pq/Vpq+fWVs8LaLvn1lbPqzFN5ZuCggK4uPzeUT5y5Ehs3boVixYtwquvvorevXtj586dGDhwoKXMSy+9hIqKCsybNw8lJSUYNWoUUlNTW/Qyxq00kprvwyAiIiKhVH2Nn4iIiMRi4iciInIiTPxEREROhImfiIjIiTh94m+LS/4uWbIEGo3GauvXr5+jq2Wz/fv3Y+LEifDz84NGo8HOnTutnpdUuNxlczV1brNmzarzGYaHhzumsjZITEzEXXfdhU6dOsHb2xuRkZHIzc21KlNZWYmYmBh06dIFHTt2xJQpU+pMgqI2zTmv0aNH1/nMnn76aQfVuPnWrl2L4OBgy0Q9ISEh+OabbyzPt8bPixrn1Im/LS/5O2DAABQVFVm2zMzWt1pBRUUFBg8ejDVr1tT7vCqXu2ymps4NAMLDw60+w08++aQFa2ifjIwMxMTE4ODBg9izZw+uXbuG8ePHo6KiwlLmhRdewJdffomUlBRkZGTg7NmzmDx5sgNr3bTmnBcAzJ071+ozW7FihYNq3HzdunXDW2+9hezsbBw5cgQPPPAAJk2ahJ9++glA6/y8qAkOWxdQBeQu+atWCQkJ0uDBgx1dDaEASDt27LA8Vutyl/a49dwkSZKioqKkSZMmOaQ+Ip07d04CIGVkZEiSdOMzateunZSSkmIp88svv0gApKysLEdV02a3npckSdL9998vPf/8846rlECdO3eWPvroozbzeZE1p23x27MEY2ty4sQJ+Pn5oUePHnj88cdRUFDg6CoJpdblLkVKT0+Ht7c3+vbti/nz5+PixYuOrpLNapfF9vT0BABkZ2fj2rVrVp9bv379EBAQ0Ko+t1vPq9aWLVvg5eWFgQMHIj4+HleuXHFE9exWU1ODbdu2oaKiAiEhIW3m8yJrqp+5Tyn2LMHYWhiNRiQnJ6Nv374oKirC0qVLce+99+L48ePo1KmTo6snhFqXuxQlPDwckydPRlBQEE6ePIlXX30VERERyMrKgqurq6Or1yxmsxkLFizAPffcY5nJzGQywc3Nrc7CWa3pc6vvvADgscceQ2BgIPz8/HDs2DG8/PLLyM3NxRdffOHA2jbPjz/+iJCQEFRWVqJjx47YsWMH+vfvj5ycnFb/eVFdTpv427KIiAjL/4ODg2E0GhEYGIhPP/0Us2fPdmDNqLmmT59u+f+gQYMQHByMnj17Ij09HWPHjnVgzZovJiYGx48fb5XjSxrT0HnNmzfP8v9BgwbB19cXY8eOxcmTJ9GzZ8+WrqZN+vbti5ycHJSWluKzzz5DVFQUMjIyHF0tUojTdvXbswRja+Xh4YE+ffogLy/P0VUR5ublLm/WFj8/AOjRowe8vLxazWcYGxuLr776Cvv27UO3bt0s+w0GA6qrq1FSUmJVvrV8bg2dV32MRiMAtIrPzM3NDb169cKwYcOQmJiIwYMHY/Xq1a3+86L6OW3id6Ylf8vLy3Hy5Emr9aBbO7Uud6mUM2fO4OLFi6r/DCVJQmxsLHbs2IHvvvsOQUFBVs8PGzYM7dq1s/rccnNzUVBQoOrPranzqk9OTg4AqP4zq4/ZbEZVVVWr/byoCY4eXehI27Ztk7RarZScnCz9/PPP0rx58yQPDw/JZDI5umqy/OlPf5LS09Ol/Px86V//+pcUGhoqeXl5SefOnXN01Wxy+fJl6ejRo9LRo0clANLKlSulo0ePSqdPn5YkSZLeeustycPDQ9q1a5d07NgxadKkSVJQUJB09epVB9e8aY2d2+XLl6WFCxdKWVlZUn5+vrR3717pD3/4g9S7d2+psrLS0VVv1Pz58yW9Xi+lp6dLRUVFlu3KlSuWMk8//bQUEBAgfffdd9KRI0ekkJAQKSQkxIG1blpT55WXlye98cYb0pEjR6T8/Hxp165dUo8ePaT77rvPwTVv2iuvvCJlZGRI+fn50rFjx6RXXnlF0mg00rfffitJUuv8vKhxTp34JUmS/vznP0sBAQGSm5ubNGLECOngwYOOrpJs06ZNk3x9fSU3NzfpjjvukKZNmybl5eU5ulo227dvnwSgzhYVFSVJ0o1b+l5//XXJx8dH0mq10tixY6Xc3FzHVrqZGju3K1euSOPHj5e6du0qtWvXTgoMDJTmzp3bKv4gre+cAEgbN260lLl69ar0zDPPSJ07d5Y6dOggPfzww1JRUZHjKt0MTZ1XQUGBdN9990menp6SVquVevXqJb344otSaWmpYyveDE8++aQUGBgoubm5SV27dpXGjh1rSfqS1Do/L2ocl+UlIiJyIk57jZ+IiMgZMfETERE5ESZ+IiIiJ8LET0RE5ESY+ImIiJwIEz8REZETYeInIiJyIkz8REREToSJn8jB1q9fj/Hjx8uKceHCBXh7e+PMmTOCakVEbRVn7iNyoMrKSvTo0QMpKSm45557ZMVauHAhLl26hPXr1wuqHRG1RWzxEznQZ599Bp1OJzvpA0B0dDS2bNmC3377TUDNiKitYuInEuD8+fMwGAx48803LfsOHDgANzc3qyVNb7Vt2zZMnDjRat+sWbMQGRmJN998Ez4+PvDw8MAbb7yB69ev48UXX4Snpye6deuGjRs3Wh03YMAA+Pn5YceOHWJPjojaFCZ+IgG6du2KDRs2YMmSJThy5AguX76MJ554ArGxsRg7dmyDx2VmZmL48OF19n/33Xc4e/Ys9u/fj5UrVyIhIQH/9V//hc6dO+PQoUN4+umn8dRTT9W5pj9ixAh8//33ws+PiNoOXuMnEigmJgZ79+7F8OHD8eOPP+Lf//43tFptvWVLSkrQuXNn7N+/H/fee69l/6xZs5Ceno7//d//hYvLjb/N+/XrB29vb+zfvx8AUFNTA71ej48++gjTp0+3HBsXF4ejR49i3759Cp4lEbVmtzm6AkRtybvvvouBAwciJSUF2dnZDSZ9ALh69SoAwN3dvc5zAwYMsCR9APDx8cHAgQMtj11dXdGlSxecO3fO6rj27dvjypUrck+DiNowdvUTCXTy5EmcPXsWZrMZp06darRsly5doNFocOnSpTrPtWvXzuqxRqOpd5/ZbLba99tvv6Fr1672VZ6InAITP5Eg1dXV+OMf/4hp06Zh2bJlmDNnTp0W+c3c3NzQv39//Pzzz8LqcPz4cQwdOlRYPCJqe5j4iQR57bXXUFpaig8++AAvv/wy+vTpgyeffLLRY8LCwpCZmSnk9a9cuYLs7GzZkwERUdvGxE8kQHp6OlatWoWPP/4YOp0OLi4u+Pjjj/H9999j7dq1DR43e/ZsfP311ygtLZVdh127diEgIMBqoCAR0a04qp/IwaZOnYo//OEPiI+PlxXn7rvvxnPPPYfHHntMUM2IqC1ii5/Iwd555x107NhRVowLFy5g8uTJmDFjhqBaEVFbxRY/ERGRE2GLn4iIyIkw8RMRETkRJn4iIiInwsRPRETkRJj4iYiInAgTPxERkRNh4iciInIiTPxEREROhImfiIjIifx/C7KWE1xAnvUAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# ris.focusing_lens(source, target) # Uncomment to change the RIS configuration\n",
+ "\n",
+ "# Define a grid of points in the x-z plane\n",
+ "x_min = 0\n",
+ "x_max = 30\n",
+ "num_steps = 20 # Increase to obtain a finer resolution\n",
+ "x = tf.cast(tf.linspace(x_min, x_max, num_steps), tf.float32)\n",
+ "x_grid, z_grid = tf.meshgrid(x, x)\n",
+ "x = tf.reshape(x_grid, [-1])\n",
+ "z = tf.reshape(z_grid, [-1])\n",
+ "y = tf.zeros_like(x)\n",
+ "r = tf.stack([x, y, z], -1)\n",
+ "\n",
+ "def field_at_points(scene, r, batch_size, path_loss=False):\n",
+ " \"\"\"\n",
+ " Compute absolute field strength at a list of positions\n",
+ "\n",
+ " Input\n",
+ " -----\n",
+ " r : [num_points, 3]\n",
+ " Points at which the field should be computed\n",
+ "\n",
+ " batch_size : int\n",
+ " Since we cannot compute the field at all points\n",
+ " simultaneously, we need to batch the computations.\n",
+ " Must divide `num_points` without rest.\n",
+ "\n",
+ " path_loss : bool\n",
+ " If `True`, the path loss in dB is returned and not the\n",
+ " absolte field strength.\n",
+ "\n",
+ " Output\n",
+ " ------\n",
+ " e : [num_points]\n",
+ " Absolute value of field strength\n",
+ " \"\"\"\n",
+ " # Add batch_size receivers to the scene\n",
+ " # if they do not already exist\n",
+ " if len(scene.receivers)==0:\n",
+ " for i in range(batch_size):\n",
+ " scene.add(Receiver(f\"rx-{i}\", [0,0,0]))\n",
+ "\n",
+ " # Iteratively compute field for all positions\n",
+ " r_vec = tf.reshape(r, [-1, batch_size, 3])\n",
+ " em = tf.zeros([0], tf.float32)\n",
+ " for j, rs in enumerate(r_vec):\n",
+ " \n",
+ " # Move receivers to new positions\n",
+ " for i,r in enumerate(rs):\n",
+ " scene.get(f\"rx-{i}\").position=r\n",
+ " \n",
+ " # Compute paths and obtain channel impulse responses\n",
+ " paths = scene.compute_paths(los=False, reflection=False, ris=True)\n",
+ " a = tf.squeeze(paths.cir()[0])\n",
+ " \n",
+ " # We need to scale the path gain by the distance from the \n",
+ " # transmitter to the RIS to simulate an incoming field stength of\n",
+ " # 1 V/m and undo the effect of the isotropic antenna\n",
+ " # see https://nvlabs.github.io/sionna/em_primer.html#equation-h-final\n",
+ " if path_loss:\n",
+ " e = 20*tf.math.log(tf.abs(a))/tf.math.log(10.)\n",
+ " else: \n",
+ " e = 4*PI/scene.wavelength*normalize(tx.position)[1]*tf.abs(a)\n",
+ " em = tf.concat([em, e], axis=0)\n",
+ " return em\n",
+ "\n",
+ "em = field_at_points(scene, r, 40)\n",
+ "em = tf.reshape(em, x_grid.shape)\n",
+ "\n",
+ "# Visualize the field\n",
+ "plt.figure(figsize=(5.55, 4.57))\n",
+ "plt.pcolormesh(x_grid, z_grid, em, cmap='afmhot', vmin=0, vmax=2)\n",
+ "plt.ylim([0, 30])\n",
+ "cb = plt.colorbar() \n",
+ "cb.set_label(r\"|E| (V/m)\")\n",
+ "plt.xlabel(\"x (m)\");\n",
+ "plt.ylabel(\"z (m)\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0416b87a",
+ "metadata": {},
+ "source": [
+ "You can run the cell above with a larger value of `num_steps` to improve the resolution. As this might take some time, we provide the result for 500 steps below:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a072fb97-00e2-48e0-b51b-c22204ac723d",
+ "metadata": {},
+ "source": [
+ "![Results-500steps]()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d33799ff-badb-41b4-957d-f58a38c9a6da",
+ "metadata": {},
+ "source": [
+ "This is to be compared against Fig. 4 from [[1]](#References):"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "af78cc4a-f9a4-4d32-9dc6-8a808b383739",
+ "metadata": {},
+ "source": [
+ "![Original]()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38f0341a",
+ "metadata": {},
+ "source": [
+ "## RIS with Multiple Reradiation Modes\n",
+ "\n",
+ "An RIS can be configured to have mutiple reradiation modes.\n",
+ "The following code visualizes the path loss in the horizontal plane (z=5m) for an RIS that steers energy toward two different directions. The power of each reradiation mode can be configured.\n",
+ "Otherwise the setup is identicial to the previous example with the unique difference that the transmitter is located much closer to the RIS, i.e., z=50m."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "4345e549",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG2CAYAAACAm6lmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnmElEQVR4nO3deXhTZdo/8G+SJmnTna4gpbRWyiJLwQGLy4AghcGF0Zefy4it4oY4vLIpjLIPFGEARwcER1l8x3lRZ9wGeZGyixRQpCqrFIEW6Aa0Dd2SJjm/PxgyxDbN3SZt0vL9XNe5IMmd5zwnOUnvPOc591EpiqKAiIiIiOpQe7sDRERERL6KiRIRERGRE0yUiIiIiJxgokRERETkBBMlIiIiIieYKBERERE5wUSJiIiIyAkmSkREREROMFEiIiIicoKJEhEREZETTJSIiIioyXbs2AGVSlXv8s033wAATp8+Xe/je/fu9XLvXVPxWm9ERETUVGazGZcuXXK4b8aMGdi6dStOnjwJlUqF06dPIyEhAVu2bEGPHj3scREREdBqtS3d5Ubx83YHiIiIqPXS6XSIjY21366trcVnn32G3//+91CpVA6xERERDrGtAROlX7DZbDh//jyCg4PrvMFERERXKYqCy5cvo0OHDlCrm28mS01NDcxms0faUhSlzt82vV4PvV7vkfYB4PPPP8fFixfxxBNP1HnsvvvuQ01NDbp06YKXXnoJ9913n8fW21x46O0Xzp49i7i4OG93g4iIWon8/Hx07NixWdquqalBQnwQCoutHmkvKCgIFRUVDvfNmjULs2fP9kj7APCb3/wGALBx40b7fRcuXMB7772H2267DWq1Gv/85z+xaNEifPrppz6fLLWaRCkzMxMff/wxjh07hoCAAAwcOBCvvfYakpOT7TE1NTWYPHky1q9fD5PJhLS0NKxYsQIxMTHi9ZSXlyMsLAy3950CP43zDFttEe60wldXff6CrLmIUFnc6bOiOFVn2YdbZRZub7lRFGa5cFHWHpEXqHU6UZzS6yZR3MWbg0Rx5cmyL4zgG8tEccntikVxVRbZ9kbrL8vWG1gkitOpa0VxkRrZekPVVS5j8i0RorbUgi/v6goLpv76AMrKyhAaKvtubiyj0YjQ0FCcOdAZIcHujVoZL9sQ3+808vPzERISYr/f2YjStGnT8NprrzXY5tGjR9G1a1f77bNnzyI+Ph4ffvghHnzwwQaf+/jjj+PUqVP46quvGrklLavVHHrbuXMnxo8fj1/96lewWCz4wx/+gGHDhuHIkSMIDAwEAEycOBFffPEFPvroI4SGhuKFF17AAw88gK+//lq8nqtDkn4aPfz8/J3GqRVpoiT74lOrhV/MDSRvDnEqWXsqYXsqjXB7hdsBlW9P3qPrm1q4fyoNfEdcS6OTxan9Zd8XGoPsc6sNlH0etcJESecvi/MPlP1p0atl22vw04jiAtWu4wJqZX2TJEpXtcQ0jaBgFYKC3VuPDVeeHxIS4pAoOTN58mRkZGQ0GJOYmOhwe82aNYiIiBCNEg0YMABZWVku47yt1SRKmzZtcri9du1aREdH48CBA7jzzjtRXl6Od999F3//+99x1113AbjyhnXr1g179+7Frbfe6o1uExERuc2q2GB18/iPVbE1Kj4qKgpRUVHieEVRsGbNGjz++OOiM9lycnLQvn37RvXJG1pNovRL5eXlAIB27doBAA4cOIDa2loMHTrUHtO1a1d06tQJ2dnZThMlk8kEk8lkv200yg4dERERtRQbFNgaMcrlrI3mtG3bNpw6dQpPPfVUncfWrVsHnU6HlJQUAMDHH3+M1atX45133mnWPnlCq0yUbDYbXnzxRdx22224+eabAQCFhYXQ6XQICwtziI2JiUFhYaHTtjIzMzFnzpzm7C4REVGb9+6772LgwIEOc5auNW/ePJw5cwZ+fn7o2rUrPvjgA/zXf/1XC/ey8VplojR+/HgcOnQIu3fvdrut6dOnY9KkSfbbRqORZ70REZFPscGGxh04q7+N5vT3v//d6WPp6elIT09v1vU3l1aXKL3wwgvYsGEDdu3a5XA6ZmxsLMxmM8rKyhxGlYqKihosbuXp+hFERESeZlUUWN08Sd3d51+vWs213hRFwQsvvIBPPvkE27ZtQ0JCgsPj/fr1g1arxdatW+33HT9+HHl5eUhNTW3p7hIREVEb0GpGlMaPH4+///3v+OyzzxAcHGyfdxQaGoqAgACEhoZi7NixmDRpEtq1a4eQkBD8/ve/R2pqatPOePvmUMOnsBsMomaUm28UxVkSZDP//S5WuA4CoAoT1vQoKZXFCevKIEB2GrRfe1kJe0uB8/llRE0hqpF0s6w+kjFR9j1wOcF1DAAEJpaL4lKiZXXStCrZoZZQbbVsvUF5ojh/YX2kdhrZ91mYoD4SABw3u/4eNSuyP3s6lcVlzNXT7VtCa5jM3Va1mkTprbfeAgAMGjTI4f41a9bY6zwsW7YMarUaDz74oEPBSSIiotbMBgVWJkpe0WoSJUkBcX9/fyxfvhzLly9vgR4RERFRW9dqEiUiIqLrFQ+9eQ8TJSIiIh/Hs968p9Wc9UZERETU0jiiRERE5ONs/17cbYMaj4kSERGRj7N64Kw3d59/vWKiRERE5OOsypXF3Tao8ThHiYiIiMgJjig5YR7aFzat8yrThiMFonYs+38UxWl6dBHFQXjWgrSitd8NHWTrNZtFYUpEuChOZbGK4vw6dXQdBMCSJ6tUTKSOu8FlTHlisKitsptkvzXVXS6L4lI7nBbFdfAvE8VdNAfJ1huSK4oL01SK4jTC2TBhallF8B9Nsu+By9YAlzHBGtk647UXXMZU+sm+xzyBc5S8h4kSERGRj7NBBaubl0xpyUuutCU89EZERETkBEeUiIiIfJxNubK42wY1HhMlIiIiH2f1wKE3d59/veKhNyIiIiInOKJERETk4zii5D1MlIiIiHycTVHBprh51pubz79e8dAbERERkRMcUXLCcLQAfmq984AA58Uor2Ue2V8UF3C6TBRnyf1ZFCcWZJDFqWS/RFTCgpiKTiNrTy17nf06x4viLKfPiOKo9fHr0F4UV9Ul0mVMWZLsN2RttypR3N3xJ0RxvYJkhVMv1MoKYt4ZekwU18nvkijOaJN9HgPVJlHcMbPsPau0NfBdfA1JMclknaxYcKE11GVMla3lCk7y0Jv3MFEiIiLycVaoYXXzIFDLpXVtCxMlIiIiH6d4YI6SwjlKTcI5SkREREROcESJiIjIx3GOkvcwUSIiIvJxVkUNq+LmHCVewqRJeOiNiIiIyAmOKBEREfk4G1SwuTm2YQOHlJqCiRIREZGP4xwl72Gi5ISlYyTg57y4mt+ZYlE7Vp1sx6y4KVwUFxDSWxSnNssqZpiDdaI4v8tm2XqLSkVxKj/ZrqcEB8jigmSF8DQBXVzGWI/+JGqLWoZfRIQoztxFVrywtIvWZUxVN1nBxGE3yvaVIWFHRHE1Ntd9A4AbDLLPWaL2giiuxBooitOpZN8rJ83Rojh/Va0oLkwjK+zZVVBMstgqK9ZZYglxGVNttYjauh789NNPmDp1Kr7++muYzWb06tUL8+bNw+DBg+0xeXl5GDduHLZv346goCCkp6cjMzMTfsK/B97COUpEREQ+7upkbneX5nLPPffAYrFg27ZtOHDgAHr37o177rkHhYWFV/pvtWLkyJEwm83Ys2cP1q1bh7Vr12LmzJnN1idPYaJERETk467MUXJ/aQ4XLlzAiRMnMG3aNPTq1Qs33XQTFi5ciKqqKhw6dAgAsHnzZhw5cgR/+9vf0KdPH4wYMQLz5s3D8uXLYTbLjlh4CxMlIiKi64jRaHRYTCbZoWZnIiIikJycjPfeew+VlZWwWCxYtWoVoqOj0a9fPwBAdnY2evbsiZiYGPvz0tLSYDQacfjwYbfW39x8+8AgERERweaBa71dPestLi7O4f5Zs2Zh9uzZTW5XpVJhy5YtGDVqFIKDg6FWqxEdHY1NmzYhPPzK/NvCwkKHJAmA/fbVw3O+iiNKREREPs6Tc5Ty8/NRXl5uX6ZPn17vOqdNmwaVStXgcuzYMSiKgvHjxyM6OhpfffUV9u/fj1GjRuHee+9FQYHrCfa+jiNKREREPs4GtcfqKIWEhCAkxPVZfZMnT0ZGRkaDMYmJidi2bRs2bNiA0tJSe7srVqxAVlYW1q1bh2nTpiE2Nhb79+93eG5RUREAIDY2tglb03KYKBEREVEdUVFRiIqKchlXVXWlfINa7ZjIqdVq2Gw2AEBqairmz5+P4uJiREdfKR+RlZWFkJAQdO/e3cM99yweeiMiIvJxVkXlkaU5pKamIjw8HOnp6fj+++/tNZVOnTqFkSNHAgCGDRuG7t27Y8yYMfj+++/x5Zdf4tVXX8X48eOh1+ubpV+e0qpGlHbt2oXFixfjwIEDKCgowCeffIJRo0bZH8/IyMC6descnpOWloZNmzY1el2K+srijElY3C7gk32iOE3PrqI45MsmvZl+lSSKsxg0ojhpwUloZLm39ex5WXMJnURxqlpZIbzaqCCXMdpk2WunlFwUxVkvyYoDUv2sCR1EcWVJsqKj5Te7LnJ4V9fjorYejPhGFBesrhHF1SjCgpOay6I4oyIrKCtd70WL688PANyokxXklRamvEkn+94rs7kuUHvJKtsGk6D4p9nWcpWurR6YzG1tpkuYREZGYtOmTXjllVdw1113oba2Fj169MBnn32G3r2vFEnWaDTYsGEDxo0bh9TUVAQGBiI9PR1z585tlj55UqtKlCorK9G7d288+eSTeOCBB+qNGT58ONasWWO/7euZKhERUWt3yy234Msvv2wwJj4+Hhs3bmyhHnlOq0qURowYgREjRjQYo9frfX5iGBERUWPYFDVsblbWtim8KG5TtLk5Sjt27EB0dDSSk5Mxbtw4XLzY8OERk8lUp/gWERGRL7l66M3dhRqvTb1qw4cPx3vvvYetW7fitddew86dOzFixAhYrc7nr2RmZiI0NNS+/LIQFxEREV2/WtWhN1cefvhh+/979uyJXr164cYbb8SOHTswZMiQep8zffp0TJo0yX7baDQyWSIiIp9iA9w+a83mma5cd9pUovRLiYmJiIyMRG5urtNESa/Xc8I3ERH5NM8UnGxTB5FaTJt+1c6ePYuLFy+ifXvZqfxERERE12pVI0oVFRXIzc213z516hRycnLQrl07tGvXDnPmzMGDDz6I2NhYnDx5Ei+99BKSkpKQlpbmxV4TERG559prtbnTBjVeq0qUvv32WwwePNh+++rcovT0dLz11lv44YcfsG7dOpSVlaFDhw4YNmwY5s2bx0NrRETUqtmggg3uzlFquQKZbUmrSpQGDRoEpYE6EK6KXTWGpqoWmgaqTGtLykXt1N7eRxRXHSqroGuocV1VGAB0xVWiOP9KWcVgS+7Pojj0u1kUppzJl7VXKdsOW1S4KE57ynXF4JquskO12mDXVYABwM9P9jGzFJeI4nydOkD2uqhvkL3OJb1klZQv9pFVZx/YI9dlzJioPaK2Ev1k5USqhL/kaxSLKE5acfv7GtmJKVF+skrfvfTnRHE/mG4QxXXSXhLFVdpkP3Ylp7/XCCpuA8DRStf7p7lSeMUCD+CIkvfwVSMiIiJyolWNKBEREV2PPHOtN46NNAUTJSIiIh9nU1SwuVtHyc3nX6+YXhIRERE5wRElIiIiH2fzwKE3FpxsGiZKREREPs6mqGFz86w1d59/veKrRkREROQER5SIiIh8nBUqWN0sGOnu869XTJScUDRqKBqN08ctZ2WF12p7ywqv6S6aZP3SOe/TtSyhsgJtqmBZ4brq3rfK2rM6Lwh6rYADojAokWGiOLWwcKY1tp3LGP9cWeFHa0yoKK62i2wf0FyuEMXBJnuNbSbZayLl1z5WFqiVfa2U3RItiivtLlttz55nRHEZMbtdxnTXygowQviH50RtiCjOXyUrKFtole17Qw2ui2sCwI/mKFHcaUuEKC7CT7YvS/9wh6hl+/LJWtf71MGKTqK2imqCXcbUmlqu4CQPvXkPXzUiIiIiJziiRERE5OOscP/QmewiP/RLTJSIiIh8HA+9eQ8TJSIiIh/Hi+J6D181IiIiIic4okREROTjFKhgc3OOksLyAE3CRImIiMjH8dCb9/BVIyIiInKCI0pOqGtqodY4zyOV3rIqeIajxaI4xSArEFnRJVwUZ/OTDbFKf2BY/GXtBVyyieJUA3rJVlwhLJpolBUIVKJdF/4TF5IUFuvUXpYVpase0lMUF1BQJYrDgUOyOKlQ1wX4AKCsj6wo4YVesp3vht7nRXH/FSurYhqlcV0MsUqRFfU8LCzUGCFYJwAECgtOAuWiqC1VSaI4aWFKaXu9/fNFcf4qiyjumDlGFJdtdN0/6ZlfBj/Xn9taQYyn2BQVbIp7h87cff71iokSERGRj7NCDaubB4Hcff71iq8aERERkRMcUSIiIvJxPPTmPRxRIiIi8nE2qD2yNJeffvoJ999/PyIjIxESEoLbb78d27dvd4hRqVR1lvXr1zdbnzyFiRIRERG55Z577oHFYsG2bdtw4MAB9O7dG/fccw8KCwsd4tasWYOCggL7MmrUKO90uBF46I2IiMjHWRUVrG4eOnP3+c5cuHABJ06cwLvvvoteva6c0bxw4UKsWLEChw4dQmxsrD02LCzM4XZrwBElIiIiH3d1jpK7CwAYjUaHxWQyudW3iIgIJCcn47333kNlZSUsFgtWrVqF6Oho9OvXzyF2/PjxiIyMRP/+/bF69WoowlIc3sQRJSIiIh+nKGpxDaiG2gCAuLg4h/tnzZqF2bNnN7ldlUqFLVu2YNSoUQgODoZarUZ0dDQ2bdqE8PD/1P6bO3cu7rrrLhgMBmzevBnPP/88KioqMGHChCavuyUwUXLCmBwGP62/08dDvykQtWMVFDgEAJte9lYEfLJPFOfX8QZRnBIuKyIIm6yQpDla1l5J3yBRXNA55++BQ1yprOCkqZ3rIpF+1VZRW7pL1aI4c7sAUZzhjFEUd/kmWUFM/+C+ojirTvbla1bLhu1LesvaC7r5kiiud7is4GRujawoYXe96/a0wiMU0RrZfqdVyfapizaDKC7RT7avALLvqW9MHURx0kKSISpZIcZjtdGiuKPVsu+zCJ3rwp5nqtvJ1nnR9f5krXJvJMZb8vPzERLyn79Nen39BY+nTZuG1157rcG2jh49iuTkZIwfPx7R0dH46quvEBAQgHfeeQf33nsvvvnmG7Rv3x4AMGPGDPvzUlJSUFlZicWLFzNRIiIiIvdYoYLVzYvaXn1+SEiIQ6LkzOTJk5GRkdFgTGJiIrZt24YNGzagtLTU3u6KFSuQlZWFdevWYdq0afU+d8CAAZg3bx5MJpPTZM0XMFEiIiLycTbF/TpItkZOB4qKikJUlOvL9FRVXbmsklrtOJqsVqtha+BoRE5ODsLDw306SQKYKBEREZEbUlNTER4ejvT0dMycORMBAQH461//ilOnTmHkyJEAgH/9618oKirCrbfeCn9/f2RlZWHBggWYMmWKl3vvGhMlIiIiH2fzwGRud5/vTGRkJDZt2oRXXnkFd911F2pra9GjRw989tln6N27NwBAq9Vi+fLlmDhxIhRFQVJSEpYuXYqnn366WfrkSUyUiIiIfJwNKtjcnKPk7vMbcsstt+DLL790+vjw4cMxfPjwZlt/c2IdJSIiIiInOKJERETk43y5Mndb16pGlHbt2oV7770XHTp0gEqlwqeffurwuKIomDlzJtq3b4+AgAAMHToUJ06c8E5niYiIPOTqHCV3F2q8VvWqVVZWonfv3li+fHm9jy9atAhvvPEGVq5ciX379iEwMBBpaWmoqalp4Z4SERFRW9CqDr2NGDECI0aMqPcxRVHw+uuv49VXX8X9998PAHjvvfcQExODTz/9FA8//HCj1uVXY4Of1Xn9h6pusoqyuv/7RhSnDJJVUbYN6ec6CID6gqxqtEp4nZ3LXWXVbKuiZLm3oVhW6buig2wXrRqRIIoLuOS6QnJNgFbUlv54oesgALWdZFXI/fMtojioZMPnpcmyquYWWeFwVMkKX8MWJ9v3KipltVPCtFWiuKHBh2XtqV1XjT5vkb12wYK2AIgLBYapZa/dzxZZxf8oTaUoTkoHWYXxc1ZZhX6jVfY6R2plFdBzLndyGfNtgesYAKj82XUFfFsL/gi3QeV+HaVmnMzdlrWqEaWGnDp1CoWFhRg6dKj9vtDQUAwYMADZ2dlOn2cymepcIJCIiMiXKP8+682dRWGi1CRtJlEqLLzy6z4mxvFnb0xMjP2x+mRmZiI0NNS+/PJigURERN5mU1QeWajx2kyi1FTTp09HeXm5fcnPl130kYiIiNq+VjVHqSGxsbEAgKKiIvuViq/e7tOnj9Pn6fV6n7/ODBERXd98uTJ3W9dmXrWEhATExsZi69at9vuMRiP27duH1NRUL/aMiIjIPTz05j2takSpoqICubm59tunTp1CTk4O2rVrh06dOuHFF1/EH//4R9x0001ISEjAjBkz0KFDB4waNcp7nSYiIqJWq1UlSt9++y0GDx5svz1p0iQAQHp6OtauXYuXXnoJlZWVeOaZZ1BWVobbb78dmzZtgr+/7BRUIiIiX+Tr13pry1pVojRo0CAoDdT9UalUmDt3LubOnduCvSIiImpenjh0xkNvTdOqEqWWpLJdWZyxaWU7nLrfzaI4c4BGFKeyygpEStWGy6oN+tXICkRqzLLXxfDPvaK4igkDRXHC+oCI/vqSy5ji26JEbV0YIitcpy+XvXalfSNFcRpZjUNI522awmVxtZG1ojidVra9Wq2swGY7P1nRxHYaWWFKCaNNtkPF+ZlEcV/XxIriuuqKRHHSwpSXbTpRXI0iK7IaoZKtN1Al20n91bJ96mvjTaK4nXk3uoyxnpAVwww75TrGKvy+o9aNiRIREZGP44iS9zBRIiIi8nFMlLynzZQHICIiIvI0jigRERH5OI4oeQ8TJSIiIh+nwP3T+z17KtD1g4kSERGRj+OIkvdwjhIRERGRExxRIiIi8nEcUfIeJkpOKOqGC/YFnr4sascUEyiK05XKCrTVhsoKyMFPNliossqKAwb8XCaKMxyUvS6Fz8kKSYacsYridOWywnVooLL7f9Ypey9MYbKPj1Uv+3KqCZe9Z6Z2ojCEnZC9t7UG4XqjZHE6nayQ5M3RhaI4rUrWnlSg4O3wV8n2p0KrbB+4zb9AFFdmk+0rVYqsQG2ZzSCK66tzXYgVAGoEnx8AyLfJCtlmlcoK8m77WVZw0u+o6+/byJ9kn4vQY0aXMRarrOCoJzBR8h4eeiMiIiJygiNKREREPo4jSt7DRImIiMjHKYoKipuJjrvPv17x0BsRERGRExxRIiIi8nE2qNwuOOnu869XTJSIiIh8HOcoeQ8PvRERERE5wUSJiIjIx12dzO3u0ly+++473H333QgLC0NERASeeeYZVFRUOMTk5eVh5MiRMBgMiI6OxtSpU2GxeLZOWnPgoTcnAg/kwU/tvLhj+Z2Jonb8qmXFzcwhsgJtgWcqRXE1UbL2/IurRHGmjiGiuMupEaK40FOygn5lN2pFcVphsUb1DVEuY8qTZF8mobmy4nuXO8na05eKwhD/maw44Jn7ZZUppeuVqq6UFUXtEFAmiovRloviYjWy96PQ6npf6ayVfc5O18oKyh62yuLCNNWiuA5+NaK4KEUWB+HclZ8tsu+B9RcGiOJ2HO8iigs46i+KC/3Z9fdt8GnZd57y4wnXMYqw0K0H+PKht/Pnz2Po0KF46KGH8Je//AVGoxEvvvgiMjIy8I9//AMAYLVaMXLkSMTGxmLPnj0oKCjA448/Dq1WiwULFjRLvzyFiRIREZGP8+XyABs2bIBWq8Xy5cuhVl/5IbJy5Ur06tULubm5SEpKwubNm3HkyBFs2bIFMTEx6NOnD+bNm4eXX34Zs2fPhk4nvOqEF/DQGxER0XXEaDQ6LCaTe5diMZlM0Ol09iQJAAICrhzV2L17NwAgOzsbPXv2RExMjD0mLS0NRqMRhw8fdmv9zY2JEhERkY9T/n3ozZ3l6ohSXFwcQkND7UtmZqZbfbvrrrtQWFiIxYsXw2w2o7S0FNOmTQMAFBRcuc5hYWGhQ5IEwH67sFB23UdvYaJERETk4xRcuaa3W8u/28rPz0d5ebl9mT59er3rnDZtGlQqVYPLsWPH0KNHD6xbtw5LliyBwWBAbGwsEhISEBMT4zDK1FpxjhIREdF1JCQkBCEhrifmT548GRkZGQ3GJCZeObHp0UcfxaOPPoqioiIEBgZCpVJh6dKl9sdjY2Oxf/9+h+cWFRXZH/NlTJSIiIh8nA0qqFq4MndUVBSiolyfKXytq4fTVq9eDX9/f9x9990AgNTUVMyfPx/FxcWIjo4GAGRlZSEkJATdu3dv1DpaGhMlIiIiH+fLZ70BwF/+8hcMHDgQQUFByMrKwtSpU7Fw4UKEhYUBAIYNG4bu3btjzJgxWLRoEQoLC/Hqq69i/Pjx0Ov1zdYvT2CiRERERG7Zv38/Zs2ahYqKCnTt2hWrVq3CmDFj7I9rNBps2LAB48aNQ2pqKgIDA5Geno65c+d6sdcyTJScsBSXACrnxQ4DSjqK2rncSZYp+1XJiuXVxMoKSZZ3lr21tq6horjQ01ZRXNTmPFFc3iPxorjAItnrYg6S/VLyq3bd3g3bZUX/jAmyIngx35pFcSW9ZXVEzt0tKyQprIUIlbAwruIney/8dLJ9RauSxd3gJ6uIWavI+pdvCXcd5FcmautGrax4YaWsa2KFVtn3igaygrcnrEGiuLVFt4vi9hxJEsWF/SArKNvuqOwz5H/KdTFWpahE1JbV4rqYZEsXnFT5aMFJAHjvvfdcxsTHx2Pjxo3N1ofmwkSJiIjIx109c83dNqjxWv95e0RERETNhCNKREREPs7XJ3O3ZUyUiIiIfBwTJe9hokREROTjfH0yd1vGOUpERERETrSpRGn27Nl1rkPTtWtXb3eLiIjILW5f580DZ81dr9rcobcePXpgy5Yt9tt+fm1uE4mI6DpzJdFxd46ShzpznWlzWYSfn5/PX2CPiIiIPMdms2Hnzp346quvcObMGVRVVSEqKgopKSkYOnQo4uLimtx2m0uUTpw4gQ4dOsDf3x+pqanIzMxEp06dnMabTCaYTCb7baPRCABQGwKgVjmvlFwZJauirK2QVcaFSvZLobSL8C0T/nLQmFzHAEB5Z40o7nKcrOK2Stg/i172uthkBX5R2c51e5paWcXt2kBZ38qSZPuKIjwQrhZW0ta7LlJ8Zb3CXUpTKdsHtFGyitvROqOsPZXsMxSqlu0EfXSuXxjpnIRLNtk+YBVejPSS1SCK23K5hyguyb9IFPePwn6iuB9/6CyKi9kv297QE5WiOLVJVgHbkvuzKE60ToPr90KtmAFZcXa38ay3+lVXV2PJkiV46623cOnSJfTp0wcdOnRAQEAAcnNz8emnn+Lpp5/GsGHDMHPmTNx6662NXkebSpQGDBiAtWvXIjk5GQUFBZgzZw7uuOMOHDp0CMHBwfU+JzMzE3PmzGnhnhIREckpEP/+bbCNtqZLly5ITU3FX//6V9x9993Qauv+YDpz5gz+/ve/4+GHH8Yrr7yCp59+ulHraFOJ0ogRI+z/79WrFwYMGID4+Hh8+OGHGDt2bL3PmT59OiZNmmS/bTQa3RqiIyIiopaxefNmdOvWrcGY+Ph4TJ8+HVOmTEFenux6pNdqU4nSL4WFhaFLly7Izc11GqPX66HXyy4wSURE5A089FY/V0nStbRaLW688cZGr6NNlQf4pYqKCpw8eRLt27f3dleIiIiaTvHQcp2orKzE6tWrsXz5cpw4ccKtttpUojRlyhTs3LkTp0+fxp49e/Db3/4WGo0GjzzyiLe7RkRE1HT/HlFyZ0EbHFECgLy8PPz6179GcHAw7r77buTl5aFv37546qmn8Pvf/x59+vTBrl27mtx+m0qUzp49i0ceeQTJycn4f//v/yEiIgJ79+5FVFSUt7tGREREzWDKlCkwm81YuXIlDAYD0tLScNNNN6GgoABFRUUYMWIEZs+e3eT229QcpfXr13u7C0RERB7nicrabbXg5K5du/D555+jf//+GDFiBCIjI7F69WrExMQAAGbMmIEhQ4Y0uf02lSgRERG1RZzM7VxxcTHi46/U8GvXrh0MBoM9SQKA2NhYlJaWNrl9JkpOlI7qCY3OeeFBfbmsCF5VtKxInzlEFAZF1hyqo2U/HaTFC23CPUVaSFJlkX1gK26SddCvTPbC2PSuO1iqkx2RtgTKNlZfKttWc6isvdhs2b5nKJRVEz19j6zIoRIpa69zuKzSZZTfZVFcsp9se4/LahKiRnFdUPScJVzUVlFtqCjOKpzlUCz8Iqiwys7UfTfvNlHcuYOyE14ifpLtyxF7ZYUuFT/Z59Z69CdRnCepI9u5jrGZWqzgJDVMdU3RZpWwgLMUEyUiIiJf54nJ2G10RAkAZs6cCcO/q6mbzWbMnz8foaFXfshUVbmXzTJRIiIi8nGco+TcnXfeiePHj9tvDxw4ED///HOdmKZiokRERESt1o4dO5q1fSZKREREvo4Xe/MaJkpEREQ+jme91e/aa7W6snTp0iatg4kSERERtUoHDx50uP3dd9/BYrEgOTkZAPDTTz9Bo9GgX79+TV4HEyUiIqLWgIfO6ti+fbv9/0uXLkVwcDDWrVuH8PArJT5KS0vxxBNP4I477mjyOtrUJUyIiIjaInev8+aJQ3e+bsmSJcjMzLQnSQAQHh6OP/7xj1iyZEmT2+WIkhM2rQoqrfOdqiRFWPlR+AvAFCus/KiXFd/TB8uKA4YaakRxZZUBorigANl6ay2y1y8yqEIUV1otK5oYoHVdldBqk/1+uCG4XBRXUh0oiiutlG1DoUpWlLDdj7L3zOYn3EmFYUFasyjurNl1QT8A+Ayyff6CRfa6FJhdF4mUFnQsqpGt83BhrCiutlb2uYgIrRTFXTgWKYoLy5X9AQ37qVoUZzt7XhSnjpb1T7m9jyhO+9M5lzHWi7KCqDAIPj/WFhxr4GRul4xGI0pKSurcX1JSgsuXZQVu68MRJSIiImr1fvvb3+KJJ57Axx9/jLNnz+Ls2bP45z//ibFjx+KBBx5ocrscUSIiIvJ5qn8v7rbRdq1cuRJTpkzBo48+itraK0cP/Pz8MHbsWCxevLjJ7XJEiYiIyNcpHlqayXfffYe7774bYWFhiIiIwDPPPIOKCsepEyqVqs6yfv16j/XBYDBgxYoVuHjxIg4ePIiDBw/i0qVLWLFiBQIDZVMg6sNEiYiIiJrs/PnzGDp0KJKSkrBv3z5s2rQJhw8fRkZGRp3YNWvWoKCgwL6MGjXK4/0JDAxEr1690KtXL7cSpKt46I2IiMjX+fBk7g0bNkCr1WL58uVQq6+Mv6xcuRK9evVCbm4ukpKS7LFhYWGIjZWd3CDx3HPP4dVXX0XHjh1dxn7wwQewWCz43e9+16h1cESJiIjI1ykqzyy4cnbYtYvJJDtb2RmTyQSdTmdPkgAgIODKWYO7d+92iB0/fjwiIyPRv39/rF69GoqbV+qNiopCjx498Jvf/AZvvfUWvvnmG5w7dw4XL15Ebm4uPv/8c7z00kvo1KkTli1bhp49ezZ6HUyUiIiIriNxcXEIDQ21L5mZmW61d9ddd6GwsBCLFy+G2WxGaWkppk2bBgAoKCiwx82dOxcffvghsrKy8OCDD+L555/Hm2++6da6582bh59++gm33XYbVqxYgVtvvRWdOnVCdHQ0kpOT8fjjj+Pnn3/G22+/jb1796JXr16NXgcPvREREfk4RbmyuNsGAOTn5yMk5D81wPT6+uuGTZs2Da+99lqDbR49ehQ9evTAunXrMGnSJEyfPh0ajQYTJkxATEyMwyjTjBkz7P9PSUlBZWUlFi9ejAkTJrixVUBMTAxeeeUVvPLKKygtLUVeXh6qq6sRGRmJG2+8ESqVe2f7qRR3x73aGKPRiNDQUMQtnwN1gL/TOG2QrKhecKCsoGNCmKwIWkLgRVFcZ33dolv18Ve7LsAIACWWYFFcvE7WP2l7sX6yoo5qlawoob/K9fbWKrKif3HaUlFcfm246yAA/1M4UBR3pChGFFdbI/sdZLPIBpZ1Z2VFGC0Bsq+UlAG5ojizVfZ+5JWHieJMZq3LGI1Gtj9ZhAUHTZU6UZxKJXvtVBdk74X/BdkfiNCTsu3VmGT9sxhkr0vw37NFcTX39RfFSfh/vl8Up+nVzWWMxWrC1kOLUF5e7pB4eNLVv0kd32z4b5KErboGZ38/S9zfkpISXLzY8Hd6YmIidLr/7N9FRUUIDAyESqVCSEgI1q9fj9GjR9f73C+++AL33HMPampqnCZrvoAjSkRERFRHVFQUoqKiGvWcmJgrP+RWr14Nf39/3H333U5jc3JyEB4e7tNJEsBEiYiIyPddMxnbrTaayV/+8hcMHDgQQUFByMrKwtSpU7Fw4UKEhYUBAP71r3+hqKgIt956K/z9/ZGVlYUFCxZgypQpzdYnT2lUolRWVoZPPvkEX331Fc6cOYOqqipERUUhJSUFaWlpGDhQduiAiIiI5FTKlcXdNprL/v37MWvWLFRUVKBr165YtWoVxowZY3/8avmAiRMnQlEUJCUlYenSpXj66aebr1MeIkqUzp8/j5kzZ+L9999Hhw4d0L9/f/Tp0wcBAQG4dOkStm/fjj/96U+Ij4/HrFmz8NBDDzV3v4mIiK4fPlxHCQDee++9Bh8fPnw4hg8f3nwdaEaiRCklJQXp6ek4cOAAunfvXm9MdXU1Pv30U7z++uvIz89vFcNpRERERA0RJUpHjhxBREREgzEBAQF45JFH8Mgjj7icJU9ERESN4ONzlHxBUVERpkyZgq1bt6K4uLhOMUur1dqkdkWJkqskyd14IiIiaoCPH3rzBRkZGcjLy8OMGTPQvn17t+snXdWks97Onz+P3bt3o7i4GDabY/0NdwtHERERETXW7t278dVXX6FPnz4ebbfRidLatWvx7LPPQqfTISIiwiFjU6lUTJSIiIg8jSNKLsXFxbl97bj6NDpRmjFjBmbOnInp06c7lCZva5ITzsMv0HkRrNgAo6idGP1lUVykVhYXI6xUHaKRVQQvsxpEcTZF9l5fsgSK4qpsskrFlTZZITKtyiKKk1zdsFz4mkirmp8xywq22YTzB0zlwuq8tbL2go/LvgYiDsuq0V/sLntvv4uOE8Upwsrh/qdk663u6Hpf0V2QvSbSKR8qg6zyteIviwvNFVbcPiXbR01hsurnl7rJ4rSVojBUvigrKRPzbZUorqi/689uwOOporbC3nddwdumyF5fj2Ci5NLrr7+OadOmYdWqVejcubPH2m10olRVVYWHH364TSdJRERE1Lo89NBDqKqqwo033giDwQCt1vFyRZcuyS4V9kuNTpTGjh2Ljz76yH5lYCIiImpmPOvNpddff71Z2m10opSZmYl77rkHmzZtQs+ePetkbEuXLvVY54iIiMj3K3P7gvT09GZpt0mJ0pdffonk5GQAqDOZm4iIiKglGI1GhISE2P/fkKtxjdXoRGnJkiVYvXo1MjIymrTClrB8+XIsXrwYhYWF6N27N958803079/f290iIiJqGk7mrld4eDgKCgoQHR2NsLCwegdsFEWBSqVq3oKT19Lr9bjtttuatLKW8MEHH2DSpElYuXIlBgwYgNdffx1paWk4fvw4oqOjvd09IiIi8pBt27ahXbt2AIDt27c3yzoanSj993//N95880288cYbzdEft129GvETTzwBAFi5ciW++OILrF69mhPQiYioVVLBA3OUPNIT3/LrX/+63v97UqMTpf3792Pbtm3YsGEDevToUWcy98cff+yxzjWW2WzGgQMHMH36dPt9arUaQ4cORXZ2dr3PMZlMMJlM9tuujnESERGR76qqqkJeXh7MZsfab7169WpSe41OlMLCwvDAAw80aWXN7cKFC7BarYiJiXG4PyYmBseOHav3OZmZmZgzZ06d+0urDfBTOy92GKI1OX3sWjZdhShOIzx4rFPJjrFahaeB1iqyAnJqlbAQnkZWGE5arFFamNJfLfytJNgMq7C4ppS4GKaQWi9rz1Yte+2Eby3OjJR9XahrZfuyqkRWTFRfJntvdbJarKgNcb3PGwqEbQXJ4qqEcZpy2efRKntroa2Q7SumcNl7K92V/S/K9oGKDsLvqWCt6yAANkGYdJ3KY67ntVrNNcDfW2hwgOUBXCopKcETTzyB//u//6v38Rabo7RmzZomrchXTZ8+HZMmTbLfNhqNiIuTVQwmIiJqEZzM7dKLL76IsrIy7Nu3D4MGDcInn3yCoqIi/PGPf8SSJUua3G6TLorrqyIjI6HRaFBUVORwf1FREWJjY+t9jl6vh14v+2VLREREvmnbtm347LPPcMstt0CtViM+Ph533303QkJCkJmZiZEjRzapXdExhuHDh2Pv3r0u4y5fvozXXnsNy5cvb1Jn3KXT6dCvXz9s3brVfp/NZsPWrVuRmiq7vg8REZHPUTy0tGGVlZX2s9vDw8NRUlICAOjZsye+++67JrcrGlEaPXo0HnzwQYSGhuLee+/FLbfcgg4dOsDf3x+lpaU4cuQIdu/ejY0bN2LkyJFYvHhxkzvkrkmTJiE9PR233HIL+vfvj9dffx2VlZX2s+CIiIhaG1bmdi05ORnHjx9H586d0bt3b/vFcVeuXIn27ds3uV1RojR27Fg89thj+Oijj/DBBx/g7bffRnn5lZmTKpUK3bt3R1paGr755ht069atyZ3xhIceegglJSWYOXMmCgsL0adPH2zatKnOBG8iIiJqO/77v/8bBQVXzsSYNWsWhg8fjvfffx86nQ5r165tcrviOUp6vR6PPfYYHnvsMQBAeXk5qqurERERUadEgLe98MILeOGFF7zdDSIiIs/gZG6XruYnANCvXz+cOXMGx44dQ6dOnRAZGdnkdps8mTs0NBShoaFNXjEREREJMVFqNIPBgL59+7rdTps6642IiIiuT9eW+rmWSqWCv78/kpKScP/999sveSLFRMmJAK0ZflrnxbmCtTWidrTCApE1iuytqLTJShkECmsmGtRm10EA/IWV5kyK7DCsWvjTxio7MVO8HZJCnNL3rFb4nnma2k9WIVKxCgvryWocIuJ7WXsXbpPtK7rzsn0lfuG3orj8KbeI4qyBrl+/ijjZfheUJ3tNpEU9pSzCApalyQGiOLOwPekubyiWFZQtT5RVzqxpJ1txQLHr75WaCOHnQrALeLg2bYM4mdu1gwcP4rvvvoPVakVycjIA4KeffoJGo0HXrl2xYsUKTJ48Gbt370b37t3F7bbg20xERERNcrUyt7tLG3b//fdj6NChOH/+PA4cOIADBw7g7NmzuPvuu/HII4/g3LlzuPPOOzFx4sRGtctEiYiIyNexjpJLixcvxrx58xASEmK/LzQ0FLNnz8aiRYtgMBgwc+ZMHDhwoFHtNjpRSk9Px65duxr7NCIiIqJmU15ejuLi4jr3l5SU2C94HxYWVudiua40OlEqLy/H0KFDcdNNN2HBggU4d+5cY5sgIiKiRrg6R8ndpS27//778eSTT+KTTz7B2bNncfbsWXzyyScYO3YsRo0aBQDYv38/unTp0qh2G50offrppzh37hzGjRuHDz74AJ07d8aIESPwj3/8A7W1sgl8RERE1Ag89ObSqlWrMGTIEDz88MOIj49HfHw8Hn74YQwZMgQrV64EAHTt2hXvvPNOo9pt0hylqKgoTJo0Cd9//z327duHpKQkjBkzBh06dMDEiRNx4sSJpjRLRERE1CRBQUH461//iosXL+LgwYM4ePAgLl68iLfffhuBgYEAgD59+qBPnz6NatetydwFBQXIyspCVlYWNBoNfvOb3+DHH39E9+7dsWzZMneaJiIioqs8cditGUeU5s+fj4EDB8JgMCAsLKzemLy8PIwcORIGgwHR0dGYOnUqLBbHciI7duxA3759odfrkZSU1KRLjwQFBaFXr17o1asXgoKEtS8a0OhEqba2Fv/85z9xzz33ID4+Hh999BFefPFFnD9/HuvWrcOWLVvw4YcfYu7cuW53joiIiODzh97MZjNGjx6NcePG1fu41WrFyJEjYTabsWfPHqxbtw5r167FzJkz7TGnTp3CyJEjMXjwYOTk5ODFF1/EU089hS+//LL5Oi7Q6Ip57du3h81mwyOPPIL9+/fXO4Q1ePBgpxllaxEVUAVtgPPCedKCiaUWgyguWmcUxUX4VYjiamyyYn6SAowAoBUWnJTyV8vmsxXUhoniOmhLRXGXra5/XUj7ZhZWarxs8xfFVdTKiu9JaWpk762+VLYvl3WVrVdbJNv3pMX6zr8gKyQppTa5fl0MhbLXrjZYtk5dmWxjI3+QVaaslX2twKoXFsSUNQd9mSyuKlq2D+jLpe3Jehj1g8llTG2QrGivKcz1Oq2Cfel6MWfOHABwOgK0efNmHDlyBFu2bEFMTAz69OmDefPm4eWXX8bs2bOh0+mwcuVKJCQkYMmSJQCAbt26Yffu3Vi2bBnS0tJaalPqaPSI0rJly3D+/HksX77c6XG+sLAwnDp1yt2+EREREeDRESWj0eiwmEyuE0x3ZWdno2fPnoiJibHfl5aWBqPRiMOHD9tjhg4d6vC8tLQ0ZGdnN3v/GtLoRGnMmDHw95f9QiYiIiL3ebI8QFxcnP3C9qGhocjMzGz2/hcWFjokSQDstwsLCxuMMRqNqK6ubvY+OsNrvREREV1H8vPzHapX6/X1H46cNm0aXnvttQbbOnr0KLp2FR6XbwEnTpzA9u3bUVxcDJvN8VD2tfOhGoOJEhER0XUkJCTEIVFyZvLkycjIyGgwJjExUbTO2NhY7N+/3+G+oqIi+2NX/71637UxISEhCAhwfYHnv/71rxg3bhwiIyMRGxsLleo/c8hUKhUTJSIiojbLE2etNfL5UVFRiIqKcnOlV6SmpmL+/PkoLi5GdHQ0ACArKwshISHo3r27PWbjxo0Oz8vKykJqaqpoHX/84x8xf/58vPzyyx7p81W8KC4REZGP8/VLmOTl5SEnJwd5eXmwWq3IyclBTk4OKiqunKk9bNgwdO/eHWPGjMH333+PL7/8Eq+++irGjx9vP/T33HPP4eeff8ZLL72EY8eOYcWKFfjwww8xceJEUR9KS0sxevRoj28bEyUiIiJyy8yZM5GSkoJZs2ahoqICKSkpSElJwbfffgsA0Gg02LBhAzQaDVJTU/HYY4/h8ccfd6i5mJCQgC+++AJZWVno3bs3lixZgnfeeUdcGmD06NHYvHmzx7eNh96IiIhaAx++VtvatWtdVtGOj4+vc2jtlwYNGoSDBw+K1/vGG2/Y/5+UlIQZM2Zg79696NmzJ7Rax3peEyZMELd7LSZKREREvs4Lc5Rag19eLi0oKAg7d+7Ezp07He5XqVRMlDytxuoHq9X5yxOslVVkjdZdFsX5qzxbDbrSJqs+W2WTVYO+YJGVIL5RX+Q6CECtcDvaa8tEcdLXz6B2XVgtTFPl0XWahFXSy2pcn9UBAJYqYdVjYWVutUX27am9LGvP1E7YnlHW3g1bZFXXTz0YLopTmV2vN+KQWdRWZXvZe2EJEFZwVmSvXW2QbNZEZQfZarWygv+IOlgjirvQW1ZrL+icrBJ56U2y7ZVUBDcUy9ZZGet6nSpZU9SMWqK4NecoERER+Thfn8ztC+bOnYuqqro/dKurq926/iwTJSIiIl/n4xfF9QVz5syxn2V3raqqKvu16JqCiRIRERG1eoqiOBSZvOr7779Hu3btmtwu5ygRERH5OE8cOmurh97Cw8OhUqmgUqnQpUsXh2TJarWioqICzz33XJPbZ6JERETk63jWm1Ovv/46FEXBk08+iTlz5iA0NNT+mE6nQ+fOncXVvevDRImIiIharfT0dABXClYOHDiwTv0kdzFRIiIi8nUcUXLp17/+tf3/NTU1MJsdy3xILgRcH07mJiIi8nEsD+BaVVUVXnjhBURHRyMwMBDh4eEOS1NxRMmJUG01dDqr2+2ohSm8tACjTZHltmGaSlGcRlgxzaCWFeCzCXNvrUr22l62ygrX5ddGiOKKa13/oujmf17UVo1KNrxba5O9tyF6WTG/Un2gKE64q0BbKdsHFI1sOyKFVx+olW0Gztwr+4Lzk9UJRfgx15/Js0Nk7+0NOyyiON3/fSOKOzN3oCgu8X8viOIK7o4UxUlfu9Jk2efRLPzhrv9RVrRVZ5QV0DULCnGG/yT7nJnCXG+rSva16BkcUXJp6tSp2L59O9566y2MGTMGy5cvx7lz57Bq1SosXLiwye0yUSIiIqJW71//+hfee+89DBo0CE888QTuuOMOJCUlIT4+Hu+//z5+97vfNaldHnojIiLydSw46dKlS5eQmJgI4Mp8pEuXLgEAbr/9duzatavJ7TJRIiIi8nGco+RaYmKi/dpvXbt2xYcffgjgykhTWFhYk9ttU4lS586d7UWnri7uHJckIiKi1uGJJ57A999/DwCYNm0ali9fDn9/f0ycOBFTp05tcrttbo7S3Llz8fTTT9tvBwfLrnpPRETksziZ26WJEyfa/z906FAcO3YMBw4cQFJSEnr16tXkdttcohQcHIzY2Fhvd4OIiMhjeAkT52w2GxYvXozPP/8cZrMZQ4YMwaxZsxAfH4/4+Hi3229Th94AYOHChYiIiEBKSgoWL14Mi6Xh03dNJhOMRqPDQkRERK3D/Pnz8Yc//AFBQUG44YYb8Oc//xnjx4/3WPttakRpwoQJ6Nu3L9q1a4c9e/Zg+vTpKCgowNKlS50+JzMzE3PmzGnBXhIRETUSD7059d5772HFihV49tlnAQBbtmzByJEj8c4770Ctdn88SKUoik+/dNOmTcNrr73WYMzRo0fRtWvXOvevXr0azz77LCoqKqDX11+wzGQywWQy2W8bjUbExcXh4a2PQRekc7rOQD+T08euFed/SRQX5XdZFBeslhVLkxacPFfbThTnr5YVhgtUy14Xs7DAZpVNVmhO6mh1B5cxHXWy9+yCRTb/bUthsiju3NEYUVzICdkHP/S0rBiifsN+UZxfe9khbWOqbKhbWyErOmoOkf2eU1tkX2UlKa73Pf8SUVOAynUIAMR+XS6Kyx8W6joIQNSPsvdWVSsrJlodLSuwebmTbINDTsvei8oYYXtnZPtKRUfX721Aiew1CSxwXU3SYqnBrq/mory8vMmXx3DFaDQiNDQU3Z5fAI1eVvDTGaupBkdX/KFZ++sNer0eubm5iIuLs9/n7++P3NxcdOzY0e32fX5EafLkycjIyGgw5mrdhF8aMGAALBYLTp8+jeTk+v9Y6fV6p0kUERER+TaLxQJ/f8ckUqvVorZW9gPfFZ9PlKKiohAVFdWk5+bk5ECtViM6OtrDvSIiImo5KogHMBtsoy1SFAUZGRkOgx41NTV47rnnEBj4n2slffzxx01q3+cTJans7Gzs27cPgwcPRnBwMLKzszFx4kQ89thjbl0Mj4iIyOs4R8mp9PT0Ovc99thjHmu/zSRKer0e69evx+zZs2EymZCQkICJEydi0qRJ3u4aERGRW1gewLk1a9Y0a/ttJlHq27cv9u7d6+1uEBERURvSZhIlIiKiNouH3ryGiRIREVFrwETHK9pcZW4iIiIiT+GIkhM3+JdB7++8CFu0TnapE61KViitxiYs+GYNEMUdrJIV/TtZISu9oNPICtzVWGXbcbI0QhQXHlAlissrkRXO9NO6fj/UwhmP1UWBroMABJ6SFdeMOyZ7jQOPFIniLCdPieL8oiJFcUqYrECdplb2+plDZV8/2ipZgUDDyVJRnNXf9b5XFSX7DRm7u0wUV95NVkgy+qCs7ktpF9nnTFspey9qg4QnjgtHNAxFros1AoApRFbDLjhX9n1b0871Gc7VEbL3VmN2XnD4KouwoKcncDK39zBRIiIi8nWco+Q1PPRGREREbpk/fz4GDhwIg8GAsLCwemPy8vIwcuRIGAwGREdHY+rUqQ4Xrt+xYwdUKlWdpbCwsIW2on4cUSIiIvJxvn7ozWw2Y/To0UhNTcW7775b53Gr1YqRI0ciNjYWe/bsQUFBAR5//HFotVosWLDAIfb48eMO16Lz9tU1mCgRERH5Oh8/9DZnzhwAwNq1a+t9fPPmzThy5Ai2bNmCmJgY9OnTB/PmzcPLL7+M2bNnQ6f7z5yw6Ohop6NS3sBDb0RERNSssrOz0bNnT8TExNjvS0tLg9FoxOHDhx1i+/Tpg/bt2+Puu+/G119/3dJdrYMjSkRERD7Ok4fejEbHswj1er3DBWWbQ2FhoUOSBMB+++ocpPbt22PlypW45ZZbYDKZ8M4772DQoEHYt28f+vbt26z9awhHlIiIiHyd4qEFQFxcHEJDQ+1LZmZmvaucNm1avZOrr12OHTvmsU1MTk7Gs88+i379+mHgwIFYvXo1Bg4ciGXLlnlsHU3BESUiIiJf58E5Svn5+Q6TpZ2NJk2ePBkZGRkNNpmYmChadWxsLPbv3+9wX1FRkf0xZ/r374/du3eL1tFcmCgRERFdR0JCQhwSJWeioqIQFSUrSuxKamoq5s+fj+LiYvtZbFlZWQgJCUH37t2dPi8nJwft27f3SB+aiomSE8cqYqFVnFdmzVXLTle8ZJJV0i6vkcWZLLIqz+WlsqrRfnpZNWiLSbarqC+5rmYLALYAWcXyinLXlXYBAMLCwrWCl09XLmss5qTs511oboUoTvXDCVGczebZU1csJRdkgcI4g7abKK6mfZAoTvGTvR/V8WGiOP8Lrvd5c6BsP1a0ss9j+HZZlfTCUcJf58KK4KU9hRXB39gjiitLTxXFVdwge/2i95eL4i70CxPF+Ze6rpQtrbpe0d51nNXccrNXfL08QF5eHi5duoS8vDxYrVbk5OQAAJKSkhAUFIRhw4ahe/fuGDNmDBYtWoTCwkK8+uqrGD9+vH1E6/XXX0dCQgJ69OiBmpoavPPOO9i2bRs2b97cfB0XYKJERETk63y8PMDMmTOxbt06++2UlBQAwPbt2zFo0CBoNBps2LAB48aNQ2pqKgIDA5Geno65c+fan2M2mzF58mScO3cOBoMBvXr1wpYtWzB48ODm67gAEyUiIiJyy9q1a53WULoqPj4eGzdudPr4Sy+9hJdeesnDPXMfEyUiIiIfp1IUqBT3hoTcff71iokSERGRr/PxQ29tGesoERERETnBESUiIiIf5+tnvbVlTJSIiIh8HQ+9eQ0PvRERERE5wRElJw7lt4fa4O/0cWulVtSO2l9W0FExytrTX5QVuNMEyn46+BllF0LU1YrCYJNtBrRnZLueTXidRkVYcFJf5jom9GezqK2AkxdFcZaTsmKDbeXHnu3wT6I4v5CeojhrgGxfUdSyncAa4Pr3YeRBWSFEdXmVKK54pKyQpLZCthcoP8qKk4aruojiXJdpvMJQLPs+k+7Mtu8Ouw4C0M5Ptq9Ux7ou3BuSL91a1yy1wtfDA3jozXuYKBEREfk6HnrzGiZKREREPo4jSt7DOUpERERETnBEiYiIyNfx0JvXMFEiIiJqBXjozDt46I2IiIjICY4oERER+TpFubK42wY1GhMlIiIiH8ez3ryHiZIT6nMBUPs7LzjpJ6tJCG2l7CW2uK6TBgBQCws/BpXIiu8psvqVUAvrqvlVyz6JlgBZ//xMsvX6X5IVkQvKr3G9zjPForYs586L4q43itUqitMWXRbFWRLbieJ0pa7fWwCw6Vzv9JYgnagttbBgor5vjChOrF83UZi64JIsrn2sKE6TJyvEqSopFcXhhg6isFq97HtUV+b6C1JXXCFqyxJucBmjtgi/oKhVY6JERETk63jWm9cwUSIiIvJxKtuVxd02qPFazVlv8+fPx8CBA2EwGBAWFlZvTF5eHkaOHAmDwYDo6GhMnToVFkvLXYuHiIiI2pZWM6JkNpsxevRopKam4t13363zuNVqxciRIxEbG4s9e/agoKAAjz/+OLRaLRYsWOCFHhMREXkID715TatJlObMmQMAWLt2bb2Pb968GUeOHMGWLVsQExODPn36YN68eXj55Zcxe/Zs6HSyyZlERES+hme9eU+rOfTmSnZ2Nnr27ImYmP+cXZKWlgaj0YjDh52fmWIymWA0Gh0WIiIin3K1jpK7CzVam0mUCgsLHZIkAPbbhYWFTp+XmZmJ0NBQ+xIXF9es/SQiIqLWw6uJ0rRp06BSqRpcjh071qx9mD59OsrLy+1Lfn5+s66PiIiosa4eenN3ocbz6hylyZMnIyMjo8GYxMREUVuxsbHYv3+/w31FRUX2x5zR6/XQ6/V17g8/pkCjc75XmUJkBRMtgaIwBJ2VxSnC1FYapyuVfXKk7Vl1stdFZ5St11AsO2vRv0BWRM7643GXMRaF59C2BNsZ2Y8Sf0GBSEBWIBAAbFrX7amEhyjMI34ligvNlm1rbUK0KO5yZ9m26sLrfrfVG7fpG1EcCpyPzl/LLypSFKdEhIri1CbZ94D6eJ7LGEu5rGimiCKsAOyRdYGTub3Eq4lSVFQUoqKiPNJWamoq5s+fj+LiYkRHX/myycrKQkhICLp37+6RdRAREdH1pdWc9ZaXl4dLly4hLy8PVqsVOTk5AICkpCQEBQVh2LBh6N69O8aMGYNFixahsLAQr776KsaPH1/viBEREVFrwbPevKfVJEozZ87EunXr7LdTUlIAANu3b8egQYOg0WiwYcMGjBs3DqmpqQgMDER6ejrmzp3rrS4TERF5hifOWuNZb03SahKltWvXOq2hdFV8fDw2btzYMh0iIiKiNq/VJEpERETXKx568542U0eJiIiozVI8tDQTyfVYJ0yYgH79+kGv16NPnz71xvzwww+444474O/vj7i4OCxatKj5Oi3ERImIiIjccvV6rOPGjWsw7sknn8RDDz1U72NGoxHDhg1DfHw8Dhw4gMWLF2P27Nl4++23m6PLYjz0RkRE5ON8/dCbq+uxAsAbb7wBACgpKcEPP/xQ5/H3338fZrMZq1evhk6nQ48ePZCTk4OlS5fimWeeaZZ+S3BEiYiIyNfZFM8sPiw7Oxt33nmnw0Xs09LScPz4cZSWlnqtXxxRcsIUooKmgSrTGrOsHcMFWZVnaUVrtaxALXSXraK42kBZrmyDrH+GElkH9ZdkL6D2p3OiOEtxiSiOfIfNLNsH/C6UyeLUsn25tp3rqtZ+FcK+lco+3zVd24viqqNkX8nh+2QVsqHTisLKR98qigs8Wy1bb5Gs+rWqyiSKU9tkr7Ptpk4uYzQmWTVt1WXBttpMwBlRc+7zYGXuX1783dkVKlpaYWEhEhISHO679pqt4eHh3ugWR5SIiIiuJ3FxcQ4Xg8/MzKw3zheux+oLOKJERETk41TwwBylf/+bn5+PkJAQ+/3ORpM8eT1WidjYWPs1Wq+SXLO1uTFRIiIi8nUerMwdEhLikCg548nrsUqkpqbilVdeQW1tLbTaK4eNs7KykJyc7LXDbgAPvREREZGb8vLykJOT43A91pycHFRUVNhjcnNzkZOTg8LCQlRXV9tjzP+er/joo49Cp9Nh7NixOHz4MD744AP8+c9/xqRJk7y1WQA4okREROTzfL08gKvrsQLAU089hZ07d9aJOXXqFDp37ozQ0FBs3rwZ48ePR79+/RAZGYmZM2d6tTQAwESJiIjI93nwrLfmILke644dO1y206tXL3z11Vee6ZSH8NAbERERkRMcUSIiIvJxKkWBys3J3O4+/3rFRMmJ4LNW+GmdF220amUFGDVmWaE0/4vCgmp+svVaDBpRnKZG9sEJuCwr0qY/Kys0p5RcFMVZLnmvGiv5BktRsSjOz19WME+jd12E0aaTfX4Ug6ygo6IRFmwtlH3OLD+fFsVV/3aAKE5jFv4Bzf5eFhcfJ4sTFsRUWWTfj5ozBa6DImRnT9lCA13HWFvwT6jt34u7bVCj8dAbERERkRMcUSIiIvJxPPTmPUyUiIiIfJ2Pn/XWljFRIiIi8nUerMxNjcM5SkREREROcESJiIjIx/l6Ze62jIkSERGRr+OhN6/hoTciIiIiJzii1ET6cosoTl0rq/BlCRAWuBMWrvO/YBbFaSplBe40BcICkefOi+KIPM1yJl8U56dy/ftQCTGI2pJ+HjVVss+ZurxKtt7QUFGcSlhg0HC2UhQnrVdY1S1WFKczyl4Xv5LLshW3C3MdU1Uta0tQmLQlqWzy97OhNqjxmCgRERH5Oh568xoeeiMiIiJygiNKREREvo4FJ72GiRIREZGP4yVMvIeH3oiIiIic4IgSERGRr+Nkbq9hokREROTrFMjrMzTUBjUaEyUiIiIfxzlK3sNEyQldmRl+fs6ncKnNstTeGih7iTU1svb8hIXrNGWywnWW47myOFEUke+z5p91GaPufpOoLXW18JNhln1uUWOSxQmpTbLvFXM7f1Gc+A+GsBCnulpWGNdy4qR0zS75dbxBFKc+W+Q6xibrP7VuTJSIiIh8nQIPzFHySE+uO63mrLf58+dj4MCBMBgMCAsLqzdGpVLVWdavX9+yHSUiIvK0q5O53V2o0VrNiJLZbMbo0aORmpqKd99912ncmjVrMHz4cPttZ0kVERERkSutJlGaM2cOAGDt2rUNxoWFhSE2VnZBRiIiolbBBkA29avhNqjRWs2hN6nx48cjMjIS/fv3x+rVq6G4GGo0mUwwGo0OCxERkS+5etabuws1XqsZUZKYO3cu7rrrLhgMBmzevBnPP/88KioqMGHCBKfPyczMtI9WEREREV3LqyNK06ZNq3cC9rXLsWPHxO3NmDEDt912G1JSUvDyyy/jpZdewuLFixt8zvTp01FeXm5f8vPz3d0sIiIiz+Jkbq/x6ojS5MmTkZGR0WBMYmJik9sfMGAA5s2bB5PJBL1eX2+MXq93+hgREZFP4CVMvMariVJUVBSioqKarf2cnByEh4czESIiIqImaTVzlPLy8nDp0iXk5eXBarUiJycHAJCUlISgoCD861//QlFREW699Vb4+/sjKysLCxYswJQpU5qlP4pWdtRSUymr3OtXWilbcZlssrmlqFjWHtF1RrFaXQedPidr7AbhGbY6rSxOWsHbJjt9SX+hRhRXExsgipP+wdBdlFUYr4kNlLUnXK9fcpLroFphNXXJe2YzAZdkzbmNI0pe02rOeps5cyZSUlIwa9YsVFRUICUlBSkpKfj2228BAFqtFsuXL0dqair69OmDVatWYenSpZg1a5aXe05EROQmm4eWZiIpCj1hwgT069cPer0effr0qfP46dOn652rvHfv3ubruECrGVFau3ZtgzWUhg8f7lBokoiIqK3w9YviSotCP/nkk9i3bx9++OEHpzFbtmxBjx497LcjIiI82tfGajWJEhEREfkmSVHoN954AwBQUlLSYKIUERHhU4WjW82hNyIiouuWB8sD/LLIsskkm1PWUu677z5ER0fj9ttvx+eff+7t7jBRIiIi8nk2xTMLgLi4OISGhtqXzMxML2/cFUFBQViyZAk++ugjfPHFF7j99tsxatQorydLPPRGRER0HcnPz0dISIj9trMSOtOmTcNrr73WYFtHjx5F165dPdKvyMhITJo0yX77V7/6Fc6fP4/Fixfjvvvu88g6moKJEhERka/zYHmAkJAQh0TJmeYuCi0xYMAAZGVlNes6XGGiRERE5PM8cQmSxj2/uYtCS+Tk5KB9+/Ze7QMTJSdUNgUqm/OdSlMlKwynNlaL4pQLsqpl1rIyURwRNZ318mVRnN8lf1mDoa5/vV9pUPaVrAoPFcVpzhTIVhscL2uvRxdRnOpihSiuNiRcFCcqJAkAFVUuQ6wdI0VNaYrKXQc18DfieuOqKDQA5ObmoqKiAoWFhaiurrbHdO/eHTqdDuvWrYNOp0NKSgoA4OOPP8bq1avxzjvveGOT7JgoERER+Tofr8w9c+ZMrFu3zn77arKzfft2DBo0CADw1FNPYefOnXViTp06hc6dOwMA5s2bhzNnzsDPzw9du3bFBx98gP/6r/9qtn5LMFEiIiLydTYFjT10Vn8bzcNVUWgA2LFjR4OPp6enIz093XOd8hCWByAiIiJygiNKREREvk6xXVncbYMajYkSERGRr/PxOUptGRMlIiIiX+fjc5TaMs5RIiIiInKCI0pERES+jofevIaJkhPai1Xw01idB5QKipEBsBQVe6hHRORrLMUlojiNWVagVhUmKyQJlUoUptRaRHH6PFnB29r2sv6pdueI4tQd+4nizLGygp3qnbkuY1TtI0RtKSEG1zFWjagtj1DggUTJIz257vDQGxEREZETHFEiIiLydTz05jVMlIiIiHydzQbAzTpINtZRagoeeiMiIiJygiNKREREvo6H3ryGiRIREZGvY6LkNTz0RkREROQER5SIiIh8HS9h4jVMlJywnc6HTaV1/rjZ3IK9IaLWzFpWJorz0zn/znHQLkwUpqqoEsXZzheK4oS9Q+3tfURxmu0HRHG2QX1l7fXs6jJGVXBR1Jb1BteFKW0WWUFPT1AUGxTFvbPW3H3+9YqJEhERka9TFPdHhDhHqUk4R4mIiIjICY4oERER+TrFA3OUOKLUJEyUiIiIfJ3NBqjcnGPEOUpNwkNvRERERE5wRImIiMjX8dCb1zBRIiIi8nGKzQbFzUNvLA/QNDz0RkREROQER5ScsJnNsKk4TElELcdSXCKK8wsJljUoLEyp1sh+M1tP54ni/AKSZO2l9hbFqXd8J4qr/bXrwpS6wguitiAZfGnJPxE89OY1rWJE6fTp0xg7diwSEhIQEBCAG2+8EbNmzYL5F9Wxf/jhB9xxxx3w9/dHXFwcFi1a5KUeExEReZBN8cxCjdYqRpSOHTsGm82GVatWISkpCYcOHcLTTz+NyspK/OlPfwIAGI1GDBs2DEOHDsXKlSvx448/4sknn0RYWBieeeYZL28BERERtUatIlEaPnw4hg8fbr+dmJiI48eP46233rInSu+//z7MZjNWr14NnU6HHj16ICcnB0uXLmWiRERErZuiQHY80FUb1Fit4tBbfcrLy9GuXTv77ezsbNx5553Q6XT2+9LS0nD8+HGUlpY6bcdkMsFoNDosREREvkSxKR5ZqPFaZaKUm5uLN998E88++6z9vsLCQsTExDjEXb1dWOj8ytiZmZkIDQ21L3Fxcc3TaSIioqZSbJ5ZqNG8mihNmzYNKpWqweXYsWMOzzl37hyGDx+O0aNH4+mnn3a7D9OnT0d5ebl9yc/Pd7tNIiKi68n8+fMxcOBAGAwGhIWF1Xn8+++/xyOPPIK4uDgEBASgW7du+POf/1wnbseOHejbty/0ej2SkpKwdu3a5u+8C16dozR58mRkZGQ0GJOYmGj///nz5zF48GAMHDgQb7/9tkNcbGwsioqKHO67ejs2NtZp+3q9Hnq9vpE9JyIiajmKTYHiZskapRnnKJnNZowePRqpqal499136zx+4MABREdH429/+xvi4uKwZ88ePPPMM9BoNHjhhRcAAKdOncLIkSPx3HPP4f3338fWrVvx1FNPoX379khLS2u2vrvi1UQpKioKUVFRothz585h8ODB6NevH9asWQO12nEwLDU1Fa+88gpqa2uh1WoBAFlZWUhOTkZ4eLjH+05ERNRiFBvcn8zdfIfe5syZAwBOR4CefPJJh9uJiYnIzs7Gxx9/bE+UVq5ciYSEBCxZsgQA0K1bN+zevRvLli27fhMlqXPnzmHQoEGIj4/Hn/70J5SU/Kco29XRokcffRRz5szB2LFj8fLLL+PQoUP485//jGXLljVqXVczbgtqW7aYGBGRlNUki1OpZHE2s+sYAFalVhSnFvbPahGFAcL12iw1LmPU0m21um7L8u/tbM6RGvu6PPA3yYIrr+MvT1ry1pGV+k7KGjp0qENMWloaXnzxxRbu2S8orcCaNWuuliSts1zr+++/V26//XZFr9crN9xwg7Jw4cJGrys/P9/purhw4cKFC5dfLvn5+Z76c1dHdXW1Ehsb67G+BgUF1blv1qxZHuvvmjVrlNDQUJdxX3/9teLn56d8+eWX9vtuuukmZcGCBQ5xX3zxhQJAqaqq8lgfG6tVjChlZGS4nMsEAL169cJXX33l1ro6dOiA/Px8BAcHQ6VSwWg0Ii4uDvn5+QgJCXGrbW9p7dvQ2vsPtP5tYP+9r7VvQ1vsv6IouHz5Mjp06NBs6/X398epU6fqXImiqRRFgeoXI43ORpOmTZuG1157rcH2jh49iq5duzaqD4cOHcL999+PWbNmYdiwYY16rje0ikSpJanVanTs2LHO/SEhIa3yw32t1r4Nrb3/QOvfBvbf+1r7NrS1/oeGhjb7Ov39/eHv79/s6/mlxp5wJXHkyBEMGTIEzzzzDF599VWHx5ydlBUSEoKAgIBGrceTmCgRERFRHY054Uri8OHDuOuuu5Ceno758+fXeTw1NRUbN250uC8rKwupqake60NTMFEiIiIit+Tl5eHSpUvIy8uD1WpFTk4OACApKQlBQUE4dOgQ7rrrLqSlpWHSpEn2QtAajcaejD333HP4y1/+gpdeeglPPvkktm3bhg8//BBffPGFtzYLABMll/R6PWbNmtWqay219m1o7f0HWv82sP/e19q3gf1v22bOnIl169bZb6ekpAAAtm/fjkGDBuEf//gHSkpK8Le//Q1/+9vf7HHx8fE4ffo0ACAhIQFffPEFJk6ciD//+c/o2LEj3nnnHa+WBgAAlaLwKnlERERE9WmV13ojIiIiaglMlIiIiIicYKJERERE5AQTJSIiIiInmCg5cfr0aYwdOxYJCQkICAjAjTfeiFmzZtWpjvrDDz/gjjvugL+/P+Li4rBo0SIv9bh+8+fPx8CBA2EwGBAWFlZvjEqlqrOsX7++ZTvqhKT/eXl5GDlyJAwGA6KjozF16lRYLNKLSLW8zp0713m9Fy5c6O1uObV8+XJ07twZ/v7+GDBgAPbv3+/tLonNnj27zmvd2CrCLWnXrl2499570aFDB6hUKnz66acOjyuKgpkzZ6J9+/YICAjA0KFDceLECe901glX25CRkVHnPRk+fLh3OluPzMxM/OpXv0JwcDCio6MxatQoHD9+3CGmpqYG48ePR0REBIKCgvDggw/WKZRIbQcTJSeOHTsGm82GVatW4fDhw1i2bBlWrlyJP/zhD/YYo9GIYcOGIT4+HgcOHMDixYsxe/ZsvP32217suSOz2YzRo0dj3LhxDcatWbMGBQUF9mXUqFEt00EXXPXfarVi5MiRMJvN2LNnD9atW4e1a9di5syZLdzTxpk7d67D6/373//e212q1wcffIBJkyZh1qxZ+O6779C7d2+kpaWhuLjY210T69Gjh8NrvXv3bm93yanKykr07t0by5cvr/fxRYsW4Y033sDKlSuxb98+BAYGIi0tDTU1ri/g2lJcbQMADB8+3OE9+d///d8W7GHDdu7cifHjx2Pv3r3IyspCbW0thg0bhsrKSnvMxIkT8a9//QsfffQRdu7cifPnz+OBBx7wYq+pWXntKnOt0KJFi5SEhAT77RUrVijh4eGKyWSy3/fyyy8rycnJ3uhegxq6UCEA5ZNPPmnR/jSWs/5v3LhRUavVSmFhof2+t956SwkJCXF4X3xJfHy8smzZMm93Q6R///7K+PHj7betVqvSoUMHJTMz04u9kps1a5bSu3dvb3ejSX75ubTZbEpsbKyyePFi+31lZWWKXq9X/vd//9cLPXStvu+W9PR05f777/dKf5qiuLhYAaDs3LlTUZQrr7lWq1U++ugje8zRo0cVAEp2dra3uknNiCNKjVBeXo527drZb2dnZ+POO++ETqez35eWlobjx4+jtLTUG11ssvHjxyMyMhL9+/fH6tWrobSS8lrZ2dno2bMnYmJi7PelpaXBaDTi8OHDXuxZwxYuXIiIiAikpKRg8eLFPnmo0Gw248CBAxg6dKj9PrVajaFDhyI7O9uLPWucEydOoEOHDkhMTMTvfvc75OXlebtLTXLq1CkUFhY6vB+hoaEYMGBAq3o/AGDHjh2Ijo5GcnIyxo0bh4sXL3q7S06Vl5cDgP27/8CBA6itrXV4H7p27YpOnTq1uveBZFiZWyg3Nxdvvvkm/vSnP9nvKywsREJCgkPc1T/YhYWFCA8Pb9E+NtXcuXNx1113wWAwYPPmzXj++edRUVGBCRMmeLtrLhUWFjokSYDje+CLJkyYgL59+6Jdu3bYs2cPpk+fjoKCAixdutTbXXNw4cIFWK3Wel/fY8eOealXjTNgwACsXbsWycnJKCgowJw5c3DHHXfg0KFDCA4O9nb3GuXq/lzf++Gr+3p9hg8fjgceeAAJCQk4efIk/vCHP2DEiBHIzs6GRqPxdvcc2Gw2vPjii7jttttw8803A7jyPuh0ujpzJlvb+0By192I0rRp0+qdvHzt8ss/AufOncPw4cMxevRoPP30017q+X80ZRsaMmPGDNx2221ISUnByy+/jJdeegmLFy9uNf33BY3ZpkmTJmHQoEHo1asXnnvuOSxZsgRvvvkmTCaTl7ei7RkxYgRGjx6NXr16IS0tDRs3bkRZWRk+/PBDb3ftuvXwww/jvvvuQ8+ePTFq1Chs2LAB33zzDXbs2OHtrtUxfvx4HDp0yGdObiHvuO5GlCZPnoyMjIwGYxITE+3/P3/+PAYPHoyBAwfWmaQdGxtb50yHq7djY2M90+F6NHYbGmvAgAGYN28eTCZTs1zXyJP9j42NrXMWVku8B7/kzjYNGDAAFosFp0+fRnJycjP0rmkiIyOh0Wjq3cdb8rX1pLCwMHTp0gW5ubne7kqjXX3Ni4qK0L59e/v9RUVF6NOnj5d65b7ExERERkYiNzcXQ4YM8XZ37F544QVs2LABu3btQseOHe33x8bGwmw2o6yszGFUqTV/Lqhh112iFBUVZb9SsSvnzp3D4MGD0a9fP6xZswZqteMAXGpqKl555RXU1tZCq9UCALKyspCcnNysh90asw1NkZOTg/Dw8Ga7+KMn+5+amor58+ejuLgY0dHRAK68ByEhIejevbtH1iHhzjbl5ORArVbb++8rdDod+vXrh61bt9rPgrTZbNi6dSteeOEF73auiSoqKnDy5EmMGTPG211ptISEBMTGxmLr1q32xMhoNGLfvn0uz2r1ZWfPnsXFixcdkj9vUhQFv//97/HJJ59gx44ddaZX9OvXD1qtFlu3bsWDDz4IADh+/Djy8vKQmprqjS5Tc/P2bHJfdfbsWSUpKUkZMmSIcvbsWaWgoMC+XFVWVqbExMQoY8aMUQ4dOqSsX79eMRgMyqpVq7zYc0dnzpxRDh48qMyZM0cJCgpSDh48qBw8eFC5fPmyoiiK8vnnnyt//etflR9//FE5ceKEsmLFCsVgMCgzZ870cs+vcNV/i8Wi3HzzzcqwYcOUnJwcZdOmTUpUVJQyffp0L/e8fnv27FGWLVum5OTkKCdPnlT+9re/KVFRUcrjjz/u7a7Va/369Yper1fWrl2rHDlyRHnmmWeUsLAwh7MMfdnkyZOVHTt2KKdOnVK+/vprZejQoUpkZKRSXFzs7a7V6/Lly/Z9HICydOlS5eDBg8qZM2cURVGUhQsXKmFhYcpnn32m/PDDD8r999+vJCQkKNXV1V7u+X80tA2XL19WpkyZomRnZyunTp1StmzZovTt21e56aablJqaGm93XVEURRk3bpwSGhqq7Nixw+F7v6qqyh7z3HPPKZ06dVK2bdumfPvtt0pqaqqSmprqxV5Tc2Ki5MSaNWsUAPUu1/r++++V22+/XdHr9coNN9ygLFy40Es9rl96enq927B9+3ZFURTl//7v/5Q+ffooQUFBSmBgoNK7d29l5cqVitVq9W7H/81V/xVFUU6fPq2MGDFCCQgIUCIjI5XJkycrtbW13ut0Aw4cOKAMGDBACQ0NVfz9/ZVu3bopCxYs8Jk/EvV58803lU6dOik6nU7p37+/snfvXm93Seyhhx5S2rdvr+h0OuWGG25QHnroISU3N9fb3XJq+/bt9e7v6enpiqJcKREwY8YMJSYmRtHr9cqQIUOU48ePe7fTv9DQNlRVVSnDhg1ToqKiFK1Wq8THxytPP/20TyXezr7316xZY4+prq5Wnn/+eSU8PFwxGAzKb3/7W4cf0dS2qBSllZwHTkRERNTCrruz3oiIiIikmCgREREROcFEiYiIiMgJJkpERERETjBRIiIiInKCiRIRERGRE0yUiIiIiJxgokRERETkBBMlIqrXu+++i2HDhrnVxoULFxAdHY2zZ896qFdERC2LlbmJqI6amhokJibio48+wm233eZWW1OmTEFpaSneffddD/WOiKjlcESJiOr4xz/+gZCQELeTJAB44okn8P777+PSpUse6BkRUctiokTUhpWUlCA2NhYLFiyw37dnzx7odDps3brV6fPWr1+Pe++91+G+jIwMjBo1CgsWLEBMTAzCwsIwd+5cWCwWTJ06Fe3atUPHjh2xZs0ah+f16NEDHTp0wCeffOLZjSMiagFMlIjasKioKKxevRqzZ8/Gt99+i8uXL2PMmDF44YUXMGTIEKfP2717N2655ZY692/btg3nz5/Hrl27sHTpUsyaNQv33HMPwsPDsW/fPjz33HN49tln68xJ6t+/P7766iuPbx8RUXPjHCWi68D48eOxZcsW3HLLLfjxxx/xzTffQK/X1xtbVlaG8PBw7Nq1C3fccYf9/oyMDOzYsQM///wz1Oorv7G6du2K6Oho7Nq1CwBgtVoRGhqKd955Bw8//LD9uZMmTcLBgwexffv2ZtxKIiLP8/N2B4io+f3pT3/CzTffjI8++ggHDhxwmiQBQHV1NQDA39+/zmM9evSwJ0kAEBMTg5tvvtl+W6PRICIiAsXFxQ7PCwgIQFVVlbubQUTU4njojeg6cPLkSZw/fx42mw2nT59uMDYiIgIqlQqlpaV1HtNqtQ63VSpVvffZbDaH+y5duoSoqKimdZ6IyIuYKBG1cWazGY899hgeeughzJs3D0899VSdEZ9r6XQ6dO/eHUeOHPFYHw4dOoSUlBSPtUdE1FKYKBG1ca+88grKy8vxxhtv4OWXX0aXLl3w5JNPNvictLQ07N692yPrr6qqwoEDB9wuXklE5A1MlIjasB07duD111/H//zP/yAkJARqtRr/8z//g6+++gpvvfWW0+eNHTsWGzduRHl5udt9+Oyzz9CpUyeHieFERK0Fz3ojonqNHj0affv2xfTp091q59Zbb8WECRPw6KOPeqhnREQthyNKRFSvxYsXIygoyK02Lly4gAceeACPPPKIh3pFRNSyOKJERERE5ARHlIiIiIicYKJERERE5AQTJSIiIiInmCgREREROcFEiYiIiMgJJkpERERETjBRIiIiInKCiRIRERGRE0yUiIiIiJz4/yfsP/TPNXfQAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Load empty scene\n",
+ "scene = load_scene()\n",
+ "scene.frequency = 3e9 # Carrier frequency [Hz]\n",
+ "scene.tx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "scene.rx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "\n",
+ "# Place a transmitter \n",
+ "tx = Transmitter(\"tx\", [0,0,50])\n",
+ "scene.add(tx)\n",
+ "\n",
+ "# Configure RIS in the x-z plane centered at the origin\n",
+ "# Note that we need to configure `num_modes=2` here.\n",
+ "width = 7 # Width [m]\n",
+ "num_rows = num_cols = int(width/(0.5*scene.wavelength))\n",
+ "ris = RIS(name=\"ris\",\n",
+ " position=[0,0,0],\n",
+ " orientation=[0,-PI/2,0],\n",
+ " num_rows=num_rows,\n",
+ " num_cols=num_cols,\n",
+ " num_modes=2)\n",
+ "scene.add(ris)\n",
+ "\n",
+ "# Configure the RIS with two reradiation modes\n",
+ "# Each reradiation mode is defined by a pair of source and target vectors\n",
+ "z_target = 5\n",
+ "sources = [tx.position, tx.position]\n",
+ "targets = [[10, 10, z_target], [-10, -2, z_target]]\n",
+ "ris.phase_gradient_reflector(sources, targets)\n",
+ "\n",
+ "# Uncomment to observe the difference when a focusing lens is used.\n",
+ "# ris.focusing_lens(sources, targets) \n",
+ "\n",
+ "# You can freely distribute power among the modes\n",
+ "ris.amplitude_profile.mode_powers = [0.7, 0.3]\n",
+ "\n",
+ "# Define a grid of points in the x-y plane at some height\n",
+ "x_min = -20\n",
+ "x_max = 20\n",
+ "num_steps = 40 # Increase to obtain a finer resolution\n",
+ "x = tf.cast(tf.linspace(x_min, x_max, num_steps), tf.float32)\n",
+ "x_grid, y_grid = tf.meshgrid(x, x)\n",
+ "x = tf.reshape(x_grid, [-1])\n",
+ "y = tf.reshape(y_grid, [-1])\n",
+ "z = z_target*tf.ones_like(x)\n",
+ "r = tf.stack([x, y, z], -1)\n",
+ "\n",
+ "# Compute path loss\n",
+ "pl = field_at_points(scene, r, 40, path_loss=True)\n",
+ "pl = tf.reshape(pl, x_grid.shape)\n",
+ "\n",
+ "# Visualize the field\n",
+ "plt.figure()\n",
+ "plt.pcolormesh(x_grid, y_grid, pl, vmax=-75, vmin=-120)\n",
+ "cb = plt.colorbar() \n",
+ "cb.set_label(r\"Path gain (dB)\")\n",
+ "plt.xlabel(\"x (m)\");\n",
+ "plt.ylabel(\"y (m)\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e439f54c",
+ "metadata": {},
+ "source": [
+ "For comparison, let us have a look at the coverage map:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "532f4888",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG2CAYAAACtaYbcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeWUlEQVR4nO3dd1wU19oH8N9SdgGpSlURRBSjEQuJZjVRowgaYzT6ek00CtYbRRN7iQVLDJbXktxgeWPDG72WRKPRWLARjdhQNHblomgUMDYEhYXdef/wstcNZWcLzAK/7+czn7AzZ888Oxp59pwzz8gEQRBAREREJBErqQMgIiKiqo3JCBEREUmKyQgRERFJiskIERERSYrJCBEREUmKyQgRERFJiskIERERSYrJCBEREUmKyQgRERFJiskIERERSYrJCBERkYU7cuQIZDJZsdvp06cBALdu3Sr2+IkTJySOXj8Zn01DRERk2VQqFR49eqSzb/r06Th48CBSUlIgk8lw69Yt1K1bFwcOHEDjxo217WrUqAFbW9vyDtkgNlIHQERERKWTy+Xw9vbWvs7Pz8eOHTswatQoyGQynbY1atTQaVsRVPpkRKPR4N69e3ByciryB0ZERJZPEAQ8e/YMNWvWhJVV2awuyM3NhUqlMktfgiAU+X2jUCigUCjM0j8A7Ny5Ew8fPsTAgQOLHPvggw+Qm5uLBg0aYOLEifjggw/Mdt6yUumnae7evQtfX1+pwyAiIhPduXMHtWvXNnu/ubm5qOvniPRMtVn6c3R0RHZ2ts6+6OhozJw50yz9A8B7770HAPjll1+0+/7880+sX78ebdq0gZWVFX788UcsWLAAP/30k8UnJJU+GXn69ClcXV1x584dODs7Sx0OEZGOpl9/q7dNgaP+X5LWL8SNGMjUIkaIRfxWEGz1N7J+Lm40WrAu/bgmLxe3583BkydP4OLiIqpPQ2RlZcHFxQW3k/zh7GTayEvWMw38Qm4V+Z1T0sjI5MmTMX/+/FL7vHLlCho2bKh9fffuXfj5+WHLli3o1atXqe8dMGAAUlNTcfToUQM/Sfmq9NM0hUNlzs7OTEaIyOJY2dnpb2OvPxmxEiwvGbHSmCcZKVTWU+2OTjI4Opl2Dg0M+50zbtw4REZGltomICBA5/XatWtRo0YNUaMdrVq1Qnx8vN52Uqv0yQgREZEYakEDtYlzBWpBY1B7Dw8PeHh4iG4vCALWrl2LAQMGiLpDJjk5GT4+PgbFJAUmI0RERAA0EKARMyykp4+ydOjQIaSmpmLIkCFFjsXFxUEul6N58+YAgG3btmHNmjVYtWpVmcZkDkxGiIiIKojVq1ejdevWOmtIXjVnzhzcvn0bNjY2aNiwITZv3oz/+Z//KecoDcdkhIiICIAGGhg2yVJ8H2Vp48aNJR6LiIhAREREmZ6/rDAZISIiAqAWBKhNvMHU1PdXVXw2DREREUmKIyNERAZqPHGJqHbZgQX6G1UXcYvsM/33vmrEPnrETv80gixf/+2tVnkiboEVe5esvq/F5fS1uSIsYK2smIwQERHhZSKhZjIiCU7TEBERkaQ4MkJERARO00iJyQgRERF4N42UOE1DREREkuLICBEREQDNfzZT+yDDMRkhIiICoDbD3TSmvr+qYjJCREQEQC3ADE/tNU8sVQ3XjBAREZGkODJCRPSKwHmL9bbJfy1fXGf5Ir7vifgmrXHQvxLBOkfcd0uN/mKuoogprqq2EzdMYKWv4ms5jTZwzYh0mIwQEREB0EAGtega9iX3QYbjNA0RERFJiiMjREREADTCy83UPshwTEaIiIgAqM0wTWPq+6sqTtMQERGRpDgyQkREBI6MSInJCBEREQCNIINGMPFuGhPfX1VxmoaIiIgkxZERIqoUGn2xRG+bnECV3jZWvmr9J8sXVzlMZl+gt42QJ6Iva/23aKgdRcQNQJan/zuoIBdxPhHnslKJGyXQN5hQXoMNnKaRDpMRIiIiAGpYQW3ihIG4lJD+iskIERERAMEMa0YErhkxCteMEBERkaQ4MkJERASuGZESkxEiIiIAasEKasHENSMsB28UTtMQERGRpDgyQkREBEADGTQmfkfXgEMjxmAyQkREBK4ZkRKTESKyaH5r5otqJ2+uv6CZjVr/t16ZTP83W5nIL88atYhfTFYivkkXmG9GXbAR8fk0+uMW048gsuiGdZ6e87F4BwDg+vXrmDBhAn777TeoVCoEBwdjzpw5ePfdd7Vt0tLSMHz4cBw+fBiOjo6IiIhATEwMbGws+9e9pGtGli9fjuDgYDg7O8PZ2RlKpRJ79uzRHm/fvj1kMpnO9umnn0oYMRERVVaFC1hN3crK+++/j4KCAhw6dAhJSUlo2rQp3n//faSnp7+MX61G165doVKpcPz4ccTFxWHdunWYMWNGmcVkLpImI7Vr18a8efOQlJSEM2fOoEOHDujevTsuXbqkbTN06FDcv39fuy1YsEDCiImIqLJ6uWbE9K0s/Pnnn7hx4wYmT56M4OBg1K9fH/PmzcPz589x8eJFAMD+/ftx+fJlfP/992jWrBm6dOmCOXPmIDY2FiqV/pFDKUmajHTr1g3vvfce6tevjwYNGmDu3LlwdHTEiRMntG0cHBzg7e2t3ZydnSWMmIiISL+srCydLS8vz6T+atSogaCgIKxfvx45OTkoKCjAypUr4enpiZCQEABAYmIimjRpAi8vL+37wsPDkZWVpfMl3xJZzK29arUamzZtQk5ODpRKpXb/hg0b4O7ujtdffx1TpkzB8+fPS+0nLy+vyF8CIiIifTT/eTaNKVvh3Ti+vr5wcXHRbjExMSbFJpPJcODAAZw7dw5OTk6ws7PD4sWLsXfvXri5uQEA0tPTdRIRANrXhVM5lkryFS2///47lEolcnNz4ejoiO3bt6NRo0YAgL59+8LPzw81a9bEhQsXMGnSJFy7dg3btm0rsb+YmBjMmjWrvMInIqJKwjxFz14u7L1z547OSL5CoSi2/eTJkzF/fumLtK9cuYKgoCBERUXB09MTR48ehb29PVatWoVu3brh9OnT8PHxMSluqUmejAQFBSE5ORlPnz7FDz/8gIiICCQkJKBRo0YYNmyYtl2TJk3g4+ODjh07IiUlBfXq1Su2vylTpmDs2LHa11lZWfD19S3zz0FERBWb5pWRDeP7eJmMFN6Yoc+4ceMQGRlZapuAgAAcOnQIu3btwuPHj7X9Llu2DPHx8YiLi8PkyZPh7e2NU6dO6bw3IyMDAODt7W3Epyk/kicjcrkcgYGBAICQkBCcPn0aX3/9NVauXFmkbatWrQAAN2/eLDEZUSgUJWagRERElsTDwwMeHh562xUuUbCy0k2WrKysoNFoAABKpRJz585FZmYmPD09AQDx8fFwdnbWzjhYKotZM1JIo9GUuNAnOTkZACr8cBQREVketSAzy1YWlEol3NzcEBERgfPnz2trjqSmpqJr164AgLCwMDRq1Aj9+/fH+fPnsW/fPkybNg1RUVEW/yVd0pGRKVOmoEuXLqhTpw6ePXuGjRs34siRI9i3bx9SUlKwceNGvPfee6hRowYuXLiAMWPGoG3btggODpYybCIyE7//W6i3jVvNZ6L6ylXZ6m1jY6O/elZenv5+1Cpx3+Os5Rq9bTQi2ghifsHZ6O8HAJBnrf98IgqxyfL0XwN1NZEx6akiV14l1gsXoZrWR9nE6u7ujr1792Lq1Kno0KED8vPz0bhxY+zYsQNNmzYFAFhbW2PXrl0YPnw4lEolqlWrhoiICMyePbtMYjInSZORzMxMDBgwAPfv34eLiwuCg4Oxb98+dOrUCXfu3MGBAwewdOlS5OTkwNfXF7169cK0adOkDJmIiEgSb7zxBvbt21dqGz8/P/zyyy/lFJH5SJqMrF69usRjvr6+SEhIKMdoiIioKtMIVtCYeDeNRuCD8owh+QJWIiIiS2DJ0zSVncUtYCUiIqKqhSMjREREADSAyXfDiFyyS3/BZISIiAjmKnrGCQdj8KoRERGRpDgyQkREBHM9m4bf8Y3BZISIiAiABjJoYOqakbKpwFrZMRkhIsk4e+uvrmotohooYL7qqra2+vsRcy4A0Gj0/2LS5OuPSVR11QKR38gVImIXUaVVJqIbsWtBNXp+E2n0h2MWHBmRDq8aERERSYojI0RERDBX0TN+xzcGkxEiIiIAGkEGjal1Rsroqb2VHVM4IiIikhRHRoiIiPCyYJmp0ywsemYcJiNEREQw11N7mYwYg1eNiIiIJMWRESIiIgBqyKA2sWiZqe+vqpiMEFGZ8FuxUG8b33q5ettk58lFnc9apr84mlxeoLeNWq1/wFgm8veNtbX+YmUajf7zCWoRxdNERQRRBc3EFFnTOIkoRpcv8kLp+7MT8WdrDpymkQ6vGhEREUmKIyNEREQA1DB9mkXcgwLor5iMEBERgdM0UmIyQkREBD4oT0q8akRERCQpjowQEREBECCDxsQ1IwJv7TUKkxEiIiJwmkZKvGpEREQkKY6MEFGZqOado7eNmMetK2z1FyoDALWI4mEaMUW4RBQqEys/X3+BMTGF0QQRVdYEkY+uFxQibj4V05egvxCZlUpEgTUANRNK76sgH7gjqifTaASZqL+T+vogwzEZISIiAqA2w1N7TX1/VcWrRkRERJLiyAgRERE4TSMljowQEREB0MDKLFtZuX79Orp37w53d3c4Ozvj7bffxuHDh3XayGSyItumTZvKLCZzYTJCRERUAbz//vsoKCjAoUOHkJSUhKZNm+L9999Henq6Tru1a9fi/v372q1Hjx7SBGwATtMQEREBUAsyqE2cZjH1/SX5888/cePGDaxevRrBwcEAgHnz5mHZsmW4ePEivL29tW1dXV11XlcEHBkhIiLCf9eMmLoBQFZWls6Wl5dnUmw1atRAUFAQ1q9fj5ycHBQUFGDlypXw9PRESEiITtuoqCi4u7ujZcuWWLNmDQQRt2FLjSMjREREAAQzPLVX+M/7fX19dfZHR0dj5syZRvcrk8lw4MAB9OjRA05OTrCysoKnpyf27t0LNzc3bbvZs2ejQ4cOcHBwwP79+zFixAhkZ2fjs88+M/rc5YHJCBGVCQ+nbL1tbKz0F/x6kW8r7oQi+nKy0//t9EW++f5ZFFOITK3W/8tPkOn/Zmsjos1/OtPbRF0gooBcrv7r5HxT3C/2334cU+rxrKwsuLhMF9WXpbhz5w6cnZ21rxUKRbHtJk+ejPnz55fa15UrVxAUFISoqCh4enri6NGjsLe3x6pVq9CtWzecPn0aPj4+AIDp0/97nZo3b46cnBwsXLjQ4pMRSadpli9fjuDgYDg7O8PZ2RlKpRJ79uzRHs/NzUVUVBRq1KgBR0dH9OrVCxkZGRJGTERElZUaMrNsALS/1wq3kpKRcePG4cqVK6VuAQEBOHToEHbt2oVNmzahTZs2aNGiBZYtWwZ7e3vExcWV+JlatWqFu3fvmjxNVNYkHRmpXbs25s2bh/r160MQBMTFxaF79+44d+4cGjdujDFjxmD37t3YunUrXFxcMHLkSPTs2RO//fablGETEVElpBFMrxOiMXB5hoeHBzw8PPS2e/78OQDAykp3DMHKygoaTcmjgsnJyXBzcysxGbIUkiYj3bp103k9d+5cLF++HCdOnEDt2rWxevVqbNy4ER06dADw8nal1157DSdOnMBbb70lRchERETlTqlUws3NDREREZgxYwbs7e3x3XffITU1FV27dgUA/Pzzz8jIyMBbb70FOzs7xMfH46uvvsL48eMljl4/i1kzolarsXXrVuTk5ECpVCIpKQn5+fkIDQ3VtmnYsCHq1KmDxMTEEpORvLw8neGorKysMo+diIgqPo0ZFrCa+v6SuLu7Y+/evZg6dSo6dOiA/Px8NG7cGDt27EDTpk0BALa2toiNjcWYMWMgCAICAwOxePFiDB06tExiMifJk5Hff/8dSqUSubm5cHR0xPbt29GoUSMkJydDLpfD1dVVp72Xl1eRAi+viomJwaxZs8o4aiIiqmw0kEEDE6dpTHx/ad544w3s27evxOOdO3dG586dy+z8ZUnyOiNBQUFITk7GyZMnMXz4cERERODy5ctG9zdlyhQ8ffpUu925Ux4PniYiIiJjST4yIpfLERgYCAAICQnB6dOn8fXXX6NPnz5QqVR48uSJzuhIRkZGqZXlFAqFxS/UISIiy2PJFVgrO8lHRv5Ko9EgLy8PISEhsLW1xcGDB7XHrl27hrS0NCiVSgkjJCKiyqhwzYipGxlO0pGRKVOmoEuXLqhTpw6ePXuGjRs34siRI9i3bx9cXFwwePBgjB07FtWrV4ezszNGjRoFpVLJO2mIiIgqEUmTkczMTAwYMAD379+Hi4sLgoODsW/fPnTq1AkAsGTJElhZWaFXr17Iy8tDeHg4li1bJmXIRATA/58xets08lPpbVOg0f8t0lmRKyqmPLX+f86e5emfwpXbqPW2KVBbi4pJzCNBrK31V44V048giItJTMVXMayz9J/v/DelV1a1NBrITK8zUoYLWCszSZOR1atXl3rczs4OsbGxiI2NLaeIiIioqhLMcDeNwGTEKJIvYCUiIrIErz5115Q+yHBcaUNERESS4sgIERERLLsCa2XHZISIiAicppESUzgiIiKSFEdGiIiIYPnPpqnMmIwQERGB0zRSYjJCRAar6fVEbxu5VYHeNhrBVkQbcf+4W8n0VwZzsM3X2yZPREEzVYG4AmNO9nlm6SsvX/8/1VZWIiqjAYCIom6qZ3K9bW6PGSfufEQiMBkhIiICR0akxGSEiIgITEakxLtpiIiISFIcGSEiIgJHRqTEZISIiAiAANNvzRW5jJj+gskIERERODIiJa4ZISIiIklxZISIiAgcGZESkxEiMpizItcs/dhZ6y9CJvYpqCqNuEJk+s+n/5eJjbX+wmFi+7IWUaxMLqZQmf4acwAAjYjr5HxJf9GzyojJiHQ4TUNERESS4sgIERERODIiJSYjREREAARBBsHEZMLU91dVnKYhIiIiSXFkhIiICC8Lnpla9MzU91dVTEaIiIjANSNS4jQNERERSYrJCBEREf67gNXUraycPXsWnTp1gqurK2rUqIFhw4YhOztbp01aWhq6du0KBwcHeHp6YsKECSgoEFmERkKcpiEirQZfLhbVrmWnbL1tctW2etsUaMz3fUhupb8wmI2VRm8bMcPs9rbm+4Uj5sFqao3+aylW/p/2etvcWDTGbOerSCx5mubevXsIDQ1Fnz598O233yIrKwujR49GZGQkfvjhBwCAWq1G165d4e3tjePHj+P+/fsYMGAAbG1t8dVXX5VJXObCZISIiAiWfWvvrl27YGtri9jYWFhZvUziV6xYgeDgYNy8eROBgYHYv38/Ll++jAMHDsDLywvNmjXDnDlzMGnSJMycORNyueVW1uU0DRERkZllZWXpbHl5eSb1l5eXB7lcrk1EAMDe/uUo17FjxwAAiYmJaNKkCby8vLRtwsPDkZWVhUuXLpl0/rLGZISIiAgvRzU0Jm6FIyO+vr5wcXHRbjExMSbF1qFDB6Snp2PhwoVQqVR4/PgxJk+eDAC4f/8+ACA9PV0nEQGgfZ2enm7S+csakxEiIiK8XL8jCCZu/+nrzp07ePr0qXabMmVKseecPHkyZDJZqdvVq1fRuHFjxMXFYdGiRXBwcIC3tzfq1q0LLy8vndGSioprRoiIiMzM2dkZzs7OetuNGzcOkZGRpbYJCAgAAPTt2xd9+/ZFRkYGqlWrBplMhsWLF2uPe3t749SpUzrvzcjI0B6zZAYlI1euXMGmTZtw9OhR3L59G8+fP4eHhweaN2+O8PBw9OrVCwqFoqxiJSIiKjMayCAr5wqsHh4e8PDwMOg9hVMva9asgZ2dHTp16gQAUCqVmDt3LjIzM+Hp6QkAiI+Ph7OzMxo1amTQOcqbqLGds2fPIjQ0FM2bN8exY8fQqlUrjB49GnPmzMEnn3wCQRAwdepU1KxZE/Pnzzd5oQ4REVF5s/Q6I99++y3Onj2L69evIzY2FiNHjkRMTAxcXV0BAGFhYWjUqBH69++P8+fPY9++fZg2bRqioqIsfqBA1MhIr169MGHCBPzwww/aD12cxMREfP3111i0aBG++OILc8VIRERU5Z06dQrR0dHIzs5Gw4YNsXLlSvTv31973NraGrt27cLw4cOhVCpRrVo1REREYPbs2RJGLY6oZOT69euwtdVfdEepVEKpVCI/P9/kwIiIiMqTRpBBZqFFzwBg/fr1etv4+fnhl19+KbMYyoqoZERfIvLkyROdERMxiQsAxMTEYNu2bbh69Srs7e3RunVrzJ8/H0FBQdo27du3R0JCgs77/v73v2PFihWizkFE4smDn5itLycb/dO1eRr9/wSpNNaiziemmmuBiPNZyfTXRLW3FfeFS0xMKrX+z5er0v9v6os/HUTFdHv4eFHtqqLCO2JM7YMMZ/D9QPPnz8fmzZu1r//2t7+hRo0aqFWrFs6fP29QXwkJCYiKisKJEycQHx+P/Px8hIWFIScnR6fd0KFDcf/+fe22YMECQ8MmIiIiC2Xwrb0rVqzAhg0bALxcpRsfH489e/Zgy5YtmDBhAvbv3y+6r7179+q8XrduHTw9PZGUlIS2bdtq9xfeU01ERFRWLLkcfGVncDKSnp4OX19fAC9r5f/tb39DWFgY/P390apVK5OCefr0KQCgevXqOvs3bNiA77//Ht7e3ujWrRumT58OB4fihyTz8vJ07ubJysoyKSYiIqoamIxIx+BkxM3NDXfu3IGvry/27t2LL7/8EgAgCALUav1PzSyJRqPB6NGj0aZNG7z++uva/X379oWfnx9q1qyJCxcuYNKkSbh27Rq2bdtWbD8xMTGYNWuW0XEQEVHVZOkLWCszg5ORnj17om/fvqhfvz4ePnyILl26AADOnTuHwMBAowOJiorCxYsXtQ/8KTRs2DDtz02aNIGPjw86duyIlJQU1KtXr0g/U6ZMwdixY7Wvs7KytCM5REREZHkMTkaWLFkCf39/3LlzBwsWLICjoyOAlw/qGTFihFFBjBw5Ert27cKvv/6K2rVrl9q2cCro5s2bxSYjCoXC4ou7EBGR5eHdNNIxOBmxtbXF+PFFbw0bM2aMwScXBAGjRo3C9u3bceTIEdStW1fve5KTkwEAPj4+Bp+PiIioJC+TEVPXjJgpmCpGVDKyc+dOdOnSBba2tti5c2epbT/44APRJ4+KisLGjRuxY8cOODk5aR9x7OLiAnt7e6SkpGDjxo147733UKNGDVy4cAFjxoxB27ZtERwcLPo8REREZJwWLVoY1F4mk2Hnzp2oVauW6PeISkZ69OiB9PR0eHp6okePHqUGYMgi1uXLlwN4WdjsVWvXrkVkZCTkcjkOHDiApUuXIicnB76+vujVqxemTZsm+hxEJF41hUpUO1uZRm8bGyv9/xaIKXpmI+JcAKCR6f9GK6agmcK6QG+bPLW4QeUnz+31t7mv/8mut4dNEHU+Mg3vpilecnIyxo0bp12WURpBEDBv3jyDn1En6v8ojUZT7M+mEvSMZ/n6+hapvkpERFQWhP9spvZRGU2YMEH7JGB9Fi1aZHD/BldgLc3z58/N2R0RERFJLDU1FR4eHqLbX758GX5+fgadw+BkpGPHjvjjjz+K7D958iSaNWtmaHdEREQWoXCaxtStsvHz84NMxDRoIV9fX1hbi3umVCGDkxE7OzsEBwdrn0+j0Wgwc+ZMvPPOO3jvvfcM7Y6IiMgyCGbaqoicnBysWbMGsbGxuHHjhkl9GXxr7+7duxEbG4tBgwZhx44duHXrFm7fvo1du3YhLCzMpGCIiIgkY46RjUo4MgIAaWlp6N+/P86ePYu33noLq1evRqdOnbRJiL29Pfbs2aPzXDlDGLVmJCoqCp999hk2bdqEM2fOYOvWrUxEiIiIKqnx48dDpVJhxYoVcHBwQHh4OOrXr4/79+8jIyMDXbp0wcyZM43u3+CRkcePH2PIkCE4ePAgVq5ciYSEBISFhWHBggVGV2AlIiKSGiuwluzXX3/Fzp070bJlS3Tp0gXu7u5Ys2YNvLy8AADTp09Hx44dje7f4GTk9ddfR926dXHu3DnUrVsXQ4cOxebNmzFixAjs3r0bu3fvNjoYIiIiqbDOSMkyMzO1d8hUr14dDg4O2kQEALy9vfH48WOj+zc4Gfn0008xdepUWFn9d4anT58+aNOmDQYOHGh0IEQkvbrOj0S1s7fO19tGA/3/KNuKKYwmssDYM5Wd3jYvCmz1trlzr7reNrcjJouKiagyefWOGkPurhHD4GRk+vTpxe6vXbs24uPjTQ6IiIhIEoLM9AWolXRkBABmzJgBBwcHAIBKpcLcuXPh4uICwPQ6YwYnI4WeP3+OtLQ0qFS65aP5zBgiIqqIuGakZG3btsW1a9e0r1u3bo1///vfRdoYy+Bk5MGDBxg4cCD27NlT7HFDnk1DRERElu/IkSNl2r/Bt/aOHj0aT548wcmTJ2Fvb4+9e/ciLi4O9evX1/tEXyIiIovFomeSMXhk5NChQ9ixYwfeeOMNWFlZwc/PD506dYKzszNiYmLQtWvXsoiTiIioTPFumuKNHTtWdNvFixcbdQ6Dk5GcnBztk/vc3Nzw4MEDNGjQAE2aNMHZs2eNCoKIiIgs07lz53Renz17FgUFBQgKCgIAXL9+HdbW1ggJCTH6HAYnI0FBQbh27Rr8/f3RtGlTrFy5Ev7+/lixYgV8fHyMDoSIiEhynGYp4vDhw9qfFy9eDCcnJ8TFxcHNzQ3Ay2KoAwcOxDvvvGP0OQxORj7//HPcv38fABAdHY3OnTtjw4YNkMvlWLdundGBEBERSYnTNPotWrQI+/fv1yYiwMtZki+//BJhYWEYN26cUf0anIx88skn2p9DQkJw+/ZtXL16FXXq1IG7u7tRQVRF7cPm6W9kpf8vdZav/iJOAKC2099Xrog/vgJ7/V8bZBoxEQEFzvobCjYizlcg4n9+xwIxIQFW+s9nd11/ca2rs8eIO5+FUViLu05P8u31tvkzt5reNnefuOpt8/wPRzEh4VbUeFHtiEpkjgWolXxkJSsrCw8ePCiy/8GDB3j27JnR/Rr1oLxCv/32G6ytrdGiRQsmIkRERJXchx9+iIEDB2Lbtm24e/cu7t69ix9//BGDBw9Gz549je7X6KJnANClSxckJycjICDAlG6IiIgsgOw/m6l9VF4rVqzA+PHj0bdvX+Tnv3wshI2NDQYPHoyFCxca3a9JIyNCZS01R0REVY+F1xk5e/YsOnXqBFdXV9SoUQPDhg1Ddna2ThuZTFZk27Rpk9licHBwwLJly/Dw4UOcO3cO586dw6NHj7Bs2TJUq6Z/arYkopORX375xeiTEBERkfHu3buH0NBQBAYG4uTJk9i7dy8uXbqEyMjIIm3Xrl2L+/fva7cePXqYPZ5q1aohODgYwcHBJiUhhUQnIz179iySha1cuVLnEcJEREQVlgWPjOzatQu2traIjY1FUFAQ3nzzTaxYsQI//vgjbt68qdPW1dUV3t7e2s3OTv+i+9L07NkTWVlZotv369cPmZmZBp1DdDJy8uRJnD59GsHBwfj1118BAH379jVLRkRERCS5wqf2mrrh5V0nr255eXkmhZaXlwe5XA4rq//+2ra3f3lX27Fjx3TaRkVFwd3dHS1btsSaNWtMXlKxY8cOPHjwoMhnKm57+vQpfv755yLTR/qITkaaNm2K06dPY8CAAdp7iR89elQkECIioqrO19cXLi4u2i0mJsak/jp06ID09HQsXLgQKpUKjx8/xuTJkwFAW/sLAGbPno0tW7YgPj4evXr1wogRI/CPf/zDpHMLgoAGDRrAzc1N71a9enXk5OQYfA6D7qaxsbHBzJkz0bp1a7z33ntYunSpTrAymYxP7SUiogpJEF5upvYBAHfu3IGzs7N2v0KhKLb95MmTMX/+/FL7vHLlCho3boy4uDiMHTsWU6ZMgbW1NT777DN4eXnpjJZMnz5d+3Pz5s2Rk5ODhQsX4rPPPjP6M71agVWsWrVqGdTe4Ft7t23bhuHDh6Nt27aYOnUqbGxMujuYiIjIMpix6Jmzs7NOMlKScePGFbsI9VWF5TP69u2Lvn37IiMjA9WqVYNMJsPixYtLLa/RqlUrzJkzB3l5eSUmRPq0a9fOqPcZQnQm8eTJE4wYMQI7duzAV199hc8//7ws4zK7N2bHwlpR8iIejYg/I1m+uHOpXPX/bRbe1185VbAW8X+FyHKnglxkWVQ9rBz0V+iUib3NXkTlVPtqKr1txJRflsnE/QtjY6N/ZO+Zn7WoviqiuJZrpA6BqErx8PCAh4eHQe8pvHFkzZo1sLOzQ6dOnUpsm5ycDDc3N6MTkfIiOhlp1KgR6tSpg7Nnz2qf1EdERFRpvLIA1aQ+ysi3336L1q1bw9HREfHx8ZgwYQLmzZsHV1dXAMDPP/+MjIwMvPXWW7Czs0N8fDy++uorjB9v+Y9KEJ2MjBgxQjtPRUREVNnIhJebqX2UlVOnTiE6OhrZ2dlo2LAhVq5cif79+2uPF976O2bMGAiCgMDAQCxevBhDhw4tu6DMRFQyIggCpk2bVtaxEBERScfCH5S3fv36Uo937twZnTt3LrsAypCoW3sbN26MTZs2QaUqff7+xo0bGD58OObNE/FEWiIiIiKIHBn5xz/+gUmTJmHEiBHo1KkT3njjDdSsWRN2dnZ4/PgxLl++jGPHjuHSpUsYOXIkhg8fXtZxExERmZeFrxmxBBkZGRg/fjwOHjyIzMzMIgXVjC3vISoZ6dixI86cOYNjx45h8+bN2LBhA27fvo0XL17A3d0dzZs3x4ABA9CvXz+4ubkZFQgREZGkLHyaxhJERkYiLS0N06dPh4+PD2Sib58snUFFQt5++228/fbbZjkxERERVSzHjh3D0aNH0axZM7P2y4plRJXNjRvAs2eAkxNQv77U0RBVHBwZ0cvX19fkZ90UR/SzacpCTEwM3nzzTTg5OcHT0xM9evTAtWvXdNrk5uYiKioKNWrUgKOjI3r16oWMjAyDzyVYlb5ZqfRv+S6CqE17f1gpm2CtfxP1uRQaURtsBL2bTK7Ru2lU1vo3tUzUJrMW9G75Khu9m0Yj07tZW2tEbYIg07tBLWKTyo0bQIMGQEjIy//euCFdLEQVjQU/tddSLF26FJMnT8atW7fM2q+kyUhCQgKioqJw4sQJxMfHIz8/H2FhYToP2RkzZgx+/vlnbN26FQkJCbh37x569uwpYdREFuzZs9JfExGZoE+fPjhy5Ajq1asHJycnVK9eXWczlqTTNHv37tV5vW7dOnh6eiIpKQlt27bF06dPsXr1amzcuBEdOnQAAKxduxavvfYaTpw4gbfeekuKsIksT+HUzJUruvsLX3PKhkg/3k2j16sPyDUni1oz8vTpUwDQZldJSUnIz89HaGiotk3Dhg1Rp04dJCYmFpuM5OXlIS8vT/s6KyurjKMmkljh1ExxPvnkvz9fv86EhKgUll6B1RJERESUSb8GT9OsW7eu2P0FBQWYMmWK0YFoNBqMHj0abdq0weuvvw4ASE9Ph1wu19bdL+Tl5YX09PRi+4mJiYGLi4t28/X1NTomogpB7FQMp2yIyAivfqnPysoqdTOWwcnIZ599ht69e+Px48fafdeuXUOrVq3wr3/9y+hAoqKicPHiRWzatMnoPgBgypQpePr0qXa7c+eOSf0RWTwnJ/O2I6qquIC1WG5ubsjMzAQAuLq6ws3NrchWuN9YBk/TnDt3Dp988gmaNGmCtWvX4vr165g4cSJ69OiBZcuWGRXEyJEjsWvXLvz666+oXbu2dr+3tzdUKhWePHmiMzqSkZEBb2/vYvtSKBQW/6hkIrOqX//lFEzhmpFXp2a+/x547TWuGSEiox06dEi7fOLw4cNlcg6Dk5F69erht99+w+jRo9G5c2dYW1sjLi4OH3/8scEnFwQBo0aNwvbt23HkyBHUrVtX53hISAhsbW1x8OBB9OrVC8DLUZi0tDQolUqDz0dUaZWUaLz2GtCiRfnGQlRByWCGNSNmicSytGvXrtifzcmoBay7d+/Gpk2boFQqcf36daxevRrt2rVDzZo1DeonKioKGzduxI4dO+Dk5KRdB+Li4gJ7e3u4uLhg8ODBGDt2LKpXrw5nZ2eMGjUKSqWSd9IQFeevUzGcmiGiMvD8+XOkpaUVeYBucHCwUf0ZnIz8/e9/R1xcHObOnYuxY8ciIyMDgwYNQpMmTbB8+XL87W9/E93X8uXLAQDt27fX2b927VpERkYCAJYsWQIrKyv06tULeXl5CA8PN2o6SCMXIFOUnPIKIlbPyDTiziWqrwL9+bMgF5Giiy2wJSLdF8Tk9Cr9H05mK/JBSSI+npgvKWKKAWo04q6TWi3i86ks+LvPq1M2nJohMgxv7dXrwYMHGDhwIPbs2VPs8TJ9UN6rfvvtN5w8eRJNmzYF8HJdxy+//ILY2FgMGjTIoGRETElZOzs7xMbGIjY21tBQiaomJiBExmE5eL1Gjx6NJ0+e4OTJk2jfvj22b9+OjIwMfPnll1i0aJHR/RqcjCQlJRW7QDQqKkqnHggRERFVLocOHcKOHTvwxhtvwMrKCn5+fujUqROcnZ0RExODrl27GtWvwbf2KhQKpKSkYNq0afj444+1t/vs2bMHBQUFRgVBREQkOd7aq1dOTg48PT0BvLzl98GDBwCAJk2a4OzZs0b3a3AykpCQgCZNmuDkyZPYtm0bsrOzAQDnz59HdHS00YEQERFJScQzTkVtlVlQUJD2gbZNmzbFypUr8ccff2DFihXw8fExul+Dk5HJkyfjyy+/RHx8PORyuXZ/hw4dcOLECaMDISIiIsv2+eef4/79+wCA6Oho7NmzB3Xq1ME333yDr776yuh+DV4z8vvvv2Pjxo1F9nt6euLPP/80OhAiIiJJcQGrXp+8UlQxJCQEt2/fxtWrV1GnTh24u7sb3a/BIyOurq7arOhV586dQ61atYwOhIiISFJcM2IwBwcHtGjRwqREBDBiZOSjjz7CpEmTsHXrVshkMmg0Gvz2228YP348BgwYYFIwREREZLnGjh1b7H6ZTAY7OzsEBgaie/fu2vLxYhmcjHz11VeIioqCr68v1Go1GjVqBLVajb59+2LatGmGdldurHNlsC6lGE2Bo/50VmMrLuW1ElEUS22tvy8xxbVkIgvsaOxENBLz+eT6K79pCsQNuFmL6MvKSkwb/XHbWIurWGctol2eTRX76kNURZhjAWplX8B67tw5nD17Fmq1GkFBQQCA69evw9raGg0bNsSyZcswbtw4HDt2DI0aNRLdr8HTNHK5HN999x1SUlKwa9cufP/997h69Sr++c9/wtra2tDuiIiILENhBVZTt0qse/fuCA0Nxb1795CUlISkpCTcvXsXnTp1wscff4w//vgDbdu2xZgxYwzq16hn0wBAnTp1UKdOHWPfTkREZFm4gFWvhQsXIj4+Hs7Oztp9Li4umDlzJsLCwvD5559jxowZCAsLM6hfUclISXNExVm8eLFBARAREVHF8PTpU2RmZhaZgnnw4AGysrIAvLzR5a8P0NNHVDJy7tw5nddnz55FQUFBkfmikJAQg05ORERkKbhmRL/u3btj0KBBWLRoEd58800AwOnTpzF+/Hj06NEDAHDq1Ck0aNDAoH5FJSOHDx/W/rx48WI4OTkhLi4Obm5uAIDHjx9j4MCBeOeddww6ORERkcXgNI1eK1euxJgxY/DRRx9pHwFjY2ODiIgILFmyBADQsGFDrFq1yqB+DV4zsmjRIuzfv1+biAAv69N/+eWXCAsLw7hx4wztkoiIiCoAR0dHfPfdd1iyZAn+/e9/AwACAgLg6OiobdOsWTOD+zX4bpqsrCztg3Fe9eDBAzx79szgAIiIiCyCOZ5LU4YjI3PnzkXr1q3h4OAAV1fXYtukpaWha9eucHBwgKenJyZMmFDkIbZHjhxBixYtoFAoEBgYiHXr1hkci6OjI4KDgxEcHKyTiBjL4GTkww8/xMCBA7Ft2zbcvXsXd+/exY8//ojBgwejZ8+eJgdEREQkCQuvwKpSqdC7d28MHz682ONqtRpdu3aFSqXC8ePHERcXh3Xr1mHGjBnaNqmpqejatSveffddJCcnY/To0RgyZAj27dtXdoGLYPA0zYoVKzB+/Hj07dsX+fn5LzuxscHgwYOxcOFCswdIREREwKxZswCgxJGM/fv34/Llyzhw4AC8vLzQrFkzzJkzB5MmTcLMmTMhl8uxYsUK1K1bF4sWLQIAvPbaazh27BiWLFmC8PDw8vooRRicjDg4OGDZsmVYuHAhUlJSAAD16tVDtWrVzB5ceZIV6C9UY5UntjP9TQQRVTytcvUPXGnsxFUWFfP5UK1AbxNBJaKwncgKpTIRy84L8vT/FbWRq/W2yVOJ+6tekK+/nf09o8vzEJElM+MC1sLbXAspFAooFAoTOy9dYmIimjRpAi8vL+2+8PBwDB8+HJcuXULz5s2RmJiI0NBQnfeFh4dj9OjRZRqbPgZP0xSqVq2adr6ooiciREREpq4XefXWYF9fX7i4uGi3mJiYMo8/PT1dJxEBoH2dnp5eapusrCy8ePGizGMsicFf8XJycjBv3jwcPHgQmZmZ0Gh0v5kXrq4lIiKqqu7cuaNTpbSkUZHJkydj/vz5pfZ15coVNGzY0KzxmeLGjRs4fPhwsTnAq+tTDGFwMjJkyBAkJCSgf//+8PHxgUxWuevwExERGcrZ2VknGSnJuHHjEBkZWWqbgIAAUef09vbGqVOndPZlZGRojxX+t3Dfq22cnZ1hb2+v9xzfffcdhg8fDnd3d3h7e+vkADKZrPySkT179mD37t1o06aNUSckIiKySBIUPfPw8ICHh4eJJ31JqVRi7ty5yMzMhKenJwBonyNTWL5dqVTil19+0XlffHw8lEqlqHN8+eWXmDt3LiZNmmSWmAsZvGbEzc0N1atXN2sQREREUjPnmpGykJaWhuTkZKSlpUGtViM5ORnJycnIzs4GAISFhaFRo0bo378/zp8/j3379mHatGmIiorSThN9+umn+Pe//42JEyfi6tWrWLZsGbZs2SL6KbuPHz9G7969zf7ZDE5G5syZgxkzZuD58+dmD4aIiIiKN2PGDDRv3hzR0dHIzs5G8+bN0bx5c5w5cwYAYG1tjV27dsHa2hpKpRKffPIJBgwYgNmzZ2v7qFu3Lnbv3o34+Hg0bdoUixYtwqpVq0Tf1tu7d2/s37/f7J/NqHLwKSkp8PLygr+/P2xtbXWOnz171mzBERERlSsLfrbMunXr9FZL9fPzKzIN81ft27cv8gDc0nzzzTfanwMDAzF9+nScOHECTZo0KZIDfPbZZ6L7fZXByUjhU/mIiIgqFT4or1iFD8Ar5OjoiISEBCQkJOjsl8lk5ZeMREdHG3UiqWlsAZltyccFa/1/gwSxV0vEX0ZZvoi7kKz0dyRTi7ubScznw9NSLlAhB/0FxsTeYGVlrb9gW8Fz/RddI6LImkzEtQQAG1v9hd9sOENJRFVIampqmZ/D6KJnRERElYmlL2C1BLNnzy52zeiLFy901qYYSlQyUr16dfz5558A/ns3TUkbERFRhWThD8qzBLNmzdLevfOq58+fa5+dYwxREw9LliyBk5MTAGDp0qVGn4yIiIgqLkEQii12ev78eZMGJEQlIxEREcX+TEREVFmYY5qlsk7TuLm5QSaTQSaToUGDBjoJiVqtRnZ2Nj799FOj++fjR4mIiADeTVOKpUuXQhAEDBo0CLNmzYKLi4v2mFwuh7+/v+gqrsVhMkJERESlKpwVqVu3Llq3bl2kvoipmIwQEREBHBkRoV27dtqfc3NzoVKpdI6LeThgcXhrLxEREXhrrxjPnz/HyJEj4enpiWrVqsHNzU1nM5akIyO//vorFi5ciKSkJNy/fx/bt2/XqfAaGRmJuLg4nfeEh4dj7969Bp9LsBGgsS35b4mY4mFW+eL+lqnl+ttYqfSfT+2kvyiYLE9khTERf9KCXP/5oBFzPpHXqcBabxtbR5XeNgW55hsutJXrL3rm+m/9bYioAuLIiF4TJkzA4cOHsXz5cvTv3x+xsbH4448/sHLlSsybN8/ofkUlIz179hTd4bZt20S3zcnJQdOmTTFo0KASz9G5c2esXbtW+7rwyYNERERUvn7++WesX78e7du3x8CBA/HOO+8gMDAQfn5+2LBhA/r162dUv6KSkVdXzZpTly5d0KVLl1LbKBQKeHt7l8n5iYiItDgyotejR48QEBAA4OX6kEePHgEA3n77bQwfPtzofkUlI6+OTJS3I0eOwNPTE25ubujQoQO+/PJL1KhRQ7J4iIiocmKdEf0CAgKQmpqKOnXqoGHDhtiyZQtatmyJn3/+Ga6urkb3a9F303Tu3Bk9e/ZE3bp1kZKSgi+++AJdunRBYmIirK2LX2+Ql5eHvLw87eusrKzyCpeIiKhSGzhwIM6fP4927dph8uTJ6NatG7799lvk5+dj8eLFRvcrKhlp3rx5seVfi3P27Fmjg/mrjz76SPtzkyZNEBwcjHr16uHIkSPo2LFjse+JiYkxqT4+ERFVUZym0WvMmDHan0NDQ3H16lUkJSUhMDAQwcHBRvcrKhl59Q4XKQUEBMDd3R03b94sMRmZMmUKxo4dq32dlZUFX1/f8gqRiIgqKE7TlEyj0WDhwoXYuXMnVCoVOnbsiOjoaPj5+cHPz8/k/kUlI9HR0SafyBzu3r2Lhw8fwsfHp8Q2CoWCd9wQERGZ0dy5czFz5kyEhobC3t4eX3/9NTIzM7FmzRqz9G9U0bMnT55g1apVmDJlinYl7dmzZ/HHH38Y1E92djaSk5ORnJwMAEhNTUVycjLS0tKQnZ2NCRMm4MSJE7h16xYOHjyI7t27IzAwEOHh4caETUREVDLBTFsltH79eixbtgz79u3DTz/9hJ9//hkbNmyARiOiPpUIBi9gvXDhAkJDQ+Hi4oJbt25h6NChqF69OrZt24a0tDSsX79edF9nzpzBu+++q31dOL0SERGB5cuX48KFC4iLi8OTJ09Qs2ZNhIWFYc6cOcaNfGhkkJVWsEvE2JpNjsgCYxr9fWnMVadLZEiCjYj/Q6xFtBFR9EzIF5fjivkrrFbp70tmpT9uaxu1iLMBGhGf79i2CaL6IqIKhmtGSpSWlob33ntP+zo0NBQymQz37t1D7dq1Te7f4GRk7NixiIyMxIIFC+Dk5KTd/95776Fv374G9dW+fXsIQsl/cvv27TM0PCIiIjKzgoIC2NnZ6eyztbVFfn6+Wfo3OBk5ffo0Vq5cWWR/rVq1kJ6ebpagiIiIypsMogebS+2jMhIEAZGRkTozE7m5ufj0009RrVo17T5DqrC/yuBkRKFQFFu74/r16/Dw8DAqCCIiIslxmqZEERERRfZ98sknZuvf4GTkgw8+wOzZs7FlyxYAgEwmQ1paGiZNmoRevXqZLTAiIqLyxFt7S1bWldgNvptm0aJFyM7OhqenJ168eIF27dohMDAQTk5OmDt3blnESERERJWYwSMjLi4uiI+Px2+//Ybz588jOzsbLVq0QGhoaFnER0REVD44TSMZo59N06ZNG7Rp08acsRAREUmLyYQkRE/THDp0CI0aNSp28erTp0/RuHFjHD161KzBERERUeUnOhlZunQphg4dCmdn5yLHXFxc8Pe//92kJ/YRERFJqXABq6kbGU70NM358+cxf/78Eo+HhYXhf//3f80SVFmQaQBZKUU4bZ7rvztcbae3CQBAEHFVRf2FFVOiVORffKsX+vNOjYjCttbP9fejeCguxy1wEFH1VsSfi/vvBXrbHN05RVRMRFSFcc2IZESPjGRkZMDWtuQa5jY2Nnjw4IFZgiIiIiJdc+fORevWreHg4ABXV9di26SlpaFr165wcHCAp6cnJkyYgIKC/35hO3LkCGQyWZFN6qKlokdGatWqhYsXLyIwMLDY4xcuXCj1abpERESWzNLrjKhUKvTu3RtKpRKrV68uclytVqNr167w9vbG8ePHcf/+fQwYMAC2trb46quvdNpeu3ZNZ9mFp6dn2QUuguiRkffeew/Tp09Hbm5ukWMvXrxAdHQ03n//fbMGR0REVG4s/Km9s2bNwpgxY9CkSZNij+/fvx+XL1/G999/j2bNmqFLly6YM2cOYmNjoVKpdNp6enrC29tbu1lZGVx2zKxEn33atGl49OgRGjRogAULFmDHjh3YsWMH5s+fj6CgIDx69AhTp04ty1iJiIioBImJiWjSpAm8vLy0+8LDw5GVlYVLly7ptG3WrBl8fHzQqVMn/Pbbb+UdahGip2m8vLxw/PhxDB8+HFOmTNE+bVcmkyE8PByxsbE6F4CIiKgiMec0zV/LYCgUCp2HzJWF9PT0Ir+HC18Xrgnx8fHBihUr8MYbbyAvLw+rVq1C+/btcfLkSbRo0aJM4yuNQUXP/Pz88Msvv+Dx48e4efMmBEFA/fr14ebmVlbxERERlQ8z3k3j6+urszs6OhozZ84s0nzy5Mml3qkKAFeuXEHDhg1NDOyloKAgBAUFaV+3bt0aKSkpWLJkCf75z3+a5RzGMKoCq5ubG958801zx0JERCQdMyYjd+7c0VkgWtKoyLhx4xAZGVlqlwEBAaJO7e3tjVOnTunsy8jI0B4rScuWLXHs2DFR5ygrRpeDJyIiouI5OzsXWyT0rzw8PODh4WGWcyqVSsydOxeZmZnau2Pi4+Ph7OyMRo0alfi+5ORkye+GrTLJiLUKsC6lflZBNf19WKn0twEAuwf6C3V5JOfpbZPrXnJdl0KJm8aJiomIiEpn6bf2pqWl4dGjR0hLS4NarUZycjIAIDAwEI6OjggLC0OjRo3Qv39/LFiwAOnp6Zg2bRqioqK0IzNLly5F3bp10bhxY+Tm5mLVqlU4dOgQ9u/fX3aBi1BlkhEiIqJSWXgF1hkzZiAuLk77unnz5gCAw4cPo3379rC2tsauXbswfPhwKJVKVKtWDREREZg9e7b2PSqVCuPGjcMff/wBBwcHBAcH48CBA3j33XfLLnARmIwQERFVAOvWrcO6detKbVN4o0lJJk6ciIkTJ5o5MtMxGSEiIgIgEwTIBNOGNkx9f1XFZISIiAiw+Gmaykza+q9ERERU5XFkhIiICJZ/N01lxmSEiIgI4DSNhDhNQ0RERJKqMiMjp6OjRFXDIyKiqonTNNKpMskIERFRqThNIxkmI0RERODIiJS4ZoSIiIgkxZERIiIigNM0EmIyQkRE9B+cZpEGp2mIiIhIUhwZISIiAgBBeLmZ2gcZjMkIEREReDeNlDhNQ0RERJKSNBn59ddf0a1bN9SsWRMymQw//fSTznFBEDBjxgz4+PjA3t4eoaGhuHHjhjTBEhFR5SaYaSODSZqM5OTkoGnTpoiNjS32+IIFC/DNN99gxYoVOHnyJKpVq4bw8HDk5uaWc6RERFTZyTTm2chwkq4Z6dKlC7p06VLsMUEQsHTpUkybNg3du3cHAKxfvx5eXl746aef8NFHH5VnqERERFRGLHbNSGpqKtLT0xEaGqrd5+LiglatWiExMbHE9+Xl5SErK0tnIyIi0ovTNJKx2GQkPT0dAODl5aWz38vLS3usODExMXBxcdFuvr6+ZRonERFVDoV305i6keEsNhkx1pQpU/D06VPtdufOHalDIiKiiqCwzoipGxnMYpMRb29vAEBGRobO/oyMDO2x4igUCjg7O+tsREREZLksNhmpW7cuvL29cfDgQe2+rKwsnDx5EkqlUsLIiIioMuI0jXQkvZsmOzsbN2/e1L5OTU1FcnIyqlevjjp16mD06NH48ssvUb9+fdStWxfTp09HzZo10aNHD+mCJiKiyolP7ZWMpMnImTNn8O6772pfjx07FgAQERGBdevWYeLEicjJycGwYcPw5MkTvP3229i7dy/s7OykCpmIiIjMTNJkpH379hBKWewjk8kwe/ZszJ49uxyjIiKiqojPppEOH5RHREQE8Km9ErLYBaxERERUNXBkhIiICJymkRJHRoiIiACLLwc/d+5ctG7dGg4ODnB1dS22zWeffYaQkBAoFAo0a9as2DYXLlzAO++8Azs7O/j6+mLBggVlF7RITEaIiIgqAJVKhd69e2P48OGlths0aBD69OlT7LGsrCyEhYXBz88PSUlJWLhwIWbOnIn/+7//K4uQReM0DRERESx/mmbWrFkAgHXr1pXY5ptvvgEAPHjwABcuXChyfMOGDVCpVFizZg3kcjkaN26M5ORkLF68GMOGDSuTuMXgyAgREREAaATzbBYsMTERbdu2hVwu1+4LDw/HtWvX8PjxY8ni4sgIERERYNYKrFlZWTq7FQoFFAqFiZ2bLj09HXXr1tXZ5+XlpT3m5uYmRVgcGSEiIjI3X19fuLi4aLeYmJhi202ePBkymazU7erVq+UcffnjyAgREREAGcywZuQ//71z547OU+NLGhUZN24cIiMjS+0zICDAtKBe4e3tjYyMDJ19ha+9vb3Ndh5DMRkhIiICzFqB1dnZWScZKYmHhwc8PDxMO6cBlEolpk6divz8fNja2gIA4uPjERQUJNkUDcBpGiIiogohLS0NycnJSEtLg1qtRnJyMpKTk5Gdna1tc/PmTSQnJyM9PR0vXrzQtlGpVACAvn37Qi6XY/Dgwbh06RI2b96Mr7/+WvugWqlwZISIiAiWf2vvjBkzEBcXp33dvHlzAMDhw4fRvn17AMCQIUOQkJBQpE1qair8/f3h4uKC/fv3IyoqCiEhIXB3d8eMGTMkva0XAGRCaY/NrQSysrLg4uKCp0+fihoyIyIiy1LW/44X9v/2uzNhY2NnUl8FBbk4dngmf+cYiNM0REREJClO0xAREQGQCQJkJk4WmPr+qorJCBEREQBo/rOZ2gcZjNM0REREJCmOjBAREYHTNFJiMkJERASY9dk0ZBgmI0RERIBZK7CSYbhmhIiIiCTFkREiIiJYfgXWyozJCBEREcBpGglxmoaIiIgkxZERIiIiADLNy83UPshwTEaIiIgATtNIiNM0REREJCmOjBAREQEseiYhJiNERERgOXgpcZqGiIiIJMWRESIiIoALWCXEZISIiAh4ud7D1FtzmYsYhckIERERuGZESlwzQkRERJKy6GRk5syZkMlkOlvDhg2lDouIiCojAf9dN2L0JvWHqJgsfpqmcePGOHDggPa1jY3Fh0xERBURF7BKxuJ/s9vY2MDb21vqMIiIiKiMWPQ0DQDcuHEDNWvWREBAAPr164e0tLRS2+fl5SErK0tnIyIi0ktjpo0MZtHJSKtWrbBu3Trs3bsXy5cvR2pqKt555x08e/asxPfExMTAxcVFu/n6+pZjxEREVFEV3k1j6kaGkwlCxblyT548gZ+fHxYvXozBgwcX2yYvLw95eXna11lZWfD19cXTp0/h7OxcXqESEZGZZGVlwcXFpcz+HS/sv+PrE2FjrTCprwJ1Hg5eXMDfOQay+DUjr3J1dUWDBg1w8+bNEtsoFAooFKb9ZSIioiqIC1glY9HTNH+VnZ2NlJQU+Pj4SB0KERFVNibf1muGZKaKsuhkZPz48UhISMCtW7dw/PhxfPjhh7C2tsbHH38sdWhERERkJhY9TXP37l18/PHHePjwITw8PPD222/jxIkT8PDwkDo0IiKqbDhNIxmLHhnZtGkT7t27h7y8PNy9exebNm1CvXr1pA6LiIgqIwu/tXfu3Llo3bo1HBwc4OrqWmybzz77DCEhIVAoFGjWrFmR47du3SpS2Vwmk+HEiRNlF7gIFj0yQkREVF4s/UF5KpUKvXv3hlKpxOrVq0tsN2jQIJw8eRIXLlwosc2BAwfQuHFj7esaNWqYNVZDMRkhIiKqAGbNmgUAWLduXYltvvnmGwDAgwcPSk1GatSoYVHVzS16moaIiKjcmPFumr9WAn+1/pUl+OCDD+Dp6Ym3334bO3fulDocJiNEREQAAI1gng2Ar6+vTjXwmJgYiT/cS46Ojli0aBG2bt2K3bt34+2330aPHj0kT0g4TUNERGRmd+7c0anAWlIxzsmTJ2P+/Pml9nXlyhU0bNjQLHG5u7tj7Nix2tdvvvkm7t27h4ULF+KDDz4wyzmMwWSEiIgIMOutvc7OzqLKwY8bNw6RkZGltgkICDAtJj1atWqF+Pj4Mj2HPkxGiIiIAADmqKBq2Ps9PDwkr52VnJwseWVzJiNEREQVQFpaGh49eoS0tDSo1WokJycDAAIDA+Ho6AgAuHnzJrKzs5Geno4XL15o2zRq1AhyuRxxcXGQy+Vo3rw5AGDbtm1Ys2YNVq1aJcVH0mIyQkREBFh8BdYZM2YgLi5O+7owoTh8+DDat28PABgyZAgSEhKKtElNTYW/vz8AYM6cObh9+zZsbGzQsGFDbN68Gf/zP/9TZnGLIROEyl27tqwfPU1ERGWrrP8dL+w/1G8kbKxMe+p7gSYPB25/y985BuKtvURERCQpTtMQEREBgKB5uZnaBxmMyQgRERFg8WtGKjMmI0RERMB/qqeamExomIwYg2tGiIiISFIcGSEiIgI4TSMhJiNERETAyxkak5MRs0RS5XCahoiIiCTFkREiIiKA0zQSYjJCREQEABoNABPrhGhYZ8QYnKYhIiIiSXFkhIiICOA0jYSYjBAREQFMRiTEaRoiIiKSFEdGiIiIAJaDlxCTESIiIgCCoIFg4lN3TX1/VcVkhIiICHi53sPUkQ2uGTEK14wQERGRpDgyQkREBPxnVIMjI1JgMkJERAS8rJ4qM3HNB9eMGIXTNERERCQpjowQEREBnKaREJMRIiIiAIJGA8HEaRre2mscTtMQERGRpDgyQkREBHCaRkIVYmQkNjYW/v7+sLOzQ6tWrXDq1CmpQyIiospGI5hnI4NZfDKyefNmjB07FtHR0Th79iyaNm2K8PBwZGZmSh0aERERmYHFJyOLFy/G0KFDMXDgQDRq1AgrVqyAg4MD1qxZI3VoRERUmQjCyzohJm0cGTGGRa8ZUalUSEpKwpQpU7T7rKysEBoaisTExGLfk5eXh7y8PO3rrKysMo+TiIgqPkEjQJCZlkwITEaMYtEjI3/++SfUajW8vLx09nt5eSE9Pb3Y98TExMDFxUW7+fr6lkeoRERU0Zk8KqJhBVYjWXQyYowpU6bg6dOn2u3OnTtSh0RERGSyuXPnonXr1nBwcICrq2uR4+fPn8fHH38MX19f2Nvb47XXXsPXX39dpN2RI0fQokULKBQKBAYGYt26dWUfvB4WPU3j7u4Oa2trZGRk6OzPyMiAt7d3se9RKBRQKBTlER4REVUilj5No1Kp0Lt3byiVSqxevbrI8aSkJHh6euL777+Hr68vjh8/jmHDhsHa2hojR44EAKSmpqJr16749NNPsWHDBhw8eBBDhgyBj48PwsPDyyx2fSw6GZHL5QgJCcHBgwfRo0cPAIBGo8HBgwe1F5aIiMgsBA0Ay31Q3qxZswCgxJGMQYMG6bwOCAhAYmIitm3bpv2duWLFCtStWxeLFi0CALz22ms4duwYlixZwmSkNGPHjkVERATeeOMNtGzZEkuXLkVOTg4GDhwo6v2FWSoXshIRVUyF/36X9eLQAuSbXPOsAPkAiv7OkWrU/unTp6hevbr2dWJiIkJDQ3XahIeHY/To0eUcmS6LT0b69OmDBw8eYMaMGUhPT0ezZs2wd+/eIotaS/Ls2TMA4EJWIqIK7tmzZ3BxcTF7v3K5HN7e3jiW/otZ+nN0dCzyOyc6OhozZ840S/9iHT9+HJs3b8bu3bu1+9LT04u9KSQrKwsvXryAvb19ucZYyOKTEQAYOXKk0dMyNWvWxJ07d+Dk5ASZTAbgZcbq6+uLO3fuwNnZ2ZyhlinGXb4Yd/mrqLEz7rIlCAKePXuGmjVrlkn/dnZ2SE1NhUqlMkt/giBof98UKmlUZPLkyZg/f36p/V25cgUNGzY0KIaLFy+ie/fuiI6ORlhYmEHvlUKFSEZMYWVlhdq1axd7zNnZ2aL/BywJ4y5fjLv8VdTYGXfZKYsRkVfZ2dnBzs6uTM9RnHHjxiEyMrLUNgEBAQb1efnyZXTs2BHDhg3DtGnTdI55e3sXe1OIs7OzZKMiQBVIRoiIiCyVh4cHPDw8zNbfpUuX0KFDB0RERGDu3LlFjiuVSvzyi+50VHx8PJRKpdliMAaTESIiogogLS0Njx49QlpaGtRqNZKTkwEAgYGBcHR0xMWLF9GhQweEh4dj7Nix2uKg1tbW2oTn008/xbfffouJEydi0KBBOHToELZs2aKzrkQSQhWUm5srREdHC7m5uVKHYhDGXb4Yd/mrqLEzbioPERERAl7e76OzHT58WBAEQYiOji72uJ+fn04/hw8fFpo1aybI5XIhICBAWLt2bbl/lr+SCQIL6RMREZF0Kl05eCIiIqpYmIwQERGRpJiMEBERkaSYjBAREZGkqlwyEhsbC39/f9jZ2aFVq1Y4deqU1CGVaubMmZDJZDqboZX4ysuvv/6Kbt26oWbNmpDJZPjpp590jguCgBkzZsDHxwf29vYIDQ3FjRs3pAn2FfrijoyMLPJn0LlzZ2mCfUVMTAzefPNNODk5wdPTEz169MC1a9d02uTm5iIqKgo1atSAo6MjevXqVaTgUXkTE3f79u2LXPNPP/1UoohfWr58OYKDg7UFwpRKJfbs2aM9bonXGtAftyVea6p6qlQysnnzZowdOxbR0dE4e/YsmjZtivDwcGRmZkodWqkaN26M+/fva7djx45JHVKxcnJy0LRpU8TGxhZ7fMGCBfjmm2+wYsUKnDx5EtWqVUN4eDhyc3PLOVJd+uIGgM6dO+v8GfzrX/8qxwiLl5CQgKioKJw4cQLx8fHIz89HWFgYcnJytG3GjBmDn3/+GVu3bkVCQgLu3buHnj17Shi1uLgBYOjQoTrXfMGCBRJF/FLt2rUxb948JCUl4cyZM+jQoQO6d++OS5cuAbDMaw3ojxuwvGtNVZDEtxaXq5YtWwpRUVHa12q1WqhZs6YQExMjYVSli46OFpo2bSp1GAYDIGzfvl37WqPRCN7e3sLChQu1+548eSIoFArhX//6lwQRFu+vcQvCy3v7u3fvLkk8hsjMzBQACAkJCYIgvLy+tra2wtatW7Vtrly5IgAQEhMTpQqziL/GLQiC0K5dO+Hzzz+XLiiR3NzchFWrVlWYa12oMG5BqDjXmiq3KjMyolKpkJSUpPPoZCsrK4SGhiIxMVHCyPS7ceMGatasiYCAAPTr1w9paWlSh2Sw1NRUpKen61x/FxcXtGrVyuKvPwAcOXIEnp6eCAoKwvDhw/Hw4UOpQyri6dOnAKB9XHhSUhLy8/N1rnnDhg1Rp04di7rmf4270IYNG+Du7o7XX38dU6ZMwfPnz6UIr1hqtRqbNm1CTk4OlEplhbnWf427kCVfa6oaqkw5+D///BNqtbrYRydfvXpVoqj0a9WqFdatW4egoCDcv38fs2bNwjvvvIOLFy/CyclJ6vBEKyxLXNz1LzxmqTp37oyePXuibt26SElJwRdffIEuXbogMTER1tbWUocHANBoNBg9ejTatGmD119/HcDLay6Xy+Hq6qrT1pKueXFxA0Dfvn3h5+eHmjVr4sKFC5g0aRKuXbuGbdu2SRgt8Pvvv0OpVCI3NxeOjo7Yvn07GjVqhOTkZIu+1iXFDVjutaaqpcokIxVVly5dtD8HBwejVatW8PPzw5YtWzB48GAJI6s6PvroI+3PTZo0QXBwMOrVq4cjR46gY8eOEkb2X1FRUbh48aLFricqSUlxDxs2TPtzkyZN4OPjg44dOyIlJQX16tUr7zC1goKCkJycjKdPn+KHH35AREQEEhISJItHrJLibtSokcVea6paqsw0jbu7O6ytrYt9dLK3t7dEURnO1dUVDRo0wM2bN6UOxSCF17iiX3/g5eO83d3dLebPYOTIkdi1axcOHz6M2rVra/d7e3tDpVLhyZMnOu0t5ZqXFHdxWrVqBQCSX3O5XI7AwECEhIQgJiYGTZs2xddff23x17qkuItjKdeaqpYqk4zI5XKEhITg4MGD2n0ajQYHDx6U/NHJhsjOzkZKSgp8fHykDsUgdevWhbe3t871z8rKwsmTJyvU9QeAu3fv4uHDh5L/GQiCgJEjR2L79u04dOgQ6tatq3M8JCQEtra2Otf82rVrSEtLk/Sa64u7OIVPJ5X6mv+VRqNBXl6exV7rkhTGXRxLvdZUyUm9grY8bdq0SVAoFMK6deuEy5cvC8OGDRNcXV2F9PR0qUMr0bhx44QjR44Iqampwm+//SaEhoYK7u7uQmZmptShFfHs2TPh3Llzwrlz5wQAwuLFi4Vz584Jt2/fFgRBEObNmye4uroKO3bsEC5cuCB0795dqFu3rvDixQuLjfvZs2fC+PHjhcTERCE1NVU4cOCA0KJFC6F+/fqSP+l0+PDhgouLi3DkyBHh/v372u358+faNp9++qlQp04d4dChQ8KZM2cEpVIpKJVKCaPWH/fNmzeF2bNnC2fOnBFSU1OFHTt2CAEBAULbtm0ljXvy5MlCQkKCkJqaKly4cEGYPHmyIJPJhP379wuCYJnXWhBKj9tSrzVVPVUqGREEQfjHP/4h1KlTR5DL5ULLli2FEydOSB1Sqfr06SP4+PgIcrlcqFWrltCnTx/h5s2bUodVrMOHDxf7+OqIiAhBEF7e3jt9+nTBy8tLUCgUQseOHYVr165JG7RQetzPnz8XwsLCBA8PD8HW1lbw8/MThg4dahEJbHExA9B5HPiLFy+EESNGCG5uboKDg4Pw4YcfCvfv35cuaEF/3GlpaULbtm2F6tWrCwqFQggMDBQmTJggPH36VNK4Bw0aJPj5+QlyuVzw8PAQOnbsqE1EBMEyr7UglB63pV5rqnpkgiAI5TcOQ0RERKSryqwZISIiIsvEZISIiIgkxWSEiIiIJMVkhIiIiCTFZISIiIgkxWSEiIiIJMVkhIiIiCTFZISIiIgkxWSEqBgzZ85Es2bNtK8jIyPRo0ePEtuvW7euyOPjjdG+fXuMHj3a5H70OXjwIF577TWo1eoyP5c+MpkMP/30k952KpUK/v7+OHPmTNkHRUTliskIVTrp6ekYNWoUAgICoFAo4Ovri27duuk8xMzc+vTpg+vXr5dZ/+Y2ceJETJs2DdbW1gCASZMmwd/fH8+ePdNp161bN7Rt2xYajabMYrl//z66dOmit51cLsf48eMxadKkMouFiKTBZIQqlVu3biEkJASHDh3CwoUL8fvvv2Pv3r149913ERUVVWbntbe3h6enZ5n1b07Hjh1DSkoKevXqpd03e/ZsODo6YuzYsdp9a9asweHDh7F27VpYWZXdPxXe3t5QKBSi2vbr1w/Hjh3DpUuXyiweIip/TEaoUhkxYgRkMhlOnTqFXr16oUGDBmjcuDHGjh2LEydOaNs9efIEQ4YMgYeHB5ydndGhQwecP3/e6PP+dZqmcJrnn//8J/z9/eHi4oKPPvpIZ+QhJycHAwYMgKOjI3x8fLBo0aIi/ebl5WH8+PGoVasWqlWrhlatWuHIkSMAgNzcXDRu3BjDhg3Ttk9JSYGTkxPWrFlTYqybNm1Cp06dYGdnp92nUCgQFxeHuLg47N27F2lpaRgzZgwWLFiAevXqldjXP//5T7zxxhtwcnKCt7c3+vbti8zMTO3x2bNno2bNmnj48KF2X9euXfHuu+9qR1tenaZRqVQYOXIkfHx8YGdnBz8/P8TExGjf6+bmhjZt2mDTpk0lxkREFQ+TEao0Hj16hL179yIqKgrVqlUrcvzVZKF3797IzMzEnj17kJSUhBYtWqBjx4549OiR2eJJSUnBTz/9hF27dmHXrl1ISEjAvHnztMcnTJiAhIQE7NixA/v378eRI0dw9uxZnT5GjhyJxMREbNq0CRcuXEDv3r3RuXNn3LhxA3Z2dtiwYQPi4uKwY8cOqNVqfPLJJ+jUqRMGDRpUYlxHjx7FG2+8UWR/SEgIpkyZgiFDhqB///5o2bIlhg8fXupnzM/Px5w5c3D+/Hn89NNPuHXrFiIjI7XHp06dCn9/fwwZMgQAEBsbi+PHjyMuLq7Y0ZZvvvkGO3fuxJYtW3Dt2jVs2LAB/v7+Om1atmyJo0ePlhoXEVUwUj82mMhcTp48KQAQtm3bVmq7o0ePCs7OzkJubq7O/nr16gkrV64UBEEQoqOjhaZNm2qPRURECN27dy+xz7Vr1wouLi7a19HR0YKDg4OQlZWl3TdhwgShVatWgiAIwrNnzwS5XC5s2bJFe/zhw4eCvb298PnnnwuCIAi3b98WrK2thT/++EPnXB07dhSmTJmifb1gwQLB3d1dGDlypODj4yP8+eefpX5+FxcXYf369cUeU6lUgq+vr6BQKITbt2+X2k9xTp8+LQAQnj17pt2XkpIiODk5CZMmTRLs7e2FDRs26LwHgLB9+3ZBEARh1KhRQocOHQSNRlPiOb7++mvB39/f4NiIyHJxZIQqDUEQRLU7f/48srOzUaNGDTg6Omq31NRUpKSkmC0ef39/ODk5aV/7+PhopzBSUlKgUqnQqlUr7fHq1asjKChI+/r333+HWq1GgwYNdOJMSEjQiXPcuHFo0KABvv32W6xZswY1atQoNa4XL17oTNG8Kj4+Hunp6dBoNDh9+rR2/4YNG3RiKByZSEpKQrdu3VCnTh04OTmhXbt2AIC0tDTtewMCAvC///u/mD9/Pj744AP07du3xNgiIyORnJyMoKAgfPbZZ9i/f3+RNvb29nj+/Hmpn5GIKhYbqQMgMpf69etDJpPh6tWrpbbLzs6Gj4+Pdu3Fq8xxe24hW1tbndcymcygu1Kys7NhbW2NpKQk7V0vhRwdHbU/Z2Zm4vr167C2tsaNGzfQuXPnUvt1d3fH48ePi+x//Pgxhg4dimnTpkEQBIwYMQLt2rWDu7s7PvjgA53EqVatWsjJyUF4eDjCw8OxYcMGeHh4IC0tDeHh4VCpVDp9//rrr7C2tsatW7dQUFAAG5vi/+lp0aIFUlNTsWfPHhw4cAB/+9vfEBoaih9++EHb5tGjR/Dw8Cj1MxJRxcKREao0qlevjvDwcMTGxiInJ6fI8SdPngB4+QsvPT0dNjY2CAwM1Nnc3d3LJdZ69erB1tYWJ0+e1O57/Pixzu3BzZs3h1qtRmZmZpE4vb29te0GDRqEJk2aIC4uDpMmTcKVK1dKPXfz5s1x+fLlIvtHjRoFb29vfPHFF5g6dSpq1aqlvQPJyclJ5/z29va4evUqHj58iHnz5uGdd95Bw4YNdRavFtq8eTO2bduGI0eOIC0tDXPmzCk1PmdnZ/Tp0wffffcdNm/ejB9//FFnLc/FixfRvHnzUvsgooqFyQhVKrGxsVCr1WjZsiV+/PFH3LhxA1euXME333wDpVIJAAgNDYVSqUSPHj2wf/9+3Lp1C8ePH8fUqVPLraCWo6MjBg8ejAkTJuDQoUO4ePEiIiMjdRZ1NmjQAP369cOAAQOwbds2pKam4tSpU4iJicHu3bu1nzcxMRFxcXHo168fevTogX79+hUZmXhVeHg4jh07prNv+/bt2Lp1K+Li4mBjYwMbGxvExcXhp59+wo8//lhsP3Xq1IFcLsc//vEP/Pvf/8bOnTuLJBp3797F8OHDMX/+fLz99ttYu3YtvvrqK507m161ePFi/Otf/8LVq1dx/fp1bN26Fd7e3jojVkePHkVYWFip15eIKhipF60Qmdu9e/eEqKgowc/PT5DL5UKtWrWEDz74QDh8+LC2TVZWljBq1CihZs2agq2treDr6yv069dPSEtLEwTBPAtYX32/IAjCkiVLBD8/P+3rZ8+eCZ988ong4OAgeHl5CQsWLBDatWunXcAqCC8XlM6YMUPw9/cXbG1tBR8fH+HDDz8ULly4IFy5ckWwt7cXNm7cqG3/+PFjwdfXV5g4cWKJsT58+FCws7MTrl69KgiCIDx48EDw9PQU5s6dW6Tt3LlzBU9PT+HBgwfF9rVx40bB399fUCgUglKpFHbu3CkAEM6dOydoNBqhY8eOQnh4uM6C1FGjRgn16tXTLnLFKwtY/+///k9o1qyZUK1aNcHZ2Vno2LGjcPbsWe17jx8/Lri6ugrPnz8v8fMRUcUjEwSRq/6IqNKYMGECsrKysHLlSqlDMUifPn3QtGlTfPHFF1KHQkRmxGkaoipo6tSp8PPzK9My7+amUqnQpEkTjBkzRupQiMjMODJCREREkuLICBEREUmKyQgRERFJiskIERERSYrJCBEREUmKyQgRERFJiskIERERSYrJCBEREUmKyQgRERFJiskIERERSer/AQvyaaDN8AQcAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "cm = scene.coverage_map(los=False, # Disable LOS for better visualization of the RIS field\n",
+ " num_samples=10e6,\n",
+ " cm_orientation=[0,0,0],\n",
+ " cm_center=[0,0,z_target],\n",
+ " cm_size=[40,40],\n",
+ " cm_cell_size=[1, 1])\n",
+ "cm.show(vmin=-120, vmax=-75);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e11c837",
+ "metadata": {},
+ "source": [
+ "While the zones of coverage match closely the ones we have computed via [scene.compute_paths()](https://nvlabs.github.io/sionna/api/rt.html#compute-paths) for individually placed receiver locations, we can see that large areas of the coverage map are empty. The reasons for this are (i) that anomalous diffraction around the RIS' edges as described in Section II-C [[2]](#References) is not modelled and (ii) that the coverage map is located very close to the RIS, i.e., around 5m. The difference between both results becomes smaller in the far field.\n",
+ "\n",
+ "Also note that the line-of-sight field components are not taken into account here for a better visualization. The latter would be the dominating source of radiation otherwise. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e8605e29",
+ "metadata": {},
+ "source": [
+ "## Coverage Enhancement with RIS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c1032a74",
+ "metadata": {},
+ "source": [
+ "In the next example, we will use an RIS to improve the coverage in a certain area of a scene.\n",
+ "The code below should by now be easy to follow without additional explanations."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "fed5c3bb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHHCAYAAABtF1i4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/F0lEQVR4nO3deXhTxf4/8HeSNumattCNpRv7IiCCYFX2SkVEEH6IgsoiesGissh22UEE8QsIVxCuItQriHAviooslU0qiAgUlV0sFIWWtZSuaZP5/VEbie2Z0yZpU9r363nyQM+cM2dysnQ6Zz6f0QghBIiIiIhcROvqBhAREVH1xs4IERERuRQ7I0RERORS7IwQERGRS7EzQkRERC7FzggRERG5FDsjRERE5FLsjBAREZFLsTNCRERELsXOCFE1otFoMHPmzFLvO2rUqPJtEBER2BmhCnTu3Dn84x//QL169eDh4QGj0YiHHnoIS5YsQU5OjqubVy3t378fM2fORHp6uqubYmP58uVYs2ZNqffXaDQ2D6PRiE6dOmHLli3F9l2zZg00Gg1+/PFHm+2JiYno0aMH6tSpAw8PD4SHh6NXr15Yt26do0+HiFS4uboBVD1s2bIF/fv3h8FgwPPPP4977rkHJpMJiYmJGD9+PI4fP45///vfrm5mlZeTkwM3t78+9vv378esWbMwZMgQ+Pv7u65hf7N8+XIEBgZiyJAhpT7mkUcewfPPPw8hBC5cuID33nsPvXr1wtatWxEbGys9duPGjRgwYADuvfdevPbaawgICEBycjK+/fZbvP/++xg4cKCDz4iIZNgZoXKXnJyMp59+GhEREdi1axdq1aplLYuLi8Ovv/5a4l+wlUF2dja8vLxc3Qyn8fDwcHUTyk2jRo3w7LPPWn/u168fmjVrhiVLlqh2RmbOnIlmzZrh+++/h16vtym7cuVKubSXiP7C2zRU7hYsWIDMzEysWrXKpiNSpEGDBnjttdesPxcUFGDOnDmoX78+DAYDIiMj8c9//hN5eXnWfR5//HHUq1evxPNFR0ejbdu2Nts+/vhjtGnTBp6enqhRowaefvppXLx40Wafzp0745577sHhw4fRsWNHeHl54Z///CcAYPPmzejZsydq164Ng8GA+vXrY86cOTCbzcXOv2zZMtSrVw+enp5o164d9u3bh86dO6Nz5842++Xl5WHGjBlo0KABDAYDwsLCMGHCBJvnWZKlS5dCp9PZ3FpZuHAhNBoNxo4da91mNpvh6+uLiRMnWrfdOWdk5syZGD9+PAAgKirKeovj/PnzNuf7/PPPcc8998BgMKB58+bYtm1bsTYdPXoUPXr0gNFohI+PD7p164bvv//eZp+ZM2dCo9EUO7botknReSMjI3H8+HHs3bvX2qa/X7vSaNq0KQIDA3Hu3DnVfc+dO4f777+/WEcEAIKDg8t8biIqG46MULn78ssvUa9ePTz44IOl2n/48OGIj4/H//t//w/jxo3DwYMHMW/ePJw8eRKfffYZAGDAgAF4/vnncejQIdx///3WYy9cuIDvv/8eb7/9tnXb3LlzMW3aNDz11FMYPnw4rl69in/961/o2LEjjh49anN74vr16+jRoweefvppPPvsswgJCQFQ+AvTx8cHY8eOhY+PD3bt2oXp06cjIyPD5lzvvfceRo0ahQ4dOmDMmDE4f/48+vTpg4CAANStW9e6n8ViwRNPPIHExES89NJLaNq0KX7++WcsXrwYZ86cweeff654fTp06ACLxYLExEQ8/vjjAIB9+/ZBq9Vi37591v2OHj2KzMxMdOzYscR6+vbtizNnzuCTTz7B4sWLERgYCAAICgqy7pOYmIhNmzbh5Zdfhq+vL5YuXYp+/fohJSUFNWvWBAAcP34cHTp0gNFoxIQJE+Du7o6VK1eic+fO2Lt3L9q3b6/4XEryzjvv4JVXXoGPjw+mTJkCANbXoSxu3bqFmzdvon79+qr7RkREYOfOnfj9999tXiciqiCCqBzdunVLABC9e/cu1f5JSUkCgBg+fLjN9tdff10AELt27bLWazAYxLhx42z2W7BggdBoNOLChQtCCCHOnz8vdDqdmDt3rs1+P//8s3Bzc7PZ3qlTJwFArFixoli7srOzi237xz/+Iby8vERubq4QQoi8vDxRs2ZNcf/994v8/HzrfmvWrBEARKdOnazb/vOf/witViv27dtnU+eKFSsEAPHdd98pXiOz2SyMRqOYMGGCEEIIi8UiatasKfr37y90Op24ffu2EEKIRYsWCa1WK27evGk9FoCYMWOG9ee3335bABDJycnFzgNA6PV68euvv1q3HTt2TAAQ//rXv6zb+vTpI/R6vTh37px126VLl4Svr6/o2LGjdduMGTNESV85q1evLtaG5s2b21wvNQDECy+8IK5evSquXLkifvzxR/Hoo48KAOLtt98u8XyHDh2yblu1apX1+Xbp0kVMmzZN7Nu3T5jN5lK3gYjsx9s0VK4yMjIAAL6+vqXa/+uvvwYAm9sNADBu3DgAsM4tMRqN6NGjBzZs2AAhhHW/Tz/9FA888ADCw8MBAJs2bYLFYsFTTz2Fa9euWR+hoaFo2LAhdu/ebXMeg8GAoUOHFmuXp6en9f+3b9/GtWvX0KFDB2RnZ+PUqVMAgB9//BHXr1/Hiy++aDNJdNCgQQgICLCpb+PGjWjatCmaNGli066uXbsCQLF23Umr1eLBBx/Et99+CwA4efIkrl+/jkmTJkEIgQMHDgAoHC255557HJqYGhMTYzOy0LJlSxiNRvz2228ACm8F7dixA3369LG5bVarVi0MHDgQiYmJ1vdAeVu1ahWCgoIQHByMtm3bYufOnZgwYUKx91JJhg0bhm3btqFz585ITEzEnDlz0KFDBzRs2BD79++vgNYTVW/sjFC5MhqNAAp/gZfGhQsXoNVq0aBBA5vtoaGh8Pf3x4ULF6zbBgwYgIsXL1p/+Z47dw6HDx/GgAEDrPucPXsWQgg0bNgQQUFBNo+TJ08Wm5xYp06dEucNHD9+HE8++ST8/PxgNBoRFBRknSx569Yta9sBFGu7m5sbIiMjbbadPXsWx48fL9amRo0aAVCfNNmhQwccPnwYOTk52LdvH2rVqoX77rsPrVq1st6qSUxMRIcOHaT1qCnq1N0pICAAN2/eBABcvXoV2dnZaNy4cbH9mjZtCovFUmxuTnnp3bs3EhISsGXLFuv8lOzsbGi1pfuai42Nxfbt25Geno5vv/0WcXFxuHDhAh5//HFOYiUqZ5wzQuXKaDSidu3a+OWXX8p0XEkTHf+uV69e8PLywoYNG/Dggw9iw4YN0Gq16N+/v3Ufi8UCjUaDrVu3QqfTFavDx8fH5uc7R0CKpKeno1OnTjAajZg9ezbq168PDw8PHDlyBBMnToTFYinTcytqV4sWLbBo0aISy8PCwqTHP/zww8jPz8eBAwewb98+a6ejQ4cO2LdvH06dOoWrV6863Bkp6ZoBsBmNKi2l17SkScD2qFu3LmJiYgAAjz32GAIDAzFq1Ch06dIFffv2LXU9Xl5e6NChAzp06IDAwEDMmjULW7duxeDBg53STiIqjp0RKnePP/44/v3vf+PAgQOIjo6W7hsREQGLxYKzZ8+iadOm1u1paWlIT09HRESEdZu3tzcef/xxbNy4EYsWLcKnn36KDh06oHbt2tZ96tevDyEEoqKirKMOZbVnzx5cv34dmzZtspkMmpycXKztAPDrr7+iS5cu1u0FBQU4f/48WrZsadOuY8eOoVu3bqXqeP1du3btoNfrsW/fPuzbt88aFdOxY0e8//772Llzp/VnGXvOfaegoCB4eXnh9OnTxcpOnToFrVZr7VgV3apKT0+3uXV052iXs9oFAP/4xz+wePFiTJ06FU8++aRddRZFZV2+fNnh9hCRMt6moXI3YcIEeHt7Y/jw4UhLSytWfu7cOSxZsgRA4V+0QGFExZ2KRhB69uxps33AgAG4dOkSPvjgAxw7dszmFg1QGDGi0+kwa9asYn/NCyFw/fp11fYXjQ7cebzJZMLy5ctt9mvbti1q1qyJ999/HwUFBdbta9eutd7WKPLUU0/hjz/+wPvvv1/sfDk5OcjKypK2ycPDA/fffz8++eQTpKSk2IyM5OTkYOnSpahfv36JodR38vb2BgC7M7DqdDp0794dmzdvtgkJTktLw7p16/Dwww9bb9UVzT0pmusCAFlZWYiPjy+xXY5mhXVzc8O4ceNw8uRJbN68WbpvUeft74rmMJV0G4qInIcjI1Tu6tevj3Xr1mHAgAFo2rSpTQbW/fv3Y+PGjdZMm61atcLgwYPx73//23p75IcffkB8fDz69OljM+IAFHZefH198frrr0On06Ffv37Fzv3GG29g8uTJ1jBbX19fJCcn47PPPsNLL72E119/Xdr+Bx98EAEBARg8eDBeffVVaDQa/Oc//ynWudHr9Zg5cyZeeeUVdO3aFU899RTOnz+PNWvWoH79+jZ/mT/33HPYsGEDRowYgd27d+Ohhx6C2WzGqVOnsGHDBmzfvr1YrpS/69ChA+bPnw8/Pz+0aNECQGFOjMaNG+P06dOlyl7apk0bAMCUKVPw9NNPw93dHb169bJ2UkrjjTfeQEJCAh5++GG8/PLLcHNzw8qVK5GXl4cFCxZY9+vevTvCw8PxwgsvYPz48dDpdPjwww8RFBSElJSUYu1677338MYbb6BBgwYIDg62Tu4tiyFDhmD69Ol466230KdPH8X9evfujaioKPTq1Qv169dHVlYWvvnmG3z55Ze4//770atXrzKfm4jKwGVxPFTtnDlzRrz44osiMjJS6PV64evrKx566CHxr3/9yxoeK4QQ+fn5YtasWSIqKkq4u7uLsLAwMXnyZJt97jRo0CABQMTExCie+3//+594+OGHhbe3t/D29hZNmjQRcXFx4vTp09Z9OnXqJJo3b17i8d9995144IEHhKenp6hdu7aYMGGC2L59uwAgdu/ebbPv0qVLRUREhDAYDKJdu3biu+++E23atBGPPvqozX4mk0m89dZbonnz5sJgMIiAgADRpk0bMWvWLHHr1i21yym2bNkiAIgePXrYbB8+fLgAIFatWlXsGPwttFcIIebMmSPq1KkjtFqtTYgtABEXF1esjoiICDF48GCbbUeOHBGxsbHCx8dHeHl5iS5duoj9+/cXO/bw4cOiffv2Qq/Xi/DwcLFo0aISQ3tTU1NFz549ha+vb7Gw6JIotVUIIWbOnGnzOpUU2vvJJ5+Ip59+WtSvX194enoKDw8P0axZMzFlyhSRkZEhPTcROU4jhB0z0Yio1CwWC4KCgtC3b98Sb8sQEVV3nDNC5ES5ubnFbt989NFHuHHjhl0pzYmIqgOOjBA50Z49ezBmzBj0798fNWvWxJEjR7Bq1So0bdoUhw8fLjGHCRFRdccJrEROFBkZibCwMCxduhQ3btxAjRo18Pzzz2P+/PnsiBARKeDICBEREbkU54wQERGRS7EzQkRERC5V5eeMWCwWXLp0Cb6+vk5JMU1ERBVLCIHbt2+jdu3apV74sKxyc3NhMpmcUpder4eHh4dT6qouqnxn5NKlS6qLjhERUeV38eJF1K1b1+n15ubmIirCB6lXnLNoY2hoKJKTk9khKYMq3xnx9fUFALT+eAR0XoZi5WpjJVqN/fN77T1Wo3KcrF6H2gvlY9XalHIjQLHMdMVLfl6T8qugKVAu0xYoFgEALJJ3d917L0mPbWy8qlyv/LTVilkovz7Z5uKftyI/XgiX15uufKw2T/6plb2fCmrnKZa5ucl/EQnJc1X91MmOdSSEQHKsUP12c/45AUBYJJ/nbPmvHI9LJa8Sbc7LxW/vzrZ+nzubyWRC6hUzLhyOhNHXsZGXjNsWRLQ5D5PJxM5IGVT5zkjRrRmdlwFu3uyMSOt1oDOiy1X+0Gk95R9IrbZ8OiOyd3dJ74U76X3cFcss5fUlfxeSdUbyC5RDmbVe8veEyJN0RlRut8reT1pPSZl7FeuMSM7pEEc6I0L+K0dnKLkzYj2+nG+1+/hq4OPr2Dn4/WCfKt8ZISIiKg2zsMDsYLILs+DYqT3YGSEiIgJggYBFfZxLtQ4qO4b2EhERkUtxZISIiAiABRaHJ6g7XkP1VG06IwUWHYS5+OQovc7+UC5HJovKJoQ6Uq8aeyepqrUp1D9Dsex8hnyyqMWs/DaUvTxCbVxPMo9M7floNZIvFNUT310cmXCnk1zHX9MDFcsKcuVfPbKJyxa9yucjVBIxI31DuWbioWxOpiOTW9UmnUsnuMomxuaoRMRclpSrPJ8Cr5J3sGgr5taHWQiYHVwhxdHjq6uq9a1KREREd51qMzJCREQkwwmsrsPOCBEREQo7EmZ2RlyCt2mIiIjIpTgyQkREBN6mcSV2RoiIiMBoGlfibRoiIiJyqWozMnLzdA1oS1hB0a/xDelx3vp8u8+pFudvr/LMQ2Ivb3eTYllA0G3psTfz/BTLRL6svyzPCyEkuQksKjkl5Ne4aiU1cuQvkks5yq/d1RvKK6xqsuQLogmD8jV291POI1JYuSxJBhcxKyJMyq+82zXlhSK9L8mvYU6Q8vUX8pdd8SOtsr6e01jg+Ke7an07VJxq0xkhIiKSMTshmsbR46srdkaIiIgAmAWcsGqvc9pS3XDOCBERUSW3Z88eaDSaEh+HDh2y7vfTTz+hQ4cO8PDwQFhYGBYsWODCVpceR0aIiIhQueeMPPjgg7h8+bLNtmnTpmHnzp1o27YtACAjIwPdu3dHTEwMVqxYgZ9//hnDhg2Dv78/XnrppXJqmXOwM0JERITCRSPNDiwcWVRHedDr9QgNDbX+nJ+fj82bN+OVV16B5s/VFteuXQuTyYQPP/wQer0ezZs3R1JSEhYtWlTpOyO8TUNERORkGRkZNo+8PJUosDL64osvcP36dQwdOtS67cCBA+jYsSP0er11W2xsLE6fPo2bN2869fzOVm1GRrwuaaEzFO97WX5TXuYcAG51V34BA7xy7G6PLHTUkdBdrcpM7vIKN5YJ9ZWH9qb7eCuWWczKIYbaXPv/AnHTyAdTdbLBVk316cPnSK4/AJxIC1Uss2RJvl68zdJ6DT7KX9xCJTy3UuacKqdwY2FWfi9q0uWvXeAx5fNm15KU1XbBBa6giGyLKHw4WgcAhIWF2WyfMWMGZs6c6Vjld1i1ahViY2NRt25d67bU1FRERUXZ7BcSEmItCwgIcNr5na3adEaIiIhkzE64TVN0/MWLF2E0Gq3bDQZDiftPmjQJb731lrTOkydPokmTJtaff//9d2zfvh0bNmxwqK2VCTsjRERETmY0Gm06I0rGjRuHIUOGSPepV6+ezc+rV69GzZo18cQTT9hsDw0NRVpams22op/vnG9SGbEzQkREBOeOjJRWUFAQgoKCSr2/EAKrV6/G888/D3d321tx0dHRmDJlCvLz861lCQkJaNy4caW+RQNwAisRERGAwmUinPEoT7t27UJycjKGDx9erGzgwIHQ6/V44YUXcPz4cXz66adYsmQJxo4dW65tcgaOjBAREd0lVq1ahQcffNBmDkkRPz8/7NixA3FxcWjTpg0CAwMxffr0Sh/WC7AzQkREBMA1t2nKat26ddLyli1bYt++feXahvLAzggREREAM7QwOzh7QR60TkqqTWckK9wCrUfx3BG6HHkv1jtBedLPlS7y9bBD/OT5NeyllkvE7nrLKfeJXiv/eIaH3lAsu5CnPLFLmFX+AnHgMkmvheTrprzvF1e087drSstzbnkolul8ChTL3PXKZUAlzRXiCMn7QkhS2lgy5blCav6o/B1k8pe/FzPqK19ki7ssL4q0Wim1T4dOKXeQAzmFykI4Yc6HWh4cKhknsBIREZFLVZuRESIiIpm7Yc5IVcXOCBEREQCz0MIsHJwzUtVuMVYQ3qYhIiIil+LICBEREQALNLA4+De6pZwCDKo6dkaIiIjAOSOuVG06I0IjILTFe6wFPvJe7K1Gym8s91O+0mN/r6d8eesG3VQscySMVqNyrCN1l1e9/oYcxbJrNbMVy7LzfOQVS0J/dVpJPCXsfz6OXAdXhQXfMHkrlp1Lla+ZofcxKZbpdMrXuMqFP6o8H3O28neB12/K4bsqUfHIqiM5p5f8vSidGiE7VOWl00ja7J4pP1jx2Dz5OenuV206I0RERDLOmcDK2zT2YGeEiIgIRXNGHBu1c/T46orRNERERORSHBkhIiICYHHC2jSMprEPOyNERETgnBFXYmeEiIgIhSMjzDPiGuyMqCkhHLhIvr/8Tae5oryi6fm8QMWyiDrXpfV6uOVLy+1VXmG/6udVDgGNrKG8ou9xyYqxAKCRhFOqrSSsgzz0tzzoVOa92Tt8rBYynHS1tmKZ3iB/r8lCyStl+K6svRb59S3IU14h1z1NLz3WcEuyaq/kWzhf/haH2dOBz6ydh+pUwmzdsiQh9bnyYz2vl/y5M5sq/vNIFYudESIiIgBmoYHZwU60o8dXV+yMEBERoXD00dEJrGbeprELQ3uJiIjIpTgyQkREBMAitLA4GE1jYTSNXdgZISIiAm/TuBJv0xAREZFLcWSEiIgIgAWOR8MwCNk+7IyUI+GuPFwny4Fx4bdgab11Iq8plhkNKoH8dlLLQaKVDE3K8oio1e3lprxEfZ1aN6X1/nFeOZeL2mJW7pI8JI5maLSXFirrySv4LVv5OgBAgVk5f4ZWkmcHAO622+PmAuXnimsG6bGe15Vfd7XfX0Jy2gIv5YtoUfmGdiQ1kOxj6Z6h/IQ8r8hP6p5t/69jpY+dKJ/USsU4J+kZbzjYg1eNiIiIXIojI0RERHDW2jT8G98e7IwQERGh8Pat2i3c0tRBZcfOCBERETgy4kq8akRERORSHBkhIiKCs5Ke8W98e1Sbzoi2QANtfvF7eRZJ+C0AuOT2n0pk3B+/KYdqmqOuS4+t6ZmtWKYWvlvZhHpnSMuvBvgolrlp5GGyslBlaUyki2SblZewP30jSHrs3fWqAxaz/Mu+IEP5WnikSr7yHLkQKt8T+UblyoUsfFo1Zli5yC1LfqzvBeWD3XOU3+NqTdKaZc9HfqzSddRYKuZdahEaWBzNM8JVe+3CLhwRERG5FDsjREREKExYZnbwUZ5Jz86cOYPevXsjMDAQRqMRDz/8MHbv3m2zT0pKCnr27AkvLy8EBwdj/PjxKCgoKLc2OQs7I0RERPhr1V5HH+Xl8ccfR0FBAXbt2oXDhw+jVatWePzxx5GamgoAMJvN6NmzJ0wmE/bv34/4+HisWbMG06dPL7c2OQs7I0RERJXctWvXcPbsWUyaNAktW7ZEw4YNMX/+fGRnZ+OXX34BAOzYsQMnTpzAxx9/jHvvvRc9evTAnDlzsGzZMphMyktrVAbsjBAREQEwQ+OUBwBkZGTYPPLy8hxqW82aNdG4cWN89NFHyMrKQkFBAVauXIng4GC0adMGAHDgwAG0aNECISEh1uNiY2ORkZGB48ePO3T+8lZtommIiIhknHGbpej4sLAwm+0zZszAzJkz7a5Xo9Hgm2++QZ8+feDr6wutVovg4GBs27YNAQEBAIDU1FSbjggA689Ft3Iqq0ozMjJ//nxoNBqMHj3aui03NxdxcXGoWbMmfHx80K9fP6SlpbmukURERKVw8eJF3Lp1y/qYPHlyiftNmjQJGo1G+jh16hSEEIiLi0NwcDD27duHH374AX369EGvXr1w+fLlCn52zlcpRkYOHTqElStXomXLljbbx4wZgy1btmDjxo3w8/PDqFGj0LdvX3z33XdlPodHmhY6Q/G+lyQ9AwDA5C9Z3tugkm9Csmy4cGjtb+Wi1As1pYea6ig3qpbvbcUyN5XcGlpJeXnlL3HTyttUP/ia3cfqJM9H8rKWK1ma6dO3QxTLCszyFgsX5EUQKm+JvEyDYpn+D3fpsQZL+Twfs0G50WYPB97jkuuvlafDgeGa8rG+F+3PhyN9SzhweYVOfrC2oOTrWFGpfcyA9TaLI3UAgNFohNFoVN1/3LhxGDJkiHSfevXqYdeuXfjqq69w8+ZNa73Lly9HQkIC4uPjMWnSJISGhuKHH36wObboD/jQ0NAyP5eK5PLOSGZmJgYNGoT3338fb7zxhnX7rVu3sGrVKqxbtw5du3YFAKxevRpNmzbF999/jwceeMBVTSYioirImbdpSisoKAhBQfLEhACQnV2YsFKrta1fq9XCYinsrUVHR2Pu3Lm4cuUKgoODAQAJCQkwGo1o1qxZmdpV0Vx+myYuLg49e/ZETEyMzfbDhw8jPz/fZnuTJk0QHh6OAwcOKNaXl5dXbOIQERGRmqKF8hx9lIfo6GgEBARg8ODBOHbsGM6cOYPx48cjOTkZPXv2BAB0794dzZo1w3PPPYdjx45h+/btmDp1KuLi4mAwKI82VgYu7YysX78eR44cwbx584qVpaamQq/Xw9/f32Z7SEiIdCLOvHnz4OfnZ338fRIRERHR3SYwMBDbtm1DZmYmunbtirZt2yIxMRGbN29Gq1atAAA6nQ5fffUVdDodoqOj8eyzz+L555/H7NmzXdx6dS67TXPx4kW89tprSEhIgIeHh9PqnTx5MsaOHWv9OSMjgx0SIiJSJaCBxcE5I6IcFzRr27Yttm/fLt0nIiICX3/9dbm1oby4rDNy+PBhXLlyBffdd591m9lsxrfffot3330X27dvh8lkQnp6us3oSFpamnQijsFgqPTDUUREVPk44zZLed2mqepc1hnp1q0bfv75Z5ttQ4cORZMmTTBx4kSEhYXB3d0dO3fuRL9+/QAAp0+fRkpKCqKjo13RZCIiIioHLuuM+Pr64p577rHZ5u3tjZo1a1q3v/DCCxg7dixq1KgBo9GIV155BdHR0fZF0giUuHy1TiUpnvcl5SE3oZGHTOYGK4f7FXhJluh2K7/lsm/84a9YZgpRfjtE1bghrdeRvwVkob/SMpX1yP31OXbVCwDuGuWYyvL6y0cWTgwA1/J9FMv+yFAOISzPxddlYcF5ucohuNpL8luzesnnUi1SXFYueVlVw3Nlob3yWFg5t2zlYwNOqcW0KrdJ7W0qe7sphdgWHqjSIq0kVFlWLwCNWSG0V2G7s1mEBhYHQ90dPb66cnlor8zixYuh1WrRr18/5OXlITY2FsuXL3d1s4iIqAoqWnnX0Tqo7CpVZ2TPnj02P3t4eGDZsmVYtmyZaxpERERE5a5SdUaIiIhchbdpXIedESIiIgAWaGFx8DaLo8dXV7xqRERE5FIcGSEipzNnGVCQ7g23msUXXyy47gu3HA20niYXtIxImVloYHbwNoujx1dX1aYzorGUHMqmuqCsLMJN5VjPy7I3pXJYcF4Neb35fsoxeaorCUualJmmHDp6Kk/+VmkUelWxzMvNNb90ZOG7/u7KYb+Fx8pWIS6fJUTzLfJrfOhquGKZ2sq89jKpvO4F14qH6Fpy9Ehb9v9gyfBCnRc2wN0/01qWn+6D1FVPQeedjdqDN0HnUfJ7QyNZeVctHF8rebvlBUpW4XZX+UDLvgtU3hIe15WfjzFZZWleCdl5dSb58ynwVB4Yt7gpt9ctT2UFb5OkXO37VqFJaiHBzsI5I67D2zRE5FSWXD0smV4ouOGPP1Y9hfz0wk5ufroP/lj1FApu+MOc6QWRp3dxS4lsiT9X7XXkIZiB1S68akTkVG4BmQh57VO41Ui3dkhyLtSydkTcaqSjzgsb4OaXqV4ZEVUL7IwQkdO5Bdwu7HAUdUj+/YxNR+TOWzdElYUZGqc8qOzYGSGicuHun4mQ/7fVZlvI/9vKjghVWhbx17wR+x+ufhZ3J3ZGiKhc5Kf7IO2/PWy2pf23h3UOCRFREXZGiMjpCm762s4ReekTmzkk7JBQZeTo5NWiB5UdrxoROVXBTR+kLRlgM0fEM+Ky7RySVU+h4BY7JFS5WKBxyoPKrtrkGbG4A5oSVjSXLSkOADpZigyVe4PafPtuHnqlysvFFeU+ZL6vvH+ZG6ScA8DspVyWf8sgrfdEbm3FsiYRl6XHGvW5imVa1cQE9jFo86Xl7pI3huwvH0dykJzKriUtzzGV8AYuhYICeQ6SnJueimXu1+VfEe4FxbdpTQXQeWZDEwCEPbcR7p5ZQJ4GOs8shD+3ERc/6g83z2wY8vOhu13yF7dbtvI5TUZpk5ATovyeETrlMrW8Qbpc5V8yfr/Kj3XPUn4/yc5rdpf/YpPlEhEqqWdk308O5fWQNNlskH8/6WQ5SqhKqzadESKqGDoPE2oP2QTNbQPcjbaTVd39MhE2eCPcYYLOwAysVLkwA6vrsDNCRE6n8zBBpyl59MndmKmaRZXIFZwx54NzRuzDq0ZEREQuxZERIiIi/DmB1dG1aTiB1S7sjBAREQEQToiGEeyM2IWdESIiInDVXleqNp0RxdBetZXXJbNqdPJV6CF0ym9KjVkSVqcSZCAL55OFRAKA4aZymyxuym+HzHB5qJ/ZRzkk7+TZOtJjG9RXjmUO8lBOHa5VicWUhdmqHeuhMPkSAPId+NjcMiuH0SZdVQ6PBoB8s/KbNSvDQ7HM7bI8LFtfQnhuEW2+/ItVIzlWFhbvpvLZyQ5Vfn0KvFTCTiVN1hQoFxpuyJ+r8YLy+0ktotviply37POsU0kPIDuv0Ki8dkK5boskpNii8p2pz1BulM4iv1BC4ToJLX/BV3XVpjNCREQkw2ga12FnhIiICLxN40rswhEREZFLcWSEiIgIcMraMgzttQ87I0REROBtGlfibRoiIiJyKY6MEBERgSMjrlRtOiNCW/gotl0lZt4iWbVdssp8YbkkpF5jVn7DqrZJL8k9oJaCQVIuy3fgd1alTW7Kg2zZteRP6Fyecn6NnIZXFcsijTfkjXKAu+TFleUoyVd58b6/EaVYdjtTOQcJAIgLXoplHpnK7ye13DOySETZ+1/tWLMkvUlOsPyNKnuPq+X00OUqXwvjr8rH6TNVKpblL5HkDQIArey7QHaoyudZRu17BJLvIBn9bbXrpFyvVuU6CUvJ5doClXM6CTsjrsPbNERERHeBI0eO4JFHHoG/vz9q1qyJl156CZmZtokhU1JS0LNnT3h5eSE4OBjjx49HQYEkO2Elwc4IERER/hoZcfRRHi5duoSYmBg0aNAABw8exLZt23D8+HEMGTLEuo/ZbEbPnj1hMpmwf/9+xMfHY82aNZg+fXq5tMmZqs1tGiIiIhkBx0NzHbizJvXVV1/B3d0dy5Ytg1ZbOI6wYsUKtGzZEr/++isaNGiAHTt24MSJE/jmm28QEhKCe++9F3PmzMHEiRMxc+ZM6PX6cmqd4zgyQkREBOeOjGRkZNg88vLyHGpbXl4e9Hq9tSMCAJ6ehfPMEhMTAQAHDhxAixYtEBISYt0nNjYWGRkZOH78uEPnL2/sjBARETlZWFgY/Pz8rI958+Y5VF/Xrl2RmpqKt99+GyaTCTdv3sSkSZMAAJcvXwYApKam2nREAFh/Tk1VXpC0MmBnhIiICM4dGbl48SJu3bplfUyePLnEc06aNAkajUb6OHXqFJo3b474+HgsXLgQXl5eCA0NRVRUFEJCQmxGS+5W1WbOiMVDAB7OvZtnUbl6+luSEDdJU9RCFx0hnVslez+rhQxL2uzzu8oy6BeUT5yRHKpYdqKzPO60VfAlxTJZeC4A6CRPSAflspS8mtJ6TyZFKJZ5XZJ/oehylcu0kqXmtfnSalWWoZcfm1VHeQdTDeWKhU7lDSUp1qfLY1ZDflR+wrJwfLXnKnTKO2gUQlL/Oli5SBbu6nZb/uJZDMrXwu2Wym0BydtNuCvXK3Ty96nbtUzFMuEh/8yefzKgxO3mXAvwjfRQp3BmaK/RaITRaFTdf9y4cTaTUEtSr149AMDAgQMxcOBApKWlwdvbGxqNBosWLbKWh4aG4ocffrA5Ni0tzVpWmVWbzggREVFlExQUhKCgoDIdU3Tr5cMPP4SHhwceeeQRAEB0dDTmzp2LK1euIDg4GACQkJAAo9GIZs2aObfhTsbOCBERESp/0rN3330XDz74IHx8fJCQkIDx48dj/vz58Pf3BwB0794dzZo1w3PPPYcFCxYgNTUVU6dORVxcHAwGSRbCSoCdESIiIgBCaCAc7Ew4erzMDz/8gBkzZiAzMxNNmjTBypUr8dxzz1nLdTodvvrqK4wcORLR0dHw9vbG4MGDMXv27HJrk7OwM0JERHQX+Oijj1T3iYiIwNdff10BrXEudkaIiIhQmPDM0aRnjh5fXbEzQkREhMo/Z6QqqzadkQJPAa1nCSF0shhbNSqHWvTKIXA+F2WrrMor9khXDpn0vCyJ/wRg8ldOB/ztlgnSY+82g38YplgmC88FAK2kXCcJC84xy0MXk18dJy2/20SsWqBYpslxIPeB5PtcbRXib7+sOu/jR7T9peWyIGehlYdA6/yUw041Pt7KB7rLf21ce7iWYtnNJtJDYVBYiFvjWPJSugtUm84IERGRTGWfwFqVsTNCREQE3qZxJXZGiIiIwJERV7r7E9oTERHRXY0jI0RERCgc1XD0NgtHRuzDzggREREKAySFg+upOnc51uqDt2mIiIjIpco0MnLy5EmsX78e+/btw4ULF5CdnY2goCC0bt0asbGx6NevX6VdjMejTiZ0XsWX41YbUpOVa1SWoZcdeytUOR+F30EPab1md0mbOUJopZX8jaJVee1kuUTcNQWKZW5aef6SqsbNW3mJe7NkGXrcVvnqkbw8WuVT0h20ennOG7hJXgNJLpGUvrWl1ebVVH7xPFPlX1AFCulNLBU03GCBBhpmYHWJUo2MHDlyBDExMWjdujUSExPRvn17jB49GnPmzMGzzz4LIQSmTJmC2rVr46233kJeHjPUEBHR3aUomsbRB5VdqUZG+vXrh/Hjx+O///2vdanikhw4cABLlizBwoUL8c9//tNZbSQiIqIqrFSdkTNnzsDdXWXID0B0dDSio6ORn89xVCIiurtYhAYaJj1ziVLdplHriKSnp5dpfyIiospGCOc8qOzKHE3z1ltv4dNPP7X+/NRTT6FmzZqoU6cOjh075tTGERERUdVX5s7IihUrEBYWBgBISEhAQkICtm7dih49emD8+PFObyAREVFF4ARW1ylz0rPU1FRrZ+Srr77CU089he7duyMyMhLt27d3egOdpY7fLbh5Ozfs2JEQrgJ/5X7ghfY1pce671Z+HsJdpX9ZjTLLGHTKIbg6jTwEVxa+q9eYJccpl1VFsvB2N4PyNTS7ya+/9pJyeLv/OeV66S8aH4U42aJyD+XvkXODlcN3hU5+H0Kfrvy9aAqQHorckJJfW0tOxbzmXJvGdcr8qykgIAAXL14EAGzbtg0xMTEAACEEzObq9UVMRERVR9GqvY4+qOzKPDLSt29fDBw4EA0bNsT169fRo0cPAMDRo0fRoEEDpzeQiIiIqrYyd0YWL16MyMhIXLx4EQsWLICPjw8A4PLly3j55Zed3kAiIqKK4IxoGEbT2KfMnRF3d3e8/vrrxbaPGTPGKQ0iIiJyhcLOiKNzRpzUmGqmVJ2RL774Aj169IC7uzu++OIL6b5PPPGEUxpGRERErnffffeVaX+NRoMvvvgCderUKfUxpeqM9OnTB6mpqQgODkafPn2kDeAkViIiuhsxmqZkSUlJGDdunHVahowQAvPnzy/zGnWl6oxYLJYS/++o9957D++99x7Onz8PAGjevDmmT59unRSbm5uLcePGYf369cjLy0NsbCyWL1+OkJAQp7WBiIgIKFws2tG7LFX1Ls348eMRHBxcqn0XLlxY5vrLPGdEJjs7G15eXqXev27dupg/fz4aNmwIIQTi4+PRu3dvHD16FM2bN8eYMWOwZcsWbNy4EX5+fhg1ahT69u2L7777rsxt02hEiTkRXNWLlS1hXzf0pvTY39sqvyG8L0uWbQcgtFWv165EK/lakJUBgIdGeX0lWY4SD65vbyX7bGm1Kte/4S3FshQ/ef6Mu80j2v52H6tx10vK5Mty/DoiTPlYSVoPrUn+HWJue1v5WK38j1lPhfeMOTtXehyVr+TkZAQFBZV6/xMnTqB2beVcNSUpc56Rbt264Y8//ii2/eDBg7j33nvLVFevXr3w2GOPoWHDhmjUqBHmzp0LHx8ffP/997h16xZWrVqFRYsWoWvXrmjTpg1Wr16N/fv34/vvvy9rs4mIiKSYgbVkERER0GhK/7zCwsKg08n/MP67MndGPDw80LJlS+v6NBaLBTNnzkSHDh3w2GOPlbU6K7PZjPXr1yMrKwvR0dE4fPgw8vPzrUnVAKBJkyYIDw/HgQMHFOvJy8tDRkaGzYOIiEiVcNKjmsjKysKHH36IZcuW4ezZsw7VVebbNFu2bMGyZcswbNgwbN68GefPn8eFCxfw1VdfoXv37mVuwM8//4zo6Gjk5ubCx8cHn332GZo1a4akpCTo9Xr4+/vb7B8SEoLU1FTF+ubNm4dZs2aVuR1ERFTNOWNkowqOjABASkoKnnvuORw5cgQPPPAAVq1ahUceecTaCfH09MTWrVvRsWNHu+q3a6WSuLg4vPrqq1i/fj1+/PFHbNy40a6OCAA0btwYSUlJOHjwIEaOHInBgwfjxIkTdtUFAJMnT8atW7esj6LU9URERGSf119/HSaTCStWrICXlxdiY2PRsGFDXL58GWlpaejRowdmzpxpd/1lHhm5efMmhg8fjp07d2LlypXYu3cvunfvjgULFtiVgVWv11vTyLdp0waHDh3CkiVLMGDAAJhMJqSnp9uMjqSlpSE0NFSxPoPBAIPBuQviERFR1ccMrMq+/fZbfPHFF2jXrh169OiBwMBAfPjhh9bo1mnTpqFbt25211/mkZF77rkHaWlpOHr0KF588UV8/PHHWLVqFaZNm4aePXva3ZAiFosFeXl5aNOmDdzd3bFz505r2enTp5GSkoLo6GiHz0NERHQnTmBVduXKFURERAAAatSoAS8vL5s0G6Ghobh5Ux4JKlPmkZERI0ZgypQp0Gr/6scMGDAADz30EIYOHVqmuiZPnowePXogPDwct2/fxrp167Bnzx5s374dfn5+eOGFFzB27FjUqFEDRqMRr7zyCqKjo/HAAw+UtdnQakSJ4bSOZE1RiU6EBZLQRklor7tOnjgupP41xbIbzeQ5WALOMPQUALx08oQ83tqyJewp4q6pXkn/8m8rh5a6+Si/1wIDlMM/AaCmZ7Zi2alsjnwW+WN0W8Wy3JryL6iCYOXXx7dGlt1tys1VDinOzfCUH6zQZEuO3c2pUubOnYstW7ZY51Smp6cX2yclJQUjR47E7t274ePjg8GDB2PevHlwc/vr1/2ePXswduxYHD9+HGFhYZg6dSqGDBmiev47I2rKEl1TGmXujEybNq3E7XXr1kVCQkKZ6rpy5Qqef/55XL58GX5+fmjZsiW2b9+ORx55BEDhonxarRb9+vWzSXpGRETkdELj+ATUchwZMZlM6N+/P6Kjo7Fq1api5WazGT179kRoaCj279+Py5cv4/nnn4e7uzvefPNNAIU5Q3r27IkRI0Zg7dq12LlzJ4YPH45atWohNjZWev7p06dbc4mZTCbMnTsXfn5+AArzjDnC7qRn2dnZSElJgclkstnesmXLUtdR0sW8k4eHB5YtW4Zly5bZ1UYiIqLSquxzRooiRdesWVNi+Y4dO3DixAl88803CAkJwb333os5c+Zg4sSJmDlzJvR6PVasWIGoqChrltSmTZsiMTERixcvlnZGOnbsiNOnT1t/fvDBB/Hbb78V28deZe6MXL16FUOHDsXWrVtLLOfaNEREVN39PcdVRQRXHDhwAC1atLCZyxEbG4uRI0fi+PHjaN26NQ4cOGCTv6ton9GjR0vr3rNnTzm0+C9lnsA6evRopKen4+DBg/D09MS2bdsQHx+Phg0bqq7oS0REVGk5MelZWFgY/Pz8rI958+aVe/NTU1OLrd1W9HNRfi6lfTIyMpCT47rJOWUeGdm1axc2b96Mtm3bQqvVIiIiAo888giMRiPmzZvnlIgaIiKiiubMVXsvXrwIo9Fo3a40KjJp0iS89dZb0jpPnjyJJk2aONQuR4wdO7bU+y5atMiuc5S5M5KVlWVduS8gIABXr15Fo0aN0KJFCxw5csSuRhAREVUlRqPRpjOiZNy4caqRLPXq1SvVOUNDQ/HDDz/YbEtLS7OWFf1btO3OfYxGIzw9S452Onr0qM3PR44cQUFBARo3bgwAOHPmDHQ6Hdq0aVOqdpakzJ2Rxo0b4/Tp04iMjESrVq2wcuVKREZGYsWKFahVq5bdDSlv+RYdhKX4wj0GnWR5SgAWSS9ZLSxYFvorC/tV4+Gm3Oa8Ltelx7odrVornsq4aZXnL/lq5auAemtMimVmyWtnqGar9mpyle/01o1Szjngp5dff61kZeSSVt+uqpLny3MquUtWN/bUyb+hLBbl1y4zXXn1dZGvcndf9vK4yV87rV7hM1uRcxEr+O0VFBRUphVxZaKjozF37lxcuXLFOmiQkJAAo9GIZs2aWff5+uuvbY5LSEiQ5u/avXu39f+LFi2Cr68v4uPjERAQAKAwGerQoUPRoUMHu9te5s7Ia6+9hsuXLwMAZsyYgUcffRRr166FXq9XnOFLRERU2TnzNk15SElJwY0bN5CSkgKz2YykpCQAQIMGDeDj44Pu3bujWbNmeO6557BgwQKkpqZi6tSpiIuLs94mGjFiBN59911MmDABw4YNw65du7BhwwZs2bKlVG1YuHAhduzYYe2IAIV3Sd544w10794d48aNs+u5lbkz8uyzz1r/36ZNG1y4cAGnTp1CeHg4AgMD7WoEERGRyzlj1d1yHFmZPn064uPjrT+3bt0aQOHIRefOnaHT6fDVV19h5MiRiI6Ohre3NwYPHozZs2dbj4mKisKWLVswZswYLFmyBHXr1sUHH3ygmmOkSEZGBq5evVps+9WrV3H7tjyZoYzdeUYA4LvvvkPbtm1x3333OVINERERqVizZo3qHYiIiIhit2H+rnPnzsXmgZTWk08+iaFDh2LhwoVo164dAODgwYMYP348+vbta1edgIOdkR49eiApKanUk2uIiIgqL82fD0frqLpWrFiB119/HQMHDkR+fuEcOTc3N7zwwgt4++237a7Xoc6IqKrLExIRUfVTyW/TVAZeXl5Yvnw53n77bZw7dw4AUL9+fXh7OxYcUeqkZ2rDPkSVVVDKbdQ9eQNBKfbfzyQior94e3ujZcuWaNmypcMdEaAMnZG+ffvipZdeQmZmpnXbypUri2VyI6pMglJuY1qfLZgwaAem9dnCDgkRKXNiBtaqpG/fvsXS28sMGjQIV65cKdM5Sn2b5uDBgxgyZAhatmyJNWvWoGPHjhg4cGCZTuZKVzJ9oLMUz4BX01u+0mCAQblcq5LvQJqjRCj3A2U5FgCgQBTPl1LEV58nPTZnmvLz6ba79Fn2/k4nabPadZKVS8tUPvX1fSzwyrLNF+KVZYIOFnhp5dfJQ6Ocy8Uk6cNH6q9J611zRjmWP1fopcfmS153e8sAIN+i/DWQbZG36ekOyu9xR9pUUEJOoCJ+9eQ5Sp49+IJiWa5ZeXl7NSaz/Xe1pXlTdtVRLAs2pSmWAcD128p/kebmyF87nSQPiWK+DwDu3so5eACgpm+WYlkNT/n3rZdbyXXnZ5mQIj3SSSr5qr2usnnz5hIjaEoihMCXX36JOXPmWHOdlEapP12tWrXCoUOHrLHEcXFxmDJlCtzcbKsoTcY5ovJW62I66uImgpNte/NFP/sG5uB2ZMnZBomI6C9CCDRq1Khcz1Gmrr6bmxtmzpyJBx98EI899hjeeecda5kQAhqNhqv2ksvVupiOlYPWllj23NSD1v//b3srdkiIyEqIwoejdVQ1d2ZgLa06dZRH/EpS5nHHTZs2YeTIkejYsWOJIyNEruaZXbqU7O5Zagn9iahaYTRNiTp16lTu5yh1TyI9PR0vv/wyNm/ejDfffBOvvfZaebaLyG45XqWbF5DvXer520REVI5K3Rlp1qwZwsPDceTIEetKfUSV0eUwf/xj7SA0whUEJ2fY3Jr5zxvtcSXKiMjAK7xFQ0S2OIHVZUrdGXn55ZcxefJk6HTyWfBElcHlMH94+RS/XXMlyojfmwagpjdDfInIlkYUPhytg8quVJ0RIQSmTp1a3m0pV13qnIXBp+xhfbLQUneNfLKu7FhZ2K+aPEkoZqa5ePjynW7lK48GXM3xUSzzdpeH89XyVF7K3N89R3qs7DrKno9Jch0AoJV3CnwDbc8dGXgFNb1vI9RNub2OCNXJ662hy1QsUwt3NUvCwfOhfKzsuMLzKl9Hs0pqa1mIuknyfCwqKY5kbTarHCv7bKkdK69Xcv3VwqftDHNWfe1CK/6PQ1kYv5p8Scg2oPz65FlKNw/MYZwz4jKl+mQ2b94c69evh8kk/4V09uxZjBw5EvPnz3dK44gcdTvSE//b3gpfbGrB6BkiokqqVCMj//rXvzBx4kS8/PLLeOSRR9C2bVvUrl0bHh4euHnzJk6cOIHExEQcP34co0aNwsiRI8u73USlxg4IEZUK54yoSktLw+uvv46dO3fiypUrxdaosze9R6k6I926dcOPP/6IxMREfPrpp1i7di0uXLiAnJwcBAYGonXr1nj++ecxaNAgBAQE2NUQIiIil+JtGlVDhgxBSkoKpk2bhlq1akGjcU7nq0xJQh5++GE8/PDDTjkxERER3V0SExOxb98+3HvvvU6tlxnLiIiIAI6MlEJYWFixWzPOwKxPREREAFftLYV33nkHkyZNwvnz551aL0dGiIiIqFQGDBiA7Oxs1K9fH15eXnB3t02ZcePGDbvqrTadkRruWfBwL55nxJGYedmy4Gp0ku6zWm4H2ZLvnjp5PL5Okvskt0A5D8u1HOWlygFAK3k+suXgAXk+lqwC5WXQW/vJFxUPdlNObGbUypehN0kGDWX5JhzJy3E3ciRvh731quXokR1rb76PwvNKXneV19Wi8r5QopbLyENbPvk3ZM9H7bnIjnXXquRmUhj+t6hcB6dhNI2qOxfIdaZq0xkhIiKSYQZWdYMHDy6Xesv8Z82aNWtK3F5QUIDJkyc72h4iIiKqRDIyMmz+L3vYq8ydkVdffRX9+/fHzZs3rdtOnz6N9u3b45NPPrG7IURERC7FCawlCggIwJUrVwAA/v7+CAgIKPYo2m6vMt+mOXr0KJ599lm0aNECq1evxpkzZzBhwgT06dMHy5cvt7shREREVPns2rULNWrUAADs3r27XM5R5s5I/fr18d1332H06NF49NFHodPpEB8fj2eeeaY82kdERFQhNHDCnBGntKRy6dSpU4n/dya7JrBu2bIF69evR3R0NM6cOYNVq1ahU6dOqF27trPbR0RERJVMdnY2UlJSii2g27JlS7vqK3Nn5B//+Afi4+Mxd+5cjB07FmlpaRg2bBhatGiB9957D0899ZRdDSlvBUJXYuievSF3AKB1IExTFpDnSJvU6LUFimU1DVmKZW4qIXm3TR6KZb8X+EuPDfDIViyL8FKOWffT5UjrlS1hnyuUw5gBQAv7w7bLi8XOMFp7j6us1MKJ7Q3fVQu7loXyq4Xgyo51JNxbFkquVq9aOHJ5UDtnnkLagjxLBU3EYGivqqtXr2Lo0KHYunVrieX2LpRX5nfjd999h4MHD2LcuHHQaDQIDQ3F119/jdmzZ2PYsGF2NYKIiMjlOIFV1ejRo5Geno6DBw/C09MT27ZtQ3x8PBo2bIgvvvjC7nrLPDJy+PBhGAyGYtvj4uIQExNjd0OIiIioctu1axc2b96Mtm3bQqvVIiIiAo888giMRiPmzZuHnj172lVvmUdGDAYDzp07h6lTp+KZZ56xhvts3boVBQXKtwCIiIgqNY6MqMrKykJwcDCAwpDfq1evAgBatGiBI0eO2F1vmTsje/fuRYsWLXDw4EFs2rQJmZmZAIBjx45hxowZdjeEiIjIlYoysDr6qMoaN26M06dPAwBatWqFlStX4o8//sCKFStQq1Ytu+stc2dk0qRJeOONN5CQkAC9/q91Q7p27Yrvv//e7oYQERFR5fbaa6/h8uXLAIAZM2Zg69atCA8Px9KlS/Hmm2/aXW+Z54z8/PPPWLduXbHtwcHBuHbtmt0NISIiciln3Gap4iMjzz77rPX/bdq0wYULF3Dq1CmEh4cjMDDQ7nrL3Bnx9/fH5cuXERUVZbP96NGjqFOnjt0NKW8WaEoOmXUorE7O3hWBy2sFUAAwSEJ7de7KIbZqqwGHeiivkKsWFuyjy1Msq+GmHG6s18jnKMlCWtVCe91R8fOfXBFqWZ5k198k5F89joTgysJsZWU6lXBu+UrCKmG05RSuLzuv2irE0hBoyUrb6qsbKz9Xe1d5LhAVFGpfyTsjc+fOxZYtW5CUlAS9Xo/09PRi+7z66qv47rvv8Msvv6Bp06ZISkoqts9PP/2EuLg4HDp0CEFBQXjllVcwYcIEu9rk5eWF++67z65j71TmzsjTTz+NiRMnYuPGjdBoNLBYLPjuu+/w+uuv4/nnn3e4QURERFScyWRC//79ER0djVWrVinuN2zYMBw8eBA//fRTsbKMjAx0794dMTExWLFiBX7++WcMGzYM/v7+eOmll1TbMHbs2BK3azQaeHh4oEGDBujdu7c1fXxplbkz8uabbyIuLg5hYWEwm81o1qwZzGYzBg4ciKlTp5a1OiIiokrBGRNQy3MC66xZswAAa9asUdxn6dKlAAqTk5XUGVm7di1MJhM+/PBD6PV6NG/eHElJSVi0aFGpOiNHjx7FkSNHYDab0bhxYwDAmTNnoNPp0KRJEyxfvhzjxo1DYmIimjVrVurnVuYxM71ej/fffx/nzp3DV199hY8//hinTp3Cf/7zH+h08uE7IiKiSqsoA6ujDxSOQNz5yMtTvh1dkQ4cOICOHTvaBKDExsbi9OnTuHnzpurxvXv3RkxMDC5duoTDhw/j8OHD+P333/HII4/gmWeewR9//IGOHTtizJgxZWqXXWvTAEB4eDjCw8PtPZyIiKhyceKckbCwMJvNM2bMwMyZMx2s3HGpqanF5nyGhIRYywICAqTHv/3220hISIDRaLRu8/Pzw8yZM9G9e3e89tprmD59Orp3716mdpWqM6J0j6gkixYtKlMDiIiIqpqLFy/a/MIuKXM5UJgu46233pLWdfLkSTRp0sSp7bPXrVu3cOXKlWK3YK5evYqMjAwAhYEuf19AT02pOiNHjx61+fnIkSMoKCgodr+oTZs2ZTo5EZEjhBD49VA6GtzvD42mai9QRuXPmXNGjEajTWdEybhx4zBkyBDpPvXq1XOsUXcIDQ1FWlqazbain0NDQ1WP7927N4YNG4aFCxfi/vvvBwAcOnQIr7/+Ovr06QMA+OGHH9CoUaMytatUnZHdu3db/79o0SL4+voiPj7eOpxz8+ZNDB06FB06dCjTyYmIHHFy33X8e8Qx/GPlvWjaoaarm0N3OxeE9gYFBSEoKMjBk5ZedHQ0pkyZgvz8fLi7F6Y4SEhIQOPGjVVv0QDAypUrMWbMGDz99NPWJWDc3NwwePBgLF68GADQpEkTfPDBB2VqV5nnjCxcuBA7duywaXRAQADeeOMNdO/eHePGjStrlRXCLLQl53GwMxdIqbggb4TSEtxFzt4OVizLKtArljnCXSXPiF5S7uWmPNTnLSkDgM7+pxTLtNryed3PmZSvLwBcNvkrlsnyMwBqeS5kS8nL63Ukp0dNfaZiWaCbcplBK89bIztv0u2/7sV/tyUFALBrSxby7r1XWicgz9FjVrlOBZLcG46cV/b6eKjk9/GRfAb0kpxCgDzniowj71N761Y7Z3WRkpKCGzduICUlBWaz2ZpDpEGDBvDx8QEA/Prrr8jMzERqaipycnKs+zRr1gx6vR4DBw7ErFmz8MILL2DixIn45ZdfsGTJEmtHQo2Pjw/ef/99LF68GL/99huAwpGbovMDwL2l+Cz+XZk7IxkZGdaFce509epV3L6tnPiKiMhRFovAyY0nYcos/CV8ftf5wn93nodP7cIvQ72PHk36NYFGy19gVEbOWFumHEN7p0+fjvj4eOvPrVu3BlB496Jz584AgOHDh2Pv3r3F9klOTkZkZCT8/PywY8cOxMXFoU2bNggMDMT06dNLFdZ7Jx8fH7Rs2dLBZ/SXMndGnnzySQwdOhQLFy5Eu3btAAAHDx7E+PHj0bdvX6c1jIjo70w5Zhz991GYMgo7IxpdYYejILcAR1cUzm3TG/Vo8FgDuHvLs+wSFVPJM7CuWbNGmmMEAPbs2aNaT8uWLbFv3z7nNMpJyjyetmLFCvTo0QMDBw5EREQEIiIiMHDgQDz66KNYvnx5ebSRiAgA4OHthif+8wSCWhTeYxdmYfNvUMsg9P64NzsiRHeZMndGvLy8sHz5cly/fh1Hjx7F0aNHcePGDSxfvhze3t7l0UYiIiufUB88+t6jcPOwHdh183BDj/d6wDuE30NkJ+GkB5WZ3UnPvL29nXq/iIiotK4dv4aCXNsJmgW5Bbh6/CpCWoW4qFV0t6vs6eCrsjJ3RrKysjB//nzs3LkTV65cgcViG5VQNLuWiKi8XEy8CAAI7xSOtq+2xY9LfkTKtym4uO8iOyNE5ezs2bPYvXt3iX2A6dOn21VnmTsjRTN1n3vuOdSqVeuuSTRkERqF8DD7w9B0KmHBsnA+R1zK9Vcs++aEPEtf8G7l8N1Da0qfafdu8P5p5bw3Hhp5yKSM7HW/lu8rPfbNlpvsPm9l1CfxZcUyvU45dDTUI0Nab6C7cljw6nar8d0/vsOFRy/gmWeegUajgXhS4JNPPkFERAQeaveQesMrkQeeWahYlllH/v2UEyr5M7xujvRYLy/ltVJCfZUjIwM8sqX1euuUw40NOnm4sVbhHodaiDlVnPfffx8jR45EYGAgQkNDbfoAGo2m4jojW7duxZYtW/DQQ3fXB56Iqo6HHnrI5jtIo9Fg4MCBLmwRVQmVPJqmMnjjjTcwd+5cTJw40an1lrkzEhAQgBo1aji1EURERK7GOSPqbt68if79+zu93jKPfc2ZMwfTp09HdrZ8qI6IiIiqlv79+2PHjh1Or9eudPDnzp1DSEgIIiMjrbntixw5csRpjSMiIqpQVXxkwx5Lly61/r9BgwaYNm0avv/+e7Ro0aJYH+DVV1+16xxl7owUrcpHRERUpXDOSIn+vm6Nj48P9u7da5N2Hiicu1VhnZEZM2bYdSIiIiK6+yQnJ5f7OVwaLzVv3jzcf//98PX1RXBwMPr06YPTp0/b7JObm4u4uDjUrFkTPj4+6NevH9LS0lzUYiIiqqqKJrA6+qjKZs+eXeKc0ZycHMyePdvueks1MlKjRg2cOXMGgYGBCAgIkOYWuXHjRqlPvnfvXsTFxeH+++9HQUEB/vnPf6J79+44ceKENbX8mDFjsGXLFmzcuBF+fn4YNWoU+vbti++++67U5wEKl7UucWlr4chS8vb35XLMymtnHLkRplgGACm/1FIs806Tt8nnd+XcAlVNvlBe8t2slgNGKH80LFB+z8jOWd1kmDwUyy5kBEiPzcw1KJZNv8fuJlVK7lnK7ydDuvx9qjMpl5vTvKTH3o5UvsbZNZXL3NyV88cAgFar/Hy0WvlvajeFY83ZFfS9xds0qmbNmoURI0bAy8v2/ZWdnY1Zs2aVb56RxYsXw9e3MJnTO++8Y9eJSrJt2zabn9esWYPg4GAcPnwYHTt2xK1bt7Bq1SqsW7cOXbt2BQCsXr0aTZs2xffff48HHnjAaW0hIiIiOSFEiQMSx44dcyjtR6k6I4MHDy7x/85269YtALA+ocOHDyM/Px8xMTHWfZo0aYLw8HAcOHCgxM5IXl4e8vL+6kVnZMgzPRIREQHMMyJTdFdEo9GgUaNGNh0Ss9mMzMxMjBgxwu767V4oz9ksFgtGjx6Nhx56CPfcUzgOm5qaCr1eD39/f5t9Q0JCkJqaWmI98+bNw6xZs8q7uUREVNXwNo2id955B0IIDBs2DLNmzYKfn5+1TK/XIzIyEtHR0XbXX2k6I3Fxcfjll1+QmJjoUD2TJ0/G2LF/rbGSkZGBsDD5HAwiIiJSVnRXJCoqCg8++GCx/CKOqhSdkVGjRuGrr77Ct99+i7p161q3h4aGwmQyIT093WZ0JC0tDaGhoSXWZTAYYDAoT74iIiIqEUdGVHXq1Mn6/9zcXJhMtgsjGo1Gu+p1aWivEAKjRo3CZ599hl27diEqKsqmvE2bNnB3d8fOnTut206fPo2UlBSHhoOIiIj+jqG96rKzszFq1CgEBwfD29sbAQEBNg97uXRkJC4uDuvWrcPmzZvh6+trnQfi5+cHT09P+Pn54YUXXsDYsWNRo0YNGI1GvPLKK4iOji5zJI1FaGARJYTBaeT9MZ0DYZwXspVnFv/wa6RimfaaXlqve6Zym7X50kORb6w+oaf5kvBcWRkgD9+VhQVXt9Deny7WVSyzFChfJ41KiKfOzZGQ+7uLzqT8XN1yVf5elFxGTYH8UL/Tyu9Vi7tyWHBGE/mXjLvRpFim1clf13yU3CZznjyc2Gk4MqJq/Pjx2L17N9577z0899xzWLZsGf744w+sXLkS8+fPt7veUnVG+vbtW+oKN23aVOp933vvPQBA586dbbavXr0aQ4YMAVAYVqzVatGvXz/k5eUhNjYWy5cvL/U5iIiIyDm+/PJLfPTRR+jcuTOGDh2KDh06oEGDBoiIiMDatWsxaNAgu+otVWfkzlmzziSEehfSw8MDy5Ytw7Jly8qlDURERAA4MlIKN27cQL169QAUzg8pSnT68MMPY+TIkXbXW6rOyOrVq+0+ARER0d2AeUbU1atXD8nJyQgPD0eTJk2wYcMGtGvXDl9++WWxNBxl4dIJrERERHT3GDp0KI4dOwYAmDRpEpYtWwYPDw+MGTMG48ePt7veUo2MtG7dWroezZ2OHDlid2OIiIhchrdpVI0ZM8b6/5iYGJw6dQqHDx9GgwYN0LJlS7vrLVVnpE+fPnafgIiI6G7A2zTKLBYL3n77bXzxxRcwmUzo1q0bZsyYgYiICERERDhcf6k6IzNmzHD4RJVVieG+d7iR76tY9mOqPLNr+mXl5C/abOU7ZLpceZu0kpA9jUoEnNCWboSrKpCu2qvyupsVQgwBQCe5u6n2fqpqzFn2ZQdQu0wWc/W5jjpJ2KrOZH+ouMYiv4YWN+XfmrIUAf4/yTNv5vkrl+fUVw77BQB3z5JPLMycUeBqc+fOxcyZMxETEwNPT08sWbIEV65cwYcffuiU+u16hdPT0/HBBx9g8uTJ1pm0R44cwR9//OGURhEREVU44aRHFfTRRx9h+fLl2L59Oz7//HN8+eWXWLt2LSwW5+QEKvOfNT/99BNiYmLg5+eH8+fP48UXX0SNGjWwadMmpKSk4KOPPnJKw4iIiCoU54woSklJwWOPPWb9OSYmBhqNBpcuXbJZxsVeZR4ZGTt2LIYMGYKzZ8/Cw8PDuv2xxx7Dt99+63CDiIiIqHIpKCiw+Z0PAO7u7sjPV0n7XUplHhk5dOgQVq5cWWx7nTp1rOnciYiI7jaaPx+O1lEVCSEwZMgQm4Voc3NzMWLECHh7e1u3lSUL+53K3BkxGAzIyMgotv3MmTMICgqyqxFEREQux9s0igYPHlxs27PPPuu0+svcGXniiScwe/ZsbNiwAQCg0WiQkpKCiRMnol+/fk5rGBERUUWq7KG9c+fOxZYtW5CUlAS9Xo/09HSb8mPHjmH+/PlITEzEtWvXEBkZiREjRuC1116z2W/Pnj0YO3Ysjh8/jrCwMEydOtW6HpyS8s7EXuY5IwsXLkRmZiaCg4ORk5ODTp06oUGDBvD19cXcuXPLo41ERETVnslkQv/+/RXXgDl8+DCCg4Px8ccf4/jx45gyZQomT56Md99917pPcnIyevbsiS5duiApKQmjR4/G8OHDsX379op6GiUq88iIn58fEhIS8N133+HYsWPIzMzEfffdh5iYmPJon9PkmvWwmIvHv/96O1B63JnfQxTLRKb88ulylPt62jzJ8uqSpdcLyyWFVXSI0B6yPCP5QuW10yiHq1kk11h2zipJ9n6TJBPRSj4bAOCZVo3ySkgiI7UF8g+0I2ltZHlIhCRfkcYsb5PnVeUyjxvyHCW3I0ouF7kV9H6o5LdpZs2aBQBYs2ZNieXDhg2z+blevXo4cOAANm3ahFGjRgEAVqxYgaioKCxcuBAA0LRpUyQmJmLx4sWIjY0tv8arsC9jEYCHHnoIDz30kDPbQkRE5FpO6kz8fW6lwWCwmfxZUW7duoUaNWpYfz5w4ECxwYPY2FiMHj26gltmq9TdzV27dqFZs2YlTl69desWmjdvjn379jm1cURERHejsLAw+Pn5WR/z5s2r8Dbs378fn376KV566SXrttTUVISE2I74h4SEICMjAzk5ORXdRKtSd0beeecdvPjiizAai6c49/Pzwz/+8Q8sWrTIqY0jIiKqKEUTWB19AMDFixdx69Yt62Py5MklnnPSpEnQaDTSx6lTp8r8XH755Rf07t0bM2bMQPfu3R25LBWi1Ldpjh07hrfeekuxvHv37vi///s/pzSKiIiowjlxzojRaCzxj/e/GzdunGokS7169crUhBMnTqBbt2546aWXMHXqVJuy0NBQpKWl2WxLS0uD0WiEp6dnmc7jTKXujKSlpcHdXXnykZubG65elcxcIiIiIhtBQUFOzdF1/PhxdO3aFYMHDy4xwjU6Ohpff/21zbaEhARER0c7rQ32KPVtmjp16uCXX35RLP/pp59Qq1YtpzSKiIioojnzNk15SElJQVJSElJSUmA2m5GUlISkpCRkZmYCKLw106VLF3Tv3h1jx45FamoqUlNTbQYKRowYgd9++w0TJkzAqVOnsHz5cmzYsAFjxowpv4aXQqlHRh577DFMmzYNjz76aLH89Dk5OZgxYwYef/xxpzfQWfak1IfOy6PY9txb8tnNmlzlUE2tSR5XJyvXSsJzZWWA/M0uiUj9s9y+T0qXR+ZLy3cnTLKr3vKUa1EeyTOr9MPNQrlcJ4nFLLBUs9BeSXioVhKOabhWjUJ31cguhcrHVZcv+zJQSREg+S6QfU2ofT9Z3JTPq/bxMCaXvN1skh/nNJU8tHf69OmIj4+3/ty6dWsAwO7du9G5c2f897//xdWrV/Hxxx/j448/tu4XERGB8+fPAwCioqKwZcsWjBkzBkuWLEHdunXxwQcfuDSsFyhDZ2Tq1KnYtGkTGjVqhFGjRqFx48YAgFOnTmHZsmUwm82YMmVKuTWUiIioOluzZo1ijhEAmDlzJmbOnKlaT+fOnXH06FHnNcwJSt0ZCQkJwf79+zFy5EhMnjwZQhR2/zQaDWJjY7Fs2bJi4UJERER3i8qeDr4qK1PSs4iICHz99de4efMmfv31Vwgh0LBhQwQEBJRX+4iIiCpGJb9NU5XZlYE1ICAA999/v7PbQkRE5DrsjLgMZ5ERERGRS9m9Ng0REVFVwjkjrsPOCBEREcDbNC5UbTojeTc9oM0tnmdEY5LfqdLkK8fM61TyjEhzfsjW/lZ5M0sPVXlFs0KUA/3ve1F5bSFNuF5ab9uhyseqLYOuy1cukz3X1J7y5AMDWyo/V4sDa69boFyvp07epgbzla+TW5a8TbKqtZJrqJEsB69Wnhkuf+20HsqfH4+r9t8FluWjaPXqYumx+lvKbZa9F9X+opUeq5LfR/p2C1L+bKm9TYXO/u8Rab0qOUrspXadtLkKBRWVZ4Rcptp0RoiIiGQ0QkAjHBvacPT46oqdESIiIoC3aVyI0TRERETkUhwZISIiAqNpXImdESIiIoC3aVyIt2mIiIjIparNyIjGpIVGV7zvpSlQCc81S8pVwtRkIZP2lgHyJbxlIZ4AoL+t3G13z1J+QmoheRZ35etUYJBfY5OPcnlWHeWyuiE3pfXmWZTf3vlqMdASWsnFCHDLlh6bH6j84mnMam2yL9xSo7Jse26gZCl5g/zPPO+Lyn/PWNyVjxMqfwbJ3m8mX/mxsrBU90z7zgkAWsl1lH0mAfnz1eVLrr+bymvuQASuLGxYFsas2ibJW0ar8t0mlK5x+UQaFz8Nb9O4TLXpjBAREUnxNo3LsDNCREQEjoy4EueMEBERkUtxZISIiAjgbRoXYmeEiIjoT7zN4hq8TUNEREQuVW1GRjQWTYlhuuqhvfaVFZYr160WRiivV1Ym79bLzmvWK7fXrBKeKz1WvuCvtG5D2xvKZW7yeEp5aK883lUWvpsviVl1V4nxbNU4RbHsl1v15G2SVG2RvK75vvL3hNlTudzrD/nfK9LVgmXtNUirla7aq8ZcfHFuK6FVfq953FT5k1gW5S8JYwbkn1lZqKzaitdqn0sZ6feXpFqdSd4maUi3ymrAinVLwp+dSojCh6N1UJlVm84IERGRDKNpXIe3aYiIiMilODJCREQEMJrGhdgZISIiQuGcOkfm8xXVQWXH2zRERETkUhwZISIiAnibxoXYGSEiIgKjaVyp+nRGLH8+/kbtjeNQPhDJsbIytWW2ZWR5FAAg39O+Y1XScsDirnysRSXPSFbbHMWyMC/lMjUFkkab1dYkl6z5rpajRKa+z1XFsmM+EdJjdSbJ85Hk1pDlEQEAjzTl5yrLI6JG9tnS5cqPFdL3qcqxkpdHlgMjN0D+njCkK5dpVfL7yJglnx3IygBpPhCtWm4OO1OUSNL3/Hle5TKhlbdJ6bWtsN/vzDPiMpwzQkRERC5VfUZGiIiIJHibxnXYGSEiIgI4gdWFeJuGiIjoLjB37lw8+OCD8PLygr+/f7Hy69ev49FHH0Xt2rVhMBgQFhaGUaNGISMjw2a/PXv24L777oPBYECDBg2wZs2ainkCEuyMEBER4a/bNI4+yovJZEL//v0xcuTIEsu1Wi169+6NL774AmfOnMGaNWvwzTffYMSIEdZ9kpOT0bNnT3Tp0gVJSUkYPXo0hg8fju3bt5dfw0uBt2mIiIiASh9NM2vWLABQHMkICAiw6ahERETg5Zdfxttvv23dtmLFCkRFRWHhwoUAgKZNmyIxMRGLFy9GbGxsubVdTbXpjGjMGmjMJcSyqYTuysNz1cJD1dtV4mFq0XyScrWwR7Nk6XZHQnuF5J2UVUd+kUNq3pJXXg4sKhdK1mJZaK9W5UU3uinHtHoFZ0mPzc3xVSyTvT6Gm/Lnqi2QFKq9xe0MD1X769FNEtEtC2MG1D8DisepfBvm+Ss/WYPKW1gjaZNGEhasllpAVm42yF8cjUVyXkl6AZ3s/QLALAnlVwsVV3pfWJhi3S6XLl3Cpk2b0KlTJ+u2AwcOICYmxma/2NhYjB49uoJbZ4u3aYiIiODc2zQZGRk2j7y8vAp7Hs888wy8vLxQp04dGI1GfPDBB9ay1NRUhISE2OwfEhKCjIwM5OTYn9fJUeyMEBERAX9F0zj6ABAWFgY/Pz/rY968eSWectKkSdBoNNLHqVOnyvQ0Fi9ejCNHjmDz5s04d+4cxo4dW8YLUfGqzW0aIiKiinLx4kUYjUbrzwZDyffIx40bhyFDhkjrqlevXpnOHRoaitDQUDRp0gQ1atRAhw4dMG3aNNSqVQuhoaFIS0uz2T8tLQ1GoxGenpLUx+WMnREiIiI4N+mZ0Wi06YwoCQoKQlBQkGMnlbD8OeGm6DZRdHQ0vv76a5t9EhISEB0dXW5tKA12RoiIiADAIgofjtZRTlJSUnDjxg2kpKTAbDYjKSkJANCgQQP4+Pjg66+/RlpaGu6//374+Pjg+PHjGD9+PB566CFERkYCAEaMGIF3330XEyZMwLBhw7Br1y5s2LABW7ZsKbd2lwY7I0REREClz8A6ffp0xMfHW39u3bo1AGD37t3o3LkzPD098f7772PMmDHIy8tDWFgY+vbti0mTJlmPiYqKwpYtWzBmzBgsWbIEdevWxQcffODSsF7AxRNYv/32W/Tq1Qu1a9eGRqPB559/blMuhMD06dNRq1YteHp6IiYmBmfPnnVNY4mIiFxozZo1EEIUe3Tu3BkA0KVLF+zfvx/p6enIycnBmTNnMH/+/GLZWjt37oyjR48iLy8P586dU52zUhFcOjKSlZWFVq1aYdiwYejbt2+x8gULFmDp0qWIj49HVFQUpk2bhtjYWJw4cQIeHirJBkpJLY5feqyL1iCQ5XZQywdikSSOkOVnUMvBIDuvb8N06bG6crqQZsmFMqsko5DlEpGeU6VcJ3nDtQi9LD32x1zlBA7ai5LPg8p7XPq6q/25IlvCXpaPwoGXXKecqgWASi4dycuqUcmBIfvTTZaDBADcbys/YXfJeR25/jqT/CLLvkcsbrKcQyovnqRYltsEUM6NIiooz4gGTpgz4pSWVD8u7Yz06NEDPXr0KLFMCIF33nkHU6dORe/evQEAH330EUJCQvD555/j6aefrsimEhFRVVfJM7BWZZU2z0hycjJSU1NtMsX5+fmhffv2OHDggOJxeXl5xZLNEBERUeVVaTsjqampAFBipriispLMmzfPJtFMWFhYubaTiIiqhsq+UF5VVmk7I/aaPHkybt26ZX1cvHjR1U0iIqK7gRMzsFLZVNrOSGhoKACUmCmuqKwkBoPBmmymtElniIiIyHUqbWckKioKoaGh2Llzp3VbRkYGDh486PJMcUREVPVohHDKg8rOpdE0mZmZ+PXXX60/JycnIykpCTVq1EB4eDhGjx6NN954Aw0bNrSG9tauXRt9+vQp87k0ZoVlsVXisLQFsjhalZPa+55Uiw2ThWKqRKTaG8apVm9eq2zFshCDSX5wObFInpBa6K69ob2y0N3CNinXG+ohn2ytNyjHgOYEKdfrliJZ0x2Ove6ypeZloaOq4Y/S8FD5obLQX2nYr8qfZrLnqibfV/kZy+YYqIbnygrV/tS087zaAnmbCjwkIfUKobtFlK6xIykYysQC1VD4UtVBZebSzsiPP/6ILl26WH8uWllw8ODBWLNmDSZMmICsrCy89NJLSE9Px8MPP4xt27Y5LccIERERuZ5LOyOdO3eGkAxpaTQazJ49G7Nnz67AVhERUXXkjNssvE1jH65NQ0REBFT6tWmqMnZGiIiIAGZgdaFKG01DRERE1QNHRoiIiOCcDKrMwGqf6tMZ0aDEeEKNbGVRtSrVQrhkUWySN6wsJBKAfDxLrU2yYyXnzYqQX6ggvyyVE1c8i+RCqoXuyo6VHyevVyv5pvLSykOgjV7KMasF+crnza0lHwD1/EP5a0B1xFn2fpN9u6h87hz5Qpd9LnV5ymUWeQS0YyTPxyQJ+3VX+VjpJasBq62QW+Cp/L6QhfZa3OWfDa0kBFo1LFhp1d6KWgqXt2lchrdpiIiIyKWqz8gIERGRhMbieIK1CkvQVsWwM0JERATwNo0L8TYNERERuRRHRoiIiAAmPXMhdkaIiIjAdPCuxNs0RERE5FLVZmREcZa0WifWgXwgslwJsnQUqrlP7KwXUF8mXYmx9m1puU5b+aaQWySJU9TyjJQXs2zZdpUkMQ38rymWHbrtpVyvb7603twQ5evk+Yf8Omlk7yfZ+1gtb4Ss3IG3mjQHiXIal8LTyvKQqHyPSL8LJM+1wEt+oWSfZ7UcJRrJm1FWr1YtR4ysXp38+egU3qrCgXxQZcIJrC5TbTojREREUgIOdXatdVCZsTNCREQEzhlxJc4ZISIiIpfiyAgRERHwZ2ivo3NGnNKSaoedESIiIoATWF2It2mIiIjIparNyIhSaK/G4sDa1CpdOVnInix8V235dGl4rgNPJ79lpmKZt3tFxdY5j1nyAlgqbE3y0rNAHkbr756jWObmprxuu8Usf6Nq/EyKZbkFBumxHmnKdbtJIoodiaxWe+lkS9hLPzsqnzut5PlYHHg+ap93GYteEr6ucp3cs5RPrJFcQzWy8F3VdAgWhTZV1GiDBQ59h1rroDKrNp0RIiIiGUbTuA5v0xAREZFLcWSEiIgI4ARWF+LICBEREfBXZ8TRRzmZO3cuHnzwQXh5ecHf31+67/Xr11G3bl1oNBqkp6fblO3Zswf33XcfDAYDGjRogDVr1pRbm0uLnREiIqK7gMlkQv/+/TFy5EjVfV944QW0bNmy2Pbk5GT07NkTXbp0QVJSEkaPHo3hw4dj+/bt5dHkUuNtGiIiIqDS36aZNWsWAKiOZLz33ntIT0/H9OnTsXXrVpuyFStWICoqCgsXLgQANG3aFImJiVi8eDFiY2PLpd2lwZERIiIioDAs1xkPABkZGTaPvLy8CnkKJ06cwOzZs/HRRx9Bqy3+K/7AgQOIiYmx2RYbG4sDBw5USPuUVJ+RkTveJHdSzemhs7+XqylQDliXLWXuSM4CtfwNuWHKyRJqeKusoW4nV03nMlmU3975KhdKVwmTBRgkiS4CvJVzkFzJlz9XjeRaWAKUc5AAQF6+ch4S7VVJwgaVN4UsD48sj4gaeX4ftS8D5SJZThUAKPBQvhZ250VRYZbkIAHkOT88bio/WbVcIdKPltqXgabkyoUj+aDKwJmhvWFhYTbbZ8yYgZkzZzpUt5q8vDw888wzePvttxEeHo7ffvut2D6pqakICQmx2RYSEoKMjAzk5OTA09OzXNuohCMjRERETnbx4kXcunXL+pg8eXKJ+02aNAkajUb6OHXqVKnOOXnyZDRt2hTPPvusM59Khag+IyNEREQyTpwzYjQaYTQaVXcfN24chgwZIt2nXr16pTr1rl278PPPP+O///3vn00pbEtgYCCmTJmCWbNmITQ0FGlpaTbHpaWlwWg0umxUBGBnhIiIqJBFOJafv6iOMggKCkJQUJBj5/zT//73P+Tk/HXL9tChQxg2bBj27duH+vXrAwCio6Px9ddf2xyXkJCA6Ohop7TBXuyMEBER3QVSUlJw48YNpKSkwGw2IykpCQDQoEED+Pj4WDscRa5duwagMGKmKC/JiBEj8O6772LChAkYNmwYdu3ahQ0bNmDLli0V+VSKYWeEiIgIqPShvdOnT0d8fLz159atWwMAdu/ejc6dO5eqjqioKGzZsgVjxozBkiVLULduXXzwwQcuDesF2BkhIiL6kzMyqJZfZ2TNmjVlypbauXNn67yRv28/evSoE1vmuOrTGdGixNghi+q64ZIilTW6peG7evuOA+ThfmYP+fPxDcpULNNWTPRchcktcFcss6jEJ1qgHJ+odfSecjkI972pWHb1lo/d9Wq08udqDlQO/c3LV36Te1xTCTuVhIc68rtCa5aFrMrbpJXMBVD7zLrlKh9rcS+fD57q94ib8nlzaygf5678FQIA0Jkk11gtbUHl+2hRBak+nREiIiKZSn6bpipjZ4SIiAj4MxKmYqNpqBCTnhEREZFLcWSEiIgIAISl8OFoHVRm7IwQEREBnDPiQuyMEBERAZwz4kLVpzOisGqvULkCsvA41dUrlSNLpSmH1cLfZOfV1MuSHuuuc2DJ00om3yy/UCatZDVaR5ZDlazoq1avVi3e0k6+7sorLut08nNazMptVgt3lYX+5ocoL2WrM0li2wHob0mLpWSfD4sknFWj8tGQheBq8+W/gGQvu04S9muWrParSu1QSZNlr7vJV16t/rakLEv+Xsz3Ulq1V35OuvtVn84IERGRDG/TuAw7I0REREDhaJHDnRGntKTaYWgvERERuRRHRoiIiADepnEhdkaIiIgAwKIQ6VDmOqiseJuGiIiIXIojI0RERABv07hQtemMWNwBlJD3w5HV4IWbysGyOH4HxqTyaykv2+7voVxW1WSp5KrwcFPOc2FRTcKgzCJJBKNVmUpf4MCxMgZtgWJZsFG+5vul636SUpXrJMt5o1N+Prl1lF8bANCalJP0uGWrNEmSL0RboNwmWR4RQJ5LRJa/RO28ujzl44RJ/p6QttmBPCPS11UlqVe+j6xU/sXnllvyLQ6hksfFadgZcRnepiEiIiKXqjYjI0RERFJMB+8y7IwQEREBEMIC4WDueUePr67YGSEiIgIK53s4OrLBOSN24ZwRIiIicimOjBAREQF/jmpwZMQVqk1nROgKH3+nVYmElURiqr9n7YweNXvIK/bxz7Gv4irm1m1PaXlNryzFMrNsnXkVOkk8uEMhw+UUbhzqnSE9VhbaK1lJ/s8dlK+FkD0fN/l99exw5VBln1/lX1tayWmF5HXXqNzqFzrlY2Vhv4UHKxeZJRHq7tkqoeIekno97H8/yQjZBQagMSu32eQrP1boSh6sN5sqaBDfYlF/I6jhnBG78DYNERERuVS1GRkhIiKS4m0al2FnhIiICICwWCAcvE3D0F778DYNERERuRRHRoiIiADepnEhdkaIiIiAwoRnjqyeCrAzYqe74jbNsmXLEBkZCQ8PD7Rv3x4//PCDq5tERERETlLpR0Y+/fRTjB07FitWrED79u3xzjvvIDY2FqdPn0ZwcHDpK9KU3ONVWzbcEfamsnCvrZwfAwC0jvbc7yK5Bcpv0fxc+dtXllPCIhzph99dE9R83SRr1Jcn2ftU7cOhV77GWZFm6aG+55RzrshOq/qxkpSrfo9IjpXl5TDr1XJ6KJfpcuRPSJqHRHaoau4ZSZFKqvV8r5IPNruV3/e0DSHg8OebIyN2qfQjI4sWLcKLL76IoUOHolmzZlixYgW8vLzw4YcfurppRERUhQiLcMqDyq5Sd0ZMJhMOHz6MmJgY6zatVouYmBgcOHCgxGPy8vKQkZFh8yAiIlIlLM55lJO5c+fiwQcfhJeXF/z9/UvcR6PRFHusX7/eZp89e/bgvvvug8FgQIMGDbBmzZpya3NpVerOyLVr12A2mxESEmKzPSQkBKmpqSUeM2/ePPj5+VkfYWFhFdFUIiKicmUymdC/f3+MHDlSut/q1atx+fJl66NPnz7WsuTkZPTs2RNdunRBUlISRo8ejeHDh2P79u3l3Hq5Sj9npKwmT56MsWPHWn/OyMhgh4SIiFQJi4BwcE6eKMc5I7NmzQIA1ZEMf39/hIaGlli2YsUKREVFYeHChQCApk2bIjExEYsXL0ZsbKxT21sWlXpkJDAwEDqdDmlpaTbb09LSFC+0wWCA0Wi0eRAREamq5LdpSisuLg6BgYFo164dPvzwQ5sO0oEDB2ymPgBAbGys4tSHilKpR0b0ej3atGmDnTt3WoeZLBYLdu7ciVGjRpWqjqIXwZKbW2K5xlL5omnM2SW31VpeoDyFXq1XL7TKHxRppIHaXwuSFMoWtTZJys0W5f6yJUd+nQqylKNITFBZrllC6+iqnhVMLXLIInm/WSTXH5B/78qimYTa5062um6ObCltwJynXK5RXgxYfc1kRyJM7IymUX2bygKWVP7UNEuXN5YcqPJcpREzaosbK7TJbCp8j5bnqAMAFCDf4ZxnBcgHgGLzFQ0GAwwGg2OVl8Ls2bPRtWtXeHl5YceOHXj55ZeRmZmJV199FQCQmppa4tSHjIwM5OTkwNNTvhp6uRGV3Pr164XBYBBr1qwRJ06cEC+99JLw9/cXqamppTr+4sWLRSn1+OCDDz74uIsfFy9eLJffMzk5OSI0NNRp7fTx8Sm2bcaMGSWee+LEiar1nTx50uaY1atXCz8/v1I9t2nTpom6detaf27YsKF48803bfbZsmWLACCys7PLdN2cqVKPjADAgAEDcPXqVUyfPh2pqam49957sW3btmI9OyW1a9fGxYsX4evrC41GY51DcvHiRd7CkeB1UsdrVDq8TqXD66RMCIHbt2+jdu3a5VK/h4cHkpOTYTLZP2J6JyEENBrbUR6lUZFx48ZhyJAh0vrq1atnd1vat2+POXPmIC8vDwaDAaGhoSVOfTAaja4bFUElv01TZNSoUaW+LfN3Wq0WdevWLbad80lKh9dJHa9R6fA6lQ6vU8n8/PzKtX4PDw94eHiU6zlKEhQUhKCgoHKrPykpCQEBAdbOUHR0NL7++mubfRISEhAdHV1ubSiNu6IzQkREVN2lpKTgxo0bSElJgdlsRlJSEgCgQYMG8PHxwZdffom0tDQ88MAD8PDwQEJCAt588028/vrr1jpGjBiBd999FxMmTMCwYcOwa9cubNiwAVu2bHHRsyrEzggREdFdYPr06YiPj7f+3Lp1awDA7t270blzZ7i7u2PZsmUYM2YMhBBo0KCBNYt5kaioKGzZsgVjxozBkiVLULduXXzwwQcuDesFqmFnxGAwYMaMGRUyq/luxuukjteodHidSofXidSsWbNGmmPk0UcfxaOPPqpaT+fOnXH06FEntsxxGiG4qg8RERG5TqVOekZERERVHzsjRERE5FLsjBAREZFLsTNCRERELlWtOiPLli1DZGQkPDw80L59e/zwww+ubpJLffvtt+jVqxdq164NjUaDzz//3KZcCIHp06ejVq1a8PT0RExMDM6ePeuaxrrQvHnzcP/998PX1xfBwcHo06cPTp8+bbNPbm4u4uLiULNmTfj4+KBfv37FshxWde+99x5atmxpTdoVHR2NrVu3Wst5jYqbP38+NBoNRo8ebd3G60TVUbXpjHz66acYO3YsZsyYgSNHjqBVq1aIjY3FlStXXN00l8nKykKrVq2wbNmyEssXLFiApUuXYsWKFTh48CC8vb0RGxuLXIVFB6uqvXv3Ii4uDt9//z0SEhKQn5+P7t27Iysry7rPmDFj8OWXX2Ljxo3Yu3cvLl26hL59+7qw1RWvbt26mD9/Pg4fPowff/wRXbt2Re/evXH8+HEAvEZ/d+jQIaxcuRItW7a02c7rRNWSy1bFqWDt2rUTcXFx1p/NZrOoXbu2mDdvngtbVXkAEJ999pn1Z4vFIkJDQ8Xbb79t3Zaeni4MBoP45JNPXNDCyuPKlSsCgNi7d68QovC6uLu7i40bN1r3OXnypAAgDhw44KpmVgoBAQHigw8+4DX6m9u3b4uGDRuKhIQE0alTJ/Haa68JIfheouqrWoyMmEwmHD58GDExMdZtWq0WMTExOHDggAtbVnklJycjNTXV5pr5+fmhffv21f6a3bp1CwBQo0YNAMDhw4eRn59vc62aNGmC8PDwanutzGYz1q9fj6ysLERHR/Ma/U1cXBx69uxpcz0Avpeo+qoWGVivXbsGs9lcbKXfkJAQnDp1ykWtqtxSU1MBoMRrVlRWHVksFowePRoPPfQQ7rnnHgCF10qv18Pf399m3+p4rX7++WdER0cjNzcXPj4++Oyzz9CsWTMkJSXxGv1p/fr1OHLkCA4dOlSsjO8lqq6qRWeEyFni4uLwyy+/IDEx0dVNqZQaN26MpKQk3Lp1C//9738xePBg7N2719XNqjQuXryI1157DQkJCS5ZIZaosqoWt2kCAwOh0+mKzUhPS0tDaGioi1pVuRVdF16zv4waNQpfffUVdu/ejbp161q3h4aGwmQyIT093Wb/6nit9Ho9GjRogDZt2mDevHlo1aoVlixZwmv0p8OHD+PKlSu477774ObmBjc3N+zduxdLly6Fm5sbQkJCeJ2oWqoWnRG9Xo82bdpg586d1m0WiwU7d+5EdHS0C1tWeUVFRSE0NNTmmmVkZODgwYPV7poJITBq1Ch89tln2LVrF6KiomzK27RpA3d3d5trdfr0aaSkpFS7a/V3FosFeXl5vEZ/6tatG37++WckJSVZH23btsWgQYOs/+d1ouqo2tymGTt2LAYPHoy2bduiXbt2eOedd5CVlYWhQ4e6umkuk5mZiV9//dX6c3JyMpKSklCjRg2Eh4dj9OjReOONN9CwYUNERUVh2rRpqF27Nvr06eO6RrtAXFwc1q1bh82bN8PX19d6797Pzw+enp7w8/PDCy+8gLFjx6JGjRowGo145ZVXEB0djQceeMDFra84kydPRo8ePRAeHo7bt29j3bp12LNnD7Zv385r9CdfX1/rXKMi3t7eqFmzpnU7rxNVS64O56lI//rXv0R4eLjQ6/WiXbt24vvvv3d1k1xq9+7dAkCxx+DBg4UQheG906ZNEyEhIcJgMIhu3bqJ06dPu7bRLlDSNQIgVq9ebd0nJydHvPzyyyIgIEB4eXmJJ598Uly+fNl1jXaBYcOGiYiICKHX60VQUJDo1q2b2LFjh7Wc16hkd4b2CsHrRNWTRgghXNQPIiIiIqoec0aIiIio8mJnhIiIiFyKnREiIiJyKXZGiIiIyKXYGSEiIiKXYmeEiIiIXIqdESIiInIpdkaIiIjIpdgZISrBzJkzce+991p/HjJkiDQN/po1a4ot+26Pzp07Y/To0Q7Xo2bnzp1o2rQpzGZzuZ9LjUajweeff666n8lkQmRkJH788cfybxQRVSh2RqjKSU1NxSuvvIJ69erBYDAgLCwMvXr1sll8zNkGDBiAM2fOlFv9zjZhwgRMnToVOp0OADBx4kRERkbi9u3bNvv16tULHTt2hMViKbe2XL58GT169FDdT6/X4/XXX8fEiRPLrS1E5BrsjFCVcv78ebRp0wa7du3C22+/jZ9//hnbtm1Dly5dEBcXV27n9fT0RHBwcLnV70yJiYk4d+4c+vXrZ902e/Zs+Pj4YOzYsdZtH374IXbv3o3Vq1dDqy2/r4rQ0FAYDIZS7Tto0CAkJibi+PHj5dYeIqp47IxQlfLyyy9Do9Hghx9+QL9+/dCoUSM0b94cY8eOxffff2/dLz09HcOHD0dQUBCMRiO6du2KY8eO2X3ev9+mKbrN85///AeRkZHw8/PD008/bTPykJWVheeffx4+Pj6oVasWFi5cWKzevLw8vP7666hTpw68vb3Rvn177NmzBwCQm5uL5s2b46WXXrLuf+7cOfj6+uLDDz9UbOv69evxyCOPwMPDw7rNYDAgPj4e8fHx2LZtG1JSUjBmzBgsWLAA9evXV6zrP//5D9q2bQtfX1+EhoZi4MCBuHLlirV89uzZqF27Nq5fv27d1rNnT3Tp0sU62nLnbRqTyYRRo0ahVq1a8PDwQEREBObNm2c9NiAgAA899BDWr1+v2CYiuvuwM0JVxo0bN7Bt2zbExcXB29u7WPmdnYX+/fvjypUr2Lp1Kw4fPoz77rsP3bp1w40bN5zWnnPnzuHzzz/HV199ha+++gp79+7F/PnzreXjx4/H3r17sXnzZuzYsQN79uzBkSNHbOoYNWoUDhw4gPXr1+Onn35C//798eijj+Ls2bPw8PDA2rVrER8fj82bN8NsNuPZZ5/FI488gmHDhim2a9++fWjbtm2x7W3atMHkyZMxfPhwPPfcc2jXrh1GjhwpfY75+fmYM2cOjh07hs8//xznz5/HkCFDrOVTpkxBZGQkhg8fDgBYtmwZ9u/fj/j4+BJHW5YuXYovvvgCGzZswOnTp7F27VpERkba7NOuXTvs27dP2i4iusu4etlgImc5ePCgACA2bdok3W/fvn3CaDSK3Nxcm+3169cXK1euFEIIMWPGDNGqVStr2eDBg0Xv3r0V61y9erXw8/Oz/jxjxgzh5eUlMjIyrNvGjx8v2rdvL4QQ4vbt20Kv14sNGzZYy69fvy48PT2ty8lfuHBB6HQ68ccff9icq1u3bmLy5MnWnxcsWCACAwPFqFGjRK1atcS1a9ekz9/Pz0989NFHJZaZTCYRFhYmDAaDuHDhgrSekhw6dEgAELdv37ZuO3funPD19RUTJ04Unp6eYu3atTbHABCfffaZEEKIV155RXTt2lVYLBbFcyxZskRERkaWuW1EVHlxZISqDCFEqfY7duwYMjMzUbNmTfj4+FgfycnJOHfunNPaExkZCV9fX+vPtWrVst7COHfuHEwmE9q3b28tr1GjBho3bmz9+eeff4bZbEajRo1s2rl3716bdo4bNw6NGjXCu+++iw8//BA1a9aUtisnJ8fmFs2dEhISkJqaCovFgkOHDlm3r1271qYNRSMThw8fRq9evRAeHg5fX1906tQJAJCSkmI9tl69evi///s/vPXWW3jiiScwcOBAxbYNGTIESUlJaNy4MV599VXs2LGj2D6enp7Izs6WPkciuru4uboBRM7SsGFDaDQanDp1SrpfZmYmatWqZZ17cSdnhOcWcXd3t/lZo9GUKSolMzMTOp0Ohw8ftka9FPHx8bH+/8qVKzhz5gx0Oh3Onj2LRx99VFpvYGAgbt68WWz7zZs38eKLL2Lq1KkQQuDll19Gp06dEBgYiCeeeMKm41SnTh1kZWUhNjYWsbGxWLt2LYKCgpCSkoLY2FiYTCabur/99lvodDqcP38eBQUFcHMr+avnvvvuQ3JyMrZu3YpvvvkGTz31FGJiYvDf//7Xus+NGzcQFBQkfY5EdHfhyAhVGTVq1EBsbCyWLVuGrKysYuXp6ekACn/hpaamws3NDQ0aNLB5BAYGVkhb69evD3d3dxw8eNC67ebNmzbhwa1bt4bZbMaVK1eKtTM0NNS637Bhw9CiRQvEx8dj4sSJOHnypPTcrVu3xokTJ4ptf+WVVxAaGop//vOfmDJlCurUqWONQPL19bU5v6enJ06dOoXr169j/vz56NChA5o0aWIzebXIp59+ik2bNmHPnj1ISUnBnDlzpO0zGo0YMGAA3n//fXz66af43//+ZzOX55dffkHr1q2ldRDR3YWdEapSli1bBrPZjHbt2uF///sfzp49i5MnT2Lp0qWIjo4GAMTExCA6Ohp9+vTBjh07cP78eezfvx9TpkypsIRaPj4+eOGFFzB+/Hjs2rULv/zyC4YMGWIzqbNRo0YYNGgQnn/+eWzatAnJycn44YcfMG/ePGzZssX6fA8cOID4+HgMGjQIffr0waBBg4qNTNwpNjYWiYmJNts+++wzbNy4EfHx8XBzc4Obmxvi4+Px+eef43//+1+J9YSHh0Ov1+Nf//oXfvvtN3zxxRfFOhq///47Ro4cibfeegsPP/wwVq9ejTfffNMmsulOixYtwieffIJTp07hzJkz2LhxI0JDQ21GrPbt24fu3btLry8R3WVcPWmFyNkuXbok4uLiREREhNDr9aJOnTriiSeeELt377buk5GRIV555RVRu3Zt4e7uLsLCwsSgQYNESkqKEMI5E1jvPF4IIRYvXiwiIiKsP9++fVs8++yzwsvLS4SEhIgFCxaITp06WSewClE4oXT69OkiMjJSuLu7i1q1aoknn3xS/PTTT+LkyZPC09NTrFu3zrr/zZs3RVhYmJgwYYJiW69fvy48PDzEqVOnhBBCXL16VQQHB4u5c+cW23fu3LkiODhYXL16tcS61q1bJyIjI4XBYBDR0dHiiy++EADE0aNHhcViEd26dROxsbE2E1JfeeUVUb9+feskV9wxgfXf//63uPfee4W3t7cwGo2iW7du4siRI9Zj9+/fL/z9/UV2drbi8yOiu49GiFLO+iOiKmP8+PHIyMjAypUrXd2UMhkwYABatWqFf/7zn65uChE5EW/TEFVDU6ZMQURERLmmeXc2k8mEFi1aYMyYMa5uChE5GUdGiIiIyKU4MkJEREQuxc4IERERuRQ7I0RERORS7IwQERGRS7EzQkRERC7FzggRERG5FDsjRERE5FLsjBAREZFLsTNCRERELvX/AaKToPs3dHNaAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHHCAYAAABtF1i4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9aklEQVR4nO3dd3hUxf4/8PfuJrupmwIplJCEIkUBKaIBKUIgICpc+GHBQhEVDCpF2qWjCOIXEBWEqwhR8SLci6IiJZdmgIgIBJUuBoJCQk1C6ia78/sjsrImZ06yJRuS9+t59oGcOWd29uzZzWTOfD6jEUIIEBEREbmJ1t0NICIiopqNnREiIiJyK3ZGiIiIyK3YGSEiIiK3YmeEiIiI3IqdESIiInIrdkaIiIjIrdgZISIiIrdiZ4SIiIjcip0RIlKl0Wgwa9ascu87evRo1zaIiKoVdkaoyjtz5gxeeOEFNGzYEF5eXjAajejUqROWLFmC/Px8dzevRtq3bx9mzZqFzMxMp9Z79uxZaDQa60Or1SI4OBh9+vRBcnJyqf1nzZoFjUaDK1eu2Gz/+uuv0bVrV4SGhsLHxwcNGzbEo48+ii1btji1vUTkHB7ubgCRzKZNmzBo0CAYDAY888wzuOuuu2AymbBnzx5MmDABR48exb/+9S93N7Pay8/Ph4fHX18X+/btw+zZszF06FAEBgY6/fmeeOIJPPjggzCbzTh16hSWLVuGBx54AAcOHEDLli2lx/7f//0fJkyYgK5du2LKlCnw8fHBr7/+iv/9739Yu3Ytevfu7fT2EpFj2BmhKis1NRWPP/44IiMjsWPHDtSpU8daFh8fj19//RWbNm1yYwuV5eXlwcfHx93NcBovL69Kfb62bdviqaeesv7cuXNn9OnTB++//z6WLVumeFxxcTFee+019OzZE9u2bStVfunSJZe0l4gcw9s0VGUtWLAAOTk5WLlypU1H5KbGjRvjlVdesf588xdRo0aNYDAYEBUVhX/+858oLCy07vPQQw+hYcOGZT5fTEwM2rdvb7Pt008/Rbt27eDt7Y3g4GA8/vjjOH/+vM0+3bp1w1133YWDBw+iS5cu8PHxwT//+U8AwMaNG9G3b1/UrVsXBoMBjRo1wmuvvQaz2Vzq+ZcuXYqGDRvC29sbHTp0QFJSErp164Zu3brZ7FdYWIiZM2eicePGMBgMiIiIwMSJE21eZ1neeecd6HQ6m1srCxcuhEajwbhx46zbzGYz/P39MWnSJOu2W+eMzJo1CxMmTAAAREdHW2+pnD171ub5vvzyS9x1110wGAy48847HbpF0rlzZwAlt+xkrly5guzsbHTq1KnM8tDQULvbQESuw84IVVlff/01GjZsiI4dO5Zr/xEjRmDGjBlo27YtFi9ejK5du2LevHl4/PHHrfs89thjSE1NxYEDB2yOPXfuHL7//nubfefOnYtnnnkGTZo0waJFizBmzBhs374dXbp0KTVX4urVq+jTpw/uvvtuvP3223jggQcAAKtXr4afnx/GjRuHJUuWoF27dpgxYwYmT55sc/z777+P0aNHo379+liwYAE6d+6M/v374/fff7fZz2Kx4JFHHsH//d//4eGHH8a7776L/v37Y/HixXjsscek56dz586wWCzYs2ePdVtSUhK0Wi2SkpKs2w4fPoycnBx06dKlzHoGDBiAJ554AgCwePFifPLJJ/jkk08QEhJi3WfPnj148cUX8fjjj2PBggUoKCjAwIEDcfXqVWkbldzs6AQFBUn3Cw0Nhbe3N77++mtcu3bNruciIjcQRFVQVlaWACD69etXrv1TUlIEADFixAib7a+++qoAIHbs2GGt12AwiPHjx9vst2DBAqHRaMS5c+eEEEKcPXtW6HQ6MXfuXJv9fv75Z+Hh4WGzvWvXrgKAWL58eal25eXlldr2wgsvCB8fH1FQUCCEEKKwsFDUqlVL3HPPPaKoqMi63+rVqwUA0bVrV+u2Tz75RGi1WpGUlGRT5/LlywUAsXfvXsVzZDabhdFoFBMnThRCCGGxWEStWrXEoEGDhE6nEzdu3BBCCLFo0SKh1WrF9evXrccCEDNnzrT+/NZbbwkAIjU1tdTzABB6vV78+uuv1m1HjhwRAMS7776r2D4hhEhNTRUAxOzZs8Xly5dFenq6SEpKEvfcc48AINavX2+z/8yZMwUAcfnyZeu2GTNmCADC19dX9OnTR8ydO1ccPHhQ+rxE5F4cGaEqKTs7GwDg7+9frv2//fZbALC53QAA48ePBwDr3BKj0Yg+ffpg3bp1EEJY9/v8889x3333oUGDBgCADRs2wGKx4NFHH8WVK1esj/DwcDRp0gQ7d+60eR6DwYBhw4aVape3t7f1/zdu3MCVK1fQuXNn5OXl4cSJEwCAH3/8EVevXsVzzz1nM0n0ySefLDUSsH79ejRv3hzNmjWzaVf37t0BoFS7bqXVatGxY0d89913AIDjx4/j6tWrmDx5MoQQ1miVpKQk3HXXXQ5NTI2NjUWjRo2sP7dq1QpGoxG//fZbuY6fOXMmQkJCEB4ejs6dO+P48eNYuHAh/t//+3+qx86ePRufffYZ2rRpg61bt2Lq1Klo164d2rZti+PHj9v9mojIddgZoSrJaDQCKPkFXh7nzp2DVqtF48aNbbaHh4cjMDAQ586ds2577LHHcP78eesv3zNnzuDgwYM2tzlOnz4NIQSaNGmCkJAQm8fx48dLTYSsV68e9Hp9qXYdPXoU//jHPxAQEACj0YiQkBDrxMysrCxr2wGUaruHhweioqJstp0+fRpHjx4t1aY77rgDgPoEzc6dO+PgwYPIz89HUlIS6tSpg7Zt26J169bWWzV79uyxztGw181O3a2CgoJw/fr1ch3//PPPIzExEV9//TXGjh2L/Pz8MufZKHniiSeQlJSE69evY9u2bRg8eDAOHz6Mhx9+GAUFBeWuh4gqB6NpqEoyGo2oW7cufvnllwodp9FoVPd5+OGH4ePjg3Xr1qFjx45Yt24dtFotBg0aZN3HYrFAo9Fg8+bN0Ol0perw8/Oz+fnWEZCbMjMz0bVrVxiNRsyZMweNGjWCl5cXDh06hEmTJsFisVTotd1sV8uWLbFo0aIyyyMiIqTH33///SgqKkJycjKSkpKsnY7OnTsjKSkJJ06cwOXLlx3ujJR1zgDYjEbJNGnSBLGxsQBKJh3rdDpMnjwZDzzwQKlJxjJGoxE9e/ZEz5494enpiYSEBOzfvx9du3Ytdx1E5HrsjFCV9dBDD+Ff//oXkpOTERMTI903MjISFosFp0+fRvPmza3bMzIykJmZicjISOs2X19fPPTQQ1i/fj0WLVqEzz//HJ07d0bdunWt+zRq1AhCCERHR1tHHSpq165duHr1KjZs2GAzGTQ1NbVU2wHg119/tU58BUqig86ePYtWrVrZtOvIkSPo0aNHuTpef9ehQwfo9XokJSUhKSnJGhXTpUsXfPDBB9i+fbv1Zxl7ntsRU6dOxQcffIBp06bZHZXTvn17JCQk4OLFi05uHRE5irdpqMqaOHEifH19MWLECGRkZJQqP3PmDJYsWQIAePDBBwEAb7/9ts0+N0cQ+vbta7P9sccew4ULF/Dhhx/iyJEjpSJRBgwYAJ1Oh9mzZ5f6a14IUa6okJujA7cebzKZSuXJaN++PWrVqoUPPvgAxcXF1u1r1qwpdVvj0UcfxR9//IEPPvig1PPl5+cjNzdX2iYvLy/cc889+Pe//420tDSbkZH8/Hy88847aNSoUZmh1Lfy9fUFAKdnYFUSGBiIF154AVu3bkVKSorifnl5eWVmagWAzZs3AwCaNm3qiiYSkQM4MkJVVqNGjfDZZ5/hscceQ/PmzW0ysO7btw/r16/H0KFDAQCtW7fGkCFD8K9//ct6e+SHH35AQkIC+vfvbzPiAJR0Xvz9/fHqq69Cp9Nh4MCBpZ779ddfx5QpU3D27Fn0798f/v7+SE1NxRdffIHnn38er776qrT9HTt2RFBQEIYMGYKXX34ZGo0Gn3zySanOjV6vx6xZs/DSSy+he/fuePTRR3H27FmsXr0ajRo1shmFePrpp7Fu3TqMHDkSO3fuRKdOnWA2m3HixAmsW7cOW7duVb2N0blzZ8yfPx8BAQHWbKahoaFo2rQpTp48aT2nMu3atQNQMmLx+OOPw9PTEw8//LC1k+IKr7zyCt5++23Mnz8fa9euLXOfvLw8dOzYEffddx969+6NiIgIZGZm4ssvv0RSUhL69++PNm3auKyNRGQnt8XxEJXTqVOnxHPPPSeioqKEXq8X/v7+olOnTuLdd9+1hscKIURRUZGYPXu2iI6OFp6eniIiIkJMmTLFZp9bPfnkkwKAiI2NVXzu//73v+L+++8Xvr6+wtfXVzRr1kzEx8eLkydPWvfp2rWruPPOO8s8fu/eveK+++4T3t7eom7dumLixIli69atAoDYuXOnzb7vvPOOiIyMFAaDQXTo0EHs3btXtGvXTvTu3dtmP5PJJN58801x5513CoPBIIKCgkS7du3E7NmzRVZWltrpFJs2bRIARJ8+fWy2jxgxQgAQK1euLHUM/hbaK4QQr732mqhXr57QarU2Yb4ARHx8fKk6IiMjxZAhQ6Rtuxna+9Zbb5VZPnToUKHT6axhw38P7S0qKhIffPCB6N+/v/Vc+vj4iDZt2oi33npLFBYWSp+fiNxDI0Q5Z5QRUaWyWCwICQnBgAEDyrwtQ0RUXXDOCFEVUFBQUOr2zccff4xr166VSgdPRFTdcGSEqArYtWsXxo4di0GDBqFWrVo4dOgQVq5ciebNm+PgwYNl5jAhIqouOIGVqAqIiopCREQE3nnnHVy7dg3BwcF45plnMH/+fHZEiKja48gIERERuRXnjBAREZFbsTNCREREblXt54xYLBZcuHAB/v7+lZ7CmoiIHCeEwI0bN1C3bl1ota75G7qgoAAmk8kpden1enh5eTmlrpqi2ndGLly4oLp4GBERVX3nz59H/fr1nV5vQUEBoiP9kH6p/CtDy4SHhyM1NZUdkgqo9p0Rf39/AECbT0dC52MoVa42VqLV2D+/195jNSrHyep1qL1QPlatTeeuBCuWFV0uvaKtzfOalN8FTbGkTGXRWyG5uuu2ki+W1jzgkmJZxdfarb7MQvn9ySlW/iJOuVBXsQwATNeUrxldvvwvY02RcpvMdQoVyzw85L+IhOS1qn7qZMc6EkIgOVaofrs5/zkBQFgkn9k8+a8c7z/KXu3ZXFiAM0vnWL/Pnc1kMiH9khnnDkbB6O/YyEv2DQsi252FyWRiZ6QCqn1n5OatGZ2PAR6+7IxI63WgM6LNU/7Qab3lH0ittvI7I2VdC7fS+3kqlllc9SV/G5J1RjyLlEOSdT4q10S+5HoSKp0RneQXv7dymdazmnVGJM/pEEc6I7IPJQCdoezOiPV4F99q9/PXwM/fsefg94N9qn1nhIiIqDzMwgKzg8kuzIJjp/ZgZ4SIiAiABQIW9XEu1Tqo4hjaS0RERG7FkREiIiIAFlgcnqDueA01U43pjBRbdBDm0pOj9Dr7Q7kcmSwqmxDqSL1q7J2kqtam+rUyFct+y5WvrWIRypPWdJLJcI7w0Mq/MLSy2bEqEyhvN45MuNNJrouT10IUywqvyyewyiJiLCrfWto6+Ypl0vfdVRM+VcjmZDoyuVVt0rl0gqtsYmy+/A3wuigpV3k9Rb5l72DRVc6tD7MQMDu4Qoqjx9dU1etblYiIiG47NWZkhIiISIYTWN2HnREiIiKUdCTM7Iy4BW/TEBERkVtxZISIiAi8TeNO7IwQERGB0TTuxNs0RERE5FY1ZmTk+slgaMtYQTGg6TXpcb76IrufUy3O316uzENiL28P5fMUHJItPfaaKVCxTCgvsurQclSyfCuA2jmuXkmNHPmL5Pe8QMWyzExfxTJNgXxBNGFQPseeAQXyRsneOzflEqmKhEn5nfe4orxQpO8f8nOYH6p8/iUphUooVK2yvp7TWOD4p7t6fTtUnhrTGSEiIpIxOyGaxtHjayp2RoiIiACYBZywaq9z2lLTcM4IERFRFbdr1y5oNJoyHwcOHLDu99NPP6Fz587w8vJCREQEFixY4MZWlx9HRoiIiFC154x07NgRFy9etNk2ffp0bN++He3btwcAZGdno1evXoiNjcXy5cvx888/Y/jw4QgMDMTzzz/vopY5BzsjREREKFk00uzQ1HjHFp6U0ev1CA8Pt/5cVFSEjRs34qWXXoLmz9UW16xZA5PJhI8++gh6vR533nknUlJSsGjRoirfGeFtGiIiIifLzs62eRQWSkID7fDVV1/h6tWrGDZsmHVbcnIyunTpAr3+r5XS4+LicPLkSVy/ft2pz+9sNWZkxPuiFjpDGX2v07Wkx2X1yVQsC/JRXqpcjSx01JHQXbWQVVeFG8uE+eVIy6/7+CmWiQLl/rKwyP8CEZJlx9XOg0422KqpOX34fLNyiCcAnLwcqlgmsvXKZf7F0nr1viZ5wySqZM4pF4UbC7PytajJlL93ISnKz5tbR7ksr54bTnAlRWRbRMnD0ToAICIiwmb7zJkzMWvWLMcqv8XKlSsRFxeH+vXrW7elp6cjOjraZr+wsDBrWVBQkNOe39lqTGeEiIhIxuyE2zQ3jz9//jyMRqN1u8FgKHP/yZMn480335TWefz4cTRr1sz68++//46tW7di3bp1DrW1KmFnhIiIyMmMRqNNZ0TJ+PHjMXToUOk+DRs2tPl51apVqFWrFh555BGb7eHh4cjIyLDZdvPnW+ebVEXsjBAREcG5IyPlFRISgpCQkHLvL4TAqlWr8Mwzz8DT0/ZWXExMDKZOnYqioiJrWWJiIpo2bVqlb9EAnMBKREQEALAIjVMerrRjxw6kpqZixIgRpcoGDx4MvV6PZ599FkePHsXnn3+OJUuWYNy4cS5tkzNwZISIiOg2sXLlSnTs2NFmDslNAQEB2LZtG+Lj49GuXTvUrl0bM2bMqPJhvQA7I0RERADcc5umoj777DNpeatWrZCUlOTSNrgCOyNEREQAzNDC7ODsBbOT2lLT1JjOSF6EBVqv0rkjdPnyXqzPduVJP5e6ytfDDgu4Ub7GVZBaLhG763VR7hO9Vv7xbBB+TbHsXKFkYpfaeuSSJqu9Hum5kHzduPp+cWX77UZtaXlelrdimS5QOVeIp16eZ0SWK0TcjudY0mYhSWljyZHnCglOUf4MFPnJz1NWY+WTbPFwzXeM2junLSx7D6Gw3dmEE+Z83JbXZxXACaxERETkVjVmZISIiEjmdpgzUl2xM0JERATALLQwCwfnjFTF5QhuA7xNQ0RERG7FkREiIiIAFmhgcfBvdIuLAgyqO3ZGiIiIwDkj7lRjOiNCIyC0pXusxb7yXmx2Y+ULy/OEv/TY3xsqn976IdcVyxwJo9U4ELLqCEfqDTTkK5ZdqZWnWJZX6Cev2Kz83jkS2uuK4wD3hQVfM/kqlp3NqCU91tNHOXzXw0M5ZrXahT+qvB5znvJ3gc9vyuG7GknYLwDkhyqXqX23ueot0Egi+T1y5U+qlAVAU+hAg+i2UGM6I0RERDLOmcDK2zT2YGeEiIgIN+eMODZk5OjxNRWjaYiIiMitODJCREQEwOKEtWkYTWMfdkaIiIjAOSPuxM4IERERSkZGmGfEPdgZUZtrJAnVLAqUX3SaS16KZWcLlVdDjax3VVqvl0eRtNxergr7VX9e5fjFqGDlFX2PZimfXwDQ5Cpf3h4qMZOekvhEV4Xg6lSqtXf4WK29P1+to1imtrquLJS8SobvytprkZ/f4kLlFXI9M/TSYw1ZklV7Jd/CZk/5Z9Is/wjI2flx1xXI31fPXOUyrXIkOADAkFl2o8wm/oKv7tgZISIiAmAWGpgd7EQ7enxNxc4IERERSkYfHZ3AauZtGrswtJeIiIjciiMjREREACxCC4uD0TQWRtPYhZ0RIiIi8DaNO/E2DREREbkVR0aIiIgAWOB4NIzKQsukgJ0RFxKSHAEayZLi536TrAsOoF7UFcUyo6FAvWF2UMtBopUMTcryiKjV7eOhnJigXp3r0nr/OKucy0WNTtpm9wwoaiFZm13itzz5eSgsUr4WtVqVZehvsxFpc7FyrhBcMUiP9b6q/L6r/f4Skqct9lE+iRYHvqHV0gbJLnG9JC+K12V5xfpcyXdBkUpuJoXi4qLK+RXvnKRnvOFgD541IiIiciuOjBAREcFZa9Pwb3x7sDNCREQEwAINLKprhKjXQRXHzggRERE4MuJOPGtERETkVhwZISIigrOSnvFvfHvUmM6ItlgDbVHpe3kWlSW63XL7TyWK7Y/flEM1zdFXpcfW8s5TLFML361qwn2zpeWXAvwVy1TDjWVZFFWOdYecYuWw1NPXQ6THOvKu6z2Uw42b185QLDt8ob7dz2kxy7/si7P1imVeF+3/ypOG76p8TxQZlc+ykIVPq8QMyy5Fjzz5scbfJKkHLMoV64qk1cIiCWNW++joCsreQVRWaK/QwOJonhGu2msXduGIiIjIrdgZISIiQknCMrODD1cmPTt16hT69euH2rVrw2g04v7778fOnTtt9klLS0Pfvn3h4+OD0NBQTJgwAcXFxS5rk7OwM0JERIS/Vu119OEqDz30EIqLi7Fjxw4cPHgQrVu3xkMPPYT09HQAgNlsRt++fWEymbBv3z4kJCRg9erVmDFjhsva5CzsjBAREVVxV65cwenTpzF58mS0atUKTZo0wfz585GXl4dffvkFALBt2zYcO3YMn376Ke6++2706dMHr732GpYuXQqTSXlpjaqAnREiIiIAZmic8gCA7Oxsm0dhYaFDbatVqxaaNm2Kjz/+GLm5uSguLsaKFSsQGhqKdu3aAQCSk5PRsmVLhIWFWY+Li4tDdnY2jh496tDzu1qNiaYhIiKSccZtlpvHR0RE2GyfOXMmZs2aZXe9Go0G//vf/9C/f3/4+/tDq9UiNDQUW7ZsQVBQEAAgPT3dpiMCwPrzzVs5VVWVGRmZP38+NBoNxowZY91WUFCA+Ph41KpVC35+fhg4cCAyMpTDBYmIiKqC8+fPIysry/qYMmVKmftNnjwZGo1G+jhx4gSEEIiPj0doaCiSkpLwww8/oH///nj44Ydx8eLFSn51zlclRkYOHDiAFStWoFWrVjbbx44di02bNmH9+vUICAjA6NGjMWDAAOzdu7fCz+GVroXOULrvZZavGg5ToGR5b4Na0LxykXAkp4ckjD39XC3poaZ6yo2q439DscxDLS+HpNxV+Us8tPI23VHnkmKZWpt0ktcjeVtdSpZm+nROqGKZqVjeYiHJi6D3kM/Cbx16QbHMW5KQItBPOd8NAKRfDFJu0wVP6bFexZIPiCwFhMplatEr72D2cuAal5x/rUoQhOGq8rH+5+WfD1fNs/QokOXokR9r0Ze9g0VTObk7zID1NosjdQCA0WiE0WhU3X/8+PEYOnSodJ+GDRtix44d+Oabb3D9+nVrvcuWLUNiYiISEhIwefJkhIeH44cffrA59uYf8OHh4RV+LZXJ7Z2RnJwcPPnkk/jggw/w+uuvW7dnZWVh5cqV+Oyzz9C9e3cAwKpVq9C8eXN8//33uO+++9zVZCIiqoaceZumvEJCQhASIk9MCAB5eSUdeK3Wtn6tVgvLn0nqYmJiMHfuXFy6dAmhoSV/oCQmJsJoNKJFixYValdlc/ttmvj4ePTt2xexsbE22w8ePIiioiKb7c2aNUODBg2QnJysWF9hYWGpiUNERERqbi6U5+jDFWJiYhAUFIQhQ4bgyJEjOHXqFCZMmIDU1FT07dsXANCrVy+0aNECTz/9NI4cOYKtW7di2rRpiI+Ph8GgchvAzdzaGVm7di0OHTqEefPmlSpLT0+HXq9HYGCgzfawsDDpRJx58+YhICDA+vj7JCIiIqLbTe3atbFlyxbk5OSge/fuaN++Pfbs2YONGzeidevWAACdTodvvvkGOp0OMTExeOqpp/DMM89gzpw5bm69Orfdpjl//jxeeeUVJCYmwsvLy2n1TpkyBePGjbP+nJ2dzQ4JERGpEtDA4uCcEeHCBc3at2+PrVu3SveJjIzEt99+67I2uIrbOiMHDx7EpUuX0LZtW+s2s9mM7777Du+99x62bt0Kk8mEzMxMm9GRjIwM6UQcg8FQ5YejiIio6nHGbRZX3aap7tzWGenRowd+/vlnm23Dhg1Ds2bNMGnSJERERMDT0xPbt2/HwIEDAQAnT55EWloaYmJi3NFkIiIicgG3dUb8/f1x11132Wzz9fVFrVq1rNufffZZjBs3DsHBwTAajXjppZcQExNjVySNRpQ8/k6nkhTP94LykJvQyEMmC0KVQ9yKfZTD7oSHa0JhAeDaH4GKZaYw5cshOviatF5H/haQhdlKy1RiMQP1+Xa3yVNjVixz1V8+snBiALhS5KdY9ntWgGKZI1eTTra8PeThuzIBhgJp+bU/lMN3NRb7h8ElbyuKveWvVRbaKwvPVeORp3xs8HH5NaExS0LQi+Svx+yp/Lw6k/3huVrJ81o85Adri8s+Vmm7s1mEBhYH3subdVDFuT20V2bx4sXQarUYOHAgCgsLERcXh2XLlrm7WUREVA3dXHnX0Tqo4qpUZ2TXrl02P3t5eWHp0qVYunSpexpERERELlelOiNERETuwts07sPOCBEREQALtLA4eJvF0eNrKp41IiIiciuOjBCR0xXmeKMo1wt+YddLleVkBKHI4gVPP3lEDVFlMwsNzA7eZnH0+JqqxnRGhKbs6Du1VTFlcZFqC0l6X1TeQSOUw4IL5AvvoihAOZxPdSVhSZtzMpRDR08Uyi+VO8IvK5b5eJjkbXKDQE952K98FWKVc2ynIov8HP94uYFimdnimkHOrBve0vLC2qXbbMrxRuIr41B43R/9VsyFX/hfYeE56cH4+oWp8AjMxf2L3lHskMjCd9XC8bWSy62wtiTs1FMlfFT2XaBySRiuKb8ev9+VD1arV1auGkYrCXMWOslKwiohw5C1WeU7Uyh8qSptdzbOGXEf3qYhIqcqyvVCwXUjsv8Iw8YXpiInPRhASUdk4wtTkf1HGAqv+6Moz3nLQBA5g/hz1V5HHoIZWO3Cs0ZETuUbdh29338TxnoZ1g5J+pEm1o6IsV4Gury3CD6hme5uKhFVEeyMEJHT+YZdQ78Vc60dki+enWntiPRbMRc+ZcwlIXI3MzROeVDFsTNCRC7hF34NPeYst9nWY85ymzkkRFWJRfw1b8T+h7tfxe2JnREicomc9GBsnzHSZtv2GSOtc0iIiG5iZ4SInC43I9hmjsg/Vs62mUOSlxHk7iYSleLo5NWbD6o4njUicqrcjCBsGTXJZo5IeOvTNnNIvhs9DnmXAt3dVCIbFmic8qCKqzl5RjxKHqW2q9zf00jykKjlKNHYuey1z0V5uchQ7kMWGeX9y4IQ5SQAZh/lsqIsg7TeYwV1FcuaRcpfkFGvnPxKK0vu4ACDtkha7ilZa172l48jOUhO5NWRlueZPO2qt7hYOacNAORfV84l4nlV/hWR20BfaluRlxmegTkwQtjkGfELL5nUuvGFqdAH3UCA8Qb0CjlovJXT1sBklDYJ+WHK14zQKZdpVC41XYHyL5mA0/JjPfOVrwuH/pB24PeeLF+ILEeJantl+U3Uvm8VvpCVtlP1UWM6I0RUOTz9CtBl8RL4Fwn4hdlOVvULv4Z+/5qLIi8z9H7yxHNElY0ZWN2HnREicjpPvwL46XPLLPMLu4Zcc+kRFSJ3c8acD84ZsQ/PGhEREbkVR0aIiIjw5wRWR9em4QRWu7AzQkREBEA4IRpGsDNiF3ZGiIiIwFV73anGdEaEtuyQtGKVhUM9lKNOIVnlHACglVyUGrNyqJpayLCuUPlYzzz5sbKlzC2eypdDTgN5aJ3ZTzl08fjpetJjGzdKVywL8cpRLNOqxGI6EmbrpVEO/S1y4GOTZVYOo025rBweDQBFZuUQ3dxs5QtZd1Eelq2Xha8XyS/y6wU+imWhhhvKz6lykeeFK7+3xT5q8aGSomLlQtlnAwACz0jCcx34/SP7LoBGpWLJoUInP1Y2h1j2HaNVSVkgm78piZgHAFg8y24zf8FXfzWmM0JERCTDaBr3YWeEiIgIvE3jTuzCERERkVtxZISIiAhwytoyDO21DzsjRERE4G0ad+JtGiIiInIrjowQERGBIyPuVGM6IxYPQFPWCuwq102xZOzIo+x1wP56TtlaYJIkJULlXbF42L+ctiw1h2xJcbUl0i0eyicqr458CfszJuX8GvmNldeSjzJeUyxT46GV5yCR5TAxyHKQCPlr3Xe1oWLZjRzlHCQAIM4p5/TwuqF8PanlnrFIrjdLWZ+ZW/x6MUSxLMr/qmLZT1dVcqoYJe+Pyniuxw3lHYy/KR+nvyG/JmS/Y1RS3khpJbk3hFYll44kR4lQaZOuUPn1KuX7AACLSu4TjUX5iTUqOUqUXq7su8mZ2BlxH96mISIiug0cOnQIPXv2RGBgIGrVqoXnn38eOTm2iSHT0tLQt29f+Pj4IDQ0FBMmTEBxsUomzSqAnREiIiL8NTLi6MMVLly4gNjYWDRu3Bj79+/Hli1bcPToUQwdOtS6j9lsRt++fWEymbBv3z4kJCRg9erVmDFjhkva5Ew15jYNERGRjIDjobmuuqH0zTffwNPTE0uXLoVWWzKOsHz5crRq1Qq//vorGjdujG3btuHYsWP43//+h7CwMNx999147bXXMGnSJMyaNQt6vWzugHtxZISIiAjOHRnJzs62eRQWFjrUtsLCQuj1emtHBAC8vUvmme3ZswcAkJycjJYtWyIsLMy6T1xcHLKzs3H06FGHnt/V2BkhIiJysoiICAQEBFgf8+bNc6i+7t27Iz09HW+99RZMJhOuX7+OyZMnAwAuXrwIAEhPT7fpiACw/pyerrwgaVXAzggRERGcOzJy/vx5ZGVlWR9Tpkwp8zknT54MjUYjfZw4cQJ33nknEhISsHDhQvj4+CA8PBzR0dEICwuzGS25XdWYOSMWgwAMZdzNU3sPJdF+amGP+kzle49qK4NLyUIM5dGJdterErEqDW30+11+F1VzTvlNyP4tXLHsWDf5G9A69IJimU72xgLQa+ybfZ5WWEtafvJIA8Uynz/kF6NOMsorC31UW7ZdqxypLF0OHgAsHsrhyDs9miiWFV9WCWP2Vn5/PK/Kv7bq7FN5wQrUwkdlIasWnf3hrlpJuKu2WH6d6nKV3zyLXu1DK/l+Msu++FTCc02S82+Rv56zA4LL3G4uMAOJ0kOdwpmhvUajEUajUXX/8ePH20xCLUvDhiUpAQYPHozBgwcjIyMDvr6+0Gg0WLRokbU8PDwcP/zwg82xGRkZ1rKqrMZ0RoiIiKqakJAQhIQo5+spy81bLx999BG8vLzQs2dPAEBMTAzmzp2LS5cuITQ0FACQmJgIo9GIFi1aOLfhTsbOCBEREap+0rP33nsPHTt2hJ+fHxITEzFhwgTMnz8fgYGBAIBevXqhRYsWePrpp7FgwQKkp6dj2rRpiI+Ph8FgcFm7nIGdESIiIgBCaCAc7Ew4erzMDz/8gJkzZyInJwfNmjXDihUr8PTTT1vLdTodvvnmG4waNQoxMTHw9fXFkCFDMGfOHJe1yVnYGSEiIroNfPzxx6r7REZG4ttvv62E1jgXOyNEREQoSXjmaNIzR4+vqdgZISIiQtWfM1Kd1ZjOSLGPgNa7jJA0B5bb1EhW3gWAYkn0ov855WM98uRtMmQph8f5XCiQt8lfORx215ZJ0mNvN0N+GG73sVpJ6K9Ocs3km+Xhxqkvj7e7TVVR5MoFimWaS8ofAKFX+dxJVqvV5cs/d0kbJ8jrvo301A6SlsvOokYrD+3VGf2Uj/VTLoOHvN4rXeopll1vJj0UBoWFuDWOJS+l20CN6YwQERHJVPUJrNUZOyNERETgbRp3YmeEiIgIHBlxp9s/oT0RERHd1jgyQkREhJJRDUdvs3BkxD7sjBAREaEkOknYH2BprYMqjrdpiIiIyK0qNDJy/PhxrF27FklJSTh37hzy8vIQEhKCNm3aIC4uDgMHDqyyi/EY6uZA51PxZeFlQ24alRwlsvLscL1iWcBeL3mbZMuVq4wQCm3NGULUOvA3iiyXiKdG+Try0MqXSK9uPHyVl7A36yV/6xSr/B1kVr5OdfJUOvQnrZfKd7Gn8ncQdMrvT9r/qy+ttrCW8mfH56L8+6fIt+ztlkr6WFmggYYZWN2iXCMjhw4dQmxsLNq0aYM9e/bg3nvvxZgxY/Daa6/hqaeeghACU6dORd26dfHmm2+isJAZaoiI6PZyM5rG0QdVXLlGRgYOHIgJEybgP//5j3Wp4rIkJydjyZIlWLhwIf75z386q41ERERUjZWrM3Lq1Cl4esrTXANATEwMYmJiUFSkPHRLRERUFVmEBhomPXOLct2mUeuIZGZmVmh/IiKiqkYI5zyo4iocTfPmm2/i888/t/786KOPolatWqhXrx6OHDni1MYRERFR9Vfhzsjy5csREREBAEhMTERiYiI2b96MPn36YMKE6rNaJhER1SycwOo+FU56lp6ebu2MfPPNN3j00UfRq1cvREVF4d5773V6A52lfmAWPHwrHhPoqjCtYqNyP/Bcx1rSYz22K4fsCUlIHgCIGpRZxqBTDsH11Jqlx8rCd/Ua5WM9JWXVkSx83UOvfC4sHvKxbJGhfI3XOlrxEP2aSKOSZkFjUA7tPTM8QrFMaOXvnT5T+TuzMFh6KArqlD3f0JJfOfMQuTaN+1T4V1NQUBDOnz8PANiyZQtiY2MBAEIImM0164uYiIiqj5ur9jr6oIqr8MjIgAEDMHjwYDRp0gRXr15Fnz59AACHDx9G48aNnd5AIiIiqt4q3BlZvHgxoqKicP78eSxYsAB+fn4AgIsXL+LFF190egOJiIgqgzOiYRhNY58Kd0Y8PT3x6quvlto+duxYpzSIiIjIHUo6I47OGXFSY2qYcnVGvvrqK/Tp0weenp746quvpPs+8sgjTmkYERERuV/btm0rtL9Go8FXX32FevXqlfuYcnVG+vfvj/T0dISGhqJ///7SBnASKxER3Y4YTVO2lJQUjB8/3jotQ0YIgfnz51d4jbpydUYstyyZaHHi8onvv/8+3n//fZw9exYAcOedd2LGjBnWSbEFBQUYP3481q5di8LCQsTFxWHZsmUICwtzWhuIiIgAQPz5cLSO6mjChAkIDQ0t174LFy6scP0VnjMik5eXBx8fn3LvX79+fcyfPx9NmjSBEAIJCQno168fDh8+jDvvvBNjx47Fpk2bsH79egQEBGD06NEYMGAA9u7dW+G2aTSizJwIar1Y2TL0juQg0UryM9QPuy499vd7lC8I33Sd9FihrX69diWy904tH4iXRjmvgU6j3CH30nJdpptkny1ZfhIA8I7OVixLe1hhnfnbVE/tILuP1Xgq5wqBXr4sx6+jGijXK0nloi2Sf4cUt7uh3CS9PEeM0qsx53EleHdKTU1FSEhIufc/duwY6tatW6HnqHCekR49euCPP/4otX3//v24++67K1TXww8/jAcffBBNmjTBHXfcgblz58LPzw/ff/89srKysHLlSixatAjdu3dHu3btsGrVKuzbtw/ff/99RZtNREQkxQysZYuMjIRGU/7XFRERAZ1O/ofx31W4M+Ll5YVWrVpZ16exWCyYNWsWOnfujAcffLCi1VmZzWasXbsWubm5iImJwcGDB1FUVGRNqgYAzZo1Q4MGDZCcnKxYT2FhIbKzs20eREREqoSTHjVEbm4uPvroIyxduhSnT592qK4K36bZtGkTli5diuHDh2Pjxo04e/Yszp07h2+++Qa9evWqcAN+/vlnxMTEoKCgAH5+fvjiiy/QokULpKSkQK/XIzAw0Gb/sLAwpKenK9Y3b948zJ49u8LtICKiGs4ZIxvVcGQEANLS0vD000/j0KFDuO+++7By5Ur07NnT2gnx9vbG5s2b0aVLF7vqt2ulkvj4eLz88stYu3YtfvzxR6xfv96ujggANG3aFCkpKdi/fz9GjRqFIUOG4NixY3bVBQBTpkxBVlaW9XEzdT0RERHZ59VXX4XJZMLy5cvh4+ODuLg4NGnSBBcvXkRGRgb69OmDWbNm2V1/hUdGrl+/jhEjRmD79u1YsWIFdu/ejV69emHBggV2ZWDV6/XWNPLt2rXDgQMHsGTJEjz22GMwmUzIzMy0GR3JyMhAeHi4Yn0GgwEGlQWiiIiI/o4ZWJV99913+Oqrr9ChQwf06dMHtWvXxkcffWSNbp0+fTp69Ohhd/0VHhm56667kJGRgcOHD+O5557Dp59+ipUrV2L69Ono27ev3Q25yWKxoLCwEO3atYOnpye2b99uLTt58iTS0tIQExPj8PMQERHdihNYlV26dAmRkZEAgODgYPj4+Nik2QgPD8f16/JIUJkKj4yMHDkSU6dOhVb7Vz/mscceQ6dOnTBs2LAK1TVlyhT06dMHDRo0wI0bN/DZZ59h165d2Lp1KwICAvDss89i3LhxCA4OhtFoxEsvvYSYmBjcd999FW02tBpRZjitI1lTVFbSlob+ykJ7PXXysNOwRlcUy67eKc/BEnyy5oSeaiUhuAaVEFxfrX2hhGr1VjdFN5RDSz38lM9F7SDl8E8AqOWdp1h2Io8jnzf9Maa9YllBbfkXlDnMpFjmG5Bvd5sK8pWviRvZKu+dwi9yS75Ts1DctubOnYtNmzZZ51RmZmaW2ictLQ2jRo3Czp074efnhyFDhmDevHnw8PjrHO7atQvjxo3D0aNHERERgWnTpmHo0KGqz39rRE1FomvKo8Lv8PTp08vcXr9+fSQmJlaorkuXLuGZZ57BxYsXERAQgFatWmHr1q3o2bMngJJF+bRaLQYOHGiT9IyIiMjphMbxCaguHBkxmUwYNGgQYmJisHLlylLlZrMZffv2RXh4OPbt24eLFy/imWeegaenJ9544w0AJTlD+vbti5EjR2LNmjXYvn07RowYgTp16iAuLk76/DNmzLDmEjOZTJg7dy4CAgIAlOQZc4Td3c28vDykpaXBZLLtXbdq1arcdZR1Mm/l5eWFpUuXYunSpXa1kYiIqLyq+pyRm5Giq1evLrN827ZtOHbsGP73v/8hLCwMd999N1577TVMmjQJs2bNgl6vx/LlyxEdHW3Nktq8eXPs2bMHixcvlnZGunTpgpMnT1p/7tixI3777bdS+9irwp2Ry5cvY9iwYdi8eXOZ5VybhoiIarq/57iqjOCK5ORktGzZ0mYuR1xcHEaNGoWjR4+iTZs2SE5OtsnfdXOfMWPGSOvetWuXC1r8lwpPYB0zZgwyMzOxf/9+eHt7Y8uWLUhISECTJk1UV/QlIiKqspyY9CwiIgIBAQHWx7x581ze/PT09FJrt938+WZ+LqV9srOzkZ9v/1whR1V4ZGTHjh3YuHEj2rdvD61Wi8jISPTs2RNGoxHz5s1zSkQNERFRZXPmqr3nz5+H0Wi0blcaFZk8eTLefPNNaZ3Hjx9Hs2bNHGqXI8aNG1fufRctWmTXc1S4M5Kbm2tduS8oKAiXL1/GHXfcgZYtW+LQoUN2NYKIiKg6MRqNNp0RJePHj1eNZGnYsGG5njM8PBw//PCDzbaMjAxr2c1/b267dR+j0Qhvb+8y6z18+LDNz4cOHUJxcTGaNm0KADh16hR0Oh3atWtXrnaWpcKdkaZNm+LkyZOIiopC69atsWLFCkRFRWH58uWoU6eO3Q1xtSKLDsJSeuEeg06+iqRF0ktWCwuWhf46suKvl4dymwu7XZUe63mw/Ksq3+5k4dM+WuWwRgDw1SiXmyXvndpqwNWNpkD5Tm/9aOWcAwH6Amm9srBstRV/q5PU+fKcSvo7shTL/FRSBBSZlRcyy80q+5cSAIhile8u2c1/nfy90+nLbrMG8u9pp6rkyyskJKRCK+LKxMTEYO7cubh06ZJ10CAxMRFGoxEtWrSw7vPtt9/aHJeYmCjN37Vz507r/xctWgR/f38kJCQgKCgIQEky1GHDhqFz5852t73CnZFXXnkFFy9eBADMnDkTvXv3xpo1a6DX6xVn+BIREVV1zrxN4wppaWm4du0a0tLSYDabkZKSAgBo3Lgx/Pz80KtXL7Ro0QJPP/00FixYgPT0dEybNg3x8fHW20QjR47Ee++9h4kTJ2L48OHYsWMH1q1bh02bNpWrDQsXLsS2bdusHRGg5C7J66+/jl69emH8+PF2vbYKd0aeeuop6//btWuHc+fO4cSJE2jQoAFq165tVyOIiIjczhmr7rpwZGXGjBlISEiw/tymTRsAJSMX3bp1g06nwzfffINRo0YhJiYGvr6+GDJkCObMmWM9Jjo6Gps2bcLYsWOxZMkS1K9fHx9++KFqjpGbsrOzcfny5VLbL1++jBs35MkMZRxKa7d37160b98ebdu2daQaIiIiUrF69WrVOxCRkZGlbsP8Xbdu3UrNAymvf/zjHxg2bBgWLlyIDh06AAD279+PCRMmYMCAAXbVCTjYGenTpw9SUlLKPbmGiIio6tL8+XC0jupr+fLlePXVVzF48GAUFZUs+eDh4YFnn30Wb731lt31OtQZEdV1eUIiIqp5qvhtmqrAx8cHy5Ytw1tvvYUzZ84AABo1agRfX1+H6i130jO1YR+iqiok7QbqH7+GkDT772cSEdFffH190apVK7Rq1crhjghQgc7IgAED8PzzzyMnJ8e6bcWKFaUyuRFVJSFpNzC9/yZMfHIbpvffxA4JESlzYgbW6mTAgAGl0tvLPPnkk7h06VKFnqPct2n279+PoUOHolWrVli9ejW6dOmCwYMHV+jJ3Ol6vjd0mtIZ8Ixe8qXigwyOrURoD4uQ9xFlOUr89fLXUzgjV7Gsx87yZ9n7O50kL4Qs3wcAeGglx0o+2bJcFADQwBcw5NouY3/zZ1+t/Dx5aZTzGpgkffgo/RVpvatPKcfyFwn5x7FAeEqOVc4ZISsDgCKL8vMWqrRpcBflcyF73mKL/BqXHRvUUJ6yevD3zymWmcrINVTeNql9Lu2l2VFPsSzUlKFYBgDXc5XzgWRlyXMKyfK1eHoXKZbpdPLPXW1/5e+YQC/5e+fjUXZ+n6JcE85Jj3SSKr5qr7ts3LixzAiasggh8PXXX+O1116z5jopj3J3Rlq3bo0DBw5YY4nj4+MxdepUeHjYVlGejHNErlbnfCbqi2sIT7Xtzd/82Vg7H9lRyl/kRERUQgiBO+64w6XPUaEJrB4eHpg1axY6duyIBx98EG+//ba1TAgBjUbDVXvJ7eqcz8T7g/9dZtkz0763/v8/W9uwQ0JEVkKUPByto7q5NQNredWrpzziV5YKR9Ns2LABo0aNQpcuXcocGSFyN+885SHmW3nmsuNMRLdgNE2Zunbt6vLnKHdPIjMzEy+++CI2btyIN954A6+88oor20Vkt3wf5bkVtyrylc+lICKiylHuzkiLFi3QoEEDHDp0yLpSH1FVdDEiEKM+ewLR4irCU7Ntbs18/Pp9SI82omHty7xFQ0S2OIHVbcrdGXnxxRcxZcoU6HT8a5KqvosRgfD0LT1emh5txO/Ng1HbN6eMo4ioJtOIkoejdVDFlaszIoTAtGnTXN0Wl7o//DcY/Mo3fH8rWViq2nLxaiGtStRCMWUhiDnm0uHLt8oqUh4NuFqgnLjG20M+D6OOt/JS5oGe8nA+2XmUvR6TJCQVAO72TYOxtu1zN6x9GbV9c1DXQ3l5e0eE65TPAwAE65Q7QWrvu1kSWloE5WNlx5U8r/J5NKuktpaFu5okr8eikuJI1mazyrEWyV+masfK67UvjFmtXPq+qtQrC/NXI3teWai+2vXkyLFKr7fQUr55YA7jnBG3Kdcn884778TatWthMpUdA37T6dOnMWrUKMyfP98pjSNyVHaUN/6ztQ02bmjF6BkioiqqXCMj7777LiZNmoQXX3wRPXv2RPv27VG3bl14eXnh+vXrOHbsGPbs2YOjR49i9OjRGDVqlKvbTVRu7IAQUblwzoiqjIwMvPrqq9i+fTsuXbpUao06e9N7lKsz0qNHD/z444/Ys2cPPv/8c6xZswbnzp1Dfn4+ateujTZt2uCZZ57Bk08+iaCgILsaQkRE5Fa8TaNq6NChSEtLw/Tp01GnTh1oNM7pfFUoScj999+P+++/3ylPTERERLeXPXv2ICkpCXfffbdT62XGMiIiIoAjI+UQERFR6taMM7hm5SciIqLbDVftVfX2229j8uTJOHv2rFPr5cgIERERlctjjz2GvLw8NGrUCD4+PvD0tE2Zce3aNbvqrTGdkWDPXHh5ls4zIouJV6O2hL2MTtJ9VsvtIFvy3Vsnj8fXSXKfFBQr52G5kq+cgwQAtJLXUyxZth2Q52PJLdYrlrUJSJPWG+KRrVhm1BZIjzVJBg1l+SYcyctxO3Ikb4e99cryiKgdK8vboZrTQ/a+q7yv9uYDUctl5Mj3l4zs9VhUJixKz4Wd7bWonAenYTSNqlsXyHWmGtMZISIikmEGVnVDhgxxSb0V/rNm9erVZW4vLi7GlClTHG0PERERVSHZ2dk2/5c97FXhzsjLL7+MQYMG4fr1v9Jpnzx5Evfeey/+/e9/290QIiIit+IE1jIFBQXh0qVLAIDAwEAEBQWVetzcbq8K36Y5fPgwnnrqKbRs2RKrVq3CqVOnMHHiRPTv3x/Lli2zuyFERERU9ezYsQPBwcEAgJ07d7rkOSrcGWnUqBH27t2LMWPGoHfv3tDpdEhISMATTzzhivYRERFVCg2cMGfEKS2pWrp27Vrm/53JrgmsmzZtwtq1axETE4NTp05h5cqV6Nq1K+rWrevs9hEREVEVk5eXh7S0tFIL6LZq1cqu+ircGXnhhReQkJCAuXPnYty4ccjIyMDw4cPRsmVLvP/++3j00UftaoirFQtdmaF7jizBrXUgTFMWgOtIm9TotcWKZbUMuYplHlp5aN0Nk5di2e/FgdJjg7zyFMsifZRj1gN0+dJ6ZSGGBUI5jBkAtHBNyKQjLHaG0dp7XFWlFk5sb/iuWti1LJRfLQTXVWSh5GqvRy0c2RXUnlPp/SkSlfR5ZGivqsuXL2PYsGHYvHlzmeX2LpRX4atx79692L9/P8aPHw+NRoPw8HB8++23mDNnDoYPH25XI4iIiNyOE1hVjRkzBpmZmdi/fz+8vb2xZcsWJCQkoEmTJvjqq6/srrfCIyMHDx6EwWAotT0+Ph6xsbF2N4SIiIiqth07dmDjxo1o3749tFotIiMj0bNnTxiNRsybNw99+/a1q94Kj4wYDAacOXMG06ZNwxNPPGEN99m8eTOKi5VvARAREVVpHBlRlZubi9DQUAAlIb+XL18GALRs2RKHDh2yu94Kd0Z2796Nli1bYv/+/diwYQNycnIAAEeOHMHMmTPtbggREZE73czA6uijOmvatClOnjwJAGjdujVWrFiBP/74A8uXL0edOnXsrrfCnZHJkyfj9ddfR2JiIvT6v9YN6d69O77//nu7G0JERERV2yuvvIKLFy8CAGbOnInNmzejQYMGeOedd/DGG2/YXW+F54z8/PPP+Oyzz0ptDw0NxZUrV+xuCBERkVs54zZLNR8Zeeqpp6z/b9euHc6dO4cTJ06gQYMGqF27tt31VrgzEhgYiIsXLyI6Otpm++HDh1GvXj27G+JqFmjKDpl1ILxNLYDJ3hU1XbUCKAAYJKG9Ok/lEFu11YDDvW4olqmFBfvpChXLgj2Uw431GvkcJVlIq1porycqf/6TO0ItXUl2/k1C/tXjSAiuLMxWVqZTCeeWrySsEkbrQAiujOxYtVWIpSHQkpW21Vc3Vn6t9q7ybLJU0m/4Kt4ZmTt3LjZt2oSUlBTo9XpkZmaW2ufll1/G3r178csvv6B58+ZISUkptc9PP/2E+Ph4HDhwACEhIXjppZcwceJEu9rk4+ODtm3b2nXsrSrcGXn88ccxadIkrF+/HhqNBhaLBXv37sWrr76KZ555xuEGERERUWkmkwmDBg1CTEwMVq5cqbjf8OHDsX//fvz000+lyrKzs9GrVy/ExsZi+fLl+PnnnzF8+HAEBgbi+eefV23DuHHjytyu0Wjg5eWFxo0bo1+/ftb08eVV4c7IG2+8gfj4eERERMBsNqNFixYwm80YPHgwpk2bVtHqiIiIqgRnTEB15QTW2bNnAwBWr16tuM8777wDoCQ5WVmdkTVr1sBkMuGjjz6CXq/HnXfeiZSUFCxatKhcnZHDhw/j0KFDMJvNaNq0KQDg1KlT0Ol0aNasGZYtW4bx48djz549aNGiRblfW4XHzPR6PT744AOcOXMG33zzDT799FOcOHECn3zyCXQ6+fAdERFRlXUzA6ujD5SMQNz6KCxUvh1dmZKTk9GlSxebAJS4uDicPHkS169fVz2+X79+iI2NxYULF3Dw4EEcPHgQv//+O3r27IknnngCf/zxB7p06YKxY8dWqF12rU0DAA0aNECDBg3sPZyIiKhqceKckYiICJvNM2fOxKxZsxys3HHp6eml5nyGhYVZy4KCgqTHv/XWW0hMTITRaLRuCwgIwKxZs9CrVy+88sormDFjBnr16lWhdpWrM6J0j6gsixYtqlADiIiIqpvz58/b/MIuK3M5UJIu480335TWdfz4cTRr1syp7bNXVlYWLl26VOoWzOXLl5GdnQ2gJNDl7wvoqSlXZ+Tw4cM2Px86dAjFxcWl7he1a9euQk9OROQIIQR+PZCJxvcEQqOp3guUkes5c86I0Wi06YwoGT9+PIYOHSrdp2HDho416hbh4eHIyMiw2Xbz5/DwcNXj+/Xrh+HDh2PhwoW45557AAAHDhzAq6++iv79+wMAfvjhB9xxxx0Vale5OiM7d+60/n/RokXw9/dHQkKCdTjn+vXrGDZsGDp37lyhJycicsTxpKv418gjeGHF3WjeuZa7m0O3OzeE9oaEhCAkJMTBJy2/mJgYTJ06FUVFRfD0LElxkJiYiKZNm6reogGAFStWYOzYsXj88cetS8B4eHhgyJAhWLx4MQCgWbNm+PDDDyvUrgrPGVm4cCG2bdtm0+igoCC8/vrr6NWrF8aPH1/RKiuFWWjLzuNgZy6QcnFD3ohCi/wtPX0jVLEst1ivWOYIT5U8I3pJuY+H8lCfr6QMALoFnlAs02pd876fMSmfXwC4aApULJPlZwDU8lzI8ljI63Ukp0ctfY5iWW0P5TKDVp63Rva8KTf+uhe/d1MaAGDHplwU3n23tE5AnqPHrHKeiiW5Nxx5Xtn746WS38dP8hnQS3IKAfKcKzJq15MjlOp25XPeTtLS0nDt2jWkpaXBbDZbc4g0btwYfn5+AIBff/0VOTk5SE9PR35+vnWfFi1aQK/XY/DgwZg9ezaeffZZTJo0Cb/88guWLFli7Uio8fPzwwcffIDFixfjt99+A1AycnPz+QHg7nJ8Fv+uwp2R7Oxs68I4t7p8+TJu3FBOfEVE5CiLReD4+uMw5ZT8Ej6742zJv9vPwq9uyZeh3k+PZgObQaPlLzCqIGesLePC0N4ZM2YgISHB+nObNm0AlNy96NatGwBgxIgR2L17d6l9UlNTERUVhYCAAGzbtg3x8fFo164dateujRkzZpQrrPdWfn5+aNWqlYOv6C8V7oz84x//wLBhw7Bw4UJ06NABALB//35MmDABAwYMcFrDiIj+zpRvxuF/HYYpu6QzotGVdDiKC4pxeHnJ3Da9UY/GDzaGp688yy5RKVU8A+vq1aulOUYAYNeuXar1tGrVCklJSc5plJNU+D7C8uXL0adPHwwePBiRkZGIjIzE4MGD0bt3byxbtswVbSQiAgB4+XrgkU8eQUjLknvswixs/g1pFYJ+n/ZjR4ToNlPhzoiPjw+WLVuGq1ev4vDhwzh8+DCuXbuGZcuWwdfX1xVtJCKy8gv3Q+/3e8PDy3Zg18PLA33e7wPfMH4PkZ2Ekx5UYXYnPfP19XXq/SIiovK6cvQKigtsJ2gWFxTj8tHLCGsd5qZW0e2uqqeDr84q3BnJzc3F/PnzsX37dly6dAkWi21Uws3ZtURErnJ+z3kAQIOuDdD+5fb4ccmPSPsuDeeTzrMzQuRip0+fxs6dO8vsA8yYMcOuOivcGbk5U/fpp59GnTp1bptEQxahUQgPsz/8VqcSFiwL53PEhYJAxbLtx+VZ+kJ2KIfvHlhd/ky7t4MPTirnvfHSyEMmZWTv+5Uif+mxb7TaYPfzVkX997yoWKbXKYeOhntlS+ut7akcFryqwyrsfWEvzvU+hyeeeAIajQbiHwL//ve/ERkZiU4dOqk3vAq574mFimU59eTfT/nhkj/D6+dLj/XzLVAsC/VTPv9BXnnSen11yuHGBp083FircI9DLcScKs8HH3yAUaNGoXbt2ggPD7fpA2g0msrrjGzevBmbNm1Cp0631weeiKqPTp062XwHaTQaDB482I0tomqhikfTVAWvv/465s6di0mTJjm13gp3RoKCghAcHOzURhAREbkb54you379OgYNGuT0eis89vXaa69hxowZyMuTD9URERFR9TJo0CBs27bN6fXalQ7+zJkzCAsLQ1RUlDW3/U2HDh1yWuOIiIgqVTUf2bDHO++8Y/1/48aNMX36dHz//fdo2bJlqT7Ayy+/bNdzVLgzcnNVPiIiomqFc0bK9Pd1a/z8/LB7926btPNAydytSuuMzJw5064nIiIiottPamqqy5/DrfFS8+bNwz333AN/f3+Ehoaif//+OHnypM0+BQUFiI+PR61ateDn54eBAwciIyPDTS0mIqLq6uYEVkcf1dmcOXPKnDOan5+POXPm2F1vuUZGgoODcerUKdSuXRtBQUHS3CLXrl0r95Pv3r0b8fHxuOeee1BcXIx//vOf6NWrF44dO2ZNLT927Fhs2rQJ69evR0BAAEaPHo0BAwZg79695X4eoGT59TKXYBeOLCVvf18u36y8dsahaxGKZQCQ9ksdxTKfdHmb/M8r5xaoboqE8pLvZrUcMEL5o2GB8jUje86aJtvkpVh2LjtIemxuoXI+nBl32d2kKkmfo5yPRZ8lv051hcrl5gwf6bFZUQbFspxayu+dp16eK0Qj+W2s1cp/U3toy/5smfMKpcc5DW/TqJo9ezZGjhwJHx/b6ysvLw+zZ892bZ6RxYsXw9+/JJnT22+/bdcTlWXLli02P69evRqhoaE4ePAgunTpgqysLKxcuRKfffYZunfvDgBYtWoVmjdvju+//x733Xef09pCREREckKIMgckjhw54lDaj3J1RoYMGVLm/50tKysLAKwv6ODBgygqKkJsbKx1n2bNmqFBgwZITk4uszNSWFiIwsK/etHZ2fJMj0RERADzjMjcvCui0Whwxx132HRIzGYzcnJyMHLkSLvrt3uhPGezWCwYM2YMOnXqhLvuKhmHTU9Ph16vR2BgoM2+YWFhSE9PL7OeefPmYfbs2a5uLhERVTe8TaPo7bffhhACw4cPx+zZsxEQEGAt0+v1iIqKQkxMjN31V5nOSHx8PH755Rfs2bPHoXqmTJmCceP+WmMlOzsbERHyORhERESk7OZdkejoaHTs2LFUfhFHVYnOyOjRo/HNN9/gu+++Q/369a3bw8PDYTKZkJmZaTM6kpGRgfDw8DLrMhgMMBiUJ2YRERGViSMjqrp27Wr9f0FBAUwm24URjUajXfW6NbRXCIHRo0fjiy++wI4dOxAdHW1T3q5dO3h6emL79u3WbSdPnkRaWppDw0FERER/x9BedXl5eRg9ejRCQ0Ph6+uLoKAgm4e93DoyEh8fj88++wwbN26Ev7+/dR5IQEAAvL29ERAQgGeffRbjxo1DcHAwjEYjXnrpJcTExFQ4ksYiNLCIMsLgNPL+mM6BMM5zecozi384Ha1Ypr0qH/7S31Bus1YedQdTQJUYDKsURZLwXFkZIA/flYUF17TQ3p/O11cssxQrnyeNSoinzsORkPvbi7ZI+Vx4FMjPk0ZymtS+CwJOKl+rFg/lsODs5kXSej2NJsUyrU7+vhZrym6T2aQc/uxUHBlRNWHCBOzcuRPvv/8+nn76aSxduhR//PEHVqxYgfnz59tdb7l+Mw0YMKDcFW7YsKHc+77//vsAgG7dutlsX7VqFYYOHQqgJKxYq9Vi4MCBKCwsRFxcHJYtW1bu5yAiIiLn+Prrr/Hxxx+jW7duGDZsGDp37ozGjRsjMjISa9aswZNPPmlXveXqjNw6a9aZhFDvQnp5eWHp0qVYunSpS9pAREQEgCMj5XDt2jU0bNgQQMn8kJuJTu+//36MGjXK7nrL1RlZtWqV3U9ARER0O2CeEXUNGzZEamoqGjRogGbNmmHdunXo0KEDvv7661JpOCrCrRNYiYiI6PYxbNgwHDlyBAAwefJkLF26FF5eXhg7diwmTJhgd73lGhlp06aNdD2aWx06dMjuxhAREbkNb9OoGjt2rPX/sbGxOHHiBA4ePIjGjRujVatWdtdbrs5I//797X4CIiKi2wFv0yizWCx466238NVXX8FkMqFHjx6YOXMmIiMjERkZ6XD95eqMzJw50+EnqqrKDPe9RWaxr2LZDxflb0DmReXkL9o85TtkugJ5mzSSKDdZqB8ACG35RriqA+mqvSrvuxnKx+okdzfVrqfqxpxrX6i42mmymGvOedQWKX9odSaV0F5Jsdo1rimWrK4reVsDf5KnHigMVC7Pb6Qc9gsAnt5lhw1bijmjwN3mzp2LWbNmITY2Ft7e3liyZAkuXbqEjz76yCn12/UOZ2Zm4sMPP8SUKVOsM2kPHTqEP/74wymNIiIiqnTCSY9q6OOPP8ayZcuwdetWfPnll/j666+xZs0aWCzOyQlU4T9rfvrpJ8TGxiIgIABnz57Fc889h+DgYGzYsAFpaWn4+OOPndIwIiKiSsU5I4rS0tLw4IMPWn+OjY2FRqPBhQsXbJZxsVeFR0bGjRuHoUOH4vTp0/Dy8rJuf/DBB/Hdd9853CAiIiKqWoqLi21+5wOAp6cniorkGXnLq8IjIwcOHMCKFStKba9Xr541nTsREdHtRvPnw9E6qiMhBIYOHWqzEG1BQQFGjhwJX9+/5lZWJAv7rSrcGTEYDMjOzi61/dSpUwgJCbGrEURERG7H2zSKhgwZUmrbU0895bT6K9wZeeSRRzBnzhysW7cOAKDRaJCWloZJkyZh4MCBTmsYERFRZarqob1z587Fpk2bkJKSAr1ej8zMTJvyI0eOYP78+dizZw+uXLmCqKgojBw5Eq+88orNfrt27cK4ceNw9OhRREREYNq0adb14JS4OhN7heeMLFy4EDk5OQgNDUV+fj66du2Kxo0bw9/fH3PnznVFG4mIiGo8k8mEQYMGKa4Bc/DgQYSGhuLTTz/F0aNHMXXqVEyZMgXvvfeedZ/U1FT07dsXDzzwAFJSUjBmzBiMGDECW7durayXUaYKj4wEBAQgMTERe/fuxZEjR5CTk4O2bdsiNjbWFe1zmgKzHhZz6fj3X2/Ulh53+o9QxTKRrZceK8sXojVJyorU8gNIyipppe3bgSzPSJGQX/o6ScIWi+QvH9lzVkuyvwIleS60+fK/g7wzak5eCY3kgtIV2f9ntlouF41FeQfZNa4xy9vkfUW5zOuaPEfJjaiyy0VBJV0PVfw2zezZswEAq1evLrN8+PDhNj83bNgQycnJ2LBhA0aPHg0AWL58OaKjo7Fw4UIAQPPmzbFnzx4sXrwYcXFxrmu8CvsyFgHo1KkTOnXq5My2EBERuZeTOhN/n1tpMBhsJn9WlqysLAQHB1t/Tk5OLjV4EBcXhzFjxlRyy2yVu7u5Y8cOtGjRoszJq1lZWbjzzjuRlJTk1MYRERHdjiIiIhAQEGB9zJs3r9LbsG/fPnz++ed4/vnnrdvS09MRFhZms19YWBiys7ORn59f2U20Kndn5O2338Zzzz0Ho7F0ivOAgAC88MILWLRokVMbR0REVFluTmB19AEA58+fR1ZWlvUxZcqUMp9z8uTJ0Gg00seJEycq/Fp++eUX9OvXDzNnzkSvXr0cOS2Voty3aY4cOYI333xTsbxXr174v//7P6c0ioiIqNI5cc6I0Wgs84/3vxs/frxqJEvDhg0r1IRjx46hR48eeP755zFt2jSbsvDwcGRkZNhsy8jIgNFohLe3d4Wex5nK3RnJyMiAp6fy5CMPDw9cvnzZKY0iIiKqCUJCQpyao+vo0aPo3r07hgwZUmaEa0xMDL799lubbYmJiYiJiXFaG+xR7ts09erVwy+//KJY/tNPP6FOnTpOaRQREVFlc+ZtGldIS0tDSkoK0tLSYDabkZKSgpSUFOTk5AAouTXzwAMPoFevXhg3bhzS09ORnp5uM1AwcuRI/Pbbb5g4cSJOnDiBZcuWYd26dRg7dqzrGl4O5R4ZefDBBzF9+nT07t27VH76/Px8zJw5Ew899JDTG+gsu9IaQefjVWp7wQ357GZNnnKoplp4olYWgispg8oiiLKLXRKRWsLOD8oDPedLy3cmTravYhcqsCiP5JlV+uFmoVyuk7xBxZYaFtorCQ/VSsIxvS7Lz7/qdVxDqIXqa2WnUWXJEIuQfBmoxQXL6pX9VlGpNuB02dvNJrubUzFVPLR3xowZSEhIsP7cpk0bAMDOnTvRrVs3/Oc//8Hly5fx6aef4tNPP7XuFxkZibNnzwIAoqOjsWnTJowdOxZLlixB/fr18eGHH7o1rBeoQGdk2rRp2LBhA+644w6MHj0aTZs2BQCcOHECS5cuhdlsxtSpU13WUCIiopps9erVijlGAGDWrFmYNWuWaj3dunXD4cOHndcwJyh3ZyQsLAz79u3DqFGjMGXKFIg/e9UajQZxcXFYunRpqXAhIiKi20VVTwdfnVUo6VlkZCS+/fZbXL9+Hb/++iuEEGjSpAmCgoJc1T4iIqLKUcVv01RndmVgDQoKwj333OPsthAREbkPOyNuU3MWgCAiIqIqye61aYiIiKoTzhlxH3ZGiIiIAN6mcaMa0xkpvO4FbUHpPCMak0quEEmuBLUcALJyrVk54F6tZy1LASBJrQEAyAtVfj1tn1NeW0jTQC+t956hkmNVlhzXqeRDUHLxIXnygcGtlHN+WBzJowDler118jY1flP5PHnekLdJKzlP0jJZThsAmmLl9+dGlPxYrZf9uURkzJLruPXLi6XHGjKVk5TI8pfoTPLrVGgln1mVa1z2vKK28mfL4mH/daqW00N6qEWWzEh+rLZYsoPKsUrpfYTKNUy3vxrTGSEiIpLRCAGNLBlcOeugimNnhIiICOBtGjdiNA0RERG5FUdGiIiIwGgad2JnhIiICOBtGjfibRoiIiJyqxozMqIp1kJTXLrvpZGFoUE+5KZVC+2VLYMuKdOohLHJQjVlIZ4AoL+h/IL0N2Txh/J6LZ7K59FskJ9jk59yeW495bL6Ydel9RZK1jIvEvZf+lrJGxvkkSc9tihY+c3TFMvbpNPYFzIplCORAQAF9ZTLLAb5G+97XvnvGdlS8kohnDfJrhiTv/xY2d9YnpLrXzWM1kXfBRaV98dejqQIkL4Ban/5S95b1Yh6pborabSBt2ncp8Z0RoiIiKR4m8Zt2BkhIiICR0bciXNGiIiIyK04MkJERATwNo0bsTNCRET0J95mcQ/epiEiIiK3qjkjI8WaksffSMNvy1EuJYljk9Wr1jOXrQbsyOqhxV72h+ea9bJjpYdK6za0v6Zc5iGPgZaH9srjKWXhu0WSpZE9VZbIbd0sTbHsaFZDeZskVVsk72tRoPyaMHsrl/v8If97RRaGrpOUmUsvoG1DLfRXpthbucyiU77WvK6rrdorqVcWdg3551L2vqqFZctCZdXCaGXfM7IzoTpyIFnxV3UhYYVDhWRlaacSouThaB1UYTWnM0JERCTBaBr34W0aIiIiciuOjBAREQGMpnEjdkaIiIhQMqfOoXmCcPz4moq3aYiIiMitODJCREQE8DaNG7EzQkREBEbTuFON6YxoRNn38jRm+5cNl+X7UCt35L6iND+AVv56iiQ5GCDJlSBbDh4ALJ6SY/XyY3Pb5yuWRfgol6mxSBJDmNUyHkiOVctRItPI77Ji2RFjpPRYbZHy88rydsjyiACAV4bya9UWSQ+Vkl3jHipvqyxXiFoOEtnbIyTXcUGQ/JowZEnOo9rnWVK19LOldplKPrNatdwckrq1ku8ui8rlL82HY/9Hp3Iwz4jbcM4IERERuVWNGRkhIiKS4W0a92FnhIiICOAEVjfibRoiIqLbwNy5c9GxY0f4+PggMDCwVPnVq1fRu3dv1K1bFwaDARERERg9ejSys7Nt9tu1axfatm0Lg8GAxo0bY/Xq1ZXzAiTYGSEiIsJft2kcfbiKyWTCoEGDMGrUqDLLtVot+vXrh6+++gqnTp3C6tWr8b///Q8jR4607pOamoq+ffvigQceQEpKCsaMGYMRI0Zg69atrmt4OfA2DREREVDlo2lmz54NAIojGUFBQTYdlcjISLz44ot46623rNuWL1+O6OhoLFy4EADQvHlz7NmzB4sXL0ZcXJzL2q6mxnRGNMUaaIpLx7KphdhKw3dV1ui2O3xX5VqWLhuuMtZlNsiOlcX6yeu1eCqX5daTn4iwWlnyyu1UJDkZsrBfQB6pKQvt1aq8eUaPAsUyn5Bc6bEF+f6KZbKXY7guf62yME6160n2+ZAdq/bXoyz0VxbGrPa80uNUwk4LA5Q/H4ZM+QvSSMJdpedCNTpXeQd7zwMA6efdkb/8dSb5wRaPss8xJ4Xa58KFC9iwYQO6du1q3ZacnIzY2Fib/eLi4jBmzJhKbp0t3qYhIiKCc2/TZGdn2zwKCwsr7XU88cQT8PHxQb169WA0GvHhhx9ay9LT0xEWFmazf1hYGLKzs5Gfb39eJ0exM0JERAT8FU3j6ANAREQEAgICrI958+aV+ZSTJ0+GRqORPk6cOFGhl7F48WIcOnQIGzduxJkzZzBu3LgKnojKV2Nu0xAREVWW8+fPw2g0Wn82GMq+Rz5+/HgMHTpUWlfDhg0r9Nzh4eEIDw9Hs2bNEBwcjM6dO2P69OmoU6cOwsPDkZGRYbN/RkYGjEYjvL1lKbpdi50RIiIiODfpmdFotOmMKAkJCUFISIhjTyphsZTMgLt5mygmJgbffvutzT6JiYmIiYlxWRvKg50RIiIiALCIkoejdbhIWloarl27hrS0NJjNZqSkpAAAGjduDD8/P3z77bfIyMjAPffcAz8/Pxw9ehQTJkxAp06dEBUVBQAYOXIk3nvvPUycOBHDhw/Hjh07sG7dOmzatMll7S4PdkaIiIiAKp+BdcaMGUhISLD+3KZNGwDAzp070a1bN3h7e+ODDz7A2LFjUVhYiIiICAwYMACTJ0+2HhMdHY1NmzZh7NixWLJkCerXr48PP/zQrWG9gJsnsH733Xd4+OGHUbduXWg0Gnz55Zc25UIIzJgxA3Xq1IG3tzdiY2Nx+vRp9zSWiIjIjVavXg0hRKlHt27dAAAPPPAA9u3bh8zMTOTn5+PUqVOYP39+qWyt3bp1w+HDh1FYWIgzZ86ozlmpDG4dGcnNzUXr1q0xfPhwDBgwoFT5ggUL8M477yAhIQHR0dGYPn064uLicOzYMXh5qSQb+DvFm4Fqa3RLqlTLI2Jn/gC1e5ay/AGyJdIBwCJZclx6nCSPCCBvk3+TTOmxOjckETCrJGGQ5RKR1qtSrpNcNC3DL0qP/bFAr1imPa/8eZDmyoF8WXed2guSXE7Sz4da/gxJuUee/NhiyRw82dsqywUCQPqnW2Gg/HOlv6Fc5pknyRVi38cVgOo3m/T9KTYoH6012/95leYyAty+rosGTpgz4pSW1Dxu7Yz06dMHffr0KbNMCIG3334b06ZNQ79+/QAAH3/8McLCwvDll1/i8ccfr8ymEhFRdVfFM7BWZ1U2z0hqairS09NtMsUFBATg3nvvRXJysuJxhYWFpZLNEBERUdVVZTsj6enpAFBmpribZWWZN2+eTaKZiIgIl7aTiIiqh6q+UF51VmU7I/aaMmUKsrKyrI/z58+7u0lERHQ7cGIGVqqYKtsZCQ8PB4AyM8XdLCuLwWCwJpspb9IZIiIicp8q2xmJjo5GeHg4tm/fbt2WnZ2N/fv3uz1THBERVT8aIZzyoIpzazRNTk4Ofv31V+vPqampSElJQXBwMBo0aIAxY8bg9ddfR5MmTayhvXXr1kX//v0r/FwaiwYai5ODrtSuOdnTScpUl22XlKl9DmShgtKQYbXl1Vsrx1uGGUzyg13EInlBaqG79ob2ykJ3S9qkXG+4l3yytd5QpFiWH6Jcr4ckJBiQh/6qngZHQt9l1dobMgzAQ7LwqL1hvwCgUT79qn/Wmfzt++7Rmez/xaZ2nmTluiLl59VKygB5+K7qd5tS1ZX1+93y58PROqjC3NoZ+fHHH/HAAw9Yf765suCQIUOwevVqTJw4Ebm5uXj++eeRmZmJ+++/H1u2bKl4jhEiIiKqstzaGenWrRuE5E95jUaDOXPmYM6cOZXYKiIiqomccZuFt2nsw7VpiIiIgCq/Nk11xs4IERERwAysblRlo2mIiIioZuDICBEREZyTQZUZWO1TczojCiFbaiuaaouVw9RcddGprtTpovEsWdhdbgP5kqYhAblObo3jLJITqRa6KztWfpy8Xq3kovHRykOgfb2Uy4uLlJ+3IFx+wXifV/4akK3oCwBaSRijWhinjCzs1O7wUAC6QuUytZWp5TH19h9b5KdcaCmQVysLY4ZWJQRX0iat5OOu9r0nvWbUVmtWWBFYabvT8TaN2/A2DREREblVzRkZISIiktBYHEvWd7MOqjh2RoiIiADepnEj3qYhIiIit+LICBEREcCkZ27EzggRERGYDt6deJuGiIiI3KrGjIxooBDqrzbzWdLJVUtFIU1LIFsiXS0WX9JmtbwQ8oqVi4x1b0gP1ckSTriJRfKC1PKMuIosXYJO5WJsGnxJsexAbgPlev2LpPUW1FE+T94X1BKNKBfJ8nZo5U2Sfz7kh0pHyWV5hXQql7A0D4mL/hg2G+SvVvZXuKdK6h9pvhbZd4xe5R2QnAutSl4npe++SkskxgmsblNjOiNERERSAup/oJanDqowdkaIiIjAOSPuxDkjRERE5FYcGSEiIgL+DO11dM6IU1pS47AzQkREBHACqxvxNg0RERG5Vc0ZGbGgzFnSGot9S8UDUO3KyTrIsvBch5boVou6k5QXt8xRLPP1lKwpXkWZJS/WohaX7QYWyMNog/XKsZoeHsoxkxaz/ELVBJgUywqKDdJjfS4o1y27xqVhpZAvYa/GVWGgWuXTJA/7hf2Lp6mdJ1nor9qxXteUGyW0yvWqvRaNJH5dVyR/c8z6shsta49TWaAeO16eOqjCak5nhIiISILRNO7D2zRERETkVhwZISIiAjiB1Y04MkJERAT81Rlx9OEic+fORceOHeHj44PAwEDpvlevXkX9+vWh0WiQmZlpU7Zr1y60bdsWBoMBjRs3xurVq13W5vJiZ4SIiOg2YDKZMGjQIIwaNUp132effRatWrUqtT01NRV9+/bFAw88gJSUFIwZMwYjRozA1q1bXdHkcuNtGiIiIqDK36aZPXs2AKiOZLz//vvIzMzEjBkzsHnzZpuy5cuXIzo6GgsXLgQANG/eHHv27MHixYsRFxfnknaXB0dGiIiIgL9SQDj6AJCdnW3zKCwsrJSXcOzYMcyZMwcff/wxtNrSv+KTk5MRGxtrsy0uLg7JycmV0j4lHBlR4chK82rLpCtRy1ngSIqMgvrKjQr2LbC/Ygl3TecyWZQv7yKVN1ZXBZMFeGqUc4mE+CvnILlgCpDWq5HkcLAESZJrACgwKech8bqkXK/aUvKyHBmS06BKVq+2WH6lynJd6ApUjvWQnGPJpaiW00P2esx6+RdFQbDywfps5dej1iZZ7hO1/DEaS9nPq7Td2ZwZ2hsREWGzfebMmZg1a5ZDdaspLCzEE088gbfeegsNGjTAb7/9Vmqf9PR0hIWF2WwLCwtDdnY28vPz4e3t7dI2KuHICBERkZOdP38eWVlZ1seUKVPK3G/y5MnQaDTSx4kTJ8r1nFOmTEHz5s3x1FNPOfOlVAqOjBAREQFOnTNiNBphNBpVdx8/fjyGDh0q3adhw4bleuodO3bg559/xn/+858/m1LSltq1a2Pq1KmYPXs2wsPDkZGRYXNcRkYGjEaj20ZFAHZGiIiISliE4+sJVPCWUkhICEJCQhx7zj/997//RX5+vvXnAwcOYPjw4UhKSkKjRo0AADExMfj2229tjktMTERMTIxT2mAvdkaIiIhuA2lpabh27RrS0tJgNpuRkpICAGjcuDH8/PysHY6brly5AqAkYuZmXpKRI0fivffew8SJEzF8+HDs2LED69atw6ZNmyrzpZTCzggRERFQ5UN7Z8yYgYSEBOvPbdq0AQDs3LkT3bp1K1cd0dHR2LRpE8aOHYslS5agfv36+PDDD90a1guwM0JERPQnZ2RQdV1nZPXq1RXKltqtWzfrvJG/bz98+LATW+a4GtMZ0dh5K9DiKVkO2yQPnbM3LFi1ndJwPvnB/qE5ytVW0irdlaWgWDlG2qISH22B8punddUa9Q6o75epWJae6S89VnYuNCrxdsUhyqG/hcV6xTJDpvz8y8J31cJDZW+t7K0TGrU2KR+stsS91iQ51sv+D540zFmlWlnob6EkGlyfI7/+ZSkNilVeq1LIt9r5pdtfjemMEBERSVXx2zTVGTsjREREwJ+RMJUbTUMlmPSMiIiI3IojI0RERAAgLCUPR+ugCmNnhIiICOCcETdiZ4SIiAjgnBE3qjmdEYVrzGKQXzgaO1feBSCdkSMLP7Ro7b+YNY2UV28FAE+dA0ueVjFFZnnsdLFO+Q2wyJY7VaU8DKtWr1ZtyVM7+XooL0/u6Sl/z4uLZcvGyp9XI7lWi8KUPzy6QuWwXwDwVI5AV13VWqMS+qt4nMovEVeFl3rkKz+vWiis7P1RW91bGuasUz7YJI8Uh6fkK0ifI7/+FVcw5mhDtVdzOiNEREQyvE3jNuyMEBERAX+OoDvaGXFKS2ochvYSERGRW3FkhIiICOBtGjdiZ4SIiAgALBbIJqiXvw6qKN6mISIiIrfiyAgRERHA2zRuVGM6I0JX8qgwWT4QncpFJ8sB4MCYVFG4cv6GQC/lJd2rm1yTPFeFj6fyubCoJdCQsEguJK3KVPpiB46V8ZTkL6nlmyc99kKBcuIOs2qiEUmR5PNRUF+ewEf7m3KbPOQvR05yii2eKsvbFysfrJY+xuKhXLeuULleWRkgb7PqFW7n5SY08pqLfJUrtkhy/wCA4UbZJ1KWE8Wp2BlxG96mISIiIreqMSMjREREUkwH7zbsjBAREQEQwgLh4Kq7jh5fU7EzQkREBJTM93B0ZINzRuzCOSNERETkVhwZISIiAv4c1eDIiDvUmM6IxVMAnqUvEm2xPEzNIjlDaqFz0iW8Jder2Ud+z9EvSDm2UVNpMXDul5ntIy2v5aO8lrlZbX11CZ3kHDsUMuzAsTJ1fbOk5ReuGRXLVKI4pTGXQvZ6POTXeF5ksWKZ32/yry1dgXKZLKReLTxXFtKqVRna12gl5ZI2aZVPQ0m9ZuV6i33kb570q0JWpvrFp1xkNsgPNSm8QWZTJQ3iWyzqF4IazhmxC2/TEBERkVvVmJERIiIiKd6mcRt2RoiIiAAIiwXCwds0DO21D2/TEBERkVtxZISIiAjgbRo3YmeEiIgIKEl45mhEIjsjdrktbtMsXboUUVFR8PLywr333osffvjB3U0iIiIiJ6nyIyOff/45xo0bh+XLl+Pee+/F22+/jbi4OJw8eRKhoaEuf37hIcmjoJKrQkiWUJd1vvXh8jXSPbTKE6TU2nS75SExmXWKZcX58stXdi4ssoQTqm6vCWq+HiZpuYck50dhsfL5VyW71tTyvOiV25TbwCw91P9X5TZL5yaqNEmW00OWj0iNNPeJ/KVCKyn3zJF/1ou97cxr48hXiMpTFnuVvd1cWX82CwGHP98cGbFLlR8ZWbRoEZ577jkMGzYMLVq0wPLly+Hj44OPPvrI3U0jIqJqRFiEUx5UcVW6M2IymXDw4EHExsZat2m1WsTGxiI5ObnMYwoLC5GdnW3zICIiUiUsznm4yNy5c9GxY0f4+PggMDCwzH00Gk2px9q1a2322bVrF9q2bQuDwYDGjRtj9erVLmtzeVXpzsiVK1dgNpsRFhZmsz0sLAzp6ellHjNv3jwEBARYHxEREZXRVCIiIpcymUwYNGgQRo0aJd1v1apVuHjxovXRv39/a1lqair69u2LBx54ACkpKRgzZgxGjBiBrVu3urj1clV+zkhFTZkyBePGjbP+nJ2dzQ4JERGpEhYB4eC8OuHCOSOzZ88GANWRjMDAQISHh5dZtnz5ckRHR2PhwoUAgObNm2PPnj1YvHgx4uLinNreiqjSIyO1a9eGTqdDRkaGzfaMjAzFE20wGGA0Gm0eREREqqr4bZryio+PR+3atdGhQwd89NFHNh2k5ORkm6kPABAXF6c49aGyVOmREb1ej3bt2mH79u3WYSaLxYLt27dj9OjR5arj5ptgKVBYylN11V77IwLsjaYx50mWHQVgNqss5SkhZJE4kpejGoUjCVOwqBwr+0tEtrquJV9+nopzCxXLTJBHmMhoHV3Vs5KpRQ7JrjdLgUo4h+zjIXnvhEUlrEJyrCZfHuFjLrQvmkb1Ei+W7ODAgsuyNokiB45VaZNZ55pVojWOjAwoHGo2lVyjrhx1AIBiFDmc86wYJW/a3+crGgwGGAwqyxY7wZw5c9C9e3f4+Phg27ZtePHFF5GTk4OXX34ZAJCenl7m1Ifs7Gzk5+fD29vb5W0sk6ji1q5dKwwGg1i9erU4duyYeP7550VgYKBIT08v1/Hnz5+/mVKPDz744IOP2/hx/vx5l/yeyc/PF+Hh4U5rp5+fX6ltM2fOLPO5J02apFrf8ePHbY5ZtWqVCAgIKNdrmz59uqhfv7715yZNmog33njDZp9NmzYJACIvL69C582ZqvTICAA89thjuHz5MmbMmIH09HTcfffd2LJlS6menZK6devi/Pnz8Pf3h0ajsc4hOX/+PG/hSPA8qeM5Kh+ep/LheVImhMCNGzdQt25dl9Tv5eWF1NRUmEz2j5jeSggBjcZ25ElpVGT8+PEYOnSotL6GDRva3ZZ7770Xr732GgoLC2EwGBAeHl7m1Aej0ei+URFU8ds0N40ePbrct2X+TqvVon79+qW2cz5J+fA8qeM5Kh+ep/LheSpbQECAS+v38vKCl5dC1jUXCgkJQUhIiMvqT0lJQVBQkLUzFBMTg2+//dZmn8TERMTExLisDeVxW3RGiIiIarq0tDRcu3YNaWlpMJvNSElJAQA0btwYfn5++Prrr5GRkYH77rsPXl5eSExMxBtvvIFXX33VWsfIkSPx3nvvYeLEiRg+fDh27NiBdevWYdOmTW56VSXYGSEiIroNzJgxAwkJCdaf27RpAwDYuXMnunXrBk9PTyxduhRjx46FEAKNGze2ZjG/KTo6Gps2bcLYsWOxZMkS1K9fHx9++KFbw3qBGtgZMRgMmDlzZqXMar6d8Typ4zkqH56n8uF5IjWrV6+W5hjp3bs3evfurVpPt27dcPjwYSe2zHEaIbiqDxEREblPlU56RkRERNUfOyNERETkVuyMEBERkVuxM0JERERuVaM6I0uXLkVUVBS8vLxw77334ocffnB3k9zqu+++w8MPP4y6detCo9Hgyy+/tCkXQmDGjBmoU6cOvL29ERsbi9OnT7unsW40b9483HPPPfD390doaCj69++PkydP2uxTUFCA+Ph41KpVC35+fhg4cGCpLIfV3fvvv49WrVpZk3bFxMRg8+bN1nKeo9Lmz58PjUaDMWPGWLfxPFFNVGM6I59//jnGjRuHmTNn4tChQ2jdujXi4uJw6dIldzfNbXJzc9G6dWssXbq0zPIFCxbgnXfewfLly7F//374+voiLi4OBUqLDlZTu3fvRnx8PL7//nskJiaiqKgIvXr1Qm5urnWfsWPH4uuvv8b69euxe/duXLhwAQMGDHBjqytf/fr1MX/+fBw8eBA//vgjunfvjn79+uHo0aMAeI7+7sCBA1ixYgVatWpls53niWokt62KU8k6dOgg4uPjrT+bzWZRt25dMW/ePDe2quoAIL744gvrzxaLRYSHh4u33nrLui0zM1MYDAbx73//2w0trDouXbokAIjdu3cLIUrOi6enp1i/fr11n+PHjwsAIjk52V3NrBKCgoLEhx9+yHP0Nzdu3BBNmjQRiYmJomvXruKVV14RQvBaopqrRoyMmEwmHDx4ELGxsdZtWq0WsbGxSE5OdmPLqq7U1FSkp6fbnLOAgADce++9Nf6cZWVlAQCCg4MBAAcPHkRRUZHNuWrWrBkaNGhQY8+V2WzG2rVrkZubi5iYGJ6jv4mPj0ffvn1tzgfAa4lqrhqRgfXKlSswm82lVvoNCwvDiRMn3NSqqi09PR0AyjxnN8tqIovFgjFjxqBTp0646667AJScK71ej8DAQJt9a+K5+vnnnxETE4OCggL4+fnhiy++QIsWLZCSksJz9Ke1a9fi0KFDOHDgQKkyXktUU9WIzgiRs8THx+OXX37Bnj173N2UKqlp06ZISUlBVlYW/vOf/2DIkCHYvXu3u5tVZZw/fx6vvPIKEhMT3bJCLFFVVSNu09SuXRs6na7UjPSMjAyEh4e7qVVV283zwnP2l9GjR+Obb77Bzp07Ub9+fev28PBwmEwmZGZm2uxfE8+VXq9H48aN0a5dO8ybNw+tW7fGkiVLeI7+dPDgQVy6dAlt27aFh4cHPDw8sHv3brzzzjvw8PBAWFgYzxPVSDWiM6LX69GuXTts377dus1isWD79u2IiYlxY8uqrujoaISHh9ucs+zsbOzfv7/GnTMhBEaPHo0vvvgCO3bsQHR0tE15u3bt4OnpaXOuTp48ibS0tBp3rv7OYrGgsLCQ5+hPPXr0wM8//4yUlBTro3379njyySet/+d5opqoxtymGTduHIYMGYL27dujQ4cOePvtt5Gbm4thw4a5u2luk5OTg19//dX6c2pqKlJSUhAcHIwGDRpgzJgxeP3119GkSRNER0dj+vTpqFu3Lvr37+++RrtBfHw8PvvsM2zcuBH+/v7We/cBAQHw9vZGQEAAnn32WYwbNw7BwcEwGo146aWXEBMTg/vuu8/Nra88U6ZMQZ8+fdCgQQPcuHEDn332GXbt2oWtW7fyHP3J39/fOtfoJl9fX9SqVcu6neeJaiR3h/NUpnfffVc0aNBA6PV60aFDB/H999+7u0lutXPnTgGg1GPIkCFCiJLw3unTp4uwsDBhMBhEjx49xMmTJ93baDco6xwBEKtWrbLuk5+fL1588UURFBQkfHx8xD/+8Q9x8eJF9zXaDYYPHy4iIyOFXq8XISEhokePHmLbtm3Wcp6jst0a2isEzxPVTBohhHBTP4iIiIioZswZISIioqqLnREiIiJyK3ZGiIiIyK3YGSEiIiK3YmeEiIiI3IqdESIiInIrdkaIiIjIrdgZISIiIrdiZ4SoDLNmzcLdd99t/Xno0KHSNPirV68utey7Pbp164YxY8Y4XI+a7du3o3nz5jCbzS5/LjUajQZffvml6n4mkwlRUVH48ccfXd8oIqpU7IxQtZOeno6XXnoJDRs2hMFgQEREBB5++GGbxcec7bHHHsOpU6dcVr+zTZw4EdOmTYNOpwMATJo0CVFRUbhx44bNfg8//DC6dOkCi8XisrZcvHgRffr0Ud1Pr9fj1VdfxaRJk1zWFiJyD3ZGqFo5e/Ys2rVrhx07duCtt97Czz//jC1btuCBBx5AfHy8y57X29sboaGhLqvfmfbs2YMzZ85g4MCB1m1z5syBn58fxo0bZ9320UcfYefOnVi1ahW0Wtd9VYSHh8NgMJRr3yeffBJ79uzB0aNHXdYeIqp87IxQtfLiiy9Co9Hghx9+wMCBA3HHHXfgzjvvxLhx4/D9999b98vMzMSIESMQEhICo9GI7t2748iRI3Y/799v09y8zfPJJ58gKioKAQEBePzxx21GHnJzc/HMM8/Az88PderUwcKFC0vVW1hYiFdffRX16tWDr68v7r33XuzatQsAUFBQgDvvvBPPP/+8df8zZ87A398fH330kWJb165di549e8LLy8u6zWAwICEhAQkJCdiyZQvS0tIwduxYLFiwAI0aNVKs65NPPkH79u3h7++P8PBwDB48GJcuXbKWz5kzB3Xr1sXVq1et2/r27YsHHnjAOtpy620ak8mE0aNHo06dOvDy8kJkZCTmzZtnPTYoKAidOnXC2rVrFdtERLcfdkao2rh27Rq2bNmC+Ph4+Pr6liq/tbMwaNAgXLp0CZs3b8bBgwfRtm1b9OjRA9euXXNae86cOYMvv/wS33zzDb755hvs3r0b8+fPt5ZPmDABu3fvxsaNG7Ft2zbs2rULhw4dsqlj9OjRSE5Oxtq1a/HTTz9h0KBB6N27N06fPg0vLy+sWbMGCQkJ2LhxI8xmM5566in07NkTw4cPV2xXUlIS2rdvX2p7u3btMGXKFIwYMQJPP/00OnTogFGjRklfY1FREV577TUcOXIEX375Jc6ePYuhQ4day6dOnYqoqCiMGDECALB06VLs27cPCQkJZY62vPPOO/jqq6+wbt06nDx5EmvWrEFUVJTNPh06dEBSUpK0XUR0m3H3ssFEzrJ//34BQGzYsEG6X1JSkjAajaKgoMBme6NGjcSKFSuEEELMnDlTtG7d2lo2ZMgQ0a9fP8U6V61aJQICAqw/z5w5U/j4+Ijs7GzrtgkTJoh7771XCCHEjRs3hF6vF+vWrbOWX716VXh7e1uXkz937pzQ6XTijz/+sHmuHj16iClTplh/XrBggahdu7YYPXq0qFOnjrhy5Yr09QcEBIiPP/64zDKTySQiIiKEwWAQ586dk9ZTlgMHDggA4saNG9ZtZ86cEf7+/mLSpEnC29tbrFmzxuYYAOKLL74QQgjx0ksvie7duwuLxaL4HEuWLBFRUVEVbhsRVV0cGaFqQwhRrv2OHDmCnJwc1KpVC35+ftZHamoqzpw547T2REVFwd/f3/pznTp1rLcwzpw5A5PJhHvvvddaHhwcjKZNm1p//vnnn2E2m3HHHXfYtHP37t027Rw/fjzuuOMOvPfee/joo49Qq1Ytabvy8/NtbtHcKjExEenp6bBYLDhw4IB1+5o1a2zacHNk4uDBg3j44YfRoEED+Pv7o2vXrgCAtLQ067ENGzbE//3f/+HNN9/EI488gsGDByu2bejQoUhJSUHTpk3x8ssvY9u2baX28fb2Rl5envQ1EtHtxcPdDSByliZNmkCj0eDEiRPS/XJyclCnTh3r3ItbOSM89yZPT0+bnzUaTYWiUnJycqDT6XDw4EFr1MtNfn5+1v9funQJp06dgk6nw+nTp9G7d29pvbVr18b169dLbb9+/Tqee+45TJs2DUIIvPjii+jatStq166NRx55xKbjVK9ePeTm5iIuLg5xcXFYs2YNQkJCkJaWhri4OJhMJpu6v/vuO+h0Opw9exbFxcXw8Cj7q6dt27ZITU3F5s2b8b///Q+PPvooYmNj8Z///Me6z7Vr1xASEiJ9jUR0e+HICFUbwcHBiIuLw9KlS5Gbm1uqPDMzE0DJL7z09HR4eHigcePGNo/atWtXSlsbNWoET09P7N+/37rt+vXrNuHBbdq0gdlsxqVLl0q1Mzw83Lrf8OHD0bJlSyQkJGDSpEk4fvy49LnbtGmDY8eOldr+0ksvITw8HP/85z8xdepU1KtXzxqB5O/vb/P83t7eOHHiBK5evYr58+ejc+fOaNasmc3k1Zs+//xzbNiwAbt27UJaWhpee+01afuMRiMee+wxfPDBB/j888/x3//+12Yuzy+//II2bdpI6yCi2ws7I1StLF26FGazGR06dMB///tfnD59GsePH8c777yDmJgYAEBsbCxiYmLQv39/bNu2DWfPnsW+ffswderUSkuo5efnh2effRYTJkzAjh078Msvv2Do0KE2kzrvuOMOPPnkk3jmmWewYcMGpKam4ocffsC8efOwadMm6+tNTk5GQkICnnzySfTv3x9PPvlkqZGJW8XFxWHPnj0227744gusX78eCQkJ8PDwgIeHBxISEvDll1/iv//9b5n1NGjQAHq9Hu+++y5+++03fPXVV6U6Gr///jtGjRqFN998E/fffz9WrVqFN954wyay6VaLFi3Cv//9b5w4cQKnTp3C+vXrER4ebjNilZSUhF69eknPLxHdZtw9aYXI2S5cuCDi4+NFZGSk0Ov1ol69euKRRx4RO3futO6TnZ0tXnrpJVG3bl3h6ekpIiIixJNPPinS0tKEEM6ZwHrr8UIIsXjxYhEZGWn9+caNG+Kpp54SPj4+IiwsTCxYsEB07drVOoFViJIJpTNmzBBRUVHC09NT1KlTR/zjH/8QP/30kzh+/Ljw9vYWn332mXX/69evi4iICDFx4kTFtl69elV4eXmJEydOCCGEuHz5sggNDRVz584tte/cuXNFaGiouHz5cpl1ffbZZyIqKkoYDAYRExMjvvrqKwFAHD58WFgsFtGjRw8RFxdnMyH1pZdeEo0aNbJOcsUtE1j/9a9/ibvvvlv4+voKo9EoevToIQ4dOmQ9dt++fSIwMFDk5eUpvj4iuv1ohCjnrD8iqjYmTJiA7OxsrFixwt1NqZDHHnsMrVu3xj//+U93N4WInIi3aYhqoKlTpyIyMtKlad6dzWQyoWXLlhg7dqy7m0JETsaRESIiInIrjowQERGRW7EzQkRERG7FzggRERG5FTsjRERE5FbsjBAREZFbsTNCREREbsXOCBEREbkVOyNERETkVuyMEBERkVv9f/HDabsFIFXWAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAHHCAYAAADXtNDYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZsUlEQVR4nO3deVxU5f4H8M+wDSAMgsqmIC6ouWaYxtXUFEU0i+S6pF3X7JeCN7XSyNwqw+xmWpF505Ru4ppLaVqGirlmuJfiEiql4MoiyuLM8/vDmJxgzpzZmIH5vF+v83o55znnme8cFr88q0IIIUBEREQkg5OtAyAiIqLqg4kDERERycbEgYiIiGRj4kBERESyMXEgIiIi2Zg4EBERkWxMHIiIiEg2Jg5EREQkGxMHIiIiko2JAxFVa8uXL4dCocCFCxdsHQqRQ2DiQHan/D+C8sPFxQX169fHyJEj8ccff1S4vnv37mjdurXOudLSUixcuBDt27eHSqVC7dq10apVK7zwwgs4ffq0rDgKCgowe/ZstGvXDl5eXvDw8EDr1q0xdepUXL582SKf1dFkZWUhISEBzZo1g6enJzw9PdGyZUvEx8fj+PHjtg6PiGRwsXUARPq8+eabaNSoEYqLi3HgwAEsX74ce/bswcmTJ+Hu7i55b1xcHLZu3Ypnn30WY8eORVlZGU6fPo3NmzfjH//4B1q0aCF5/2+//YaoqChcunQJAwcOxAsvvAA3NzccP34cS5cuxYYNG3DmzBlLftwab/PmzRg8eDBcXFwwbNgwtGvXDk5OTjh9+jTWr1+PRYsWISsrCw0bNjSq3n/9618YMmQIlEqllSInIh2CyM4sW7ZMABCHDh3SOT916lQBQKxevVrnfLdu3USrVq20r3/66ScBQMyZM6dC3ffu3RPXr1+XfP+ysjLRrl074enpKX788ccK5fn5+eL111835iNVmdu3b9s6hEqdO3dO1KpVSzz00EPi8uXLFcrLysrEwoULxaVLl2wQHREZg10VVG08/vjjAIDz589LXlde3rlz5wplzs7OqFOnjuT9X331FY4dO4Zp06ahS5cuFcpVKhXmzJmjc27t2rWIiIiAh4cH6tati+eee06nW+U///kPFAoFLl68WKG+xMREuLm54datW9pzBw8eRJ8+feDj4wNPT09069YNe/fu1blv1qxZUCgU+PXXXzF06FD4+vpq4z1+/DhGjhyJxo0bw93dHYGBgRg9ejRu3LhR4f137dqFDh06wN3dHU2aNMHixYu1df/dl19+qf2cfn5+GDJkCLKzsyWfJwDMmzcPRUVFWLZsGYKCgiqUu7i44N///jdCQkK05+R+hsrGOISFheHJJ5/Enj170LFjR7i7u6Nx48b44osvDMZKRNKYOFC1Uf4fg6+vr+R15U3dK1aswL1794x+n6+//hrA/SZwOZYvX45BgwbB2dkZSUlJGDt2LNavX48uXbogLy8PADBo0CAoFAqsWbOmwv1r1qxB7969tZ9rx44d6Nq1KwoKCjBz5ky88847yMvLQ48ePfDTTz9VuH/gwIG4c+cO3nnnHYwdOxYAsH37dvz2228YNWoUPvroIwwZMgSrVq1C3759IYTQ3nvkyBH06dMHN27cwOzZszFmzBi8+eab2LhxY4X3mTNnDoYPH47w8HDMnz8fEydORFpaGrp27ar9nPps3rwZTZs2RadOnWQ9U2M+gz7nzp3DP//5T/Tq1Qvvv/8+fH19MXLkSPzyyy+yYyCiSti6yYPo78q7Kn744Qdx7do1kZ2dLdatWyfq1asnlEqlyM7O1rn+710VGo1GdOvWTQAQAQEB4tlnnxXJycni4sWLst6/ffv2wsfHR9a1paWlwt/fX7Ru3VrcvXtXe37z5s0CgJgxY4b2XGRkpIiIiNC5v7xb5YsvvtDGHh4eLqKjo4VGo9Fed+fOHdGoUSPRq1cv7bmZM2cKAOLZZ5+tENedO3cqnFu5cqUAIHbv3q09179/f+Hp6Sn++OMP7bmzZ88KFxcX8eCvhwsXLghnZ+cK3T8nTpwQLi4ulXYLlcvPzxcARGxsbIWyW7duiWvXrmmPB+OW+xnKv1+ysrK05xo2bFjhuqtXrwqlUilefvllvbESkWFscSC7FRUVhXr16iEkJAT//Oc/UatWLXz99ddo0KCB5H0KhQLfffcd3n77bfj6+mLlypWIj49Hw4YNMXjwYIN/HRcUFMDb21tWjD///DOuXr2K8ePH6wzY7NevH1q0aIEtW7Zozw0ePBgZGRk6XS2rV6+GUqnE008/DQA4evQozp49i6FDh+LGjRu4fv06rl+/jqKiIvTs2RO7d++GRqPRieHFF1+sEJeHh4f238XFxbh+/Toee+wxAMDhw4cBAGq1Gj/88ANiY2MRHBysvb5p06aIiYnRqW/9+vXQaDQYNGiQNqbr168jMDAQ4eHh2Llzp95nVFBQAADw8vKqUNa9e3fUq1dPeyQnJxv1GaS0bNlS270FAPXq1UPz5s3x22+/GbyXiPRj4kB2Kzk5Gdu3b8e6devQt29fXL9+XfbIeaVSiWnTpuHUqVO4fPkyVq5cicceewxr1qxBQkKC5L0qlQqFhYWy3qd8zELz5s0rlLVo0UJnTMPAgQPh5OSE1atXAwCEEFi7di1iYmKgUqkAAGfPngUAjBgxQuc/1Hr16mHJkiUoKSlBfn6+zvs0atSownvfvHkTL730EgICAuDh4YF69eppryu//+rVq7h79y6aNm1a4f6/nzt79iyEEAgPD68Q16lTp3D16lW9z6g8Cbt9+3aFssWLF2P79u348ssvTfoMUkJDQyuc8/X11RlLQkTG43RMslsdO3ZEhw4dAACxsbHo0qULhg4diszMzEr/etUnKCgIQ4YMQVxcHFq1aoU1a9Zg+fLlcHGp/Nu/RYsWOHLkCLKzs3UG65krODgYjz/+ONasWYPXX38dBw4cwKVLl/Duu+9qrylvTXjvvffw8MMPV1rP3z/7g3+Zlxs0aBD27duHV199FQ8//DC8vLyg0WjQp0+fCi0Wcmg0GigUCmzduhXOzs4GY3qQj48PgoKCcPLkyQpl5WMeKlu8ydzPUFmcAGSNjyAi/Zg4ULVQPvDwiSeewMcff4zXXnvN6DpcXV3Rtm1bnD17VtvMXpn+/ftj5cqV+PLLL5GYmChZZ/lAzMzMTPTo0UOnLDMzs8KaBIMHD8b48eORmZmJ1atXw9PTE/3799eWN2nSBMD9Vo+oqCijPyMA3Lp1C2lpaZg9ezZmzJihPV/emlHO398f7u7uOHfuXIU6/n6uSZMmEEKgUaNGaNasmdEx9evXD0uWLMFPP/2Ejh07WuwzEFHVY1cFVRvdu3dHx44dsWDBAhQXF+u97uzZs7h06VKF83l5edi/fz98fX1Rr149vff/85//RJs2bTBnzhzs37+/QnlhYSGmTZsGAOjQoQP8/f3x6aefoqSkRHvN1q1bcerUKfTr10/n3ri4ODg7O2PlypVYu3YtnnzySdSqVUtbHhERgSZNmuA///lPpU37165d0xt3ufK/tP/+l/WCBQsqXBcVFYWNGzfqrIR57tw5bN26VefaAQMGwNnZGbNnz65QrxCi0mmeD5oyZQo8PT0xevRo5ObmVij/e51yPwMRVT22OFC18uqrr2LgwIFYvnx5pYMCAeDYsWMYOnQoYmJi8Pjjj8PPzw9//PEHUlJScPnyZSxYsEBvMzZwv2Vi/fr1iIqKQteuXTFo0CB07twZrq6u+OWXX5CamgpfX1/MmTMHrq6uePfddzFq1Ch069YNzz77LHJzc7Fw4UKEhYVh0qRJOnX7+/vjiSeewPz581FYWIjBgwfrlDs5OWHJkiWIiYlBq1atMGrUKNSvXx9//PEHdu7cCZVKhW+++UbyGalUKnTt2hXz5s1DWVkZ6tevj++//x5ZWVkVrp01axa+//57dO7cGePGjYNarcbHH3+M1q1b4+jRo9rrmjRpgrfffhuJiYm4cOECYmNj4e3tjaysLGzYsAEvvPACXnnlFb0xhYeHIzU1Fc8++yyaN2+uXTlSCIGsrCykpqbCyclJO/DVmM9ARFXMVtM5iPTRt3KkEEKo1WrRpEkT0aRJE3Hv3j0hRMXpmLm5uWLu3LmiW7duIigoSLi4uAhfX1/Ro0cPsW7dOtlx3Lp1S8yYMUO0adNGeHp6Cnd3d9G6dWuRmJgorly5onPt6tWrRfv27YVSqRR+fn5i2LBh4vfff6+03s8++0wAEN7e3jpTOB905MgRMWDAAFGnTh2hVCpFw4YNxaBBg0RaWpr2mvLpmNeuXatw/++//y6eeeYZUbt2beHj4yMGDhwoLl++LACImTNn6lyblpYm2rdvL9zc3ESTJk3EkiVLxMsvvyzc3d0r1PvVV1+JLl26iFq1aolatWqJFi1aiPj4eJGZmWnocQoh7q8gOW7cONG0aVPh7u4uPDw8RIsWLcSLL74ojh49atJn0Dcds1+/fhXev1u3bqJbt26yYiWiyimE4EghItIVGxuLX375hWMKiKgCjnEgcnB3797VeX327Fl8++236N69u20CIiK7xhYHIgcXFBSk3RPi4sWLWLRoEUpKSnDkyBGEh4fbOjwisjMcHEnk4Pr06YOVK1ciJycHSqUSkZGReOedd5g0EFGl2OJAREREsnGMAxEREcnGxIGIiIhkq/FjHDQaDS5fvgxvb28oFApbh0NEREYSQqCwsBDBwcFwcrLO37vFxcUoLS21SF1ubm46u+XWNDU+cbh8+bJFNyoiIiLbyM7O1q4uaknFxcVo1NALOVfVFqkvMDAQWVlZNTZ5qPGJQ/mWvl3QFy5wtXE0ZEkKPbtblhP37lVRJGQsZ5W3ZLmmRP9ffuKBPUEqo5DYet3QvWSf7qEMe/Ct9ve5pZWWliLnqhoXM8Kg8javRaOgUIOGERdQWlrKxKG6Ku+ecIErXBRMHGoShcJA4sCuKbvlrHCTLNco9E/2EgrpLbUVEj/nhu4lO/Xnt4O1u5u9vBXw8jbvPTSo+b93anziQEREJIdaaKA2c4ECtaj5ySkTByIiIgAaCGhgXuZg7v3VAadjEhERkWxscSAiIgKggQbmdjSYX4P9Y+JAluHkrL9MY2CKk9SAJ4kV0YXaMlOnqOqpCwqkL5D6fjKAMyfIVGohoDZzFwZz768O2FVBREREsrHFgYiICBwcKRcTByIiItz/T1/NxMEgdlUQERGRbGxxICIiArsq5GLiQEREBM6qkItdFURERCQbWxzIMiTWajC0i6VUuaa4WP+NZmT2ClfpTZZEmf7dGakKGFr7g8gKNH8e5tZR0zFxICIiAqC2wKwKc++vDpg4EBERAVALWGB3TMvEYs84xoGIiIhkY4sDEREROMZBLiYOREREADRQQA2JTfdk1lHTsauCiIiIZHOYFgeFiwsUioofV9y7Z4NoHIuh7a+t9jWQ2ppZOEKDYhUwcUt0InukEfcPc+uo6RwmcSAiIpKitkBXhbn3VwfsqiAiIiLZ2OJAREQEtjjIxcSBiIgIgEYooBFmzqow8/7qgF0VREREJBtbHIiIiMCuCrmYOBAREQFQwwlqMxviHWFfV4dJHMS9exBSc871cHJ311smueUz/cVW8/mltmZ2VUrfy/U9qBpw8vbWW6YpLKzCSCxE7+9oBapi00lhgTEOgmMciIiIiP7iMC0OREREUjjGQR4mDkRERADUwglqYeYYBwdYcppdFURERCQbWxyIiIhwf0tsjZl/T2uqYhSnjTFxICIiAsc4yMXEwQBOubQxK23bLMo43VIOhVJ62qooKamiSGowM7Z/r3ZTLk2YEk/2h4kDERERLDU4kl0VREREDuH+GAczN7lygK4KzqogIiIi2djiQEREBEBjgb0qOKuCiIjIQXCMgzzsqiAiIsL9FgdLHMZYtGgR2rZtC5VKBZVKhcjISGzdulVbXlxcjPj4eNSpUwdeXl6Ii4tDbm6upT+6UdjiQPbNWtm71M6ZDkbhov/XAKdbWojUNER+L2o5+6gqPS9EKZBXtbFUlQYNGmDu3LkIDw+HEAIpKSl4+umnceTIEbRq1QqTJk3Cli1bsHbtWvj4+CAhIQEDBgzA3r17bRYzEwciIiIAaqGA2sxtsY29v3///jqv58yZg0WLFuHAgQNo0KABli5ditTUVPTo0QMAsGzZMjz00EM4cOAAHnvsMbNiNRUTByIiIgBqCwyOVP85OLKgoEDnvFKphNLAgmpqtRpr165FUVERIiMjkZGRgbKyMkRFRWmvadGiBUJDQ7F//36bJQ4c40BERGRhISEh8PHx0R5JSUl6rz1x4gS8vLygVCrx4osvYsOGDWjZsiVycnLg5uaG2rVr61wfEBCAnJwcK38C/djiQEREBEAjnKAxc1aF5s9xWdnZ2VCp/hqzIdXa0Lx5cxw9ehT5+flYt24dRowYgfT0dLPisCYmDkRERLBsV0X5LAk53Nzc0LRpUwBAREQEDh06hIULF2Lw4MEoLS1FXl6eTqtDbm4uAgMDzYrTHOyqICIisiMajQYlJSWIiIiAq6sr0tLStGWZmZm4dOkSIiMjbRYfWxyIiIgAaGD8rIjK6jBGYmIiYmJiEBoaisLCQqSmpmLXrl347rvv4OPjgzFjxmDy5Mnw8/ODSqXChAkTEBkZabOBkQATB6rODG3RK7UGhDn3VjcGPqu4xy3Gra4mfT+Zw8BzUOflV35elFkjmgpMWcCpsjqMcfXqVQwfPhxXrlyBj48P2rZti++++w69evUCAHzwwQdwcnJCXFwcSkpKEB0djU8++cSsGM3FxIGIiMhGli5dKlnu7u6O5ORkJCcnV1FEhjFxICIigqX2qqj5QweZOBAREQHQQAENzB3jYN791QETByIiIrDFQa6a/wmJiIjIYtjiQEREBEstAFXz/x5n4kDVlzlT3Dg9ziKc69bRW3YzOlxvmc+KA9YIhx5kxpRjZ4kVD9V/27ypwr11/PTfe+OmdEw2phEKaMxdx8HM+6uDmp8aERERkcWwxYGIiAj3F28yt6vB3AWkqgMmDkRERLDU7pg1P3Go+Z+QiIiILIYtDkRERADUUEBt5gJO5t5fHTBxICIiArsq5LKbTzh37lwoFApMnDhRe664uBjx8fGoU6cOvLy8EBcXh9zcXNsFSURE5ODsosXh0KFDWLx4Mdq2batzftKkSdiyZQvWrl0LHx8fJCQkYMCAAdi7d6+NIiWqhsxYs0JqnQYAuP5kM71lZV76m2yd2raQrFdz/LR0YGSYga+7wtVNb5nmbrHJb2vvazVIUcP8rga1ZUKxazZvcbh9+zaGDRuGzz77DL6+vtrz+fn5WLp0KebPn48ePXogIiICy5Ytw759+3DgABePISIiyyrvqjD3qOls/gnj4+PRr18/REVF6ZzPyMhAWVmZzvkWLVogNDQU+/fv11tfSUkJCgoKdA4iIiJDyje5Mveo6WzaVbFq1SocPnwYhw4dqlCWk5MDNzc31K5dW+d8QEAAcnJy9NaZlJSE2bNnWzpUIiIigg1bHLKzs/HSSy9hxYoVcHd3t1i9iYmJyM/P1x7Z2dkWq5uIiGouAQU0Zh6C0zGtJyMjA1evXsUjjzyiPadWq7F79258/PHH+O6771BaWoq8vDydVofc3FwEBgbqrVepVEKpVFozdCIiqoEs0dXArgor6tmzJ06cOKFzbtSoUWjRogWmTp2KkJAQuLq6Ii0tDXFxcQCAzMxMXLp0CZGRkbYImYiIyOHZLHHw9vZG69atdc7VqlULderU0Z4fM2YMJk+eDD8/P6hUKkyYMAGRkZF47LHHbBEykcNRGGi9K6ulv1n2rr/+6YCnE7wl6232gnRckqS2k+Z26lqirNTWIdgdbqstj12s46DPBx98ACcnJ8TFxaGkpATR0dH45JNPbB0WERHVQGoL7I5p7v3VgV0lDrt27dJ57e7ujuTkZCQnJ9smICIiItJhV4kDERGRrbCrQh4mDkRERAA0cILGzK4Gc++vDmr+JyQiIiKLYYsDERERALVQQG1mV4O591cHDpM4KFxcoFBU/Lji3j0bRENkAhtMM7z3x2XJ8oLIAL1l/Vqc1Ft2Kl//Im5ms8cplxJfO+c6fnrLNHn5ktUKtf69GJ3r1pW8V33tmmS5NRjabVV9M6/yAqEBNJaP5+84xkEeh0kciIiIpAgL7G4pHGDlyJr/CYmIiMhi2OJAREQEQA0F1GZuUmXu/dUBEwciIiIAGmH+GAWNHQ6xsTR2VRAREZFsbHEgIiICoLHA4Ehz768OmDgQEREB0EABjZljFMy9vzpwmMRBaASEwoTOJ27RS/bCDr/fmgbpXwugXa1svWXRtU9I1vshWpgck12S+NqJu8X6ywytM+PkrL+spMRQVPqr9fTUW6Yplq5X4aw/JvX1G6YFJPSvV0FVz2ESByIiIilcOVIeJg5ERETgGAe5av4nJCIiIothiwMRERH+HBxp7joOHBxJRETkGIQFZlUIJg5ERESOgbtjyuM4iYNGDSgqGdIhNZ2p/D49FEql5K3C1OlQZsREZFFS05EN6OF5Tm9ZI1cvyXs/NPldqx+p3xMKVzcDN0vsNS0xLRKQ/v2luXNH+n2l6nVzlSiV/jx6twmvom21SR4OjiQiIsJfsyrMPYyRlJSERx99FN7e3vD390dsbCwyMzN1runevTsUCoXO8eKLL1ryoxuFiQMRERH+6qow9zBGeno64uPjceDAAWzfvh1lZWXo3bs3ioqKdK4bO3Ysrly5oj3mzZtnyY9uFMfpqiAiIrIz27Zt03m9fPly+Pv7IyMjA127dtWe9/T0RGBgYFWHVym2OBAREeGvvSrMPQCgoKBA5yiROeYtPz8fAODn56dzfsWKFahbty5at26NxMRE3DFjHIq52OJAREQEy86qCAkJ0Tk/c+ZMzJo1S/pejQYTJ05E586d0bp1a+35oUOHomHDhggODsbx48cxdepUZGZmYv369WbFaiomDkRERBaWnZ0NlUqlfa00MAsPAOLj43Hy5Ens2bNH5/wLL7yg/XebNm0QFBSEnj174vz582jSpInlgpaJiQMREREs2+KgUql0EgdDEhISsHnzZuzevRsNGjSQvLZTp04AgHPnzjFxsConZ0BRcV6z1BawACAk1kwwuE6DxBx4qfc1uJWutTjSFuKG1ieoaZ9XihlrNWTvCNVbtjmwld6y5K/6StYb5nJIb5mTVy3Je9V5+XrLFC6m/8qT/Lk0sPaKk7tpayYYXitGf0zqW7ck7zWVcx0/yXLJbcJLyyTvVbhW/vVRCAGYvku4bLZYAEoIgQkTJmDDhg3YtWsXGjVqZPCeo0ePAgCCgoJMCdFsjpM4EBER2Zn4+HikpqZi06ZN8Pb2Rk5ODgDAx8cHHh4eOH/+PFJTU9G3b1/UqVMHx48fx6RJk9C1a1e0bdvWJjEzcSAiIoJtWhwWLVoE4P4iTw9atmwZRo4cCTc3N/zwww9YsGABioqKEBISgri4OLzxxhtmxWkOJg5EREQABMzf3dLYTk5hoFs0JCQE6enppgdkBUwciIiIwE2u5OICUERERCQbWxyIiIjAFge5HCdx0LutthW/yBJ9VzabcilFqq/NjCl7djm1sbLvhQcJO9y6XGrKn9T27wa2ZhZlpaZGhJA5+/SWrfm1j96yhhv2S9br3DhMf6G+rZfLFdzWW+Tko39evfrGTel6pRjY6t7UbaqdPNwly9USU8JdAgMk75XqW1fnXtVfZuA5uQTp309BcydHOqaSyp+jENLTOC2FiYM87KogIiIi2RynxYGIiEgCWxzkYeJAREQEQAgFhJn/8Zt7f3XArgoiIiKSjS0OREREuL/4k7kLQJl7f3XAxIGIiAgc4yCX4yQOCkWlUwqtOS1Samc7gztrSjFxWp4h2zVrTb7XHvVyGqi/0IznZA5HesaeGw7qLTO4w6KzRC+qnh0Uy22/t0qyvDqR/B424F5OrgUjMeJ9r0hPuaTqz3ESByIiIgkcHCkPEwciIiKwq0IuJg5ERERgi4NcnI5JREREsrHFgYiICPdbC8ztanCEFgcmDkRERAAEzN+Tzw639LM4dlUQERGRbEa1OJw6dQqrVq3Cjz/+iIsXL+LOnTuoV68e2rdvj+joaMTFxUEpsXaBTQkBk3JBqe2kzUhNzVrjwUZrEBBZikJie2sAQJn+9VXE3WILR1ONSa3pIjSm12vun93VlAYKKLhypEGyWhwOHz6MqKgotG/fHnv27EGnTp0wceJEvPXWW3juuecghMC0adMQHByMd999FyXmLG5ERERkA+WzKsw9ajpZLQ5xcXF49dVXsW7dOtSuXVvvdfv378fChQvx/vvv4/XXX7dUjERERGQnZCUOZ86cgaurq8HrIiMjERkZibKyMrMDIyIiqkoaoYCCC0AZJKurwlDSkJeXZ9T1RERE9kYIyxw1ndGzKt59912sXr1a+3rQoEGoU6cO6tevj2PHjlk0OCIiIrIvRicOn376KUJCQgAA27dvx/bt27F161bExMTg1VdftXiAREREVYGDI+UxegGonJwcbeKwefNmDBo0CL1790ZYWBg6depk8QBtzox2J5O3zpaaAgo4RlsY1Wj3LmRLljurvPSWqfPyLR1O9SU15bIa/p5wcnev/LxwAqpgFi73qpDH6BYHX19fZGff/6Hftm0boqKiAABCCKjVXF+AiIiqp/LdMc09ajqjWxwGDBiAoUOHIjw8HDdu3EBMTAwA4MiRI2jatKnFAyQiIiL7YXTi8MEHHyAsLAzZ2dmYN28evLzuNyleuXIF48ePt3iAREREVcESsyKqYQ+R0YxOHFxdXfHKK69UOD9p0iSLBERERGQL9xMHc8c4WCgYOyYrcfj6668RExMDV1dXfP3115LXPvXUUxYJjIiIiOyPrMQhNjYWOTk58Pf3R2xsrN7rFAoFB0gSEVG1xFkV8siaVaHRaODv76/9t77D2KRh0aJFaNu2LVQqFVQqFSIjI7F161ZteXFxMeLj41GnTh14eXkhLi4Oubm5Rr0HERGRHMJCR01n9BgHKXfu3IGnp6fs6xs0aIC5c+ciPDwcQgikpKTg6aefxpEjR9CqVStMmjQJW7Zswdq1a+Hj44OEhAQMGDAAe/futWTY9secTjKuASGP1HbEALcutzYDz9eR1mro5TTQ9Jur2c+zvnUayik8PCo/L5yrZB0HksfodRx69uyJP/74o8L5gwcP4uGHHzaqrv79+6Nv374IDw9Hs2bNMGfOHHh5eeHAgQPIz8/H0qVLMX/+fPTo0QMRERFYtmwZ9u3bhwMHDhgbNhERkSSuHCmP0YmDu7s72rZtq92vQqPRYNasWXj88cfRt29fkwNRq9VYtWoVioqKEBkZiYyMDJSVlWkXmAKAFi1aIDQ0FPv379dbT0lJCQoKCnQOIiIig9hXIYvRXRVbtmxBcnIyRo8ejU2bNuHChQu4ePEiNm/ejN69exsdwIkTJxAZGYni4mJ4eXlhw4YNaNmyJY4ePQo3NzfUrl1b5/qAgADk5OTorS8pKQmzZ882Og4iInJwlmgxcIAWB5PGOMTHx+P333/Hu+++CxcXF+zatQv/+Mc/TAqgefPmOHr0KPLz87Fu3TqMGDEC6enpJtUFAImJiZg8ebL2dUFBgXZvDSIiIjKP0YnDrVu38PzzzyMtLQ2LFy9Geno6evfujXnz5pm0cqSbm5t2qeqIiAgcOnQICxcuxODBg1FaWoq8vDydVofc3FwEBgbqrU+pVEKpVBodBxEROTauHCmP0WMcWrdujdzcXBw5cgRjx47Fl19+iaVLl2L69Ono16+f2QFpNBqUlJQgIiICrq6uSEtL05ZlZmbi0qVLiIyMNPt9iIiIHsTBkfIY3eLw4osvYtq0aXBy+ivnGDx4MDp37oxRo0YZVVdiYiJiYmIQGhqKwsJCpKamYteuXfjuu+/g4+ODMWPGYPLkyfDz84NKpcKECRMQGRmJxx57zNiwHYcjpLuWwOmWZCecmzXRWyb+0D+eCwA0RUX6Cw1MzXaSaJnVFFtn7qPBevWUq0WZFaIhUxmdOEyfPr3S8w0aNMD27duNquvq1asYPnw4rly5Ah8fH7Rt2xbfffcdevXqBeD+hlpOTk6Ii4tDSUkJoqOj8cknnxgbMhERkWFCYf7gRrY46Hfnzh1cunQJpaWlOufbtm0ru46lS5dKlru7uyM5ORnJyckmxUhERCQXxzjIY/QYh2vXruHJJ5+Et7c3WrVqhfbt2+scREREJE9SUhIeffRReHt7a/eDyszM1LnG3rZfMDpxmDhxIvLy8nDw4EF4eHhg27ZtSElJQXh4uMGdM4mIiOyWDRaASk9PR3x8PA4cOIDt27ejrKwMvXv3RtED41cmTZqEb775BmvXrkV6ejouX76MAQMGmPdZzWB0V8WOHTuwadMmdOjQAU5OTmjYsCF69eoFlUqFpKQki8ysICIiqmq22B1z27ZtOq+XL18Of39/ZGRkoGvXrtrtF1JTU9GjRw8AwLJly/DQQw/hwIEDNpksYHTiUFRUpN0p09fXF9euXUOzZs3Qpk0bHD582OIBEhERVTd/3+5A7hpD+fn3N3jz8/MDAIPbL1SWOJjSGvHpp59q/283xOjEoXnz5sjMzERYWBjatWuHxYsXIywsDJ9++imCgoKMDpaIyJGpz5w3/WaJKZcKNzfJW02ecmlgmqezt7feMrWBvYMUrpXHrBAKoKpmZFpocOPfVyyeOXMmZs2aJXmPRqPBxIkT0blzZ7Ru3RoAkJOTY/T2Cxs3bsSgQYPgoWe30b9LTU3F7du3rZc4vPTSS7hy5QqA+w+iT58+WLFiBdzc3LB8+XJjqyMiIrILluyqyM7Ohkql0p6X09oQHx+PkydPYs+ePWbFAAAffvih7ERg3bp1RtVtdOLw3HPPaf8dERGBixcv4vTp0wgNDUXdunWNrY6IiMg+WGJ3yz/vV6lUOomDIQkJCdi8eTN2796NBg0aaM8HBgYavf3Czp07tV0dcmzduhX169eXfb3RsyoetHfvXjg7O+ORRx5h0kBERGQkIQQSEhKwYcMG7NixA40aNdIpN2X7hW7dusHFRX67QJcuXYza48nkBaAAICYmBkePHkXjxo3NqYaIiMgOKP48zK1Dvvj4eKSmpmLTpk3w9vbWjlvw8fGBh4eHRbdfEEJg586duHv3Lv7xj3/A19fXqPvLmdXiIBxhiSwiInIMNljHYdGiRcjPz0f37t0RFBSkPVavXq295oMPPsCTTz6JuLg4dO3aFYGBgVi/fr1kvXl5eRgxYgTatGmDsWPHoqCgAI8//jiioqLQv39/PPTQQzh+/Lhxwf5JduLw7bffmvQGREREVDkhRKXHyJEjtdeUb79w8+ZNFBUVYf369XrHN5R75ZVXsH//fgwZMgQnTpxAnz59oFarsX//fhw8eBAPPfQQpk2bZlLMsrsqBgwYgOHDh2P+/Pnw8vICACxevBgBAQEmvTEREZFdseDgSFvbunUrUlNT0a1bN4wcORIhISHYsWMHOnXqBAB499138dRTT5lUt+zE4eDBgxg5ciTatm2L5cuXo2vXrhg6dKhJb2oLTp4ecFJUnCOsuXPHBtFAei60NbuAJN63l9NA672vFAPzwmsSmz1jUxn62jg56y8TGv3VOkvcB0CoTd/23CbP2NBzstLPtNRzFCUlJtfrLDEbwNBaDOrCQv2FBp6TKCut/HxVbatdg3bHzM3NRbNmzQAA9evXh7u7u87aEqGhobh27ZpJdcvuqmjXrh0OHTqE4cOHo3fv3nj55Zdx8+ZNFBQU6BxERERkWxqNBs4PJJbOzs5QPJC4Kcz4g82oWRUuLi6YNWsW/vGPf6Bv375YsGCBtkwIAYVCAbUZfykQERHZSk3bVnvJkiXaoQX37t3D8uXLtUsnFEq1DBlg9HTM9evXY9y4cejatSumTZtm1FxRIiIiu1WDxjiEhobis88+074ODAzE//73vwrXmEL2//p5eXkYP348Nm3ahHfeeQcvvfSSSW9IRERE1nXhwgWr1S07cWjZsiVCQ0Nx+PBhNG/e3GoBERER2UQNGhxpTbITh/HjxyMxMVFnsAUREVFNoRD3D3PrsLUPP/xQ9rX//ve/ja5fVuIghMAbb7xhdOX2RHPnLjSKe7YO4y8KiQktwooDTKVG7khNrdPYKCayLUNfGxO/V8U9O/pZtARzvofN+LkTGhN/ng3UbWjKpaTq/PNcQ8Y4fPDBBzqvr127hjt37mg3ycrLy4Onpyf8/f1NShxkTcds1aoVVq1ahdLSyufYljt79izGjRuHuXPnGh0IERERmS8rK0t7zJkzBw8//DBOnTqFmzdv4ubNmzh16hQeeeQRvPXWWybVL6vF4aOPPsLUqVMxfvx49OrVCx06dEBwcDDc3d1x69Yt/Prrr9izZw9++eUXJCQkYNy4cSYFQ0REZDM1cIzD9OnTsW7dOp2xic2bN8cHH3yAf/7znxg2bJjRdcpKHHr27Imff/4Ze/bswerVq7FixQpcvHgRd+/eRd26ddG+fXsMHz4cw4YNM3m3LSIiIpuqIV0VD7py5QruVdI1qFarkZuba1KdRi3C0KVLF3Tp0sWkNyIiIqKq1bNnT/zf//0flixZgkceeQQAkJGRgXHjxiEqKsqkOs3aVpuIiKjGsMG22tb2+eefIzAwEB06dIBSqYRSqUTHjh0REBCAJUuWmFQnl30kIiICamRXRb169fDtt9/i7NmzOHXqFACgRYsW2g2wTMHEgYiIqIYLDw9HeHi4RepiV4WtaNT6D8ZE5DjM+bmTutfQQRWVz6ow97CxyZMno6ioSPb1iYmJuHnzpuzrmTgQERHhr5UjzT1sbeHChbhz547s65OTk5GXlyf7eqMTh+XLl1d6/t69e0hMTDS2OiIiIrIgIQSaNWsGPz8/WYcxrROACWMc/v3vf2PLli3473//q12zITMzE0OHDsWNGzeQlJRkbJVERES2V0MGRy5btszoewICAmRfa3TicOTIETz33HNo06YNli1bhjNnzmDKlCmIjY3FJ598Ymx1REREZEEjRoywav1GJw5NmjTB3r17MXHiRPTp0wfOzs5ISUnBs88+a434iIiIqoQCFtgd0yKR2DeTBkdu2bIFq1atQmRkJGrXro2lS5fi8uXLlo6NiIiI7IzRicP//d//YeDAgZg6dSp+/PFHHD9+HG5ubmjTpg3WrFljjRiJiIisr4ZMx7Q2o7sq9u7di4MHD6Jdu3YAgMDAQHz77bdITk7G6NGjMWjQIIsHSUREZHU1ZHCktRmdOGRkZECpVFY4Hx8fb/KGGURERFQ9GJ04KJVKnD9/HsuWLcP58+excOFC+Pv7Y+vWrQgNDbVGjERERNZXA1scioqKMHfuXKSlpeHq1avQaDQ65b/99pvRdRqdOKSnpyMmJgadO3fG7t27MWfOHPj7++PYsWNYunQp1q1bZ3QQREREtmaJlR/tYeXIBz3//PNIT0/Hv/71LwQFBUGhMH8MhtGJw2uvvYa3334bkydPhre3t/Z8jx498PHHH5sdEBEREVnG1q1bsWXLFnTu3NlidRo9q+LEiRN45plnKpz39/fH9evXLRIUERFRlRMWOuyIr68v/Pz8LFqn0YlD7dq1ceXKlQrnjxw5gvr161skKCIioipXAxOHt956CzNmzDBq0ytDjO6qGDJkCKZOnYq1a9dCoVBAo9Fg7969eOWVVzB8+HCLBUZERETmef/993H+/HkEBAQgLCwMrq6uOuWHDx82uk6jE4d33nkH8fHxCAkJgVqtRsuWLaFWqzF06FC88cYbRgdARERkD2ri4MjY2FiL12l04uDm5obPPvsM06dPx8mTJ3H79m20b98e4eHhFg+OiIioylhi5Uc7Wzly5syZFq/T6MShXGhoKNdtICKimqMGruNgDbISh8mTJ8uucP78+SYHQ0RERObx8/PDmTNnULduXfj6+kqu3XDz5k2j65eVOBw5ckTn9eHDh3Hv3j00b94cAHDmzBk4OzsjIiLC6ACIiIjsQU0Z4/DBBx9o11lasGCBxeuXlTjs3LlT++/58+fD29sbKSkp8PX1BQDcunULo0aNwuOPP27xAImIiKpEDemqGDFiRKX/thSjxzi8//77+P7777VJA3B/gYm3334bvXv3xssvv2zRAImIiMh8xcXFKC0t1TmnUqmMrsfoBaAKCgpw7dq1CuevXbuGwsJCowMgIiKyC+Kv7gpTD3tocXhQUVEREhIS4O/vj1q1asHX11fnMIXRicMzzzyDUaNGYf369fj999/x+++/46uvvsKYMWMwYMAAk4IgIiKyuRq4cuSUKVOwY8cOLFq0CEqlEkuWLMHs2bMRHByML774wqQ6je6q+PTTT/HKK69g6NChKCsru1+JiwvGjBmD9957z6QgiIiIyPK++eYbfPHFF+jevbt2LGLTpk3RsGFDrFixAsOGDTO6TqNbHDw9PfHJJ5/gxo0bOHLkCI4cOYKbN2/ik08+Qa1atYwOgIiIyC7YoMVh9+7d6N+/P4KDg6FQKLBx40ad8pEjR0KhUOgcffr0kV3/zZs30bhxYwD3xzOUT7/s0qULdu/ebVywfzI6cShXq1YttG3bFm3btmXCQERE1Z654xtMmc5ZVFSEdu3aITk5We81ffr0wZUrV7THypUrZdffuHFjZGVlAQBatGiBNWvWALjfElG7dm3jgv2T0V0VRUVFmDt3LtLS0nD16lVoNBqd8t9++82kQIiIiBxNTEwMYmJiJK9RKpUIDAw0qf5Ro0bh2LFj6NatG1577TX0798fH3/8McrKykxesNHoxOH5559Heno6/vWvfyEoKEhyRSqqXrZr1to6BIvq5TTQ1iFUwGdsPj5DC5H63S3sbISfg9u1axf8/f3h6+uLHj164O2330adOnVk3Ttp0iTtv6OionD69GlkZGSgadOmaNu2rUnxGJ04bN26FVu2bEHnzp1NekMiIiK7ZMEFoAoKCnROK5VKKJVKo6vr06cPBgwYgEaNGuH8+fN4/fXXERMTg/3798PZ2dno+ho2bIiGDRsafd+DjE4cfH194efnZ9abEhER2RtLLjkdEhKic37mzJmYNWuW0fUNGTJE++82bdqgbdu2aNKkCXbt2oWePXvqve/u3btIS0vDk08+CQBITExESUmJttzZ2RlvvfUW3N3djY7J6MThrbfewowZM5CSkgJPT0+j35CIiKimy87O1lmV0ZTWhso0btwYdevWxblz5yQTh5SUFGzZskWbOHz88cdo1aoVPDw8AACnT59GcHCwTleGXCYtOX3+/HkEBAQgLCwMrq6uOuWHDx82OggiIiK7YKHhHSqVyqTlnA35/fffcePGDQQFBUlet2LFCkyZMkXnXGpqqnZq5pdffonk5OSqSRxiY2ONfhMiIiK7Z4NNrm7fvo1z585pX2dlZeHo0aPw8/ODn58fZs+ejbi4OAQGBuL8+fOYMmUKmjZtiujoaMl6z507hzZt2mhfu7u7w8nprxUYOnbsiPj4eOOC/ZPRicPMmTNNeiMiIiLS9fPPP+OJJ57Qvp48eTKA+7taLlq0CMePH0dKSgry8vIQHByM3r1746233jLY9ZGXl6czpuHve0xpNBqdcmOYvACUJSQlJeHRRx+Ft7c3/P39ERsbi8zMTJ1riouLER8fjzp16sDLywtxcXHIzc21UcRERFRT2WIBqO7du0MIUeFYvnw5PDw88N133+Hq1asoLS3FhQsX8N///hcBAQEG623QoAFOnjypt/z48eNo0KCBccH+SVbi4Ofnh+vXrwP4a1aFvsMY6enpiI+Px4EDB7B9+3aUlZWhd+/eKCoq0l4zadIkfPPNN1i7di3S09Nx+fJlbqalUOg/iIjkEEL/4ahq0CZXffv2xYwZM1BcXFyh7O7du5g9ezb69etnUt2yuio++OADeHt7AwAWLFhg0htVZtu2bTqvly9fDn9/f2RkZKBr167Iz8/H0qVLkZqaih49egAAli1bhoceeggHDhzAY489ZrFYiIiIaorXX38da9asQfPmzZGQkIBmzZoBADIzM/Hxxx/j3r17eP31102qW1biMGLEiEr/bWn5+fkAoG25yMjIQFlZGaKiorTXtGjRAqGhodi/f3+liUNJSYlOv83fF+EgIiKqjCXXcbC1gIAA7Nu3D+PGjcNrr70G8WdLkkKhQK9evfDJJ5/I6vKojNGDI61Fo9Fg4sSJ6Ny5M1q3bg0AyMnJgZubW4WNOAICApCTk1NpPUlJSZg9e7a1wyUioprGBrMqrKlRo0bYtm0bbt68qZ250bRpU7MXcbSbxCE+Ph4nT57Enj17zKonMTFROyoVuN/i8PcVvIiIiByFn58fOnbsaLH67CJxSEhIwObNm7F7926dUZ6BgYEoLS1FXl6eTqtDbm6u3p3CTF0PnIiIHFwNa3GwFptOxxRCICEhARs2bMCOHTvQqFEjnfKIiAi4uroiLS1Ney4zMxOXLl1CZGRkVYdLREQ1mC2mY1ZHNm1xiI+PR2pqKjZt2gRvb2/tuAUfHx94eHjAx8cHY8aMweTJk+Hn5weVSoUJEyYgMjLSsWdUOPJ0KSJHYmiKNX8XWBZbHGSRlTgYs27C+vXrZV+7aNEiAPcXwHjQsmXLMHLkSAD3p4I6OTkhLi4OJSUliI6OxieffCL7PYiIiMhyZCUOPj4+VnlzISNbdnd3R3JyMpKTk60SAxEREQC2OMgkK3FYtmyZteMgIiKyqZq0joM12XRwJBEREVUvsloc2rdvD4XMfRAOHz5sVkBEREQ2wa4KWWQlDrGxsVYOg4iIyLbYVSGPrMRh5syZ1o6jRlK46H+84t49K70pp28RVScKVze9ZUKtlr5ZGCgnsgKTxjjk5eVhyZIlSExMxM2bNwHc76L4448/LBocERFRlalB22pbk9ELQB0/fhxRUVHw8fHBhQsXMHbsWPj5+WH9+vW4dOkSvvjiC2vESUREZF0c4yCL0S0OkydPxsiRI3H27Fm4u7trz/ft2xe7d++2aHBERERkX4xucTh06BAWL15c4Xz9+vX1bnVNRERk7xR/HubWUdMZnTgolUoUFBRUOH/mzBnUq1fPIkERERFVOXZVyGJ0V8VTTz2FN998E2VlZQAAhUKBS5cuYerUqYiLi7N4gERERFWBu2PKY3Ti8P777+P27dvw9/fH3bt30a1bNzRt2hTe3t6YM2eONWIkIiIiO2F0V4WPjw+2b9+OvXv34tixY7h9+zYeeeQRREVFWSM+25NaF8HAmgiSazWYUa/0mzpAuks1n8yVamsCUVaqv9Cc52DGmi5mrUHj5Ky/TGPn606wq0IWoxOHcp07d0bnzp0tGQsREZFtOcB//OaS3VWxY8cOtGzZstKBkfn5+WjVqhV+/PFHiwZHRERE9kV24rBgwQKMHTsWKpWqQpmPjw/+7//+D/Pnz7docERERFWFgyPlkZ04HDt2DH369NFb3rt3b2RkZFgkKCIioirHJadlkZ045ObmwtXVVW+5i4sLrl27ZpGgiIiIyD7JThzq16+PkydP6i0/fvw4goKCLBIUERFRVWNXhTyyZ1X07dsX06dPR58+fXT2qACAu3fvYubMmXjyySctHqC1KZRKyXJRUlJFkTzA0DQqhUS+Z6XpTr2cBkqWb9estcr7koNypGnFZkzNdvrb7+IHaYqLpd9W4nef5O89qemWABRO+j+P0EjeanucjimL7MThjTfewPr169GsWTMkJCSgefPmAIDTp08jOTkZarUa06ZNs1qgREREZHuyE4eAgADs27cP48aNQ2JiIsSfmbBCoUB0dDSSk5MREBBgtUCJiIisyRJdDeyq+JuGDRvi22+/xa1bt3Du3DkIIRAeHg5fX19rxUdERFQ12FUhi0krR/r6+uLRRx+1dCxERES2w8RBFqM3uSIiIiLHZfJeFURERDUJxzjIw8SBiIgIYFeFTA6fOJizToPU1rOAge1nzdo6W2KtBjO20jW0VoMUc+51JHxO5jPnGZqzXbTkugelEltjAyb/vBv6HSO5VoOh3wUaE38HGVgrxu7XaiCzOXziQEREBAAKIaAwc/Exc++vDpg4EBERAeyqkImzKoiIiEg2tjgQERGBsyrkYuJAREQEsKtCJnZVEBER2cju3bvRv39/BAcHQ6FQYOPGjTrlQgjMmDEDQUFB8PDwQFRUFM6ePWubYP/kMC0OChcXKBQVP65QG9iGWmKErKHpW9IBmb6Vrln3kv0ysF2xyfPcquP3hJW+x835mVVIxKTw8pK8V1NYqLfMpX6w3jL19RsGYtL/t5+4VyZ5ryjTP4XUydNTb5nmzh3JeqWYNYW9Ctiiq6KoqAjt2rXD6NGjMWDAgArl8+bNw4cffoiUlBQ0atQI06dPR3R0NH799Ve4S2yrbk0OkzgQERFJskFXRUxMDGJiYiqvSggsWLAAb7zxBp5++mkAwBdffIGAgABs3LgRQ4YMMTNY07CrgoiICH+1OJh7AEBBQYHOUWLCYoNZWVnIyclBVFSU9pyPjw86deqE/fv3W+pjG42JAxERkYWFhITAx8dHeyQlJRldR05ODgAgICBA53xAQIC2zBbYVUFERARYtKsiOzsbKpVKe1opsWR5dcMWByIioj9ZopsCAFQqlc5hSuIQGBgIAMjNzdU5n5ubqy2zBSYOREREdqhRo0YIDAxEWlqa9lxBQQEOHjyIyMhIm8XlMF0VQiMgKpkn42QgC5TafU7h6ib9nlJTPQ3sMCddcTWcXidFahqiOc+pujHns0o9Q6ndVM1lra+dOd/jtpiuXCY99VHqd8W9Py7rLXOu7SNZrzovXzouE0nt9ulUq5bkvZqiIv31Gppuqfdrp6iahZWEMP97xMj7b9++jXPnzmlfZ2Vl4ejRo/Dz80NoaCgmTpyIt99+G+Hh4drpmMHBwYiNjTUvTjM4TOJAREQkxRbrOPz888944okntK8nT54MABgxYgSWL1+OKVOmoKioCC+88ALy8vLQpUsXbNu2zWZrOABMHIiIiGyme/fuEBKtFAqFAm+++SbefPPNKoxKGhMHIiIigHtVyMTEgYiICIBCc/8wt46ajrMqiIiISDa2OBAREQHsqpCJiQMRERFsM6uiOnKcxEFoAFTsfJJapwGA5JxwqW1pDd0reZudbz1rcdZaq6G6bT9u4vcLAPOeoTnPydStvq3JSl9bqZ87oZF+TycP/VPnpH6PWGudBkMkP6vJazEACjcDa9/o2wiqqn5ebbCOQ3XEMQ5EREQkm+O0OBAREUlgV4U8TByIiIgADo6UiV0VREREJBtbHIiIiMCuCrmYOBAREQGcVSGT4yQOwsTOK3O+CUy8t1pOt7THqY/V7QfYULzW2jpbIdVjaWC6pT0+Yyt9L5rzcym11bQkA1N0nTw9Lf+egOT3mlMt/e8JAJrCQr1leqdblrP1ttoki+MkDkRERBLYVSEPEwciIiKAsypk4qwKIiIiko0tDkRERGBXhVxMHIiIiABAI+4f5tZRwzFxICIiAjjGQSabjnHYvXs3+vfvj+DgYCgUCmzcuFGnXAiBGTNmICgoCB4eHoiKisLZs2dtEywRERHZtsWhqKgI7dq1w+jRozFgwIAK5fPmzcOHH36IlJQUNGrUCNOnT0d0dDR+/fVXuLvr36a2UgpFpXOEnZRKydsMbrttC+ZsvyxFao671BoCgPW2xqa/WOkZK1z1/xowOO/eVNb8frLHtSVMZeCzSK3VoHA1sIW1xHbeTu76fy9KrdNgiHMdP8ly9Y2blRdU0ddUAQuMcbBIJPbNpolDTEwMYmJiKi0TQmDBggV444038PTTTwMAvvjiCwQEBGDjxo0YMmRIVYZKREQ1HVeOlMVup2NmZWUhJycHUVFR2nM+Pj7o1KkT9u/fr/e+kpISFBQU6BxERERkGXabOOTk5AAAAgICdM4HBARoyyqTlJQEHx8f7RESEmLVOImIqGYon45p7lHT2W3iYKrExETk5+drj+zsbFuHRERE1YGw0FHD2W3iEBgYCADIzc3VOZ+bm6stq4xSqYRKpdI5iIiIyDLsNnFo1KgRAgMDkZaWpj1XUFCAgwcPIjIy0oaRERFRTaQQwiJHTWfTWRW3b9/GuXPntK+zsrJw9OhR+Pn5ITQ0FBMnTsTbb7+N8PBw7XTM4OBgxMbGGv1eCmdnKBQVp4BpSssk75PctvbOHek3lZpyJjXdzB6nPnK6ZbWlcJH+MRdlNtjG3dD3k7W2abdFvebWbeL7Sk23NEijfzt1hYEp7FJTePVOt7QXGhjcSV5WHTWcTROHn3/+GU888YT29eTJkwEAI0aMwPLlyzFlyhQUFRXhhRdeQF5eHrp06YJt27YZv4YDERERWYRNE4fu3btDSGTiCoUCb775Jt58880qjIqIiByRJboa2FVBRETkKLhXhSxMHIiIiACuHCmT3c6qICIiIvvDFgciIiJYZuVHR1g50mESB3HvHkRlU5cMTH00OOVS8k1NnJdjxtRHg1PvNBKDUZ0kpnbds8GUPbIIc7525uywKF2x9PRFhbP+n0uhNmNqsEKikVVYcUdOE6eBGvp5dvL11X+vs3SD8r2cXL1l5uwKLPU94+QhPSNObeu9hdhVIQu7KoiIiEg2h2lxICIikqLQ3D/MraOmY+JAREQEsKtCJnZVEBERkWxscSAiIgK4AJRMTByIiIjAJaflYlcFERERycYWB3vcLtqcLXql5qkDgEb/vHshDLwvOR5T1yKBmVvSS9Xr4SFZLkolvsel1rSw4tbYkutSSMRkaA0O9bVrJsdkKmeVSvoCV/3/rdj9ttocHCkLWxyIiIiA++MTNGYeRuYNs2bNgkKh0DlatGhhkY9jLWxxICIigu3GOLRq1Qo//PCD9rWLgRVDbc2+oyMiIqrhXFxcEBgYaOswZGNXBREREfDndExh5nG/qoKCAp2jpKRE79uePXsWwcHBaNy4MYYNG4ZLly5Vzec1ERMHIiIiwAJJw1+DK0NCQuDj46M9kpKSKn3LTp06Yfny5di2bRsWLVqErKwsPP744ygsLKzKT24UdlUQERFZWHZ2NlQPzEBRKpWVXhcTE6P9d9u2bdGpUyc0bNgQa9aswZgxY6wepykcJ3FwcgYUlUyJsuZ0TFMH2ZgxOMfgNscmbu9LdsAGXztztuQWZWbca8YURdPf1IxnaGAqp6kxG9pW2xbb3WvuSm+5LQpM3GodkHiOiqpZkVFz/63MrgOASqXSSRzkql27Npo1a4Zz586ZGYj1sKuCiIgIf82qMPcwx+3bt3H+/HkEBQVZ6FNZHhMHIiIiG3nllVeQnp6OCxcuYN++fXjmmWfg7OyMZ5991tah6eU4XRVERERSbLBy5O+//45nn30WN27cQL169dClSxccOHAA9erVMy8OK2LiQEREBNgkcVi1apV572cD7KogIiIi2djiQEREBHCTK5mYOBAREQEWnY5ZkzlM4uDk5gInhWuF85oSA19lK2WPTu7uess0pWXS97pV/Bzae4ul51g7QjZcY0l87aTm+9tirj8gY00RCYbWL5B8X4nP61Srlt4yTVGRZL3m3CtFoWdhIAAQEssUA9b7uitc3STqlf79JHmvoe8Jfd/jVfR7y1abXFU3HONAREREsjlMiwMREZEkjnGQhYkDERERAGgEoDDzP35NzU8c2FVBREREsrHFgYiICGBXhUxMHIiIiAAAFkgcqmQbT9tymMRBU1wCjcKECbZOlWzFra1UektuqWlWBqdNSjA4hZQcjq2mXJpKamojYGDrZgM/d5LM+E9BKiZnX1/Je9W3bkkUmv55JL/uUr+7DNVrxlRac+6l6sFhEgciIiJJ7KqQhYkDERER8OeMCM6qMISzKoiIiEg2tjgQEREBgNDcP8yto4Zj4kBERARwjINMTByIiIgAjnGQyXESBydnQGHC9CQzpn4Z2tlOL0PTqMyZjkYOx8nTU7Jcc+dOFUXywHsa2E1SaodFhYf+nWUN1W3WZ5X4uRN370rfK/EzLaz1H42hJnOF/iFu5uxwaY87tZJlOU7iQEREJIVdFbIwcSAiIgLu91KYnThYJBK7xumYREREJBtbHIiIiAB2VcjExIGIiAgANBoAZq7DoKn56ziwq4KIiIhkY4sDERERwK4KmRwncdCoJect2xWu02AZCoX+Mgf44S5ni3UazCW1VoDBbZslvu4KF1er1KspltgGHICTu8TaE076fy/Z6msn+SwMrDMjJLYJN7iduoH1PayOiYMs1eR/UiIiIrIHjtPiQEREJIVLTsvCxIGIiAiAEBoIM3e3NPf+6oCJAxEREXB/fIK5LQYc40BERET0F7Y4EBERAX+2FrDFwRCHTxwMbjlcbOLW2AAUrhKPV2LKEpwNTHcydbtuR+MAP8CWUN22QZba8hmQMa3SVGZ8PwmJe4XElEvnunUk61VfvyH1pgaiMrEv3tB0calpq7aebmmIRgMozByj4ABjHNhVQURERLI5fIsDERERAHZVyMTEgYiICIDQaCDM7KpwhOmY7KogIiIi2djiQEREBLCrQiYmDkRERMD9xZ8UTBwMqRZdFcnJyQgLC4O7uzs6deqEn376ydYhEREROSS7b3FYvXo1Jk+ejE8//RSdOnXCggULEB0djczMTPj7+5tdv6FtaxVKpd4yUSY9x10hsR6DkFjWVJRaaR46USWcavvoLZNcJ8BGzFmnQWrLZ2syde0V9Y2bFo7kAdb6y7g6/8UtBExe30KnjprN7lsc5s+fj7Fjx2LUqFFo2bIlPv30U3h6euLzzz+3dWhERFSDCI2wyFHT2XXiUFpaioyMDERFRWnPOTk5ISoqCvv376/0npKSEhQUFOgcREREBgmNZQ4jVbfueLtOHK5fvw61Wo2AgACd8wEBAcjJyan0nqSkJPj4+GiPkJCQqgiViIjIaOXd8TNnzsThw4fRrl07REdH4+rVq7YOTS+7ThxMkZiYiPz8fO2RnZ1t65CIiKgasEVXRXXsjrfrwZF169aFs7MzcnNzdc7n5uYiMDCw0nuUSiWUEgMaiYiIKiU0MH9wpPz7y7vjExMTtecMdcfbA7tOHNzc3BAREYG0tDTExsYCADQaDdLS0pCQkCCrjvJd6e6hzKR1PRRCf6OMENKzKpyE/l3ihNA/uluIMumgHGDULlUdodE/S0Ft6HuxupH6pS7xM2k7+n+HAHCY3wX3cP/7UGqXUYu9j5lvUR7r38fXVfZHrVR3/OnTp80LxIrsOnEAgMmTJ2PEiBHo0KEDOnbsiAULFqCoqAijRo2SdX9hYSEAYA++NS0Ac3awlp7pSWQf7G/GpfVUt20EHCMvkK2wsBA+PvqnD5vKzc0NgYGB2JNj4v8Tf+Pl5VVhfN3MmTMxa9Ysi9Rva3afOAwePBjXrl3DjBkzkJOTg4cffhjbtm2rkKHpExwcjOzsbHh7e0OhUKCgoAAhISHIzs6GSqWycvTVF5+TYXxG8vA5ycPnpJ8QAoWFhQgODrZK/e7u7sjKykKphdbQEUJAodBtLaqsC92U7nh7oBDWbvuxMwUFBfDx8UF+fj5/OCXwORnGZyQPn5M8fE6OqVOnTujYsSM++ugjAPe740NDQ5GQkIDXXnvNxtFVzu5bHIiIiGoqc7vjbYGJAxERkY2Y2x1vCw6XOCiVSsycOZNTNg3gczKMz0gePid5+JwcV0JCguyZgvbA4cY4EBERkelq3MqRREREZD1MHIiIiEg2Jg5EREQkGxMHIiIiks2hEofqtue5te3evRv9+/dHcHAwFAoFNm7cqFMuhMCMGTMQFBQEDw8PREVF4ezZs7YJ1oaSkpLw6KOPwtvbG/7+/oiNjUVmZqbONcXFxYiPj0edOnXg5eWFuLi4CqvB1XSLFi1C27ZtoVKpoFKpEBkZia1bt2rL+Ywqmjt3LhQKBSZOnKg9x+dE9s5hEofquOe5tRUVFaFdu3ZITk6utHzevHn48MMP8emnn+LgwYOoVasWoqOjUVxcXMWR2lZ6ejri4+Nx4MABbN++HWVlZejduzeKioq010yaNAnffPMN1q5di/T0dFy+fBkDBgywYdRVr0GDBpg7dy4yMjLw888/o0ePHnj66afxyy+/AOAz+rtDhw5h8eLFaNu2rc55Pieye8JBdOzYUcTHx2tfq9VqERwcLJKSkmwYlf0AIDZs2KB9rdFoRGBgoHjvvfe05/Ly8oRSqRQrV660QYT24+rVqwKASE9PF0Lcfy6urq5i7dq12mtOnTolAIj9+/fbKky74OvrK5YsWcJn9DeFhYUiPDxcbN++XXTr1k289NJLQgh+L1H14BAtDuV7nkdFRWnPVYc9z20pKysLOTk5Os/Mx8cHnTp1cvhnlp+fDwDw8/MDAGRkZKCsrEznWbVo0QKhoaEO+6zUajVWrVqFoqIiREZG8hn9TXx8PPr166fzPAB+L1H14BArR1bXPc9tKScnBwAqfWblZY5Io9Fg4sSJ6Ny5M1q3bg3g/rNyc3ND7dq1da51xGd14sQJREZGori4GF5eXtiwYQNatmyJo0eP8hn9adWqVTh8+DAOHTpUoYzfS1QdOETiQGQp8fHxOHnyJPbs2WPrUOxS8+bNcfToUeTn52PdunUYMWIE0tPTbR2W3cjOzsZLL72E7du3w93d3dbhEJnEIboqquue57ZU/lz4zP6SkJCAzZs3Y+fOnWjQoIH2fGBgIEpLS5GXl6dzvSM+Kzc3NzRt2hQRERFISkpCu3btsHDhQj6jP2VkZODq1at45JFH4OLiAhcXF6Snp+PDDz+Ei4sLAgIC+JzI7jlE4uDm5oaIiAikpaVpz2k0GqSlpSEyMtKGkdmvRo0aITAwUOeZFRQU4ODBgw73zIQQSEhIwIYNG7Bjxw40atRIpzwiIgKurq46zyozMxOXLl1yuGf1dxqNBiUlJXxGf+rZsydOnDiBo0ePao8OHTpg2LBh2n/zOZG9c5iuiuq457m13b59G+fOndO+zsrKwtGjR+Hn54fQ0FBMnDgRb7/9NsLDw9GoUSNMnz4dwcHBiI2NtV3QNhAfH4/U1FRs2rQJ3t7e2r5mHx8feHh4wMfHB2PGjMHkyZPh5+cHlUqFCRMmIDIyEo899piNo686iYmJiImJQWhoKAoLC5Gamopdu3bhu+++4zP6k7e3t3ZsTLlatWqhTp062vN8TmT3bD2toyp99NFHIjQ0VLi5uYmOHTuKAwcO2Dokm9q5c6cAUOEYMWKEEOL+lMzp06eLgIAAoVQqRc+ePUVmZqZtg7aByp4RALFs2TLtNXfv3hXjx48Xvr6+wtPTUzzzzDPiypUrtgvaBkaPHi0aNmwo3NzcRL169UTPnj3F999/ry3nM6rcg9MxheBzIvvHbbWJiIhINocY40BERESWwcSBiIiIZGPiQERERLIxcSAiIiLZmDgQERGRbEwciIiISDYmDkRERCQbEwciIiKSjYkDUSVmzZqFhx9+WPt65MiRkkttL1++vMJWyKbo3r07Jk6caHY9hqSlpeGhhx6CWq22+nsZolAosHHjRoPXlZaWIiwsDD///LP1gyIivZg4UI2Tk5ODCRMmoHHjxlAqlQgJCUH//v11Ng6ytMGDB+PMmTNWq9/SpkyZgjfeeAPOzs4AgKlTpyIsLAyFhYU61/Xv3x9du3aFRqOxWixXrlxBTEyMwevc3NzwyiuvYOrUqVaLhYgMY+JANcqFCxcQERGBHTt24L333sOJEyewbds2PPHEE4iPj7fa+3p4eMDf399q9VvSnj17cP78ecTFxWnPvfnmm/Dy8sLkyZO15z7//HPs3LkTy5Ytg5OT9X5VBAYGQqlUyrp22LBh2LNnD3755RerxUNE0pg4UI0yfvx4KBQK/PTTT4iLi0OzZs3QqlUrTJ48GQcOHNBel5eXh+effx716tWDSqVCjx49cOzYMZPf9+9dFeVdHf/73/8QFhYGHx8fDBkyROcv+qKiIgwfPhxeXl4ICgrC+++/X6HekpISvPLKK6hfvz5q1aqFTp06YdeuXQCA4uJitGrVCi+88IL2+vPnz8Pb2xuff/653lhXrVqFXr16wd3dXXtOqVQiJSUFKSkp2LZtGy5duoRJkyZh3rx5aNKkid66/ve//6FDhw7w9vZGYGAghg4diqtXr2rL33zzTQQHB+PGjRvac/369cMTTzyhbcV4sKuitLQUCQkJCAoKgru7Oxo2bIikpCTtvb6+vujcuTNWrVqlNyYisi4mDlRj3Lx5E9u2bUN8fDxq1apVofzB/9gHDhyIq1evYuvWrcjIyMAjjzyCnj174ubNmxaL5/z589i4cSM2b96MzZs3Iz09HXPnztWWv/rqq0hPT8emTZvw/fffY9euXTh8+LBOHQkJCdi/fz9WrVqF48ePY+DAgejTpw/Onj0Ld3d3rFixAikpKdi0aRPUajWee+459OrVC6NHj9Yb148//ogOHTpUOB8REYHExEQ8//zz+Ne//oWOHTti3Lhxkp+xrKwMb731Fo4dO4aNGzfiwoULGDlypLZ82rRpCAsLw/PPPw8ASE5Oxr59+5CSklJpK8aHH36Ir7/+GmvWrEFmZiZWrFiBsLAwnWs6duyIH3/8UTIuIrIiW2/PSWQpBw8eFADE+vXrJa/78ccfhUqlEsXFxTrnmzRpIhYvXiyEEGLmzJmiXbt22rIRI0aIp59+Wm+dy5YtEz4+PtrXM2fOFJ6enqKgoEB77tVXXxWdOnUSQghRWFgo3NzcxJo1a7TlN27cEB4eHtotli9evCicnZ3FH3/8ofNePXv2FImJidrX8+bNE3Xr1hUJCQkiKChIXL9+XfLz+/j4iC+++KLSstLSUhESEiKUSqW4ePGiZD2VOXTokAAgCgsLtefOnz8vvL29xdSpU4WHh4dYsWKFzj0AxIYNG4QQQkyYMEH06NFDaDQave+xcOFCERYWZnRsRGQZbHGgGkPI3CH+2LFjuH37NurUqQMvLy/tkZWVhfPnz1ssnrCwMHh7e2tfBwUFaZvxz58/j9LSUnTq1Elb7ufnh+bNm2tfnzhxAmq1Gs2aNdOJMz09XSfOl19+Gc2aNcPHH3+Mzz//HHXq1JGM6+7duzrdFA/avn07cnJyoNFocOjQIe35FStW6MRQ/hd/RkYG+vfvj9DQUHh7e6Nbt24AgEuXLmnvbdy4Mf7zn//g3XffxVNPPYWhQ4fqjW3kyJE4evQomjdvjn//+9/4/vvvK1zj4eGBO3fuSH5GIrIeF1sHQGQp4eHhUCgUOH36tOR1t2/fRlBQkHaswIMsMaWynKurq85rhUJh1OyE27dvw9nZGRkZGdrZD+W8vLy0/7569SrOnDkDZ2dnnD17Fn369JGst27durh161aF87du3cLYsWPxxhtvQAiB8ePHo1u3bqhbty6eeuopnSSnfv36KCoqQnR0NKKjo7FixQrUq1cPly5dQnR0NEpLS3Xq3r17N5ydnXHhwgXcu3cPLi6V/+p55JFHkJWVha1bt+KHH37AoEGDEBUVhXXr1mmvuXnzJurVqyf5GYnIetjiQDWGn58foqOjkZycjKKiogrleXl5AO7/55STkwMXFxc0bdpU56hbt26VxNqkSRO4urri4MGD2nO3bt3SmdLZvn17qNVqXL16tUKcgYGB2utGjx6NNm3aICUlBVOnTsWpU6ck37t9+/b49ddfK5yfMGECAgMD8frrr2PatGmoX7++diaKt7e3zvt7eHjg9OnTuHHjBubOnYvHH38cLVq00BkYWW716tVYv349du3ahUuXLuGtt96SjE+lUmHw4MH47LPPsHr1anz11Vc6Y09OnjyJ9u3bS9ZBRNbDxIFqlOTkZKjVanTs2BFfffUVzp49i1OnTuHDDz9EZGQkACAqKgqRkZGIjY3F999/jwsXLmDfvn2YNm1alS0u5OXlhTFjxuDVV1/Fjh07cPLkSYwcOVJnwGCzZs0wbNgwDB8+HOvXr0dWVhZ++uknJCUlYcuWLdrPu3//fqSkpGDYsGGIjY3FsGHDKvzF/6Do6Gjs2bNH59yGDRuwdu1apKSkwMXFBS4uLkhJScHGjRvx1VdfVVpPaGgo3Nzc8NFHH+G3337D119/XSEp+P333zFu3Di8++676NKlC5YtW4Z33nlHZ4bLg+bPn4+VK1fi9OnTOHPmDNauXYvAwECdlqAff/wRvXv3lny+RGRFth5kQWRply9fFvHx8aJhw4bCzc1N1K9fXzz11FNi586d2msKCgrEhAkTRHBwsHB1dRUhISFi2LBh4tKlS0IIywyOfPB+IYT44IMPRMOGDbWvCwsLxXPPPSc8PT1FQECAmDdvnujWrZt2cKQQ9wcrzpgxQ4SFhQlXV1cRFBQknnnmGXH8+HFx6tQp4eHhIVJTU7XX37p1S4SEhIgpU6bojfXGjRvC3d1dnD59WgghxLVr14S/v7+YM2dOhWvnzJkj/P39xbVr1yqtKzU1VYSFhQmlUikiIyPF119/LQCII0eOCI1GI3r27Cmio6N1BjtOmDBBNGnSRDuAEg8Mjvzvf/8rHn74YVGrVi2hUqlEz549xeHDh7X37tu3T9SuXVvcuXNH7+cjIutSCCFzRBkR1RivvvoqCgoKsHjxYluHYpTBgwejXbt2eP31120dCpHDYlcFkQOaNm0aGjZsaNWlpC2ttLQUbdq0waRJk2wdCpFDY4sDERERycYWByIiIpKNiQMRERHJxsSBiIiIZGPiQERERLIxcSAiIiLZmDgQERGRbEwciIiISDYmDkRERCQbEwciIiKS7f8By3a6a3w7VnIAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "scene = load_scene(sionna.rt.scene.simple_street_canyon)\n",
+ "scene.frequency = 3e9 # Carrier frequency [Hz]\n",
+ "scene.tx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "scene.rx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "\n",
+ "# Place a transmitter \n",
+ "tx = Transmitter(\"tx\", position=[-32,10,32], look_at=[0,0,0])\n",
+ "scene.add(tx)\n",
+ "\n",
+ "# Place a receiver (we will not actually use it\n",
+ "# for anything apart from referencing the position)\n",
+ "rx = Receiver(\"rx\", position=[22,52,1.7])\n",
+ "scene.add(rx)\n",
+ "\n",
+ "# Place RIS\n",
+ "ris = RIS(name=\"ris\",\n",
+ " position=[32,-9,32],\n",
+ " num_rows=100,\n",
+ " num_cols=100,\n",
+ " num_modes=1,\n",
+ " look_at=(tx.position+rx.position)/2) # Look in between TX and RX\n",
+ "scene.add(ris)\n",
+ "\n",
+ "# Configure RIS as phase gradient reflector that reradiates energy\n",
+ "# toward the direction of the receivers\n",
+ "ris.phase_gradient_reflector(tx.position, rx.position)\n",
+ "\n",
+ "# Compute coverage map without RIS\n",
+ "cm_no_ris = scene.coverage_map(num_samples=10e6,\n",
+ " max_depth=5,\n",
+ " los=True,\n",
+ " reflection=True,\n",
+ " diffraction=True,\n",
+ " ris=False,\n",
+ " cm_cell_size=[4,4],\n",
+ " cm_orientation=[0,0,0],\n",
+ " cm_center=[0,0,1.5],\n",
+ " cm_size=[200,200])\n",
+ "cm_no_ris.show(vmax=-65, vmin=-150, show_ris=True, show_rx=True);\n",
+ "plt.title(\"Coverage without RIS\");\n",
+ "\n",
+ "# Compute coverage map with RIS\n",
+ "cm_ris = scene.coverage_map(num_samples=10e6,\n",
+ " max_depth=5,\n",
+ " los=True,\n",
+ " reflection=True,\n",
+ " diffraction=True,\n",
+ " ris=True,\n",
+ " cm_cell_size=[4,4],\n",
+ " cm_orientation=[0,0,0],\n",
+ " cm_center=[0,0,1.5],\n",
+ " cm_size=[200,200])\n",
+ "cm_ris.show(vmax=-65, vmin=-150, show_ris=True, show_rx=True);\n",
+ "plt.title(\"Coverage with RIS\");\n",
+ "\n",
+ "# Visualize the coverage improvements thanks to the RIS\n",
+ "fig = plt.figure()\n",
+ "plt.imshow(10*np.log10(cm_ris._value[0]/cm_no_ris._value[0]), origin='lower', vmin=0)\n",
+ "plt.colorbar(label='Gain [dB]')\n",
+ "plt.xlabel('Cell index (X-axis)');\n",
+ "plt.ylabel('Cell index (Y-axis)');\n",
+ "plt.title(\"RIS Coverage Gain\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "649ff941",
+ "metadata": {},
+ "source": [
+ "As expected, the coverage has significantly improved in a small area around the receiver. We can also visualize the coverage map together with the RIS as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "989507e0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAJOCAYAAABlSZJZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9b8y2y3YfhP3W3M97znFqO3VtH5/W+eOQupbcBkdKELJAfCAoETqJHFQ+9EOAqEVVS0QrYTm1VAQJJoIWhFIhqKymEkFISP3QkmJZdmI5SoiIZNUNdiDGsdoQI7AJaQLG2Ofs97lm9cOsP78111z3n+d93r3f7X2tvZ/3vu/rmlmzZs3MmrVmzawRVVWccMIJJ5xwwgknnHDCCSd8iqF90gSccMIJJ5xwwgknnHDCCSe8K5yGzQknnHDCCSeccMIJJ5zwqYfTsDnhhBNOOOGEE0444YQTPvVwGjYnnHDCCSeccMIJJ5xwwqceTsPmhBNOOOGEE0444YQTTvjUw2nYnHDCCSeccMIJJ5xwwgmfejgNmxNOOOGEE0444YQTTjjhUw+nYXPCCSeccMIJJ5xwwgknfOrhNGxOOOGEE0444YQTTjjhhE89nIbNCSeccMIJJ5xwwgknfErgj/yRPwIR+aTJ+CDhNGxOOOGEE0444YQTTjjhUwrf9m3fBhGJvy984Qv49m//dnzf930f/tbf+lufNHkfKzx90gSccMIJJ5xwwgknnHDCCS+H3/7bfzu+93u/FwDwla98BT/5kz+JP/7H/zj+3J/7c/iJn/iJT5i6jw9Ow+aEE0444YQTTjjhhBM+xfCt3/qt+AN/4A/E73/8H//H8bVf+7X4l//lfxk/93M/h2//9m//BKn7+ODcinbCCSeccMIJJ5xwwgkfIPyFv/AX8Hf9XX8XvvCFL+C3/tbfih/8wR+8O++XvvQlAMDT02fHj/HZqekJJ5xwwgknnHDCCSd8SuAv/+W/jN/9u383vvmbvxl/5I/8ETw/P+Of/Wf/WXzLt3zLLu3bt2/xN//m3wQwtqL9pb/0l/Cv/Cv/Cv6+v+/vw2/5Lb/l4yb9EwNRVf2kiTjhhBNOOOGEE0444YQTEv6hf+gfwo/8yI/gZ3/2Z/GbftNvAgD8zM/8DH7bb/tt2LYNrsJ/27d9G/76X//ru/x/z9/z9+BP/ak/hW/8xm/8WOn+JOE0bE444YQTTjjhhBNOOOEDgm3b8HVf93X4nu/5Hvzb//a/Xd59+ctfxg//8A8Xw+ZLX/oS/vl//p8HAHz1q1/FT/3UT+Ff+pf+JXznd34nfuzHfgxf8zVf87HX4ZOAcyvaCSeccMIJJ5xwwgknfEDwX/6X/yV+9Vd/dXno/zu+4zvwwz/8w+XZN33TN+Ef+Af+gfj95S9/Gd/xHd+Bf/gf/ofxJ/7En8A/+U/+k++d5g8BzuABJ5xwwgknnHDCCSec8GsMftfv+l0AgD//5//8J0zJxwenYXPCCSeccMIJJ5xwwgkfEHzzN38zvuZrvgY/93M/t3v3sz/7s3fheH5+BgD88i//8qvS9iHDadiccMIJJ5xwwgknnHDCBwSXywW/5/f8Hvw7/86/g5//+Z+P5z/zMz+DH/3RH70Lx7/77/67AIDv+q7vei80fohwBg844YQTTjjhhBNOOOGEDwx++qd/Gn/33/1344tf/CL+iX/in8Dz8zP+1X/1X8W3fMu34Kd/+qdL8IBv+IZvwPd+7/cCAD766CP81E/9FH7wB38QX/d1X4f/4D/4D/Ct3/qtn2RVPjY4DZsTTjjhhBNOOOGEE074AOHP//k/j3/qn/qn8Jf/8l/Gb/gNvwF/+A//YfzCL/wC/ugf/aOH4Z5ba/imb/om/K7f9bvwAz/wA/itv/W3flLkf+xwGjYnnHDCCSeccMIJJ5xwwqcezjM2J5xwwgknnHDCCSeccMKnHk7D5oQTTjjhhBNOOOGEE0741MNp2JxwwgknnHDCCSeccMIJn3o4DZsTTjjhhBNOOOGEE0444VMPp2FzwgknnHDCCSeccMIJJ3zq4TRsTjjhhBNOOOGEE0444YRPPTx90gSccMIJJ5xwwgknnHDCCQO+8pWv4KOPPnp1vJ/73OfwhS984dXxfkhwt2Hzv/h//UEogA4BIOgqUADqnxD6DsB+d4xnvXv6hk3tnQq6NqgCHQ1bFygEvQs2+Pvx92yfDiI6KBErzV418G+nZJ9O6B0/HzCnnZ5zUv4x3wgk07PyW+Nh5RmhU4lUagWp+ieC7/FbJdtBqW1U0DXzdvrs6uVmHtAnINBen3tazOmvgEDiIqmrPCvMsorNz1Yw4fkT/93fiP/e//NP4vIrvwyIRM4Vtq7elySeqz2/iPOQ8jlpUbbGCwGgqlAgcHq9lXB7liZJmdrvrvt+phju1WcFLvGi1ip7FI+TWj+nRaxex/zXpPUoCYFwudF0la4GoAdd3ge15FUaYz3ZmmitDlxXp7NZ2s3K5fzMKVXFf/N2w//3l34Vm+NSxZvf93l8/ns+jyYdT9LxhI4n2SAY3y/yjCfZ0GRDw4YmQ7oN+vMz+eF8d6npz+yPGjjk0MRt58pxuhQqR6NDRqcMvgf3Jv66LAn5gHyuVDOl7P7c03Rt6Nrw3/zqN+D/9qe/H6qKy5vP4XO/7tehXS74mm/4Znzua389Lm/eVCKViaHWFS8v6Z9YAtU+xl68o/5h/SXeQQDtWVxz+alDRiVWQBXSLvl7YqqqpZGW71WNR2q4Bb13QDukNcojkNbG+20bfXT8k2k8PQDt1BoigLTCD8/jlDbKi0VdM68M/tXKAQVH4q49T7NtQqBdEosItI96QzXaVvv4rn1De3oD3Z7td4dcLoOuri5A8YXtq/i6X/3P8Mf+879YKPw4LuATQe0TR3CTmGvz49y3+CuN1ztQznpOCozpOZdLaWf5s8+TuI7ei/B8OY1bLrfmOnj+IUGpWFT86CZIEeA/+Z/+719U0le+8hX8lt/8tfjFv7G9KP81+NKXvoS/9tf+2q9p4+Zhj43PkVLUtDH4hJ+awBvf841C0SDoUDRXUkQgqmguzwRoVSajQaA0oHbj9pjawBO0Cybqq/AKJUgpjXAKKvPaWJzfLdLq1fc82SqgTHEqPUWtYQUmJmsN9U8hIXgk2gCBN4WSpmorqTyKp2XFmBSno5ZYCudbcuxeObdK97zlPstkWRgee5XRlOnpd1UfrSVCB5twqIbhEXlJ6nFfXU4wRKpOZbPyzoqF9w+uB/eIrQOXNtp462OMIXhwDE0kDASqHuB9hmmyvta9XFY6KX9Rn4px4rzP1Jv6OBTXFaPtqDmjtgpgA6B9vGsy2mHulWzsvGmC3oGmig2aCp9PYJI8D1nG+BSTIu65NdLPLVM18loHlkuLROX5ugcfABe5aHctdAh9rnGsHykxxwyj3nG5XNBE0FpDu7zB5ekN2sUVfB9Dk7JA46v3PtojOi6iw2goy6ywk6kbMooaHWQkmGHhirlCqT2ND7ohDSy1ftGA3iNd789mpBjN22ZKvVryBsgF0D6MILHyVEeHDdpmoybZ0i5PRvtWGk2RcsgNoZBxzh+Tz8OgaCXvKLoRzuSVTr/zPUtDANIgraaXYjApD5hIWw0eQWsXaO9DH3Be9A5Vxaze3Ts1HMMsGdYYaap4pfJmuI780KiZMNQWneWIxoMcCiu893D1dprZqBnPrF8cVvfdW/T9g1arTbl19hW7McVehY8++gi/+Dc2/PWf/DZ8/de93omRX/pvOn7z7/hP8NFHH52GDYAYPTmZslHjq7GuQNc0AsSEFZM+raS5IJacj2J6aoFN0TQVKl5dYO9M0Lr7TRRpqh8ivmILwrWHWb7dL+uq0lMnin3qwj0WRHB1wwwVgRmMlFd0eNQsk6/+O49DsXSLzTQ3Nxh9MimrK5OQcseMuKwUWQp/2Wd9bIK4YSjt6ZseR7Z9/jKVRZ+TUiQrgFpoqQouYxQAl4Xx7WUNg0ZCIHY13Upr+tWUG6MtlF9fyUtPj+p+GmxUl0ubFL0Juu71RzjNVlKu3CedoUwt6MWUdgYf331KwZ6yFV+Cn8h+7R6h8Yxkz6L8zfrvpsCTIDqMqZc2ZtIUG3xn30VObrWLaeBhJW9P/ePwUh3rWr5r1FQOPkK5yYrtGbiMFu7bhvakQ9k1b8bQZ71DjxV7kEKuZtSM5+TdnLwVYzIY1PVtA0TC05JeYh9oPuhc+d/ieyj4XGObHMKIEgGU+4WVpZ5U0S5ZNs93EPeA8DwwlvngC3ytDeVetXo7GsgISDZ7WrEy0wvj5bZRDectK2duvMdqX0+PXk8Pk9Pg9XNP1PhttPv4aZW+EChhtG3TSDBeah9zlbUNYkyatNu1zQcGs7AvD2+NmnvTwfSeXUF1zhb+vIEzstFIXwoL3b2T8vu4nOrB+ZSCj++rpszrw9d+neBrv+71SuofC9WfPNxt2OTQcyGIeMKeGle0QkCq0KKmxnMxpVygQ2YbziamnKhv40A83xkXNHCvDkrXYCl94pqmaxXTcaYV2lDkCSUVeZcavtP2yROCY9FQldrBu/Fbw0hzeybsFeL3GJRusLhC5ho9hsEoPrnPW8ZGOlUpQjVpVrhhEG9KRa5w5B5NSTBJxQN8E67e+1qhU1eEdSf3dwo7EBO6K9Gp0tYtMv4t++F+CxroHdxDaV6UKLN3NFPCuFwgvTXBd6InvQ3j3+4LBUQbb3GLBQWrI4BCB9dbJxxudFTcOYGxeHDvbBm3TLMI8ZbNtaoX5fhKddvXzF0+eB28faeF+jDymymsXRWfa8OTlelqL3CZNtqrKvlC74suMdX1qJNHv6iiqSgLc99Z9ul3hHvUKt8dtKeAemnImvHz8vkvQJ/fQp+Gkt63LfpaGPimmLfLhQwHS9Na6QRKbR+lh5cGgC/i+JYn937YtieYJ6Bui0F2Wq+Z0DYuf05ytHT0YBx5/Ip3x/K5d4ZXMlhgcx9yj+jlMnikHaJmzLFaK1Z3N9T6huGR6cHLYUhSI05ervjdfdRwlUYddDO8xI+gWhrnAMC8Bi16jfort22pr0CE2894apOZbqstOfOAOfp9b5oDuGtyv5ZxBXU2uYX/YB00X05viyyLeVtrGaTnvEioPJBHjtj/KYEV73mGOOHDgge2otUeKaJDOWbpJTnp8Z7l2EwlAjElpJxrUCA2TAmGUeMKDykUY0Xay2eacPhsroJKTiKpl0q4ZhVZjTqFH2vh10Uja5cpaLJwKiHndHpmyg15q1SMtzy3+gTPuJcTsBfpldS0cciLliSbF87a21UtL0cxVvB0sYdrL0xlV79Dtqb2u3g5peO6xeM8tcFeknw+FUVGnRuLfF7CZwc3cGdIIyAn9A4/9+HbApETu2FvvhJr+V0pE+oMq7MDTPt+ziClLOjVoMu/+LQ6z3W8XcuNN2+GWblf0VP5UhcI2DgDefuirxhnaBMLIwvvItPNemoYWMwXGnbu2XKOPNN2Geeln40Bkr8uW5jXsZ99V3edH1yHuRHugmN5tEr5knzXUt2DgT0Oah6BMb40xkMowCMDIHlGY6cEm4FQPagHNLlR09xj9IzWLrmrYJIr7ukIdUUacoTUdOp1c8Nhosa3onndojjaBia0eFE2AHrXcZ45LXHGps4XaZBJGAHF+JB5npi4RfWOua9U2A0lhB4ei2Sqx32L6B9b4MY8INKy3UXQNzN2BCSxEe0X8Gla8j+Yk16Eihhc5Eth/GwcHRQ8C/rp0SrZ6qEcJMpp3vrTp6jJrgPJheijB5XT5dcTPmZ46IxNWfCfntfzHECog0Kr/dTT2XBRmMJhWpgrlRLphpBr0narv1TUIeynwaQzFdJM44YEpnM1fJDvqMh9WXut5Vi1IP6kepqTHvhsg5ZBll4bUobDdrEtHeI6rZQVoLRHle2dVD6hVPfcOlhX5aYRvVsVNWEgAG4EGtjDw1ofYHvRj7ZoFeyurBR9tPJRWVAH81I5mBUCse6jmGOqe+vlWZUQl6F8sPKG8p2Ssa6xqFPNJ7svXq4pV7yYwJPYVNheia/pgi3R12qGIjfm52rbWWXd4sWYQfZBOP00PoYX2PJ5O5CxODw7bMQu6jRTfLMbmoJ254zG8mjqfPF8dZi3Ynh0+mQZjBjyt3O5xViorqaeZuuoAr1veHp6Sm9FTCC5Ki/Wht6Pxa3q2d3G1V3wyre4+RwS3h+n0revMe6Fxp+SwhVr7gUafUWLAJ14wmOXXoi0MISiHDOQGIfzS+QSC1Ypa4hWzec6D1znK9Wh5J8WTnTqg3O4FZ4LGGY9wHEXz5LP69Ko01HgAf9oZkRFPtchZDedZGXu/T3PzA+MmxdMP4fFx3Pdk3QVKPGVasqRkJ4P/O/ezzoLqD8t5pE7aF222Ut5+XECsbr0UWDq/8eVeVQqH8GmHdtrITN8nwW4e+NqjBUblGPKyAOy9fn4XtMpqvzOrWYe4ayFUpNpIy8ACO9vt79YNU0V76i7+ZyoCsAjex3kGv2Z1275xUvBlTCac8GnFlB4xMoWP4t3kwIqxNPxkCelxJfqtKcf2wEl2hGV/05n0JaT//7dRHit+v77NQjpy21+LW2CLpLvtqCAJmBXigqH+PmRAZHGwMox5oqURHlE40ToimZPp9Pv+TmzfF7sXEGqfJMipleaj/WmNam7frosb1GfVf2qujg+VroAj+N5Kp7Td85DOkAUISRvijxLSmepkPJuKnDJpLXSu/i6hIWUupkve/CUW3ePrpTlVVL6XmlYYfCtZgDQ2gXApKQWpdqxcsvn+Nx1asrjHo2dKejeodYm4Vq/Z128PPYZWtmK9Oi6gk4GQip0K2GEQv9eZaz5Zq6ug31Ya6w0SKnpnA81QVKxHvNZt2FrUf2Omt2NKfNm1RAhhaIib7nU6GFFoN47aXz6IebemGuJ2bsVtDnz/vlOT7iblbXsWVbmT9rO9mltphvqxc3KUf51jz/h44THPDYYwijWeUOojzdlVZ+1LBKE4211ZQdefybksYEHEcitansZf92gOaoJC3ZfuY3D8V4TtZTiOQS8JehISCT2VAGOqLieap3PqC4ehUFPGmyzMur1bDLOPcC9UlHHyhfenhVbGrzdHeM0t6czo7a7v/Oy7obl3q/bokPaCPwd50p8Zd84dZEMq+yTaaZg3HX6FQy+NJnUW66/Kz/YGx+84uPbMR0BRTgNvmfe9M/5dquu9dxHqf/EnVC9nC7Jpxzm2g/fHym9c1PM/XbuczKxiNMrIzSCeV5mE2DOJ0B6vKhQx1noFAzPsA1k9+CEborBy6qEdcKYrcjtVdWxfK7IqI6Y0i9bazYsqW32+BPf6td1GbgYeVcGY1X2jzCvOol7NhTb84Y3n7uMA/aSh8DZs+xjajRjC7m53CzJMqoYDPZM8rzNoJ7kUOnYOb6djvA2CMyr3dC7R0VjuUdbx2BeGNuyFQEANOdBl4fD6zvOE3nUMD73yPNaK9vP6MVknIi7N1148POVMeR0OW/A5SRbSquGgTHqeRhRkZpK4cEPLhNC54sXlJ7wwGpCyvUJRe4D2RfIyI9+35tmgqMsL4FV3kfwzWnXguTg3SPPdZdOdl8WOH4twTxx714eg5bv79JhBnToLrDOu+L7LMD9HhvhliZPjACs4vlz/16fmXdC+PfYFuL4K076E/PoQNFEx8oqra7eNe4pJSt6DqxoHakVc7d4tJvcu2KyCsc4JtdZ8Chq7Hr3nrD3i/jkaQBII88YP3d+2zMLghOf40/pOw4aYC8kgUpTpr3KDJCL60o6+t633aucW8m4iHe0HQbWJ6d+rNNfL6ugZRPLeO95yagCpZm/l4BCWtVsQGMrYR6UT4NMCI+zazaq/FMlD94XHVrE6j2FZmaaFkqNl8+hqBkyGh+ryenp8jJnWMSoyjoYLiWcoN9eLf/enQ4d7dAEuBgNz6p49ruawPIs299ptv/JM5U1rkPB+3bimOdK79L3TH/VvHoU1mPn0Wn3lhcw+TWU9u3t27hbSLcNz28/suhce3r4MHmosm7ca57XcMpz+5aVaYZTIZR/HyqWFFBAJMMpG26RlkaCe4VmeSQylH4PDE4RyNTfxzasAb1vZNy17MxGb85Po0yPtLbjt7q3qlMDaXhLOnnMIlffkm9i9UFOTJIvkIZiN/70w47gbdXaME5HpDZFeNti4GjQGKwGME/G3gdGG3w2FLKqGxzMj1K/OltnvWJ+Vl5P0TvFn90lFEhXKwg+Y2ACOeai8vKzyJAPBx722Axl1c/DuJAygejzCMaKJd9VA5HxTHJMuTHjXgSFhWy1lazQn0UsoIBPmqTIsWamQSFRnKodGy4RnQ2Ifws6UkavqwRKHFgBUXOHXl4VnwwcEGT5N9NQWSn2lXxflauU+bYxUtOpnr5aGeX7yl6cHTVsO6+OE5uNMrxa3j00tey5knOFD7lSCsI1bge0Rsqne7HUXrXwlriBAshOMWdDh583gLw9CMUh9vdTuuLdWtRgN2fZgyYjFLETMPqBl5OhvPlCTy7nSI/rGPdIrd/mwm+7g8XQcXeMXxg6ry9zT/Gxms2gMQZxkK9TtTpsor5SR//dpu7m6d1L5/LjWRXPAJ674klmAyu3WRZTiYWPXDnvt+jXu7Qkto5lzP0K3cOGyh34rhwPJyxSX3oH1w60N5CnN1P6lEV5iaSP87zXxbeQxX0mk6xKlBpzTD6lTmCGCy9CjKI8vLGTRYaCTD1N0suwe88eoSJftSrrpvC7h8SDK4THJARWMBAZ5ti0VK57VMc8RgDSE9IMP82JJu/lciHDCQQu0z0kt4eaTokR28yWZ4M6WnsKpAIB6JJPVc2gCFOdxcsNS1+NhWak9drrmN7973n087Oj33eg/UCgjMGgTQud7PWVgzQlHefdfSFckJty41MDi4rcXLy5u/LXtcJ7oaMvFxnfBd9nAR44Y8MTfFXMhN67hwXQvNguBs/eC8NnOBpNeoHX0kCoDJnLcmK8DIdJaaKkO/c31WLOrfQ3oXkIlqJ50tNntZ2mpYVKX880uYdl8I3OMHk5Q10sHp5oh+bf/W/CISjCEtwWO4Lp2UJwPgaTcnALjCG69WJwjJpXvTQ8KpFqQkWT7lD2i9q0U/kap03qYysfKE+0qMwja0AcGDRdBjoUfRdLbtQcic+Kj7Zf0UiOcr3f2OIB66lc30bK3ZxArc5Cn4FKPTlFwPJcrv/NxGsN9dwAv9fQvFmBdGfs7PBF6aHbhZLYADzZhYFdC1fgixoxBtWxzNWnMeHZfczsqFjAnV183+fuhUUPexCR1H+o380zgY+kIVSkNWxf/Qog45JO728c/lntsku/hNLbZjwn5TlW/tkgUsjlCe3yhBbR0xRqmzh2SlsbNInIKG+6H6U9PdlcYffDSC53cM8YBhgHFOFP4jcLz2IQkRdGJOgKOiOfe4GeoT3vgAmhIEhvFXu4ei/epjQMdtpvsrxvtq3O2rFsJZNowzB6JuMyo0/6f2as9C3YMc5TEV8IMvojRt+xP1X9zNy/USTzShlw9pEetJP2shjv8zhg9pO8jyRX2B3pXi6QPjx4QV1WXL7v5QnvGx7y2ACsRMhyEChN/qFolHz2TJDnVzBWkTeM7WZ21zTGofaxqttUzNtj6oZwebUsJitNgnx31H9nGvdvq6HEHoHjXmzv5DiN8+PqQCDiWEHTUnE/55SCJ5TqiUF0XZ3lc4S1zPR0SODHPtnAckA/LzTeVuAWrVkQ3Mo/oNO9B44t7rcAzGsxcNazLqM8pQqp9UEOUdsAbHM+pOHBz0cbrTx/epsfB0p65GVdAABH7svUWtZpWIZzX++43pf5jZc1PEvj6SbkpTJDYZznqiovgBIYzw2Y3LqXOqx7Iq+xiWyJXZ3iARQ9tppJXOap4NDzyRspEi63zakvqjy8NWbi64HQuiZ31nLppZACOMflpOlQaUrZrs/mg1uC4RkV8iSkB8bewQ0Uu11+ewYwzpf0/myKfhozu8ESno8RXrmcFXGvweUpjGEjJPHoPn1/fgu5PKUirgo/95PG9GWEuN+ewa2SXqEFg8goK3AgFLU/W7l8nrPlM00PuvIWuZF7FCed+rDJPWlEI229szQeH9C9qXkOKAiGt0l4uwDzPC2UacBi2svgN92xA1RPOs/SuU2tZT+4Gw7GWpmLUftV8YattIkF3pvPH6D41tR258Av6047nDaHz80JqvZVEl5P+nwQcNDmNfrtNJ/e1dTv3h8cNtWYX18L32cBHrrOt3ZrpT965F9kfM7emfDKWLpcNfCzM8g8APwQr/iaTeC1bIIDpXGieUEmLfrl3/xu+r1ngazfzVQUxWGVovKSlU/mCYq3CqhRnCizEciTheMaX2zgitoZJ3/HW3BQvTdBVBWOGbiAy0/Pm5ZUV9mA5aTCDTX3uQNoT3ZYGdTJTRmA2oE896KIDG+MeSSY9xPlQT5vZfNUcfAeY4uWC86RHjsch4o4q9SCaJ/cKpXt3V3BWeCOMiTPzsznWVhl6OG1qMYC0wn6rlBsqEZBnf4kypj56Xyaz/vMnhNF9iunpYngMiuIU927mkGk+XzQMkbaR72jtYat67Rl0MfY+J78tklP57byMo9lUHJs+rnIsFBxSzlHqe4DHrQaYjrllx58ju9D9ByVrSV5V8XWN7z96q8OpXd7xuXpTVzEGSGNkYfpI0CGK83TpZ5OUXhiXbF2fK2NP7FzGe1iZ0J64IQit4JxXUy4hYfC8TQPAFDr7d6kuFBSsfSKlG/iOC/RBsuxZedidHsmg4xCJRt94lHm2iW+c70ivLLxwu/dUQuI4NBag1wukV5EysJDNzrcIIq7gei8TW5NA8r2OeSigPNAmntj6DnxIN+P+qpqXKJLXJq5Nv1Jfo92nuaR0vlTZ9m3CK48u/b8fjgQB8dwR+I9zsmomRM73sIHLu56Ped584OF6CbZH3jxY789WjA9uI3708GJX7Nwt8fGxUR28KqqDKFlk1uxhEHaBZ+jGau5G084JlziYLH6dhv75JsDQ0g5RYMGAcaqajlvk5tKUmyZN0gRq6+EgapVf7OixVxIX8k1uEcA1slxUvGPfxv7XVjHPQuSSlnwhJ/BVlJhZ46svukN4pbXoCoXufKQLwBEVLaa7fjzFp+usmyvSMSbbSs3TXJwtV3vjXepMDnk1Fy9Hmy0cFpA4Ff7laSLcitPa1tC2V9ghoDkVhPYuLigHs73c21FPE+K4QqOOSm0OlyGcuISViN8kki8OhXsRslc5ihDijfReSZAXK4YZamvQg8MfA4nDDZvW/ci2bsmHpVqnLGJcOdOk5i0kJR5ZeIO8TYpAIdKwQKCASQ7jhviceWHKFhveLwOt1TJfZqUxSINrT2N81equLz5PHrv6M/PY8sj5/ctWqZwepSxcQeabQez/tYgI1KZGxQrjwc9k8sltmVpf04ay2IJqpwnmrRvGJeG8vuUeb13C2MN+H1hwQsar3WbVZ5f6duGdrnE9jHAI8fpnibDq9M2ON7CFqnoThgRp8940p4G3vCgje/hkbZ+Dww52vwuIqfGBLz4YTZNuoL2MB6ojYRDfXO95gkheeVS7OnNw5tLPj0g049r3mCXS8u8R8/59z6N7NLMPznPmrZTjQfmM96vwZMzKtrL4DGPzbA27Ne0gm8STuh3TKYx2e/TuULhikOcy+E0kuWF98CVEFF6Z4I7/gnKF3o0GzkJdUsGTEaz6nkAemVbUdGI7gTaP7uTUcSHVLioXex3rqITryQnr/QEjd/uGSi8JoWOJ6Wdd4f7QrCL6UPUp/DlMaZQplsDVNAaHRoWOyPib4VVPTqzkVWM975bX+J3GjFzmQqN8zH7eyP8+X57Veq4QwlgJVtFRhhZzf7tdZmPArJoXQ1uwTEXJTtM5Pd2Z49PIdqa3r0jxmq0ll6i7K9TfW90h6ETaxiec/mx5dX4CdUQT2wEuBHUdRhVCqcl/DDYtVSxzllS1DF5NLTrFHcDVO9PeoD9RUMJx8Xu67XeiLJ+JiYPTVF/uuB5e2tnYGYFtvbGEt3MUyudl6PAMgnVSHGDx4OYAIiwzao6vBOAKeGWdrWUzeOXFzHcCCEvX2zZmju6SDmPEhHWeIHC+5obcFpxc/3GOZth4rXW4sxL4X+7AGFk+MIE9WEK0OCc9HNHVpsRrKH3YRiuJjaaC1wIjOhuw1gLPougb1t4Yef51Y0qfroqb9u26Yn3G+fP3GMPevac7CVz8yvD4fxYX96kU6Z0gbNETd2j57k7JIwg9IWa+H449A590mD1TWl+JdEE1/Ps057wycADHpvcdTgmdo8qJiaMU8wIEGdoBrCaAVvA6WjS4pxCuKQVaJKKpCsZIyQnay2SysdUPjDK5sv4TO+pdbJVb1GqnePyd5ReKU9y4p7xfl8XnwXBrLissIzntT3CIxMThkQ0rDGvKKDVQxOTvhEyVhkRz7NRrVxehWSChyZSPTdX2ODFH3KoVHxGeIXzbb9GXb5TZ8iD/hL0r0rqlJfbnnnm+Pjd6MtaaHCDsBMfNwy+psdCY74JgaoZ3StH4khUto+oGz+1XHaker1YzVTNcy1dgitVFfU+IGZ4uHJE73L1dw/Mg9gCQMoqt1uTGvig7PYRhNfV00Z+X1UGgjoVDR5qB940wVefbeHEy6A6899szKQiMH2SAJLy7jpEf5P69D75cgvz/Y9vvT6SQ7u8RnTv2/DStAv681uErHF8gnKJZ0bLogQzQbFYkTKOtbp6nqaa/h6FrNzzQkZGnlkhuehneEimOri3pbXF/S6MU1GURDVa0ls111dzsLpR1Bp028Zc2CgdlZV8ynERkdGmMjwqGyDoHiFOuy2gsLFHY1OV8OX8O36Puoifn+o2kgWIkNKejuTe8HQBaBeUs2tmeLXW0OShNdhPD8h9OkS+1+mBHk+JO+9KNVLmMuP3rUtArxM420gfDrwvenbReF8POsZ279fE91mAl4d71umQlQlVPmrlB+Ld+IG6wTOU7I5UnsdWIROCOlzWrDyP8zke0jhD3KZKFWZWVdSmOszv8jPVKo1qpnETwie1nwn7/llM4TolOaBtBlYS4zdrDUhbo1ymGa0goXxWQ40mba3GjRNeFFSaMCWMIkfj70fbaRKUEzrVpyyE3wVz4gUzV+Ar/XtrtuQuWyzmKcaVbc0tT3wGJVu8bEBBVYsW8w7panO0tF01pt+zUcKUM540PlIB8jZbcdPBt35all0a7/6hNFmJ5Q4eTjtVRqYXg0+19p4mhppUHHNa7lLN6A6uSK2w2+gA8Nx7KF295xmCQsSsSJBC8XKDY1+Jx3Cx7Msn9+F4aPCVAq7nShnPLOvbM0Quw7PQNbwXcV4DLcfZYdlT7z5U5pNQXzxDzTm+2R0vO15ozl3+KowJyfM86+o3QOt5oMDpnplyieaMK1swZIKX6UZOu0wLB0ebn2kuEjb0rJgwuFquDfpzmDwrXrN66kDnSDdFGJI8inq4N4hogYWrvwzvUuFJePsMpUXNW3fy1VzMlZ2SfVKwkmFXjZBV/kWa3eQyF7LusjJ9eck9QTwPXEsD3E73SUANAV/e7J58iPSfcAz3e2ymTlyVGzdKSAHGrARpCtCYBFMpFiC+h0EkYlHQ8szH0MHN8IFfukfndIQ9MLelWTUDmHKQIQC4C6oqtFWxusnDUu6xSL6JZJ7o+TW3i9/qHDzO9fswgngrRBGGbPQ4nYO3QznOcx9xNwFsEmTjBmJnnhAKTBUStwwVVgZWkpTz0/S7bUaxP5jPcq3LCyPS8kDS8yP5aNfm6v2a+sxcQhg63s+J6ly9rN7KuXbz51HfM2zk7VjD3Adnz6V/D75Binf0yKCJZiO9c+ngk1rP5FGVL4J6uTp7nnhRf9ebtH4RyyCCOJAcW3UMgewya55fm6C09U0hQDTws8MG2quuj+tnB9u2PibI8zELyk1eW8rxyD0CxpPq+Vspr/5Ky3ON/ppt7h9pv1Z8e3kHkxs1Zcx3Lo98QEhdWHO6uA71LOJClvFgESlRR8rsU3jHFSvUc0V29ZNm3qmChkJOG979llrC5UKRizN+rOSgz9/qWyoUiJDW2iEYni+Ww/x7x69dCR8oMKkTuQdDP78KIWDZRDyu6XkeP0hPeW6fDZ5pOf7NZX2w7RIy4D3JwlfslucZm5fB/f7d4AdPlLMSVyduH8MRWQtjEPlA9d+AKziUjs7RjLDPI81QpHqkrRGXiB5JGm7X6eqjqrCBx8P+nI7qXGJwgSbUx4B2I9yVRoSUgeBnpYj5LxOOaAtPx2dlBIBQG5Y7b0x4cpl0F06Wrzsa72eGp7/BTJoYy8RK76u3Jt8W9YCEH3sJU/+Q2jbiUZRICQcp7BMt43n2jblWOYb2StOcbvU8zr54eTvdUFIh0wxhHSvqPhlSm8bv1LGMV0SLeB6SF06LLlpO97Q5H5Mnuqtzlp3b9rLcym1uK69LHO7G1I4si0otqY6ebvdsn+51p/gVRcfwGlNZlUHXjA1EZbV3yNPTOICvvg0wFXvxThdGxvSn1ClYuWOiilCtvWVkcU/lfS0ReaKj2jKDJj3K36MMzbEUbkb6LShGRbJupt+/KuJySgBx3040BPFmMlj8Dp6lsUMrAuyhzCktvTWF2+R5iuA+Rzx0HL4wpH62hkaxGT/smQl+GFni9fXZ6GrTTRR5+EK5le89w615+9Y8Bqzfc3e+p37X0tyk8f5pdwfUlp9kMxyDLP4IuC8e5j3hQ4MXbFzdrwbUKUN33wGXMynAuRuNQ8ZkyEDLwWVXhJulaYIaUACehhRqpkv4s3ZGsX/n7um10KlWrMT5Kv3OuJm+7/G+DIJyqkKtzR57qZm4kVL5xEpqqa1U3hVjExRJSjJttOWkQO7o93Ie0vxWAp45kL0qIwXlJOwr88dFahgQtYi8fHPUb5rYyQjwrVB+TsanbY/ENSsbzkv1vn1Q03nFMgwlndPPSscYL3543stM3Wyc80k6swdIYEg+ePt5/k6fbAg4vzZTXJnn3AbqtCDbxnvobJpEDmej4YtADFrWtLPA4GHV8zQ6PskDzjxbUTieynzL6f593aa4q8v0vI7l1zBJXobviNar+NnbCdtOZPekSOMxORlGIeglzsBUI4F6dWnAvDUq5LP1accZh+ItNHG56yYq62dW1CKujYhi5dD/dCFl9Fkvq2/jwL0ban5ni+GPmcZpigs5G1sVgOT2Mz8DI8a/mebkXxlNcDmWvDKDxAIzaNeI5Bb1j1UKMtyiPmwkUaAESp8R11qVcW78oaYrA82EgFyG1AjcUr/PdZwQYA2vOYYegGlaygXD+rfKV3UanfDt9Rx+vV8ATd7s5aKS9nIMS+7OwrS0y7p2MY/cLPH9QFDI423Zn9Z5DxHOcNi4J3xccP8Zm1nLOUpmA0YhpnSNjh5nPghFntdIhdIj6TiuYRCNXOOMA2x+25/TSSE68kybfaIas9HBe4jHlpMU2qWDxjvdPStncdxrs9u3WvO+u8jdiwqZnvK5JU40qsYT1niRAQWQ2w1cYZQaVGAIxvG+5PHT55aOz/GMA7hLdux/XwPWsCceBCqt6Py3R+vyCyn3wSDqs1htTkxWfO1zwFDk/bddTQiFxpbJHY2LqkXwAOu2Jd0YMsFTDwpBtTQ6Kk4FcJESAbvMQ7wjqLQ102N/vSuemoS+4zgHzca3MBA9xPKoSJyTc7qijdIgG0aSBs5kmMSzbl6Wizh9yYNSR2I0S6JuSpZHU0NZVeZTU/Mo455Qx/I+B5ZpHdcjc19Nu1dUXjqP1p6TDNsrMv4PTwRruVOe2UFx3Tbgc6NzpRdi4kL0nVa+D47rvtMCgIcXpvNSgWv+7h6K2ZOhiu7WsZHEwVcAlAAHbpwkzX5exepqnOD0M026bTbBMR7kZZt+nsYWHvycz05e922U3XPenHk0Qj+TPBcLmR2ttOAXYBdrJnBY6fAITUaRVcKYOJ63i98nlGW4VycMQ+a3OGoaUSuD9BqkkkE/PgaQo58LGuZBe/Q7nq9lSabJ57OBI7svt2XG3KyLaeY6zEbsx9gMKzIez1g+JrjBvVeq63lB58vgMY+NXmvOuota6A/wVQZFbE3yv8kL4Kv+ufJvF3f6e1B6yTy5ZieEey8bWA3laWCq5vSDVBoFUUDzPSkDK3xFHXrXvlW17ACuq28f4+co71e/6/ab8oz0CPfe5ASk1FbUzgLwtjUnvuB7ORdwTXq83bb0IMVkmkZNVUm9zry6nkb4UIRnVW4v52OrmvDAGs/qlXUZwWvweXiEOvxiydD2d0YNf1XVCPu8U2lcQbMV4DYxfKWerrjpyn/sWlHgyVaPWxMTlFnHRoqOB/rgaGWb1bdj4OxhSGRdhej2jOL4iTZBtkuqkyj8kMhTB40CUBmG0aCVMSQ3UlZR8I1V341Cbw3u4/ckZfb478B6vWTmyjUs/HmMaf059STJQAHSLtie39rCld91khc8AjUKFwkXhKfFlf/I4ne1eEjleomlBM5qqIYgB4ogHMa4lDJW5zvq/LDHU9KQ9yPeFIPpOTwjbniMuuAQkk8KmaOFCSCSl3U6//2cKlOnvVOf16S11Mc2S/WePYgNO6NH7JLP/vyMaDtfMNi2NNhEguZq+NkMH4Yd1asYwNf68aLffkyK3GyjXx1t88vd7zF/xjtPQvMml1vn1ytlRTqSFks94KCMuX/IqhI8ay7wrKn8mECmv/kZwTWjhuUHFrX9bNgOHzS8+NarVELSO6M0gbinwC8a9BW34RHxCSoVzhDq0aHyt67S2MH4jFQlMcD98DrTNAwQp2/ueXvVbp/iKB+PAAF7aXgR7P3CrHJjObiyljnxxy9TQnkSF4iF/jVvGRQe2cG5GpgkcXtUu1yZH/RxO3qespj6EnBNc1pWulysa7syZG+5vzRk4c5BVlw1eDR+FU9K4WMqv/50rg6pNTa/jBRdxyWb8F7qfBMKX6ze1weOTTUuuXScXJ6/4Shu87uwnaiuihqqevRnUJ+QqIvXuU10OG5TU9A177OZ0wHApajzdtbFnjXrj24Euc7q5fo8ze2UI3I8HUaZK1AZbCTqIILWxqk9+z//isKgWQLJsKIz0Dc+u8ZwJA7m59fFxl5e3U59Je00/laSLsdZNX84bZEr9rC1iym2Gy6f+5x5IszDATpYrz3C/ebqvMAvo4y7aaRBN1Oew7tP1CpRY+/TuTC8Kn6uQyYBPd/Z4tuw2lPKEvfKRD67R0a3Z8Q9NNsz4XXNlDXIbD+xLWFCdA95RIZDm7w6APwizNXWLsXYUne5PNH79HIOmdctS6WzeIVkGBrNFhmKIaLZv5UMt/bmTW4lpDp5HaJt2R1gl6dq4M6+5LxpGWkAV+ET0pyVSKvjjXWCxcia8yzo341fmWUTvYr8E657hNGiq16HK/WaEX0Cyv57sWkfwfkKyl/H/q66d8X3WYCP5TrfuXnrcPDtLhK3gvsN44ArWqy65C9WYDztRniL8pwFHsD6xbWuyRP7JyRPj4GUwDQoriS3hDUt89AnxUQPIDwN8OT2khVRpTKShsq1dzJuVvWhlVY2WlzRj21Zul+nn5UbxTAqAs8kr+dNIPN8UpW/+gfL32gqb5DdWRtxXVGrwcJtMpc3rzR3TY/V3GEjH+uI9k9uM5zqfWA0cT25HqFgLnBw2OtNdSxaLvrE3FbuHauRdEkpsn9yq6udZtJxH9BHWw8PWaV/7oy6e/7O4/6qPPr4YDXurpF29E5kjDuPvLO9/QjA5/D0+SfI5ZIKLJ/dMG/MMCpI6U2XSSF03BlzsTZTtEtLXORJYIU/w9n7I/MiXS5DPomgheuO7tFRM3b8ckj36Lg8ZDpZKJjxBsDq2kc+vrcmPBppxNVPqrZ5q8Qv47yhMPn2NL+UtLUL+MD+EmgRhXnv/BT6N3hZBKGND99i5+3hW/Smcvi39g3S2jj3E3I7y1IBtl1Qnk8jXBvsV9rmYVwV6nwkC9l2wt3w2orKCe8FXsewcTmHnPhjpdsVQpeVoLV+gYVmHm8EiHtZ+FD0UOTGhZ58VmEo1UMJVHHlxgQq5RfweQqCIPFGRw2F32pIcp09F2zkpPE1r9wKXhIzvmAwhOvxlZMCGyS5Rx3V4BkkhSHjd8+wIh1j2d1nQKQbeYxHUusOVXuWk2bpF4FTsi4vUvb2GbbtuSjLnIqL4GABMxY3YtgI0Tn/4vceTz6Nb8ZK97xs7o2E9WWYcQYyrsj4n+l02uJPfexkuvT4jNSj7TMgANPrW8xKeFjZ83IJxIQY794PNfsc22TeUhv1Ee7ffiGpmKHt+Xwd1+UMMGRKd0WOQUPKhJEzxnPidmIkpIbXNvtS0MFcyMKxfzgrF/Rup8ykFD1WdddwlO6qAbbosBr/Oq+qhNy3fS1h8MeDBzyjydcACvSPvmqXNiKMmnJuw40KNzoCYRV4PAbjbAkZEi60xtkTO4MyGSAylac6DtePg/EtDJgor7UslbwV7tW4PD1Be0c3wyXlqAC8XSyME6dizdF0AZhMhhtTTkI1kOLSUaud2Da9kS8Ns+JJEkmjiTxig6KeRkbvVgfyxJDHVKxevuUQfRg3qoru3itewCiGpvF9e4461jJstF1u7Jr/UO2ee+f6mX4XRc5ken5U1WIzSvmYUMuOrrucC3d7IK6ks6bnFK9mJvAkfG8CLvyqXsXpcrJZzvshnN69Zhte94LO18T1IcOLrvOdQxSu+xGfQlEbSPnMV45TSfH3LgBHOTX6mZ/lqHnzL/HPykP5nSQeTOrr37t3ll+5k1/5XfK9AghVXvgZ9r+ByqvxLiWMFDzMY420wWNvG97WHmdp6u+cS3X6nOl8R6YEztEosX0k3qc6itCCx+fmlzPyym8lPnSR0tfrfFOglR6X29M4bLMbGsOTks9Z3RGMd2MrIPPLaaRu7MqiVTcuJ59pE4rQBpRhoBgeU4/+Vli4r/YOQtBL8gAAnuzcANMlVo/Rm1iZT1nh+l/ICclmyvFHEZe0TjaxtU2dn5p1sbZuTaLeuwE7jYt9Tev3XR9Zcod+LmTQjVz3ZZrSH6W+Wxb5RB39Yu4dNanjbk+fG9/7ZufdQIJIUim3POVgPhC8l9rgANiDMYwU3sI2yucW99+LSts46L7FjWvBnhLdKIiA0WFl9u05uJwXGpMBcMQkILajje9tmSiiu1WNFxEAhtP67/BWWXvNAwfjYP/g+dgUqn0bdem+gGeNFuehph5Oi2XGiDFLh8E0jMQajtoHKeFqI+Zp4HPPm0tQMvQe6/sfAxDZ9eFxepSm3MsbxMdikpnwFnvVdK3SStPcOPNPwH3i1h8WOFZa0/R3RTC6KNiR+0Jgp+ND2O7pWtP44awnfDjwTh6bmAJs1b08m9LMz3aRqMgKDjktANTD1Qo2jJ3HPZatLInLcZtsx5Y0jd8apa87+X5NMunlKWM4LAS8v36kqRPLbXg0/RVMmvWbt+cV2kE8F/KQwL00mh4BsRVy4ztPnh7VLLxBppz4eQhy74C9c8UT5O0MRV+1yT0a9DITK5ipALjR4m+d1k3HlrQ5kiorx1Up9LNDVl9k/TsRTJzaTwGxcjnSdVVcmiDvP6reP+61u4iv/ilih9+PT4JJlJ3T5XIBToeCfyG3SBrqvi0v27LmI0MEKN46jsayKcLLmvwCknLLg9Eni2TR8rHkh/9inIFFJJTrjjxT1kGe2NEyUdCoU/U2lopTndc0MQ03Z85FXT5O8DF7QIHGPziicvBLcHl6ArYNgBkd7TIUVlb8TentxeNgfToidxnvbD6ITnZkqBRiMl0YKPCx4IfvTXF3Q8u++5iJnmSDpmxBa83Ox5DE6D3H7eQlUa6T2BmiLiVvod226TnN9cC9mjPFvB69DyPJ6xL0Ow3sgQz2AwB633I+WxlXYdz1Eo7b+aEA0E1WutHlobupvgW8LTXHRhqNVRNuk/FW4JMbLAOMj4WMY2FwDDvxouWdxEuakRjnlTI/aRYBoImfqNHpE4etfBtu6g0v1DUOxN0yyytbOJvuI5y+K77PArzIY7MC4Uge4Amdg4i6QmfnamyQyjRoOfJZ5u+x4sfTLnttHFd+Og1E5/RZv/hk4GPwaAuG3HxXSpR5/OrVufhd4chjzAJzx7d4rvU9eXUcd6axSd/ux8m/LANCbcR47J/XE7iVzm17ju/DG1LUY3tee0cP4yc9g0yrxxDyKVaB2CbGZPiCJKflXsHGipegUHTbix4Lmsc1Dbq4HF7QHfXZ90ZYuvCYzjhDf9R9+mn1mYVHN7NHjf6+qIDfmTPTyfHM3BBWZBhrN6JK//G+FbmElMn9GIjxF2MbqSjvLMEj6+lKq3jFF7BXeCi62oLWq/kPnl1HcexdEcx95GBj7jSAZ31qh9+2IfW+xZas0T4WehjGhVjxr40ch/TJqB6FCXk4csw3P8Tvir+3B+FNg8RxtTqGyVASElp1/VsTR2nvIUx2oY/9q/d7w520SNDNRkEYZCI0FoUoSaMwSbD3kr5SMd7xOReRi5GnsRjFhv8MyvQB5D3iRI47JV6EqPb6TH++MDbHIyz1EeJ7wbPK8DHCTob5v94n9TAtkPNouafGcbguRY2YbX7NqKlebs8feWX/fE57u8L3KC6y+Lsz10HSqxh0+juk5z4UNyi8C98Jnyy8c1Q0/j53+xRJJoQpx3wWJ0OpukDPOSlSmXDlEJ6+7zhK0PTUhOJDsuMhe0IdidZHkxBXL0MqH1JWuSR5D9aMUL1mDTsmq/S0lPcynUWiudbPd5RVZuFG0cg05utsv5iw1FuaAhCUCRtTo0wq/zSnPcYXMd3DyvL+hVTaw4MEF6r1vI2olrb0PsjR41akefo8dktpSWnSznwiXi7wFUyu77kOZRaMTOl2uCbDZFdOjBMpfbni5fDRfD7FcsqMbzqnY5+9ELDf9MbbXXX3vmQtFXFFNeshpEjnJB/Tkw9NOjMOpeeVLLDaH3ypImKfj6iTeLvyieyf3Tt9TiPnFWCFMfsrp9HD9FIvuRSXlpNRkAOTivJ+I9QxHY+Vafe3hANIst000KTMya1oVhfrBUpnB70cPwvEhkpRurIA8Igr5YfWOOq7uosl5GFxgWaZ7inpdpaI7wuLsUXGid8L47JqyHjNPGF4KGAGkLcfe5NT6Ph5ISrLLg1NT7jPt1x5L0v27cvt6GG8PUjBtOoxgh502/JHfQEl2bvDo8rBStFZvVzQuNt2faUe2SUmuZPKxd4YKFOo7p4F3seVoQeBZy5gTyiob9CjqZlfWvotuG9xWZY02ps9XQ/z9TqcUdFeBu/ksUnlgz0o88q9K0fcc6tiEec2+Hvg4vd0zqN8ViXDe1Y+3w9+VgzH78N1o1DmFi8qN1ToseyTED7m3vuAeU5xYRi8dQommTPzUsp7T6/0Ltt615Z01w2k4tCpPySRq8pMhN0BrV3GRZZIT0zoItOnf896j2+d02gtftmuhmS3kuYMKYpbyRlJ4cnp91FHuVYfxrMylOJPa9kOHnVqTu9pebSYSrcwBvZEh1q10msxgk24dyjLuz5KeM23tqkrXvxkUNvVts6Roj6plSRLjjZmkaLMY4XerXSeSXejetwPj8uNe7FXzKUrzw13tRgyavxcigj8rEYY9+6VWWlnfuhevBXsXzr0P9772JqUYu/D7nHoHRqCSzAbwCtvRfDD+ol7X1IuzD3OcHGwAaaHy2DBWOQDjbbpGXuuFnZk5OPoZmxcpoFFvVSnLWqYcBNviqwJnOavdePRDZdGsR4nozX4NXu2DG9p76jKK86W85xyhPqOYZNoFm0ypz04T+Pv9l6YSlzKDgXm9ADyLPOh1pIop102j8EsxG7Njv58tlh06hs1yV1Sy0jJrC9QGFbg8u7G/HvChwcPGTZHbsJ4v3tSBw4bJ5m+DkThQQvEcztamBdAgoyeyJs4yna160TOFJfvIU91bYgcKZer+f++FYKXgfOyVM9X9eKdJu84L02IbDzC80kKUd6iBWrP1BfqVrS8KDTbbFVuWF6PVfgQeC97eU6f5RA7p5llL7KXxqroHaSN+1dyYveABI6PlQXSwQ5pLmVIPo8QzuoXfNatYKzghZFnRLiXKthPzHClvxghbizZc94cg6kOcXCf6+JKD1wNVOOVVn4Rf5gPYfRplhezmmEVytttADuVjr7TCv6m05LG1LeqflEn89s9Nqfa+dkq3UvhJVP4S6f9eR5gOSul341QxyPsM6JTzvehsPezKsy03ESF9v4ceDLIh2OYakbjhHGkYUX35CThaK2NoBLR6UiJ34Uv1nh3JOR3gQumgeXb08Rxern2O7bf0UKEuPEIFGMleUflcD73wvRe+C/gLWZSDJqgc76PxmtPxmPYCiZook6zN0b5l0kEp8cVSqNDych9DZ31SFldwqqsd6Vjl+/A4Cny+Er+I1qm56/BugG3GMhj8Q5mH9C5GNHvBmXeeFHW6zV5ZR2vQ7C94t/yTPOvQXjYY3M0qaXqtxiXy9vnKT3PTQWHZv5QgsbWAz6f43Ttx/1k3OyU6rkm62GvU5rSwXXtqam1Xas3PMgeHWjHAmqNqPBG8hkbOrmaxB4yrW0jlofaJL0z2c7RPiBllMrfr+4fkr6u+FFaez/ujhgd/CIjJHjpC56UPANNKnLuEV4fnXpDKfpgAomwzROZyjicbvvJ6WNBl/K7YdLKO92nI+Jm5T1WWVENoVCasAbWudTKdO9WDQqSd5oMEqwdFDaGheiq5bnHSJGXgLII2dV3Hv+afS/rKxH0oeCEe/XS8D+W/97vk4qyMID6/V10p7ncWcbOb2/nv6fQK5TE2DrCS/IDaofJBxeGQmznS9o4NK9d47yGuDcHGBd62vYr7RrNMS719I5HCjNF4Ao63FAQDxgwGRbecUKRpmqat8XvzCl5pOU9NS0v/Ezv1Ab3ingEtRJFLQqxnqY0QqJPksESHhabD+1izvCmhidMEReWKmIBYdCX9SthtAn/CJjgjZxtqXPdiUdevwzhnP2A7xYqg5C+tULLSDu2FtKFpAqr1ytrjAxy5W9OswCXRbjpjdF8V8qfFgs9O8uV+O4LuEg7sczn++eHdb1S/cdhnt1WwPOry1nvHyR3F9mvmlA7/WlhgtxhW9Ws17nxHnvjCa8Aj52xSV9xeXw0gdfndT9waHXsinbMnA46DAcZgr1BYtXZLypcbSfh8oMO9fJI+7tzFB8lZ/zCDwAML8/CXfyeIegJHaCqjuOdr+hFPJrImWdIJJoCkrx3BdVlQKjMOpTXLvVUldjSnAbfNagp3aDOje/GAxmX+F2IzlS7qBheuV/gWbW7X3R5RDIr43mRJsKIyIPUE81UEI+duR+zEf/clThpCoO3u6VxWi5k3FQaKzGDV3k2auioQ8loLQ0Q38oF1ThPJPA7ZGau1TYo4zTI93GOXCnuI46/3/fDe4S7wjy55lmyvpsR/ahslxPBkxGO+qs6cEtrxGcZytTh1pDkbun/9Ny/89S4FwOvOz2u+tTV9PoyJYZ5u5L90UO0A32DXN6gXS5QM0ziPJ4jM2Lk8jS2rVlN2uUSCvIIJoCh9IaxUksthNFcJa5AASOMMcxgiYHk80xVTIed5dveuumtbpCkl0eEon9dRlSyJMUuFB2DJc67RDGNlXhT7i3yGAcBAHh+bDTH9JGNjIRyKahXz7xBum0hg4L+y2XUi+7gGbKfLtcUQd+eI7KccBtEPkDaBdvzW7SnN9Ex+Myl4+L7cVS7zRFRqWE4URve8pI/DC+dk6/p7Eevbmz3kvlLPLhVZ5rXr5TB88qc9/3ALA9frgC9okrwIni4zCNl+IUw7754DXyfBXi9qGjwTljVSCnvZ67yWQ2gnKGRTL/fYjZtd/JnkyLhSlIxLqi8I+A12emFzT8Sf5UDkYw+14Xt3t1p/ZT6Lb4fK1EHuIL3KHwdfEr+Vw+Zta8rfhRJLZS5+O5GjZfHba4TwVWxuEn8Fci14pxYG/G4Kta0DeSOIjjs8qysz+1j19rlFDTRMKd34Bs52KjhrSMQQYPEvTRxF47u9T5VDZxubCk8dPXAf3zxZ93elfjHF69ft/Zswc+xhbRun1l39egGWqdCKoaE8uD63A7daHV+XJpQJEVOmQaiquJZtRigZXTOimi8dqV2XxeuzxHc877K00dyz8B+tNtwmMpIWS0irUobyvTYRvX2q19xS2E8k0VkLfdMtEvw1fu0iJj3pAee8NaYohzbT4V7Tw9Co+WlWR8ulu8IrUyeCYlIa+ZFMK9MjXzmB/Ytn4dc9rEuLfoWVlvYXMG3Z3M4ZxeW4cnw9PYZ3qA4d+TyrE2dkyKjTX06AiW0Vs7jxOWalifuvDHjK+ZSybqitWHUgPqBe52UpRrqXOxGlnuCvI7G2/X5pwfgSNC+IyzRXpvWpwl79uJM+0EmHBScpeBZa6vrKk+4VxlezKdbmb1sLmiWbyt592ip1yuyxz432HEdrrLmcdJPeE/waobNvXDU5aopUQ2jeSxLpK9b33L7k9IqcE1zz674TxM8NI7uqPpKbnpJriC6YRLfPT1lzvawRzyJTeW9rkeL1fGcG/tOeWURK6H0N9Q+x+DKtdLv0FkOqGExzgaQv5tFukPjNKTU75cGKk3xLPJm5LJVfhHBZu/ZGxJGoFaOslHk5VT1aU/HPatEqySC4WWK/nbQf3wzTxodhnPyBjt0U0h9u5tgxPfnuu0nSjeU94oHdunvgw9KFj1AyjVjLmWsmr69QVrD5emNbSvrBQmfyTgkqI2wzONem4Vk2jZS1tkIb+PP7qoZW9/G1rJhKNF2LwBoAu3b+PO+YRf99ng+naNhQ8vq1TcysLpH9FKIXOA3GguQ52YmhsbFoqWLpZK/dyNKGBEa29HM0CsCduQNL5EZUuUyYxdq5JEKHlm9fOtd3AHkNJmgKh47X4gJ2q0uGG0RY7RvwScAaWRBIX3beboegvc0zO5HK+XjNQsUOXjxSvC6c/OHCvf3rdNu+XTAY1vRfHyyXL+aXIuSkJtmXBHJFC4XeZOOSCohcWmk0SE6tpLERZwyhK8rZGor0V1NMbLtKUH7zQF734gOdDoIHpGYRkGuzBZFViU8U1bzeFl4eSALZ6WLFebDmojbeKkAuqobHhWlNpCcu2NhMZBZK8beMQrBrYh6D2XWV5h80s10vm3IVckm46CcF6xR+FT5mUe7yo8Hzx99FMbVyhhgJCUUNFeeirDmjd9dFa1J8kYzzajrdL7LcRFfuSvGyHADho3CRZXloIySzhS2C72NtgqaR4Eb9Q0flyJihotvSauKf9kCZwbSKFOM9+tO3CmUrrNbCQ+DU+UGXq2kZL8ug02KMZgem/HgIkSfCJ63vudlkDFMpxw1L1091ukTAPW7l+FKeGf946oQqVJnr2OaIg4fK5be+P781a/gza/7WvPiWbptg6/E6yx0yrakAeN8jZ/psC1SZDHL5Qmw8yTj2l/Dqz0MiNbELqI040MQ7ekGQWyBcuPi+Rl+rsW9I9GSHILZvRKD2DWjfAwpsG3b/j6Y7iY6h6ZWQJrV2S8GRpQV/FNAt+dhOMG9KS3w7oD47Z4u9UHjxg97TAYD0Z+fp7Mxhj/OJflYGWX2bRsXtTqPXFhC4kJRIRqiB4URK3mm6QXAcnY8eBGaJeSooBJYbtPctzRKbO6dHtaf8fuarLgiD+SONAt0LAOlvnoBvCDXwRB6V+zrtGst6sVGzD1K2Z3gh/5fC14T14cMD3hsjrvE/Fvo+Z6N81YlS2ODKT0AQ8CN3wq+oBOUvwFmKPTw2Lii7J4b29mNBkWT8Td7e+a/e3pmqoL2+0CC7rat0XdXBg6QH5bLf6XIg35blbX9u50SLvs2YgVx4NMwHsDPKb8gtzqNZ4rYJeG/BfZMB87Y9aH5B51+U50W9Xrz9CYU82stqVQ/V5LZM1NVOuaZlDvUIENxSrx5yy+31dgmxXgyctchnc4rZyxoe5u9K/3B9QEILq54yZpVgqHoPy0Uh6quAuWOCeoU49zEKM+NIF9ogGLnsbnYQGZjZd5G55d5ZshXit4Uea3/GU0XqmOtqxSyAeC5d7zdtjiDlfVb9Bdrn/ks0xr8zeyBNjJuzCv7NroyqGcSD3FeCwXxAK4Ys8vHMR6di26wXD7/BZQ7v0JryZATOw3GDIXuHg/fxjYdYJfWxhkRpfMhYdBKemg8r295EuzbpxRv51QulzAu3POTuEfZCo3zKcwctUlNLuapIc9OuzylUcJUqAsezfGmvo3M7rOxd56/XS4pYJGGEMwIzDrLzniUUi+BXC47jw7zZ5QlETggaPc2chogaH62qni5iNeq0O3ZtrX5hHEJHsd4b35OatdM10FWLXtXtsNRt5SS8+QJm8umRQz/K4EEIusUXIC70jzmaF4+ov1OsTFl+rhgqb1cJeY+u/alFal98sVWSYr+zyT81b/6V/E93/M9+KZv+iZ8/dd/Pf7ev/fvxZ/9s3+2pPn5n/95fPnLX8av+3W/Dl/84hfxfd/3fXh+fj7A+HJ42Va0iH/OxsdxlyrjPhLxwVzDA5LPUp83zzMpzxGdS/I9nwdxxbnZORGntdk7/5QZ90F9dkPSNEnixnisK9FzPJV63mJyLc/y3ANMSS1d7J99/YJy+qwGTD3DZAfGTRhX/rIRYrjK715+p0Gjdk9b7VdJ/FzHKxzYtp2Su+SHfxeh7364/Hhyc/2pUKH76GdRG93nYcOpk2HfpkKdztihfiDlPV2wEG5g9aCNSA1c/vxiA8+9NDMccdxVmZiAFUXpESAME1XF1hViHtWhfGjxth4BL4THHKJjK5pQos0Moqq8jvNImxmuT20ohl0VbwR4YqVkUVnZP4pxUGFWWPav1vkegTWfjjBq/PvyMrnEnQ2yq5E3rHX63qF9Q7PVeQjqVqaiEWgq4lO5EfzEFXb7Dt0bvrylKjD3jout/vdOhhJ1rAiBbOdtunmWYFvmRMaCRvTnbYNIS++L9ml8Sp4ZiV6kSbvRpZoemLwDJzuwS+zm5bABFZHEiO/APgJaeG6GoTTqmtv4fJwaIWOeaG3XbXR7ttc8aIwm92qpy3CbOUj+hIfucol2SeNHrf4pfbX38CjfBVN3eiSLZ/NvOefZeVG4nDZDRPYIdkbIkVib083PFhR5lzhCuTDRl0+vwsw/yZ/X4d1kzJIUkvmHaXDMj1Xae7GsmudueISoK/CaoZ5f2/szw+/9vb8Xz8/P+PEf/3H85E/+JL7ru74Lv/f3/l784i/+4qjLtuHLX/4yPvroI/z7//6/jz/5J/8k/o1/49/AP/PP/DOvTsvdhs31dtpNacv8IMEwp3cjxfEVJc2VZ7j8nLwtkmndUzNWxu3+mwiPmF4bccXcy5KkYV6YPqplCuojbiDEoVI6BcxoWTDqAGiOfqc0AFNOz0ybYy/NeDGpLYtAAXEfDOHIttE9bqF2jEs8yYhq+T7uz5Fsa6sEQP1gX5+kmsXtUR+ObY6cblIgVuALPJGeyohtcKmrlTZKHqMYPZ0IPqLdlZCYg3TyMoVeRIqdbwWh+birGwfpOTJTo5SaFymOJx4lDQoUcy5wwIym/WTXGkVk2o0dLzv9DEGJ0OFZUAQ2pCDrXUsY6UCvOs4SRb+QMOo2Var7gtdFFlyb/PbybZXuMbDxBpatr6s8zOUd0lrtjsM00Xc8gla7jD62PZMCZ23kyr1vYfJwxnaIPXqjeS3cAEhF2Y3Y2ORGpKrhMI9Ha8OgEdoSRwZQegjauOCXjJxCM5QCHczMkDB6cnFAaftWCoWV7BpbmZUfTHyqwUNKMBL6PWhnssxIEaOBqdPaqHy5p5+rGRHaJL6PeijYYGEeuJHD4ar9XVlEiqhw8dboMd5yfV4A963030KiNKHpXmhRGT7HrZ6X6STmzOqpqeN84OJ5osjmo7o9Wudb9sj7FDfLwl5a4DsaVjHuZIfpYayvb+N90PA3/+bfxM/93M/h+7//+/F3/p1/J779278d/+K/+C/iV37lV/Af/of/IQDgT//pP42/8lf+Cv6tf+vfwm//7b8d/+A/+A/iB37gB/Cv/Wv/Gj766KNXpefdggfwCJy0rqrc1iw8gLkHpMoxuhYrz+W7v4cLhTQfilcACGOmeBKQijNvb6s0pEdppdD4m13fVcKy6NhaPtMjMyd9p3ERk9cV2edGQ/AuE+/5gdqm/Gn8dy8ZGznskfH2q1vMEO2Seaz2E57xLNMlrLmkduB4xQPvQ4p6R4rOfzTBXx0osqDEsgqmi0CntLNyQ/ZCMUCKkNV6iD/IoMSk7oC9L9Hfp4J5S1i9X4bLcH6svYF1JLuCZzRI/rkylLbSSN8jvdM2ndErOp+F7ZU0flTqNjglPBn5TuysxTCJxna3cVaPjZuDXrV8epceIXO/rflXSu4jcCv/8RLAfdjnmq/GYE4Fo0Wk+5kQjZX/iHZlSPKCTetzai3uCvy1lRrz3LAnZ3TRjABWepAZtqEkU3tz/8w6Sg5gAXXAqqEmPvc2KPy8T65mudfG6tUaSOAVVrK3s3cP/WwkcLSwYgDV7xnBMI2P2Njp730sRoAD54c6IYFvBA7pYXQQkyr9JuR8TMLb3ke5/RPBGcS2wwXpJFuKMLij7876iNw3h0YWmuNuFjsN2jRQdEqy33YW+o/UZ3vcWuuzIpof8fy50CAeGv0LofSuMuolcM9C7evYEB+mFdJVXv3vfcA3fuM34ju+4zvwb/6b/yb+2//2v8Xz8zN+8Ad/EF/84hfxO37H7wAA/MW/+Bfx237bb8O3fMu3RL7f83t+D37pl34J/9F/9B+9Kj2PBQ/AXtFiAearNPmyanGRNlzfMuHRUHz8SVmzFfuuKCu+YghSJzbBTVsTmk1wA7UGdp5knbRSJ6px0Fu0ycqLRbagexTtB7NrskH1XmHMNDR5E2sZHGf+c70TE2cruUZtlCuKvJNnFKKiEB8kosj5bgRHcIU2VFdx/vukq4X1GUgiFaPggfJKvZUl3pawRquzmNp7nhemZluKsvn5fP8J86gwDoi+pIt0Be+VZrnaYtaujjfajHUNIrTruKMlg25IpW8ah9WQNxzrkY6khEnzXlMVXX/Ha+pCOOa+F4pqqbxEeiDrL6Atej52tRpEVHWoZolsRB5NoGUFdkfVPtO+/Wr6Iz1lD49NtDsZ9GJY+XNZRibv5hQzzz16Vij+djDfD/VX6RcNlPOIzylegst99wZA4XfapMdHoq85QSU8c4Qz1sDp9If3IIgiXJPCqp53VsqLYDbZFzwlw72756lP6e3T8UaHaTHQYw41XvmcySM0vSsUYKPwk/DaKJc6gQw8S4+JZNlMffBqipVoMjq3VBvtyHYQbmfOy96bGR7o7EfyPhPQW7mS+hYZRYZOE9Au3dFcviq7ytQr5BzCoUawUjquIJcp2euCj9WX5FzJrkQb+sYRetdtKiWPkbPqDB8g/NIv/VL5/fnPfx6f//znX4xPRPBjP/Zj+P2///fj677u69Bawxe/+EX8yI/8CL7hG74BAPCLv/iLxagBEL99u9prwYs9NqxY5bO5+X2647T8eyj4JSgAyLsCgG+zF+t1vt3Mn/H9N7DfjXCDcHLggDbljfdCCshi0C9Vm8nz4kLclaZY/Jo4VRQr2562UhruhUeH0m6ek/ysii5vScutffEd81Yz9srsPwEKENAAaeTBaQp2/8+HLbmcUumpLryhinnI0zHv3WZlueI5VmdlkWYoOHvejrYlYyBWUgmfEaBSFe4ymdB86Q9iuw7h9nxqiAV54Rf3x9jUM/ft0vEc3/EWTE7pr8Z2vLptKJWnikDgF4Bqob/cMaSs0/EWnVo2dwkxfnja2K6G8dmhUUZeuljrnTSSMl7ad1+XQ6Z8ArDfXHGU7hboDs3+PJa1Scs7XMrZDXh7uFcj72VhQ9Lvuilhh7ncuCRSTWdPZd4NoHqOZ3Sckc/xmVHkBlXxHK3q5nlIbrBBpBoXeYLpGNq5dc708oygA6COS/mAcS7Jw1KzNJs9J87jmd9ee+MFR/UTAZptuxN7UAKEuKEoFffcDty5y1knHfNgBhqgXOwx0rrNrPYVo5UthpWQvgHrnm803WVYXAGxf2Z5sJiXeN5c4pGp3R4i5P0LmVUJr6u+1xKiua8UkqP7vvofppj76I6aR+Hd2+J9nbH5jb/xN+LX//pfH3//wr/wLyzL//7v//6Qp0d///F//B9DVfGH/tAfwhe/+EX8e//ev4ef+ImfwO///b8fv+/3/T78wi/8wjvz4VF42GOzAu5z3AGjWTnGss0f6t8jnd1sb9/T45Krybwq5dGXAr2FIR7zYu65FoWFfba91YrYHhFzgwAgQ4TrtdDtylex0M6pTHGu+p3Xs+dVwJmbs/em4C/l3Ya12kHvg7dOY54W8GYY4ZgVIO8JL65Guzf1K+lpIsxJyVc1WxsKpjQZ90uIDC9Q4DVR5Y1fCqzlVi9bljg8dfu6rzxj/m5uvXlVUgTlEsmZl9VwqeNBqJ/NZRbdhmkQ+i3W75GXbQoyBGzgcL0Aw3DjIAjOrxhDVxRyT8M888XMuSrZr7XQz/3Uv3fizaw4cluyXuAyAsT/oryZQsyev/F8YOmcFiFVcJEROc7vux8ErM4NAAjcc/+5ci4lyqvpjyF735X1x8NyHoVd/4Xze+WnoK+6zwO492zUuLUG3Tb03tEuLQ7kJ6qULxDJcytygdpWYgjiAknOp7pBZJxb0c4DTcJQKdvOHPzcDBTN8xPu2ApFgzcujaQgHHHPSljUmt6pacVfaUDmFiw7f+SjUPJcTgRG6D3kY654dIywkTZ2SBBWmTmPj4G39w0ZvUz2dQbCoPTxrKrjzh+bCFxezxDPjP6+bRZVjiLZyXgfho4IRKV49nI72qhP3zqmVnwxHM26NxMfDK7dNrM5qczPJnlrcmuJXxZf52eL8o9gV8SRwJifz5OCP36ImQ8CTxpTuQ/DJD5uoXqJHP20wX/6n/6n+Pqv//r4feSt+d7v/V78wT/4B6/i+jv+jr8DP/7jP44f+qEfwt/+23878P7r//q/jj/zZ/4M/uSf/JP4/u//fnzpS1/CT/zET5S8/8V/8V8AAL70pS+9Q2328CqGzRHMHcnHoCsp8/ajqgSxKk/SRew2dzZyTLgLxrtNZNxbY+/EDZ2yzYEpRCgzub2qJgtlalGzlZLLCnrUUVN5hyuXRELJbwbTEg6smv0K+loqr+SUGzezWuP8dYUzFWM2MmImhbcRKwbBJeeHTWpj0vZnPcuhfDzhuiQNo1hWdXb+DQXCN0XMSrL3h5Vit1td5rykeM/t7Xm4dzB9Xp80MvbnWJhOtudcUZm3bwKmTCobOwgDIs8fcB5SnkUKe4MeHz+kfHo5iXsYThdpNTIZfENKHS3Bg+XMkSEDFMMg9dbxszeeN/NTHyU8HmHO84bSav8ogLeK4THAWOjoypKIN81V3LlNbn3O6BBkbunr6V8yuR6IhReCTi16PNbmtDGqnt8CT2/w9OYNoIr25jLd3aIwae4l8KAf78z7OZpR4r6UEZDA8rWRIOUXABG6k4rmknYJoyjGI8sROkfi98LwBaAh4sjrUxnkBlUi59qWuktLb4wmB9Xu3pHLJQ7vRx0k+aeqdHElSQXdjEeNKwbtW5lxh8EUFfLC4WPI+Qi0kde+S9MMKtAuxsA0PdTv6LlcjL4sNTw/4kwbZbMB2i4euKFHG92ztWSnb9C7VdcVn6vuQRq/9zKNHxx6FubwzpxOysddg/hjUb53/XsqV+vr+fGsE70LCdfqe59EvQMEWC1wf5KwoWF7x6PwFd+Ar//6ry+GzRF88zd/M775m7/5Zrpf+ZVfAYC49NihecAWAN/93d+NP/bH/hj+xt/4G/jiF78IAPgzf+bP4Ou//uvxnd/5nQ/U4jY8GBUtt3E90vxz+thmVnABoC1HPuGU31b+mDzG77ivBpZXPK9vKcs0EdrZQ0D7+U2kUQSiNT6tmqtzV3ONxty82GpW0tZ8R1ycQz0XVevaIbDC1AegaNXJS4C35znvs9alLSXTDEnIW9KQ330LOW9HkwwuEGV6AaVOLmGv9D+7lG/FijG3puN6N3e5m3UqejZmVvh3ZdlfR/JAkRHMOA3jUh1GA2+V4/tgBHbRZHgk8p3fDsK6g9K7mc5YRFfnTaUNplQ24kaDe1LT25F92lbEkUFbnX/N8vqdNzMxmduwGdNERlADp61JBiGYJ9WL8bmEd3c6ZLxvAlwswMTW+YJOKns5iNLgm/mYdchPWhhfpqmUu2nnv2/nugfu0d2u1WMG3Y1He17ymaEhwwvfu46LWa3jh1dAvc7D49Ge3mCMfTN4tBfDAu5x8DLtIsfYrmgGzghnvOVYFsAv2kTvcdM9n7kiq2X0uQgEoFG+G2baN7pUEmEMDSU9R4Nvzeq9W5hkPpPTo9UbhYwWGXfnjChyEp1olJf1g0WJK1tJPay0LRYpjKacOdEuTwcNbJOiI7N6ksCH9nHnhBT+1ItJuV1VxPoLB2cwgUReG9b0806gRjJMFvQ+DntFeSXVV7mupAkxpru0OSdS8jKPrQylxBMtR+Ot0n4bDtWB19LeX6FdbiF6J1K5y91MfD3VI1V9NbZ8CuC7v/u78Q3f8A34x/6xfww/9VM/hb/6V/8qvu/7vg9/7a/9NXz5y18GAPzu3/278Z3f+Z34R/6RfwQ/9VM/hR/90R/FP/1P/9P4Q3/oD73T+Z4VvIIpeH0bBkOVTam0hjJsHSoudAxl2TqaMA4+05HKdg3vPEI+A3l2xi/oHJd2dlSlO8ti5QSL76Xrz+NgzCYpu1n9j98s2/cm4zX0R89jfthpyqvBOgnOQmXyH5jazD+9jZxfmjjruSbmqwtoa2e7cEX4k8/jGP4og9qJ6yHl0576BEy1dw74RZrBkdUyG7ErFP0bUlE1DQxXsEe5ttKv7n3QUqQr3oBv0xo8vIhHKBvvLs2V6fF8Iy/lOJsynpfLNmPoZNvEW6lV6qTUpy6X0cWGUTbwdKtTm5FAw3ABZPov+bELAmCK6Rb0mt/EGk6J/mYE+vjxtnUPlbdVtLvmO4FEG0V4eNazgtJk3rrZq/Jy9I47nwR+TjErQtc62fUOKAc/+KzZ/VApYTG2FykHktFu2u1f/QpEFZfLBb1v4RFVVm4xRnD3CxsD7/DOiId/DuUdEBmG0DCKLhBX2KFxdmRsIbP69A1+6ebwNNB8okrhnUfn0Y0OwQttQ/RLLS1P357jHEko4qy80+6BqLgCvpUu2Klj7Gt/BlTRyAiCdrvUs1nd6sWbIpcwNsJTo2Z02HePyrbRhXi+Jc7H+nChYxzW75tdcNqTbIvSxmeTxj0+Tyw04Hf6hAHoXleaJ6Jq7DKePEcpd1+mkr6k5w9aFo9W1wusFAQfJ9NFaLu5azZUDi2Qq2Qt0/Df8uU9MCOZ8/pvpd+U5GWcN6RTY14jmbSru0qV5a/7GPNInV7Y8yqOV46I9vidiPfBN33TN+FHfuRH8Mu//Mv4+//+vx+/83f+TvyFv/AX8Kf+1J/Cd33XdwEALpcLfuiHfgiXywXf/d3fjT/wB/4A/tF/9B/FP/fP/XOvTs973Yp2HwwNfD/ZuxLHv/x7nsfxjQxAbm1rGOFb3dU8tq4No6d7SgkZbGWs6NhTOn++RjepeHTx7JMEagvjGfPLn0dSypHqyvh3nHXyFjTjxrYBjU/DQ40eDgvfCxgJarq50ZRmkPl19pkB+/MXpijvNDvYFqnhTXljIWx9G5YH7qn949jwV8enuRkHQudijOGKVPwx0R5nlrxcxd6Zd0PCOgsbUnkbBpC3jStex9uvonykMuHj0fGHvje3FW0JnIMfZdn76rS549H3HM2DntpVRn/7Su/4aDMlMyqjwYPZK3PfeNwzu8qu62lfDd4n6qu4R0urKt6+/QiXN0+QN5+DiuDtV34VXwDgK1qje5u22y62NVRiexZ6j9aUiXlxoaUtCfTnt0PxH0Im8boh4tTJBXESSFoo+/F+HP6LDqF9G14kNxKYAeYBGlvkqmI0K7B59gbDAFMdW+L8vhyY8WGGwm4WiG1lvk1MYnwNb9BHuLz5/OBL74Of0hABGuAyRCCXPAsURqRuUDCfJPgspKFLc2+PeVB7R+89PPC7oAVmGOWFncyX3JY8qtrCC8bb6ESEtuTdDxyy5L3MpnejNDrUu8B7HJyfJHwqxdlj2tw1/fCzDr/zd/5O/OiP/ujVNL/5N/9m/PAP//B7p+UBw2avPLAyLrsnKE/mzrAyZIS+p1roBkoqtmq/LQoxrYR2NGlDMRQZN64jtxRBRvAAn1Bdmc4D804Hq0A0WSmmQ4xVcUp6p/qzws8GFY+jxbiadfqdY0EXg+zq2DwekrXl6ByHUIsoMEI5SyqCpk2rJeY2dANCNYMPRIAC8bMduSd9uNwlMygxZVLYkx5KRtWT9lQYxmxxQ4azqA4Pi9O7441UHBxGmVUa73sO/t2V8zzzQsqGVCPq4oqNJpWxBQvWy6hPVcNMEi/VsVNFi5HkW06mMR09WoANpPzTv7ldDCWvgxt8KxnQdXhTeWNXXV1V4yf9dCMHPibGy7gINatYaPI22Mwqf2oNz/0ZzRpl01p355zSaA9pcNXKue69zp5w9O7d4KXq25qiiq3ItIVx6mm8jiKCpzdvhifl6Q2gHZc3XzDUijAu7JxdBA4AhhLr25b8QLmPP1Omm3tNoOHB6dvzUKTJyxBGjQBol+ENEVraoIrF1qqg0RR83+4G98KbzBIAaMaPPnBfniwaWG7PGh6NS0ZAo/MkvpUudmXxVjDjz/C65Pzk/FM3EGF1U5OvHnxAOxldwxNVQ21robH3Hjweg4iXKwBoD6MMxoeQ+cEvCqcdXqN57ho/+vPbEVyA8DfbHprb/ARde0RzqlPmrGXchpRFsw6zSOQ/50SLTMdyQfdpLJ3Qd09bajmfyylfHlSvV0L4UWHB7A5B/Hix9xXw+uDd+pAWva/8SdV4+P0jwJHMXgvfZwFe71QSgOztdYsT4Kqyv8v0qRiyoNEYvOWd0J/9bpSnbE2zyuXeeo1tag3z2Rz/7sp10jArZoKU1yDlyuW4p/NaV9hzpHBOV5xbc/kqSM4tPqms9vnG80ngYnK5C6oC75d7Js8dl7exURnnayjtdDFnfuZ3b0PGzxNBtPc1Hm3PeWZKmPq9bA87auJPm/jj6gAPGjcs/PC5YPaoEFuJVx7JTGHKu5VTLsCzZ2yIaFG3az0imw48G3lCHIcrZqp0zod0uQ4/o5MbxngsARnCuZBJ9WGYRrXRZXxS513H5gos5SvzZtVoCvCau6pt2TMeBL8EeGpDgXzutjZtq85PTWiL3jzamcf0W+e3FXY9zduy/izt9v5AKu3vCDpQ7hSy0Wap9G5v3wJQ9I8+gm+Fiu1e3j4RKc2Wk1ry3w2IcfakmcxNz0cYL7YNTUy5h/piWBoiWW4q286bkYbCLzvP2iU9F15vMgZchVGoHZZ/AyisL8swsKRBu6Kbx4G9kznou8lAayfSr/rz22lcpZXg29+27RkREc3eN+OZe0WKZ0rEDArbwmbPPVpoGCkjRfK0UTCD8LYg6jWeD6MLUMiTe3fcCK1q7ggz7XX2xS4rSy62BVFM/txWFauE18D9UN9fzJPX3oPmQn+Xsl6n38doyrPAuXq3z3NVlnwcAmZRxjsX+wCCHB83Mr2WtXED3q95dsI9cLfHxieux2FS800pgk6rtGJr+e4NMAGdl35NW1pQO1BERhOxiMPuQrcub2GKxRRHXz2P7VFelnl1PA1Xfs0Dp3ba7hLzT66Gj1+UXv0ANmFNTRT7IVKmt/XAoSw7GXww0ip3UdolziyAvSzZloPnsEhUAlfOI1w3L51334Oe74qXTAC/wMWjmqqFhHZF1aPMOe8O22YjRZlcOoo8eC7udXE9iZg4sqwZNhsWbHgMT2GwMngT+pqkgu/KvdM+rY8m/ng+lPSL1HMkvH2LdM3BBs2tgD7Fzyvu85kfYG+8pcFBJg1l6tFO2W8Ai1Am4/NihsWl7JuzvkzlX5sYUobMvElgD1ak0So/6ta/NE6vY3Zip2fTI6Hn2H3PEfXa8NKJdC9droC6RKsCJu0EiQa9vPnc2BJ1aUPJFYQRM8r17zk+t+eesoPw5gKHhOEeuPpWvKH1LIsWOtvlKQ/EW1r3GMfB+6iUR0iTwJmixA2yZrvUNvh+LGlxHfRobaE+4VvARCgqo/NgfyJE2jBAtG9o7t3Q7HXSBBe5oLXL6L+9j5DMsfJGhoptnVXAQkm3IWhbC5dukzbGePA3m4frmAKkzkljPhhb4LA9T2nTAArPVBiIFsjBy81KQpHblNdz6f0we5kJ2Q7YONlPpld+c77dO1qQi6nxoAx+dE9Y53uUtHfRtvdC7uGs97XVfga4p2pXMb6SyK2SfP/shA8DPpEzNtwheHz4ZOCqbhg3psiW/OLPNLejhXFkBxrVNz+NTL4NDcp7910Qp+Jep9qJ0skG4W1ipKIjtgvNBoYiJjouYycnFg+X6a7BjcSlHQSoxhYTDETLiNXRFBw4z0KXyIlJh5WTirQpNuMeBOaXz5w0admcy1o4G1ZBPFkZReg0Qe8K2ugQ7R0bMULpn2S2VNUzWaERLpHvcZB8vWtv9+SoNTpf/OdnOUCGUbmMULP6vn0vwhJbYTxBh3o0KfGVO7JT/LNw5pXh1twsFsa7LzYwHpp5VBFhzQt/YwtLrZ9HWON2yL5ZR2ExyCrJgIwgCsXrNdWeu89qW+mMfDeE5sF8jCHkzpqSTwLeVT2YMKU1k5iV3yu2j746thfp8GqMA/C134YnBqjKtMtyC/USsoj1XgqHrDKNy1gYQ8gil1ctBdbemHAvRwhG753enKFlF68FlxfKOfU4aZIBCVRRzuiQB0SMX27MqMLug0HMh44vWCUSRtOgjb4bfsz10azHrv40j3pAATDPYoFQanvyopV5xjg8dfQV49PgP3l/5wUxQ3m5sreE557AgX3bWHH3wbW74iaZe22Mh3EkU9YH7p+5Oo8vhc4nBFz2a4iZvRi/muYlWxOXINk8M0au1schyTdt2PT1NlZtHwfRHwDcb9jI9bG4enWtn0+LMpH+SNlXcaU796EK1Fa+MrHfWRPeF5gCbkkkrIpU0mPrglFaDZR37MBqk6okHTvjhjw3PJCqrwpZ/5SOtaD50RWQ6XvWVaPu8Z502EhjE2XQEzrHhEWqEeQfAxdPfLXlc27T5AMZn15nDnfMbaUAncmpTJnmzUyP2+19S3R6IIRZ5+fPwDG5TlgN8iczHo8I5u+5rZTercaell/7ejjaCIJQaJu5ootvjtE7AwkNyfod8VeCHh7ntM2J9Nq57GhPT8TvpdZcVUeobIQYsIXj2qrl13x6/Sjdwbt9mo97htmXt5qsbwJrcsuM09RvngGB2PmXlsnK+EylVMt2M/vHZE2j/g5buGriUl73yqxUQ5e3voWCzn2ZFHGmjeVj0GS8GB9kMISAk9Jpw1ByI8PxF/nHbKYW8jnCDQJ6t7yIFFlGqU911ebcwlmdzt3snK/9WfGOkfeFtwLC23RUYIxo91wFKj+rpMRLJE73hvHCT9B+z6Tn/Yvrc8ecuXh35HGdL+tku/II585zdEf58fjOuf4TBeoeD2cyeA1Jyd35EF+RORXmeX9O8s564gmvCg97bI4a+NYkuW9410Q5p+wQ1c1KpuTE6lN6clhAC3K12dfEHFdZEVKLkCUWMc0E+tCnNcgT2h7nW9V4GropnGqtd8pbVekpHemHmXefb1cAar4jOpwK/7aikqHS6tRMNCoZPaHXJr8L7ZYpLk4tnABARqinT+Mmt6XBlJE0gZB6h/1IBXgvNHd9VwlT0UEs+hh5RDjfrAaUOhKOWcqXiwU9yWIkjWy1v+fznOQ9Bas6AtttIrnNLEeMb1TjJysKEtcRMM9kgaP0tvDsYRpQcF2WIrUNSKPLdMQD/MuZhnQlCfp4RGbGWGmdyBq8orNlE+mFD1O9ZPX+E4RbE/G1ybp4Tkk/nOvV/G4a56fyFlH/J3PyNqhhDNVzH0M+03i26FnxhOUNXFbQIXplCbSopHjf10STtZ6YwBWmhDq8R2Vus90FPv7FLq7jyIeBsHio1caCXWAMk7pickNzq67frwO0KHqIz4nuuUyps0CwEJKGRmS1dpplGBBb6/icUIaeZganASpNgAh2QDINlEcoYuZquvJxKke/V7Dv2bNhsoIdzqnMJR0rPAcvZPljQdeHIECuwW5SfQx4IfU40VzEbaY8Ss6tavh4eWE1b0KHoL/iUfj+3ij9sOB+jr0jP5byiEBKqrUSEAtCsMPm9izjy6dAS+XD7rCx3w10YD3wOK7RReNQu9QLBkGKVM5n2a2XdVvM9opUUqu8rgewV9zgdIHLqJ4Le5cBN5O9vN/HDjlyiX6HDfOKBbTz1dsA1B6RBsZ3ake7cDzadLeoKvWZtGVreBFhnER2M1r8Oyusu7nMFY4ZJLe45KIwT9Zp7PBirgJ0eH2HsuSfW3Rece5Q+6O62fdxB4wURWbGl4EW9mNw5sU8ppUUTPYkMUY+zOvjLmrg/FCNVXjXkbhsx8CeMe6XnL4Y3ER7h53F0QxiwLycTbJrOobXJdMdcfc+feT96Cyrnnz9zV51DfFbHh+eGVKNcx/9+Xn8bZvdRE2e3rgPReyz+UBJoS/uHWCjZhx8D8PHlPDltiMT4JqkhdEQvbNd8u4Yr9dOoyaEbiDEhZKJXOxT43BIJ+YZrR7QgFnc7e4X3woXvDLemLHRLe9ArdGImkyNj3kmKHsR2CsEmEEUGY1tku9njw/d3zMCNOS5pBRyGvfrsIenGKzB9JQUNHiTp5RWPN1L4XhIrJOXu9hq3kPvzKrMRbo1KesZfDcGPzRQ7Ei/n9VzK78SSXoHLq39kasgi2evSd8JrwsPe2xmD/VO6Zt+7xteMxVNijqJKI1NjqlkcSdL0Ty+xXq9gCZJDzMMiPrdN+m/gae1ijUroIsrQqOEWOFVPwh6qN0sebCo+ZRJKUGdaADEFoZbh44T/x7HAak7itKh4HwlLFObrHB6FcpldbGFLpCngu/arEhuI4wy8yzH2HKidhA/e02U6uFQjbRMw5Q5VyyIgGV3ZZr0kqVCyqvUEcbZlHBBntlg4Xfx1Uany9714DEof/ZNv9+H65DGEG+NmQ2QvUfPAw5E5DZDmpdiKnwkje0+U72Ze4aUJ6qVoK+KfrYn3yE0TxoFrCk7tQvXX2QELJhhM+9X6nqjBh1pPKqmkggMg2brefYK0Nyy6nQqySQAsYeN6roDkxVZv/W+/WujVQ6evxYcKxtX1BBBvVZqkVOAOFujfUN/fgY+Z7dL80CSkW7ws8UCihvJ3h6FS2rjdbJcPAiGQu0cn8TFntGIDhGFz/qpZEnjNyByiW1sPkcIXLl3JcjkThg348+9sC0OyXvVh/Let+c6mfqYtJDTfpA+s0ocuBdBhG4eF3W6VJG4w2bgtAgsu14kEehDw+Cy9NzFeU52Wak9o8W5x7wbF1sLPkU72+Tpz73+7XLxikQdOZCL8zrmXy8rajAR9sgoWXTtY08Mrnpy2LNbmYWsd4HZQMsc1z1Mn164KuffBcoC4/tj3i25fFvbejmc4Z5fBo/7uD5GE1XKZ/okUjj45JKTzzjL4V4YtbRqK/62+i8ILw7gCo+lte/xTCo9Mgkmp4m3phRQ+ptz+/y4Sk8//Zt/L/Pqorir+FfpDmGdSqa/Eh6avuci5rS1RxCenViUpTQeIjr4LTm5jHvwss1TS9dC1LZtxJ9ajyYSRi7XCchQx04PN0d8p24xjBTzkCzaRCkNgKKwcCK/SyXTJ1WKYfTEwWTK6krP/EbK9wxiwBde9q703MIeOx/UP4cxwvfxuInt4aLnS/k47fCGJG9iAftgCc29MBt5fxgXD6dog6kMUw0t3fi8mILXNfXcDjc0FG+a4IlWi2clyuudysd+rVjmb7p6V+XaSpYwvJ64nQTL1XQ3Sr6Bxvne/YZ7aUAzX520WHQaIZZDYzYl19rkMi6YhHlvxu31efB+HKqnOnmfs1vu3WO7Pb+Fn3GEK8h9G++bjJDDfCGme1LgRgjA26+8zN0Q1rrx0+s5jw+Fxj09kXqpVTuORnXr6SGR8d49TwqvF03pKVwDbaUTo4y0unYTSBht9lswAiBk2GwbUFau1ze8t+Zx69uW54BEINZ+HiJ7tHN6gJKQEWh+H+KeeXalQ94aYFdxaDVqKP/M2hX6VVFX7CeiY5ZwhL9MvB8oHNB3XWxYpkfE1EoBWiW9mozKjd/5c6nrrUi5i5ITPi54KHiAt96q0a9l4zz5S7CSTfVMTSoheSGfr1wPIesemfQE8LkP89JYXol6uHfHLpF02QxfIc6yRTXeba5sOulLxeX+Ll6Us5lfPifMaElnkkW+Ge/tZ3sMscBpA15wTGvS4TkywIG6t01qhSI6jj/HUGjjAs8oQA2Htap4O1qDqMIP8ihTZ0rTRZI+DqXszehTOvOSeTrX8SKjD4Qg03EI3XGGJ4h7gxJfzDCJO2zI88X8XfFZpude7gjnnAELhjGZl4fqhKf3NCb9+QX1slG/ZwYALr7qHu3EfSaNigYtXqyZf1zP0haDkaFclVVbzhfyATEPeTKKMh2hsHPDm5ervsA+8IjgSRreygiP+3brZFzWMzSePnv5Xqk5Am6zbMPbMuJQLtxX7GNAyOf2WqcnqubEgtydK4Knz30efXvGE76QMqI1yCUNlrgbRf2ul24RwZ6GZwNSvASAQrdx0WZx/rBS7z1f7IyNG0gA4rB9G2GJvb+qW8eNlH2RUdYg3AfYoME8Jnl/jntIrKeo00FywJT45MW4uDNkj2qeSylsHXT1bbNqSc5lfrmphXMGgG4XXI5Fopw0IhTzrDRLy7klXaODr2a4xAWjzkM2ktxjNU9c7oXns1I6tsu652q0x7NtV7vYVkVux443Zhgn2XeOhNXER/mX4zibfgnC/d8GTVGA53w3fg+ZtqpPlaOfVniJ7LpLDpV0U0OvFKMlHHaQXRkr/WBOhyvvXwKvHxXtvcwgHxy8n3DP9/bKF6BlSFPG3vqkCt925vk0lM26wYG3n0imNa1vgx+qjnn6oSiNV4l/NXhPzAZwz6APKki5nJ+HQgGb8C1xKg/InT2CWJHkOfJoPPJc6jhUgKc3nxsGAHxqjKLik00xrq2vKAPJ2a5jhb/RrDWHfJ63s/D34I+Qwn0gCatMziPuCvOG0Ba1DK/tdFajoxhpMvjAwQMEdqBQfctavRcnlD4d3y9NCj4AEWEs1BGl9658oXpyEIZteskE5DFiupHGC/fImc/LkeA8MFoaxgWdHYqPTDHrTkMYTykR8oi1xptbxolMn58lCN7I2Dqlz8+jz1m/GV4HaxQ9as3xrptno5zL6D0NlXjeA1eG/B3U7PVgb+RGHcPH0UGdzLswzpAMY+RyuQzjwRV87zzasx9xf/d7Y1hZtbyqG8yCQBWGxkp7VyK6UV2EzgU5DWJ0Bz4ysCod1k7bFkZIKHLOZyDOzwTv4JLTZlMzEsO4tDHv3pegEWz01bvmLBsixPSoHBTAW/f+PQoPDkJe8LmN7sNQEt+nBvB+4T1R/jDK+zN8Ovn82YN3NmymtYt4eLc8CWVij8sVi/kgcn6nidEVYn8jfahJpPWO/f153oO9PputYpW7CMhYkjByKOTotb23uy9cZVZZefrlA+1eu5pmPpwtmpjKQhnjpW1OAA4n8InIHabM71sxpudc5zAMLP80X8d8a2nFlKFsLj9vo4U/mL7PRpDz5Llv6Greh2mycvJ8yxLoNydSDEMhvQCVCt9WlXpXVVow57Fnrtd5vnFJbBZ9AWJF0zOHt8j5GgpcbncpRjiE7pIRcCS3bjxjD0ssAFP9NvJICRDbe0J/Ina5p9P5xvhcAdJRWKEbMjxGjk8n3nQdCwyDTxaRcK8D76bIXZ+0SqnhuWCU+1XdYhUr2c3jZWAW71jcEZwvlZost9yF8bIpcR6qL1cF9gbEXum/Xlb8JtmQ4dcnnunYcrVtG77mv/NN6F3xdHmyKFhq0bsQynwo7SaDIWqXU5pS7eNBBCIX6yhDZvN9KxnKmWhSV9KZm9kyfklnVaat58Zh+Gb0jHK7nXHR/jzOEjnW3sf5EdfdXbG/XMyg07FtKzIM3GQNDS8WgNYuUGh4X1ozY6qnoTC2c1nswFnA+83AvhjiF5OacdO3bdgoHIhgVGKwuw0+D6e5mndpA7ws5qm3geHvfRv5+wZtlzLncL/KhRmnmftFtJBdero+n1LgXsVjNbAQs0q+L3QvFJt5ED1oSN0Dt1Cuh+9OApZfL5MhD4I19HFZkzC9J4/emY7S3yUzpxXU1LeW5MV3TvM+eDqior1ep3pNXB8yvCgq2n4yr3Bbca5K3+2UrLTn2YtKSG4188dxPiPSannmZ20AjShcCNx+zibxgD5X3TjKvbPv8NzGv+O7rgbNEXJxL//y3THcas01lqE/aH1OqIJvIL5KKrz+fHzm9iiPUteojZjf0fYYz4XOToH6hKv43oYNGeEOkfsY/J0f7IdgYaxQPzAt/UIGg1E4/tSMkamBVBXPvs3LynuO1eeBl6N/+XY9L6OxgYLEYypiPqeJOoIV2BazNvUB/+YH/d0AgfIZGaPNXjWR1CelGkgdHC1OokPUM0PCJNLh/1oXXrAukeTsuTuUVhO40IOPem7hm1oSHq52r8OsxkkdA/PYX+hH7wSvOXlewyWL75F+Ggf+nRcgRIDn7Rny+c+NPvY0tpUNI2Uvc/xSSsfvRk0aNK4E73ncLk+WphkVtWMMg7y2RHgQXAjBDIxwrZYC4AaNQELhj85u5Tr9fesWtWxszxqGmJN4ydrbGaIMcuAGjqdQy58hIVu75MF7IC7p7J22sDn/msTZJGkXuhxVYvtabGNjxtr3YQgVtlEAg6RrjB0NHrkRxLzTvtEZIff+GFJeWLB2HHZrR98o0tqrwsJzfvR78Xyey5ZZYy6iM7+7soaucQe5h3RdpWF6lnJurcO8KtyFvtIx7zK4lq3qRK8lYW8WW75/LAbiCQ/DO3tslgNq0dpCj/k7ZyrnK3bWvK/gI4X3Iu24l0bRlA6Hi1gEnSGJmo7IZ7FFBoIusMhpQPeVYVdaBBB1z45PSlNduVK6eL/MQ14ZRdbPn2GIX+Xf6vm08nFCL5g5KLgnTn+k9jkHoIleFlVwulKJjsPXpjS6cu6eglh5C0IFGWaJlZj0yKByIbmirouMA8Me+nT76Ku7Psd0l7rS92jC2bOgGtHFPF1sbySk24TP8fOu9tJtibMDp7dd1nee0ztoa2WsMKWgrXgqHfPvpMnP6fDZHLFytOTjbs5b/HRVORFcZJ9X7B1PtK7XqPqZNsVFWpwjciUqylPnq0I7cGmCt73b1jgpZSrYWKL7rbSjQbAph5JQ+pdpP96uFGOtZKo9kM8mVTRzL30f8NgUfN3o0biWBTFORy42cC6XJ7jC37dxZmYgt2hcENtimIprbpPSDJVMkkxLiGStrGN7xn+Y3B9KfzcZ4VjVvB/pqY8IY+FeluFFcEET6Hmzs8KjhamdGYnOHOSzweTyzuYx+DimPq4dqr4lyxYNts2pHvncg+pBGCLCmaXvzpiRN3cq+JkcAeDnjGoLi9fdJh3tPc5FOf857L2Q12l4dp6jJ9S5XoIfze7y8S1s42xVtkcGFNAwqMj23cMdwycXJvd5Ck6Zvs5BBBblvvbovQ/fvMtj3gWCeLbCyNK9bsq+n4JbsJ97FzPuTfFkPWmexG7AcdIJkdY636M3rDCWtK/Avo6G7bzH5mF4UfCAV01bgA7u2++6EWkegOOpLxWHgou6hUlNEVTxSzgRhk4cWo95bExAvu1s3mrBe5Bfr95ZlcAzPYu7KoHYfrZf6dlnVByPr1mOHyn9t57vhaMZI5Rg1S4RHEAUeYGdCWWb9Is+ET8ms05lzIE9z5uEp4WyBi2j6KEUVzLzIHrxuoy3Y9dGRlzyegGYtrlQeZY7vCICzEKUU26mfVc1PgqLVUIOg+zvOX0PqlOxZ0OmlG9K0OY4p0k9YlcR+b41LtXQGWu2jwfn4D7j9MyKCi+Ej8Aftfd5LTNQw8gskji5avFVs/6plLljXi1SHuWY86PSPxVhD+ZJmtUJxfTyoUmT87zPqUl3v7KW+zE/Z0p5Cx3saK2RIt3s3IeN8bFEn20hw3CRVmUu0xBSzaJ5pacAIS8gLLeB2A7mwQbE8xFGtQ6kPaRLTeeoxjYtPttWtqC29Lrw1mjEwXuNTh/hqdlT4rXl7WkuDdwDZLjzvMzoz33bgNZigcKfR+c3nvu2vcHi9NhEncwqKvNDGBZqu+l8e7EWQ2eg7Dn32jmdbE6N5lTD19olIq+NtnchwHWfR9sDI8H5vnzO5VzLP3/X8nstd3T3rCQ7en4nPCoLdvPJK+Bcgl79uXhyT60r7WzO3cJ+Hd91KXwN15xzx933KahPuAov9tgcdQtu0OUkaG+qAbPvFEpp95OrK8eaqUMXHl/UFWQomunNpBebQVMVU7Hf7F2QMHI8Lysr2I2rmKSuMC34El8mDhm9XEMfzFOtCwmRVo3Dk+GzUyIn8o+EWiqdtcRSrni58wruTLHAzx5A8wB5IksiS1tYgWpab+GypKIRc2e7wFdDragyF5X5iZTqXd2Rd86UveBTGuZFVcqIPzuY+hIq/7m9doo78p0a32dcfj7InzvuOCOG9ALGeypHZApGsKBTkel318pYP1DUSGhHU4mP7UET1UQRW24Umu0xGSAA0KRlXbTyPXhl9W3iK5wyNf6el0dzr8Sn7io0q+N7NLWc9zsP3lvKNSXDlExOWhROwi0YkbCiU42e4iGUabUCbph6GuASBkQMudLmZIKKUIEuYFeNjqFkX1p4gqQij1joKRs05wwSmqFUSW7pZP6MLWB5XifnJ98ulmyO8yuBL8+eRVk+iJxe7uCRGGlUheBAvqf5MJurthe9oMxJbA1UMnmSY2tZetWz/oy/yu6c2zJQAbMt55F5vN83WsrOg/KC0+wHbpJLY5TLlpJ8h/MmfdeG2QNp6x6KebFrIcemd/k++8Z8nvcmEe8Kk150Nek0t74eyPLXtZJ4PntfsvuMivYyeIhjLuZeByqmqgTkAHVRyaX7sJvdyp5WKA2nG6vGCr9BOM7bCOWTFGKOx9MwnS8d5sfK4b6WdJpoN/hXeK7hT6pXou9BiH3Be2HK7Vjbx37v7rnR+um8lqndfE6XMRH5uRyI02NlxX02ixaiCUtdhZbKlaiVrYiulG9uqFFU9rbKA39AsyvrFeDvpmLvMnvDVz67rsMoQxWZ9ZojuqgE7uNM28pg4nRszMz74EMf4997/b+UN9NaxmSU4YrpIuOEkD1ATP+oc566ykhN+/Jnuqqs2sNLZcN+dL4mHEhvuS7XV/TUvjDnpH46jf9Uulk5zkAkIfd25z5IKAN5fkP8XM6eyvHUFXIgvC8xWIpAifEehtC8kkAGg0AIt88bYlXch1JOoupo9MU0fs/n4YLeouXrtMBErWcLO+WOGTj7fOEOEZyA6++7FIJ5yHYB4xMPtKAUKe3KDBQLK/Yfy2b30k1tOC8g0Sz4YEd1qUo6wbVBduvd4vt6fOhhWVn94/F4vyC4NnI/QQXW6Hfq1lV5oKLzRFfyL9I9AjFOprkLSftLZPJLSDnh9eDFpuDc4KsO8GinWOU/wufqSBolpGTT5Y5+q4AfRnclKRUmCxxAaVgprxdFauCKOWFHo9Oyh3sUunhuI+NanuGevyYg5mc+MR4UegOE6rxsG1KO+TODL1C70V9tR3/P7VXbhOvjBzLrwcyc1P2APHOg6DcgISRjUo093kBsF3EvFKlplmdQN2+ZGq9GLcSsjTCmsC+ft86wh3De4rZrZd0/jyAC7K0xBane4L3uN6EAqfNj0NKofQESHhM/uX4TmRDQpZ2oE8BQkSwYApFWwmqLRMAEbrugeVkZ5D2upLuNwAlrKmc8t2RTPBNgfyB4FXbgSEZ8zFPiQVEyJUj1dH6fv0tvUoU+PyMOtCDW3CkD9ZZALBEhLbZ87hRn3XkPohdEA2tVmEXsvplUxCNMswsFP79Dyk5EHWSDwuU/sA6GEG6eBYQSpfFbjD4oMnIauRYjuAAbK0gDw2lOWpgO/2rnmixkNUgeHHc3DftOie5Y8FGeS8J0ARUK9Ongv8tCo1ejHMF+YSQHbZGDrzg8wjAn9K5DhLcm+qaiLMxRhqqHXCvwEeLW6fflXBnEd5e3H2NS2vT9yCWW2feQuj/l+4rwSNtQ8tOA+fDgoa1oD7b7HUATj5cRctaEiuaWtVkIxoCj1TWFjm0sdm6DD7PHRGDlQNPpyjhFYBdz0l5vGQrqcoUJ79i5fY4TORCMvtooNF/65ExEEC1eL90922NmBI8M1tQr2LMxtsCp+h5sJsDbxrMNHvPFqHkpZ/K6Ghm1FgOtxhZAVy5nY8ZlfHphxCJoDZ5vqrFdKuYDUp7n+uYlm5Vb1q2wEsFZj+S79+IWxGfZHBjA8aXRAvtMw8qVjagr8Yn1F+4bvt2PF6kdfyo0Ut4FT6fh53eVhLFlTT2HxY6jKERQ0X2onTsyMMA8T/sZKS7Dz0j58zFx+n1VWQmPgvhsv/0um1HGvKXjfki/A+hTpzRHsvSTmSK5n+aG1xWs5Z7QmHUjQcSU/t7B0RO7KeK+rUhH5zXDo2UoY1d+Q15nuW74dLs4cwQmuEQnqtuLh4HkkrAEI+k6QqK74myXUEZY49Yg3e/MaWbc5LUAAPLeFjYSFDs5lWlpZGrSBPBOAyl5dNvs8kq/IFSCz+F58rMyPMrDIzTOl4b92JqNXQ7QkDhgbQMRi+4GaisPDe33CNFsUzxeGJdtbtuQ6R4UoFw+aqOtd4Ai1x15vULm7Bg7/9b944M0+yS6KPrYcJjnz+XXgk9XyY4Ewg040DyOJvF3VlTuhMlWPOL0IssaQl+4kvLRekV6kivFI3vdlLvVXC+dP2boaOhn8ICH4X7D5ho/ivZnyafOvRpTR+Nsp5ShTqn1HIelKVG1NDIIPDiAlLtBmvoFnIigXLFQHLTTyjnXx1Zt0piS+J1syOg1AT6flW5fhXAeN9U5W5YZeFkbPHpGRS3K3SU5TJnPj9qs4qvRWsLQjEABPD/nWZqoGlxB9QPBrqjS6p7Vl47owrdvtDdPUORN9LOQEvEoWWohlFMZ8VWkvTGQeFroAamEc1/vSso0v50tUedVdtlqiIEif9FzN3z8wD8/9z7PB/uDd9hfVtpV994dWDM5T+KfxDlf5un5c2ue1q1qOAAayE7bxR6F98aTGVM8hxstwGjrMKKQ6QI70T8uKhX4HfBvJC9zjdEXA44p3093svyVFMoy3Rpomj00MI4VhvcBMw2zNFgk13HY+/L0JsapqoVA7tv4bqGTvR8LeU5SZ19t1YIJhtxG2J6exjs7qO7K85AVVv7zFs/l4gq391XrY37onRdQ2Hr3sjUXBUYSyXt54OONlZHstNFblfqFR4JLFoxxLM0Mw6Ql7q9xPCKUxiSg+nw4+YdDqOnee2X0h9GnCGPKI02mcBe40ZRLcWwkKaQ9RRvGBOpeI+dZhIb2Cz+9Sq2eUVLe8voeer2LmCny2dy7Jf5Z0HBoKB0W+QLguWMvhw6RypU0qwmulOG/pL5+JaC15kdyvTIVj8Mh2074IOAhj81KJQOyY7Ky/64QKOiSOzVtg9+5klwEOBDeGfbYlACdYiFlgfAixPEM2KWJrEFFyboY5FlpFgdHRsC+puW4ZTUSJqaz8ospPYwdOQdJaZx109zfWIcKGhsAahyniZC9azWogdHnyk2TA4YNRCUEtC3NC9zjY9jNkHl+fs4I0shtUyq17UZIYQwaqD6uNmVA11RkAIlIX6q5Dc35cill8DvmHClFmuUQCbt+1Chn8S6JoLvygYyYtmFveESe6dlqbEd7F0MCwR9QPtf9uM5zn87pWEMxAriLjpHaJq2iTHyso0WuAc9do76b4zRPq2Jfd2+3506GpVST4nh0VKLk8F2FFX8/7Emx9owVrbmSmrUTUWzbMy6XcYOUXN4MRfnpzTA+wlDo4DAyvN1LVfLOGKRXVvuG1i6mdG9pxPidKdu4iLJdLvE9bAP3ysg0AsgCL+fKPIKYe24WnqEYy+1CHlDepqVVZvuLRqMoVhNyK5w8PTkjUtiYPA3PUyzwSBgRIyy0GRTRHmNMucGwvf3IItTRbNEaT7zGa5NMXQcvui0DWbkxz2q3CHhWjY0u2vQtf7F4YmWGMUZc99WL2HpHEfVwC6oczspPaVy8zM+X6VcIb78rc9w0auTwx71wQ2IcKWqvWcY18KH9SoKt4jli+IPlzZMPciY5QrOfvfffPd1ryfRNBdsuIuC74fsswP0+rhU/Zg3JgQyE1XueU2Txd1S0L/7Mz8bEsT+n4bJdkJ5uPyvj+ceWFBeIYwLlMsYlnlROEMjnb1zBVNy+bOuKqkRK2/K9U3l15CR+nT45yexRuwZH7XKUprQXqL0l27AqeHSmBtkOVeXWaIfQiezfoSi7Yj+ePn3hC0DLA7p8rgOaF7Je2rp2CvO6mKLCl242SzDe8SWZI80zMbwcrTVlhHGtOam72guGsu4K+/NOiqv1Vwk+sZ3ISr3pTQO/5EHo5F4dZ0GH+EWnxtOoVjVkmG5geEYdlxtkodIZYjdIy9QSxkltd2Ay2Ezxbeax6WreGDKeePV/vE8h9cZu+oyw1q5qK6tK/s0JWQk25uBRr1pkkyW2d9NLJvzvkr6O1XmUM5Bi6dur3rxB355Hf7xcMj9bkrTFamz7InxxN8vII6qQyxPUjA1/ObaP9TBa8hLKVKijTGB4j7iG0oyO7IPhhbG7bTxSG9c9vbVja5wbHX17BnTLOvj8RMxVP39iW90cnxtt3CC6bXFhpW5+FqhHedo3+8zFn7S78jyLtMswLC9PNFWN7XphKHlQAO3gsNOqahduelvnmUEPxOEXdzoPx/azC/zyU9r8XeQOCxmnQ4xeSBs3ph8pFEewGqaL7rsaziwR969lJ48Y17Xx9uiYrvPilF+mv5eUMCNdijY+l/kxw6sWe48m8xi2Ez5MeLcLOq+Ztoda9etZ8l7M7c/028RECPfguIgdaZqYwoqx4s1lNXeL8+okneXhtAdVJ8quw1yP3cvCgZruWglq/8ithC8EbvrVO4CNKo1/U6EY75uwF8N4LNaWmu3RPa3pL74NQ3/lV9C3jsvU2fyMzQUTTLxwhbth3C3TJJVjN3qAWq6v9DcoekUXF7s2UrQEaRTwRDqU6qTbv16E5n+jVy0BG0ArGNu0KB0ZLvPxZ4Xzcc+jbrRtqnbupRranteRjzonzRv/Ru0vYXhgbBWdii6Ic4Hb+TX0Uq9nt2ccCavM3yLYVPHck/98OWode27uOD7F8QLGtRFwAO9ZZ/Dxcn+Gaz81+QDqx/HN3rmnbHvGm6ehnG5vP0Lvdl4kIppNBZjyKrDLKXV6KVSen8WQ8X1cIEmH5NHQLk9pPHgeRTUcph6Y46uNyzn5nW2hK4qeMg7jhHt2lBbDtL5TDP74eSOGcc7I+mK7AOh5PqWZIdbNu0Pa9Ly9ayCzEdfHPThaermzpacQaHZHUE9TP5ZaHHfecgr33KhdttmabfD0s1JRd8nDhKo4lFrGt+hj2tGfP5raagEvnsseHYCPpJ9Hz0vJvLfM1xYmu5nplfFfgZez+RUQ3oftfXNje+ULOrdX7x8fJrwseMA0dx8r3uv8+6E+p5Pdm70KXz/jmyu3XIKkHhL3BtgeX5GWd9X4O8MTzu+YuIawvUiLbWo+SRSzyS4CJarWLAmaHAfRLqn2D8VNkn7KzyvdrsTFPung3JrPq6f3D9SFMuA/ldPcMLc8oAD8ADLfXZMm6ZgLra3pIsRxk7ii8aeaAiIcfWu/6hWUyfQ73uemFN29q4PAt5FzTTniUJOhbKfCPf4ukvf0RBlmAMhEaNfs45edIjRTlFkFiOAITh9fmjm3EH8yHoYm2fIR8haVkVL/IR4mX3zM5XiR9OqU4ceqM7WDVGmhmnS48ZnenazRuFxUcBHB29g2U+taeTBP60dCkLn22CRy1H6rsfUa09PRWF9J5NUTnV9HG5niKgK0Jzw/P6Ntz0B7g3Z5sqQ9tlyFgeRemxSksVUz2tcO94skFbo9mx2Sz4fxJOj9GRnW25RtEUh4fJADzS6lHIfen02J9wtFkVG8XFATN8YBeDOELk+WxDw8hmMYDw2wizRF+9hu1rWiw7i00ulzz5H2vKAzPGLk7isBU8y75QaG83ZTBboFW7A6x7Y2N1h6z/vY1CWVy+g8OShuJLkxieGVUxdSDuEdU3MCcbsiPExenkadJOr91Hg5JNh+/HOhlMzydIa6kDMm4qLz4HAmJ3LvGJl3TrKHyW7lv38SvwNeoL4fskB27++TYzfKf5EwlN0Ynr/do0Gt0nzM5t8JC3iZx4Zb81qnKhMAdZy5T90spBaXkXvq2Y1MlwppdjhTcgB0d3XbqtgQ0moTqtBZmzRyxhriKMfDxGrgqSF0Y7V7UkLS6FJ0P0C/q90xN5aDhQw21q3muWW/Al/8JTO6Q3jpgM025yhnoNYzy4Ci4IWRA4TxORosqWhWMd8yFpd5Xp7APUWIEEF6KZivnejJ2qbCDBmeng7qceR9AU3QXAfHlb2kniPhaH2u0Lsu53iaZGSjRvRHtezTt6C4bsDt2QH0nhP88DKNH80ebIFLsPXhlWGV3vnMBnXzOhAPyxi38jxiWd3WMFpnPrOjQUtybag2krgwzsdcfC9JoNVCx9zLB82KTfswLEXGORtUWE17unu7GOQHpsFOr+IGXA68lGJ6mKamvnd8vsvEuwxqEBq/ta+MMy79+S3wha8BRHC5PI3W7D0Mj9FXiTOk4Ba0EeGlhdfED6QDgnaxoP00sXTbmhaRPtwIDoVfcgybx6H37jvSwvAaslTKON1V3t/ZORvEOPSWnyYF3xpmho9oDYvct+c6iGjQqtJeApubIA3iz9tlFNl79J1YfHDDAQijpuyfkkZ8zbKb8V3NMEJ7ynpF3czAU4wIc9vzkMMT39gTFPLTzkvN3ny3GFbh9JkHSetBkmnw7cbgu2qiV/LLA/iPDKdr6sEtNezdIbWtjxX2QvcV4d2QvlfSCLo29Fe8oPPqOPo1BI8ZNve05j19X2+h8gl9n8bnOMdR3/lkmKu4QzwmUTz5h8pGe3oBxOp7rGhrbo0a3y0IARs1ykpYSs9Q5pGCgfvWShlxJWbUVSh/Kp2zGuZxFDKd5DYdqQoi45rnzfvhWob0YK2/Gx2SRqAiPTfg55oGREx2rOWJHziHRQJrI5Vth+BzFsDKwHOKp5pFvkzcVfE85fHV5QgjLWIrpRRtjJSE7NPUS13XsTYfm2hq30ie7VTqXRuyEj0MiUHfpQmFZJ76D5UbyobuksVdT2OB2keZRF/iMTtw5tjgaGxRN9XCmdiAEmyvwTrSNJRSTx67tY15cUMIQwac8PJWx5Pl4PuxOlF70hzdUHZp6OcBylUpj0ys9w7tIhcWz5e/lZ/atzByFZeWngFA0Dc+dSYRBATA2KbmHgkgXG1xmN4XDrRDLm/QPZLXJT0iEmGZrVeVMyF7ebvzcrSGvm3D+6PmoeHtVCxj3cthhlq5h4XlDhsQ5gXSvmUn7cwTRD2FjAwvP8oxfL4FTOKsYA9eg9K6TIN5coJGFyjiUcqqjIl7fHhLnp2DipEUGXS80w2wLYcsp6vRT4VEmoY859qyfQSQ8K5R400ydYbd5bGzURPlrjLTY8+3inxGcsoTC/W1qwSW11dG8pX8LP9uyYJ70izLvCfTXWlY0N0H7K29le+h+gFVEVgtwC/wr8q8leaEjx/uNmyG4jJpUOX3qvO5piMP9jiGNDh06nR1siVVcZr1OVqWqD+BTaJD8IexYvXyaEpD4cnQwGOrk6LpMDpiD38osKkeuGLNlxG6mXLPIMxJOFNfU8zFwikXxXF6H9+lmGB3Gzg7A+AG9fOiY1V+NSdWx20ask/u3i7l/gkrvW69Qxg3o6zB4zykXhVovzuHa8IGl9PDd6rMfPXpi7dU8IqIR0e6xivWheKskJdD+oKfJdIJ7xJsUt4079tBmoXGZx/D/JHRo7rx1e/6cTrCRJfKj9lY9xfe51obZ5WcT6FAqRbeFKURFWcY6vSsbFcTH99ywG8t/W8ohWaEghS1ZU6qFD1ZSaLDVdc10uPf5cXtKfOeife1YCe/6EEo3j0PgAvEDBGrCyssmuZqnoWB9bc6Jt07kWedBEXIWNrd+JC66kknpkZe64etNfNqDunhd8hwREQ3WtTudJkXxurdO0NO1X6etNdzLDB+NZItKT94y6zy+HDjJrxDQch6nrF0IhTR0dsMXtAou10uY6tclR75bYc8d08IOJEgzuUw7b1DPQy3e850OjtEMnhZlfhBH0dGzdWwzBoPZHp595gmThVd5CDtFWIeezclO5JOd0GdFgOLUNvei+JdoA7h2+U+XuZ9cvWThPOMzcvghRyzWcegDHoXkKVXKuImX46pjPx6/3Ahz4o9c3m+l3Gc3reVpWCu0bgUvlrkq9Ii9V35LQNXeb7Lx7SwnJhUqJjEF+Jz8W44AARYhu6buUAHrbHSpSr39T2FA0xlckddmXTE0jgfQ4kuPM12zV0UajoH76XeTVkh6Ln3Ji0V6mruUIb8P1aeBx3j1+xp8RT7Mvd8jrEgSbr/5jqsRNOMjcNUR2lKegYxRFGi3VagPKFsgWtvqozs0O5gjganbo2UNrAWtq084ezSiWuug5RVN7+otHL7iCb/HZe9ryp/Be6XWwNXpp0ML1l+vfpsYLyHtoOet5DBt8rl38FTmR7MpZsXJju07AsMw8A7+qA5DIdFueTSXfaFPe0ckQtjW5X9KuPct2pS1LSsq9epI3qZKeFqW92SfqNCUJT2YYTQnTfsPSH60sBLIyjO1rCRx/zCYl7hr+YF8sAC6h2feCbTd7/DZmzFc3nknqCpsAjr7Lxathx1SQ3+1Imh5huesctuaitjn7rXoVGDPeRcMQuY9feVjH4dNf6AwAeSrdrv6PtdRXE7PQDHqUfJJNKPcTxg1NzCdRcUj+Kku5aZ99p7+v3Y5HDCK8MDW9Fob749WciV0sTLOQ+ogn9O732rlLzAZ3uvRvLpoLkrXz4RKT/PlAOnTRomWyUmkfHdvQQuLwW5cu6r2t1X32j1zjU9XmP2qi2qeMi1qiTL7vmssO+3pHktJwVhmku43N1i58EAPVRip4b3m8mjBaJdElNuS1OqXCoGTkilW+Mjn1XuzkqJwJXfsfVIKbNv35Mpnx70V1cteFwMT5+10cRInlzc28StMhsX3PYuc9nLEeeJmC7CwQd0Gdf+BFqWwWNb1QykxeQWZ20m3J5XLIuLffdERUhmaGzjY4VOZLTLqBubKPMomBUrwhFjgEaA1QeSfParDhcqYfCvYmdO7kfxajW45mUq6TlXZSkcbs+QL51D9z26ypYVObeUiJDjNjhyy1ItNT0Qo6VayAXv6H41rfVlL9896tKgutlvroCanElPS3h4HIdtHwMkFsYAMzo8+hhAdLToRKOPsRyj8i1PSDv3iMSFmFm/ZspUeHZM9vmWuhiPZYGlfpeg0etH86DY9rLym8abG2OCwSv0aNzged/KfTcKIY9xHfnehrwrovSwokCYF8u9NU63n3sV5xMAadVDlUiyzednc9GHefL7agwde2oW8mKF+ypOGl1X8qzpenc45KjMD/LFdd3lfcD9NX0ZbQc5Zh48ivzajooHoON1756Z78v7tQov8tjEPLB6J4jVnTn9Lt9qleQuqN4QF1q8SBTP4nmK2dnbEungF/yRlwZKtCuaKFqkzTz8GVpd0Dnt7tfp3AfqmNHpmdLDpMifC/ymb35Wfscz5uF1T86jsGrGOtfva+iRtezYL0Xayjbyds3VwvS8hQItdMcNtfnc71g2NclfGZ0J8VssDVPdje4+cUwtj6qGsUH3ZRa1OZS+4EL64nZtYPhSwRzKlMd42g0bUpCFKyt0FxMbaVYNHxNeZm6bScrj8DRYMRr0XWQ//avmtkBP+2zhaUfb+D0zssvnpfA3/xyBaMcT3uLp1F5a0ulnaJjfXlcFcLELBUMI8kAj2nmOGwqil/bIuJHFt8XrB0TiLEP415GxVjKwjfaADC7lRneq4wE65GR7eoO+bdaBtWZS98r0/d1OZQVDS9uBDJbYTryoH28Vi+1NYegY2RZ6Ophg/Vz8/hamQX1rXb13RuweHuUAAOHdIY+OAvBInO6R8b5pUdo8XLNuz1FPv1R02BJKfxTRDKXYvPzTPSthVAx+xx1Abu0zApMdYRR2v4dnvIizUI5Tko9enMtErqR2LXcLOQ/8YlOeIqoB59v1FL7rIyieSMfqOZC6Bj0Tx0f6RGVD7Vcxo8r++dHi30vgRSqRZ3xN2BFyLFH2UnOP6B55OU3FV7FGl5jk+ztB1Fn3v1N5RO4+Ovh9wicK73aPzSFc774yDZbx0H7pPtFqIVTjhUSf8ykrVv8prSvDQxmylQfL5MqmH/qO+21E0FTRJSMy+WpYg+EyHB6Ry70/Uac6N9rH/XtVub6zIjPpruWZLPLscVVPjgYmzqdl7ttNAAv8K7rGDx3ngAg3t1VscvL5FqmUODJvG1UJYylW6I1OEcH2PC7L2yyvK69xgJ0UI7bw5q7mkfIGjdVA8YWUPL9D+YgxreREKFvFmKI82V+rMtxE8Lx1i1Q2FPMIFa1eVhQR+dgw4Ghq0axFIchVuaJMUh07/OzOeLK5wgc/TyBBA+lJGXZZ804eJzSMFWhcQuq880xRDwHYJBKjwfN73fzLrOKbOoW37mnFCLudl6ySMNp1cI3n+75fevsSypicFK1rOScR8p5hL23uOznkY2r8Ixb+WLZn9K54YkFoq/QcUVIwlGi5XMIoSbSDJg/RP4yIEfp5GEgZz4/HlRsFowv3CL3c2ghcoG5cBeG5CDXKuow+4hdfAvVum/CWTCxjKReelfIYfqFm8s1GkSlH2sedMI7PjZxUsJvZSj3qOep8sTtrstDwAoXBYzwxj9RQKG3+kjaCEfQtxqh7nGKcbr7FsBUjqPQD84iN8ZJ337iXZvBybOuTljI25CPhUl4pisbFVVj2WB6385xWfusdaQiuaNUFX8m8p08Ovu/B6Xs9JfpQBt0Wax8DXGGwLr++EG5V9lYJtd+8K3Q09Fc8Y/OauD5k+IBrmQJ/BimfR54aTs9Kka/oq8XPciWFPADo9r3nM4F5a3DoqZEoi3HtaTqURUp/RSWl1+rzNvuS0ijRxe80LOb3OBynQcIDoLsfbCo5H3eneoaB4kaKJMXppcloXN7eTWZF1/LaCtzl6U2Iwotknf1GegUiKAHT7Vs2ZpiNGp+w/UD8youSNz4MxdvLCmXBvrtu0yh/TOzW3rF9qmV7ujenhwI+vEkRY8mq0kH5faU10UfDxYq2G4OWNi68jNVsGUadyMJrMoyLPHezXuWbOeypLlJDPzsuHhpbH3x3/B2KpzYCHbja59ELPcqWEC+f7VC7B6yFjPs9uvbsYzu1qI4bWbybdRfu4/NY2MEa8S7/Ksse+CzYjsr44d5q/5NC9Iz9oDTPoySLaKVe2gXy5vNoItg2vwQyldb0YpNy3ycpZcbDMGQ8IhfZL0LbgJHPIILuBpIAcnmiNJJ8ai0MBoGgb1t6TPqWhoN5Oka0MrqbJsps6S3cNvTeQ3bBjKu4LJO8LhBUD0sYNlvIjGHAef/0uvOoE4u2lp4f95SFB0pAQQYQEd2CHy4n3UNinig2mrKqdOFp0SynzS5udNq9Yr7VDDA51BrQrJ0E4dEdZ6CsXgAEW3S13dwecn9KMGfgvi3TeJzGwhKKjjHjXCUvs+9NeDdd2HWZrNs7ww19pKRZguW5muYWnlWr5yvP9m68mwnxcm8R7Wk+cavvhAnek8fm5cCr1oAps+WZmC2SYk+heckjPwOm31XVADKSlqsygvS+5L0onpfOFNgXvjul2cp+F8BXpEYyWl2WmGevqg4yPdspgjb/ldXOeLb/7cjKe+eNPZiF8KBT8seKkAdh6EBW4KQIgnjTZNz1w9u0Utm39rItaHE2xRpGxELH2n++oAqYt6HwX+LMFCtkrDfMc+YQZcOTdTEjIc+7VDZF1CH49syhhHXvFdSGPA3G1hmmx2jic19RbYAUxpG/a55bEKS3MiOJjZwe5pnDMfOWHSGcPpq8LZ5V8dSanZtJ71SaB14zpIIKxXMM62wJheK5D2/OzstFXPWtrpvm+00ThyqfnwmKkS0Oo71jw7gLKVWoZHT9NcsPNn2SDpnqsxwugoKJ63Yd7pvCVynmZ++uRB1j8UPu2/NbvNEvANtbbM9v8bnLxbYjad4wazfFuvfE9lvBraw4T2OKfYRBNo+Pe1KkXbINTYH3yyQVGPODGRACDE9B77Umki2saSLDDZGB2/pQE/B1Mtm3EYZSeE2kmTxy1iXf4iD/NsI/y+UyFhOen6P/tzam6bzcVEMGuuDs21szXgSxpNJakZnj2cWMCD8/8zT4Gm2BLMO9t2T8xHkgC1cdW+qQW/2iTA884JecmgHaLRR0yBnnrZUzFlFq8HXZfVn/PkqXojHrOKctWZZp5gnrBg3x4Lri+/BYLEbZaNddCSm0HyplpZeAyvmQ4Zj2l+S8B9P7N2g2bdhe8R6b18T1IcMHZ9g4HA+h6wNsdNFMI5Qju2EeVhxp/OCmb4PSks+Vw7hfpBj1YwrswopfGj+8m4JpuDYkHvMuPzaclRTjezC/P7i9vYWpdJLDIA1jZG8UuVGyot8PvrJiuYoIxjj9SSo9aenE1kRSbEoPlYyUFo/Mk7D1Ps6MkEJVlemsq8MGxRMQ5WxTX80LOqX0VabJPVVenj/PTS4D56bs7cpR1YER7hzAU8uzWqW9pnoMYyNNlWIwUZ5oVzNQBDkeePzOdjbjsEX/HR3BS/PQCGTc/i5pbDpXuL3SOKr9ZoX/scmupr09Kt/niHwN3FXxE2nDW7hteLo8QZ6e0nCx7U8AQhHO0Mq5BSwVc4pSRtvO4q4UFhSulLen9FBYubqNd/35Ga21opjH+OVtVexdCren5r0qqtXzIYBu7tXxsz3Vi6Hd7smxhbBRh+7ZywWmvK0u8tPYhQhau4wLPSvzo1rdztUIJD1DQb8FEOBLM8mYC0NwNmCsXIWfkzKaZKE4ccQ4Aca50KgA3EMF88jpttlWw+wbS7wzvHMXfrlq/MnCp5HmDwke4d+ntY98tuCDNWxWwErMLMNmw4GVIT87E6bOZJDwapxqXsDZFPR+KKgbFM0m7Fh9s7MjDQgDx5V2ES+fJsg42O8U1YFS59Vcl5nTukfGnwpSqd3/JqVMAZXJrNA0xpinM+9n4LaY+Z/bJWTZdvMqOKCx9Smj5JipanV1FcBR+8Wp0LFNq+s4hNplL358yi73zYhk/zBFI/Wkaqgo6nYxrycr2itwT0YJOmBGQ9fKc6eU78Nh1FF/4odO6Qp9QJ4/su9QMtYps1g6p/KpZd/zs7cKtTJHG206+lnWQcjg9MhptnWNjKNqBEl55890cUi3bB2UzJ0lZz9mPozgCWLnd0a6TTuaAFvuVjKUdCYiYH1g2fvE/Lz+vOOEymyhofLoEa2NvbhXEk1oFX5obD917zFFGt2nc49sbOtrF1yenuJ+GGkXQC4mn+wguwjak91S754Q2p62izDo5zTsrIh7JBQ9xnhsXQta7UxOfx5lcdX9fVGghxnvB+1j+5Up937WB2zkmKKuYQiZDJN6F067XEI+9m0LI0XdsxMXVHaMwC9eBs0J2oGtjxqH4WCC1z0nNv4Gv4cnu12e7O4Y99RsgFxs8LuB1sjD3NPLqzq21V0yylsJ5z3xAZzPax8yU7JtzbCKrX7G4+Hh6eXcXeKZBkv5PpeX7/bjePKs7rr7VPhdQ1FfwdCisngsLBLtdIgbeOrDG2UHwpXmdQXCi34lz6FYvC/PjsRXhZURcxo1nwZ4r4ZNVV4GvE63YKw2ifrdMOrDPBXqavTQBhk/zC4ZkSUPsysdSBc7oK4RinYYMYZVEUaN7+0vFy3OvJBJvjxY8zKYUz/Pd/al/p4GqT2rSlAqECtle5R39P4YRHiFXQof0ihI9Xa/FXDMRq4I8F563lvvF3oqFI22Uo2ypPwefWanuy5qXD9rX6pZ3POysfJNhgv3hV3fUKIV7oVh1djeu/EV6L3uRA2vjsIMcjdm3MABzEthxhrxx40m9wYFfqEgGU67VOOq6zByLkG65lkjMyK9HN5ssuInbx9r3geAaWfHdPZJcmto/jv62KbZRhdT+Hof5xYukjyY1QRuhZAxk3Ez966aV+v3qZkeEQWrqfY1YY0/azj3y306jG1fqth6x5OHT/YFBHXlWU33zehjEYKZb6z3sshzMxYfemxxCnppPI+tqpexRcu8I2GCehQ0anOoxoqBn0Fzz9Aox+nmPusdwfr0JBvjcL3jR+Lv2/Oo89bJMPCOMeJuplBIXsglDbqQ61HpDpinK2i0LWNOH4fAjjNBMjw+GR1u4Oo6tr+5kRh5GrKtbDIb9xU1KtvK6DlC5+1tYlEJbeDCDTIQ/zTmqdrnZmNlPFuMv5Ju3XNl94WfaX227PpXVffj8l4Eq7JWcicm3IMUv3bg/dXtXTG/W0sDQIfYUs3rwGvi+pDhYcNmr4rMJsskgA7zX+82M9Z7oervuRI/fg4pylvQwtBx4Tit5PtM76vZCE+Hv6czKuoHH02BskmMPRcrOPLcBMmcU2alSyNdruao0UznFBYKti6ePQqr9q2Gy3GelYHDnhqm09OlsZYPM4Rw6gHj9u48HxWHcCUNKOY4K+wOitE28xkcnRNR/5lbkPnr671Mwcw43nbGjRL0L1pJnDap7eHnbJ6a4NKEDJU0YGuo4/FFJI4+pGfIeRCH9k0xNIy9j5C9GbKb/Sejtu4Nyuru+7sbYeEZYr66wWK8umB4wbomfWLKoGKc0yq4ZeDtattzIHE/xtzyq65b/a5J78tgrru1rky67DL9ug/k94WUJcJZQSspZZ8lxmCREERLsc6cly4w6Y6v5w36hr0kuaVJImJWnqnhw+oan2qGgV8Q2e3A/JZGToQTbpmvd7SnJ7j/dXjUt1Fhl5lR7ga0pyi1XS7WnzpK40hDhkG2OHsXuv8m6thDFkMkQ0P3bRg1Y29kVDR8xNqtbw780U7m3XKvRuaz0NZ9y7kgPF3pvWG6Yrtc72jOP54Utg2QLdIAgOiW7atIr00zg4rbzY1Er7/jN2NRAKC1lF3tktv9rGI5h/h5pZQqR/0YyDklH6wMGL2KY2forAyfB+GhfHGWRl5eIFICVwKE+upeZ9tL5iPd5Qrcs3LDqtmVcpakXC38Q4APnsBfs3C3YTMv+CccNd560PC7lZK2K3eFMZQYF3BV6cvJeJqUxdQtTUExVvfH7oeYYsKYcc0O5Inp6ZGZ0ql5drxM24RjRg7X53EpRXrnbrU4SFbiTeGg7tPG53RAn5UTwpM4a0eoZc0l0rOQo0rpqlI50uRkOAvjqF8oZ6Ok8KKRIgXJC/AUKThL9CR71g35qq8NRQiubuzqSGpJVb6xBu8bXGevHN/l4XriEa6akiY+wuH9r0+4Z5yDP6QAJUm7uSna24ymS/NeYZ+UYXX83yEvY6x9TWFbCrtONO756gaw11GAMFTmtvTxAdLvLhZ84q037o15aC6/9t6jFO4hnpBfEQHX+s9R+tdOW2XEY+B9oV2GsjzCIw+jRPs2tl41Wt2PgW3GTSfPSAoOlDMiHoUtPAZ8joX6uoUpzvea8jqCn3tfpH7ocrz3HBvReQatg/wW8gbawYNmGGKIg/Ij0pcbJMRhVRoDpHDShZ4u76QlrYlfILhAdSuGugBlPDuf4vzOtOhWtosBeVGp2Fmn1tCfLUiBG1PsDYpiNPkg1fsW1IVB2Q2Xyasi+qXk3YEcfF+A7NLc8LJIELGc38qouGNQ3UwSCVaj7fUV5JeM6xfBPYW8IyEfW10+ATiDB7wM7q+l8uw/q3RY/I6MeLdul/m5BBcu9bf/0ND18s9X74EMKZwrNvHOcc0XeNJlkf67Bc70GERZni7qUHTOgzoWCo45ovk358lnlC4yCvaXeVYRzwYUoowZKn1zkkOlfjdDZBvIzKPpnIPYO2+/8cX4PH2OhcOeBpDWtlV4KGCg1n7ubZne93vTfEd58t3ceomP/6U6obbRPFpi2BXMijxcL6bf5UFrvzgTmjlmbxTT4F/mi/72/XWUpfQ+LiW1591X4smokYVq70EOggbuq4GvnsFitasoQArz8EkpO8cIF8wtS/lR222XaeLXMu2isLk95eCb99PSGeS6JOD+XEvW/dOd2F7I5SXDVrTTE8YbRSl4e5JufudMK33My/SwxpVYRAf0KHilo1DSPPsy1WXyqATOFDJ7vpkHIbzfS36MNvKzQWFYqcsCOohPiytBl1eP6Y42zzyjyjxy7EzSaqXdxm9rl7mKiMGi3OYS4yyNKeXqWaQ5yehxOjU0uCvRGGl1S1odwbSM4fmM9pAJE8ub2AIKXRXA3cjn5vxtZQmiCbj8mJ/nQR+XLE5EULrrM/MaXpJnKvadYIVHgz97CbKWAAfy5EqJRfc4gH2aq4gPSTnhBIZ3OGNzTZ1dDceDCeIQ7hjSrpgqHZbHENQxcOHK4/68jQyNKCcydSEpcdmjb1GwpPRbY8LwMyQCmDOIt6GZ58Y1WKNuPjCtN/nxGLAnJjlD/OBPBTuxZj2FcN5Ocwt23iYx6rTyYXcWRydFN54ZHVYJ9UnLVlqVywLAijLzoT4xGubVzrkuU/4abW0PRyPEJ/qdvnLHxODKr078SRXCfyspbFyQUj3mM1czvXsezHrtwe4GqieXs1dmlTri2ngAeDvKCqv3nViPt/7NMO4AGuOzyQhb3a9y+/jdLeNjzityPc+HBHdLpEXCPIfh3y/25xc3ZlZRRrDijstcVCMozr1USRpeEEUEGiguSPEzP8j+5Iq79vQMBTWpIfOW1Dgz9vwMuIeKDQAbnLGVqyjZNgu0ZlHWbEz4uaMoWUIJ9Ysxxc7HaPDez5hOY0qJJwD8XE2c0bFnCqVwz5V+tXuFOt+BA+yN1JEKvsUveZ539wTmeJe4dG5LN7ogcWby1sApBh0nLwYM51DsqsHJZPqNYzoeG9NrPB+kXDgth08MNjRsr3jd5Gvi+pDhBbW8Z+jdmqReAkp/e5CDzyMqJKRWrgL593HEyr06MafAV3pa5Nc4U7D7o/TjmVpELfcqEK4FfQgcx3VgeET2jAlw9tzkb+eEHlIGn6cKzuPWWQNjd49LfA8qEntVErWkcR473y/uwdCBMG0FDYMhPB4T7aUOZF3FnTCyrivz4FAp1/qVTxLEf7yqu8M1XjSvk2bu/Ck0sLNQV4Ky3XSq98owm/hjXxY22BKYpzzOGjKYgVobuQXr7dKkUdtW46lsPDJlt9ky7Nias6BNhs7lF5uqZ8Y41zNdLbg0So7qGV7ERcr1CNpj2q0iH+hQq99HsiHe+ZesOGTO5YLrAOY2D6Vwh8bGSbsAqnY3C50/8cHnW794S1ocUqcP4UWOFnlild+NBlT62YsZZXeLYqbZM/1SyzGeLDqXhUeeo7Ex/bHAZW6G8H6stn/56gwbR+wFDmNPKfSypXMPzuSVjcssXWZA0bfn9NprpnP5MtrFgydIFeLkZRn3/Dx7ZXeLPLN3d7BuM3ZoyF3mWchFkdziZ/2iWxu654s7rapi254Xc7jvpMjqxDsg01Nfmrv3PUYNy613hte8QPNOSBk/SVMPux2z52LuiyG7D+BQgWbhSTc4JEhXsuuaNFsnuSPHEsX7hr3hf8LHBS/w2Mw9VuiZTO/n36v0R3hvD/4Vdn4+KzZDWE1bYCh1EyBDDfNw9/SJUSh9MxTdVwHF5JeMlSYVlHMgSpNiORMws27/9SpEnV0YidXOFfiFQPU88amCObqMGzwReY7o4kXQd4WVIgr1ve1IvnHrKuwOIlNkjCAVycvQ7ZkglVoPWZztXL0Vzkff8uXP434UVrwIQl1yPbfO7YG7k3IwapS1dzMkzqEYvd2UBebTRfIGjBnDzNsmEfaiUBuKaChTWb9OlAU76TeXpPDgB/RGLaxyk6iHrzSz0uhf/fzarhYH4oB1qDhnczCrcq0FwEbnMjLogVLaybSX+yfRnRJ2R55H4Ej2fRxwq1yNraLNDu6/gTw9hQfVD59zGOc4w7FtxmcZCj55W1QVuj0PQ+HN52o7i+GNu2b8LA57JsSUaL8gctZymynLbUQta80io9U7ZcqBfwh0ex4XXZoMaa2hd1YTbdRFkAQMOlRH2GdX6g2fj5QR0a3F3S7dR7pkZDTVEZBgbPvz7ymkSt91g6JXE75TXuez0xxGGV2oObxwDdCtLkqYERdnq6JhcvucBh9zi+CI3EbR8GJBKrm3CeOcoDTjygNzECRgEU5+xscyYZf/Jqz0HHvySeu8Nwfx7XeflPy5BTs9gp7rwbt3KesQ11Xr7j7oKujzdoN3xPdZgAcMm6Pu8nHBukFuGTfxXfJXrYkbMjnBqiKNnHD3K1in9uhNuSttKNW+Cl2d6hpK32ZGhm+D4/C3yyqW7QYH9Z3kJ9eUV+FXBkps45N5W9ziu+a5lI9LteJFxd0Coy/5qBs+maZdnqoiayQPBd+VYQrqIMCzpguTA7vOzeL5d7B42Khv+aStKD/L0Eqjayj47mHKaGkZ4W3QWUMwKPI8zVNr2DSPKxf6lZ9lXjbikpYE9yJ24yenScNHS5tdqM5jt4vGdy/LedBRI8Nx3wfS3InFBxltO+9U0Sm9qpSodG9awxcuDR0db7fchSORa9+YyedFQ2vWQ3bp17CUqFZhWYz7/LlWmOYTIzN9FZEG/+6FHPGZaTV3CwmzDqA/v43IZJnIVoAlKRcA8AhnvkBBhkls7TVFvyrZ3i6mmHc1PEaF2JY47RHpbGaPPo/7bXrfomLt8oTY1uYVNnnv80KGpx5KfPd7eMhbxMYcgHpxaLo8RrbLBYCYp0usrm6MWCuIQNDMY+UFEp9cmEwXcxYvlBuWzuttiyKSr4M7/fltVFFkRKLL7XUSdRv32+Rc6rwdbFBqM6cxjTXtWu4K4q1rzbY0Rh/fGR8jT+nPUs/ozWn3z94TzCGjP0bI8Xlc8pE+sfTQaPkIvC/V4V/MGZJnd+5SXOo11+ClGu9nw3T4sOFBj81udkRVcucucJR+fr+CVbfKaXUVw6rG92IcjNVVfcdAk6rlzcsUh1hs0HFnjXlffN9y3LNCXphyK7R9iuQt8EOppEhJZkjNlBZl8trvm6MuVbWZo2SnlU/QeSRgMnqUV79eOvSvUVspYuUrdACtNfJnfh+RiODt89txrYNh7VCKbKe7SddX+x2aGT1soAIjdLICcamnQ+6yGc/98s3wEAlCkeFtNMNQITzwPuP8GD02vDJa6fEtWM+Wb2zxGorWRog5jxs+PHqZv8UgRP29u1DUvI4eVlp1bxJ4v9/UPZ2CrfuWTCkKDNPqv6uRmQSGCiSkO0wDydflO9gkGjzoikGH9hEIxMduGPCgxWPytK60qoPJtf5e7+c/mmhXz++dlF8L1uUtmM2xvE3baKac9udntMsF29uPkHJ3KLWhzKqOsyam1I/tStu43X4InoHZL8UEbeOCbx1zmgyvhzMGMjIb2JYwL4rYeG62bazJOC9jyr57Q8DyvV0i9HII8FxVGfS4Em/Kvm7P5rlKLg4y2tj2pRohj3V7i7ykk4wi5XwmR+yumiFnUq74WRw17457XgCEJwow4w2AomcZfQPQgXYBrB0GG91L09AuUuhTZ250Axs8bgCFcWV13p6HR+ryZoSLv1zi7qDa23yr2mKiJIixRWl0N+YqDtl98Z+6SyQ1AaH0vrmfp63Ejx32s/1r4v6wYdUG/PxRA2cFRxrvLtE7Qn/lMzb9PGPz6QeZvs+/1z8AFwtj5TgNFf4bz+qZGz9H49tahjKbpgVHVmMFcidcHxkQB3n2KFbS+WWwH8yvgPQA9pirsr5u06E0xSYtbyOQYYbKd4n3q5IytUf92jQ9DiuaWccrhgiGgp8GT+5trgZ2xdfAN9xXr+OzKi5zuQSKPD8y7d7ZnfFyHnTKW707CX4RqW/H3FR351Q6pglf0tibx5SXtWnSHPfpYD+RxGLzgrYoX9PAcwNzsxvXh9GcZxcilO5uCnQzeg56MClxN0Cu/Lo78z3ZyCh7SREvhTy1Y43WLnh6ehpGzUcf4fL0BhKCbwhB5/n4KXYfysDh43VeDhZpFITAztjQ5ZAiF/BFlG4EwPAv+eKdMMIpA7qNMyZyuYytWK2huRclQlhbkJJtG38QwIyIcbeOm1uSBkTf0C5PaZhvb8PaCg+Mea0iwpqSdIjw1fY+LCWN8Nbp4ak81L5Bnz8auLdnDA/TW6hu9r7H90jvbeq8UPMg+USGwau++ZmcYcT07Xl4v5y/feRTw8uGIpBeIfVLWA0u0vD5N3UrWsyhB51WKN0nDUJ94H2W8klifIjPvGr0ScIH0DdOeD/wwqhoH4fN/rIyqnKn9Ft2acYC26y+xtRs+VOFVAzPy7iNQGL7ippBk0c+UVbnYSvVrki6ZyEoIQ3bt0ByqXBaY2JLesMNaxUa058pjj7f7ZYtKEKce2OUvSM1btYR+FRb7j94R2ERfKeVx2xBKe2iEe4qI9dBjCetmSeBPCREa2xLCpa6UqQlHUdnA9J7cGn7g8WKvBDTMluecVfSuHMl69CBULpzIra7eCYPUtZ7/Ag6pv7Kqfc93vu8pbIEzot5C1ij7G50XHwLiQze5LmxLDB4LNXz54j40s3Zw+nf2eic32N6x6bGBbal0Me2ZG/PPp9bKpvYttIdLTb2rR08/UxnDpQbFtYO1vItjcDB0GivhS1Fhe9Qy5R2Ny7lmFyRarRfk8RBr2Y7qBW+bc94I18A2gXtckF/+1HIn6Q76zAWHZQKt61oItGGQ/G1BrZeKo3wRCMPGrQcipP0slj/CHkf3rqhdMvlYlLdZHknY8KpaxcM2QNoH+dnYlsWUI0LL6Pr8ELZuRJxPOpnZobHSESG10iH0VZDqGfjiTTgYmd37HxNuzwNz4qdURrGjp1Rsuh03reKoenLEh45LYIejL9BM8YFptqTl1YHvzcMZuhJe6LaE9mTd6eXrXQpxF1Obdsz3n70UenDJG6iDaL9SdaBH+P49y24N32Vdw5z4Jv3ATp9c0G7pnxHSTw42NCqUzJLu35+C+YIfi9QGrhtU1m6UmKmJVv6KuqZuiP076jyXIWuDf0V7555TVwfMjxg2KyaddUFVuke6fZH3aiKsjIl0uR6i6rxnQME2NaUUMoGvqYjVRd7CCnnbgauITwEmmGeATQ1ZVbo4kjAQkCTDmT/+KpziUqVGvfD4pDNgaNBN6e5lsd5kqq+KQUL5NfKnGHfLot21QVdrJSEvkPGDRSX9oQLbeVInLRupvnFW7Q8jrdVy5snWM/agjemchl55dJLV0hgIUyddppQ4qLRHR17/nYBetf9oX2kAPczQReRsj3Nt4Bp8GTkp64X9XGdZbOQrHzmh8/KMNVD7Uxaiu4xNf6qHwjqOZx5q4fSOyDPvT25QetjGzl+Qzaoqa2mKOs40BS0eU4usUSCos+qPuzbbVYvjtWN++BIys60LYG2zRwmebC8OZWoRUbaNmzPz3ijGXq9jiWlbWEWncypty1drkCrb8VyoUBo/FwkwpAZSDO0ueO0nqAjdHEzw8SjeEkevou+oH1cejnsimFkNPcUaSr2Lc6WaHqLpgs7L09vLOpXtzNHHuAgPS8R1MAGjHZFnJu3weCH84eh5TSMPL2/HXfZNN+yh+AFXGbHdj6aKXunCBq2za+1UJIjwEHvdqSJDM5h2aFvtp3M3mkEaYhSRntE5DOWugghI/Y9RFW7QN1I2vXb2ai5YsR41M3lS10+Xw4TQVX/Zff60wWPKhgA3qmWLyrvfiiybaFGzrLYvyym3Ip39fs+4XjCxwzvcI/N+2zRI1v52MJfUcO5hfNGJ7bVNl/1BxDucQmNeWQxBbRJC6UzDueLH0KnbU4yAgPwajEkz0gI0RXOBmVxaSqA5fG0C9GcdSSLgNOn5yY5EuV7mTah5YRDCh3M+CpRZCRoLC5232Z0p9ybhczu2oWc44uSIqUNXeP1sgVyaVCqZ+DXNQ9TAa4wtk1lhLJsq8SihhfhCajY43qIHU9MKWIDTdMo5kO4QvUbeUZ+v4fFecETsnsWnQ9bdzVlvOfABnWM1PE0DvnaCq/l6dZpSnP5sGGjXHIxwFOHoRzMy/Lpfvjd+Sb2Cs1sjHS68IIRfYxiU8Wzb7WZFJzpBFXyIZLqhHzNucRwO1jqTup5EVJ5jCndXXJ4l+RAfmt9W3vEInlB4ZyxBZzWxrhpI/JXC89Bej8GDoUf7h99KD2sbqCiKzo6mm0Jc49C5h9SVZpvYxJAGsS8IEG/AtoEl8sb2zrFBtDU5+NcRzOR2PIdRv3684iIViKj9V7YNQyyZlutBq0jgIEm7bya4NvhtrHdzc8PuWzLqGbm1XAP6dMT9PltpBvyZNwrk31ax5Ywr5MLHfdA+yCCjBW6iT6xMzcxi4VXtgHiEvSgp0d/trNPFBCBDaVi5IlAtnHOdY855Z3PX6yolvSHRs1iXN4aqPeMt08Abo7Vqw9ln0aXX0daXT2/Xeg6/Sz5Xgiz0Cpj8CoBOXdRmns8QaWcV6oGwwbB9ooIXxPXhwwP+KVmhsxK7vzsFi7/m5/PCsUxzl3ugxjxO2G4o0DjrAGgIfCH8jcrSH5GRsMoGfF9aMuKAECPd3nWRn0uGF4hydWmofge075T0hZwZczusLLqNathoRjshJ2UPHv1jcrUWem5BYmxGgeTJid8Rkbzr9yB40rJUL0jbLILY/XajTKb5JkSwfCY+DYq5jf3mRVPOf2KR4MnQ5nprkNQposp6CPQhAZW71dxd03gpL5MulHqKmyM1LK6GxGTBeo00+afwoVRjhiParllTOmgr4xmVTuHU0+xsNkQ99sQnxul421ZQ3dLXGFAEjDf8tRVUjvOOMm4uSoyVwUp5EGZuGpLZHIt/eCecXsPrKTlyxBlZK6X03KdGn9/efM5+AF4CLD5vSjk2QiDBN6PJcauy1BXYD2aVoZeVsR5k52wGe/6Zkq4IGgpCj1th9GeEca0kydkMdpVx4H2iOIVBod6xxwQ99NUGpW2WgXPRHIbGnlbAFtYomhiqsO7Nc4kDRrjQlRVlJDOvsVNJM4mOQsGm5K2Ub4bHiM0dhijqnZXTW7v9bqEN8iNNW9L45N7qrLuxLvxcPBAO8YZqvRmDUHTULutRrN6V+QxW34zREfLObs+rz8zn+acv8L7Qihy++VY6s+F2nTdqFn8PJy7X7P2HwMcTeL3QE6Gi4kFKRp0enbCJw7vuOHupS153WA5LovzrzGMyXFv4FRlQ0lBTkMmS2GBlwaLSL4PA4cUmRR8+S7yc3q+WCyUck0cMtGy85QcgyZ5YDGcirXrBAJVot6fMSKa90OpnKTEXkF9SZ+YTaf6uedJTmg8KYSCbZ9tVs3nidEeuZEh9MY9O67IMy8iDf25rqWwqGPRBq5cO2eyFNLZgo4ZdwcZQZGu9m2earmvriD550pJsKKwp5viFZ4grquXmzrq/pnzDfnp5UYPUZ8b2NDL9/P49p68i7s2/XR9lOnV2loAxtY8N9AiiMLcAZk35Zk3llKaSlkxQ8uwqCNFVkmoHjsmrNp2NXkvJ3QlXlRQ1xRlJWHZGCVeLuhRk2d+wD4UZ8VQWsN7l/0BgG0HHPR1u+zRI3tVL07ei5KRw3oYJXEuhPc/qh/Kl1S2J8U8+oay/G8s/JKdnofuptFiZGl0plEjQd7VUjCVQai9jyAEmv08JHineiNp4ktIOTrn7j6nmABAHZ0MESDKTVla5133yLqXq9Q3kHDoEa+mRL5Cj3tuqC3EB1vUwYMoOE6fS4M51F7MWo2/1XCIL1K/3hpe1+CWkRJ6xBUZ/Tjw7CC7N/uRng9TY1mg2/2U8myJl18u5rMZzxHdL4ZrjXhv+lck54RPBh7cijarG4ddm9Jzuvm3Tmn14PvjkMqM/TKUtQap5Mj0e8hVP8ehhdQMMJCTiO/zduWoqdqFnYj8fr4jt6PN5VXRMa8N7bmfT+r0c/33/GxWxlipybNI9lR9suP98SsgpQH3CfFYiCUMcw8ZXxRKIalzXs9JUVOdSAXAcXh65Gfhl+57CNOmu7Syy+uRwqJNFwyI/mkf89YrTuceGKYLkV6n9EzRvg8Vz86UD7s6Kuavh3xbEM/bqbz/d93XcbSNZJ6hZWV/9GGivmK9nyajeMIf8SUW5fWpQQ+7aFT0lry7DQdHc5ftfkgLuM9Pz/37i8TmyPiolOe8hRZXTHV4Z1pciunbI0mOQuBegiKbFDGIvI/EhY6zkkx4o0+4BqwIj4byO88bwsy+txbyZBddLX+ZEi/2GR2XaLLUzc/dIPDzQIpa2/fV+Bio2ZM0/S6rDFafafjWOUdiNSVDmQ/6Qs433rMwiAi0HrIwhCOVNy8MMb8jibWruO9cow94fiB/A9O5zpg66wC+NtfkPF+rdTyN3fbQzOW9xGDZjecH4e5stxIW2TxpCIv571ML97TRnGaV52Xq6d1wBg94GTxQSxOaHzso1mXfJ3DGn9qZCC3C0Oc8nzRiy4nj5/dwwZp+kEZ4Rj6Fu7h9chFaLSpC1fHze/bMCI6FajwMtXvHjVBSFcv38drShF9pVkwX36/1gpf0kOCNET3aI9udpnFKT8qGpxF613vxgEROIYOI3rG6Mv+xMjl4pvSszo6+TYvXxRWuRKexlZP5TKOjqp4NRDvZ2RhTGrXkSWTVSK75+XsqTHVSzTHA3M6Xysxa0M/40oBLgySdWskPRxf9EjmGPY/zuHBJqCxWgkD5LC3z5FnVwkH3VCY1hl6Uz/N78IsZdUNBcn15sdN0CYnjisyd2mv13nVb3yKUFuN1yZl9h/89oHQicdsUX/2KYnv7Fr/hW38ewDjv1uyOGtXJ6xCkpWItEDtfAaTB4G+oaPfCIDqGVX3NN2lSmCZZOD9Jrwp7ImZPiXjEOlvU6raF6oBbsZVrHmTe2djLE/MW9QSl37GChvBouKcr7vkpLgH/Pj6Tgn0n320zLLwhjwt7j3x8UXlMl/8d9WbfPjdIkbrdzWjYeS95zi2Psz3rvOvz66JfLGjyih29e8zrstJhDmh5CG/JOfXleFqLjK8LnUBnipjG2zKDHYK1xiuZMwnWE054RXiB+XZ7Yky4bzDnO/5+XzmPjH+f9upDV4JcsKZSJDQ8q4DkdPNWs5HQ0/txU99ONdLk+ZtQIEPBO9h2FXC/EJhT7gVOTRefs4BbIXLKVQ7xwZPJ/me2xVoQrxVEjTaJNohzSrWdtI+09V4VTaVkgf8arLwMrqistgxdTMlpNuGX27lDibf/RIo3ZtQVYfz47zzgnJTEZZuKcm4njLD4zw2GusVlrhOT0aSZDmWYZmup6mIFn5fl9QS9y0hpPQhmI0Qwdgx5GGlVMgoUZfL2SIVRL9ffvEmCb+PPYzQ9a49LVHPNI/ujS6BqJAl9RzzhzyVMA+KevneEd6XwxJh6RDS/OoyC336k+Bu/8Bb/n5/5r/Cbfv3/A1/5pf98HK4HbPiZwmoXPipMYbetZCJ5sH6glThEXs5mFAXOBa+f/WjR/5pdpJmX4bJhwf3SxmfcPSN2zsO2wsW9OZ5BTeGWPNti5Xo9i+d322KOACQjg6lmJDdPG94j/z140/kskarhyK1gfgeQchriH7RDtw70Lba7hUy6tKBZmtVdsh4RqAEAh7GG3ZkjxM/0zu47I6eDiIW+nm+/snbpi+101MeFnsXcG4+05Jk9PXXRMioz/miu3tG/NDoe0XNu5X0MqsQCuEYPUaEk844KegDfCa8DGzKAwOv8fTbgE/JL3TMDXxuWNb/c+ONEbjxkGXslgj03HBQgjREN5YuNGjdgGinZrniXvPYdghSgk8Cc9/xXYboXYk7xynOTi9hS/viMjc6CS+veW1Wv6XuAXWNpPJ+NFkQyNjaV0Iy0lzdvQslIDFXx9sPmws+Qiq4/202aMlHCioyWazgCCXt5eDLKYAJaAlWwd6Os3E4Mk9J25BGhghTeV/Odmze1/nPr8mbHpKMsXmNEF8sQ1UShEE7KE4EaPBKW02Jdk8tYtpvn97Ih4HhMvm4+ziexUQds9uzJzmZcBGg2kHNiZ2MZFDQgUzDfuA9i8UznDPXrY6CuHC6kqFeUx1M888F0LFcfN/dno17RGvBf/+2O/8sf///hD//P/zP81A//H/D2V/4r9O05DBdzdVgWVyZTAHaPVKe5Xa2sRhcvaR2cfkh9HET3G+stSd9Gn4szPxqXbkIwvD/2zg++D++B3V/jCrggv2sf4lQ1lPwhBCyss49hC7+s2/Po7X42R300Tpzdnof8NaNCLMRz8Sa511cBSBuXZD4/O2OGIAr6MyhA4FJA+4gMF0aEnRPSvk1BGaz+PSPMCTV+OW/TLiNEdmkjgRuv8HtrVEdwBw/qAFQjRxDBDJSjuPnMtFIjeB6N99Tnr3XxFb6bcG1GXI21+82N256bReWvUsPay5qc/Fp1hStIr3iOZ4YeNNjLpeEJJyzhBYbN0cB8pNPyDLyCezv6fUJiTVVVjP3TPSzNBKJ7Bkrks1D52QtTj+E1QWhEnN4VTJERwpJpAfbKOn/GHP5C6+KIW6EShgZGinExbihPQbRS7a4VSgrwoqlrm1QBX43A5FfjKHUCbM/PyBsUptK1ll0V1CyDyZ5X+FgVEfEIZBxMoZqY7k1xIwjqRoMr9dxLXHl3n44pyMxL5kMUtN9uxfXS8ktKvUf98pxY8ApasIrpoJeiZAieXXmiOqQRkKaUItvJ66RKHGXDDLl40JDGfrNy/NYTheJJJHYvbhhbclowZ1ysCxl5n5odQscwyC4A3jTBEytj3n7UF7KXHw/A21JQr6Zd43zhgH8Y3qWckfdzn2/4jv/J5/G/+d9/E37j/1Dwn/xsx1/6v/9v0Z9/JRThcV+Nj0HziMAUWDM2hO6g6tuGrj0NClPk6/6X1LDYs5NRy5qFnd4gl6fomQBMkeeRq+j92XBcUoG3QAJxx4sq/JKZ9O6koBpBD/hPLCS08Yu2TIURZcZfXG45e2nU65eBAqJPumdJRiD34GM3g8qDHGx+LmfQLyIjXLXxyb3ITq+aQahlWyCNBG9XaArVcoePbRlUDMOMop6JNDOuCJdq8Et7R+9bCa9/qM7z1m1Zvd+9MoSrLeOURHgO0umP0Owk38cBe6p3Eur6xD/VAvPDqyhOeL/gZ2xe8++zAK9Yy4+r25MgL2Wv/vLdvFYxe1B4S1Mo1mxFUDhhV3LD+HFDRaqAa/S9pLeyw0opSjor3dXgqeo00TYBm1hH8iz+XCfwtFo5N36zwi71PXzeZeqPe8PSxmEoMnp+OanmhUeo7dU7Nt8mdoMX/pnKa+oS0LHVyaOE+fdiHhDPYH2g6/AmuL/gInVDlpfHW9CiX3kC40UGvyXvIWgkaOUDG0Bef4HgIg1NELSsRorIMAwUiq3TijmVB6+b9R1BXirqEZWqMZUtp6z8LXjvdemqeO7Z7z089Ug7/ruYQuVeAC9r8L/HNkGRcXGn6uDhs60Kv8F4eWljiaEHv0DxQrLP3ZJwV5WZOzSDQ4UNObrC20z9Y4dHUS8BdsayIr0i8W7tJZWpVZ7Pfb7hf/Q//gL+6P/pv49v/BbgZ/7fHX/lh/6XePuVv5ULGbn/byj11l7t6Ym8HaOiafxgGCfTNq9Kv8K9nb33cVeNUOuZ12B4QywCmYdp5i1givR+9h7bwTxsMoDcTufbuqB2mWfSoNotwtu43DMMMgDwM0fShvc8DvIDqhtE7YJL97AY/aNdpdQ1zrRAof05aA3vEHnJVLeCD0Lb/3ibmQj69pwGZ5Rpnij34Jih50YrenrM2sUMrcvToME8Q7pt2RZm1IWssQtQnd6LNDw1WzKZVpgGL3Rh1Ey+iSOjZn42wXWPyfX88/A8MpwG7AcSOymXOW4lcLQzZj14blSq1nl8WYK9WOU/ruU9Aua10pzwWYYPwHx7dG3jkQ79aOdn9R27vzalAcx4IUXOjRb2/KQszu1GM14WBfVg/F44zs9eC5Jb61Jexs33Qel1EAAqEuF8d96WSagXgwar8zQD10gndrElGRYrGqTev7ImdH+2plP5Mm1PE2A6M0TnVbjyMpdbKehGvBfd1bflpdE2G12MZe7vQYvs/UX8y/N3UhrH+aKRzi8QdQOjiRuHxyBU1+aGoFXQz2X0nnViI8z/nnvHFucw0gtkZpPRPm/y/LjhBRP5xz73J69+9Stfix/6c/9r/B//r/8DAMBP/Pgz/soP/a/wq3/rZ8PYjo4aCutQpHvP7UkFNxsFNGrV70khGgQY3opJ8ZPLmzQIzCDhMyglrRkucrkMfK3RGRynQfPumO05LtXcc8WzmLdEx1kXT3q5XHB5emPK/3M9nN+3NLrEPENGT5Rhxl+WKFPdUwKOOhj/7AySEWEelZF+d07GDSS6aNWNiL49Q7SjRYCIgXN7fmvemh4LEAjas638glb3Fg2teeDo2vG8uTHGdbpXCf4w4L1Rcsu4eSERL6P3w+H3rwXYtL3632cBXrmWc6c+VPtuvH+fg4MVlPptr87rlIe2jvlqD68O0XaoYdSk8ZP34YznTRQNPbZQ+RY1vswzFPJJMZ+3UL0e0J5tq6/rHchHQ/kHMM7p2GNfPKJnmXUfuyaVoAeoW1Q4vG0ljaK1sVVpM+WV6ZFd98tD6uPA+3S2BKQ4R34pXrqyDYb6mMANB+dE/gf18zhZfsPY5nUxnW8zK8cVcqYr+WerqdQvmtHmaTnylzidtMo7+tnw6oiIGWVmaJDnyc/xqNU/afC2SNo8AIBv5fHXbDBwUzg//R4g1QwgsILeNfjTe5oizbe/kGdN4dvnstwmgjfGU7/PxmFvoFV6H1o1XIZD4615V7Leeq43Et6J77H0q7qTLNXR8Tb9GvzZn/7f4X/2A/9nXN58Dj/xY1/Bf/23u+noNv5jC6PhtW1I2rc8xA6Mw/PbcxoE5mWRywVx8aR1Lt+CppudN1Hz3AT1CkXencIelH1V87yJPj9DN1fUyaDy/EJlEu44JwNQIATk9jf37Kh7Py5jK5qkkZHkDH8q3OiQhubbtrbnwFWX5twAExpwaTSp5nkaoXL683MYLqNKJhlVR5Q7bxvVKMvvEnJOo/fo4WHg+Hck3xC9wMpqT4C4QXnBSvizjBX6UsQQ/eBnvGNjBWSDrd9jKmd6fq90mKXKvVBw++rOQSJdUrqm5IRH4YF54ISPDT4h8+2T7gguUF3ZTEhhlkZMRjarz9OzouVvKHT/f/b+PGbXLbsLxH5rP+/3nTtUXVcZV5XHLsoUkxvTmCFQpul2d2hXlArpDG1FaoVRSDFBagURhiQ0GJCRIEIIyZEQDcH8QRpZabUYTBKMMdBuHJuADXhoG+Ohyq657PKt4Z7zve+zV/7Ya9x7P+/wDfecW3X2vd95n2c/ex7WXr+91l7b1c8ItZ2nMeCTz+aU7jcaGFDdXyPOJ+mPM6q22FiNCVskuWcenb2nlGJsvhloyS0S/CIIwvkjYFg4gj50H8Z+CenQcBHJiO4RxvwdGEhf6Y4iAQt8zWD2axuqoL14VscOK1s52m32ulyX0nTQXVJQQQY1cquoWpSmDbhqG+AgMrVjAANqjGDlxvivoXOzljwM6IAUsLJJSWJ7RrWz9A0tvwLYAWQt22huO7e7qmbGvmPAzsN4W7uUR40BFAFyM5CvBiC0fZSfi+XwOSx1T5IhnoCRPGLazjI23GSEW1mPT+Bz2Atj4Lt4PYPnTCmfZNRSIpeULcXxNmpgo2Ct13j0plfwv/6//Hk8evmt+Ft/5v+If/t9/zipdZmaVm2/0aqXSmJKaSajEyFkBu/3Mub0kLyMk3VtbbQ0CUuxczU+eSKwb7MusJkiVTGmsBQ/H0I0NIYCg7LbtfDpPIpuCgD1cEA9tDLTskPZXYmUQ0GdUAVebUNA79RZ1TCAtEu8jLMVXKQ5AvLsTEychzaRwwzu7wQSPw1vIPSwb6DSaGQYVGpgAWTti9JU0HTcN/U/ht390y1qqiKn52panzag5pJ3X0Pj/M/ghZNfeqS8Ir4eLrZszNlpkgPDcxzbgX75C1Xx9YDy+yydIV2n8SfdUNxIdPr21ff++6x0cSU4O/NnzN3f+GLhI+7r72nrHbxe7tbApmeRL/m7NI2t/O/qPP0Zay5hOoIZrUslyQrB1NKgLG13oN2NBsClNgRQL7mJ6cZ00Pz7K9MubZMR6ExSkUBJIgMSxpgy4WSXOOTW9LQN8CQiHAjzxXSgPzPVmFGtUQlqGnbYNizeygDqLr0yzK29yRjzVm9fRPXcTDzXwbDmEKZcwIyVTU0Sw9KJZp8jVIiLXixsZqu1Xl5eYzZytHC2R6U/zph7S7bE1GxyVG/TVilFjSO4xTHLh9oZlnEAOpCz1KL0jJWddKlOsbrksRnnI8HHmrZa5DXdnLSmko0CsES80bIxTO1GwwcD1Jav9lPfxlvOvk3HN3X5bKc5hggz2Lv+Htw8p9nzqfgsqln1cMB6uMEr7/gSvPf3/59x9cIL+Id/+c/hX3/H32rhgnUxKguiOli08FdrbZsVpo6FrvKqiiXzQOenSDgUCDRJ0CLWtnzOMcglMHrQXw0HcO5AZ86R1MGMpipx0TFK4fwJs6XPYqAgS7BkPIoZ5GglTFXebGQqmLM2CVypzTMpTxUzz6pCJnXSDSAtm54nAiGc75E0liWd97EzHjJfuYZ3kyKw1YO0LYJhCAWQrZkDfVAjEVIXa4VAFij62Y9N+pGHODFPbJ2e0LG43gyfJ+lOw01DjS6upbOSbPmP384rRR/m9YN857t7I3H37s5t4+fu9XRnAxvChFC8Tq7Pm474n/M3Sz/nlcGN33UDBBY9ETqScBGAUEivGKjxMPGCz6TC1sWN5ZoRcw9nbCI4kboYwp3v/EtiRlBzWN8FAhDMPmcgk2utvAB3khrNNxZkIKRp1+j0HkMeD8JA62HWrvw9o0ZwqcAwDmyhG9Wh8u3YmrabX3ZQEBZD8sK0fNtLuCFC2pWnC1uUEnBMwyrpyk3UxWOMC7aeF1IgR6EVvUSSKsc3bYNg2jr460dOdQ2fkFVAPH0xex2YyWgAgOHngRwqIYxb4ySdv5SwBojgY7yQt0uri8bXumQ6MCz/k3HzUGzBjPZ5lspQwit9jBHbdHP2qM+xnyftoYsn84ZKO/RfDyve/q5fhv/wd/8BXL/0Mr7vv/lr+IG/920AxBpaUOmiOMihc1FBoEoQYl/LlyDKTD0XxwZgYfTumbwro9bJavI3tTEjCsXv02E2oGS5qIRHy6UFUcbZCALQJEMIfYfE2baD9ipdlPpqVGYzn2yAhfu6Cl2oMe026KMU0U3Wezt2E8zpnkm90E2wqp0PtWoWahq71Whre3HA08KoyitAVLI6N0Ib6tqphQ3rYnLBsumd3S0YoBkPErbSLNwWoLFv3bo5nbE88efsn9ZBPp7vVll4lsGwwsY6zkob/bbD8zT87P0h3WaLd2GAWw2SiXt+xuZ2bnc6yP27++ny+3VObPxd2RtSLqkfs6xMmk5HYQ2VuLKfXQCAwowqSRU0hlZvka+kCw1ZXABgIuMZWDIi0rQJfE+TWmvhdfH2IJXOyMJi/J8w/I3plLYKjKQ3V2y8Pl9t3+P1GPonLuzwtrcfzuQxxo511LIes9UfeRBV/XAmuct/IMTOmIHZ72nRMMrI93n2IIRCu4d0VS0uMVWhltyFRwB76m/gCE2SGHm4VkcNrMxNLpNt2sZ8ydNv6fpv7g9lqgJ/xDkfTTXXI/RBSK35Uyizz1HYjGmFXqhgj3hnCntCSd3RCzKXjsxVI0eP2aI+j9WP90lJpjRrFue+3BZr4t+6L3LYvpRF5jjhXb/uNwMg/PO//f/AP/9bfwNl2eFXv/d/JX1QkQd6z6WKtAEAR1qJGMypNjTNLpT2dyy9ggbbEGLJQ6RI1KXSwExpKm9FaTZMAtOsbPrFokOrieQGDLfKZqhH0pd6grmd/wl19nuxZNSLiljc1jAASIR2L5lIY+WyUbtXiINKWxBZsKmMSV+o9KgsLR8jrmz966porcxkJlRG+mg+dk+PtJOYnGargzSNdxcmj0cll/0nmr7085HHsLMEMtMwdXedkyfjc/o5M+LrxYmdrv2RprvnMhyr821Ayf0CmefuftznB3zrXGSSMlvkqmP5/I3uljHirlEyEU3BTyImgwIWJvwGfz2DY5d7yvqi+W8xWqOLbOtM0aVLInEruuj72hRTtO/hWRnfzFxiAArM3pJ2jNwDO58xEOg5w7ddoVg6/7RFftICy7EuLOXqzTsHoAJ0eIxTPmmcGQAa61ICg0bhg7Ut57pEdQkKmUxVm+S7LxwuedQzPyoV6csFBXEaP4wJyzGUNbZjDBO/aXEzuAkROVilo+Td5kkYOqrKp6qC6NLseQ8vgzOwDLWilmfLwMhOinua45HaP8iKbbMvjAelYbddZo/FPF4JnmwMGD5ZFpRFlppa8Sv+g/fiN/wvfwd219f4nr/5l/Gj3/33JTyniDYXWA7EmxQhhguTIaRh7aEqaB0ab8mGyzg7lG7mm9XCl6q2qV+0Whbut7Ft9TBZ7KyMDupYHj2bEsCP1UattVFQW1XwFfORNjLT82mXABbG6hnBUQQ/s65XiZS0SVxdvJ1bWzLQDBTAjY1k3a5QP9bzeBJP+ir2r4WrYX0w7QnZiOjP2lg+svbKX3TPDguaFt9N50Mjz88w5c9y3qphPN6SNvUqe8N6d6HL2xFjwdzf37ZX9Ydyx2rZz4z7Oc1Sme797/PBna+K9jnaHnFT0NlLZV4RfCLD0CZUNCqgRLbFmwCZLb9gUKBIXD/Hw1YOZ7QCy39GnxyjW5FHaO9xz3WcwMy5BA5WgHbOhuAljyw0ht/74vXiWh3bk5UJgbefl3ssT6PzupsvHqH+kWSppa4CaiooKTUpVwi/VV9lzqPVtvhN/2n9pBIK7gBYADOSqanjwfgAK40tBeT9pJbLiNzUskumCLLfbu1jAAOj5MqYH/Y2ozRmvKjo/SiGyyOxbyIKYeI5IuZgtCCVIcxnY8Y61U5ru5mT+p0YvbP4kRWh4ctl7MBdGYjj7ljZz52znCKpgYAqg1bvF/rlv+Xr8bX/+e9DWRb8/W/50/jgj/xLOKMuo80ARJVODWnLxNZxwECyUubnP5oqnEo0bCAFNTEHuZzTLouYb4anZxUT6YVJMsKcIznvw362pw1GNygQJbgmfSK3Rcgks0YB1XroAFrx8OvkXBIrSPCym7RHDudbj8bdCS2ngZkqbctuFrvr7jThRZJV9LxT3PVSBBKBGjNKWVLb6iWsBiK5JpW2NGdx2VygOIH0wqe41trfZINga+Kp/4TPPnetGzeNjoSFN3n276gD5zhvZHd++RnzVj+Hal5CWSOQiRS+S+65eyruMonNs9hR0zKdQ062JCCukuLnXiJb6KAE4HAjOs//yM/VuPUzeUdgyBGJqcbzchpkoDiVLmOw4pznzrsPZs+ddZXMVDtxTeubXvAVw4VWHPMhT2tYrHj4688vpbNH4s+Hw1DG0oXpjTDEe1gcD5CFV+mGApFQXAMIem7D74bp69PX3Z+jHaV4gN9NJntrGgjr6mRAw55zWGOt2Zl9BhK4CvaNmvlliV2omYPWMF6+lnLcQNfiHljNTWwrJNqGefcc141+d1ABTLxzSMsIQqpzHzYC9AXA1aKMmPdIP56sHwdOP9doZIfowejmvQOcGbd0cc7uX/R+Fzm0XlnVs9rfu3/Tf4T3/hf/JZ586iP4r//o78arH/vQkG4bo8G0cPXzT3VdsR72TpQomoeuruJFBWXZ2VkUEMmFkBAJA9mY0D8D9ovERWubON/tsk5VjwP8/pl4J46YjNYaqboW12qgxHn/YmBp3d9ks8hSBt/Cl7bQORwMMZg0xIAiWZto+UgAhRkoCJWzCzgtW5dagR1AGrUhcqmcJiKTxS4olfKzAE7/oxZGa0Ro4KgsZsCBWKUvXox+XiZro93wVFr37LntueRczCTMFNTMv3PvH3iAswFDDByeIyZWl6jfpGod/Ep+3L1r6jOJ3LjiPS3H4cnXurOR6nN37+5sYBN3rBKT372rm/mNcZDCT9Ol0S+lzVt5HXfD5LPdG/3uszir+0QAEsrWAQ4lpKaORoAb3ItSmkCIyfPVHXG/eiCou1m+l7kID2bfEMxI9nQs5+hhGlMQIVkXNoo+ub1ngt2Vgy+p2ZyxJ/mngGyAV9a7d/o0KIGIqNakFr0WoartYsecczQTrCaWY+l8LzfzwYQRaEU+oZW3q58Br/irSapqR1waRhdVsGCpQJiZvKAYIOxWr1iCVD6kYC2ujInqpcxAQ9szpe0LYo8jesNLRDFWS7+ADKT2i6ems5QsHerBsbMKcRFFoDdj+ca4EmFzQHuHH4MKms85YS4Jf46bF91n8DgDIW3UOmdZFhz2e2OiSQe6SAXe/JYdvvrffysOTz6D/+r3/lbcfPbVljqjWTFUyUZt5z3K7sqZqbqi7HYG+incrUIElGVp50HkbhluHLMz14CAi9XLBPkN97GwnrEhqa+WS6y0NUBf7L1vczXtjGgkQSQibn1NpC9quIAAIrkglIrf5WK7P2QFMmmGlNNMLIv0RAkLLW5KW6VRJi2SSekbH7VJjeSeHDC38NIPtCyIwISZUWUzqVmgLAaM/O6edllulnyxWaKLUp8IhorcZzQHJqpqdmLVCHzEjJ+YJn16oo/hI3e+mfbIkJ8LuvpaJso1WeCn8/N1djOgealL6tjHc8ORHr0HFxt4e429L0izotz73+eDu7iWp4bLJUMqMvlzx3aQ+NzyzHfzeTMvCr+NoZoxy0HCEvJRoprBjKuUDedpCIh31sRzNX0YBzVz4KQF6Xeupi1zhO6PCnY5uAIeTi3hS4Mx7rZekccxppWGdL0ADpBSmSn2SfdsbRq/dyW7usIqu4yRsEYQ4hKYwNTLAgwBNH27LkH1LC+TY93iPeBAO8thkg4JvMoucGWX4Fl8kQBpws5K5tziWqp9Mc6L8B16Z4+z7FHKouVjNDPOq+i4s7UbhDn0vBaiAcOmF4ZcljoWzKEWS5vkEan5ajkV4DTezdujRDgRmQsSYx3CWGkdrhJgzRe5QspEKcHc5korIk3YpmUe85Ildza3Z+89HZt9P7nkawOfUaZ5Xl53vZSyrit2V1eNgS5FmF8FAIS3fsWvw2/+vX8TX/WeF3Dz2RV/5Rt/PerhRqQLq0kdWBnrww30vpay7IRZXg00xLtbdPSQ3AOjFsT0gk1wm+9lKSGMlN8AkNRU1eLEhDUEzNR1NakKEzUwpZRI1KjiAXj9ZTRJRpXytD+naVFvYF0Pzvgb+DkAVdKWy0gZTXUMjABYYP3AazUwxSIhAdDit8ZAknTWdrHpun9ivcvWfoHWEqFQQTx7pGDL+k1TqKsApGaGux72DuY0jEj0TGeBt1nFqWQGYZ24LVN9T3zxGZCrhevAiL3OzkTYxwsKyU7s5+vwxDMuNTMiY3MIvvkbhvrQN324Sf+kMDHotBNnhXsId6wXM/dCfWWeu6fi7t8qmg74yG3dd9oP7GIVMMmSEG3PILzlnXD1ZxKLaJKmMlIAiXU0Nn9ldCP7oxbUWBYRtfg1LdwtXKxrrGVkLGPTnztdT4U/O70L6mh9V3xhTGUnYcbJpR3GzGxk2/sHW0GWfp9PJLn67qC1PVcAO+nzFoZTvxsgkgSUqWe4Gt2sDVM5OIMXLUsDUoRFxmIBoYJRoRIPbSdPJz5XdPfFyDe1gaTgCYjmtAnL5FLcWGZf4Gn+bQBPWfJSCDjUOliaS4YGpLwrM/YB0PSMf0k920OS+yBErxNBu2fXt7s7byEqcv5s2aEysJNLKF/90E/jUx/6yZZOuKfla97357Hf/x/wo9+7x7f8b78av+2/+At44eoRsOxaPrJJsZQFXFdUYfZLcanBuq7AemitGvpfGfGyu8Z68xgAsFxdtXRXtSZG4HpAKQuYCqiuKFfXWB9/FuXq2rgtS2tZsB4OTRKjEr/lCuvNY5RFDfYDCGp0BFEXU9ABQKUdqnrFXFEPB1N/U6mFST3WteUJUfGqbHd20dU1eN2DqKDePAGJdIuomZ4mtP5AKeDDDZiBsts1q2QiwVET2MztUmmURSRABVj3rV11PmtataKptu0AXgEQ6mGP3YsvyRklmbgU5pMCI7U6VxarZwy3Wwp2O8LV7lPAtTXZw2j5zKbjxuJ06cy9Nwumd0ziDasd9cwU/PWl2fd94P/zxXjA2cDGaI0yASfelXmwl8SBha0DhDCaDvv7NO2j+Z9bo5BnWKTbosggjoSoAyqQZV0orFWTgMIEFpO5DcBUFJRm5pnlzILGkboa08Vs6k4OrljMPIcyyOIi3reeZzlaSMgYyABuUn96V7hZTrZuo9ggHTiytBA8JiVKUodjK9mEQyYAvN8Lc+5Ma+SZ/Y6E+Q46x0oKKI3Wy1oY7t5zHjHdAqBSHmdABkmJp+/AFqGNKVWL80sv9R0iBSRU5ZlAoGi+WfOR6VipRVTQnHFDG7B2RzhlgKSAiCBSJ5FwtXMsLcMqZR1MUlDXvwgZIPuvlbGQs8x6l4/dowGdq9GkNGGVNnfSI1JS0t10kfBQMf1+a3EBX2zSWxZyFeWbt514k3a+hXuY5fWSsnQoU/xYkxFpR10PAFfwYY/y6BHqk8/g8OQ11HUVacmCdX+D+uQxfvV//CfwiQ/9cXz8AxXf+9/+Sfzq3/w78NIXfnlj/g97cD1A77yh3TXWx58BqGC5vsa6NjXfZpqZGgNem+nlZSmtDFRM4sMcmGo05n897LG7fiSSnQOqgIb1sAeoSYga+Ghne8pyJYDg0ADCWsHrvs3F3a6Vg10S0cpVxLKflEkZfpFg6djcXV2B1307U1TXpo62uxbVMj/7UuuKZXeFsuywfvoAQgNwXCtw87gBEr0npxQwE2gpwHpArRW7qyuTwJbdFSBSJEDV5IoBqaZutwoIYQGDcoZOAA4tOyzXL4CIcPPpV1HXA9R4BC07LLurRk8PeyzLAi4LiJu0S8/TcK1AIbxQCG+7BvDCE/ylq59o+TgevGAYzzdTpsP9DCBD3e8wDyeTcw5qhD5uTeQhjRyXzwrn+bxh3LSpHgrN3sZpB6dVQ77E80DPSnk//9xTucfGOeDer3O3mY+bXKp/I+5Z0kykaPgVSKPMjalWta/URTbzuQJaWBZbXfCJyKQwrTztUwnMojORKqHJ+/mZKfSfc+d+0ssF5N4RzQWBIWwMrqbdwFRWx+qJvu6sp2ZJfFC3JMx4pFTJngvO4R0k+fLxf//FP4Hf/fKLePOnPw2s+yGqnocpgWASFUtBGQxlN5QhVmlAZet97xMiLIXw5HBwECQ7stB2CciPGVgIBgYWasa+96sfbI5TxSR7hewQNYFEotOgiZ4vWUUSsVuKqJKxME/98qzqkcDBwIKABBZJobSTHagm94vprLVaV5J3iqVtanxMWGuVg9uwtlCJC4W2vl4WA5kRHvn2gpyDKoS1CuAhn09FyqxjWTcWPr0/NIDGFRViWS2Mz14l1XNVQDx8PurODz72z6Vp3n453ZqIR2KkzAZC2FSk1toY38Me6+HQpCYMYLnCoR7AhwOwLChU8O9/w/8J3/Pf/l/xgR/+JJbyN/FLf93/DF/wi97VmGpawMJA87oXYMJY93sAbEw26/0xUpZauUlXSmm0vzZmm/cHKIPIDFApWG8e+/inxaQpYEbdP0EFgcquSSeEsW9Ap6lcNQkSTLLDAl4a2Gj5rQyA93J5aZtwtCymMlaWBXV/E8Y8A6WgHm5coqJqd0TgmxugHLDsrlHXPVDXVl8d03ovjKiEFV7Ahz2wXGH/+DXsXmiSlfXJa006U9xYgjQMuK5YX/s0lkcvNCB39aiBHFK6CSxXj0QCtIKpNFADBsoOWCtAYkSBCooAyLK7anWV8VLlbNMrpeCnX/45fNdLnwCIsRJP59ywpKSxPAn3OrtN8LPhtkrdS7LPBzXuebQMugyGQNONzL5CF4DDo24jHat32ECO68DpwtyH2043a+rcv6soqPd4LuY+03qW3eXAZmsszcZW9Ds15mjjeZaGTkD1i+9nupwFD19UAqG7wZQycKYycvUsXL1KXVTy0yxLASr2UCa/MESSwwHUyJkQLU1HaIad7liPNLtyg5wz8bRO6WyBtIn6KaOt/gr2TKJEbGloosrktupzyMvznJGrY/Rqqw3U/7O7Fa/9mt+I8oM/Av6Zn0B97dMgyFkQwMEGmsRBVahmWTPQVD5ImH8oOEJgxBuDUoiwX6v1IVFBFb13P0AP6+urpaDWirUyijD61UCDgx4FHJUrFgEuCxUBWHr+xMGql0nOEsHNSvcMAqGd/1HAqgApGkIosqtsev7G8HiYpVA718QOPXTsK7jYlYJaGYeqIAZBYinFFwkZKKiDhamm4bQdyOZda8tKZNIrHxOMVcRPhYA9AyvE4pK2Xwgf1d40vgO2OEJOuE2aNMqDLe8u3ImEHtTF8uRSHnEq7SYChMHldcV+/xi8NvUtHWdUK2i3oO73ADEevfBm/Pr/6f8e3/U3/jI+8CMfQ1n+CX7xrzrgC9727nZG5+YJqK6otaLsmjpZPexNHauUIpKiKpfBMuraJAlYV6yHG5TrF6x8LHOllAaA1/WA3dU19o9fw7K7Ai1LY9DLIkCnNmCEAkY4F7Mj8HrAys2SFwNNKoUmQWkqbzK3lwXrvp2RKSIV4fUA3fRiuIWzUkoDGnouSMdoaZdf2iWaImVC2aEeDqDlSqzSVTuI34BUEWDxAtpmXRv5XPwyTQUfRE3yVQ97oFYsL74sYI0NpJn0S8q9riuW3TXWw00weACUq0dtVVjXBnC4zb162KNJfprkCZXx9hev8CMvfww/9ujn8bg0ww/9ebb2MM4Nh7Py3g/gjTEe45zyO+mOgo2cSr8ROc7/24AiSmnP0jxWhlP+D+5m6/2pStybOzZYxgKkLfIzxtpz9/q4pyOxuRPVuEN+8d049J6Fb86+EANBQtP8AmDgnpwICKAGikAVYNmZCzveYE3PLcYoTlMmK8CnThIb/I2Qn9OAIQynnzQh476+ctRxB9QBSQYmkTWjyNxMAE0qkYLIVLtTtZgAoeQY/+Bdn8byhW/Br/mXX4l3/OjPAK9+wiUtxjy3hq1wBnxISbxWKZhd6EjAoQKqUEbUQNIqi38BofLBhosx7mBT7VtrRWXGnit2tTFaKknS9q3sRgeaYjyJIYLVvgNudjm6Qk2dq4YR0rBHv9yyX8chA66uFUspzdyzLpKpLitWbmGIW1usIp1cBKQdqoA42T3eryv2lc1aGpixsmJ+NwCg/bQrDbyVIrIz9rJUgkmmmoqeAkoBTxCmldQKG/tGQVgpVerjbRJtDcWZ4KO9H6TzEyds4U6N6RgrhvNpORLLrXV+Fn8rzCleYTbLfNtCNzYQ/rEvIm2uWK6usdaK9clr1q9mEpk5mHAmgCte/oIvxm/4n3wDDvsVL77pEV5801uAegBjaaUoi6lC8rr3TYm6oorREhZUzSJVQK1Y12adTU0vM0MspjHKshOrak0SU4gaSLbaQMaMSGDXA1CuwFyxXF1hv79BWUTNSqQuZbeDGljBugctVwCv6fxPs5ZGBmzsLAzBJDgAmmWy1NZiqU03NuQskvYN1wOYriQTkrKLWtpawWJ4oVAR4wSyekk4v7RUzuEUkQ5Vkb41QtjiCIDhdUW5etSA1OGAct1U56pIspphA7LzNO0sUXvWsz5f8uIVfuhNH8NPXH9SQE0nqZkxvbO5dyLO7d1Dc640n5SBZ4naFufw+pfjgZE6aPa6br1ejPtxyXjfF08RVTxQlisT1ns8F3OfaT3L7vbAZgYWToU5kdx0Ap6T7i37qmfQm/OF2Xkgl960EJG5pw4oecoR6KjqmTJZCiBUxGomSxWwKDPICpIC6BH/vvJxV2MOI85wgVj2omhd3L3N2MLHc0IqLYg70V7arO4mTRBUl7pRQP1rz5DPHQH4wEufAV4qqPQW/HvXO3zZjz4Cf/yDAHRnV8+fSD+ENSXi3h6YwOoeWbz2XoNPDW0BqCqZw1ZALI6J/2oSO3KpRV/PgHC9nwKjq8CNHATomS0iN0IRx4mWq4Fv7et2tisaNgB8zLbzPs6GK8DiUMQGGLQZG6hgK4wvlDZG2HipUH62tPt6gyGSqyYh1V33BjA939hvOvfavKsoVNIY2hpfvpYHxn1GsWSunnanrKNxF2oDOE1L/bBunlegNdpYAooV4Kz7J6h1FXWw1caCMu9kl3Hu8fZ/55daunV/g3Vdzeywb0ZQU4NS8ZqqaGnPM+S8xgIl0405X23uqinndpbl4LSsNNW3WttZoComo7VyDEI7KM8SprQxyE0ljksDCCo1Za6g9QDaiYW4ZdcsrCnAk7RJ3lnLCkBVtEgsroGbqmq7hJjMoltdV1NpYyoAtTYjvaOJYZbbdHOm1tXABde1GQsousY14mcbMrrzwbWpl8mGBlQ9Ti2cSR/VWkPe1UAYS5uqQYT1cMCjqyu8/UXCv3n5E/i3jz6JT1NTL1TauyUpHebQsF6cw+72c23L70y3ycycdlMpyYZfhh0n0jia1zaNeWO72wCdY2H7bzJGHgxEP3e3da+bxGba3xuD4A504WT+W3P51NQ2Rh7OljqjI9wMkwh32nNbf9mYdmIOsX2hVSCj3yJ4iVbQlDmFrO1x4yRLGij8i2BgIISJXHzXJOpUTSOBE/b+Sd+0HRNQgcdTSMNj1sos6zkfpLY+00V8mTPG+7+4oOzeCrq+xpf8UAE+9kFUYWjUzLKCij56PBvUN2GUvAABBGi/aTgDEV3tmLHC+3FlP++ywvtUpQ4qzSE0lThTteoAmcar7HktwqD45aKuMsh9h0lC6XyQeJvhCymXbo83VTcdE35uwcCdSGZUVXNlX5l1LGs+NZRHwVK1vvAyKeNnl3Ry+6u1SllkWiKOI3Lwh8Z4lUJYMJrn7n+Tm1h3u3xNO5eLORVmGFlWmvPo2sRTIs2+T/0cb4ccqR22F8BS93swr0lioiaL67ramasGaA+el4wHBuweGD8/sgAs0g4bUjJ29M4VlTQ0O19imcyomIAYoB5auVZu46KpiO0bXTfT8cU2ElBXGeMVVK5c4mvToto8gtxJo41lZylVIrPo2ZwqOxGLVl7aRCT/XP18XRFVMjnUD8iZH23/9QBedq1ddE6RXC7AVegGSXllAyDuhHBtoIWrPC82B1sflDzoi6vG0aJnbUQ6q5sUlj6BdiIdqyve8ajgwy9/Ev/6+hN4jVT9LA9HKe3ojvARRz5f4OKcGlO7D37lPErgZy43A5+q7NGCblOLRENvgxfuw/U8m9EcLd2xAvWFPlaJY2Hv2tOXuedW0W7nzreKdssMLhkGt2USLhmy55ThnDI70PEFsuGbKKvIDIcfviaXgCiQ0XQNyMjiakyyhGM3qVvg0oCiO2sKrKDcbqQC50/R4yJgwFOm4cnW4wDCImVkzgYXWNADhRa1Fh547jnx9UXMGfEoTfipL1px+FWv4Ndf/XK8/QeAw8c/grK2A7pUyBZ1ptCEIScDBRwO8LPx0mC4qeTKjB01psOARJDesDAaudaal96rE+vHwow0/0pkoEUlgFZfEy+18i4QKQ0pSMi5AXIWRRkyBKkitzTj2RyWnXIdg1UaoRk6ELDE46k1qw43KZUzRwGVkR6shhkEsLSUQQzlV9C0X6sYD5CzUjYHSeqtfdoe0l0DAhBJ6kc+kFpOMhgyk9SPvW6wnHDzqbXFVBydpedleGZ5elyST9uNVLXPnezPmfGyuwZKwbp/3CQi3C5ybGdE0FSWrq48BV5ByxXq/nHrriKmisM4aQf6xTKX3lsTJCosTHmjHQJm1kPr5bU2a2fKNJOaN5a+JrkTphDABxm3ehdNuFsl3NMCUDOzvGtmoaOUrancycBalnYeaHfVfkkvnXTGrAE/Bu0WkXDKeZdS2rwQa3J6P0xZCohbuejqCrx/jHJ1LYYC2MBXG8sFpQD14MbaqTTJShM3NXhvtESkT2W3w7oesCxXYDTpVKOVUu4qKqBytqhQQdktWG9Wo/0s3Zs2ipixK8BbX7rCzZs/i3989UHshZqO6083zk8M/XGObXEJWwmexz0MReDen4aAF81YS+8U0z7mc3EmXR7jZsmz7LY4mzshveSIsvT/HB7puXs67sElNq9H3/d5HMtzXKZH2YCDEg0rrLYR5BguTiVnp12ULwub+imoCQWJO9bEM4lNUFGjzEAUdla+8Yo5YVuvAWPadaEzFaYJTbicxEvtRWqV8JUWgnVlQ6LF2gYxWMw3SYPOLNNs3fuZt9xg/9WP8D9+4TfgpX/2L1E/+gEshxvZ/Q0SG/YRoe29wqUVBNt0dEaaXCqikhWwGARglTj45ZDa9qYTL3+lewaJjr5YNosmpzWcbbCqeEICKMgCmoWxOPYjACE48FKjAYZDJH6TJDlYYwA3a7VzSiRnhXLfNIZOwVQDRW0+FO1LR+MtTK1m0hqs52fsxhwo1qgalSt2JYM+Swss54maYQOm0qyxhTGiDdakPP2MH8fZpUv8VjrbjNcljodnSrWa57eVU6RbW2zf1m9MPYMbRtntsH9yaFIFKoAwwGoKuYoFr7U209B5hMOkH7aDL3euNElJ+17QrJ+p2WGwWNyqLGaT5RJPUYmy3hfCw9z6vxCBl6sm7agisSACkQKptZNMEUTmi8IruJR29oQd+FQ5aF+AZgFMLhhtZ8dKM2qAVVTKWhvyehAAobhoMQkQU2nSrVqbYQS/9lcO7wOq/MySB5Es9WJgoE2kJk0j0nNsi1mAA6TugEhtWKRC0m9iAEI6JIiam6lmVZsjlHbOkIN0iStAwK4A9dEN3vrWR/ivdj8mxlUmoIbOeN726txt5pmnuhn7zGTnwWj+4eyiRqXUk0HPSF8pQU/Pz83kYV3inQDhMeTbAMP6SnpLaS2H9DtAp3lYfub58I65oPL9WTLje0zrWXb3AGzOnlLPrLOBixG0zJ0vjKZuJsSFBDnoRWZx8uhU8gs6nddvXwJ4YWcQVKVGfzUtIme0NQc9sSFco1VOjRO0MpItoD6NvTGO1z18s4dwiBg8xI+qZgpitPJRkhWRo6lJIDJJGBe9eclaPBI2LWCpj7z0BN/+Kxn/2Qv/AW7++ffgxZ/6t1jqihvWMyOeCgM41HaG4yB3WuwI2FdX29DwqrPe8g0XrYq1MU2PQNhJp+mB9mhxbK3tzIsejtZ01brYDi3/CFL07JbuHuv9SU2awXKQnxIw01oqeDowY2HGQUBLu+iyjd14d87KfoHnjgj7WrGUBQdexXQ2wtmg2vgcyJkm9ja+0wABAABJREFUmQkKBmMdGOGsBamFtdZGi/BVas5Zx4pKKdVgw0LNjPSuFAM+Reqy2nxwQ+sN3DWGlsJOu7ZP0UEHyMQ7baJjBmS2wM056Wj73Kc7Nr/tW8c88CxMWPhZaACxmdLAsrtC5Qre77H/7KeaFFDNIOvt9WVp50JYpI9rOyOz3jwRE9AEsMQR1M91j6IWtwDofTB13TfphVr0EmtstCwAlXCh5gFrbaplpbKYOCbUw5Mm9VhX7K6umzU36L0zzWBHs27GDehQAcs5Gx059bCChHGnskPZLVDJiZ7TqYdmfp52V00FeXcNVQ9zQtoA4eHJa+18Um1SKrX+xrLGkKbHDFquQFePsO5vQHUFrq5BZddoAdfWDnK2h5Yro70AZAOmqj0AUzOtB5FalaXd3bO7akBILjZtBheKGQRgPgBM2L/2Wosv53ZYTEiqNbfdUlBePOA7ftFP4Tt1XHUTpC1dka5uDFpcNrcsQpoEvqbfxYXSJo+t+cYT1aAZq+3hex+NEan6bd0bl5eb4t0AeMbwo1aBO+4DP3dvMHcLYHObwR/jHNtLvKvb2mcc80kLuDCpfTgDAl3qGcwEFTObLmpFp2PGVW1BIQyJyWfJQwl5YbRDngqWuKlLKdhRFTTqVbp0oVJgMJEUaeC8K7FFJn3f5lQvqbQFQd2uFcqto5E2hjDPTFGdLrdeCzqhSlaYPJaOgh4FVPL6C9c3+Ku//KdRftmX4vf8N2/Ckx/5F41B4FxXZba0lZgZewEjzWw0Wbh+hC/kBgBM0sJA1QszRaKjfV9FIkPChKsJak1QLwi9qV5G0vbgdn6l+bFJXFjGzcqukkZSGzuXAgACBvSM0Frb2Z8l6Gbt1zYSChH2XFEkcmXg5nCwPinWLcL0CrO71irMk0LvbISC2S/PXBlYGFhFIlQPa5AuKqfgbQf4zfaNB22nKdSyXBWRVgGwlzMIVwQ8YUYhBqBxm4qOS2s7oDz5m7AyOnqSZzpXdzTe6GbAonfcPdE0p+003S+kbv04X/YjfVSg40YVms9SFqxcUQ8rDodmwYyWpUkBamO464FRdgsOTx43UFKWxqTLnShQIL82s8XYXTX1KRJzwQzw4QZUduDDoQGl0sw0t4PqC0rZYXctFtF0XIt58MP+ppVdwC0z4yB346AUO6ujUkFURlmEaSegUEt3/+QxSlnECloFLUHCW2tj/ssC8Iqy7Nq4L0sDIYmGMEBXrQxlaZbGDnuoep2c7m80dVkAqq3utaIebtqFpI9ehm4ZtHM0ZICS1hVcrlqbinU08CoSmbVZhqN2EalezkkJUBUsSzHaxrW2jbeliMEItLNVICw7NWagbQ68tCzYvWmPv/MFP+ljz4hZNyDj42QhOo97COmqasCFCGBzDp2RzrmgJpDNkMOUNbFgM2B0q8IMueqLn2mMvMYY8Cm4Wf6RsClP0Jf3zL43NuNYfg/sVhDWe8z4PtN6lt0Fcql+NHDnF99P72zO0z/2F9PNfkdIx4kyjy7p2WN7H8TUIrpwylzqXyy3x9Fv8ieXjzkjr/Vst2m39YBNw7s9M5p53JZWIfZvJIwXaTkkTdL4XicNd26HeQs6azcNwwgtoLWNv7kUGsf90JAPe16uKqYB+vxpKJX1RdenJMn/1f/sFdBv/I8BuRND+BY3scyN0SewVYzQVLvWynb5pbbrYa3OfEPOv3C0fqZjrNV5kcvzolTqighXRGkN5soi3fF6rGAcoOWUOkqTVVHH0aLsmUXiotKLFmcVoLSX+u4rt7t1xM/WBPJS6uH/1cxek0l19pVx4NYGCsRBDmKqtO9e2u5QXTVvtTZjPBZQY4BZW4iogfxCdnShcusPLexhXVHXdm6Aa5NCHdaKG7lfSKVfi/wRGEuBAaEIWsheSIbjnH7ERfC4VPF2jiZj+yFy6Z/irzKfs3L0638L2lSq1psnKMLMo+xsbJr1P6443DwBo0lFSFS66rqKypnMt/WACmB98lisqq2mVtXmWQVdPWrSCJXqLTvwuse6f4LD/gZ1XVHRJHvrulqZmQm0XGG/bxdX0nLVwq5rm+eHZviggZMCO0e5rnZ2iEppZ7pESkTtQItJaggCLJZrsVpWcLjZ47CutqlQSlPVo90OLECmrgfbsFIgoW497MG0NFXK9QbL1TVQduD1pgGKw9rOH6lqHAj06CUBLCI5E0tmDVAqQNo3sASg7K4a4FyatKbd97Oi7vcCHtvdPuvNE5TlqqUhkra6HlDFeATXFa8UxuGVzxqo8XUvA/24vs7G1nwuTHiSPtAxJDIDV0fcjLtoBLgR4Rl+slV/BmpO5XEhGDvlel7HswlU7hzk9iy4S4ijhDWsTTQOrIcnts/dA7oLFe7OGeTCoN33LHywdOf5zNw41vnE98wkxff4p4DEQFEAMhGc6He72DDk4eXpwWBkNHK57sMNS8m53RMwyjZRz719OuljIba//bX/hHH4Lb8V9Oa3iglSGMVXRn4hPxfikgI28859PaJERL8ZQ69gjfz8CYgs3wMz9mLZCwy7BBDs5o1pIjHarxVPDrVJe0oRRt3HnYIPtQDW6tW+LgyTeKia5E6A1aE2KZACBMClOZUINwLyCM3cLQQ87SXNVYDOk0O7ZJChgAJW/sPadq3V2pupv0HumOFqEjVrU1Z1ucaw3YiZ3Hb5ZpPI7KW9rO8E4GkXN/U+uUCVAWXceei9Xo1vMp4UmD8IiXo9GIwTeZxdhNY+FU1d6vDap7A/HER1cIWaQvH7mURFiQr4cNPUxLiCDzftLhqxpEbLDmV31S7mrGszL7we2vyggrKIqWL5Vg8HrKucqeFmDpnFLLNuRbRnmYvrAUtZUPdPcLh53FS/0M7oWN8LKFNpye76UQMSaJdTQsqhl+4yNTCHyuCyayDo5jXw4QA+rHJ/TpOK1FpxOKxYD6K2phdzVrYLSW2MQUG/LOFEoN21mDNv9/Hwujbwv9sJSFG6AVF7k1m4LFjEDDUzUK6vsVw/alJWATpNmiNAIdS/lV+MDjBj/+Q1KFffjJY0KVUpC77i5St86hd9Ct/55p+5zaC6cNG6xWTkOOdfP/dMQ4fPC+b+me6B5+4W7mJVNGNGzgrtTFV769/PT2lelk58v5kapS9BGazFiZOX9R/qYseUfTvJtaXYSqE77RovW0ZrQdvZmoZOVI1NLaHZ+kHNOICm3+6EKK6SRqFWal4aUI23lo6kn2uhqIjlIk1vv56S9SaQYzvOeje3dE7HVZDYbCoY4KLGYDSVpKjQp3KOcEYotLa+T9XW+jLYYZsINZt62Lf95hv8z1/5Orz5n30/Dh/+GWDdy1kVb7nWt02lrshWflvnndFdloKFCDcCAIgaMAGaiWZVzTrIjvV+XXEl930Abn66SSI8zz3Hs0tN0tHGUNCTh+/AVVVZMwBJJqm5kfNClp9ottTa+ucgcW9UUhXaahGVyBs5DqDMQOV2J4aetdDyAE1atTOJDGNdm1QowgPtxyJ1u1qKX1RKej5IrLFVUc3TeNIOTdrW4qhkaxUJkqq5FZGGHWSiqNlg31DQ1sobBxRLGbY5k7QNcR71u6HjzLhPnmGky5HeUeezFae9qSrodj5J4TZRDqN3zOCbJygvvxk3N03FrJ1rWVDtYk5hsIURLqXIGRiV4hVgrabWVNdDM8AhxgZ4fwO6omYkYH/TpAdrG4NcGagrlqtFTEk3gwV1XbErZEYmWqmlDFSw7m8AUb8qovJmlgFXMQ8u36sAGZIxWspOzsS5oqUaTilX11j3NyjXL8pFuEIf6h7tQkyWw/rSdgzw/kk76wM0ydcq1uFUpbMysOzsMlE+rA2gAFhvnshutJzfqe0yXyoLeL/H7tGj3MdlsTVE1eJoaW3XLhotTc2vFIBam5jpayIwEwrt2iWkEneRNnq0FLzzTVf4V2/+OP7l9c+1jaEJvaY4KNFpfUwnyxbND/5RF4mDF87DPEOQ7f0MnD2jefooL6PhDiUdPfW41QbKwOucDjtIdZ51sPMUy2sU8Z7E9k3D4f4qUG8zZt6A7tbmns9p6kva8LZdtxUv++czEMfCbpU5syXK0geWRlGFuEJujtZ0/5UVJznQTm1BV+O58eJNEuDD4b4MQjhnI+narduRSwmgRtV8VDXDJl7H3G+1gC0v5j2PpwdZ9eyPXyAivgayYLuGbsTLC+1h1JdsBVIm/5yRdXQ8hTbVnG+ugP/Pr/o0yi/5Cnz1f1fwi//lh7A+/qy1bStC3Md3q2I1rDArCwDVcOx56Ltd4hkkJI3pVqAXLufkdq8GFLSigSKWhEuJAN2B1qq7rwJa2hkcPUcAmBU0auo/qgqjmLeATRVMDQgoODiAsVADN6YaR56HW2kjGYeEA5qa3vVusXEpJxek/GIIAA2U3KzV5pCrdHAizAfJdwcyoHOozUoa0YK1qlWolkPlFubxWrELC89qVZcWptn44TRnIwMW+9fu9pnEj+5Z5Q3i7Oo3EtRlOmi9p5CmPRVC2V2jHm6aahcOInXYAWuTwBEBpTQgs64HrDc3YkgA7fxNWUTNqzHkxNQOsJdi44uZse4fA+UaQJMsENDuSKnNopmaPV+WHWpdsaLdXdQO/7eNB6oVdRVjw4c9lutrHPY3DTwI6GJob3Nj9GsFo2I93ODq+gXU1YEFM9qFo9RUx1ZqVs72jx83c8hX1+D1ACxLmzNrbarFu6t22J4ZdHXdNgMYQLly6YnMTt3ysXWmVlODK1cvAKxn0xr4IBIQWFesh30DJqVJbaoYJwBXN+KxLKCra6iaa4W2GWOhRWijnr0R8LgemlR512jTy9c7/JJXrvHdL30IP7b7BawUVbR9nG2+b06UM7mLMBd7XjNP1XuckRMScNJIAJ/pZxncpYBDas/dLd2Jvavn7im5BzX3fAoMPcSEOg/oAHn5HgOSqb1Q+pSX8i6q7Hb1yzwCIx8TU0lK4//EGEDISHf3LV9CZwIaxqhWlcqEQjbph5smbuHuf/6x/eOLR5QaqT9HwCOeLi9yaY4W3qUN1mThKR5BD412oQt8OT59vQLXV/jXv/lLsL7yMn75938M9RMfHswYN6ZcLAhR9oc9OxhbtP8BA0MK3kAkFo9IzoAQdtR2nFXlzQ/VV7hNL7lLB01VrK+PAhuIRK6gSS8W0WOsuuMrpWRGM5sMt2rFwj5pPeywMDdVOSrF6y7l1HEr2j9WlkLUrJWFfjXASsGUNpGZkLayBSCu5YnnYdSE9iKDnEHtzA0U1Et7kffBAaKGx02184qKqb/1zH2A98NzdApKB7/OPSQj4WX39ss+kx3h4LS3411bA53r/DJd9DYDIFKUPVSvcr153M6igMC1XaxZFmHmsZf3Ztq4yh0sbTw1dcG2odPOnvByZROpFEI9tE0ikkslK9oZH4TyMoqciyFQaWO51hW8NuMWy1VT51KjBABMtUzvoVrXFUSuglp2j5qamwC03M4szL+Uc7dDk3YQsCxY12YGWyVBVTYHGvBrAGfZXWFdDy29RRVJCVQauCnczinpZpcBcCIxllBbGbg0IwQEYF1BLzxqQImKgbCqZSkFvFYwH9rmSdkBpYpVMwZEvRRiya1dwtraSu9ye/Ou4F980YfwI9fAJ8pj3FBNi6CtdWH0bYGaOKZOuQhYNvcZBteP6COfh9dAESZ5ndzm4NksmznazGPq+oWzr+LM/7k7y23S8LDhdR+Uvt6zuef7TOtZdg9+j82z77YHoLLPPUuti1b8nsMKy02q6uWHqJ2ICPAR5oos3sgkCP8ra6OAGmq5Fsm1mdCVGKbnxaIioGc+2AAGyTdYGc9vraPfNU3dVaJOlUwZei0vhfaCLsrSxia9yhQ4rNvJHScjLhlwtNVVSt4/9YXX+LFf/Vbg6gq/9J8vWD/8AVtYFbBVbsCiiqlZ7aMmkXEwki6YlEzi2SEdFwdRYWlW8ti7MUhvqqqQBbUr1YuPu+UMP+PjluikzNwsnmnb6iLJEEkQWLVkDLQpk6smpFsdWprahbUyFgIqueSmWKt5fmtt33YFJkUEx2dhyDRehdywHtpSCy6gUF1FAEZxnEHV9MgkhgqMq4BKQgVxsXE7VW0kBXyZL4jPM05qGu6IO8bmbIGKMT8O/0YXZ2Mun1OvMU4LN9tG6OgfoW3QaH8f9uBV75CR8brqfSht1Fa72b4dnK+ryvJa+rUKvdNxITsKVEoDGaVJcqxecWxTO8S/7vdY5KZ7EDVpj56XYchFoAtQ2iWX69rOl9TD3ugPS6INhAtQWZoRgHrzxO7ngYFC6XEBAGotzMY3o6nbifQIJN9kThMK2iWhrYyrHOinheS+ntaWXBp4UrPyKKUBGkj6SWqjIKv1BS07rIcDisx9nTSVmzGEsjSLb/XQTGzrfUAqAWLpl6LW1aiACvCF1wU/+NaP46MvfNa0DrZAzX0B/bQRRmHebWTA42C+ZzdXF8t+8RSkBhgxifo/qHsOdC53w9h63njPgvv8gG8Tt0VMjfnwtQBqWcsdj+GNPNmR7vRrz9EYgD3rLrYu4PJN8zYGk/1P0hL2z+PAv2mcyMbEese63mVx4fAHGK+AlDMrkW/62GaKWsMagy3fh9LO3k87QuwjABsMqzHx8vfJtyz40X/3zfjBr/1S/Nhv+nLRwm9Mc+2GAjMbyCghUWXEVwUMUPCbF9vUN8KsR8tqCmKAZo2sHbpm1OpnmeOYtIWdsoQu9RHyAmvlFP2z1CfsUhGtayG5cJCbdbPKLEYGQlj4maGWjodTVbQ1AjdWFToJJ7vuLY/qQA6QfvCwDJjBhUPVi1A5tBeknF5fQsP/Ll3SEeutNAUjp4Yhkc3ZY1Fo4w/d8+z9nGKMYTKYORl/a4yezF83coB1fyPtKwCo6Z9JG8ldMLVZ2CK5MBJwIKxAkUWtUGmImR+GqGAdVrG+JWNirSKNUDpTzUS0eMjchU0YBkxNSwFKM6dMgk3i/UcCDPQAPtoZm9bxWjbYnCcF8AqsapNI5bMqWhanixDg4ZO1FVo3MzQPAsBF2lNKWVcxD40SyiSrj5pxlsxafYuBFujdNESiEuigp50rakCKyNOm0u4d+kWPFrz/Cz6J97/0KqquUUmlOo6TOT22Nc/CO91MtJNGv4vdUIRt5tRpaCgdH41yJOVJ7fno63nZxEExIyJxQXjuTropjbaHflWN7u4N3K7fvd+/h3Lf/M3fjK/92q/FSy+9hLe85S3TMO9///vxvve9Dy+99BLe/va34w/9oT+Ew+GQwvyjf/SP8Gt/7a/Fo0eP8O53vxvf+q3fenFZPq8lNr5BwcAZHZ5E3Mqiqigl3T4ZJDVEvqhD1KfIdyu1IKpipudxCggrgtqZcGERiBRmv6RN4ntZWs20pKrW5vkjLaSw7+c5kw71/r20hr2NXNXMsyYArqJGYac8q6XF9o87c3GRjO+tnfplpH/A5Lt1MF79AsK/+nUv4+qrvhIvfHbfDsMKo6yFaOX3cyWLqnNVP2vDcKmZcDe55Co9k/BmRjn0laq2NSaebAzUIJ5Qk8CqMgaQ3bkDYpOqNMDT2msR4myHnKXl24H9avf4aImJmgrbUiAXl1b7rmdxtPc07mLDgUXCBRxMKtMkO6ZuBFdONOtzMl9M/UzGmIJ4vf+n1VXT1C7SM2nt2VlO4Kq0XDT/F/+doAqqzHm3cFnaw+gJEynMIrJ451CY0c3i9H45x2OOJ8+eWpqT/W/IhIbYo9ouwGaSWU0gL7udzPVig1fvhWnAgYF6kPMn1XMXKYOOaZW61UOzFMb7J4BcGllKmx8KPBbNg0ozsQyI6LJxJlFKATEBzdxUqhRYMAhMq9PPsrQ2qKsYRChiAtrnkTUxwZj/ZuxFNnW4ATGS22dJwB6HRlZLaLUGdTCgSbR040tU01joCpMf8m9qdhVFJSwQqSvI1AFrd69PoyXFJUty1qmoUYBSWp4MMbddbN3a7QpeuSZ86pXP4F+/+ROwOaTLnA2PTuVsYPe3v1mYI5Pp3HmWNAfu6Nj+0TRP1SKAGt4Ko9/p+HdE7YZZwXC8UWYE5XPIxemo76e6/PImyDT/8xEz3tzc4Bu+4Rvwnve8B3/1r/7V4fu6rnjf+96HL/7iL8Y//af/FB/60IfwO37H78DV1RX+zJ/5MwCAn/zJn8T73vc+fOM3fiP+xt/4G/jO7/xO/N7f+3vxJV/yJXjve997dlkuMh6w1Vn9wLlLek9vUGQKkMqhL8JA2SIu1Cyqp2z/RmWhyGRH4wJwNRkO8QXcNCti0cAAiQoBxIJXBFIwJOAqOPC0A+CKbtr+0w6h4TMjXB6KAEIC1lJwM4Z1cKMIS9u64xOOuq3v/TJzkmEMmR5e3OH7/jf/rn8SsDEyeNvOoS1Se/b4UlOLfZNOdQgokuEIVQkzvy6+9kGRO4+KSPWK+okEsKC29wKQPgfJYIyffysWQki7ylmW2vw0PdQELlYDHz56FHQYIIKCLGcDaChDHZ6Jsh9JOQkVi5RxAWORei5aDwAglc0htGZ8HufL2NPH3YTCPKi7JCcPG2iIvSrkHMMPc5S5mWtWsSHgkjE9nA42KUi5foT948/iarfDQayPtRvuDwBRY7SZ/V6UlcDriuX6EVB3LSyzqWA1tawi4GEBVqCIdIjlDEm7T4fg3HeLT7t2eeWq1tRY0gB846kUVGplQGnva23mzKGW0bTcRFjXtR24V8nuIkYUFFCI9MpXiNaavO5NwqUXdFYBamVZsJRiltjq4YDl6qpZj8OuWZgTtTvbySI0kIfm1yRerc6OxOBrCAOsltHCuZ8oUQaAugMev7THW18m/OM3fcgHB0LzSoKbNJrCuJt+u38npLPLtgMSA/A4DVo2vwdavRG5K+BGxcdE21PwHzBO/PY5Bl4udRdT36G9tmHSfVL1lQnrPVpFu8+0evcn/+SfBIBNCcvf//t/Hz/8wz+Mf/AP/gHe8Y534Nf8ml+DP/2n/zT+yB/5I/imb/omXF9f4y/9pb+Ed73rXfjzf/7PAwB+5a/8lfju7/5u/IW/8BcuAjYXqaIp843AQt2X87THfMZ8Rz8K8ebMxoZayTQshjTHsub0lEEzkhWIemMsAVBQTyMvv6eh6folm4ViXhM1NnI1NmUIbQMu5BPZkZivf9uAmYGoc3rIrWXvaREIZyXYfy3XjsjPw06Y/uRH3ZN8HVQfItsv4Sn/oVf1C0x9/FXm2hh+fS7+XvpvJAy3hROmWr4vKU7FUhil1BC2tvglpGPhGFRqC9+HK32+8hvCaxqal5bFQEQHJJbieS9W9gZeFg2j+WDFYmm25/jbAI//LcW/L7S2Z8ivxtM4WK0dioAnAzVoAIbsF4jKOG2MRJpD6GlEZLTaPJovhzn83I005OHo5yXfnaacC8iO01GSuUfkt1y3Hf9du+dF1crknpdaG3Nf1wOWq2uzzlfXtZ0hqbUZ0hCpjkkMaAGWBfVwkMsum9oYyb0qCkCr3AhLu6t2qWRt6mZVLm+1Z255oFwByw6HQ7sc1PIzeiX3zax64SUa4MICWq4ln0OTZCyLqMWtYrHsAKAawaFCJtG2g/jWwmhqbqLehSL33ex2poYHIlRul43qHT+MZvmsgS8KZ/KaBTeiYgYVTG1NztGU3XWzWif1orKoIWys69qAIQT0EKFcXYsp7opXX3wN/793/Az+zpvfnwabzy+lp81Tf/V5a+7cWc3sKbgIINKauQFqhtWXyf9m39HHI/QbLlqOswHUG9w5zxP+bOwI/7fxHvmuPoyP5WO98MZzr776avp78uTJg+f5Pd/zPfjqr/5qvOMd7zC/9773vXj11VfxQz/0Qxbmt/7W35rivfe978X3fM/3XJTX+apokzXdp5JPLw/LXajxnbpU7tPFVHs8HQ/BzkvAw3B1SU2Opc1C8tJ28tkixZ2tAkIFm6Qi5q2SDU3VD/qjSWzAZv65nW0QPX5JXyU2BYSq7S8JsGSgm+Mc20BVwIZ20pabw0T75RwvqbkBCAp4qW0pxG+rm0u0vCFFmkUq6WANGhp+m7BMGTmK7T7r0Tyuo9RoxtDl91ZmT7uve8iTYFKVIs/Rglcso6qeMXseLBK8cMUhhEdyaQ1ZbANphCypcaBWk4TGwHUAW1HiswSJjS4I9j2AC5XiqKQkqodlaYyqeDn4L/Yth9W/JYIvAy9a/mrPchUjYBrGeWNE8/f2zky891wa+WOfsjNhPW2M/flGcJGu2biCkIuBlquLY71ioddAeAzaNTPCV1ftnhjSsanSjt1VM7VMC5ZmbxBEBev+NRC38aVnqUAFu+sr8OGzKFelWXSGKAjWPYClSa7rKupkTUpDzFCdyLWuoIWwXC1ARTvjAxLzzXuU5RGuX75Gra0sChSYw6E2EtC0A8AH0FWzxLaUJn2hRSTTzEApWGhp0p9DU986rAeAVtCumW4mkaxUbiBo2e1QiVAEVK3rvgGYsrTbbZlQaZUjMYRKanr6gKtHL4EJZr3NBiYV3OwfY3e1w6EesCyLSLYIy/UVDnxonVwa6Kp8wFr3WK6um5Tpaml15gak1nWPRwvhF976GP/DF348jR1/OCKh2ZoL9FBcwTSr7Rl5xlTt1dhOrUYzULOVwFZaY55bvFZXgjcYQHx23Xxzy3rhHtv5oayifcVXfEXy/xN/4k/gm77pm+4tn5n78Ic/nEANAHv/8Ic/fDTMq6++itdeew0vvvjiWXldeMamAzDHg12cbk9mqPMbmMjBb16IsbwjuOldyzXDn1w6UaFK/n26jVl1IibvcOa/P9fijJECIIgKQBFw4wUkXa9AdqBbzeYaqFFGW7gS1os8HfeMv6EFI2M/nMsJ5UhMUIg/Mofetj3zl/TTkfu2f6b41oMb+xjGQPCb7W/1ahDz/DoglNIc84zMcl9AbVsbx/oc2tdYegrqg5ouCUuuAFBalhtOhQEqSWuUvCjT387LROlMBjcTiQ01oBDTWZABkIELC9PAjdbegE0ALApuFNR4G3IKWyxcKAti2p4nJN0IcIp1sM6VDGpdsuNlYPY7e8ZtgJGazLcEbsmwddkdY1+OszZbjNy8VD5PR1Vbdb2/0sxX3vRp/LH/3f9NWh+NEZdUFUbGXzVLrqNg5QZK1uryJGZgxYLKhMqtx1u4ttFTQWKUglB5QeUFB97hwAtWLFi54MAFB15wWHc4oGAF4YDmv6/t2w0T1lJwkIuSmEJZ2cvi8vPwzj5yqoRvZ96KvXNtNLgyoVaXK7KUn7k0IxzqVwE1uNLCkL3XKr/c2q2p+31K2ojsgr/WPyRCgH0ioj5mWOaCfmAJHzdrAt3rgAvFxNB96+jrpnsKzPdRcHOmm60cbP+cAjW3q3Q8s3pO2T4Xcc0AImYbnT0/QJTfQaPfhIeYvb9R2/QDH/gAXnnlFXt/9OjRNNwf/aN/FH/2z/7Zo2n9yI/8CH7Fr/gV91q+u7qHMR5wEaW4K0l5eu40MJLnATBkZr8QQNwkLXZZI1S6wyAUO4heqBkVAOQ+Eya0JbAtXkV4WVPnknRAYgKY/JuzfQ5CdHVyNbFg+1d+WRYpUysjr5cyf8Ohc2cBQhuxAzlJJjK59kxAf/4ihUtpeZ6arjtOvzMwkstIQ5kt3BEgtOU4PPXhnWGkLrHWWXqHRlwot4huM16cC2bMPjo1M2OpojpSAwEqMclhmt9ifRMlLSEPuL/ml/rKvml7hPRplKi4tGaeFwTwGHBJ5dW26Ziw9Ny+6789E09d2Gd9QbsLs3ZXRi8CnJheoomTeMp8A+2804omATFAQAS06zVRhToWrgFA+N8qDD1YLI9V385oQozarndhVa+CGTDYoaBWYHcdwZYDGsDBgv1xGK0sJt/Z61TbHbtmDRAAiqkbkZSVmtEYbutBAWGtQFmKXAPUgAtJHJY66W+tJORCARIM+DiNh5MY6ZQpFesf+x24TXf5yDEp/zPhHmZmPzPVe+4mLlL6Z8tVpQ33mB4AvPLKKwnYbLk/+Af/IH7X7/pdR8N85Vd+5Vl5f/EXfzG+7/u+L/l95CMfsW/6q34xzCuvvHK2tAa4E7CJS1THaJ3BfN2/O5XuuKSeWsBn3+e1UkbHl3C19mSKLZaYLHUKMEgPg1YUFtOfaiiARcUM7RsToaLpOjfd9CIXFlIzq8kw1QKWhbJihZpabjd1ixoIfBGMv7GmUwmN1jOtcyTMd2gLPU9kACSCjG5HnpyZVCATzyAZQxxATQY3Eo483GgXgdPTVrWyq4jJnEv+xt1JynG7jHO6CeK0N4IbmBCAw4BI7MKunR2E1nuN2OplIMOkMwokWxg7yxVA5NjWUK4Q3IWNuvBWlyNnyiIQjQAkA2BOeSZQ1OWVAUc/vhxkxQ7IoEfTEWmQgbE8DqM7NhZiuucuS324SLFuQzW34o3+3H3tnRCq/jPPpTlbv32OFJ6MXopUuQFm2dwRmqVW8tjyFVoh497GBjdT5Czjs0mzxRgaGKtaBpMxWTiAcYJbqITK4+EEJUi9c7O5ZcOm9utzUWmjSsXbsJcyqzECtI0trVshuQ8qlUPbpJXH1I8lrFpdI3lu9+bY3aiDy5KXOA68cpmmx8jBf9K/sX02VXNCEz1NNSkHVT01QPdOXfhZYn2c8+fuSXDn5Fxe+3l7IoFT0/y5u8hR9/K52KRve9vb8La3ve1e0nrPe96Db/7mb8ZHP/pRvP3tbwcAfMd3fAdeeeUVfNVXfZWF+Xt/7++leN/xHd+B97znPRfldSGwObPrxgMpZ6bZgw+lyNR978NspcsbYTyf2zINQFisrJRt5YoLb/sm78pMKihoqzQWsegDIrsEsXIDLraokd4JQu0gaGn62HbxnYTRy9yYyEGOXHLY7rVzdo0ZDfQ4Jxo5aQnDcpP3CPFMPYp94W2qdnqRY2Bstb7K0LIw1cYv5YXU/IT7JLBcNinfyb973oAz3ZGNZXiqMTf9lkX61jfRI6zsvcQtpz1zHp69kqE0fUJjan7+JpwB0YZkyPgK404CKTPoUo8q7/rb1NTQq4kFxsX6UAECIfgH6Vzon6mEziabt77XnUNDcE6/bwso0OEhvJe9Jr+UJ3mbgGpoHx0nkQ5Ve6LwnkHLDPDkMXKMch7h+yyrWZgZ5ZyF2QI3fbxzaGGMl2jbJD7FcDrPQ4AIbtrFqtqm2rMBwIg/CXO/yjeSRJlh7zoG2vnDSINaOoX0vKF/V3Cg0m8iNolLy9xpouveBr9548hrqx81wmyt5f6wOVuENqzc5hoPCQtYQ5Omk5iwLsyogeYW1lRhIG9s966zUojjjkKYqfR6mkmMwPr/0wU195bQpBI2fnJj9EDpNoWYUZwtN2hevcHcjM7FTdIx1Ck3a4jjjUPDwxlh78GxrdT3l95Dufe///34uZ/7Obz//e/Huq74gR/4AQDAu9/9brzpTW/C13/91+Orvuqr8Nt/+2/Hn/tzfw4f/vCH8cf+2B/D7//9v99U4b7xG78R3/It34I//If/MH7P7/k9+If/8B/i277t2/Dt3/7tF5XlbGDT87W9kg7ZvxwCR/ZkBlpSDhvPs/eZ32Ws5uVuWtOUe5p0w26mghz9V3beqQGVhfTeELLFqKKZI7WdPApxqi6Cqj5DkGugBZ8oMIEdmsUSVMwMlMCpRGoysndlOagLG9dvZaSV/x92u9XPFnh24qTMcMfY+gop76VLq+sbk/wIv6FmTlnbiTUlYaE6sMAptfCcmAJlOPJCtTX6ZuMkx+jmhTYvp1djgpid0fc7L8KYCmesGO2cMdDimHoYeRtGta8IRkxyYe2d65CZ96wihq4fjfHhmBe6uB4tUhbakNYktTTq08pSn5xHX+aQFiOkNf7mMdq5ro1iW819zqBP/eC5ZdDzk6H0lOY3KTM++55pnX6vyT8w8yE2d2k1FyQlYaYxKkjubFFpToYJ0p+ka5AYWrFxwwHsqKREvqvUhpo5/QK4ERYtYWhI0vypXZobS+s0jyxapPm9QRUbkyGbJo1RyUtEAE5X9QxmZUYRkRQ72QZBLtENbWtAZz4AEGMHCrM57nv/remR2XnufJ6OO3rwfygcjXt7s2AnP8wCkf17NFpsXJ559n4D0/bcPYDLnMDg+Xnj/vgf/+P463/9r9v713zN1wAAvuu7vgtf93Vfh2VZ8Hf/7t/F7/t9vw/vec978PLLL+N3/s7fiT/1p/6UxXnXu96Fb//2b8cf+AN/AH/xL/5FfPmXfzn+yl/5KxeZegYe/ILO25CuOL03mL+p35G8khKvL6HnlO5Y6m0xEiLNHdQzFQKENVGWtFSNwLASRH2o+HUuZi1MVZAa88qia5PurhmAinBb9qvMvvxqLSJ/HP30vrbUapp2bp/ULqTfInMawhInYuBF8T7KDFVPMDIIskYOaeqBX62Kp0LhnBF33509GkGOj8vISIUipTjRPMGcxvWLex5hkWHQ3ehofCKWiDjAZq0Pc1cGBTHO0BmYMIMBETAASM/6nvso/VIGLYlZi31EMV6s75gWLC0HLZ5O9BsP/adypHRHadI4SvL3tOvZM3OdXlLu/zyC+vIddT2K2HI633g72BYdO8lMHQmvY00tpc3V0roNHVWd5Ojb0Zgg3dB8nA75xoVKcCyO1T9LDFV64+OBDehXC+vh9B4m0o2isFEnchJEgKKbURzLGCiE3SOmddG82cdKHqNklzKbUDtKxgkGWCCbYavNMZJ6wVTSYr9nWn7M+TyYjRlPoNsDptnjZB51z0/XbRfEandskhwDSGe0tK3Np0MOqc6NB3Tr7Yx9egO42fiYjan5+x3zPulxOvIbrLnv7L71W7918w4bde985zsHVbPefd3XfR2+//u//05luTWw2RpWU9O26tIicSwlJaenwh5bljvO8Ig7Z3Hv2drxO4d/Wzg3qRzLEVQPAJHYODhhUeXKTDaHpToouDHJwiVcYLpsLvx233qdYi1kYjSFr8hGRkKYQCyj+WUKL8YcxmIFSQ1pRqHNhgwiQxy+a0sAymApw9PCVKmvGkqAtjXYLYfpd1KrQqNBX2+rDHi8DBS+5t9z3FnET9pAJTLj935e0aAeYgf8SQ/ZC9Ah94+/yhDGLNKiQhE0dMzNMHe9n5SxjPGidI86P5VO+ViZga1QDmsrB3L+3pe3AzhpQeqlPrF1O8dj/JTuxE37/ZKBcyTdS5OITBKJz7njOYeJDD3Z9+h6iY37uyShT6eRLxYmv8VpAgodNzITFRDAt4J8XLhUpkkVI9CRP/Y02nkfBLQiNZTv3iheF6MOuqnFnoapinIOTzJ3TTsr1aF9LwxUVY1zVGcqaYhtygjAKFKo2Geh3XuCNvEfxiod+XbEPW0gw8PDmf5b6QCId82M4cYKj+R7Lgm6jXPO4tl2sVWMjQhE5lkvvzrqS0qBLNyTU+uG95ne54O7d4lNtobjS2b8uc/c3HV5TTPLYbZtXp3v0vqmi1koXxzoNMxeleC0xSqqEaRfZcTlgU0txH8zGxEHb0IC7YEoA5ZOCtCSVWYhp2PxVJoTeJS2wykaoRav25kvHPwJus1K1BOJvlfYCycJNpwY2lilZyS5Um/5rUXUu+XZwio4kr94ZknqzlqG2JSgxNRG9ob61eooxRvHTPTLjOcMXCmDpHXhOCgtNQcvefd6xuwbCBksmo2MeyKVCh4ik08e1l0vNYk9FOs95m9ApUsj1yPkP6Q3r4O2R8+4teJ3QM96Ygv08MRP3yYDoVtvTOiqWcRp7Pyz0YczckjZnKJ5YVqH7CNkgVkCm0luNFY/hjUVck4+UDFt1xYqMmpbKm3ehyq9CaBGskjjRsc1xzEk40vBj6iyjSyAJpgqbP5uyt9bySAi6doQpFQCQFjpMTndiOVUMumiKp3rLq1KZ2wE3MgNOYjSL+2BVKXhC8HPm81bYZbGGNLr8jQdzwbhqTgn3o9OoI72np3JBW4W1c+ihexvUff7dufSHB8vxwp/+0a7VZMEPqa9bsei7ve5e3ru3oDNeYM3LYtdzOgXV+6tYXiS9ExKdzcXGczM3kZ2Ji4F8zIbbtBQDNvNS4fZg4oZ4Iy8SWwIsgOoCVFoBmc6LENrXvK1OYa1wuXSU3oL/j3nEwBKr46m9ffyhHAhXmwU5w8CMxOZZK1SjCvto+CmWZ1ztpmhu73OLpuuPgvoyU3V2toYsLjYb5PIVJuTw2+6t9cxqH5QuncmyaEwRinvnRPCHTVAUktT1Rwgm26eVoGiVCT3t6sFSZ7WV/nyzcRohvx6v7Hpsl8OH9sxtgUn/8iUJdU5innldPr8/dnH4bkUZtjl679rp0dSie308xgZw1/CBuSxfTqPWZj4G92oquZSmZ5Z0FD+268cHlethEXpraudZUlNMxDQj4cg3ePoJ+piAjqqzrtoBcFUfDPgyxt6vinSxllHa7X+ko4ZmVGpjdBBtYCmayKHtFSduXBTQSuq7kcEqj4ne2c9wrHVtW4e6qjr1oqz4jwtNxSLpv495Z1LVCIlGfPgid8074dys0n4lN2AV6LfG8Y5zVe3SZvvoW4PdUHn57q7N2ATGbDRRUJxAdE7TR1O5LW1vN9txClJmzIUm4yQe8WFTzd38nmaCbixxc/ZO1vcGKLKVhHPYNgc1MVU1d70shtkyEIhXhQueSiXJnicTEF9x5uNByfjPFvhKRoBkNPwCpIc+sH0kPzgfGYstQq+cwlT56vcEmBhThhkdwQBDcw4qBErQ0HqoVIbrTVRiMtRShQkZsESEc2o2i2GnXcDpz6LzgCfDXsKh6RbeL94EzDmTZ9JgY7ko0yYPhsI6gGCZQcHAfFbDzpG1jkD2jH9HrxkNblRymTPzIjqRkNYS19RRKg36z+nu+zY4nU0bg+GNjDyUWaA8/tUS3GMfsKfux7y8AOvRBxiGc/dUzAJ4UDEV4IoufHyzACQHubP51iQ0nd/B506ZqJKYjYoAOvzApX4NNPPK/wsC0keFbGjvAOsPdkNG+jukUttIOfhPLYBFikdFGBJmu3Mj9ActVlNfo4mti4kvbVqnCqSm9b2/Ygm5M0jLROHwUnYGFcb61weH2O818tFqebZcdITpXRywI1Ej7Ao46e7IY8ZXZgHvHUWd3Znl1ED6SI+RLgbUO6bYFquE+1Ew8ORsBRpxHP3NNz5VtHk9w5TcYNKTuEBnNmYDfSN9O/BnZtbzrEHObT9pkyg/DiDrNpdyuFHcOOBeGPyk67QETgRMrhggEoDCHrglWBowhm/ZsXAf+EMR65TYFZNV1zAk6ajFU3MqJefhKvINXIip5IIAzdI0Ce1pwMdoMrCzhAddZDVuaJJrCorQ0RyvwVJfLLzN9YHCnjgbeftJu96x4X149D7Z7ocNxNV7rs+fA8qc+ap7AybVKXAwYpfpJoZPU1jxqhY38ew4p+Ak4YL9XK/CF4C2OgMS8DKFHfXu7TCu6cZDCQQssQopJfab1LODPQIoKjciMSfzHqa0H8Lu+SzCP2wuduafifXU5ljtNFoBCGYu8/V0HkxnsPMdKVdvQkz6RxZclcvI6OZAMwymfo3stK2Lpr9MB8DOmbaAX4fV0A0Z66m9dumgG6MKJ3ram3jJVprM2pu9CLUPSyHXieX3rC+S34GgAqBBdxEdVcK9LIUoFZGobai+BXLeXOILZ7G1TZmq6KWf9t1ZTgxXmOQS8bXbd1F0pajcelIep5Y2hR4WnP3NkvO6+lS+e4XxNy/2y5P38y91smghXIL9/yMze3cxRKb27NrypBdumKHcMPWZCSFfXrnEOP76+Sc0vHJkJnyfGqi8Wg8rhJ5Sz6dV46LE+lqqUtoYE5NPSyG1yfuwkg5yLnXrPE1YQqpxO9ABjS9f6xSDqMAQtNkKLOExLzPer4BwXZTd7uIu4gqGsmt3yTMB9nOrd32TQUr9FAyganpqCsH0JguzzDevQHJQ1VUeub8dm6My9rHk2C6i93PMB8HDkYiCCnk/ZLVyYK0JsRzRt8ZfCsSe9gMZCZ1Igz+Y/iZC6CoK5fVgfL7DKwoS53/OM8BxPZsl0VaA2mZO3IyL/tkHPRc3UawIdEN8DPw3CH8LLoGGymnzrDhlOTAmOpXpTgGbjDOAw8T+1cAQBjUTROqtouIwda+KY+QJuCSD2fefSxHGREhGh7wv6ySplIbNQwvJqZl06aS0gSpiZ3HkbrpBkyov553UdG0GoxRcKLt1jZhdIipoQIBN5DLmuXusko+olWNzi7tLN4eCpiiRTml/dYy4QyZ0pgoHetHUFhCstuYuGmdsDUqf9kCPJe44WjjIOk/xkqHsgwFYDtT5nGkpGcUNgJ06JoyKcvFbmtivw5uoA2pLOyD2heHh8t7ksMwFM8cq0cz3Izag5oL0n7u7t1dBGzy5LyjMworxCG93zat6Ic7zaNZkkfDY5xkc+eLoL7HNIbEQrz0UZmowGQD1Q6OxosF9TctLv3vjJkT5HEszPwsBk/CB+YiFCSqQ+VQXc0l3Ob39FyxEqEw2e5vk9IIqGGAUFAJILZbelCpBolLk/oUUW1TOq2X3el5HA0bmRJ0Q/s2bivqbGxp+0wZbClHZPIcsHSSjJQP57GQmMDgH/KKUpocjoZ4U2lPSpeNLMTyxXBxBx7RT8dUnybYpDgaNo+4PJLyuJ2EOUIk7rSu9RP1gRmWGfM3hAnF2C4SW0/PGI2tNGM762hQhjoaCPCLOXO4wN534xxJxbLRRgbYx6ePRTlnxgqEQ02IjZZoHvCv4XwkUrnbvFTGNysZm2TH1NWkvWQeU2icJJkJ66XR/lAehLy9HWLZ0AGL0F8UwYwP79nvgHVO9POxb+eQynPD9W4c13eamX3qIc1Jg4TCPvu2ys5zl/JFt84H98hr3rEcx0bcQ7dHxf1e0HmfaT3L7gJg07Owt3WzrQoK706ShwG1VYDZyArWYy51xhBeEj4BlglY6T7NAUEgj5SJ5pC2LnqmAiahAyMY0x2ZvP7buEs+Ywy30ohhMGFaY6N6nJF55hCAGaZ6pypp0UU2035ZF2oSQEIB5JCAEd/F1HvnyQ4Dk6ixMRYUt6omamZV2gpEcjO56q/rTrRL084dQ1ukZu4/JkqhEYevFAGBH+LvL9+M52hi3v34cVAg4ZTRCT0hLQpYejOQ5L9xfFg+7GEppauArGNO4WpJGZTMJDaYpukfOJQppkM5nSmndV6nb6rtzDr9FmvRRQxgPDN2Zhr9t3nYrHYWwxyvugIIBQntqxsLyNBJeyWfh5F5ymzGA0AI1tC03xkKNFawmULX4yxmaTGkW2XStI0MKRPBLJMpENGLfP0sTEwpzie28dCDNzM7rW0UkIeOUW0TvdQTYhra2mJo+C5NoWe+ZKqUzMP1RmFOjcmt8TCLfM7wvpCkhsQp8Ae3mEiab8h4nO7zc2nT8G9wd/9M/NZIeYZa7eiw6TZqH7osz91Z7s732JzuyD7kOQO2XzLVr98h2VoelfnfWnpzWbZM+J1T4gEMTMwUp6Wd5iTQ14ugNuDLKGKd24JGcFWxyOCN4AOy+LZJ2OLp2YrZOtUYSwmbGEtNw8vTkuEBYKEj9S2KLNiqhgFZErqyZEAjfqTELrPG/iw7PNTUygqKGQQgJmE49ERN+74ySR0bAEoFIALL5XdqSKCSMytxa5ND27K1xdDFoSFuR7SNweMMPuKojmON9V+KjH9NUrLI9CsTZGOi65fGTcm8C2nEtCy+3jmj9bV6x/EUGEwOYUOtPOyszP0GQsg/1Cl+15bxd61THPehummyOri2nbxEUo7NbfJ2YRtit3LD8KL8DThC+sbXI/4OGrpswkzM7+nX5iyCRMMbTN+HuAIO2pglMRoQ6KJ8n1WxjeEQX1WzAANEDmiaWpoa2tDnRlLFEItw9gqa9D4d4fs7E86+YQLA77Ah7w81nhDPDfndOGTnH6v8rklaA6ctpApyDYC1sF5mpasElTrrmIvlhVUkqqm1TSEp+4TezlyiEebXU6hJhEEa1ad3R2BwTAvEEqbuvU9iEv9YofhYECMg9w8SbklPbpuVzeQh34C69R2z9/55O8axcqT3O7dB5AnnZYvhjqVzH93x/IzN7dy932Oz7bYGwpEV+Gi8Y/kcIah3cjMg1O1kTSaGh452bEYw4fs+I/AAK0NKtlja7hrgwAUKSHSRdkBiN7MrExoyN8YWMd8J8KHsR8wgvVmvjDupcQHTnUOzihadgR6Pw1IwTi3jhY7QVuO187UFFRUri50jBTXht5lOLcJ9FDuoXOy2cYipaAaJrr/f9g1EJfTWVZG1qbADR6maR5e6M11k3vv4GfjnMDoW5s+AA5n47OMgS0dSeSZlzP4EmGzMfUaWqQcw7hfPvlidrYyShm0qzNPp6+hqaRlMzdxY3tstXCfjaFU6XitRnHNX/Vu4GQXuT8XMwum707F4Fmbm5+9jGaJFQul/3TiREBFAUIonaRsxqSAqcBUzBQgiS2FA7YYRKoiWdEFmrJgaIQGJlMY2GLSk8makQcFK6E+NE2hMBDWUfuU8DcRkPcFbTGiQno1hjiahvU3SJZ4ULDoa7xkqyL6m+IXO3DHgW9uAYRBsftcA970uH3MjdYzulB/P4vP8+yXu9VDnevbccfp67P2Zc5MCpvXzdS3Mc9e7WwAbp16nOq+RSwpvl+YT40WqKYTYFq/Z91lpZs+z8mW/7V2rEYTR8DxKLrgDB+2X7ebtzNC1f2yhlufErNmfM6zmn951N3IEN8bcyiLrF8Nxso6WwY6CGgkTmUfO5YOFy20R21HrysHHf+XwJqnEglJvm4RHFuYGYCoqE4iLSIjkt1IAJobK0Du9Q4hR7WxOMzurcckZGCirBrPo1FXyTGJ3/lK5Hc7z1q4oHUDoxwtRHksORDKQopBuBh/deIUT+hm4SGO8N8tsFduaT87cRYBWul8HZ1364bmVNSglxjgU29lpQZIUpTDZjX56J8l2nEuo5CZl5ZA2zcNcSpXzOQ73iytBYJGRpAKgpOKk68JoRCACIF89jCYSzLBAAys1hQEJ4NEzNBLex4D2K9u6oWOh3XEj40dAD6HYPDfay15T0jyFHkVpGZEeNudYwgY+LBDSxZu9BbRoCtqliDp4WMa/qOgRiSU0tQhNApwcDLJI6l1yIyMgLKF+6Wqw8Bjmfx4wcaBpB3Xf09eJglEMPyD2U+vvVk59wvM50ocbVnNbw86lyLN0aPD5XAA11lPTgXEpdTnh0hjZyOKyLpq4ONZG8N2PwD67QVJ05/I091xiczt3J4nN7cbU1ojsB9OpScH3Nm9Oux7IhYw7Js3DjYBGd5TjoWVlygBn+CI772myrcIjk+ZAZfSDgaLIxGaG0iGCqxIJs6vM47SeDDUNOnwPlU8Mq3M2knZoT2UayHGRHtwHqAMvgN5aDlmstWQNhgiQge7uyq4sE1BUUiMlC2aeGwPgKmoKeyrDmIZ2cV/Ln0Jl9KCxMgShZtM5cmLpzWFma0VYVLbmYBorpGMqA9v0G8aojp240w0Lp4UJQET89E6ivm6xLDOmZz5/RlDi4TmkN8bRcA5guvBhzng552Cqr8vo+oXxdq5fIKfjZqOz75bzmOcsrcAOp7DqR5Pf+bcswenNQDce38dNzE+BTwQJFFLrx5laQdMxAyCopjnQyc96V4yXOt4XlcBZkJB7mwxH9q3lSCpolh6BoI4WgEf4nsxMC+3RO29KXw4tC6HRO6P/kkRQR8uSGTKaz6AMbqxjLoMX/ddjY+uUu+34PifOWWDDlika/EBbaVwOjJ5ld5f+69PQdIxf2AItr6s7BZEn3yIPcyL8c/f6uFveY5NHni9Rp+JFn633rVHdc3Sn0jnXdfFo4sfbfOWckcoDfv5tAmxCuMZUcoqX0kgMZwtfdFHumFZIWomx1XJ3DJ/VSXf6OvCjAKsd7o5gawR/cYJTaERjOnRN7SkB6cFdKRmNLCbnEgHkh3QVyEDS8CIRVM2MRMXDdhFZlc1gm6IMmPUz2wmVL8YYCbdgjEmYIVtL2vZcmITvGd0TtvHH/Bxo+riKYxcGUnoVt5zwLeabtr8ybF36CgQ9NZFaym51BhzdnKf4kJltfY4yuKSG1CXhY35WgVmec7fd1z1ou193aswA3g32nYfHabrHvgG55UdWflwhZPrZPyO4Ed+O5gpvPpQt937PMoVnS6zrC6NlmWaa2qymTmggIeYrcbmr/7SxUtmjql0IYnkG4KdzVWmLNARLBFd3c+BClC8W1QIrYHIPoLsZORRGekNVmU9M93Gdn38/mkzoo+hx1so+NOR2mIGSjcv97fM/FeypMOv34xLtnhKds3o5x8oLwnaGl4Q5lSeAKd83GcTUPcyK28/6uRTrdu65xOZ27lb32Dhp9KVni4lzl5fC6bKZVt9TpbhfN9sptQVrNtChC6EuxUB//sQX/MBYKRPZheutVEVWvjGjPWOWQU2WwoRvgaFVODCV7kjiPcjRdDLjm5+VOYhMtMeLbv69Jx4MCGPrfaAlrZYk2yKt7FALKmpraAf/bfFmOffCAKjp1hcBTktSSZOisN6DI7nZAG/pVyYBkhDDBFqqOczPw+vS8du10zTtfjlGGEvjuLE0KaZ9BLx0E9zPDZBbrGM0CRvFKG4xziRs0nemyw+fY5HJbalHBZYw14RLTupMTOBQn1jk/rD+9po5cHjOgqY2mNCvIf4s/Yd1W6U6FUfdbeLePzXeWk3GLZ5IxeZsR1hSlLFnjzkb8wQ3TkCmbhpWrnBXVRpjk/LOXTcQuXtU89FCV2Wou2qU0Rsd1C59sTt6iPLmkyYCLXuTRhkFjRsJXVil8aGJBop0amxvt9HdXUpzuGvmWKa0/W2TFM5rOk9GKMobGMxMXX+vwLnRNl+eopuTjEg9BnVj5fX8WcLp92elbp/H7nyJjTIgymYozxjDyG/frxNSgwyRLJPtAtxl9Z0l59zQkfL2S2kfhm3hGHeEe6mIF5xC/qPa2RwkdfKJDiAFwwDp26h2lMBMJxGaqQMVKUsP0mZ1nLVTbt+xLRMz6Su7jTNnLRtcKcZoeAh9WmTxb5fYLXL4doFzJnGRZywSFqVdeBfBj+rnV/0NZY6tYdIykJyrcXbnXPqWCOEZa8axdLeJKyNK34Z+PMH0e71CASPzB78x3gw5AK7mJ78tTLFDzGQXFsbMe3ZR9p8NzEgp/AQ08h64MmU8SInmLo7Lvp7SPkdiz1nw2duclty366iqTy/J9BJG6xyG1PM7PXi3dsfzLxk/namffNN3zlRRxxvLeIrzNL73TLnTysCok5IMRjzQ35j6qFY238RIo2ejzqPvRIoT001qrnKpKXs5gAjGlO4LUaRuboCwEIsUWowKyDxV1WWgqaNVwKzaxTqOA+02S3Poh1tIarxtae4fk+/z3AQ12/mfBkufw262plwa5Sm4qRz15LrAKYxJcRHX2Dm4OXbu8rl7fdytJDb6YBvi3SLRA57zt0WQieXISZ4Od6Gj7tef8yBF8NMwvdrZFsPfxnyfXlD7skmjBgQiUKEwaTJISOAjlVeX3t66Wg4bQU6qN8WwkTB0ZZ7+jm2lbsZE92wGhwXYdk3dp40uZZo1TrfiFhCYKxYqWMWyUEugAlyg258s9WSuWEAgKiABN1UyNnADYAWwoJlgXaj9ErX7bKpYSjKNEe4Pyk64gDPdOYy5E9eeDUQ3Nj0O0tgI/rM8yR9a2+fj4ZEtU1UipnihKklshaHKjJGlFnvaGCtN0QaNSoBgaWQbWm4hMFKmKatihErCa99NG0DTIcBuN5o0zzTOcXfq+8BQnghzF3dbUjqyzaF5b5GedoQaChnBTaQ8kZLlLSYDHgYC4lgIralzh3PqA1hO9Z33Bk+et+o/owpxVgUYA8IokYlGFhrtgxkeaJhHLxgOktMwT4u0sW0YydRTC2wGpEQlLWjbGi2Old1WSr9sDJwKuwXOB2/eACjT+Buzi4+XafTP6ZytiPKMurnaGXAnhutpuDDZjtJryvM88ixu+MWBT883jXzj7d1zVbTbuQvO2Cgp7ygZhiVi0++sCXHmXDnGJp43qEbpRIzWBicP4Wdx0oCOjL4BBIJLYGZxcvjIhE0lOtSXeUwzAiFfmAA9iZLTmuSR6jkL63nEclr7kdchpjNlMLv0bAEOi3dkYCOboUxvW8Sb74qKhRZhABjVJDGtHxTULNzag6hgBeASm3YfhN5/Ay62g9zSLlj1HAirIQGth1sSylU9svydw7lO3ThmxzZvK3uUEB4jvDS8ZNaM0czexsmQ2T6VrWHoK7Ae2FaT3D5GezCiueoFiKkZKbBzZrlOuQ8SS1DKvHmJRqMG83ZrdaThPJOmWECm+nkewRrnQf98V9fTw0Slu4weSnJzTo3yGZtZCqRdHCiquwxcRhDBKcwMgsLHShfTUxylrWbqHUgjdbPNLd/jbcIxQSvduMZ6XnENDsCH0KnPSbwobUqzUdTRGK6e59PJLh/W4JZ3W0wG9Tyvqm9hHB1fE7p4XC665U7MwuFw2XY6sbx98WYj5mz3BgY12+4UnHsWXN7wA8Z179h5mIGvI1+d+iMFhXqJTr+B+9y9nu5CiY0zEAR0YvFjA3tjWdRRN6GAkR5NVXWif0+3zqBjPaOdbi3vBygwDOS8L5gH/wBYdOGkLnxrxFCXHtTENGO649I+UzfzetWhvi3/uKDPwVJsExrKl+PmxS+XuS8vkl/0z6cqzKiPfmGF2A5yehOxCxoAKVTAJrFhuMSm/a6kVqirgM9i4IZkgSdBNGL8FSAIqGnxSFjyYuVlO2Q8DMfzuMOj43fKGFPfd3Pg0nvZGE3nbDYCc98XsajOPMXd4l41TRNu/Vjt/AKABAQbc8ZhlGnmeQfb8/dwZGV1Bgsh1szZ2Ernc/Lc0A829ma0qXP3ta499PoYhBkPwoSdm6T3qEFR/yYIwMdb+4W+g5AsHXZhjJ6AEc1K5LaV8UUOEgoIFRmoa7x89utYPSc9yP4lQ+qwMcKRZgiAVz81WKLxGPYeDU9WqDTGaSSHX5XYuPqFWkfTZDmo4IV2igN/yvwzZsDvdeHxY3ky8YF5pfeNGTaitosrwNN+fvbdTKviTrV4aCJ2RpbbRTgX1CjPFP0iv5j97qPKbR29v8Z7I43Bu7h7vaBzJCHnRLqgqR+oV+YTYM7wZ2a+BxA5TJ4IY7ge7MzzzyBJv2+ppc3Uyjz+LGwvifKJOzLMoyTHykWyk9+VM7pxbMz26JJyhaU23xvVfFTdxEMszFjBTXUMjGLxK3z/tYh6mTILzY9QhZhIOAE8msoi+Wlfxj1UfXqaC9kU/KSxk/2w+b6dLg/PUaKW+0VbXEN7K3PoSbJU9DulnneGN6ZtQCOUIbCHcIgCK1vsm8g+x1FVLGV04aN06XQ7vRHcQ47Ty9MeKEugqtKHnClHDb8qA2R7lnHDeZxyGBd9iT0nn91xNLbzdLmk56x9W20RR1NMa162DK56+qNzRaWcUdJk8UhwUip1TlV97C0U6Lw+fVZmwbNRjs8LhvINht56rRJg5JP6P8DXsuzfeK2kqvbcPTV3EbBxlsIZgpGg94RyEsYUeXP6D6qLOtLtsFwC/R0zGahouLwjPoKZDvz06mfyLZ970ecZkMjgafN8Tv/bTS5fnHpwNpHkhMk+BzNj3ewbxXBjHXuXxw2HXUIdYZlFBWSM6ALPzqz6ou+Qo91DUbGgNCMBIAMp+nWBSG5skKpUByD2W8sBCECS8zS2K9ruu2DAVDq8XhT+hU+EbV7iqItjInr2/SSNOIx1f+jB7MxFiYcyhxzO1emdPmRzx0BMa4wmvQGSJIe6cKoiU7nKvSSd6llXf5a6MSAW2Hqo4o3LIJO8NfDdbx5ksJO+TdTQ4hyLX4Z5NsR7uuxVzJvtHxid2GrrFOeEf/bZru3WYe+YBsugNolLAiUZZKp/5fw9gpvM2OusFVXDtKPPooI6AxhCXwgm/ajp+1iuvn0IDjL6CapP8fsIYkIdlNaEM35gnTsyJ1Wqo2dyNH2GSVV1TmdxrEptGM1AQ/vN632gzqRAqW9npDpssZDnuhlvwMNDfKUhYJ/EZpoc3y8pK23yGp9rrG6/Lpvnrd18tM+pzlaYc1q51yrJ62P6pBvTHc9mPBwJP6W/8PW53Kktmnt+xuZ27mxgU/UW5cDY+C/Z5WSZg4qDLFKK86b4oOax1SfnhrPPeQBGCQvgoCYCkAwwejRfE1KPTBB1YGKmloaQdyxHD2QGkEEb/pEBGxjfLSDUM3czcDPmE8OO/qPzPVT16BhocqZZ90kzg+EMrpoMtkOt4irEkg/0vhlRRwMABSuiXLaiNktKamAAAKjK+ZoiRgh00EtZWI08kKmeNbU13829k7uA9gz9Ipf2+ffQF4H45rFx3tTaCqsMTtRo8bMvTf7VDCuIiVk57KKXKxbS+K1PKxgl6qbJo0ty9AsLX+qslvJoPkoiM9bRJIo/DgbjGYxUV0tIGMfJIjof88fb777cOczTLIybKseUP7gLU3YOuzFrRR1TeiLQ1U5jvEhtilLWoFpEAOdW97MhxpbLnFG5h27cVBAXAQaKI3rpzbxees5OyzYdKRJZQYBRwZBPglxGHsOqSwroGt2pBEsNMi/I0hSjAkKzesY910jHt0SUd9tIclLt7ahBuzqaqmn3IdPy025kGeazKM3cKdgJq1P/fQpyKL50eRwvz/TMzjPuvBazEvPwZqT2DeSOqw9zCuf8GGwuFV1HbT2VZ+r5uzdKr3/uuYvP2DgpTmRwynyeTEoTit4PueqnDBWJdyhbvtng1W8JoGQJTBrgyAO8lwA5WHKGsxGHiQQkxAMQAEhYgGe/oa7+LfQOufW1WHd0YXN6W6Amf0vfuzbP6fZp+chhayfDE5PxlVWf4oHognbmq8jB/mYpqAEZBTpmMQ0EqESHtDeKMd1MEGlCMwldAAEzyhCRgQmvXxzciXvO7uyxHqQCM4st+m4HP2b9Mkr5hvjTvH2+9OedHAIEFa9UZQcp7ZJTAlDlNnSlI9RZWkKXcuh1uduDAet7gPzcla6yrGX1fI6xULE+Oc8cxw9g33LBeh0YgLMYxY1yWP+dmW5Pwo+tB5uR7HXCGMJHfqaW7qfAx0GN9BBnwwFxOyWvAH0pWqkVKBC7RDAd4E8Hk/pUWCg3df5dQ0SSjEk7EswIQAQzOmEMDnVnaNRPpceagp61yRlLevHXCtzeZ8pudt5HfTi20lb7aj222gTzb/ZA47eTkWdhx76bhjme7NFwn8suzet7rH5/frJ/j34jyOLuu4ShPGoG3mPgleQbBf5Pn0kuQQ98Uzx7k3hBup+meS6xuZ07H9jIaGaT3PgAiwtQZJKzMF3T0YRCuh5h9EsupjVbVvsws0rM041L5ghUFIioas0ohRni2ALTfvWMRwGnczd5h8AnTf+9l6BEADOG6cN6ORDC0BBW2yKkY3nksuZyargOQAXXsydjOr1KGdKz9a6uSRzjOwFsO/4VCxdUMRLgZzwqKhUDOkW1ZUlCpEO0DQIxF7haB9sirgt7he7i6jigsPvb2n3GtJ3vJitwSI4mv32/9/5DGIRxQGPfxQx8rod2FyChAa2vWKVqzamaWVNDUyaKB/U1Qn9Bq89t0Y6RUdrLVmK5VLqGGR8TK9MtcDG9PlbIreMBZ+5Ur/fftyjZMRI5q9d8Bp5ZkCMRz0n34rw71zOzPPk2AzlOYcS/Ax6JETPenuMLINKZ6KfyGQqn9HR0xfN0mWGiLkOkr7E8x9srT3YLK2VXgxdkd0VlUBMBj9W3BzAhnEp4FN22KUluVpoAV0nzsinlnrmhuXEhPTxnMKWxQr13DnrWBZ7zvXbuwszi3mXsP03nNHCb6tA0/BvHHdMAoiEMh+8qkQl8Ivm8L8SZzyOxkvZA9XjuTrsLL+h0JrRnOYbw2CAPD3aI5jJH3Z9N3gRQImCBvSs4UV3sDHR4IgVysFACwDDJjq0zowQlhh3ARF92faYQL9V5ZA0yQIpxdAcuLuAefx4HiFri/l3z7IFuVw5kspp5A0phwqY/HFq35yISmAK1gEYGaKIRgEKiJc9qJEAYEpLLIJFBTeGo2tT6WVWsms4+oHrvsZphH3Vwt2EE+6V57IMMqqdhUnHOKEHQPwmsoCWlKmGZyYlMVEMkTXIjVuYCAQmsVKIuCiQpAJ2sjKYMLQuI2W7RfkM6NcOUmI0L+jE3LPxH2rVvv/t2I1syfpsxdpHfnQWepTukd8ydM9SEe4/UqqdcLOEUzFhPUVurMtjJz6kIoSOcHvrmBCtxZmdqONR43LoLLZRA0qyiGw3QDeHYvnH+RrU6glg4AwYA4zOJ8jdgADrRQlpUi/PCyPkbeQYo7Af1dO92jP44Lo/Mph7UpPcu6MnCTPKZpvc5yLLee5W0R5xuz96j30hvZ/R33ol9nGNuWCfVPywG/bPydspbRQmO8XtRakPR0u7t3XOJze3cBffYAJExtcOClAfltptQ67DKmBbQ0dxHv+33c9IJkysOWPsLoIRUuYDRix2bGeAcXgc6kp/H00mVGNAAljJ4mACd9BvCxAmJ/rmXqPSM75i2tglP8hzLo23qefR91i8dpP9wHGFKQIKaEbIjwKQEncr4WAcCChvUsTM37fA74BIbSUwU9QBu6mek53Da7qhLZnS89Opo46I+gvyewG8N/txfYwryHMZK36fDWKH4PhsDuXQzxkohiAIS7TdjbijE6BDFrDaRB4wt4latjODALFrJ2SaX3PTflLE7vnvWF3csXd+WGLprbLttd6ynT4XbCnOM+t2WwXy93TAeulbtwc0YlgAm6//5rOk8deAFFS+b0zbPVTri8Y4tVRwCZGtssTbn9ZljEJF+Br1Nw/AyBxDX5A7AGATbkNikCYjgZ2l7jS0JtG/tnUIZQ9NSjvsQbntVj27ynfP3rf6YUgIev78RWcaB3G3Qv3mk3j1jVOZEh0zXz07V29bKjhczUINuA5zi831V5Lm71F1s7lktwfTMjv1mHibwCh2o6d1ToA4RmDhD6MxwlMBAntvZj5riDBIbKJhp6emx1qbGVq39sgqX/NKEEQUQd9+3mdJO6pHUivo4G8DDykMb+WyBrJi/AjUvjEozYqYpb/KRlBZ9e2llUrUyP1/TwsQxqBBG71GxdZldFY24CtPrZ2d8ZNe8fnEBU1M6M+tdzGJXTfo/LvwW8/zBfA7zucXojqBmQog1fBpvPcN+HAD0hDqwWKE/lKvRgdy+JOmM8U3CjFFmKlgC+bkcbRsFOZA7Z1yFxnNqrGk6EZ8H2lCHeI4N3fM5PbgdxqlkbGct0uu57s3Gl5VuUpBBcnN2HvdQq1BYp7zi2McD626YgpnuzxMLaVm6cfTmUPGMFRnYQfrLcumJSwQsU9uRts2qn+fTKD2SOddLXwBTAT0qnTGjAKFR8kpulNhU2aTwbrgllz+Wu/t0meva7liYHqSkWXysALcCNepD0+/PGFv/VF3fQtvv7nd+4nSic8dyJA0TGv17yhXXTV0zC8H4M0qSGgcyDniOjarz3XOJze3cBRKbQOSUwYCyNJEk+i77JieW6bBmMM11K5m7uTlzTundJTWOyIF2U32rdy+d0cFsUhxwQPUSF3oArWc6J5KcwKjmsraltTcI0DOrc+Az28H2XQiP4+nH5S6n2zNsPtGtfQPh6DtyLEOPbn2nVPMrxoz00hwfoSaVkVq0g/9aSEYVBmHhZhVtIRLjAcWYBt2e1f8KqfSG5JeNgXDJTYH316lDtHlsn0UCQztspQNkIm7+x9TS5PuYXea8ZlCNQ9gR3GhhxBqaGV+QszQEU+XThImdgWvdpUxUpDItx5xfVD/i1K7RWEFXwVBMH+tb58RSNClz3x5zlqf/dv807ZxxdNFYu7XzsX/XfFq/pquTI7sxSEMUBOl7RbzbJjtTFzUeKTDwMuYKw+6rSbLLbiMjpBrK6vWftQOnfyikKaO3WyfbOJbw5OqvDnY8Srp0M/ZHPO2fJkh6aWXgcLoxiMRtjbd1SJNwFbUMxubtM7TFCbfZhhekM4Ig2giwNXv5yPc3lhsUbc4hSJthHopP28rustafb+Zlicr2N92QVn8/Z63foxaPW0xzA0jP3evvLraKFhmMrX6j8ERp5vA2RUiJPTzZSODBGMGAwgEZxBGwVBm41Q6jKyOf1M1SGAc3fu9NzqcHCslvmJSRiFQLm8BA15akQXRZGg62RXYhvkcAuJHuUIfsN2OnxnHDQ6gMWGKtA0GxBX8YZQC5gQC1eEZcQFRRdIdXztisrJCEAVNRa1Kb1uts4KWIAYF2yJ3lDhth3FFBWAIvMIMCcxdDHR/9ibUbdpzSztTQZxug5kxH9i+b6gnQmMRm/UwkuklHJgMTl3qVZnGKajpvE9vMjQ0IoA3GCBQYaUUiw6XvHeuV2i+NI0Du+tB4x/Wjz2HdbW4o+BFO91lUT+iL5Ey3l3c4c4OMFe+TYrtg1809W+eYX3tOYCeooem7AiCPoaUN49PS8hHTvlcQLaaK5ipqPhPiMOhHRARet3E9jfZtRTa1NBuH5HXRORi/K03UDZv5poXP06S2BkLMRg2muGTI8VHQlJsMinMNB8xWp5xev5oMIIe305iO1c0BnFe1Z+SI8BvHzRb2+H5OmNnieEa6Hq337NcA2BBvg9yDqmZB5OHimZpCukGntF4lO+PaexvHTMNYvmt6nw/uMomNWVgJe6Wqyx7YT4b6ZZYiOuN9zGMS5uxq3MIlwOBSlfaJGwNs/o2BbepnNVg2i2psAoJ0cKsfAQ2ABIBE/h1Q5kEZLFuGLC0tbibhUcKjKwp3jRaWEerjT8KEdJ1fjmXs48yXqew3MyawvY+3xS7agm7fqfNPow8MaiadUVHUMprcTVEJcv+DWjFpamvNiMAK2J03LbVFFnwHMRUFS7s3IjA1LuHKbPHmOp/cfOvMIZtyD2PClLxD3wQiHts9JTGYj56VaXzr15rGhPr9Ps1fGMFw+D+CFQAGKF3FMGZGynu2803SD5EJU0bKmVtlyChz3rO6KDdmDctdP/Yu+HcSoHlYIHJC58PcmNv5/n05bsuDHUv/vuOP1Gh8drDr1LByDtcsFColR/hrcWt6L0O+kb4adCH4mhfGiAODEI8j9AAUAM3bIUxcnrdXwyCMfLYlHNxHG+fcla/VTpkxBx8Mbm0mFcsgTn3ga4mgFJ4g20xzI7iJIzymHes3zgIFSejC3HYMHh9TNP14tJ+AzwlAM6U9vtAfjzONzNthHqq97sIUJlAzS3KyeUv5ChBf8J3S+GZ2OKqwkddz9/q4i8/YRNdvzhwbc5cu6g/v5gxdPm/TvhVj9KsPZgbi3TZLACcREAHhjA0pMNK0PE5kRvPSMIKIEVTEPcxZHbcYtT6dY22TiVgfpw8X/abL3VHux5bYIc2Yqu+1drFJ706JO/7K+FRjOgC9gE/99F6bKjmoFKY0S14mpdFdyzY29JI8UyfhhxztJ9kle+7Hy8MUR9kcBxvOZnnOMVRPN2LZKxhL+OqAx4Erw0ejGixwWY2Y+7ZU3R+hTKPEhe3fmHZ2cWxfzv7PRsSlqZw7qh6Sr7g87S3KM3/Pkpr2G0FJ9MtxE4sS+rEvSw9WYiyyeRzHrcp0ewCUQbFQemHyt6UT83ynIFZxBs5o91b0BCKyFAaBukVw0tFvBSqWnsRX0rZRo1AM8FDHbceXooYLzlg8d3dzDDyMlPmB+/CYpsKMF5nxM736mfnDJTQLqR/DDQfcBZZnV0HGKd5Xep8P7nxgY4NwJFlxL8s3ACjtsjoLypbc0MS2st35+OGtXVRDIfOJqFw/ZqCh8ZKEhTi9jyAlpsmpzpvghtS/3y05vhORf0fGjCZpRL/MNI9+W0BxM9yRrvV2n0/CzE60h3RoPaSdz1+EuOQ5xNFpDJXqrau+m7S9q5dIJXriTLRZt56Zn7sRrhHGNm3+Wpu4ixRzGFtwi6wdI3fDQhBSN5sPMUc9cE3OUpnqmJTOJWZSYpKb0UlNdXuies9NJaBwkfuEXObDXFs/S9MXFDBWuAlqZ+4qV9mEQF7Q7IxN3Inr699GSJ6T57Xh1setzaF+vG4lcd6Y2i7KVrx+GJ8yJrDNeJ+iBj2lz62f1bkcyEaK5ttLSN9UikhUQiM2jt1WMSu4AxXd9vBUjcN3uiCPftYmxBX/7TbZcl4G1sGMDHrIyq/0Gd15G62mziuV6GvYmI+CFwUz8VfqIJWoXTvks21i9n6jPqmttdNC20TtjR4gAZMxFzaO+m/bYFIq+9xd5G4Nak4SxwkDeBFBDeO/e8/Rg6YMYGAF8jzjqxzQQDR1gnoZgEW0dZZ0rqb92VUgs/o9d6+bu1xi03UWQ4loI4ppx7ZTB/F9I7b3cSB62I0sLy5mzxjo2N46PNaYI3nvQBYDdl9Az+ikHCNISODAVVmo9+vK7ZIjjYOU1/g8d2P58vvIWozxGdf4+frv4ZP1nXjCL+KaHuMt9EG8dfkh7PDzR3Ifcz3dn5lxmfmPYXJrcPccv/cMkIWzddsBC08KQiFO4gBZIxyvYf91zvzw8HyOaln/bfbd05p9Pz2eNFTPkPc179g0C8WpLxRwCKiR8zfRoh0og5s2dzWszo5mo44tB7LU3fgEUjkaj+idp99GQwUaQhm4aoBuu518zp7r6IznLb+OZ5zGmY2zPl7/7TLG3NM6NooicEl5cJy3WyPdqeYWDUDnN5MeJEMB8t5Gka5LwsBTUyy1u6qgdJmg6r8OZjTXWKtRkW2oN0bP/H1Wfp87DYtk6YuqsXk4QEFGs+oYZmMCNZqjhlPJtLSjmVjXokm+Bvzgm5aiCmebBgFswcBRqBCsS7qWcneb8egRz1t9htxuBVKfQTdUfV4jGh7m8V5vvn0rvy1aCHL1sSIf4rlUBR82pzWsfo/ARaygLRK2JFDTDEr5nTYt3efGA56euwDYzMhzds7sw8Ko33g+ottbUbr4Og2G7SVXn2L5tnZntU75sHHPlFAXXn8zszXmZxOQZ+H6Mh3dq5qUvcVRjzGup7fym/FT69fho/WdeMwvi3JWxYfoy/CW+k78yqvvwhV+tk91ozyUWjmGOwa9evbTwrBXYGRyaNKjuXeG9Ej/Cf56ZgM9A8+ycAtz42v4RU4Z4GgNO7bhMSZ36MvENm7kFeJsp3eeYyBsZndMJHOY0+3grRnQoJY7awLowY2b9lan4Ma1/VQSJAwxkzF0ZgrYmDEZC10HWX23LKcNbRNVkLo0NuPM+/BpMAaXMmcWR8emdm3w24oXT9c5yMh+Olo5vHu4nuJx+jamqWMvtiwj7dQ7R454lkaNR7SwVaR+8dxewTB3MocPXf36+duXz8HGZASEBo93wmh5uQsaa81dmKjG1uiLphk2H5FV1QAW9VzNEwZQVE0vEqtxzgd8ZAXrJDexPEOrerl7d2rscijDWeHTuvq55dIYdCLXhXg23Tkl07G6NYUAOFABYBvJhHB2OYAYKJDRsCKxIQU9fob6FKjR9O9DHe25uefbucsvR019FdiqQFN6BnO2qFnXszONozvdCbTxNwuTSndsQgzhnfN3/xmDktPeYiJ71jqn1UtyZFeBYhoc6soWZ1bnMZww4puHxsf0Pl6/Bh+u78Kn+Atwg2scsMMNrvFZfhkfq1+On9h/7ZCKtsY5UzuXpG/hbfIw3zfyOHHctYW2G4uNG5a0dMHu0+7ZlMkIEMY+acFZn22VnAevOHaHnCg+K5jK373f4r9dXpZw36ojIbagw6Tq2RGvVewvUwJgZ9B6RS+lASZ1Ydgvc9MvVsswjPCutCMbXe/K0fuN5fWRHkcMDTGofzlCmqgL9HouJSeKtvlti3ZuxTmX+RjBSgQ03VohXIeF5zhOwgjlrbVF44wlnJe3L0VLKZ7i8VHE2S8yRJP046gKBR6+K+j3f7sNrm4tSRSRcvgZ7UhMbQgfGTx91zD97nXetc5xhmsOKPQ4cUqrBfRZWeR92g+hXbZcBD/MnUcKaKkeTW90UlL9eT0n8lNyNDzMw1xCD+/LtTHHtv7FPGfzUOeynpHJ4CNaOmMQVfnefkv8bqAmS2oKGKVouj6mPezDt8lzN3fnS2zGtV5ZQfh+D4/fwg5OPm/Tp9Pim+T6WMZ3dTR7PZbHhAntFpyNpM1vvvh0zGkIkCdoC5MXWPczD+PWQwLzTY0WJCx6x+bgR+tX4jV+GTz0MeEG1/hwfSfexV+CK3zwQuIfl3B0z2Ov5OfuO4+MkzI6HTswzSf+pnUwHKrJ52s0hXayasa4GFMD+CQ4yzmQSkxO+u2fc979ODrVLZfSYJ3fWgoKtZ0ZEcijJjCgCrBV2gIyc7KqilYp78Bo/zYz0W2HOTPQfux/YFtjwdNjZkXnNT7f3Xd736eLec9qNWuJtAt/hhuCJY88KntQMkpw+rBdkjLHMzyRKP2mmTLZ3EtXZFyKh6mbxahiVICIRBwVqdC8R7dWrzhb0gzi6K/5yjqqs4r8WVbNIN3xuPatKxsLXSNLXOIN52yapEZV0qw2QerJ4RwOJFpTDxWT8CFJr7LHjZYQIz8xa4e0XpyYpnNafzTKxkenxW8UZ7MrrO+jG/1uo21wW3dWa9I2bzYCMJ6MFAccCuTVrwhj5HfUuF88e+PA3sFKAzC+UazgvgQgP+c4LnfPzT3fzl18xqbRJcKgtjHQ9p65OQ5ujud4+uvIIp9aviUUhe+zNXD0niQSwYsuzUi/iN9pLO9xprVn4zNL3rxyHYcyTytxuh8IwKfxZrPlNnOP8QKe8DtwXT6Evq0jrTynz2egpi8ld7/5ed5rfam4+x3DdIzVOUS/nxJDAft+C+OO0fuaVG2+tAe/yb1Ecaz1KV9G2th5mfFLSC+yiCO4MQ5HmUewqDR6anolrN5pE++vqSR33QAiGVMQRH4uimQREGbN1dHmLbi1aHYs1kVupEOzb/fjjpVwltcxEDMLE9M/vyV8/o1zEogSu5Q29y0XKWoAwtyzC0ckupM5Nb5IKgS5rwZIBkMC85JAki2BOtr9OVWbPf1AAtLnLdWrUy73fwM37YmzVbfJcq3FzPYCOvASwI2dw9F57buVGtkyMpPU4ZyPlhFBvS7iKAvRnxXqir3dTkcIVE8dXyfm/Y3ghuVhg09oYTcYpHPTv9DN6DMNL9s8TJJKUgYwEeS0OZ9BCTqw4lKZcMVHuLYj5RPAznP3dNz599hw7iifAz1DM2FkuQM5pIRrQm2FaTk2KG7HckwKT/qSP4555yW+3wnp2aYMUuZKMv3Sng60pfQyez+LE5KOjW7vfT9tuS1Gr/B6MjZhnfr3vH2fznTxOvZsB1Bb7Pw9MEKIPZbT6PXbt/I7PcjmTAwQF8/LydsIIuIY6n4pjzPnYEYVla3SzFlQXDTRYt+QtrCpFencJ+eDZJ7bDlL4EBnAinbuBlwbuAHkAlUSgOO1rExydwdZu7iERsq2uQpGjtMr7sFDYzB8AYxJnNFO8/a3ZKdhzgEk57g+n1u5Gc055jjOw7HU3Ag+BmtnrHN1Th/GOU5DIDcbHWNGathRIutiZWooWe9U+hulORQGWb/jbetd8nYmMdfLJSg6/mMZbS4Fxt/ADKOvCfq7vRRFxIs7HaZoPbIcKCAexNFjJqXlu7VGqHAEL1ZT9vVfK3lklo1u8mG0itY/ELyfbzFreoLhy+pmse7Mn9zV9TzAsSAPke3RnC9JaAPUGO0N61aqEAc/TmMw3jUYf12Cw5K++ztAqiax8TM3zpdlUHM/qmjPz9jczl10xmY2WDPz2DOa0Y2MJHd+HB44EaZtFxm+7LO1LI6lBnxizJh7noSPbHTMGSmdOOG4K6u3WOn8vBY5jOs2TyZN1B8NefmifDtQAwC/qHwMCx02Y13jBo/KR4+m76XIBT8NYUe2fD7W/Ns4Bj0dCq2ayiER56Uh9Lu/2dSyrthDUVOYuGuUitVzJZNXrZ1LGHnyfcZsh/yHem3Nj/C5L/OkoDPGExDmlLUU7U8vUVSz2s6kythg3Z03rX1UBhjFz9ZAz9p4GppevKnex4n3X7wzI7XgcMC8o14n1oM8+uLCendHk79zvl2aLrCdxql0T7FQ87WgVx/V/h0pdAQzs1FOXfwWZ07783m1MLfgI6efb5YyeVjLXecId4z8rDW6+bQVlgYRSx5T3k8bdICAwfJmt8YRvLwpDGXmztukv89D1px49iYwd3rexupCfhhbCxrp2cOwXGP7nj9PTrPnx7gLzeuUOzanT4UZ0rltI04SzLxEWO8uJTSXlmOzaIx4MaZ9T3Oim8dhXKYL1PU3nJFZyMet+RdAz90sBf49nKvJ4//+QM1zd3t3kSoaDW+T7RKKPN5kx1b1a7sULhkHd90NsQG5YQmJgY6AN9/tMg5cb3iZSWwaoYhs/rhkj0s7TX8n9cOsXc9fOPpwX7r8MD5Rvwiv4q2dShrjCnt86fKzuMKHcxrrSyBaRD1CGX/KG4CxkNy92k6kBuxkVzzu9imjWwNJLpEZZgBUZNc/+pNY1CJnokFYuWDlBRUFCxasaO8LF1Qm7HjBCsIBhBX6XHAgwh4FKwPRlGpu1zADgi57z4yN40+ZCzb1GSAzaAhxCjcGT9MZxoWZtbViWmO6+olHcjO3Xo9kLjYuOLGqUl87WMlaJ6+H1QvNKhoJ2iwEuUQ13CvAFQsxdswoVLFA3sEoWLGgorBcb8Yrar3B8ui1NF5yX8xgch9G6k9ZDjCdVwOTcDLIvfEKE8p8Vj6n4g3h+6EwcWmDsCOTDjYL9k9eANUVIKByEeBadDTYfDUDE3Y3TWl/zCAUuT+mjfamxqhX7Lb0lI40HxK1KTIpRBE6oTRkZZEOcpMUrmgqkyszFgZWZlQmrGCUClS5henAFaukry3rQLu9uUENaX32+a/3xiitU0PUcXblNmwEQK0FcjhMpqO5suaDriy+mWDlYaWXZIY8NC3fKOBgyEO+Kd1mhl1NzV5Wr6vWJuStaUj+SjY0jpZ/CibM09eLOOZ4FtbWJgZREZU7oC4v4NM4mMqspzuQuIvdbdUOz0tcH7YzGOb+AzHgt0o2lJ+m/sEr+fWg3cMoiI4gJ5pvtk1jC5tBUFt/gtnoBGD82c/qZEMbd3XPz9jczl1+j83UhdkeL40w0qUibshCwh7NAkfA0wBHZmfHHLO7YDKH0hV/gUrI9UCjLkcKROIE6tOOuwi2BBAl/xxO/qivYwQ/nVSoVztKdcsoIU1wbLfOOcP8TfSD+Oorxr89/AZ8nN+BPe9AYDyiPb6Mfhrv3v0d9P34wkd+D96yezceXVNj6olQq+8SxvCr+ZO0R2h/rTrBdtt1EYq3QzIz6lqxLAVUCIf92vqSKPSZ38GgXpq3rYO1opQCooJaZf+/kAEpDVvXtqsTF1QioCwtHgNgYstfw1W5QKIUr79+K4UG6z5UZCRwxbq2iyvXyqBCWKig1lXAo7RDlYW6FAdLXAFp/1Ko1W1d5UCwt28pizElWl9tg1KKl0+4DSqEUgrWwxoakIWp8eGw7JZWd2Zc7RYc9qt9bHioQFV6KjPWdcVutzOw5O2n/e9tomC2FMK6rliWBYaeibAeVnzso5/ET3zkh/GO/+jbMUwMexhnSJx7eii6zS0Pn+ZnjJf5oY20Xx+XZ+b5cRi5ZVIrnZEYdy+R8kX32qdfwb/42/85vvLn/hUKDkC5AuoNYiuREmgUoO6baXAQlkJg7FDrIdDbkCkRGAuw7rGUghuUBnjLIj3JRhNQV82pjVtqIAa0AGAQ67xGm/vrDdodNrJBUg+ydpHQqArmCiIFJQq6qsyfAkJt84VaeRpTBNRDmyMrCDtiMF255INrm2dUQGUBWMxtrDdAuQIVAvOKQktbgQ0wtA2BRjcF5JUrEK9AWUBlAfEKXg+NNpQFCwFMO3CtjTaLP3iV9iAwFWtvKlcovAJgVCxA3YOuXkRdD775IhsWxBUgBT9Sb2aUovRd2otXgAqw7sG0gHaPWnuuN0DZtXRshLZ25VpRmbDYBSZCB1luyFKiwgegHkDLC+2ZgSdf85/iv1zej5/HYRytnTGBND8oBzk1x/t5OZunp8LkPI5PyktoDoV/I69y13Q9SR79Jq9ZujkLP5FEdjQ+m2kGICplCajAwYiBGrOC1sJE4wCQ8Fm1LWzUwSD6c/cU3EX32PRnX+LCl4wCcJ7sA7hJ8XJaQ+LTktyH8wUtqoIp4+rAQUsawcm8DIG9tN+hGjSG9U+xfdl+LU1GADe2BHdlmGsUj+U9NelyT72JfhC/+urH8Ji/HHt8EQh7vIAP4Yo+HMK7W2vTmi9LwVKKAJtq4ERBQa1NxKuMPgkIYuYGhAhYSrTKI21hzAPLTlsBL16GR492fugVDoqci2nvu53KCQDdGSVjpheLy9yYe32nHSGqNXkejOvrncXRssayWAt3baJ++pvTX3B11dK9juldeRlj+g2QkIARbXNvL0i9Y5ycBstOLed6h7x1h/PqajG1MwWgLOCqpxfg1j76rhfg6u9hXcG8WJ5anlprKmv/3Oq4S0CsATvgpZev8YVvfSHMxX7sb7HwcW76zJrdiNQ76n5n3x7SHcv33OV2E9zcCtTkFvFln0Dripdf/TCuDp9s42BtGxJAUzHs6xLvYWlH+5SjDIxQBNfKpjHwon6uG/1ga1d72Bm9cBpCwmurFDa2iW4moPo9PtEybZXvVSpHIcy87RT8P9bXUEfky4IAoD5pOIB8w0TpWVyXtWP5ED28v3fwOdaXB+Fb550aQzcIy80nZYMlD5w0hwGT2jIFoyKRhmvYPYw25U0yd0XzD+XVovXrJhEB+09lv/SktOB+Zm7qvwdxYwYzHmQesytUGP/HcjqrSCqyu0iUoZQj9kjgkyh+iSBHQYqGCeAlfJ+rq+mfAxTdcNiOyxP/uzu+5zM2ny8Sm8vvsdlwaew/YNvdd9Lz9OL0HmHC1jz3kD4V06TrfrfKQejjni53DJ9BU8yHJ35bjrtfgLDHi/STeAX/DG+m78cVfWQzdimE3bK0RbxWVJGEqFPQQkRBegEBNDUsWiwqCLDwEawYo44xrQHUzGqpccM7GzNBUpcSAMe4qHvepUkaPPWhLPGbSYSkTrF9ov+xsmt7Rb91bSBgWUqq+7queaEXZmMO0Obrz9iW2sa53CWAGgUuA0esaEjLHaRlQ35EDoRCX2j9La+uzbhW7ArwaP82fOT//Z8i97aWb6YmaCUX1iay5vN7fD5f3Dl8iQXhkdrE95//0Jfgn/8/fxte+vgPWrwRVua4pevjSPsMYIQ/orHMjc/yuR7jxRrE3ffNudgVtG3qmCH4VB43qBF4PW5xNJ6ny3ImDbKxs60xkPzCVIvhOdYZ4/ctd2ot2ioPkRjzwHwVAvJMqwhgMHzXNuj7WAPE/kt5SD1PrXZ9mPWwfzjM8Sy4Syp3zi7GA7k5TZ6FmY0w/xatmDXJTeCxAljpTTo3NbUo1dG/AHiSX/zjs+fMc3f/7kJVNF3iddDoEuSO5R/9Pt5noQoA+lVTHiU6Gd1z+NdLc6yk5zieBea4gLg6WT+JIuPmvzGs+0emqGlww8JtAx7uwmm+M8lOzC1DsxhmhGlzNycjYZWflDV+ZG4qU5EuRka+lKYaNXO6uwboQqfMrz/rvQ0KQOJCPmNAosnSfKO3gywAWBaXTvTl6yUWvbRjXSuWhYO0wcsHBJ16kwCRtUsvCYk68lrGZSHLt8cJ7q8sQkvXGIuw86mSIisknHFTIKHldkmalwNE4NBmrR8iS5LpAmsgZKlRD+S8jXNZsrRG/Tw9oDF+GfTIr6jYXF/t8EVvfamDJEpTnKbp3OqaXzYue3YsUq/2HsjG4O660M2w4UiBz0hnw1+rfE56tpEbSMKc4uScuftdDo/x4id/FqgHVL5GIZHS2HzNlN+kHVoIOAPbUz5nhEP/TqR+xuhLRJ0zliIBh7XlupDA2tCIUarUA/g8ajH4W71KDkeSsZ87IxyqMl+BLnBol7RpofNSVtnA+6kEXOe4zX20dp8NEB8bDviixTZtJyJgrRAVMGsUq0/jDTgJmjS7JfSttoNJ7qwP88rW2j6uD4TYPYSg4gsYjzFInOLzxrpkley9toJMwOWQIU3iT8KdA2i3RtudGeyNBM5KdytQWHc2KU7sxxk9pZwFhU7XdPUSWN0ktZmtEhkC3NqZgpjajAYYeGnhNQ8PF/JQ4AQEoxnHGuY819buu6cT0/t8cBdIbGZ7H3O7Myl0unUciAvPGPceRsIJF0HGLMdG9IDIpLgKSgtBfQT9IZ9cUwCRDBVEcWUvzckLH2lcyq23vVOwPXy9/tz9zcP1f0OdNlxjdPPC154zaNiSSmipdPe/nQ2hIT117TumYMkkCJHxDd+WoMKmYInR7QrL7qOmX4O0SBlwBUWuXuaMk9bd8/G4UWITJSqxb7R+mk5k/BWouKTL01uDNCfWX9ujhHzTvOhA2+FQsa4cGKFcj1IIu90i6cZ+K0niNUs/tlGvgtaDPWVeonpcbmPK/SJ/hYBHy5vxqe/9Bi+D/VIY37rpYiUbwp9iK465Y2G25pyVjefz8TblOBbvrPkdI9EWqJkzj/r70Z96J370O38Drj/9QWEI2rha5FelFICOebsXM7WFFSMR39xSvZRnVnGdHzXMaaANoaUUFCpNqtDN52ENiXMnhJ9mLYBCD8aTZNjNFtTQPrYuJVqRy2KghRo4aPMcBkiNDkgTVQSAN4wuNu6qpdf8WrpS3lCuXckyTQmSNgs2x1roW0jbrTrHQwQGW93ypg7H4koayiCyhY90W+lErc1vMVRmq5DWAsB2Xz7zbkI4Br5ha9GfJHW+yxM2Sj82t0C6DHxT0wEJQpntPajq+5lIyVPnT1Izi6CG0SygiZEaPWNT2OKZH6q9uz8GAPTcPR13a1W0SDgyqz1nk/tFTccpb47tsEjx+CUvHZkV2XQEgLYZ+dFHJtKJtGdE2svYgw99tyWoC+etWIY08i9Smj1IiaLT2V9Pv44Tmu122gg3ASFx5z0zDjnPmerYjDcgylKPuFD1DHFifM5wzGxSAJXGgJShprDQx0U1M+Kx/rWTXkWVOQ3X6pD94p9LfJpaWZ/nbMGetbcuAtZW1eViM0mUlrdX84tha0Vro1DnLVW5+C36EbL0quVbhrxCCw11i/lH6RaE2Xq0fws+9N3vy/HTBo1uJMQUOXNVadsiMDy+crZXjrk8nDvCfwz5n+BXBlq2yYCemV+WNWfQQ59dUT7+BEvdA6WEDbBmAcvKSkC0DuSMjXbLbGxw96fjxOmBjzvaXAit3Kxrgb/XykMuPcDrydZM9dNGEfscnC+JZGFivCipgcQdzrQEZl9/dSNIGXubL8iMpeZp8zkADaMZ8hzbJAI61v+Ym+U0rcuEj+idGmDRPiN4I/SbGNFYTKxPbK9+PhSLoMleqmq60fOW2WR0pIJsjZxZGltxtvyekjvCa53v+jVr7Dv/5dDvHj5aKDPeR58NpMRfgKhiPDNTDfi4uloNBgXmPNZdndj1vNe/zwd3kfGAcZDO/SLo4OA7qJqF+BzeTjX9PMzpCURdaXKCmQgrc0MWYJ4ndXFzuLicd1IZs8eO9M3j62LVswSjdGc738tdzHtMidLTObn0i7gupFENifpF+EgakWntmYSsviTERvwqs6hZOPVzJmWST1cGImCVsxxNwiEMWwdw+nLO2kBdVJHIfvncUEzD60jTdukdhYXew7eyN4YxLx76GkGoxx/z6aVRTVKXy1zt7Iyr283aZqAkXV/37eFSLYS0+0QgTJTs8Bbg6tNfNrZTeDomh54m75XZiDenafe9xMwW/UvyPzWftbVTOM7fZi5TsDbmP/5T78THfvAduPrMRxDVt7QJy8Z47ol/AlEzgMthDSIf8/04xMbcjfXyzQVfs9TMaw0HATlWJDDxMas8F71yHs3L3pirTJlZEjLVSWRn4VK+uV4AiRHTvOliltQ6Prxvj/bu87EfGzNJkr2HfqlVm4lszVUglUvgg42Q+yLWm0OGUQW5Ty2VJ43B2Umf2fsspXPcqZlym7hzd3ovL0zgc9K7KPfbx3E+qaNrNPuWQY2vCf4tSWyg0r4e5DSwot80H7V+Bgmr6qFllr7kXSbXiDx3r587W2Iz7PLHjrdQkUHfZhKdHOrTbOiHCXd0ZuQAW8FPT/BJ6XjcI0lUM5d0830rl3PcbPkbkukqfQ5Tc34J5mUaAY8w+ohldsY0ShRSWh3DOuS1IdnZAjvuN4kj/86AxqZK3IShbofVt8FYPs/iaWQQNJbTGaftnulV7Y6V2/Odt1GfxrCDOgMK9m2LaRoZxGbO2dvvHJdB6zyOMkO9VCurmEhZ26UcIAJefAT8wo99DXidkb9RDUhX0LGGbbRPu2xCiMb4n5tOAczovAU++6EX8ZmfukI5vLY59y09lbTAd/1jij0zbeOieQzpq0RkJj3ccp6GA5a4TvQ1jO96H5OnM5+LHCPFx65oPcMfwYU8tOfZXJ+UkUHwjZ5sTIHgbRkBnuaj+U7XqdwxuQwzmhXiW10mNF2fZ8PG1uhTZGaSQJTunGd2wHKEj8SeYzgnjb5X4nteUef569/DUpbt1CX/jhc5ybrN8ui6RcekAocUDo0PjeAkgZYJ6CDLw/2ScQCCGQSIamaeppdxO/2eL37uXm93tsRmMSDjO5pk/+bJ7D4zxqhnHPIyePlgOJNRSmlnM8xegn73hya1E6JLQJsC1dok0mIG5GI4z9uYV0NMZGHHEmipSMpLuV0lz9nGwLlAa8LeT+Pmctnyh7G3KJRUfDrGIqpqHduJj9+Oqa3N0p65yJjMymDnTLrdvcgftEPFTWWMlpzvTJrh8Uc1scgb9CpjtnvZld/VLsx3aJcZgOjByljGsd1GEOq73Sop0bbJQM7zZzijGfM+JZ2L/aF+0djEMUY4xsk7wM2/KRJWfPbHfz3e8kv+NcReMI6Bp5FmzTKW8H38jeDP4qI3gATM5n/3nnlcp6U9Mx4o/Kc+8jY8+SCw+8wnoPMRiWacX+b+qlTC8d4y0t3Nx5wKkiVGj9vNMQrrwUbBLb/2luYuWxShRZK5QhUOgGIoplfEyjzUJASxNALTqXUSyL8xKL2c/XjQNa0P3xPPmeRHvQqRtWNKZYuOS+TZ6jOs6T0tmIS350gvOjP1Y6nv291+xd76Pmu+qYIjHX097uxepUn+W1EklJdvPv98OKpkxAGE8pUezjk4svcWT8/E6GH/pHIm4MUu6LR7acKfptuDFilHb04a8fceiPzzCzpv584GNjvq7ZXA3jNj3oMfHXYRwATRYUiH0PtFNyXdgzPidjS4fAyUUBnQKv5FmLcKYYZkNhpgYUKlioKCytWs+SiQ0cIo0W7XghW5l3pW4OxJcmszmPOdpw/oOshgfiOo8efBP9wybel20pXIBI8H5p2pjou+5jKu7xkUxPgxTw83U8Gaq3UZk4xunA5MP+AX8Y1li6ApWoYDKFywqXmPbRbL1JvG7p+j5MLmGAXGswMhztzxcMg/A89UHAMsCjai2lm/I963R59278Z4uQ0At1x11k67tUkzaMEAXnzEuPn5t2H5wg+DljjKI2vM4TkWSBfQbTZ6nB1Pz51HOe8/r55OaCt/6Ad+MX7hxwhX+w9hFYZCbmNCvAE+zX1l8g3YT+YvCSMQysNShMiMD/GQx1Zvf8TqFOeGlgWuNueSi9zjbOmz4REdu6WQ3KnjGwA1FLQOdCqkG/CU5sEpnCc0GwNq3kVJSk9ldX4rrVqomaVW8BXDEbVzUTETKpF2k7VfkvBQaO9QoTgb9bdysFjHoU/6MUI5OWuvkJa1T6JHzWKcFWyIdcw91Aw7PXuHzeZJUR+SBh1j4PtmjIBmSjcTX5glISAklTCd13nzyVXElghW4CBHpTMmqYnhEpgJQKYHNrHMVj5XUzPg9dw9FXcBsNFDl2TmLXtAw0CQUHTssAw2ezSX/bYHAw9vTrInYSa0QCHXGKQRBiWcgAO0CE6Y5fI1NABEAlQWtFumG0HmBnSgNJcamKHSwA0XAUShFEKJI4DxNtRVq1Fygu5wZcnIXd0M1Iz+2lbInQ9dKEIvBgBTrd3mzEQkjKPkph1KL6WExbDvc7b1TXf7iQrsTFcnKZhLNTIo6hn6LSY/SnxKKQZcejWXeM5E2ygeqo+ul1goU9Q7vaemBwnKGI5gx6Vhub09v3jBZUvLwdRcsgOUskzyV0DnBhGOSVq0XAqM8hmf3PbM8W6jWDbYmImAi7maNSQ7a4UVH/rvvx5f9lv+Xyhv+QjKomwe2zBu81/mIOmMzGzzQLfi2Nis7XF3jKU6xmZFZnEL7/VpzzxPs1KTTLtXpeocngHCk8+8AP7Ex8CfWrDWil0wGpDScZ4z1JkzI4xmgWutnoPJH0Ib6HmOSI8APVhM2+0W1iwriIUfAVF0WZLsCUbGzc6JdPUsxGbJS/vC16UYX9PvGPteRNLV39LZGiMh3FI8WGz3vFlCyX+eZisLc67D2pHArfGt5VfeI+XT1YsIkOXYjFBYmmFgpc0fAJB2N0M0qRD3BVwuTafjoyYpqIW4zf48w/MkrbIAOteOx3CeT95D/KH/Ok4yghkHCFk6or8Ufls+DkRUYkPQ8zS9tAYWP4GaoH5m+aa0uzKEeg1g7I6uMoHuUcpyn5d9PsvufFU0rNDZs6BfwAAffpz85wdxZ52e/c5p/pEIxqXNXjdd/Gw7avCp26QsBDBQSdeIZtVlAQmAKVipYhGqXQkoAfw5RCEAq2AUAUbUlA5saR0KTt4unJkqL3tYGYcW2ar8rGF6QbUT/+0wLZnIxAgrCioNWDC7hZ6euT4cDsIA54XGQYoz+QoMXGLhDG0s47K0vV/fUXcpwhagUf8GFCT1wFS7lAWSnjBGwvzbXSrpvhVPP5Zr5nrAMDOPbGObRxCiZdP2AsiMEMzz88WwMUxabwp3XLCBGmdivP0MfIR7afqddC23gpFevbBWTma8deNgYMLY1d5shNEIWOOYTSpxlbEeDmAGdrsdDocVhQkvPmL89D/5bfjFv+Vv401f9EFLYZwded5tAU0PsU10ZnTt1Gy92J2RUCzHCaHXxdnO1galqz/8d349XvvRn8fV+kmUpRHVKmPBJGACQKG0oitnNCi4Vt8A8fNnkRK5M6oqY2Nl2b2lRuMNw4ZIxrwjg4mYpvmdAXJy6eauWj1bOyzC3UVa6vmPK2yLlwqwmd+Swo5gLYIrpQH6rsZPbH5qLuEnjYVQr94vujQ2u3cHaS2kpmEguF8PhJ6Y5TjNgzKNiOYClt3u6CbMQ7q+7r3f8H6EaZqqnt2qULOSnEvjus2fY2WkOThwAONABPqOAEAmvy6JQVIzi+dqpqAmlC0DlayK1pehD/vcPR13kcQmwhT7FWIXAY2ro22x0Je7rUk+DzV5NY41E+u0aAozzOLRdvM8Z4sjQEdVyxYWFTPhACtVLJDdImpSrMpNFY2JRR2tBBilAIZMTN9E9wqKdLK08pCIdjSWVzYus7N3dT37FlQckvdEraNLI7YPhzB6rwqgQKO1X1St2O0WYUZGFQtmxlKKLTi73QKAsK6r3ZXiDO8IJjgk1t95MgM4rcwCFhIzNTLkfm5kZFGyupXXpVc3IyKs60j4toCRflNAE1XO+rixXXrpj3AgNtZqV7YMKjilpWCJpGKR6dR6NSDj5ciArdXZwd7kgs5JXWKbef1avZo0jyzO0E8Sd3d1Dd7v8eS1JxaPwLhaDmlx1TEcVQpi6dr0OLYbd3ox24p7lIFBqwgdQSFHeJyzaW6ki3dZluM6oSwlM2H5hQ8CT1YrkNHaOGfhADeSpXFMeK0axg+lZqWanurKyvSQMeIUy4FJu+lcHmrogN8Z7SPtFqQmac2ZgIm4sRMNFPTM+VBODivKhDGfScpj2XshhdHrLq1VwFai2V089fPLTjt6q+0Q8yaVOHm5OsoUaLPqiIxjQseUbuAAtGllL5ZJQWNdK3jheUM/sEvjXR+2JuKR8k0/0bEozh/pQ5ZNOqO/mWdHK2NyeVzFNS1+9zKoRMUAinw34EBKExyQAG6NTLkTBS0JyBCg99eoaprGpRCOkO/CaWUJZQ/5R0DV1/cuTunAfbn7TOtZdmdbRVtQ5a8NlkUi2wEtHQj2p34+SCKbnZa8C0bBffRLWEKQhinnxbQvfTW/Fkj28c0/XEmJGuIxYO8ellL69i3sZmle8dkBRFgwUlmx8UeTMJTS8TaRv7RweQ/GNPp3jauqSECbTLVyuiyyByWNcfVvRGTmlYGmjqZSG1v0O0Z31sfTb92uZ3RFDo5qmXu3LGq22EGLptmreUUmP9+zk6U+0fR1bB+7bTukGy+81LMxMY6WJbrD4YB1XQ3wzdrE64ChvH36AJKkJuZp+wcdE1qUi+rqY2AylEHzTmXu8w/jpo+XJTkEooIqaZXdDvubPW5ubgAAj5YDfvq/ex9+4f2/tKWDY4uSbCwMvvntFDlLTOBFxO9C6ndm2qfKcBua6/yYp/29f+3r8epPL6B6E/IWqWBplz3OFvKe2Z6Vt/dSxjjSyB6iDOmeqE+fQeT5tcwrq+ppnmN9G0YGVucG87z+US0tXkjZXzp6rJ8sn0l9WpuOaeiloa1+Ha05kltlxir1n9WbSPmGUAbKYfqy9KBrrTlAa4emlhjr0+b/ZlEtnyW2zbKcnMUPjXnunf+8Q4FPzY3bFmMGhPr8Snin8N5+g8QEcB6UAl9Kzo8u1C7/bbypWz+DxFEuL6qojZxTLk9fXn/+PEEQz6i77IwNfAeE5ZQJoIcd5eB9YHJ1cWtMcrcjYJT9FLiZDZDZsjnGojF4+iZsjzArbIAl7vq0RMh2tt0IAAfJTTQc0FTUlLg2f88FEwMCDFF5k+aw8hkjGGsbTA0HiVLfrHkZz185hcgtmRfVfor2Epyx9Q3s2GV6FBgAD6/qZZpfIU0vMqVoF4+YlCQuzAy9bqDfqdd6EDkD3jNEUdVsXSt2u5KsbumuqZZzi3HXvEfpjxoTGC18GbMv/pZHS9DbaLJDHfOL5VzXan59mTUv66MJQOj9Y/n02yxsBm5ZPSXW1w0oWM7w6uZ0h7ISDW3R1yuWLxpoaOqQDVQfDgfcPH6CsltwTcDjz77WztVhD8L8vFMureaRmbxIX7Z2NXtG0n4vASva2bPEZ8nwvIwDsWDeTOIcl+kDpV91/+TbfjfWH///YnnyGWgTGhNfCAdhgptqlF8CGY2x2PhTwN+VwWmIVzfeId+i6llKGL2PzG/8HvOMPT62FduPlrcUGppZ0wfcGpiNGMo0PzqifE6xL4NJctlBSpIcY9KGfenj+qi0BSwq1ZSMdfja2dUHrd3W2s4+AcChMpYS+87raBcgT+uUywJkC3jOiEL4jpbHEutOOd3cthzSym1S17VJbI6441zJZe5ovDjQ+/k7TWsSiAafo2XJmZ3n+mFFw7egkjYUzdeF+K4qZL2EJt0jk8w6Y5CgECqaYgBbui18D2pqANozKVGuV6RyXn4dh8ck+pe551bRbufOBjaFVhho0cPuwqwbIRX2Pe7gN2MD3M2qMFKmS8Ss8eOU81CcQsyWEi3I+C3n4uQ62XkzwsJgJjk/UxsQET5Dx0qVFaKQqF0BIGZhcGtLV1axSg0YEYmFNVQDTtmaPgUWoS3VLPnrjnRuu7HqsX1445uGyK3Dya/vmwSI4rO0Q2zfKiZz4nkUy8lXY/MbpRhhDy1Sl46JziAngIGYVNxJZRYVqQwENF5UdYrM/LquWJZlIrXQsylFLAqN5esNA8S0ZmpymRnJgGKtTWWvMWeU1LKiKlovpcpqPA2EaVmXUsCkameAWqrq2zdae4t5z6RY+8MBu2UB+lm3AViixK+VkZNFuD4f/XWpHg/h9Fbydd9uuicioK4oYPzsD/yPsH/8Ir74l/8ra2ddq+LCHK09RoY2kTTkIdr73dptgaBEBvI8chSxFf606+nsFp3xTS/PwADBxz4K3HwGhGplIjRGFFXogiSsZ0vcApbDpC2A0X+LAIWI3IAA3PJVvznQmouwIyQVTSmifA8ZTtpAP+jcN9UzXRMCqMqAIo5ll8b2mwl5cyf3RQ/GcspzHnnLaViCrHGafpd2kpoDUO3aVWiHWsVnWfd0dMQhGsFrXKq9L93T6kyqTuh0V/8t5GrgQFZ/hqUyxwmtz8Y2jDF54/0cKNDH7+MdnZYbH2dp2g7pyQJtc1ybRUjzRb/MuAlP2KZNoKXo/ULYKaiBXpTZWTRL4CMbB9C8NIzfb6ObnVnlLEpuaFLeCJzs1+J0/me26XN3/+58iQ2qMDtov1DiTEZ4qjDiypxXtEDFwgL9NDxOcjTM/Q8RJdyak+5MGRNgO7P6W6CwDSiosnPAQNrh03qamWg1Bw0yAwTNfHQBxNKcWliDpR4XFhYg2Sg1S1gHQDxpsZFQOfF14DQnsJkV4+6355FaPE/PzlaRCo1bU6oFL4tjTL4vjDMXgUNlOSTMTWrVS3Ei852lLJkBjuFjWXo/LTvQmK01hFPgEsMACgKq3bvSM/lbddWzQ17+yMgroHDmXdN0a3MNoKyr1FO4taOMkYGXkRGyXeDKIMrSDIorVue2pEs92IgAaVqmkJmCz60x0qc3L1hFM8ndDkvXJzdinrYtTPWmoO5De2/lw9TmLfqZsu3Ool4dsD8rPJDjZE55/J78u3Q2wk6Zpg3f/F3TJHzv3/1fYP+BHwYdnrhVq9IM2lcm7JZGB1T1UpnkKhs3SWrCsLmlYIMxSjNAJMyRM8Ra6gaaIlPueRa0m41IyuFnRFyibxtXDFsRfORkmmCSdflNZ9o4z2tdO+J4iUy5rQ3MLu1hN/IR3bDJc6y3BiaebA2MX7TtqItjG0iaL4ROh6Q0gXSuiclAUyQprt3h7KLGj/3XvIzlnAIMLaudT7I+l5Uqja0WZlcKtlqs5xsumLHT+EfdCcIxW6l7onQ8ictKP4KR7XCtP5VroFCWDGCmftHEMjlIITB0r6sHPkjvbKpqbZxUlIKQZgA1nQQoSm4oja4WPrYDhXbI9XgusXna7oILOhsrzQHA2CIUQIDuophqllIs1gltK+pAxIFzp9oWa37EebbJy5c9Dn5aUvEXi2REDm+KnMdpACcT1Vb3BkgqWEw9VxShowz2BT4UyBhXa10tnZQlSMUy8DpeXTfsoFP7WDONTK6mpLtuPHwPi4N8j5a1gHHxnKk59YxpZIrbuy+cVqqOcY+/MzcDPZu7c6FMkSGJDHnbGXbGysLXKjt/cxWwFiZbBYvhGp+rebp0rnbnlBqTt6JJXAJQ6Rjl/hyL5u+gKRsciGp5udytPMcA6axfSwBkEcBF4Gqzj8J8CiAuSsSOqdD1joiwLAvWdQWVgqurHW5qxY6Bm72oQ3LFJ376K1CunuDLfsWPwEb+MDTijAifJ/RlWpatYDxp79iHHePeA2+lEpv5bqXLuT5nUdTILA+RZB0Iif7Cv1lBjz+NhRm0FItkd85I4CSpCUx/TNmTbRtnpc+fkdpBAYVz086g2HeEcQ9lylobuXVLZ5K9LAoq4Ax6BAMBqOn7sfWOLFroW85Dq183GKlqvikWAN0sLwUtSlO7T1Y3HypjepqopqNxm6EcSu2WukhBJDm/0DsaHrzNI4abbsw4XrF4Pa1pNIZS+6qLZ4tiMU7NjbPnz5D6zGPmAlAI72fngdgu5/NOx0DMZlqR4R+sncmzBMigQONrP3EAMQD0DIxyMyQAJYEg53SKEOli6UdpD+d0UANIcikx4jO8XLN6pK3gs/r0uXsIdxGw0QPvTcpJAnTCRV8NAxioySYn5dfubGFQNx8UVGxOubjIXShC3XQcWX8leIBiB4cEZKDF1OsAFC5gqqhMDuQYqOR24ZTQV1kBiCjdY6OpE3QVoUnFFMQEcHMmKc2yHannEDNOW0ANKei3zDt0YY3k6HNmSCzUZLWaSU2i/7YkZQQZOS+XGIRE07su2AODHZgTX9xDbY3x0udcpwgwtoETJQarB1rzttDyxG+ed1T9AsaRsV2OnFeRHUvbjYpMdWiYNJ4maacd40k7kKwI3rbB0lTqJ07hfcd3ztSMNWfpUxmntc3eZSmB8WQ8efVN+NiPvxtLIXzpL/vBoT5SxPizEeAy2rQlbYpzNFlD69ta6ux9g+2wWq5u/lzkOtCcU/b8ai34H/7Zb8T6kR8HHfbY7YpCGg/HtiR42RDPPUiAyJDJu+2rD3WRMaIMtISzXXulbaG4DDcNbMx2Gvfk49L8yRkupREcrVrmduIwdhF9J7RL1wVbCuJ6NJTLN5AGnrwHOBMQM9t88mCu2hXDcIgPGB9qK42O3dDTiOtsVzzJ0+PFD9qH1tBQM98IKtmat+QjDcFdHqmeAWBp6aPBmGPzNy1l23x9AqU44tc11Bku0oONsp0o4zE3FmWeQKJRG2noiPH1pA8TgQsaaCA/3O+ABfYcf82ymcaJd9ck4JKlNabWlsrQSXT0m5Z1BnKsLjzU9a7u+T02t3NnW0UrVLFQRaEq1ibkGYyC/jf/xYNaRAw78LXBWufl8f6cMkYxt5ajvkcVO9gunEunCCY+NzE6oQZramrBpklrtJZe2/TOEpf7cJTSH/88f1+dqS34TMmPj/xyCoecN7q6p7Jj8j2kq9hMKcoRN6qnTfg2WbjnICaDg6PSFwkdw/QqHNAWUYYgMuehOjmfceWYxe8BwpZq3FZZZi4y9yMgmoePQGEr6VhPlRoZcJrUExt+43NsF6DvvxmTFcug5R/HxEZZ5DdKp9qdKWp1DWCZtISK137hTfjYT71ziN8/R09fkHN9ZuXYcpHmWRtPQO4Y/gxKKQx3SqvzOzbGLJlJAfox5l1K4Frw4//9l6B+6uMgNOMWqsrk1L71i+7it6Jxl+ZpoLiF+2ZxImZSuKtLwznMbCyfq6105bG8OlpFuj6cU6dAobt8lJYNcSzu2DfUBcz0LCS6Sa/GzDiiF9LHSa1UeqXBj4y32ZfOCFrEljmGDm95TmOBXBq8xeezlHUIcSZD8mC8S2DQ047wycyUoDY+bGvk5HaSPPTvZNlCN1ibc3pW4JK5he4bAYMamvpR4Frk2a3xZqCTuSVNkye/MV8kyVAqh8ahSbnDxZ/R3zmj5+5puAsu6Kxij4uaOpoy3dT8/HyNnCdhVcFisRoWmb9Ipd1Pd8pGDfYcLb8ExngeK7hxoCkhzoeCWxkYCDr1UUFNJSzF6hvJhanhcbaatsjBfzvXR0NB7IXhu1E9M5nreWb9Q4Yq7QosZVgQafObvbMmGcP6s01/KbeZsDamVfOa9EdiUEa1sXgQfksaMmOY+2dV49I80nfysqk+f58+US5/v/PYW/bS/Poe6s+fDFKeuKW6kbemowu316eNiD7tWGYFBzH+lvTMznphO/+tMjmgypK0HsjMJHLLsqQ0NN14r46Du1bv2H66Aw7ootUME9zc7AESM+u6215X7B8Dr37sS/GWt/0sBjeZZL3XQzA2mwg0fuvI662yATDOyt4dD8EA1nXBRz/wxTh86N9g4RULFTHfXrDTe6g0R0Y6AxHHig7SrELkDGhUW7T8k1TFC2XShDyl2vjgfEu9pQOEsQSn9WG8D6pc9k9IHxzWtziPZ7RkLvG2PFUqFDY0THGanYZvrRRCFQTcRAnvvF/7u660em4sAqlB47kk8hbpKwNQHG2tr7XEI7jtaDdFuuZ5kHqwM61xAwTdWl9C22ve6UShdVgYUn0zHZk0sziD34n5OmWQT7FHZ/j35Tm+t3FUl6ZzIwCI5aAQBgpEQhh/1/MuWX0s3kkzAz4pLBykWDoUuJQkndEyZaCSzJKHOtlmfay3rj9nttQpN9uguGt6nw/u/HtsSpDYoGIhxkIqpamCdqshaD2I5cg53+wSkXtzo985g+NYP0WwARrDcvrVUuruULiFh8Mvxxp5uDqV0IhURmq2ykLi9+FoawCxlRoILPbrkhugb0GT+LAATgrv8lc5tjjAXCxeVaBidcvtYXFSnb2u8X6eGt4RwQcUMEQGtJ17iABAmZp4H4l+LwXG4Hp4J8bx3pX+4sd8jsPz0m/DuOF4RkgBThGVBVE/IRr+1ClQ0brEdPvy9GCj1iyBiWVUcNQz87O69YyXPisw1PLEsszaaXaXzyxcTK8PG+tCBDNtPZMURCDkZaj2p6BE3ZYZ6z4+i/pZrVUYw4Jlt8PVo2ssu0XmEqPWFZ/5+Tfj33zvf9jVTpmuyfk+X8UHt0nD+nGjg1knXP8+iR+4tq1ccthpfAx5ugwjVyz6j5vage0hws1rj/C9f+s3oXzqg1il7fWvmXP29okbNwTYPPPkYhlyvOFDX0co0NHqkfPUEoergxpj8dnZ/Cpt7Pwrp+a05uubBN49HOoL2+Towsa0aLxU0kDfZN6As+W24XOoXxwuUY1tLBDbBZ3zETHmFVXVUr2lPmp4gUPesWzYGM4UFnBNu+/0tk6O9bZnoDGt1NUh/C5lLsXvChMaE2OmMcx9ugvTU4Z/i0uajZM+u8xtHA00KWvHy2l5tA8oghiXikD8E6hRyYiFBahEUNM0iZbS+NAGgLKURt8NrFDPsSG/U7SsNkqHHBzFcng68TLP5+71deebe4YcUGaAqRgTqwcAATSiRE1eoRIbgLGyEjxldONwjzsp0Uff3OVdtmOlnSwxunDLizIpwURAi6lnbsi/A3quSOQ17IYR1HKPXi5XqZ01qsqvQHW8m9ymWVBrkh5indyZASUgWJZrkiGwm0n1+mlYXxT0Z3OtshYi8+hsXoUpG9MhW0xCdwOhL9UKHoNQ11WY+mASOXRaZKY9fQcRuqhmiUZrH2VwI1AY3WSAdKCoX+DzbjFAwjRnCUNmntnGtrv+DpnKapJ5jB9BiO5EKucVwVoPAMeqZUYwMfxduUYpR5ZaRReNBDD7UeoeUOj9NceMJcS+6+/l8PzKUM5Zu0XXwvkvwnwykCxhD/s9qBQcHj8BCKj7vYAdZWya9bvDzafDCAo7kMHSj1nJ8SE856+7tzvxPM4pzjNS7m72PZRzO/2jmbfPE9LqUnZp+3WPw8/+OLBWXO8WrGIoYymyNuiYhxw2ZxLT5cr0jEx9ypPdYll/1iaXa1Jldqof6RtsNWhOz9zkpnFQVsBYY/5eWM0mxYTU1coUwind78ubQJOCK84SG2X0FCCwZT6R/BCZCWZEIDDQsRHwxFeS/Pu6xO+gSf4atvuwJnoQdDYmS/muqNQMgUYofdZJmA3XWJ4pLclF2n6tcXeeUpCTLnZYn0X8PoszuDgqdU5xKss8KtvHy+jL2EnT+CcSVY5hinECRxE5i7SvY+8OYHrpTLKGpmBD46qffg/nsF0i4/GTOehB9SyUlca6xbVhWsdbE/jn7j7chcYDnNkGCiCSgErtLhYmkkVeL+9sjJBauwGUGCpA8JnK8IUOAn7uG+/Ox5qDm1aO5qf3HoDid1dHq8rgSZwqsUmqpIYUlNdoFnz8EtOiBIsZTdVNAB9zMzygHEQEM9Ze2lb6jRM4GRXXgLjnEpaBDpzkaVrNg7o0RnDDKRwAKiiU709R9YHIsOYF0Z91vCzL0tK08aOgZJRIZFUqZ5KjiypQUYrRS1H6OL2qSA9WFLfNQFC08hTT0AVZQVq8bBKhTnPgFtPJkp6YNwArZ/99Bjw0rXbBoFyWKECjjz8DWCPo8P6KErjcbqHfNwDWlnTqcDhIGouFy7vEBcuyYLfbYc+M5eoKh8ePUZZmlptKAfEeXCsO64q1NkMgdPPE8245h7EvirdHCNTWumb+IS6RMqPd+7GEQuQJ7zfNd+Dp+vQ3E8ktkPIMBTeowATUFfTJ95saamVgR4RmCl3usloZZakAL6jM2KlqqGxiZHWjcewpOJ6pSlmpqaeHrbT9gfg27kNdelDDmakx2iF+CzWJ/BKaUe+raZtZeR5nikvOYwffGJY5DI7O+RxLCTcaOOHnNcigcgUfJxFsAcHstKxN8QxyHEoL+VqvXx1sxBUij0ijCuKtbWwq4fA+XuW7ntfK9DfQ+JA2Q7/lFlZ+A3AjApRin3B9d9w7Q3s5F3SsCDQNJOtQzO2MekxG4kY+WdKigEU/k7BCytEop6GSGr9bhi1cSVKf6lId4YcM/PS/0Py1z52qax5e1rChpeVMfICWdeP9dBOedI0VuL9BdYSV+JxyF13QSUE9CtwkOA2gFLH45WdKACecK1fZXVPirtSLwoIRSB45wXEo0TOcs52BkWCGpC3e4DVxed1XyY2SZF+siRqMW9p0a2VlRqUmkVFz0G36VRQ5lwOQTyazqOaLHEP1uf0MD6U4cY3zNoplnVQ+1W28l1utRGmSEcD05F53zSi1qD6Pl6LNmN6RGZ+BjSiBaIyvMrm+qEUVLUDARzAVbHkog7GR95ZkoGecIkjT7yZ16e5safUZyd0sr6LpBL8ZwDHpEjKjpWWalaOXEPVliKCiVh9fpZM2LUvBuupx3tGSWbzss0l5llR+ZyZmTNoIWPvnWP+lFJ+rpPf/+FipLIfWa0VdV4CB5eoKN5/5DABgv98DlUEF2GEBAXh8s8d6WLVE0Dll1nMg0ppAJELJvF16KqILY0IuORZSjJGtiao+MZyTgtymKc0JM3qpSxtO1odeJqcXPp4ZsBvhWTY7CrVvRS6YUICywBlMZ7J8hagsalysoGEOaqx4UpZh7CDMIXYrWsbwBvpKUobZXNLndnoI6XssN8E3tyiGQd9l83mhTDmzlid9BdDUqGK/VqWNG+A31s/7zT8qfVGapN99vQvxuanIHWq19dFWJLIkhU7EUvu4md0eE8+/WpvKr46TygwqbnAjjkrta5XGxDXTZmqoa+V2gS9d3RMzeWEyiYcxtOrpbCZHjFNbHBuzBBH4b0ylLo2e+kg63TiOoCKm7VIx1VDhED+odyW/KGlR0NHCNlrS0jDAk4BKjB++DWaoM7gx2kpe50QTIjfU9c89jZ7n7pbuAlU0gOVYfLP3TUGsrsxmY+FVPO8LfJGzGS77iMebXS1An6JkgC2Mk6wZOBlZb3TfL/OXr3x8suvOlhpJ0BSbZAso7Uab5svUgA5T2PFq9WltpnVrKVRAQGNPtFQFw/ez0hZabJkTM8wXdE+3gdUIUvyb1g+hj6Kf3wHgDKcyLXorfMtXRk4nDYjMfFzIiAiHwwFXV7sAWLQODii26+npannXdTWJUGR8iqjL1FpN2qFSjMjQ9IYNYhmUoVCAopd19pKP3q1hZziWfWCkTKriYxAYz+440PM1sgeN6lIbUN6xjuCqAckGbkrhId3InE1V6Iz5cNPSs7M8mt6ylHTZqbZBXzEfUwqoJGz1zQBwxXo4OLXQ23UrgQX8EDMeXV8hsnvU/W6TjYFFDJ+Cis0ZbmTyHtYdZ4uO0U9n4N2H8OSw4oWrpYFJlRoymnQMBCwCZEpJl9+adN+yMArawkReb4Npj3U65WZsmmRrDE6VORbDtCGb+5Th86yl0VTX9FLJng4l1jAAnV5VU6VJozRZytAap9EF8l7p1T1HNTZt13CeLtIEbDtT8dT5T756zVyUkEX10Ogi2FCXpEBhrhuNSwnoepHTXUg1EAId1XqEZyKAlgVN9fuS2Xofrqcdx3mT7fgbbqMqWQFzjOKtMKav/tz5NQ4gvnP6VVqq0hgtSbEwfh+NqptFtTQzCkDOtZSQB7r8qCtHou0RxGy00Na3zHVd2l+n3fMLOm/nzgY2JDbRQHIhIQqIRN+YGMQFRMLe684c9LxJlQstG0Pfdj+FuBEAAT6akxI9pgBqWJn97UmYJh7ZP8m/j7udVr9c5rQixMrkL4rPYx3lqx7yZz1ArROO/FZnuP5+Axm+O9Fb9iEsmzXoqu5lQid27sAJWA0o9Oych7Ne6KQ6ra8g+vTOqGR1IxUjuxUvomJWyjhzBtDdw2VZwBzVrrxPNN66rumA/EytTP23JANVxBVR1YwoL6a18mCkoNXNz8UwFWyBhwg0AFebWwoJYBilPhqvlILDQS+7bMzMuq6hTl5OlwQVZzxkLmn5o2RLn3nSblHFTtV3AM9vq537uvfgMLqoPujjg83f6iNjS9sqhmfW831+Zw3XisNhj7Is4JsbG/+aZpNCrVgrA1Sw2+2Abpbo3C7Bf4ZRjy0dFB4GWkQbYY+lc8JtMiyTD52WTqr9MfCg36s9N5qwW3xz47Ayrq+akQbdbV8EpBwOKx5d7QRAqAqas0uRQV8FINQazn/FOkROG2S0gy3dDPxj+WUkj+2CWJaYZ24Rq7/MbZ97QcIbUtV2snVAxrqWNZVNvyswCUDL0uROxUfKpMx/pD2ztrI1RQDdXCl0BB+MvCs/m/saDxZXSXswJmDt120gTeigt0uQGIu/aYxwMMfd0KJficRxdKnzTZvI7M7cMVB22s2hNA0P+fmSuXz6ew8IJ/Hst2spe3D/xEEQHKCUAC4mF3WauSGC/2r84BevDlGAM1y0SZ7XcDcNYjkwlCNxOSHODNQkqtO1Rfx+Lo1+7u7fXWDuWcXtjRQ35l1VqkiMQYuaFck7t0spm0pWI4DM5PGVcGH1S9NAri4Exd4trAGiBCUyKXHmXd96IrINcrLfnHHZZEbYGQPNv1p53TUpDBojj0aNWW68bbIteWdJhbSF825EYd9p0fM5EWxpYVu7cvfh/8/e34NqtzRp4fhVve593hl/MoowfoCDKJNMqNkYDSpOYGBkYKQMIhOYqCAGomMgRiIDBgYKCmOgiNmYiB+BOJGoMIqZoskMguDwZ973PPteXf+gu6ququ51772fZz/nnJlz+n3Ps++1Vn9Uf1XX1VVdPS9gpLaMlpr0cn94zTmeLSaS4kxxewCQubvP5mKuaXDBeLSFHTpnTUIVPmIHf1iyx6a9gY2NRmgKCVdmZ1VzRJGWzmdaTItgAgcL3LtjIlyeCTAZ7HUqlgWw2QeJ1hDERbKnOCurBrvQLmiJtraqLlqturu8aUP7HUBMoNpD8GHhseRjdY25FvlXYFfNCo1+i7fr99FyY5ydveO4PeHLH3wJBdCOA19+/wd4ut1w9hMfnu8DWB4HRBXPHz4sk/2lher6e+ZBvxEWPGYX4zefq9FtTHFeMPnSBJj3PnZfn8+OJxnc7JDDecTTMXTPXRU32IXGXETwUBP4r5SzWWifY8yoLAKyzweNh9BUWwbjm8zffFeoC/gIINZmxnUKGqATGE8k/m0mZhL1s82gOaVSXyRAI3CikohOIKrxfJZYJ3hDwv719VZzXtFmQu77SejzTCXxkhHP6IjxY+uIO91R0zSNSELxmEYGObwOpbpjZJrfZXbuI9ZYFPGq8/kD5MniK9WBx3opb815kTwq3VXWuGIM62td+vsq5HG4Ebal/syzPkUhIT4J+iUP92aWgMQAILDvDsJ1zmUGFAxgwszMNTWeN2ljvIwYxfY7OwmwOlbJJdJXkBN1u5Idoz2kPH9qYHnrvfL7NoTXa2xkeLLpCLWu7YiQ+DEF8hb81heDydDFhxDsoKnFHTnAFxDTfNiQMtX/+DfYMwf7GotOXqiumE1iMryql9z3pcZQ9mXdFiYo+jxDw4wBBvoAyAQCw8uOjvYz8zPbbZus0k2Okqhxscp7HWQ2cNQ+0kdUW1QyhLL49i3XV226J5fSbfSVGpANwTkL9orWwjkAf99pK5xWAz4Iz2k7Ey9Vdc9mg4bIl8tqrQ0zJBLWOdQdRGAFQiJmyrGnI2uhcj0smJB+ZarGdAQQWkFBTTPi2eLMYCFoD03HY4V6NWEzMJkAaRvG/kzbAhxBgmUBmVwWl7EDcAxqd+1gM/ZoR4DJGV+mJ7d+hnvx4TyAXPyWZk2L/6bJrwyjbAH+RodHrI9Cnp8FLDiPGrU9mkDP0Y63YwqtCajMcck4YhTiZy6q+RQDcYsfPAUm5ZDAPe+iImFwCNUEHBZ+Y3y2AgYSkhMogPPTQRvxVg2NL4+QBvW2MKDuGZQybV6aKZ7L2Wv0qMHFhoevApa+vPM6Mg0cTx+PEesPq5fni9zOgmk2imwyZ5s5DE5249LAEKjdjVC/k8jA3Gww5jn2OeiRpd6Zpgz4It0+VWnt+TckhZdm2iW/eAUjWcfEY1Czpq/zevNbNt9mO7XlEsxZvh/6Zy0KaU787pkAJSIMktgTGufFQIYAFNWdtTDEJmYdrkFN7segszYf5/3NZ/a/ucMbztjocOWsAy+7oK5TC2ELlABmttZ1mpLAPKnEjpALwhKaAwUg2pIJGmZ81ThUDURZxsmcfdgCSYM2Fs1sI10HLIerxaLE8qVPJrdX4q7s8rojPKW5KQstICJw/ZdCXWMj3kbjm2iUNzQ6xPpV94QzwPFXvgyvYMW0NbQgZODDbNIWMGdRUMRZG9oI8wV+/B7mZ+su6roYXwq+Jc12IaedS0+nOZ3tZNaWYwHe3BnvaTWtR2hCVu0EgTZmkhK27aupl6T3u7KrmUk1tQstVs7byjbAY+BmgFHbERfqr1z2rn7WFtD4VsGqiCTwFBoj27xYTYb43FIIiJH/2h9FMDPBct6FcxwNz8/Pw0xnekPDLFcwxuZOzE1+nWnyFjE04vvf31ir3LXIRfX3ttI1PvE1c/McrRJChVIDmla1lT6s5cfOedBq//kcLWzR/oZ3rPGy95j3IYgraTiIDmdkpKm0Gk0eE2csqb8vWLLnm7DMHM+8uSF1LK2istHK5axLAbVdmkNx9mUR3uYbd0Gfozi/uwqWzJfp9I203BVklDle6zxoGt7REuXGy7gHNo2f+altkPE6MjcWhetswNLyqJXN856EjvQ9PW86cjtUqAEfcZLa35H4ZQ0Ct/J+M2d8X4T9ZXyyidj+71ha6DxN+T7manEEIKSx2eSXAVVILOHwBamPPI9UZwJA9Jzb4NHz+2lqLHx3xubjwhu8oilpaDq6Nl8ohiFB8ztceEq5i2gW8KawrmmX3/jH2DG15dK/mxAGW5xgv5DOjIj/A4thYdVT7MPu+z7NFOKE7HWdk0+WSc8G8EJTQ4zasqKybOH0u3UwhUqq9+QDVP6O6iTmeSukc02Ufi7fAWqcsRPAAeh9sITupoZZiMDm904TUsMVaGEzKjvUn9MZ7S5+bAGC5bUzfbuiqwpXAAMApXj5bEgdeYN+Sc+vMQNj+q52mjMtq1Yrm7tFP6T5QvLMVdlmXshtU9sigNKgBTI0ZEueiOH7qB8SqLvoI387x/M4mzAWrPPU4VBABOf0sucAbNabBVLOayulvRBeu5Rw/V/z/t1DlZw3ZdPo2n53Djb7pquOszQAeAd+CPCy5GG/AwxjMycs8srnDfialsO0sI1osL8KLOfDmSdfh5Ko0OBAevKJPO9jWyPaMfmlArdtyt/ab5kP5vpY0jumU0ufwtrmombOEzxNEeypnAVUUTmXQGDGsF115gYP255BpeQpae1JnAPpp9b1MuY6h3r6RmdaNi8r1XhA74Nnuf701nC1hCaKL+O89L4CmplvfUfPItN9kMCBgmta3LQMBbiU5/LOHAYMYNRzfP9v0kuzTITp5jRrXYUepHyrWpqympdvXwnH/i5chDc4DzCvLhMeyAA3Q7sisMv7hlbGzt2YARX8gsshOw8U6mlJOA4x1P6z/OHxnYkZY1OkdAvtLLD5dr09W5zH9d8fNYwykwnK5LrZkIG/04IjmG2lfh7GW034bM1IPy/mjQWOGW4lzotNjkg9x1y/ADfhwplAjPURARdAaLdvampmejEnErRbP0g2gTi0NTutzSMQYnG8Ppo9cg2TlHp3C9OQ80vnOUzwX8q9FqR3mpXVrApox5p2B2YemeHx96rVGc9Bq8UZ2s5Ma/zO4MSAc8h/ud8ssGlZ7d9aBzvkLRIey3Z1AMoQfgH0XpkgpnomwWoIUl9O0zOnv8m4fb6HiafaLkrKOgudXOyeysJksK9njZVLun5ff+9LehxnGWkPhl4+u/g4jHFE8waTVzUDkbnF7OzEI/fN1RTNSZ78NIT5F6tyAU3yWuHjmnmD2twYOdhoEEznegTmMxV5bbP2qeOd62npaW9s5FbayHiwbzwqtb8nmusHj1nJYAWzj9J34uHCa41ND2EQx3nD+3jlDRHf1vkaXpr3mOumLaUMZgzcAkwvC/hk5kjP3kpdXbjWaSo/ylAvswI8S1vfvRQeih2LFqh8Th/KGvpCQZuViPJUr7P98VWUvztw4Xyz5mUBNQgHF8vlmoICdHKa5u9N/qkanfU3KH/+7VKNEx9anSzh1Hi7UDcI3jICXghXE+RT8vsWhDeZoo1dlU6CdHchOF9GaccoA7iI0HDScb/LEIznXy9lXFDpmh0YqJDw1OU79AMIKC2iOZDwO5+3i/knBF6scpkUYwKWBnFTNAcwtnMIAUTTNyg/AwF05uH/ueDZpZ8JMBlFajDJKMxOqRl8BaAxQd+81RHoQQiJtnSM5+Z92EeVJ0lVwM+Lct3xtzivCTtthglSaUEu8bLQHaBvODYw5k1xy8od4MF+Z22Qgu6jme/jHhuLsTc129WdzxJwPV8C46YtGgtGgDdegHdA09xd77RGlb6ugM5D9zstS7i5xYsTz/IfzhEE5xnlV9fa/J7PJlXAZGDPXGOf97ub0Z73c9x/cQ4PeF1O3E+dmtVHxMaMX7vg0bfXBSl/X6LkUwLzrtfxxqibycuV99q4PLXjQEMfd3A679A6FdTAD1aeIZk+n3uIuo/7YWZ2jkFYWxuh+fatfdeU5mGtNQswtvnEpYSWyegJIGQ8vKG0+wYYeJkuqNs7TeNDZxlDO5XzcbpK2yy/kedOQT/+c1xfUGgsbWe8yv4xul7iVVYX3o9I47LwQHbKsxt7zksWoOwiea4HZTSc2xgNUao/C7DTNu7qtCuLv31seFP6F4Tyq+jpr2h5X7U4+TkAR9bU+KH/2b6N0wnHz0DF3Tsj8uUybH7x/TYOsEDfQdKM5Pfxew/ccjMWiU8ij9qO34WvPrzJ3fMxzc2MkYxLJYO5KiQ8piBMAXQKyi4ki8zbcGxHxf6eCHfRIXSPxTDi6gQIgC1yk90LKD9eDAJMTMjAFUPEuqr7C8FMxeqCDTjo8vrq/CtZO6MARMcdQOwo4JyZCeA7ZoAtJDYBbXGlqbXca8PTjtlxS+8Z3ASoERcmnDXoBDXz3TAfnGxLQyitN83z752Nto+tssvPaXYaAvaIZkJ21UTkcnPBw9PamXZ/U1zfreXldg2cK4MaA1w1ZtU4JE2CMV4pxiwazNxosfEQv8OTWO+K2y0O+LOUIZvx31WX9on40XY+ghI4jIP+JqwyNmSQVF098/PZK531d5zN4Z1lls36PFNjbSJtjN1+niGgTeB1YqyUfkg7X7BQ2uiibcALabyLmckzcc3+is+8Nt7Vt7ekN9bwSGCrYW6ge3LXvpwKmXfVaFdom4Lh5DEds8+g0+nr3LRhuRq51dV5wRyLoL9Amqc7oGLx+K6cEF3jHIrjn9mj7CSH41715aKl4LrMtTBpoCbtdrqU6bBqRTlZhHJPcZuO5T70uQdbM00IjVo4IKt18rkcmmGjncPCq0BuuUubeBpPm/tbYE6KbJt0RLL4s4mWPsjuofMas9bL/4nQDp+otj3L+QhoedW1798031IwQfpxClot0pu9XHOVBqmx8/ha14XUxgRyzOOYxV3cNKcLMwOQJAcA/j5raTxeASrC78o327RiXpzcTM/v6exNqpOW521zLu8/vs9fCO98xgbvmdc3OLze3bMouvZx8F3mji4PMxMuYKDFXL42dD2H0ADb8Q+AMYBRI83N6bvLOhe7LuKmbPZuxDWAICn+CJlF+i+6HybCa5fwGmyJsKesAeH87QJO1tQ4CHOQIp6Lm25QvgnM6GSA5nZuE6qI5QImgnkyCFqAjNikeo2mxszSBisSGZ6xdt6qVtOz2XplR34sonwftWzT26O562UB+WpRtdFhC/V5nmPXft5hU7Uww8wElC+3a3zw9Y4Eq/McwvVxWL6ZniHka9LqmCnU+GPaiixumpcvWyxW8AT/bvfcOK4JaSo2AByIjfl3ux2TdixgsO7QWpsbyLFzRTttSqYt6hxx8302fkbJQMwkH0V4zcB5CHxNGjqGtzM9T0hraE83yPMwDexQ4BzfVDE8utmdQCjBF8w577Yh99FvhJAExfJel++m9c7AIMJYAVSBOwRPdKmtquIEaSwUuGNonr+QPA79QDmVv6MxPoRQmO5gIiBvgrkdOmcnFcYTWbjm+b5w9L18uGgwUhydh96JFuN9xosAvg8oAE7cQZWFTttwEuQ5udU+zbnK7WHxay2NPourkgFFHTPriod1fpa4Tjd9c1DikeYZJQnnD8C4z+igMcL5sctse2tmehU81SAy5JvYcIzxLnPxjBGzq/lHhpTNC/xjKVI/igrxf0pekovJz1lrkt4ToGBQkkEM3GOaaWEABkABcMJtdPkrlYbIb1gUsWaRNTIjZFATbRfbtBWwMLgro+eBd7TvwtcX3nTG5pjCnaLHreoIoKJiO/l2iZ0BFQJAJjDbMFcEmJlspOuZ4oiaBscW1CGsHIgDkCphkpXubrFhN4HTCnU+PiTWJqx5sq9B+6hnBikGYMwGXWHAY0yeuLNnLroEhmaRC6jRyGRLK8dncXwBLRDYzuroU/F4yvGUfweLkXEzV3IFbKCjLrqjbPVvLASzW2M2l8o7+LHg830wka5oebzxIg4w7jpZ7MpNIDtHPqYFGjd8Xy+RLMzxzqyBETbdYq3Cav4FaA/zLAZSnL8qC1skehYwMS7lVO9Xa68BYka9rR86tUe9NJPbHcj9bHHCFM4AVQheHGL3N94bEMttMXeKNRIyADITOiPKhcVJl7kghwLPfegIvvz+D/DcFdr7dPk9xvD9fveW9L9q00f9EkOOAy/1IryTDPS5A/drDqXfEMKk1lgyhfiu/r2J4HZr4UwABj6H4N5a8PMr8yXemHAtAs2vmsa4vgGAUabnEHlNnsamVjLNpW3sVL7VNVw2Ow+aGbppHbWHeJr5PgEwuADvb2e5rZGGyee6+nrBtYg6U9Y0H6z+Rt3gY1ZfLEE26WHzGeEye2l7LXnAhNb8nscOjyHbm2rmmMfwzszA5Y8Cgj2uEL9BeHYbfaD+zvoY872oQrTDt/nENHMmUwhctJiVWEz4rp4fxbkAJ5vu3XynVtzyJPj30Ozv8oqKhZZjxDdgYvGc901+GNdZEHgRFA1OvVxzhOaOAqIcBy8ypEihssTpy6DI6OB4SM8MYoA4T0Ptw3VLElJuRwaAuQ3fN+R1/X3y+zaENwGb0MfAnwYzMaysDkhgYr4Lvjl+t2cBmgp0wpKpz5jnaQbTsbM14Yyg+xWTbGtrv8PEzegeNficgRf4zKwFzYTswlCCpYb+hDeCzbFAkuX4L+34zUfUeq7jWFJeSu8cfALwg59z6pv7ZuuLpMnBYPYdwyuazmtc643wV3ev7O5OudIQmHYjdjsZRMQ6MQR4uLBtgvJxSBISIs+OHbBgczIgzOJCc8BApS8XbwZQGrTViyQjzgAZ5znuVzkonpl2hfYk2qmebbHvrvWkbwOgTM3QFNQMGLBmhtuU+2+nKbv6Ntpq9Xy25hEmZdwew6RtZ0pY2zXodGBcTOPO5ztkCtj33geAbQ33L7/EF188AV9+wF0AbQ04B8j53pOxRhPqNDQNWIXHGj4vt/m6Qz61t36DoUqYFmQMOcX97MDRcJPQTwPw8yEm8BgGrcIDazZDszH/klDnPM7GSaLwqlbML8kL6IYOE9o8NgkgIaru8961W+XvXI6BPRHmR1RuSbMzSeO8k+Z55n9rLYFJ3hgyELDM3Q29Drj2JHibprilcXkZsxJNy7bxv5LKq31gv70OszyhuENIFQdpvZ8L6NqHb8osf4u0+lbJNktPtV1rzy0AxIFOxG/03iSO5vkRICrgxNI7UAJoXgbQyXXcSX/xrtZn9zuFlwfFd+EbEN4EbMaOUg8BWOdwkgFKmo5h28VADWla/G6UNjQ0sN1+cUcCI89pekYCtohMbccESA6WMN1A6wQ+wIBN5oDa0ikNyPfQ1dSW0XR7dWhu5g4RAsD4Nw3hWDZpYHWfOQaAMeg336eFbdYtVZDqq/EOvkimfZhY0JzlsCamPGvsi3RiUV3FD5UDq+ANZOBy1R+7HX4DNOO/WH4qoAjTKwMeGVCE8Fy9p0WwuAYyzq5eLmsmrLyaTmSYocWO7mhvBmS1bGm26ObzIgzkRCRpl2qbDgG/TSAVgMC0Vx6X6F5MZyQuPGSAxOdpalsx2IDE4f0dQLW8d0AvxwegGWhVGttGkvP8j4anL75wsCMAvrgd+P73n9GOGzru0zTtjv7hGef9DkDwfLLYnHdTgzu9FGZ/U07f9EBsEolt1u8PoI0Jj64JAPDh7PgeDnzvaZyh7Do07qC4wY+uTxlwXycjVRobDGRYw8ObDBB+t6nDPDfZXQ1Tg+320xvhrwGA7Znp2YlgJhAqryU6LjntxA9YQwFB3gwDHrSerE8iOGQ94G+aCq9L0hhlLTTXXShf10iT9sruikpnnKhss2QAtYEJxm6dgbjIGyWvAMqTX811s47juvLwmGnuUVNhXpEUcHP4GDM0kJaGzSU9DnttzaOQ+M+LwvbLNIQUsMZ3WcP++tzh51jzQiPD3wywZO1MmKl1v4yT05nsJsj58XcGOtyWQrTuwEx9H/TnNhAbpNQgeT3gsANS34WvOrztgk4Swwdj5919AygmoMsEHXOYiIGb8b0DGGd1MJ/nkBPBgXmYVAGV8a25IN0cCBnDtTtymur8bndT2ADjoarIbz8NgHOLWEYhzBFTTC0XiWMyxiKfnu1fZ95Z0EplwV8ui7W1mC+oHRC04oRhsgc1kGgampbADGZ/jTpH3NPvJWqpTevh+bo7vwtswmQerVhYYfAwzmCU/ESyG2dkgfkq+MIN8g5W0lZNAZe7O0cCxMWTLrjQ9yGgT8v7jVBWaQNCuPFvsORzLjRJbcghLeLNtDZx+D6AVK5f1T6l9rJvFneWc57ndMyAlDendYA7/95utwnQrGbxncHkyIPpzppBm3wyKgqI4NYEZ1fcnm74wa9/H2fX8d95op/nAFHQMUG4bdOPdRy9uJDJw8etbPJa/pTmxivSfLwcdFHLkuGQd8am1l0VP3wb/f98dhwNuB2NBKOxQ67HzXMfGoSpWZ0Cbi05gV/YuFopvZrz8d74LtJf5wESGt6VfwVfcjBv+c+/pvHxjaxEThGvk+St2L3mTT4elzqISBoRTmPB27R8cy0KShBxz535e+ZjZqonsyOuNiKU8yCeaWdKnZHZ2CB+Z+lnoqg8A4P5o80fZ5830dcxpKGJ4qSxKZOyT2t3biMGJbX1bFF69O56Jsom3TIDpfxd4sQ6uS3jwTsHLv6BLryUEofi8hkZBzAypQax7/DvjfKQCXwa50f5J1Oz7VmbyD+DnJXOXP/4tmuXXfs9arv3Ct9d0Plx4U0XdPr5FhLIB4AZfw+YcOMYfQjZmFoWiffjgOk4WxOmY6HFAUzbozOuTpBzQrRNgRuAwC8FVZHp4GDk2WQeJbOd8gQr8sIIEvrfHqI1Imvxn7M2PmV0SUl/N4vz2LVgBmzMXGZZDckAwNautHbzolq1OKQBU+6HADuL5mb+7rDJIjghUG3jWY5ZZnd76SqUOgmbHf2IH2QOEJOFi7GAtiQwsyaGAVDdZcwe27JAUMEFnyEx87Dt4u3tOMZ8V8XR2uImlTVGbLLF5l9GlxXRWsN5nqm9kn23Rj3ZPK+ak6QkylqlvGyvO7O5LbeauEKXmdElsIG8UFSTwDgzI+44wPJiuvLfC5rmFpy5b+4YfKifoxztfYCaPvtUFOf9TOY6RnYRgS7rbk+LXCJFIL1IfwVw+NuegteHXZ4vxa+i9hUNwYuB790azq74LT/05I45uo5NKMAOdA9gbYPCDspvTZQK7QFE+F0WgJnr88aF56/ePQGSZ3nsvcxNwjD5OfHOEIpifD9upRx4XFTeg/IsXF/Jmgw25dvmQVQmLVehx/PX8OAWAu7VGprf8kZEBSRXG1o1XPEZJsXaI214TTqOOPwBgd2TNNPZcq1DGO46tGNDGz4FXWfAcxzZ+d13F2FznV6O9NKrN3KHxJvcXsbz5LXR2tzPqMyxP9JnLckAKaadie/uWEAAQZ+mlTO+lcvAxcsddLVURkg0ruVBnlOm+dmCHao/sP69BJUpvF3r9l34fOFN7p7H9O6u3h2yTojZimly40K0aW0wD0rKFIbnYU5xdgHXFMjA5YMJ2TDtwzmATo9r0qeZ2UjDK8JgbkPHE2ZdEyCJaXF2RhQ8MK8Z/i5U9s5gJkzF1gUm0opPPFq6KJ7QvRoM0NSfMs2FxRGg8TJ9UY5WCsDSnK1108Z5fD5nY3EszYjf0YYXKihEDrBZw6Dn5VbdmTwZoKjvvHYFFFjdxTgXxbeFMN6ZLjEWyApcrjQNV9oaDlnLJF7HawBgNCv4/A8verUOldZrzRgJHLQbbe9EAuxwsLasZda/o7lXWrjNUnvO+CKxFHE/X4FhBrC7uLbg9d7RzxPaByjU3ofJmYHOeYv1qXYG6XAtk7XX4DPKMyho34Ys/Mgm7rq//1Ke+dvV75fyeJSn8ouKEaHEa1aaE/AY6N6HQT/7Asq688axOWGbFDWkMQPEOJEabxUK+TRQAPqNCEh82j57M5j2ZiSOnCkeKxuiZGtPGflTkzUZ50ZaRIrWFSFal+bwjQorxcZWAKzV9MqpcsSlyY2yrSbUIpSmjJErPmd0OQBLTL9Gpfab9d1U1niDopxpIlp4A6zy4rEtOodjyXkAlchQKD97ae0VbXQ5PT45RPXXnOXyoX4ztLYfOynNhWfH0Hhw/prTOKgh6UGMz2XtiwOP4g3NTmYnbY6lgaWB239IKQMWfxs3aKoSUZa1klTkdczfrsI14HkL/31chOBdXTR/p7HJgU+5xGIx7IwVpq4mAVmMCdjvoQWYYss4l6OWm/hOatPhKhqQoSVSg1R2+E8ADVMnY1hmtSJq5gOhuQGC1dO6ExmUmjLs4X3XtzCymIqPvvNSIpkZGaOVVYzYWe3vRCPe1TOgCdSxLanfzCSwLxob+q18piYAUAAb28VkITMEWxZ0U5vMBZdN1+pCNbQMIQDUfOpvXvSsBWqfXIGDaNmRqtKzE6RqnsfFGZIVNGSwEVoIo9rykCW/l/KdP5Y+weY5ziBIoskWCOsXCztvaa+hK8rP9dsBSUiYtu3GVP1LuY/x2Yerep83pgWaQFL7cPrQZ/OKKsIUbQUzSx1e+W4dL1d5Xoml7xkei2ePv2r6uVIblTSvW8/3E0+3ed6uSTpr0VRorI/UvtqQxmVunIfQzxQtICxoaiTFVBM0fn5xp1xiJLCAOz5djG+jw/h4yJ0zPZ+545TZqQaPccvXNPb5Hd/jwtok4pv23ujwCLkuKf4DoJXqmyLseZWtfU77Jk/uPxsHtXCZ69oVbUnbLPmdUeIyyvzXPCeaEG1rkvcWvbNWf4+Z+mpxU7Y/ZwgEtuunxMdoruWxHJKVjacETuwZITk4UCgXabYEeuibWFpb41jbs/8NIJun+W8GIZlXV1ATtKztsY7ai/bdvkeUt2NO34WvPLwB2AAPF9s5iKD13hEGCWZYNozPOt1R0jTASYMtaEJC+DDrGbdMq7vNHJocOkgqCtW5+227NnNFdC83mIuCIQllKtNX8On8WhtQmsdD/rrRKlOJeWHTOS/EQcNGsC3l55ZfPxQ2ADc/Y+cM/p+U3zmuC5Hzb5gNTQpks8DxQu0CfXzbf+c80ooVtSUB90qQvzJ/q9/iHQrwwGTKuVw7uB9pctm+2/oAhKzmeI/NMa5C1cbU+u4AosWt9/ZcpXv0/dE7du09IpiQBW8fqkgst5sxsatzonOe0RpjcqQdNvsN9353ocluSe9q5nD7nbvhROVKlM/z+fog9y5YXL14riVdxXtNnLdRlfmblvf1AYMPI7yYqVh/maA5pC8W9OsqoyGnzT5ngWVP51JLEmJWH30k2HmewVPSRsYkKJYj490BQMwkjL081tYuGMLDuvFRgc4mE0weU2itYcShzHzpq/Mn1j4AfnfN0rW8uYPoH9coa7Q1C84eB9zHWvp40MFrWdXYMcms3cpNVET1WciuhWxt8p5X0x5wJUxWKJsvy6r72rBLdcFTaAzHbN7P63391gZivuYjXBBgY6Ybf6cmxL7Tt2QuNr83yqO6cm61DND3krd9B2zIZ0Bl741+pgf8rqSP+ueN7iwNRR61zXZh18bvERi4v1d+34bwemAjxEQRg8B2OvKbwR61+IB3v/1zC6VBfWeuI8BJ6IZYiJ8uhIGRSuYUmoymTy2OAOjSodrmIJ8Xeeo4vN2teERl1L2yYakVgKQ1GTgns/qgqwogmfk8HlOXq1hiniTKP0ytkNqIryp9JIkFTss7Z4AasY1GYDIak0h4RcFo9+TVaJpfeU15eGzCqp0BLaZj4bkysbLfFmepv+Z7crIGJcofQrndjZNpo+Xa389jBflMziLEMD3cw3nX9rVamgpSxruXmZrVjy/KzOZ3a5p8RkhTXpXmPbgCqIGtUlPYnCCZgFCqI7VV1dqYVzSZAAZi80iB1tBaQzs65C6Q1nC7Affn4fZamZZtiIV3acMrALEIVbXPv+pQBaPxbhFiUanLfM/HlZY4xgJmpGNKII3GhW0QVGGVy+V2rnFMSB5zOlOnM4GJKWYOuxwWz1nGbrzU9+rj0dJygVZeAh1EQ3b28YqVYO7opVWE89BYbxgAKurcixyyNjTo4LqljYU5f5DigjrdBGCeg9w2dSUJwObgr/CpKGOdXzppzWuVxY23IuUsJjdb2czxfO1dqo83NAlAMpwUiW2ovk5jk3sC9GsdhbJ5qAK5f36wwVLHsa3jKa+UP2lTxPrWnjU9g+LBjyfE4f4jORCgfEDnagDAQc2Mk56zxobfAfB4uPzLdXwAakq78gxeeLy3177Xa3t/F76esPfdugkJURuTQh5csAkgOiVfdeaQ0vEg98Fu6spxy43l44fP0HGI4pjPB4A2J1SD4pA+/oOO/yTiHzhHOnQc4PeKNuP535l+TDz1/2InYpRv/8nmb0xQ5LahNsyBGBV2E0ISQNEUUy5Trbk/LoU/XzGBnJL6V2g3BhiXrJI5j+q4yd5CddFbhfZ6qaZdmOgkOohZ01+ZulWtjy1g9b6VbGqV87Cd/ArKhjANDEcG4gKACddsWpYW1QK84qyNetlMs4HDnemXlrjcTqpIZ3V2mg5rh3rQv8bjcjnN8KwG7xcDSbXtGTz23ocmlr9R3ZoI9XX2uqQ99znTx+NH+zCwtEtVpR1j80R1OBG4n+j3cMqgvUPv54MZIrtJtcbZz+RNy9a467P973EZuzL3eb1E+Vu+b/mLCA6MTareu49N4xPBEwHtGoICjXPxWOOFj4GlPB4/cyxMAdj+M0PEZfcfPG8YgNChdxn3So0xWdrTNgMQGkHnJkmwZ1o3QG4yh6EtNRE0xvTgoVG3XdjN69Hek/HQItLaqJtNoXCMoN420LExsyvNhf9ZTw6d2j9qjakNzSK91TeN0DnHu9cn5j0orfoBXk15W50MTIjawfVNexm9ROcYZzE6fD0nYV7EHC3yus/rf/6v8TP4P83P9MBxnToCMhV8p3gEaoJ+dTqcHpLZoj5Dpmomj9Ffiz9krylTuQw2NDRHit8drDQr38CNkHzl52/sTpv4u7ZVtDPLlmyqFuMry6gsu4L6bJFROZ+lz3KbX71/l6Cf4b/PFP7W3/pb+MN/+A/jt/yW34Lf/tt/+/L9v/yX/4I//af/NH7sx34MP/zDP4yf+ImfwM///M8v8f7dv/t3+EN/6A/he9/7Hn78x38c/+gf/aM30/Jqjc2YKHOX1B0GqC0XM44NHxsgAptgg1FKaDZkzFFbcDrUv9k9NKk/Jg/rUBxo6DNlRx/e0zT3WzJ6k3HmxhYqF2AmYUZpxxCqOI+xwHK99n/jO70pO1g8pgT7MZZbMr+XV8ZjwetiCVxSxlIq/iIEAaE49tl6ObQQ0e+UrxcTqU1wP45juUclNA1s0hgugC1ODTtnA+FmeI2/AxZsHlVTsEbHTKmiXrFoWd5+gR7lwUBFEILQ/X53+s+ze7wMYHReoqm43zV9C1v4tY7Wnq013G43L98AErdBaKTMLafdZVP7Jso0jU0FWqMOAVa4/0Ze2ctZ6iMbS5Rf9R6ndlcPmM7V6YBreqRBjgM4Dpw/+BKqivt9jr3WXJtrLvykHds2naVHGZff5EGct4VH6a/4yEt5vfbs4Gbm0LsYd5mjKGTyvVuzcQigK7ooxOyBMS7S9bYnAi0/drds/Mj4/CGCe1ccYucxAbtJ3vju0bKgC9h4x3B5P0H4OcdrE/EyRWJH3ty125Csl/wq0XYULpgFUDPzDF5gZwodDAi35PTWNfkLeyTl8iu48LWJ81T+Ottfxjpo5t9B8173uGhNC+8Rop/TW5t4/2kIjIms+aKuKQpxbGZlyMzHkqWNHomVuM/x6DOT61DiAsGnh1fVSZg6YXChgdo1z0P+lb8I1rUlE3PNc6TEW+MSmCnP6d0mjwUkTC9l7MnM8stnZ+K7m5shNqkZPLmmZr5r3plwYDJoWfN3OhdauZ5VU1NkkYu/azvSe4+825DmsH7fWYb8Zg4fPnzAn/pTfwo/+ZM/iX/4D//h8v0//sf/iN/5O38nfuEXfgE/9mM/hv/wH/4D/vyf//M4jgN/4S/8BQDA//gf/wN/4k/8Cfzsz/4s/sk/+Sf41//6X+PP/bk/h9/ze34Pfvqnf/rVtLwB2IxgA0sBv7DK4E1e6GJCx6Lny9V4krgfp837UIZQaZeAGuMyU7ax0AyQYid15h0rk6YucCamONHQcM5FyQ64G3jRyah01uNAmLf4ImhgjmrHzNzATPBkFv0NDM43vsBa+lcMfGagFyxxP31ruGK9a6ygkRYoMisEpllhAT1WfxMO8jmb2VIkbN/vd9iufhaOVwF6SysJ3PyXv7MJ0yNgVN87P5tCM1TxfD47WFrzXPOpmhmmS6bwNISalkDKccRYq9ok1lJxeVV7tAt80L9qxMb7VVtTBRk2O7FQ7wsyGkZdAlx6W8KATINpuDiNlW/gq5rVUSlI87HUx1xHj82Yjn6/D8cB5zhXI+3A8QScH+748OHD0BwopjlaX2ZSLIiSFs3dQlmfH830tyx/u7jvtXwu5/pM8NQaDxxr4SU6Iw3eaeY9oSWAxP0uZ1fIIX5Zp3ERVui2izmkoPtXEjE0BnTXC1E/E3oPWz82ACHyMh6Wz9FYTBbGjcbgizk0hMm1gZVYTzCF7ZEquSx2gT7O+bFJnlND82iZNgV4MK+L9KD+19TWEcHmXPB4LflYOH3+kvY6CKJV0zY5100bmXVhw9d0WSkCMBGJXmUt7YzaPzPB2fm66SnLOGAm3m41nhlEP+ea5SFFG73LzN2s5HWy1e+bF9Gf8VwFf2zeGYiIe2UM2GAI9vP7yM/i9aQp8W8V5FBct9CZ7SMCylupjELfpAPb7zm/tY0YGJY863d7lhpnF3JP5rl+Lbu8NvxGusfmb/7NvwkAlxqWn/mZn0nPf+AP/AH80i/9Ev7Fv/gXDmz+/t//+/j9v//34+/8nb8DAPiJn/gJ/Pt//+/xd//u330TsHm1KRqQB0HehajfRxwf6Mt/U0UJTfFaGtjuQLi87+l9Q/f/ZJqaNY8zzNVuMy83ZaM4oWpFqFy97DLRjPZkb7rW9brdXtnOb0jwtqmz76lHue/EgpoT76jYBV6QsUDYznzVnuzMsUJzQuX4u/Wul61JFaJNducyPJ5moLMXnEdoTXC7Hbjdbm/ehbk2DVtBVgJJuuZhIHA9m7TSxHH4b767p5qF6fZbbe8diDHQwpqc7DLZY/v3GqxdqqnbEIqvWZXvwG+ArQADsBwHWhM8Pz8PwAVAzzvuz3ec92dvdBHg6YvbIozaswszD2Y6b1i8NFo+3zLz+vBaGl7D30wAVTUgoK79uE9TxfNUMhtSF54NVJip1oM9DQDES0DzCtc8cQCS8cOE4oPSParZEL5IY1NiGntqPrcfizdWftYy1PpFW+zyYROu+m3XT4/a5ircp8bWrniw4PfIlTK3Y0knAKE5ZnnwZaNVkFRE3/pFychxwox1LTYE5pFiGafWviXdIVQPysPyc83Cps67NpBHwsFFWKK+kD4DxZrP2vNsfoVF5jJzNMDMtRpQ5KUAfrbuh5naaKODHAcAlkcxCxR4nKS1cbpK+6dm2AGUB234ILzUh2+J+8au/laH//f//h9+x+/4Hf78S7/0S/hjf+yPpTg//dM/jV/6pV96U75v9ooWC7wriBEGTCwOZNEgdnJ0yr1CF3PaJGMLxzh0qdpxzPjDVbSSVmZoaWw3ZmhJ2lww530sohB3Qyy+sA1TM9tFjN1E00IpeFGJd2M2hngjRK9ZsHPbhBj0QA1NweqSX84WWrxvRDv7NN8uhEHt60NZYoYE4kvE2HXkPhzRmgq0A83Pm2g2I3IhfeTDJlpACBEsqA5B3dJngGRpbPEK4VpSXI6/e+e7eoVmB1ckbZnd+k74fwl01GC7nTX4ok7txnmaGR97+7J8+GJLBgwBIo2+eZtAVxzHuABUSr1WIAPfgT/nuZVov0xjDcdxEDgSVKAUZ3LgGhuuu3OXTf4ZMI53XRVn70M72AY4ff5ymKL1s48L+WQIMx3Acx/nudqZz9gMzjPmtYP3bRCa7/yDY8jVp68tZG7tUz0F5ubK72ZfJW4vBmza0M50xe02SnGBfCY4e8ftaDjadbv4GJG5dhCoqXSv9MYzazc6/XYBqWgA4resbTLr6JqTDd2cl89Qoj3XccbdzD0+DG+pFaFhigsL91on4/x1dRYMbQpVaW4I2JnBlaepDjPAmIu5/52O6WTFND1O+wQ4aoDH2k4pXtEIJacTidqggf+a5mynZe5L++fv0o4wO9Q52seSD5HQsPE8Z3DsNixOK4GqIqtUvp3pWsPyTYIvWh8vmgzhlT/qLjN9+iZwTUv2eBbnY6yM2OQNsFrNzaxsPp9jZUV+AWoC+EbZWOqUJZmoy67tNpqY1Jb1e25oWV/N31f9ZfS/I3d/jdD4xvBrv/Zr6fl73/sevve9771/QQ/Cf/gP/wH/9J/+U/ziL/6iv/uVX/kV/K7f9btSvN/1u34Xfu3Xfg3f//738cM//MOvyvsNzgNQBsQcbGVi+OQKaDAGNmJShAcN0rwIxqCXoXmx3YM2D/vLdAzg8GQe+I/07ADgjL+IXQZzMNCkT0cC4WTAnq3ccEKQHRukXQ2buH7wDanOoN/ORNLkM2i2hutFknsiekfNFu9dJ8EqGnC9ICHk2WFEjye2eK3akAAB+XB+a7IKsjO9aX92O7msbWBBwDQItrhZ/qYByJ6KjB67id72EuHlA/NMQDMwkIHPlTaj1sUO2XPaXfAd6Bn5mCZf5zkOupv2ZsQd7c7lDnqP5V3UVQkA5cETIDJrbmxzws+1UHzWRjGwsnxEZLZtbiNLV0GUavQ5a4N8YZWcPmvBNPr5mJzjPAdowRCm29Fwv5+Q2xPa0xdD59vPqaHLez7B+yQ952DzfT8J33Gp+8xh8JgdvSwS7tYEAzr2raviVMVdw2TZ/jNhvLWGrsD9zONsjP1cftIKFo2HToQhc3Asc0ttzcIyT680PgaEtCvOzvNb/VuwvUg5DrNrCOxzHrEoawJ95WlmygvE7nYAJ42xT2uJAQsGG0KLjcbL2iS0PsOBhGKe8QtSqa3WlWHHxtra/CnuldDYC98ws0WOqzP/R8udAz/N53V9DG7GyNxvgUrIGb62zzWtCTAdLdJ/q6AuguWdC76ULoEFniCbduK1d2sOO9cBk8H43IrLH0mmie+tmTezjvBWZrJT5MdOAUx2G3+nPGZ1ZidLDLDSuwpqsiwlqf1ItnSNU4x6Hqsmp6R37nBg/c5xskyb81vWySV99NPrtrG/nvBjP/Zj+G2/7bf5f3/7b//tbby/+lf/alqfd//99//+399c/i//8i/jT/7JP4m/8Tf+Bv74H//jn1qdJbxBYxMaCfVncYHdv7nwwV0e38dvRROzyzc2BU9nWg7b+1DM3VKBe9px5gsA80pPG47mVGAcSj1hTgSglrfQ2Zm5+ycyHROENmeugDAtjH0PLQU30GwRjTrEdHCWDqSWqG3MLXYRtE7jbZQHOb8G+4RWJi3E9Lz+jdYfRfKOnqS/rFE5zziUb4sXuxvGHFNHG9oEPs9RBWL+a5ZLV+ZnJphYHMs7aLFFgMyjiEb4s6ZyGLSlFp1AxH7bLq9lVQ/HA+Osh31jcGfhyqSN28ZoYYY7nuN7a83rVgFoNRNkkFo1JLs6MG3RR6yJifYwwMTmbANA9Y0XvaWYRHfkHYLb/TxxHAf60xNwKro+D/B0V9yf77jfT/RzADI9w9iGRhDsRZ0XCw2c5FHEb3DY8ae6pLMmBTG1ADWTlLGZMIR8xdGO6So3uGI/O764HS6oCtZddZt/pinYNamDca4Dzc9xGNxSzjEp+RD6Lp8h5MdYsn/MoUCT0HqEdzEnwMc8UM7W1IuiUNs4/651FiO2TgYqrwIOrj1rrIzWtRzx8W7BzQdhwtzK3xkwcfASZGhJTyXB0fih5rpzfy9l7BZSxApmfSOJCU45gOof+Rvd5KxA5hquzPPUgfD4Z67/M31oliSAoK5r50shC+DrqK+CdcTVaE8xSvLGqoEG8HvJoCI0gXH438EcAw4HKxyXvqVyZt4UN9JYNwXNXM8AJvE+JJXdb64/hxXUXEtOm/fy6Pt1f701fK4zNv/7f/9v/MiP/Ii/v9LW/OW//JfxZ//sn32Y5x/4A3/gTTT8t//23/BH/+gfxZ//838ef+2v/bX07Xf/7t+NX/3VX03vfvVXfxU/8iM/8mptDfBG5wFjMobQS0tBfHOBllaKBFdkPrmeG1V0cOZgZc44fZZ+QNBFABX0OQmGecLMY06e0YmjLAGm9zQCN0abgRJneLEPoM7UZB4Y1ekph7mvwAazASbRBP1Say3Nt398c3gp/dV3Z7LGyOfzaPUwNASiyxy6maDh8o0OxwJpd3OWT0Iym3rFWRhN4CMWEVs4w3Uw51nzHnlqEoZ3JmMWhuCcl2AuIx+On62SBPzcngaMhmDeMNxeryAkzMB6EnKq5mIsJAEaGCDV4P1B+bAWbAe4+nkuwqIBjaptq/TVu3/4O/floCF+1/pa39v30LxdAyV+vjT/UwV0WPMPUztA+zBBuwM4jhvu99N3KxXACaBPM7/9rJFYtP3Nruz87TdCYIFrJ3xdCmQsoM6IzkPnxoToEDJvZKKqChw3mtckFJvQCSvTBNAK4sFeyhB5uGAnAe4NaFBeO7EnMo8eXkCCDHBziBDgsrkQ8cxjH4DFTIzrYPVkUGKXxrKgaiHijQ9+qW5I23m1rvOk/A1JOL+tzIHT6SQkjXsxL2t7Id5inp02MnwThdfJ3Ee8mRhCPPE2T7ZZc2F9I/P/MdZscHgqJQ2Lr3cSvxOjxBzrSu08aDCZyG8ZF1pTleojpWsv5IOrSyC5tgwAAiTQs/Hg5T3gmoqqRZnvljtpEpAJ0GKOAgRsqRPfIXSe2vOyb5rrYfWS8rx9H/XjNqujgds6+FUGOnvgwz9q/KCNy/6mhh/5kR9JwOYq/OiP/ih+9Ed/9N3K/a//9b/ij/yRP4I/82f+DP7W3/pby/ef/MmfxL/8l/8yvftX/+pf4Sd/8iffVM5HaWxWduEQgSY47awVj1oc14EAghEilRDMz1xvDnAxzto0By9jIHXIBBVCF2/O/1TdUw+g02MOnaeZ8boYM2Kh2phnnHkQizsJDj1OBUBZy7WsFG8Ij4SONewZ/JsCcWvvX1p9aj1FMHfHiOYkpMdCZC6ds7ka2e8r57GetwBIQ7gBLOu3YPS+W4lVQ8SBhfYBKMLsbQeGduUbnavZQ9BXwRrHX7UyJIosZdJYvRKiKh0lL0Ucgr4Ckbt6rFqj637hvqjtYLRbm1/Vg2lmsMRjyQhp7cCJ++Qzc+E+DrT5u5s2rAkEZOLHZUEAdJN0vO1Sa+4kuM2Lumhe1bBmsYdZj7+/VMZlXN94ehDXWEGNRpPYNKhdMTY8yBU6j5HIc+WNRpNefee5OyO74D//SUK2CdNUAHPL3k1LUySnQlOqsqp7S0tjm2izuWn1rIJy0GeURN3WeVDEfCoq8U5uA9WFZ/ickKivCbyW146HW/3qHHg0ZpPAahtDJV+7TLU2TuKJ/tkYXi5TnO4xbzdDBhAZa9XInDRp0/4jLdVTJqjqpJQvDTJEf+w2OG0cJMsWK4fq8FLgXEXiryAEawcP/tvyZyAD+k1eywRhck9ghs/WRHwtZVm+D9Lbd6Z/vuM5mepZ2kfKe+ujPCZXPhYjqZajJc7jfLY05Gy+FeF//a//hf/7f/8v/tf/+l84zxP/+T//ZwDAj//4j+O3/tbfil/+5V/GH/kjfwQ//dM/jb/0l/4SfuVXfgXAMJc38PSzP/uz+Ht/7+/hr/yVv4Kf+Zmfwb/5N/8G/+yf/bN0Duc14aM0Ns6kEZN2ihTz3fxXOOX4DheC8xd7YOFfdF14FKbK71CV0KhgABqBokuAGyt3AB1z/zm/TeBjZmpTbHGzNwNaRkOvaxzL7y4ETCqlanWAgD3XAgq/fzQvHoh6y9e3zK9IXfs1a7VsMfExMXeoRJlJrpy5mjJVT1xGQ427pZUWfBdW6Nu6w0r5LnntzQOZLiviCnDstAY6pZSrekTaaxnS1vcdyKjl8jvTRD2Km0w7DNzp/vtj+leQ6YvGg7rtaDKBxNJaOdUELpnSPaBrxJv0qQJqbqAHiTrB6pjr4ywO6vmCrTnD4+AbdnUcbl6/Jd/XxN/KcRdxX8MfrubGVVCMHfmjqbtyNl5qWlijp2vWti58cDO/rJQN1p+8/aK+G0HZgcSDRi34hLLLos6er9u4vczdY9q/ZvpkiXKLcd45lxD6sohm6c1uYmm2DW289vJal+ZWjnJN3EXemZ+ubcS8mjVkuilx9M9+E+kyGHOidEPDPrmBF2M/WAigVpyDaGAf2wCM+mW9YABa3Y6Y15K+Dv63gRoCQfa7AhaPu37zMzrFMUB8z5oZoKRP5cKlDday8Chm2lG+X/HSPAsyL39V3FIeh0U7tI31iYEn63vl95nCX//rfx3/+B//Y3/+g3/wDwIA/u2//bf4qZ/6Kfzzf/7P8X/+z//BL/zCL+AXfuEXPN7v+32/D//zf/5PAMDv//2/H7/4i7+Iv/gX/yJ+/ud/Hr/39/5e/IN/8A/e5OoZeKNXtBDKd+AmYlbooj6w5xvN7Rt5ZFWzeTNLAjVk2mbaDTiG9w1M2PC03ZAQajpkmpsI1C8Znd9F4X6PzBRNJoiawk+DBPCBuL99r60LcAxhIlyBmiwGvia8lKJO0VcGWuG5hNr3DgFsMfAvCruCdSx6+6l+tcP/2rADECaYmlanan926ReBf0MPC9HsLCCBHcy2uRDAYvFez7FEnB34yDuNKwjZLeIx7thkbScULuNT7eJPWpA3dFWzv/iem3DgiHC5ndOjpDVNDVLe2k3aUafPec/sk+M4to4c7FkUOO93qM5xYqZ/OlzFdsi4pFOHY4bzPEe5TF+p5+59elcmOjsdeEGGfhheSvcpi+tWOH0h7qP453SS0VWhffLzIoQpRh8PuWeasW7HZqSJeUQ0TMvmJHda2kp3Qc2i83Jmf81n9Ey7O9chxaSRuLDmuOu9O+rxrGZ9vjCtDcdzngZyn596J88nKGlZN23m5SM72Ug8nuigbBNN3ueUvgIozrdSzGCGLTuCytnOF4PKz/DO806hVaY4SrXdgNgUZrNa60Z7woV8VeOHIYDrHHSxUqqv/cNkTQENzR1rZpQLpnZ5NG/ram9zgCsypZhoBKuTfaveyybNCfQswMX+Rv7tEciZdCUwROlB8fPdN6G9wfI381Perr4CPJffUysWnn7x7WXzP45rWVjbfrvCP/pH/+jyDhsA+Lmf+zn83M/93Iv5/NRP/RT+03/6T59Eyxs0NrFHsopRmTkBL3QqLT7OTG3h8DzmNHVeM96ZdqWj+26Z/zcZyDARA9y2FW2eu5lTSMMkzc7DDB8ofWprprMBCJovtoOypnH405jiHMdjsZqNFLor3q0JcGbfXh8eix2rDuL1oTLbnKt4bzCEsdpkcDO+NV48SaBPOevor+MQbI5RbMFPOtuxCLA5TjJ3quvZhWBuY8hKDDfGhTWqut28iCRadoupaaaGVxaLu69v1UqEsFHAFAGbNQ+meQ9M7Ntey3QhQFm7EGDKv3P6twDXHVgTGe6kfQapovcQOi3/el+R0e6CCMJL29n78KOo0611H7bg0tp0GDC8z+2n06P6lNm8TKdPgTOfN6wjJX97fS/mcExXvwNQDi90VtK4f0RwAJAmo19UcSib+hIdQnPcuJDaGZQ4U5PWJh335TTJgrnV1ajppYbcUyzsGzAxqVZmgRbHtTqzbMw1B0SfrRVK8XYXkFaAYiCO49X6rKCm5kd054iTH+MyLGBwF4d+G22JBzCvsfkJ09iFC+md9tfiDUcUo7S6SWR1PESGw4DE3yIf5fbxjskV8GVDcq18FRTLa44W7yOlUlbNjLhpo/H2F7ReQbpJRLtPMNCQ6LfzKr42Rh4GjvydZMDh52QESJdpWhoCOG6GhgJYZp7+16WUkFbCrbTS/FVve2/+2aw1/f6yzTI+d+k2zznN7ltu//xdncb3DRsB5pPz+80fXq+xkcy4Wby9Fo0DrNhz1uYAfKOvlFgMBIyJmIbkmJ7OTPDumIKqktgtMrUsJ8yRQAcI1AzGMw6SNndO4Ie9MQGQ0oVsggluQoMjMj2lsT22EhxgwZfqtLQxLhhbaV0SVS9jf1RwAtLSjgA3dakcb7jdmy0qEsIIC+cWbje7z4RqWBYzW3zYU5mFTnF3moXkEOBixc5p4pndyBqIscPvo7wGvpne6Lw6F8L1rHTuTbgyjVXjYVqKXT2ACtgkHcbflVVN7Xq3eoanswAbXOccLJ19l9KOu/ozoLF7h3aBD1EbKK5t5P037zyyy/tEBF88HfjSec/o07OfkKMB9zv68wfoec5xrIkf7WYlLzf1N/+taa6+fWODCXAX/bLh6CONzLuBdPwFAPF7akiYm31p/NUv0LTxgr28UMFPMyILUG8VtBTwYH3HArULo8QPeB7qHIMoa6KSwMsmaqtpJp3tYDpoo455bQVlaZ27AhpXiwnRZRFLs4UQKZGzUkUblZnyKuDHArvV9/iz7cw0DorYh0xtHdUJ3hNzUxW+0WGRbR3ic5QOjIlE41Ear6FQ9PMOG3m+9nFftyHEjuewSAkrkFgTx4ssNdU8o5XnX4nYj0Li8hJ/OQ/xPsttyGCGAQjMg9liZhZx4sxNJyDEAAaz7ar2p5RndKR3Rbqx+tjcSXWuktC6vbvGsXAFajblXPB/LneXz28oPv+bLLz5jI39CD7HoKZ25Tog6iLleTjDJc1NAgLBRAYwOafrZSEXy+L5jMVn/HYval6iQE1L4/FPCARdxzvMMzp90tZmfMuiWV1UMZxD1sayxScvPGnRulp8HoQ3Rn9T8AV+KWcKjpMpQ2sc1uGYkDo8glnN06Ik2azLFr6OLHgMs6g2L6K0HXhaaBF5HkfD/d5xnsP71QAk2QzK0u81RPnZbrwf5YZ5lpdXPHsNeuOshwlJBvSGRy47lLpqi7htdvXjejSRBG4q8LHf9/vdy+L617omkzVgAZJM7zD5i13m8+wOnHL9Mz3Y0FifDbBcmazxGOI2Xttx6lQ1BJCzA+iKp6cn9OdnNAGe7/cwRTtu0yFPT7QLeBET4MI0YeFsgsITMh94vOh9BGPIou9HpP8YKvZfLZ1dZCgCyHT5fDuaP9uGkGKAn5Yvw8pCLWSpIZCFXHsGrP9C4IQSGDJhU+O8idHZNeczhO7QQhuYkMYezoK7jzWEaSCheds9YguJ11Mnkb4GMg+zpCKl3qMkM0drM45tBsguzZI+gsx36gKx1UUJQKwj3EHKfCESlzi7uXABetWELvGxSZy3O8JiwnhZ73HRJ1+ijNJ+Z4922H03lnHcnpz23ZxyWoRkFB1C9DBdpw3N2beRS1iJjHyuZ1hupcIzLhlIBSxRj7j7BTnOcqA/3DVnxwEGalg7Q/fWOFjhvOB/M4DB/p3RelFN/p7bZQckXgN8cnwp8XN6TnhF4zsDGkbd75XftyC8ySua8eDxTMwAtt6rrRoA4DsYFrQMHF2+scETiHEEjo7fje6VmQxDrMwJVuYM7sDQ8CjinhqZWhoHLLNUGSYSbZqjNR1nebrAzdA4NKbZVgOrk0hxolK1H0qzQlAfaQ0B5/KSWPRJYZZbmWp8mn3sC2bsPgGj+g1D4L2fJ3pvWyF+xB3M/+zdQYgDggkcBmg5kstUE7z7NF/BBJdsCpUBTezEWrp6Hw5reEK7EC3QOxZhn+Pb99YCBFRPXUa7SNZuAMMziF28GRufWdviZRHNx9FSGVUjktvbaAzgUjVMGVRkAUDnNnU20bM+aosmhfNhIc1AIpdV00maCJw2aOpz3BzHkbQ2bCYYA7njnIBGjhvkuOPp6QlffvklRM8xiw0o9Q49z/1CWfDLp4Z142aWs4vr8w7Qizicc+aaSOXU58v8PmIh1LkY38+Op1tz4fQm4xyTAQ3B3BLSbP5p44yWGAygNDdFeIwDgIgLrdnFO3XXFJ5YqWC/m4/PvMKMOWbmT+s4To00hexqWiYzHx422nnsj/ROaxlb1nYOdIBUBwvm6tk0ILyGcq3sDJAt0+7801LNPOsVOxzNgEh0wxy1BpxmXRrnIwFMaBh7O/nGxybfGo42+ts3F1kuoc2OVgo6CGhae0eZAbracfiF4SHDaCF8rvomo4itfWGRYeBG03qa5Zxawx1roRH94Nv4LiW+gYZsYlZAjWTPZw5qyjkZi8MaG8vD3gUNq2aGn7cXuxMYQqlD5mezLru2sgF40TZrvrUtN+AHkWd+dwWAjH9sCPwufCXhTRqb14Xcya9dF+ugy0swfRH4YX77ltwNU2qjYHzvrlcZ665dtGlmbbETFGBlXP1pUMu+n1CIOy8gT2r03wBTUwsxyxte2Tq5reaaB9WhuRb6ihL7/cJlP3lbvzK+f5s3DhfOY0LCKhis2g7PSekuk7mKGQAQERwbsy/WUtRvNR6XuQMFV0BBdRw0Z21ImLGMeOeZYTCDv5q3XUKpaoCoX9J+TE3W/X6fGpPq+Wy05/1+jvahPIzuGdOBFjBBQQE4dkkom9OIZI3OziXzIzCblt5LUGP9nwFNLTf3IQt90dj9PF0z8+HXvz/q0E9AZF7ICZzPz8MUrQP3rq6ZCpONENbeul49iv8yQKG4qlg54nXOr8733bhJzud2O1xrY0L/vQNfNJpfk283jLF/8v1GlKsD7/lspkYWjroBUPJg8PSIauZtAwTM93XuogjRGIK9mT+6OWspV+1fJbNOELjyMnI62fBMqtqY8w44dKxazK8QQIvrwW3M2TvwoWfTuJwEjnjqJqBhQI3rgNwvtd2Z1kW4pLaCBkixS11z3ACqubLi6a1Mof61MXq6KdpLa11QqvnDQ6/Q3tYPpl3ql92HEtrM04CBm54ZD0OcKVsuxgSlm78bAngI7LLdyC9/C/ASgCNrawLExDeU5z2g2AOL6ybJUpVcvqu/r+IEAGJJrcbbA5x3CCEovl9+34Lw8cDGZ242EcgNV1WGPFx2OxZZo4EpVBhkcRM1iqVp4NkdNAFxEtKXWEihHQ1tMjuFaHg7U5mupCG+SWPOmYbdbkOXcDdtwn+YydlulQmB8PM7sSNmYhOxLmLSunBHoW9Zi7VpeIq/Y61rWPmserkGVnJMsiem3jDabYHemRVdne+wHVLV7kKrAQa/1X6jcRARN4na5VlNlx6Zgl3RZeE8Tzw93XC/x830gIGRnLbaxtd817zjAk6r+46+3hXHEedfGBTNXF0jxGv7IvS/IpgmxsASm/hdgb/qoWxQhNVE5xJIjrrf7z363dtl5GZ00Gav14+9pEEEcjRIO3B7uuH5Q8P9+Q5Iw/35B5DjQGvHOMR+duDskA/PlY05uKHHN4XXxn8oSNWt7pQuz/OPWb8qjTuBP3ObIv06d44c7qfii+OAYgDGL+ZlnF3HHWRDAwPcZ+ftNj12NBmw8DTlues0ZcUQyO6daR9SrPMGHkSlA4IUmf/GfvzZx0H1jnm7PciZgdVjzkHRuCfFQYHnHH2WNKe69mLMGaF/4RqH9A61vyxu/DYng5ui4CBAor1ZIxXtM57NiYOZhVX+z+U7/6B28TzzqjjzFqdXMMEV1rNWPC6ijswHWfMW75tLGCHqj4w1zMamPDIysj7TmJdTvhCV8AA41TVqa6mMVBaHQ+0rof8iaEogsz0ddAgd9ufzMWLjM0BO0qLMv43MzByoiKXL37Z30RjNAi8H89nK4bo5qJH4vZp5ZSBUOVxOEzzI5DAGJwDzSizlVCATvRwSj9MkOQ8QXevK/134KsO7aWzybumeUa4hdiC1vFsXVd6tDMAS7GhoZQSxU59NLMrSPE6tTr1Lw7CDneY0GExnAJIRhqpfcUgbHtlgntcw3UJPGuY6bztmqn3cq2PMH8FcmdnydKt/jWHyYmYTzeq3tvf17u6jrknTcSNIednTbjjccRsYG02LrtCehWAGGb7bqpn+IaCTwDLT8Q30Q4vA5z76oglK4EJWDYgFNkEbgKGl3bsahnA/GbWElskW6zBjmyZannc2dQvzOHUtzUtmYKzVMgHDzD8Y1KgJ4osAYj04/jrI7mFmJiXdLM3bw0zwqieyasq2C2weaG3C9Yv2tTZpKb61Mwc7T1VBaTWvO9qYr0c78OH8EmgN7Tgg93Noas4T/ezo54mm3b2lbetRfkt5n7+/nEuNcZlGH8WpQtKaR3238t5NPqQF2Ie6gMf2xnl2PN0OqAJHCyGja58XK4+Yt6P5IX/eQTfNx25sdY0Lm3fj0BywTVYU/VTGoMXhtcs1LZO3S8nb6nlMhyJtEBE8rDS9nXcxrUtcIUAElLAT0IFNazuLrttLAXa83lQXwViLrG1q/Lop43W7INnSQEnrC1qFCuGMJe2zgUN7BoynZmHZBNYEfia9MoGqUlrrXxsDUU/xuLCNJAdjGUBcPbpsMjvCnj2Wvbc1fAIcc5pkGflMFJ6nV2ZRoFIE5mqZTc5EysWaBHBYY+PmZClNgA0BCtiJuBGngJxJwxj3WXOD9JvBgQGnyg8v3nm62k6rhiqBJi+L3wtyOQSEbC0l+nbl5v4DsMD1jwwqYOcT75LftyC8Cdhons3xm7+V3xQlgYz6btXmUH7+nRjWHJBhnlFieZyZuybxG6YtUeT7aByUQNz+WI0mCfBk52+62+HO9DI1PTqm9sh7elwTGa6lxZjrnEriNYuFBJp2lGLhioWsqkQNWNQVk/+tbZ2/hABhaXLLxmJy/dc5gQvBnruGjfsh2ZSkzcWEd/MqUAjBmBY51VKbCIIsPAPZ5M1ihQkZ0yi+WNbAwCTosAVxbds9WMj5WTrTWrG2yhZo+85aEysjTzopeUebPgo7r2SPdtDr7rG9YwBXQTyHCnQMgNq4qcAvl1lpyCZxlrb3jn4OTV8fHgRwHAeenz+4uZn2jq4E8EQWE6SXw9e9YHy+8us8vyyawQEEt6ONczbHWJy7THNUE0IdQAyuyrvpJ218SKme09Mw7xvajY3cHlsN7UV9gg61K0lSmrHu2NiQKMrj0Txa0ppwncsU+oe1SLxJWAHe2h/r/G3MI5zHhKBvaxuTavw1AQfQx8gwRTAvZBvxwN8a5YpwxW0c2bRfTrFyyrUNarMbQPF1izqBBVUfe6C23VQxyt1stkqsquwsIMaFARedIN2614SKSedm2maNFa1vJW5L39XPBQlQvJQFWLENhB2oYXBiGhoGTBF/56aZwA6/KzTa+OA7Z9K4q3VG1Ck3QwEV6Q6bPQBhPuIbKaiASqn/bJxYu5gmztIJMq0ZJF07mvkufO7wURqbywXuI9IFvyHhrsTbL0kEbmhA1bJ8+E1unmLNFab5eZkBVMzeGzAb3mk2plOr48J7n0CFtT0zvgxtjYEho9fAzTw/64uK5c+meGqXiQJk7oY0eaIu9OSL4dUCuF2yUuDFIi9UsVM0hPaquQkm3+rWZS3DwUEslrybz0AGMIGjpWejEQlsTCGem6Ts6rIwnXYOHUxda7xYg7QIKJu8KqhgwMa0WbyBC0JLAshWsDenAXnnU+ZCOs0qCjAxwb0SvtOK5Hbft998s/ZlyZNDFdAYANU41hdMLrefLTzWVhXINWl+ZslAjmKAnGbfjwN69tDq5e1A1IXWPj0e3dehCmRfd0iCYQ0b4ZKfZY3qwQRXHsfWtqcqDlVAmgupxq3soH7qiw3NsZlQPwrxq6BtpNEE4B1c0RgGKkjiuFlASrwkkxDCOK7Hi7dhSTxHtWfCdfUpDAzNOPNPz1d5+Po641qMTWen1VOjbsxncx2IQ9a5X/K2Ndjbwqtm4mRtIzLXk3jPmiQek4Wbzbi7um1oY7ok930dP7u8ghYCN/Y810k/C+QD04DPfCmc1wTVWIOP7MKiZH4TmVoXEMCZEZI2Blm7YwCompmlszvzr7mBBpVn+QOIfJHzdzr5ws70N/+u34TecVvE94v3tXzO90Kj5OkTrTHauG5Y0l5vtr41XM3VT8nv2xDe5u45+Gda9Mc3/ljjxHsbEHno5QGrmy+WJpYQffh3NV2znWPx3hVguIFWYycGQBDAgwCFeU2KEtqwk9UBXoxxA9MbjITzAEFoYEzLw1oaLtOp1tAiheUGs/PawPQstT0zlw/tWeTDOddQS33Y+rToV/MwBy5qu0Txbf5YgIuBJJZz+BsLQFnTM9T0WSjINFl+j+5Q8WbbaC8W+jfva/lMd82vmlTNXwAifqSrBIuvzjvGWsHUzsQt950t9JnuR/WubRBgY6WoanN2pmm1rEWQtflY4nDb2fyyCtpN9wPohAOI1gTaJSbv/JMX2ou6RvZL3L2A8s0Pj/gBf7+Ko7BD3sPT5M36CJEwQE2ZV7v8yljT+JBSCr+SiOfjZJk2sSbUNUZn/mLx5jszg6shtVnZIcign+JP4aWS5hYJzCfnv2lK+XqWV1dQmtSeakKbJS09rQSWqGImFNaND3sQkPmgZ7WLHGtrhxat0n48WR02IoWPJ1t77H3jOGqsMXLgzb/xa+2nqF5ZS0nOcZfNrrmx8sTP2qi3ueZ1vCzZuSWs2aq0hOBLzpeHJMF3z/C5GwMrBkKE4jGwsfdhxhZpU54zH3b/HM1GWg2PD6LTpJ6Vt+Z4FkeXb+A86btQmzrtTJPz840WiehN/SFrWbW/bD6tAOq78HWEz+AVbYS6uGy/P0rrT3mpGW+MvZhAa+ZgOzGbBXv1Aoy/DG82sUA3xMVeCsyzNgYwGj2bV7UgzNxtAiZQmz82A0tD21M1Nqq2YFo5knif1ZXp9Ir5n/VEEVKL5OXtqv3f2i/R2lrexC77lQB/JRwbEBimROPbTvuzY/qr4L2W50KFl7G6et7RugKLx/FeCrH7mDUSo7778zj7RTcv1mwit42/SWsAJwOrSaNk+nI7Skmz/rZdci75ESDamZeR7BnxAJx8ESuMXnGBVFXd84fdndKONu5V6efQDLYWkqU0KE5A2aNdjPx9r169lU2sfX9ct8bHheCVH5NS8+ObMtLLJ5quU1s25x+BCqAC0/GOH53HbYD6BvdSnOuq8K69xeVNsJFX/O6a+ZfIWDeOuTW/2/X3uESQrR8u/1O82Gy54CW8hgHJdHq0La9HxkOsaN4QiI1G0QBzXDdvG0/PfCZAjUWxekabxuqQqjBpFJkavsg8aBKig9rdvNallU/hHb2MvRKWsbJv5ZwGeS2ta6LXMH3QoMl/6vw/nUEiYT3RLZZF8CCnYAInBy5TuBb6m1wxC+hbuacGVkbWzoAAUXxby3EQsXHlXNOB3qHG3aaf6QT5meIM+nOZ1XmAx5t5sUka08Ztbb2UARaDmZXO6NNPDEnge6f8vgXhbWdsrl6w1MHcgpn1RjDJe171aS0ohPZgZVmYzuk5ftVQ0AmX6SBAIRiOAeLAqh1eNgY8HURP0zPbNjPwMnaeJohRDO9qTklD1z4XoHl+wOJOtXTHAD1+oRkt8pnlsbSRTh+lerMqnFm97cYZuKuyS7QOCwMjcs0vM2bMBWmmbfmczGpCVAS/jRAe97g0mLe0nRmYCxcbj1w1TiwuUe6OxivzqF24Ko//bvO6ABaZnkh7ZRY26m7gBwCiHgEO5CL/tV7ZRC+Ei5xPCJNmOmhjI+K2xQnAAtA0ytwBXstnLMqRrs56Thu7xuKLjwmqrQ1viEdr0Nsx3EGfJ877Oc6/AekA9GuDySuPFrXd649Za67oqnmtnPE1eVd++TIt1u/cBg06N3vijilxQRTuPQz232ZuKleK1pm2mW9AARQDnVzWJK8R87eswneeI8FtOWMfq3Tmx/Mynui81BN5Zatmucl6AXAdW8FCxgvbkAt6ipZ7/uuaHY0mtU0WeJuxuI7tbyzv58ghOoToy0HIzDvO2QBIjhUsqfkp4yPZi/YczC9LabaGV0C6qVPv3cfyrr4mfFu9JRGr8ENZpMnxFnJZwvjrymeifvSNJpfwI+JdBTWtamTs/cw7zsmMZwY3I78Q9vMlnvzuAtzAJKH4loR/Xn/B31ZQs4IMziOeDcREukqP5ZUdKIyu0lQ3bnfhPLGhRZC+xRz7lqCIb2B4J43NvgNtnifp+UEea5QrsJMNzZjj7yCAal58/QzMjNPUyLQ7ZnRqV7rvmFl807AoTphpmw9jBysyz/SQIwKcEGlzQe9jEccARLaQmMMCP6dimqIUN5ixvR8Uzt8FfDC44bbOHbKCohonvgU4iB5a+4nNiVZAM0sgoXxnfmTCfmvN71N5pP2pQKdqCew9YBdkEs0uYJAAJuIumFUVt+m2Fhhun18S2OOZ2pHKyY4NVs0H77L6jlMCQoLzZOEf3p4W7GzJ+MaewlbBqNYpQCIArCDVylXN4wQIUMQXjA4ApEtb1zraNwNXnAePGc6D65sAHBTah0Gonie0Ndx/8INBx3EA9ztOO88lgE5HA8PjXSxUXMHKX15kbRdx7J0+iFPDS0vlo3Lekue6LI83r1muM68dd8yEPb95HdRkjqoS3sQYnI8MaU4R8Mh4vEAxtTk8BWLVZbzXpSnynWNM8zoh/I8XFmfaLE8uY6GrhKqN3G78aB4jqd5Tjh5CevAuS+Bn8yiJtW04yLjaGsxzsj4vwEIAaMBi36jgvHlNANL5atMy8XceRxbY3E09S+uHKOYK3LBYUoOi3Km2+Z7yRO6bEUd9toymjg60dhEM80xBCOich481A4mC9TtiDQsTtCnMiyYHAoDikEhjJmSY6VhzYwI/a2z2AKZe/BngyNqbAYsDDy8H27hb8EDv4TTUOJras1E6ob87ehkEZc0Q06SxAVDoinoY7ddeNd8UvvOK9lHhbWds5l+tL9LvyYq0TndiNBecfn29gvBYW/sAAQAASURBVB0W4/MSyjkUdiOUSnfxQ7AfQGSCGoiPA3Xwg9CwTE2C3VGjkzE705xqYnMFbRqbYbYwShTIcAft6QIc9VLHBvUyQtCIuox1xUBR1KqCG5uYBr7Wtos43Aveqr5YcTsGE4+dxxXYmHBjz3zJZQVCbI5lwi2bfcDLIeG4xdjjHdCx+5lH2F5TEf0NAya2SooMN8AiOI6DytWlDuMyUjYn25u61XhW/6BnOBNgkBVttAoXtW7sPtkYM2u1lh1uagfbMT4OmYx/jPH7OS7+FMp/CBahwTHBTDUuZs3tLG4CaIIu8wp2Ke138ujaf9Y1cQZL0phoMu6wOc+OownuqjiensbdKV9+OW6sbwfkUBx6g+od5/15ehiabVbbNlE6BZltP9SY+/CWpeZzLkurcMtlvkaHM+qrU6AalxRPxw3ScKA5gDwOwdOtBf8yvmYsSTeXL4bUy38SlS44t6DaeDLFiks0l/qHZFxXCqPL49My5xpCB2WRKwtKJwzARSS+36nNT7xxlNpAcqNImwKeSL7TZTNQLJ6vKBLeuuySaWDKPrv1GzGig5sbH44YTK8BFHj8mqu1gbPYGTHmvNeLwGmf5eQxEhsqDGBSGxggIqBhfWdFn8/Pl9RSNSlPag+N53XFnb/mQG+SqXOBmRrHfq/gRxOArRoVAzUjXgYmD8FKcgfNQCnK3IOa0HJxHQIs8PudVofiUFx+t8sjfU/vM8CKLej1YlKnU5jeuX4meiOP1DeVbnr3Xfh6wmc6Y8OzXvOrC0EMeN2inXa3TJgnwX3dezJ2MgV8gbt+tiEqEwwoFAcEoalpzlQdcEyuZcKMos/iBsAZC7RMpwGj3ANj2h8yAYvvOE3n0coaofnfFIYNNHUoQsWNufAGXAn2wGCH2ybeK31dtTm7EGyfW1ckduvT+/lvmDzEInVOl7t2CeXufISluRL0vQyJ8XAcbVzoWBfSjYbCNEDjdwZM9t7BU2SUaOOQhdpoiax12YuMBgJEkLQvOd9BF2uE0jxwYDXeXdF3nicA2dz9Imlann1cPpvv1jEhMV/Qx2VwfQ2wDRAYfRze3Qy0ZNNBEwzs/bikU1IZFhhQhYc4ok3HnSnA0LZ9YBfZ5x232w3neeIHXz5DOybdHW1eqism/fGIciHucZDyd/fts4atVDf/6vXrXTJOUuPk+DHztXfcT4UcAFTSxZUNAu2K+xnztTphV/C9JpLex05spnWhfQ4mE5B0SrsOvpH5LRCXeipMkDYBOiRmXzPK0hbF2riM773r1FyZFsM2ltSBDoOnJsCpa7svQeF3ro1GyOOfgYXVs9Fc83ggMy/7jvBqx+nV4tiGE6JN921Bc1fmGm2bY9RIRnniuyJ+DmKAAQIPBHSWIHEHndNAeYbQbOOC1g3Jo1EIgOyLC3Nw48F1XY0xOAhxyxKN70Gj8kMCASysW6P5WgjWxhAAmWm9VnRPTcSd6yHG7wyCLO+NhkMAoLv3tCrgo7znOlzWu4ADujAigQ8GORynxm9cdr1UVNhtdn7vYMhpLLQjZq31b677d8Dm6wqfCdhcLY/vEF0tOoOZHKEuhxYf6S1rU9ZC7ORMQ0wzy2fsaMXNN3HKZg5zUQiaLwJj59IW0dB2GNQY4GUCo+TLZZjGdXobQCvEiN2itxc8Pm9IAk9Z5EzoNWHX05Dgf6V94PMOscufhdzz7O4mmcu0MmpZpgURiTM7FqfKfybYmFCgm7w5f6u/vVvvzuGQQYC9y5iq1mO0Ru+m7So5UvwK6Ox7jpMzODb0WprjOCZAikquZnziaUIeXIUQA3UcVs0O0vgIYAQcx3EJ4kxYadIAabib8KaK+/0Ejhv68w/Gge+j4bx/gN7vAMYO8f1+T7Mx7LdnOVzm0lpvmHVvmaDcmS+Fd570LBQube7F0abK3Lg52tgcup8dXzwdEzwKjtuId++KJwzNmoWjzLF9WXtB3zW0xDOE0o0xkC/RFEsn2YV65V8X0OKS9/L3JtkMcwEAm9+2Tti/ddPG6pvOg5nUjwlUiK9uNyRw3Z6D31o5S1IoMDSe2PPNXWCNhs8vjW/bJlYCWUTLTkBm2l8KCz+af2+3tq1vypcabtffS1mbOPqAUC5fKFq810QLg5cAH2Fixm6bfTy5FFK0FQJPw+XHf3uQguU5x1niUl34O5fFjcVgtLYLl8Xjg7U0rD0KILIBM0pmc5u62gyOsmqctR0+NojiXa/D+bZcrfPR99gAhQEn7qh1FFPQNQNmaIXLxtjnHRWdplYBYbQMPJ4qSgNa5wwRDNOw5mljx2yY3CjGrpJ4mj6/AYIuJ/xiToFDnLGzPTwr6UxzTNAiU7vRRSj+3HFWu/hzmMAN8zR1UNMn9eP3PFxaBmnSznh7SnoPqx+1U17cQkTx5rbcTXDl+NPmTb3lZisX4nZnIniXn7+pDiH8fj9d4LBUIZzP6ln6qSUwYflKuwIYCDIB7VxoZNMQtxFXLY4L4rA/m6H5jp3stBGZlupimulX7SlvBmUhu4iXdSV4mQbHijle4daaaeX+YoDWZr9wPxhdWesWgjBfusn135uYmfYH1CaK3i1/xXnm/lZV3O/3dE7IFqtba/hgHvZkaAPO3oHjBpwd7bihdYU83wFVHLdjWZBtbG/Fw9n8NldeJ1rhdQCkCAAP47znIrjL8mLwWMuoJdDRXmdXfHEboP0mWZ9+a22aozWc/VzzFN60MWBMg+5K+gSZVZX3Jhj70kPrjS5av1hFRjrjBVG8zbudxiJ45KCZNzs4Tp+NJjNTsXdTuDRWWvkSYGaeCVL6nGEgI/NDPnw/vsTmAzs7iHbkthrzyYAn0jAf9be6bmeJ16OJpLy9PTTqa4KirctdgaMNTVZtx0i/js/Qrll/zrWqgEzjk/fnu2uXHgaXUdS1NPbezMEX2cT6TjDP0Nb+yJILC/+hcWE+EwJ+ukyTTM3YJbONKb+AkwV60mbkvDkOaTgEKb7F3dHPcSJtakawW+UMKnKdL8sv6Y0ev1wUqzZLZrmuqUJuO6+/91Ghi8rZ1e278PWEz+buGQBzdrwEFXkp2Q6Kcvus2uAh3/FYGMmaWzDKMAezszd8HsYWmcHspKTtOMz1MwY4seE+TMpODC9oOjUuJ8S/mbMC8fjdTDUgaBMENW3jQC2mxzVtM+6YhCdsITH6bcHJmqz6F0CKs1yt/TBELiyg5OcpjDdBPTtSn3cCbfwegi+ftcjnWazUWb4IlM5y2OJZA59ZYVD1SLgOoTo0O8NMa9Cw04CwC2kAKa3F42AH/E3Qr+DMND9MJwOjAGqSAFeiOcmERreBtOt2sHrYOSWxLT0aAdYncZZpfF9Nx+w3HLg6oOxsorh6hVrbI/K0czxVI9hVw/uWDE9oH+53yxBHv+PDOe6gwnEAZ4dMr0ggQQPzuc6lRN/mXbxfz3O8GFiqe4+V8ooFy+57neF70tIYoH4XaqsO4Iuj4a7AbQ6djiGgNg0eB6zzgqmoZNr5GdC4vub3MIa5DZWXpXc+MbPYyWlDmxLUselwZUWCoa0aACTy3NW1Cubq6Gyasenk6Q+AHgCogQmtpVjbR6GCYfZlDh50U/fQoBjPteYqfFkzHxBQfqVtRMmJhNXf8wL8mKHFYZ4yXwdQ47bLfcTg1F1cW/rjiDbJTbidhtYd3D8ymYWbgKvFDWFfSaZhIdmfTQCffWxlOA0SQMI1NsICOoGa5WLOnu6kYeDCGh/LG4gzNxlUaKFrD2aE3gNBd623fRPriyUfo8XeZVo5XwZ0rslaHCUUzRVIu7OAGKZNXSbN2hyTAwZ9nxyceb1TeM+8vsHhk4BNGozEjNZ4qyHY+sD56BKlvomksavDi2rwOxLisb4bKRQy75g5lMfS3DVG6CNs17DLCdGRZgCWGU/t94lDssZGgfGdAJNOzj52y4a76eFQYJxzcAM36YCGCZZrbqx1qdJOK8aEVyC50GTxjAW1vLjzgsFtzmVEpw1mrp7y9Jvc2XPYA5toLltCyLkCQfzOdnZZOM8ak6C+aj+uNEkMfCyvLFi3rG2QEFyHjHyQhsW0O4AJ+wFgkOjYgYwADUHD2bsDtzhcP/I3Js8aIKji7INpV9M4pqHWlekIDUvHeZ6zjqGVYrCh5R4YXtSirEpH9IudywnwtgJN85g36NOUB9OECaL6eQL9xPH0hPuXHyDacb+fuB0NXz4/A6q4Pd0A0voQ1VNWrcIItSFsRl2H7Veau4n+xDkjA9uI8bbFfn68OtgQRp7XGecQjRQvlyqJU1ibfHE0PJ8n/r8vnnyu2jmL3hW9ab42iPP3uSEhEcM01i4tOmg3QbLuxmfhNUlYM4/4mnibV58XFdNOitdHKZ6ldU9p8TG1bZNYzZY2Vz7Ls4E7U5pWTKGWgUMlfrYLgNhcewiCctvVL+ZWmut6FWoeeW3O7cybLvzCygkAYaAlrBcsL0GYa2cBmze7RsMPtqGp77y8spGa5RZN/SW0McggxwEOdJTH+bAnSZJ5qqBv35gdJVAgVu8ANVvAAoRQP/PNQnwWylmjweCFy0taD8+D2ytrXHb1y0Ao6rXQZGnIuYHwey6L64WdxkaXOnjbOU1Kd9wgxoOWNuW22dDzXfh6wmfV2GSE/so0W3aKNBFqIcEwSOi2VXW+4UU4L8wGckyrYoKDUWNpZ+w5SwVAF533zgB2xDFADgAzVbO8Ieh24F7EHQOItnl/xsjJNDRdFA0NmHfbQDpEbdEWX6y9bbzOBMRKfS9a8c2hCjWx4ITgwREUGDe+bwRm3rWv7+0vA4QKeFjY5fwGGFjFlKoRAUxbIC6wRD6hSajCI98b4Svt/GnCNmtaMq0X7SpBiwkBrDVM7TtDmF6ZLKAETiJdpIk2qYAj6LiasdHGBhxNq8bmY9QcDpxqH+5zjrJNaxMmabkNOE8rA8h9r9PdUjsOnM/P08RHgNYgrUHbgf78HEJR79Pcbc+zokXtucaKbYDX87w6lyT/ju1yVKpqGUu78tZ0DY4LslB8PTZtQ+YR9ZFxV+DQeb7mduD57LgdgsOMkET8nHaM9xDohemmchlIhFMCE0AqKVF/E/5NIBZg2a0H1D2FWZ2jViSdFQ2EBecJtQ+xE8xpPJNwzm1smsgwOYvyCNcl98f20ssi+mz8XoGWSieb5dmv7JY7KmSm2nXdHy66ieekMmKzK84vRmqZbW1e06yOtiZfr+u5jahZEp/bDnXtGXjQJymWJyZDcN0sX6/ffMExdAucsrYjv8tgJ4Obqi0JTYXxsaG1IA2GkGBvv0s+SbDneGCAs8av31B/1/qgPlctCdFAcSv4aU7X+M6amFbrigxm4t1ct6mNankM4nbAK2l1PjV85+75o8K7A5vUbLp7mSNcfZIUKw8SLV+lJHJmsxXOxIV/Y43pbMpMa5qaYMmxA2PLTkNDmHJN99AwTQzmmZQJgjDPn2iAHzNJ6wI0DVM0B1AT0LRJQbjkHGdxPC6xchXMHaTc+CJsu5wXgNDq8CLOLVYXgszEQzQirUVsR8J2mNNCuPYKQODEaF528ZAX/irsVoC1pCMaqmlTje/U06shZOzzt+fqjCADIlqWC0DLeZS20h1taxtYm+3A3o7eK5v0XeC82AxuZ262A0w78MpgzwUnNz/MNFXN1vgZ7xlM1V1hkZkHgp8I5nmbORHO3nHvIZQv7bJrFJJkZBNJyt/8zYjdtPkLvDMEyv3zkq5Kf1fhCtRoEaofZMGA9miCUydXVEGCezKEWfO+N3HpCirrfJ+CbqMx3bsJNSFCMyYUTJ7Ez0B2eS9YJWGsTTZn7xJPtbz1MU3ng0pmi+Bdi6cBxNph+6OpMpGBAQybE5zv0o8EkCrQsPdpvaA1xfMUmdbmc3bZvJ7t4qbjRIUByN1GDxuAG0hIq5qnqWvRbsrwhkvmIRY/9e92V2MFNF5byd9DUxNxY2m1xuYCGCiM3+ysxPhK1mhYveJ3nLFZAUvcc5NNrazM5bJNxF+kvAod5WJPMG3UsqMOGbxwO/o74fRRL2DV1CRTMMn0jvpWLU1uBwY8S5uZ3FXMzSqIwq6tSjt9F7768HnP2LwQLtbs5X0dIPl5P3x2C7AvMoLkhVro71UYDGyCnclQDeLU+xbCnXQsCsNozaDIYNx++Zt2dJnna9TMzGwi9wl4Jh20SqnEXpEt4HEPAgM1EJ0jvZuwbVor2kLKM1I8bvu06FAcX0S6LUYXQu6s15VJje30X51VCUF5m3zJN5mxLQJzrq3I3P1XBV8w6ExaAri9FEyjwmXVdLwzvsyFTfwdsKgaph2oGEJMxOGzObu2qG1V6Yrfc/xNBwjpolQRvwtoFzKdQe8+vqQ0O1Ar5rJ6SiCCqcXpOlw+nWe4Xu+hAeL5RNRfhliwH9BZ4m7DlpnJGuclhlXTvpZJLhH2H6+/RLGHgRZMM8oWe8CqnEEeO4Ok4MxeVVlbUJd0ICC09pxe/OaamSB5VYZTeNEABqB3Ben2d+lIifFiX5rxx6WsNd+afy6TeE9pd8ZNCcwwr6T3vrZMdOVACqVt5wsDN7whkehdqxDz0NrkAnhyW1hGjnsKTSt9u7XndULpbh4Y0MmbK7wqBgjIddhrZ9Kzx8lAYNXC2MZNFrT9bpqdoC+cZzHF2oCHFexUTYu6oBVARqg+cwyypoj+ernz3eo0YKPBKX8ToKN2YQ1N0ujwf5LpgOdV2oHKA7XFI1+orw6JT75Tft+C8HmBzYOF93Vo9vXMZZ+i7qvFbt7CjBCLoS2nrMVJqSSWXPckkzKLVUIAV9F3dNgunjHsBFqggExIo6a1GQtKn3R0tTxk3tExW1JMW4S5iBi4mqZvoGePO1YwnzuLDKS47CnltrGWJkFdjYHygpkXM5bN6rkOWBs90PJQzAUkmGbFzJJGfpMpEk2chy8vBSjEjrIuB9r3YGYAoPp9B0rWIB43vRV7dw3Q9un4TAofyNcl/tI/SZNl7yzOWk5+VmifY4R2S5kmBqlX5bogRvZBc3il/NjBRKLDRAreyYZCp+ncaUBmCmbSx903Wg99ANN8pPSBjTt5yO724VGCK6a2e1+ltl0al0LXOGwqdamx2OS746NrHcTPkuhC2Hhkk8Ih8PJ4yhrTQS9VYelvLNYWEZeqrwh+OUpJmw6uZfYy186qTW601jZhb5I5vSatiNWNTdOMbpv/S94a88up8I2W3I6+Hoq1RQASTpvrF8CyDgEFu9WO8gyIdNfa5MnB7SYI8z2mN4MumnUS81mprpEj1YXSpHbxehceY2kU6yC6DHsZw4qt497riTxOLC4Lx97mErnamrqAADt7QudorjQ3Q+guAGGjmaiakrjYE55vFeyNljmDnGZQfFBcTm8NuQVPS/75/T4ua2JyvRjANNLgOKCr991wW2MtX2bbMCj71qCIb2D4WjU2V2EVm67CW0UJF799ARJnavkA54hX33KZI1abC9EALgGGnHWJmZmFloT34htCgzTSTwcC0nDquN9B0f0sj60RYxFQ96KmE5kMniww99jjeZRnHt+60rMz+6w4NhqzoRsvetE2WVbStBCFsJAXE87NTZFooVFVWvBMKL/yLGamUSwcWxwuf5XbLrUl9L53+EH1oI/zzyEcBexCXtLW8mvd9qECvq2JRamLCQ4ifF9HzmNcXnouHuxM4AwNzFrOUlMZLH4Fg8C4oNPaI+Jb/lVQ811kLxMpPQPbGEshMPd+DhByHGhNxuWH7YbjUDzf774YyRQ29TwX7sLCnQGkNYRgHKneEF4TvbKkzxiqAHb1Pccb/de7Qm7wSxzH7qlp0SKP3mmDRC3XnD+PQ/aaJSZAE01xmSZgO8Y+9hGfXGD3eUOZqGnj81gP5BJew2DrifEFke3Y2QXOl+MY3/OxT43sW3BpU2L8zeeDCg2zDDuv0lVxeDr19J63jnMzvQ9nHgZkGIxxEQrgkOHtLeLMzT/qEqufiPj9PpzXFeurm2LeTgigltqwtGkCEohxZb/NmkLa8XbRIuWdZYVlLAh/XQFL3B9jIGcFBwxuFoF9/m0Urwl5QwNC0E9CPSItCekW32hKgMjTdKexEW3cHr4W2wbjbPnF7I7Kie/mLKeTJiSDGS7b0yx1JIAz4xweN/JDqWdt67H06BTxLC7XV51PfVII0eV9wrcEa31twMYgwOPw0gpeWdXKaPe5+p7NJk4wOkkx7R3/O0sRcfDhsUnVzDSZ9sbMyDqGtzPI9HDmQKsDMkzThpaljUk1AdCwaZZpqIZJw6DebJodnDjTpx10e54VUWSowgv/2GHKIMfyMI0V67t0tglfppgF9QA5FUQkDQMJzCx07C683Gt22BxAfNfT4ue/RlemwdqWy6n3sVRtQ5Xxgy5j1pK+2b069pzPlwS9dpaA679rw705HdfB3iGlAUJzJiIFyAVgyDvCua5cdieQwu0Wl3BG/8pFX3u+5Zm9oTF9fIfNGPfTrFMEH+7P6OeJD8933G4HfnCeaLcDcr8PpwEKqDSodhy3PWs0Aag24KM1bP322LGAzTF+seWEVRJ+XKjno1fPyOUsdLxArzgHiR34s4+TgU/jco3hBa0rjtvgV/ez43Zrl+W4iEi77V0zMMp8ImsqbAyYUMJ1b7ZmmNBd5k0ye5JYX+ao85133om2Qs0JTXqHELb7/D3uqclzN3WeXvcBb/wM2uIME/Mc9W8BXJhfnGoCqnhh0adwD4X+3ngBxRkAc7jwFsT9OsZ3d3XweIWJKADtrC27Ht4J/JXvQm2E2dZK4ygiS27Hft8wIUE2H9us73McOH+tjVlz9IQBAhgU2FrMYEYofhb8N2ZlxdVxuG3OwCF5S0NoN7Jmw/qBAIKgpGG6Z/0rzQAgs+y5ubV897r1oi3quV1Q6uF0rtqW/K57XabLJzdTA8q9P1y+91N8y/TTd6H+/y585eEbqbF5r1CFAdn8NoYYi1gBLYl9c25cygQJYrb5sZTonNx2zP/QNjUnxhTMO9pk6HOidGBO/DH9uk59kMjUAAE6NTYKkBZmVCrcTquf5QmgMyBKaGzgcaP+o17d2khNKxXfrO5ZrzXboseZBTblAoDz1CTIA+s9L966G8Gd7zvhdPXuGM6fzdB22gp4PXmxnDSXHeE+XS27zflGOK9aDAMlVg7Tfkyhb5822o8vB615V89r1j7neXo91zyQ+qFqXUxzw9o0Tm8hyhzjzhZ3LjdrUuKS1HpJZ2p3yt/GLYNTNkEz99qcJgQMAVpDOw48P9/xxe2GX//wDGjH8/Mdh8zzZ/1MQhtonnpbI3MDpG+7tzXOVVp4iS9zmzWdhSsB8lGaXfpIs1JyIafR98HEjkMgqnNHtJRvfS7jbqErmurmgrefxuXF8DEz85dMvwOXSsPMn7Ucic5lo4Tzz2OUnRk4zbOccSGsF8gSbdDkwAfOnx08bMAIp2fBmuslCO0MbJ2jyKrr3TMLYBwdNegUWcY+b2IA4tcQ9Emc5bfWWMiMDQ4S7SFviuXLSa1+h0gChbZLt+s2Bjh5TQjxc9wlB6g0bDNxyh8HFnY9dkpUNEv2TkIQr/nwtwDSpN0xMFJATdbksKcvemdl+kWVZMY2n5cLP70e7E55rP0BNCr9RrfN2wkQaNwmcOA0lnZx4GHpupe5uoJeNS/uZGGmNVoCMMaZGwaWGdxEXRg85Tq8Q7AF4T3z+xaErwnY7KDGe+VpIUSQlYnYF00xdP4rk8MOZquJ2khrv0kTMsu0Z77lGbMcRR+aGbEFqw9zMw3/+2MSCcQ1NiYcZm3NcCI9Xe5KmLuZh2PTwthC6eBGxGnTudp53FlfWy8OTI9uM79G+Y22Gn/5rJECaEeYbjHgCPe98dcuVvTaa47DAiybGVUTp3r4PWsBTNDNAr3dxwKqM9PA7qWVQRTRaGUbkLD0HFhjUevoiApD4HdhgBZgL9fcvlI9rW0Y7A06hOo5d8ZJkHmk1blPUDMcNhhAXcEK02WuaXO9931zHHPMm2tlqmt1r23fGLyx+ZGZzRjIzLKj9eMx21bwDMEB4A7ggKJP0HM7Oj4833HvHbejCNuy+cnC2CbsXuv88B4L36M86rdXlafGo655coxZXLJcE4Z713m+pOO33G5Og82dW2s4juGM4947xN2tl7kD+EByXix22STxsfmVvW3Z1OKh7trgSXSItgGOor6liTSbqFk4ROjCTeHmQO/xZGPU51oZ44DdyRNEm3MaVZt7pcnrJoDxTJ3mMMRLPc4EIbUfK9CqdX88jgKQ3SivpX0VQ5tDFbFzGU6D18PaZC35JHqsX3yM0R1etiHi+Vcwt9Qi/l7X19a/+nZpNZcLOGX8IPBA+a27/wFe0jsrk4T3uKuGzbhyng9NtCT/5fgMatwRAeW/BzTxvlH9wPEAihte4aTQfQ149iZwq/ZmBTtBa26PqzyjX+cQdoBeQdl34esKv4k1Nq9jTxxYMN+959wcBG1iGchpFI9TTZboQEMdkgxwEwDDrufsvB8yd5VGPn1KSslMbP47Ic/MM9iCTuaXwA4w87Yyot2a576GEDQyMDineY/5lTIQEq58WUDOi/1up7QKxuFymU3DghbOpwrIA9wMAfp2uzkYMWGba8dul1mw9nrMNjDNCHtuMy0GA7CsVVnZXz0rNNLkdhgLNhCCWIClq7yGOUk2p7gyWTPBr6tOTWaeQ1XbY211FazOqorjOLzPuX6Ga8fvADXH9KSlqt7GoVGJ/HMdUMaSop933J5u6Pc7cL+PPhfB7Xvfw5cfPgBimqkhpD73nmotuQk+66L1TVwQbZx7W193t/M3SMzFUxVfHAeOY56R0XEBscwdneMmEIXfa6MKBxBhagXve6U4MoGM301DtDi5aoLT1Cjsxv6DaoWDlzXYDLk1cbqAomUQzE0n4icC3B2YZR5lwv0ACpHn2NS4INLrMQbrIrDTRpGvHRplXW907Au0KWH9whemWopm5QDOt1TGOZyjZf5l7GTnZjpoorZYQAXzfgJIiP4HxeF3qS4kvl6HTb4lBksEEJB1OgvKRLs/s6Af7/YXUwKhaYlzHeHlC/6N6dyamUnENePQ8ArJrpGDDi4n2j8DIH5veXGdVwCR68jvoh3CLI2BUwVWSSuT8lWnI+eXv+X+ye9SP3rbMgh7h/DdPTYfFb6RwCYxhHcJK7iR9HauLr4kTHDCXA/qd8SQvmKlVQwgzAminGcwXAGm6dr43mVe86mDhbhGRSYtdomnmkZo3nsjE8BoTG+zIx7xTogMaOKAKTkWMAGB6zW1CTNubi2lRSzeh0nAaJM2d2K9vSdN1fsZa2K8JesOJGKRDdMz280bwOFoQwtWTdd2JlMVqFgY5lH18sgAIrUuR2t0C3eblztm71wV1IS5ltVBp+Yim19Y2XvTLKMj4nBgLRebaKU87C+BsNjlDXDD7WBNbwCgltmnpHQFKOt7pTEzBITI1+p8793nWD3bxPH4meOOd82dIuA4cDw9QSa4+fDll9CTgWiDnieUHAp43rnKi3CyC4sA4xIXljZ8VMZL717z7aU0D6Cpx7uKU8ttApwd+OJp9ofPf+B2tJRCMQRdFy7tYlYgxgXFdaG5wcekc6P5o85hzG/KeU0eCR+X17WXyXvH73UtiVLoAksxoDMkfS187ux7wMS/Mw/NZrReX6LDTKt2dFqduU62lnBGQmkH/TZ/c15cb0FcsOmXHgHofDcagYzmRRqokQQEgzNQe2i++4ZpYISilGeMC+Mb4oDBEisXhul59JWix44HpHeSO0iWNKFdCR6xAwozrkzhWSitpzGtSNFSCKcroEEYMAVwiThhahYmXDXv4jmNgMpy9wwQ7Y+gs4IbbhvIBtTJJl/v91wfz0tA75T6I7Z4Q5sT6w7D3JgVvP4Srf434n0Xvvrw8cCmMIO3hZeX0k/NYV2E15jZBG38st0a+8IYXTiOwO+riXSRk12kmU3VclljZimgbZp8GZAJRwQOSGS+k9CmxL03gu7unTEWADF6BB3nYEdqeRWQI8EGOtQ9sAmAnhpaYdPczH+4jlEzddMk3tHivqhCRAUkOyHYdt/jWyy4thNqwKeaMtV8eu84yiF8/s5pjP7ee6pPPhWkriHhHeZO5VZvaZkmmBSXvI6x9oc6IgMtmACyjvEdSJwPKZ8KLKtQtAMP9d1xTDfl85n7AwinD4v2RZiOUZnTTEk2aZf6JyDZXWs2zAcV53QMcBzHGJP9BKTh9vQEaMfzh2ecPUwi7/cTks5q1YVt93D56qPifB0hdrnpXX7c8NUIdXhZfrfbQeOT+IeMOXSTAXbiDGBuIzWBloCvxeFdaAc1iP/sEH/MkRHbNZchNVMNg/NDjddFGyXaqK4WTjKDqn1tz13nPLMzboWKyjQNWK0bQAIT1pXy8fwKELBSrB3U38isa9DRJwAZ3t+IPtVUb+fdM6/VG1TWgQh33MRANiayRlCdxx4iDkq7KkzDtB+L5EyABlMCa9ROMaam+bj2OWLGqAlwtFnLhAXr9BpZyKXvLqjb+wAZAOL+GKFvJJjbGHfgUC/gXOLTOyrL4o41lUFMaGNayrNceLmAqYgjqV7cFkHzyCu+JU2Jt+se3CRQI7m8FQD18lzjjnKyOR33aW5z4fcbmizhN5XPfxvCN1JjEwx6Yfcpzkuhpl5zGyVJeSf1q7kM9UyyIJ9pjrK6CeEXgoJPIZlmOua6GW2Cjza1KRPgyNjtN6BkjgmA5pok09gY3AjNTXdQpCkumaSR4GFmdHYYVBDT3ZwfQCJ/q/zQLmWh0xZlbyuNZ9MorLv7ttDZgiJOn5mH7QRsoIKaLAwnwYBoRPld8wzNUl4IeTH2czZkopZN7iJ+AJ0wa4sFVKmc2pbZIYBV0uzy0w7uZsc2aMlx2ARtB2L2u7/ZHG2nKeP0BjZaa9Tvnjpri5azOjm/arpY+8LrMCUSq/P9w4ehkXHN4Wjo3k/o1BKIj5/MGbxNtq36hjjvsuIxbTs6X+J+17y1lrA7dxPfrnIZ/akmRapCjuZawFMHn7AFaAgyeUzXmjCo4TJZ4OR1w4Vw4beWzsZK5eVW42jTGEtZnKmkmvbWTUBD8vd5bb+NIOa1RuNOs4o07pl3IYDf5MMJ4Mxq5E0eq3+m3wRQIg+2HuSukQQYLLKdearmLszHVGN9tfn+aDqIlVff+3pTphMLlNZW1GExq9UXdDtX2mSYRuq0cFgz51yup3EcIqc6+JrJ76s2IYTv/DtrSKz+rKFw4RwAe/3yvOg+F77LJgCGARXAztKEeVuYoUkBUSIcj825Zr3A5QfN9rt6O6tABfS3+bd4b+lAbQVrg+17y8vo0xJnBUwMXLyPYRvVTMOMQ+V9apDRRe8W3jOvb3L4eGDzSYvz+7XuxwgZeRkLcDOea7wMs3RJuSttMkr7LaEJGt+7M//xZILXdCzghmz2l8BHAiIGcjp5PhNoNUuz9LPM8Y40NvN7F0FTuPnb0ODA3wG2nlnLsDZK0qIRa6Q6OGHvXjvTs52WwEANm3ixWdpOuOX0jwTkyL/0IC2GnO+q1cnpTLDfLcaPwNNe0wIChdaOmXY7bzPKNfaqS/5cbtVCXdFh5TJYYa1JPeB/FRjAVa1KTsv9hhDepu0JA94kqFC+RmOup8xdcYVdunmqeUEbz32Oz67q7tVz59rMj7n9iKfUkAWcl+O/PezAyusBTM3GBNeXUmR+OIUtzd8FJngL6lDR2d7j9+xLSGntmZMQJ14aT50vpSJUl7y0tIuBn918ftRLDnwTX6xUIbxt0gZPoqAAL6uvxV002fbd6pLeTyDJfGqWzQ1jJqdeJqWJNvGKZic4YkBHvG5C/9rKYeVYvyZwM9uFTV+ZNg0qgpdRuxrsZI15WkM097NVf7tez0b3eSn57COnudgnSrVngM1CcaRdtRgsgLPwvjtAn7yBbS7VNCBTgUr83fzmdK6hCecA429P53gC1ITmplVtjcRvLGUG3ZhlIdUl1x0lPtcr2jXaljUvnMbysTZOec/JwN+jb20uTXlRC03en+LlfkswxDcyfCM1Njnsh8d7CQYhqtR8ecpoiT9+xQ5XWeIfjugJAkSnKfL0NEZFDqatbnqWAIsLbcP8DKblmcijm7aHtTKYpmVzUqoGcLG4dsx/PDff77BJPhaLEB1CyBCvh7dR3j5d3wPJXGhpIRJ26hmKq7hVmOU8dvF3IegjIUQz3bUerw1XIIPLBLAs9Ff0c7oQHK5pq+Dsij4DIo/yqHUwOjlrBp+cf3VLzXFZOHBgBfg/+51bvgfI5kFuIzZhPG4H5GhAPwegsRE9T2UP0LaZ06/o8pej1Biyfapwbwf/nAchz72XKSiCoz+Pd4JwSPKI974IeqaAOExlZ+4uoOfx3TcVfN0MW2ue8WgeV0mYz8U9DFd9UCkxfmhlj+Vh35uu9cAqcPPvR+VyHpXeTNv8GxhrU4ExgTO5OX/luJvCctJciPGHbG4WPGdX3hWbNaDic0E1/WZ6PAut/GMdxc4jU6UE6zZ3mDKuw40F9/U9qrAPgE3Qch5j7WWwk0FDFsr5gskFwDi4yd+T1sbN0chRgNGFAEsMmlhLE97YqIxKN4Bshnah5eEzR6U90nP9m9q3xJNN/Npv7vZ5B2r4t8+qRCePqXfR2uQs3ye/b0H4moDNerrlfUNdthjZZzq2uzioYGYfI/LIO4ORiuxzEyywKPGOwUas7rtzMTK0J3QxpmBoW0aZfeyOThAzQE9zWgBZNDZdwvPZeO5o876dNoETRNBUZzkxrxW2q5hbPM5PZFFspzHYg5dYeNhddBWGWUjeaRByeZLyHbuDe8Cxpg+CH4IyK2EDsriMWoeIG3Hq3T5VY8QaKwYKO/ojj60stJTho7bUn5/9/M9cTSxpNWXjnec1nz0NvgMuAXABOyzOczOXs9X+TWG6tWO4sBbBXeeN5zrtxptAp6e9DpQzNuDpTsLSBf3l7z68LFK/HMPiLSLvw9yqSOczNE/VfVl1zmSGttB1KtC0Q+x+b5uvoP41PrkIlVTAHLgWDwjgO2dTFnZBskcRhGunZS3vNkoKWiKwEMs0yozHJpcJxMtKc3wMftmM34vNG0plUj6R5GsRlcXdlLU/qVDYumWZcfsCYZr8KOTNj7z6Wr0nIW6Kdk616W6DRmdco2WnnbfcfQWdlX5JoxxETipVt3PDCZl9E/xpIwB7h+T3LABbWhO8RVB+V3CCJJin9w44ZlkSYITBQD3QnzyjSeRj75rHKY4D5OIvzJvahfOAWq9S9lXdcvtl8FLbndOC8vQ+om/N46zgxMaP/+byPU3MrNTvyOm+C199+IZrbD4N+LyMmHUZmr4ovEhHLEfVDGvs1hWBEuIL+iXIIS2LmaSZIGHgBjDNjQGdyco1prqp87sKaWFMK8Me0jDNzySeMe+umV7aOrpfCAqZNsiwtYBsx6kF2RShmoaFgLoRdpd2zzv+LvAKcCU8785bjPS1H0l4BgtL1wDM3l9dJtr7aNkFYF3trG6E8UZtFnUYo4ZN0Jge/l2Bzmqel+vLtFS6dt9GPfsc41y9LLxlgcKAxerQwful9Bt7iRsmjAZEcp8o8iWjGc/ouMFcY/71s+N+P30BlqlR6L1Dzw7tfS7oO8F1z08erV8sLr4U57XPL5X5mnBJj66CMJdpM53n/RVtY6yS4A2McePje5xrsLuxVlIYQGUw1TEPqW9IUP8b1JpAzDO38qZM/fjVgTRmUZ6rJtRMzbh13bxq/uOAjAAarD6S3TCH62OlPot0InsexfkbDcyGVKu7dos38k9alF19vJHnaiK21qy8g9MGN6O8xc4lYZm/qf1Snda1w9Zz94Yme57oDeA5wflZWsdh7Z5pX9rs4d8Q8oF8P8usRRb4HUDAAUnVfCTg4ACigiAGERW4VC1QpE0OA2RIAM3yFwNMneIC456cFdiERBJ9U0FYOD9YAYwI/LoBA34pH+r52j4y83WTMeqD1IZK5VIcWHrPT3J6iXQsR0TfMpz/LnzV4WsDNldMAh/xPueKNAhfE6rQsqaWzRMvuxnc7GunzqB5qRqTYrLPzUH+Puvj70E2wxPMhNvnGW+esRk7glOAFDuPMzykdStTQS6fB3EK+N0QDXbxJ+ZtOgMasd0177Na/UygYRCwEyRYs7M7h7H2h/Ka5HnUsxb8nstmwGILtDEmt/efZa4LYvTeThNjizO/r+eJOFxpdaonNG4Te3fOCzSvNVQjHrt73gVue8w2uE2NVLMb4XcCIEkh5uGJAdeVmVp2ax1CoV1Ea+/HvTvxbP00c0939Oza179N6ffsJ7SfYyydJ/p54mgNz8gbDKY16OfdcqJvNObpt9G0ht9YS9vOScB4P0KCqmXXPwTLeHM/O/6/pycX0gXAbQrYo7+nMwGJ8WIXK2YCQiIXY36VPinPhd56b00qooBwM/E6QS6MU1mSHAUAGI4nKh8j4JJAC67G7CBappQ1hKYsIGUwlCmzLO89eybj1ciAyyG56pUcB202L22u1wwv+mJ4VCPgN6MyfLR37mSizqgEzDZlOTDKvGDH7ZgXeUYzrjlvOFWnE5aOK+A/S4SwOpBM1az+1e1xtL/mv9gI+ySkZ62M5VU0NBQvuzqewEQyLeEhjfMLOoTBTSovvq0am+5AKMqmenjeMw7VsRU6GLxAlMYya1lCjtqCGgY3iPQZdGTAFHlSXOdzBrBcWkvx8mh5vez5Xfg84RupsSHxkd5kplhDFX4/NbxmoEaZ41d9rvlUTY1A5w4XEMBoghEZOR5T2BjAQ/KUcqA0HUSmO3CmgAaZh1PVWU7X003MDpFpuhb7LXBQM8BME7uvZeQYuQcYMkpcw6ABHoBr8LEDIxVQWI2rK+edOYKIuNBvz7UsuzSTd2mVaFzlKlug83veGeVL5a7E2R1QUQC3eWklfxumXsFMR706jmPQYhdXLkIfhd7Vz59QtNSW3D9Rr/Htfj+9Dxm0HMfhl5qGMLdqkVatWW5D7usm4t7I+DJWPnNkaVXV7xxabxjP9REA0hraceD29IQPH+74oR/6Hr78Evjy+z9Af/4AqI6LOwEcX3yB8/mOu90XsuEsa//u3lyNgqsU35CQWO5GmgRosQ9h1Vq7+0vB063h7IqnJvM807wj5Gy43UZ/PZ9jjDW5efm1jYeAIumFbXm4UFHGt89smpc8TwSrSZXXdkxqPxvEPMjydY2e5nHpWtdEQ6ZnZyqa14VMj7VHHt/wzaizK25DXQIFcGw0MQqM3WsJbUso06LFmbZhnqme1jazDIzqbCdLZ5tugODW8tkpBkSKAqgWevJ5KGvTl0zgEt6yB8mOEoZH+tkHk2bX/jmxeW3wtdzHZgbC+S8J3PZXQsgf+eSVPM7BmIAevwHkbyTEX6URzxPl9+aQPpmeiYSLZwMqdto2u3623wFmwsFArm/Nm8GJgaIAMrVtsrmYabGAMR4tfryenksnzSaLLGCG/o7eNRBkeUd/Btup6etvSoP3C+L0vF9+34bwNQGbl3uKWO2r8jNQ8Cg+D8h9BF4dXx4COxptotRSOa7QNzVwA0V4SgsjCteMSGhs3LuZlzwXHQMgEixFZvxhhjamskg4J+gw4XJw7XEnTpu7WAqgDWFkLr2+sE41h8DM00bNTbMxwBgJEpIvqwRGU9vOvN1NkL/z6heCsJ1xidbNguxxHEseAWpaouPKvGShIZUGF+wbpWeAY4FpNfM7i38cxxTK26LZChBAwj+Za/hZBQIH4ZKa8pMyrEu9IeOsTHPR1MoQ3G7N863neYZwI6n9zfSoz7MqO9C6O5/EbqArWBVk7Z3lU8EmA2fXAvU++lqnYNY7AMX9+dnb6el7P4TnDx/QjgFu+vMAOE9UN5O+XFYCLhHsaxaOl0DPNylsOaoJ7kkoV+dhfvpvJuwAvjhkCpYNphUzftOk4W4AByxCmPAyiKhaFw4+nKhfDMwk0M51MlBCvMPysl18yzeZ11Ld1TcgLG2GCsajd56/+LwKkeH5KLDQzkEmP7hJgByUfCxvnWU1imO4RHV1WgIYv5a4zX4ynz4LizlndaS01l/UJlYJYWBEbdUn/xgaLtb4Kl2XmOnXqWVpm3YSepbZlied0XNcpuoaplHR5uttgJj4W9dxF8TZY9nMuwrR2IKQFaxUhwHsWKBNMJA0O5a3a1GirJ0mCItXNKarmpaFCdphcd0lNIGadH5lpvc26PTM2iYGPwXUeB2y7CYAZPoWXzRZ1Fc8Hvm9x1ejNRUASUhCiV9X8FrDS9+/C19V+EZqbB6Ft5qZvSlU6e8xIXSAfvm0vN+9ywg/nAGwI5ZY6HnSsDJUMHyh2QV35GTADv7DzuzAF1SmJRa+YWqGaXw2nuZyKHO31VndSNlTLrSQ2+IwhU0+BwGsgGOndahxLbBgXIWXpS9c4L4yk3okLFXgEIwxQMa+XjIjMmAZ2pbxNcqUpX6VRtPcDCAYtBjwGJiwMOMpOMx1e6kr1/k2tT+tNZxnnGmqQCG1jRVMqKmRkMfxWdNkgJCDuWgWgZdf26LSX8uobWbPg7wOmWZ1Oss/zxNfPB348GXHeZ5QCNrthqZ34H53ocwqq1Potrny3cK1BhNAzH297ZQfdsNjU5zaxmWLGIK5HGMz5qlZ60YY92XEvN5pThS0uz/zxey7KtgIjVWbGxxMM87irIEq42s25qvwzPW19xynq0a9wYAnV8jHl0T5PLX54loDAJC1Lvzsgj3XafN9b7Kqzucux70AB9FguRg44TpbHLtYOkDFfN+v+XENDcAJhHYm1UH83wrYLLr3x+w7B2K9h0ag/IeUe/CELKzT4X1vF3aTPJ9hQIO1GjOPYpoGcrcsJR1kXMmQ80TKNwEgdhCQaBkaGjtT04iOADU9OQowwGPamMPboBfgxVKJuvwUF3rmczZI6aLnvC29nbCkQUpvPZ77LdLW+JbikWamhpe+f0JQQb0X6pPz+xaE33DARh8OovcEPC/kRZ9lmT72Pr/NC8NmWRX6IhO+TPe1vDh1gU/CblIXQrgcIAWA9nHpp+gUAKLsBgNQYaJmXtiAADlDo9Mh2nw3R3XsdtsNzU0EpxrEmeWfpy8qY2cNm135fRu7UE6C6rg1vidB++r8DL+rv1mTsBOMa+i9kwaIF818zoO1DlYOnxcYzyEgmCmElcsmWQaI2OxEpOEkkNSa4DxDvGNzMT5HxPRfCQwmkAXoCJOSxxqs0BKpznNcFD8uILV6RD/VPqn3FDEA436P7zGmKnBlukQaWjtwznHeWsPtiy9wB/D8/R/gft5xv99dCDt7B9oBuR1pvvJpr10rVsFnF3jhfCkesG48fBWBnZwwDTnOfoOGvwOC2zHA5BDGFThuOM/x+8mE866QI1rlVMyd2zkPZvYsEKsOsGTaAhtfLPSPuONvE6TxRGzQQYON91XgiQpzm1QtNLeZJ59AzOfXRisCSNAw8+YNk+mnY2pF1Os96pU3V5w2hAbG8vPvBLCctzqKynE5Tfwe9Jyd3QvHSudrFLXDMfvRDnI7IJuJNpZztAE0waYDpNx/Bh5qsHenARTnrysoHuOJNoDETBxJa2BCusApSBoI/2vlKbZmWXQWZr1IM4T55LGslM8umkPrwxoOzo+fx/fssayndEeiMYDLMenlO23st9UVBIZc05RMzaIN4OknDfa9mqYtoCTuygG1mW0VZD5cwAmNk0jDzyN/IDZ/OdQ02+/OJL4qjv1d2IWvGNgYQ3h5qX5pEK2xXxhwb8rvFSWmRYDrdV0KUylgRs3qzpmjKrVTroFNuqFXkeEtrRRqmh6FXfo5BV0oVI0NDUw0FsJBU58gpskEN26uNlS3DRNYaR879GrOCxrs+o+Ooc2fEjm0CP2jfqMV6mFhE1YAE1yGgLqe6QhQoLq2ui3uO/DCArJrJaxNyewpaLbD6xk4VccAqSwx071BjWl4rPIy4wDm9Utwv/e54CtC4ElSyWhPAi5W250m7Ha7LUDEBBMGDBUQ8ZjLmjVZ6m3tudNcBbiYAlVryd69l/YM4TKD4ONoqf1DoG2pH3ks2Dvbie33E+f9DlXF8/1Ef77DTDCfvvgC5/SIJk2Bs+P29BS0ReuV1nkMZlKcBxFZYP6UOI/SvjZddomyT/UwL+aLiuGqRAE5DtxV8UWTEC517uA2wSFj4+R20DzhMmnnX4TGjsS4cAF5MuedhoemTKpHMo0sACSEbNqQmN+PJsNVMVZHAyOvmRY0dgtNQVto7e3S2CajvU4CVouApsMU2QELlT1Z8ExrTjqKB8OZj5+nsXpsNzRG7Ca5Rbneaag7OC3xqfyGrHXjOlpz2z1VcS8SSxGz1QyYUAFMi7WNtTMw10nJdEsfW33HFahxLUaAmeXSSqCAHAMGEc/BE4ETARLgiHLzgXuOb0DDQIsUMGH1NMDB4KYCjkaA6YB6/fg8zc7Ns9fDwA5A7aROR9XgGMBaQQ0Dljr2q1anvEuT/hrQFIlrYdHrbL4ONa93Czyh3yu/b0H4xp6x2YVHQsTnDkvZtNDU2lzRqeUbwxZ2TcopVGiPijQzaqDGMwuJQubXbgxbw2TMXDmb5zRn9mLnbgAVuxF8CBsjaYef4ZnvB3AY53FOPf2AZ5snNvK5lnpRIxZQY9WorVSFdjbvUv53MrLWmgsbzsQKIFqCsNmYAaJYhLkuHHYaJH4XACKDAI5rB+GPo+E8zzkGQtCvGqZcj7ngk2OFShs/W5qd84CgKQQLu4Xb2nZnumdAI16vbQIU4UXyWDdXzqYFq72kmtuQ68dlzHs2k4BkwvAhwPN5QgEctxt0arP6eeLEANH9PNHPDkyNY9SIzicU2l7Dl3ZxXspnn+Z1MOVT1q8xt9eSl1yd5+RvLjzYPJiIw8BL7zo2Y47m9wXZuY0knILaYDIimciJKRkaYxMu45C50F+nMgFh+KAVZFOy6rRCvZ4z6DShajFXE1CiSoz0cYh5VjWASNels49Zp1nUBIMVFOSm71yeU0HgTqNVeGNuAVrKqS3PzB/sXdSV2q7klzd8qI00eM1hDiasX2hts3qap06FrXHkPGIwlLRJZRsdXH/rcpYXua8UgLYjeRJjLQODHLu80s6jjHd8yH6CGoEDAI9bwY9/N/CEBBos7wA3tjlmYCg0JQEW4vuqFeqzyfJ3NjPL7p+npiSBHNbYGMAKGmx4GhjketrIaV6PMEnzke59+wjIUBqTd3ysFY0NaqjvdnEiJKDjgyqepTx/F76+8JUCm9cf7v+4UIHD+r6Oxk8IVJVYJLREWJOsdIXmZmSpFJmX5JHCYA7HHYt5B6Slg/w7rY0LaAJ3+WwLLdDdSxvEDN3aEDiAycRGfqLTBG2apiXBA316lplUl512IMxHUvu4wDqyG2cz2vI9NyIJVLYguvC9CvYVJBgQyIfjGQRE2XtgUcnRNz1X7VHdsWRad+AiaYKQwUz9vaO9aqG4jWp8BjBV02MaFxPicsjznscB18OF3llIFqQs/7IUpfaMmXGe3elUKKSZRnGYoz0/f8BpGqV5HgxTOD7MwQGA8CKE9HfzYz7t6k7V/ygmx+1XgcSep3IxO670Egc0frnqF7jETS4UXYEBSM0ViXaIHDia+PgWxLxU7MfjmNYC8/rFmhhBHFJPFNG4tzT210k1oXcKuqk8j1PmkGTnAb0/5vou3MkEbwbqF75F+dOc8DoZD7Z2q/OaVjgGPml0zI++hnijcbkbd/pOp81JzQzqihdiAjJvU1tbQuA1MVZjEUprqdEUZ29qWbEeCjA8gJaxxG1jOftvmffv2MaVRF5JuwKAzchsZWXAke+AYWBDmg26/yWe4XkFuAlvZOByPB6wanXou/N7/h7gwf8uXtLCLIxBGNcrwEmAqewRjfIkQBPlxHtvx/KbQUSkBcWzj/wt82rUuOl3vOMxktJXd2SbefHZcYwJbe+Z37cgvDOwySz+41V5j3P/bIOI8vaylhevzalCedACQItQKlPpiz3T9JGIrwBEAwy1uUzk28MVgjZdR9sibwAnND52j41gXkgnOs/ezBtrxO69aX4mR0TQdQosYrBsGtZN7wex00ntm8ALCxnVi1ZhT0noz+lSW26E+hq3fufzHZb/DpCwGdbO9Go8BzCqYKWCKmoUDM3N6ffOVAGv0mXCXr0sdNdGV+1nglQNKZ7W9ytduZy1nS/rQOlZYNuZCu7608pjkFy1OLxgKYDj6Ybn+5dDwBOBaYJC4moQ6fBN9BfnvZZScvRdsk2LU167512wvsgc5FHYiYVLeBBhSa9w/jP+SoqtIhPEzM0TE3KllTkhYw4gxkHw35cZbt0Q2aXIpopWGzh7flResO08j/1V7YZIOdlwEBVWwzz2C7/ReUaF8sv3hlFlc0m0fuzbjU3Pes7Cc2egddX+ggxALG/QK75/BM5LCkKzqmxLKQUS/QaWluFa+a4C0qK5DEDFMJgrVzPHJ9PsmsytWAg3U6+scTGtTA/tDAGY8WznVIoZl3A+8LwWEELlhLaGQMikjy/oNECUgUjO02ZtBTsCxWHe1zy+35RH2qT1vXMC8hKXtDhiPu6CYzCNEIsfXc/gx4eDcB71b/1dh1LOX73c9dv+Yb7iMZ5fvF5U/C68e/hsGpu3dmpeF94OK19f3j7vBcC8tfy0OsZiKMRFY30M5pq9cNh0ZoCjKV4GTIlDY52sgN0+IDCnAxImZx5HodKcZp2aG2Du3slwEqDa0cUOxPL7vOgqM1+vs8DOywi1D3ANfswsaWd+lPMtnUZN8UizwoLzCjYw1+MoNzQNifjtkFnibcr23xd0rnVF0pSIxOHil9KWrw4sd2VXLY0XtonDGqYdqElmP5SW44y/8X138ehrBNxcLqWd/x2tDY1kPyEiaMcBPN9THXWTfheuRUeOE8Jzen5F2n2Jb4l7sThvY+Sgm19X/GX54g/TWXzYBhKvm7mrCdfTXM1ADmQn/y59ohoH5Ld1qJsTle4sh69pJECZt6LGWR/Pk+hSNQFJKF91XiIrWbMocYZ8wTWmUCrOmy1dmnNWHgBR8Y2u2ld1TPgmB4GdK0cXsQmBsYlVKLaqeFmRYRlS3B6hHRQuxOnYjz2UuZvo8H8y3UacrVsKpM15gZ2PDO1IfibtCkIjY1qaJvwuNC0HACngJ59TAViD0yS/r5oZ1hw5+CBgYDyqulHmfJDyyXnbZZsr0CJNDWlyDARxXkCUI94HQRtK/ZDSmVwUfeAcQnLcnG6dQZnzlPGw5PMoMG3Y/K4887vwdYR3AjbEkPzXywjhdbG+nuB10fKCnx+M2x1Q2snOmcHqpg3ZRI2/ztjuczouznSX0fZbR/qhoZkHDaXNb6bF6VPz0vxW8GGa1uZiLum7TEFFVVxjo1a+CavIC2/8zkuV77QWgZeBx0uXciZBnASRK7MxBhb1Mk+zta8ejERWEzrO2Xef55dRr7apf8Q3jQPTUWlkzVKtc9VWMK0MIGWeb9i2YRFEQN8T8y712Gm1mN4cv/YTz5HxULUtO61VfeYmM0DC/WBtLNJw3G748IMfTCFuOIsdYHu6nD6nXVFrqbxlmqeme3nxuhAPX/HupbxfG58E4fnmku9yFppfm9aAgYFSvMQS5w/TcD7d2hxXfOXeFMKkrh2ZhCELZeE9/Q2VivM6zonnNZuxcR42vtO3NE8mOJn52TxxcFU0Lkr8bL+5kvXzCm7uDY+bf0NzM1eFOa9AY97Wgtlwk9bQxFi9Gdhx/ZXqyfTFGKDemovYojmfD1rcv+/rVft2nVWJX5TYKRK4ve15nJ86bIQK0z7bXqm/YGOSwQaDmgpECqgB/Uff+TD+qrUhz2qo5WRNTSq/AA8wnfbsdNoza2zW/AL4hDmcncnJ534mYPG8TbZQd5dt5UWzZw0R0xO9r6UuKO85H04X79P4iKkwnwvAQQ17TU8NcvGb8/nUILqQ+8n5fRvCZ9LYvL71doMqf3kbQLoWFy7ymYlDw/LKkHFGTmwLhAjiAJsthpVQpcUgT0mjO4RORd31tXR95jP+mmFaRGTlzrimcGpbJBi70vtw93wO4dzSKbnlhczLRWXmP269gYTzABZSh+ZlHHQ/yNvYDtSsYCDnxec7dsDJWuYK1FTTL9Y8yBwPdgkmn/Ox9FmDlOSuVAbXbYCYVmgGfZMlDxee0j080wOTrB7KduBCJLumNvpDcJmXWXofSaKBwRDXddx7c846bYQW3+3OAoeZtHmaVWJJdVVdQU4AFq5jm+2xc/AASGvjrprjQEfHeb/H5Yqz3uZu28bwjg8VWL4Rwzb1eEPc1+T1Oq4IVJH51fnrWtLryp1CMabOQmXcYTS/qOo8LD9Ajh34v5/m9Smo5vYyz1oiku49yWD4yo+b0RTncVhoj/LKHPIPNG9KXMvT4rMGicesu+HfEMhAcVYTQL40kudWumOp0gKgTe07ez+LO5iK0xnPc943dBFMo9MWOuLsm8UZYG8Ait0yGc3CaxvXJdolr3Y1+PbeBc3jv8K+lzXY2sXo0t5d2wJkUMNOBYABVhjUHJLBjF1g2TC+Cf3N529WkOLaGz7X4uACSGdsGCAUEzCOO+qT62AtmcCcx59aG6IDyPTIBD72m8FVNLOmsmWWncFIaG0Ac5gR/Zvz43S7vGpnr8tMlgtX7raOK5bKdnntSv0ufB3hE4FNHWgWHi+BWXx/nPfrqXinsKx09pwFUYAkvLQ1zlkxZSsDXvUzMXEsLYtCESeejFRzodosFqEa2zGxpb+psboJTqDTacBUJE8Bo4NM0ACI790IaYSG1mbsYg4nBV1PF9J3LpFbi0U+mjf3Yr1Qk+O4oF3bk/rIDpvuNCEsCLuwQyBhgAYsntx84XOwIem9549cr7QbuN29zaBm0YioxmH2CSJU1A/as4vqfHdO0GCH6Xd08D0xtY2CptrWmHm+JKhnQFLHQwaV8Z7btpru1bicV3VoYNKpAujnfaSdAra5dUU/0U9FH4gR5/Ozt7eUxXVXu0XIfKFFKrh5Kf7jvB4tzR8R3pIBS+RlXKsq7qfidhOcOhaa1gw4Tl6k426nsyu+OIYnw9uxb48mJnLNeWebR5MO74cJdq/GpQnmVj7Hqhc2mpMV02AABrAKf65j0+gqGo/6OzTD9iW+WZm8xPg6QHVw6V3Cq5udnVFrN1VfW2wDy+ZEk+gTps816zLnjmrcd0N1sb/sUU7pr0QzlK+2ZtAX4u9WaftuLNyrO2cRAy3feOm2yTfXAvgqmCjgevDm03G7zTGkTn/VoAiwaFsGqOmhmUEAncO8iaEAn6KVAfo0WWPQoBnAkNe1ADejZqNN7DdpR9K70NgwaIi8bXx3BzTgvDwuxZu08yWlSL8zmAmAFH0wJ1b6Vr/nEbhJz++TLBay086J1To6rrjplcybc/sUnr4U954C7rcEcX3lGpt36/A35+uiZn5bAcyrg178fpyXLTgjWoChuYx4XrZj2gjKRJzx5AsH6nTk3Op0VpgzgAMT1JjrZxkejHwnDgZiZNhrT3O1Zu91elbz7/A7bQRwF8ZGOe+yb5uNBISqRTGgki7A5MW0CL9xOWTVtmRhuau61qZNE6S1/L1QzcCBw7gPpXkcE7R2AGIXdiZYbPIy8grgYxdwBhDLaQHgdhPXTvCu8hAG2hBgNuXab9sRr4O7ak04bmhswnubtbG1x3XdM8gxcJg1SqswDaX5orE49vPE/fnuoKVh9Ptxu81D7grc77h3QTtuaPp9pyIvnrncrEFd+1XSb6b70zihbH7vuW79+kr4Q9Fc2H0x0ZznU4gxDYCoCccdXQ80CPXlSNcA1+IOoReDLxn4mHG72h1dk7Y5xmxMt4kGbL4YVZ3HAkacuKhyB07XflXqtih/bRUzF6vAZKSLeZF7oq4AkW4nkKeNCStv8rY2ERl7XjMQZGXrJp/9ZsH4axsqThOXr1Q4DOjAQVHw/EhTlUNtZnxSf2dC1hVXM0FOr4MaMO8CzOW2ZS0YWrHOdZexAZK1IAEYKsi41NT47z6+oU9wMwDQ8D7GmiE7ewOIA4oMqExzBPuNfA7H6hSgw+KO/AMojfcMMAIc1ftyeuRdgF3WAhkYsTUSMR4KWGGQA5gMVt6h/l6/BV3xbRe/vl/1lescXuO8lOL1X78Lnz98NLDJDNieXvN2l8vbYu6+fZZAGa9mTpvCJf+sokSNquXZgsfdFrUKfvPymfzNbM8EE3QEUzDNiuU2/htGCh0njnnZpgjcC5pOgNOntudAI5bX0Gd5A/QYM531ccaV29B3E8viv55FmaVM06fdArxeMrm0JoC4KdzK4TT7RT68cu1CpUUxgEa+Eyfu8WHh/DzPsUN4SMpvZ062CwFy+OzN+n38jvylNb801QEJJC/wqV1y3mx+Z0LOqvEZbe330lAVztPu3JGlbY/j8O+17mx2tAOIfmEntxHmcqsA2oHn5ztUO56f7+iz/bUrMC+A1SaQPt1PUz51Dr+F59S4H5vPW8p7aWl9GOeCKNPu7uJyfaafKdiwPo6Gp2NIlKl/Jvi4HYefSTH2UIVYe+F3CQnBRBqL8yPcFwHW+TNOD5L7ZeQ+MR5l75a2ksHnzokQdrydg/NYm9dlfsv8NjaduCUr7PFmC9pIqAdkAi0TO+1iRo5jgmaAqEstsoy545TUik3UZW3E2xQOaKiezsdpY8V5zMxPLN8SHIyVT1XrY3Q1VQew1iKtdKbztZLt0PgwmDGh3oCHCfLj/Rja5UzNBDIH2BwNAWbIRM1cLPO5G1hZspqCGXBhpwM7zc2qWSENlCp2d9xAc1pvH/dkRvfZUNwARN6K1I0ZTDEo8d+Sv0dXFy2N0w4HRPQpPce7Gmi+YOMMZJsmh138xxLsRwZjHu+Z37cgfDSwyQNAy9/16Xqw7Bn54/Je/+3VoRIr/MgL0cug5qXP1zWmCT3LynXjFrcJb7t/StN0/p6TP3YJR26Ws+lldC6GXafpGczVluUh6DJLEJkannH2xvMHhmc1KGQWrF2TaZRdVGlMj3dt+RJLC/mSPFk1MHV3XuKcxJm0FzvAsl/QdwBEVfH0dMP9fno8O8/hF2OaFmLmyZeSSnDuVE7sWK/lh6YHrmGyXML0LLfNLjAAsPMji4bJFn/Shlicrjp30gPAhJnh2q7sDptBS9XAcTsyUBnpkfJValMGfbt6cP5j97oNb2jniaMJnr548l39H9zvaEdD02P0rSqajks87+fK02T5u076yiIshx1/+mSe9SBcc1N9GGcIinqVOKezyrpwSkLmFCwbgOdTcRzA96bkZddemVD64X7ie+Zkg+aQt7NMfjUlWxYkWMPnmpcsxy+19+k445sb6jhuJQ5YHPtY3DlX+gRPCdjYHLDxKqZ5GjFYg2Txmsh67sZBW3F0QPzOzrYYvRavq3j9+H4W19TQYNyNP8s/6FIHLE3sTFHMdwMbPMazgLuWYvk67cJnj8TbnDUy5kl0SLTO+VIJLgNqmNmdXV1zWJYCaufMX+U4IA0BJCQATfVO1vwMijkI6KHBQUdr7Eyg42isvWFwk7UvprkRsEtpMiNjWlAcAwhyPAB87gaW1uNpes+gxLU9lL+bupGJWpwlzhokBibeC5K/iXDHlLkP/ubd5vlEmTnUdJre57c7Wte4O5a4bn7Z328JfvjGhs9iiva2jn2fIbAfuBexmEDJn5aosnmJfR2vstpTmtNcTaO5xuYSE+06Vmb6bgBHMM3EQODG48PFEGNFZseuakd/TVOjU+sz931mvK4dTdp0RiBx4acMzUq/hVGGCaLjhul1x70eqvcal3h2WN2EIjZvs3j3ufse51bYHCHv+ls81mjUsGqQ7FzLXDqmBNTnfyZQWJ3cBMwufiQadq6Ngya+mM6JIbAX9F4BgJS37Zhv6ljjmuB6eFt5FktbNRJGc7ut+S/mhHau6aJtuG71fA6DRwbBQD7LowLcvnjCD77/A2AKhGdX9LMDbXoBFKCfHdoVx+0J7bayRoWZQT2woS7CMbUG/XrMpT42JCH48utL3OnR95VJcq6h4wiBVZrgi2O0xdkVt1sLtqU2TwQHeUszs6RslsjCVwCP3VDmVE1k8qcQvsffwQvN7Nby830TBy06TecoPSEeq3cHXBNjZ1FSa6kmGlDi2Ng1ECEAzjSmY0yx+VtqohnYnX+AKdoks2VE6JwjA0rjKTPN0WRoNVVhWztCje9AxBCOjwGjUX3jR+kZs45WHTvbuA6zGJVmhriwm8mYknCpQwjvXXE7NgByE8YYOBwsZBfPbHIFF/IPIU1MM4cCAVqajG83dybQcUiHSJy5cSBiDgPQp8aTtDkGSKj85C46CfoEMOZ70QAj+SyM5Qv/z/IAqP4p70gHyou/MfCorWxSCX8ftMZ4UPPapjxvme6a53WQF76/JuzKXJ+4Xp/O57/zivZx4bMAmxiA9rQLb8e1abPlrURdZfRixnsaHyXZKMf3WW9yzGI9/2IBtcAYUQcsDmI8VZy4sfdquytq1NryLO7VrOtgf8YGVQwqTYHEwIrlqVbGPL/TeLdybTfzNFYFd9a82DPn0Vor97gITBzYa2A0CT8sTJ1nd/CzmmxFfixY23kcjksJnPZ6PscSuKBVgJZIaEBy/aPeHJ81SwzuljNFmFogkbmw1frux6qdP2Ct06LNmYLqncwDr0ATt6lIaNRcMC7Acf6a4GU1BeTyar8kUKOj/4/jwNEabrcbPpx3HMeBdjTvC/MKpwC0d5zT0UBtS/6b35V6p+m6gprPA21eEwKKPOS+LsG/Nk/jMpG7HUzvGMLfGE8KHHOsio1ZcYH+kGHi5frImWGbTE8H83EzspfONXWaG/ZswClMtEwLyaLT+MneJHf5NwYH81sF+TKzllk3BbIQLqUMtdvHJhhssaLIbBTnU4i0rHWodNqzaXe6xqogFCG1pxj/iAaU7Ty1uQjXmgVN4y9rafhXCNJI52vSX6xD0Zzl5H0bcTCa3iG0cdk8V2de0b7N1zQM4GFCfdLU8LepsWkMPnrW3kBxzDM1h3QCPX3RxlieFcxk8EJpdPwFf9cAFUlj4/RmgBD1i94Zv81k3bToWesDmKyzal5ynNz3s0eQwc2kMRLQ/LjOZ/39Gtkry0TxnUfuVbguKSQue/6WoIhvYPhsGpuXw/t2+s7TxS7WMjEe4K5dPWop6zCXzbddiPiCXeqX26dOTPWzNpF+9QYTKcz7mdpbNUfRJw6ZGph5PodYp18QZw4E1PNqc7dwXsoHPiQcWhI/PFuE5broXO3OKy2ATTQU5QsoWs/eZDrsTMdJtKygxUxJmJZtf5A6gwEIx/cFdHFXvYI5dWFg1bQcbXiRMsHRQIMJ9dn0a+4sT0HByEzaMdsxnm1rQv4OYAaIotH6QBNkINLqsXMawDQMkDfKYbDnddmMlRr8nQLaFR8+fBjp+ul9344D/X5CMHeCpaEL0Pvp928AdUZPSffK60iVUh8ygTxX423M648N+5zx8O2u7Cuuur7PrSQY/XfMsTYO/c+degXCFbCkcaOe1oAL9eWYpLlvmQLJ85zrK5iezrLcDsz6pvGU8tzzll1IGgkYX4WDGmBqUEgDkVDXfGZuw/S6VpJAwthgiv7Y0cdtYvPfAbZwv4mDrgCNjgi8bYaoa2mi3bl84yFDMxP8uNLIbd4wQaiVomFSZnGsfVUyL/M25fk3+8O1YQufsL4PgKrAcP7CICKBDgYaIEcBPX7TeZthknbO3901NvycgA0msFnKYpBTwE051C+NtSshYDMoiu8UZ6J4a9cEfBJPCOCUzdSY76wakrFmTzBpPeoTpAKXGHu7fGr+68x9HEYdNUpRpDpauH4TklVdKR7LfW8MKiTTvVN+34LwkcDm8QCaotibc71aRPn7VYn64Hv6RsLn4/Bo8b+O99p656V8B4cet0RM7KidAFMbEzt6ENA5G5PJOD0dIpVge2NxlvmOQA0CzNjOZ/fvAOZt17G25EWsCqW7b5yupndthQkIvGiTQF/Nlmx0yeTaugEASyuTEGWmUQxUdkJUMmsr9ZCLAT7oDc2S5n8IDIZ2R2d8c0tc2yzM5VpacLoqpK+zxU2/Zts+HH3C7RMjcNeeFofbzoEplZ21drk+nFelmfs7gCyNMaO1NUDGjvn9PKEYWsP7/T7cEN9uOO936NnLHH7NfKwNFNEfm53pZZz6LoON628PSHlV8LzUlu4Vviz5DfSBnWhy7zoP8ivQGpkk0RjUEHorYLW8XODGHAfKJb3UzsUd8RRi9vA6IpkQzhpEpX514EJ5js2WAAg8etJvWoZsAyP4hXodBaTJiMrG+JJX9G8BjnlTo5zzI0AZ3zXNydHdRIDRPTsxiaZqfC3WqMt1utihpZlHnwYIovbjNVRzeu8jAox5dufZHjw9zr4E8ABYizO8mMX3ADJkiubmZgxqOoEc1tyAytK9xgbZKxvHT4CF4kS78/cdaIl01u9IcfKoZ0BjbRbtvgIbTuPPYnErn12BS8S7AE0Akq2Vlo8Xz8vc4sdYXHMexBklvfl2AIdvevhM7p4/LuwY9FsX5hdLeDDu+eWDjbmPDnVS78PrQJeUv7kWc0V0drBO3mTHukPxPlvnbudkKqadUT9zMwEQMEQFaVAN4ZCFcqfOhZeykLlgvLb/TruwkEzp12+2cFrTjN8GKK53YvPCvz27Mt5MmSALEfl75FVN8FhbZOYQiiEs5HgzvbXrFdUkHNozm6zxO45fg++cl/xSWUS/cDr6zedlcBFnBYgV8KzxGdDOL7mcKXC31tAOO9+hY5x6PBtwMx8NF9q+aNNvyBUYQQiz8pKobWlex2je91zO67jqvqfVv13mQoKsmSDdwFrIyF8xzoTchhR8MQ43Zq2rhDr+0O4+vSYeuKF6KZOE4DJ/SvVKqvy6zpnaVsyv0gYBJEeuPGDSnNoyAcJcpUqqOzeApLQ6883xje+zMMs81AReeKGqTGO0pRSaa1h6pvbLpk5rm8NpAMWxNHutXCVEcBPFTTqWSzIJZAwTs6F5OSS8oIXZ2TBH87tsEGDnQDZJc22N5DJWbc1Oc3PtytnfSTyjfAuNDoNC9XyQ4vEcIFCTWjV7RU1Nu7zJNNT3nLB6QYvuuh5Uj0DLwzGwxHkZtFgb7CHdR4Zo8vfL71sQPgrYrOi6fo9/P7UlX5e67rvs6HmYfFPgugC+p2ixI+ElYFdbNKcxhuOK/IgnEcMZEK3O+x2T8bWbwJBkCplnbmLe+Y7rBDcVDIwN2yyI7oTW0DpkF8kW59EuftbSrGYjabGfC/ip6031TNPOFGUHaiJNrk/QFjuXuzitDa2NeS4zEC5FO1S1GVV7xFqMqt2KumfvYtFuqzMDBS4XqawtM4FK/F2u/zBF4z66Brzj23l23G5tC45DSIq6VprChFC9/CbTNK7n8npXQIf9mwKQxoA2z4kaXjrnEc9JBHs3fsI5vUV7s+PQq5YmUj3S37DQ6gKIjMt483n8dIzdCZC24eBFHbET7jlwrlf8NGkaNlK2A41SXo3qQMQBFQvVUcaOjh14y32Y+8Y3BegdrwKCuLeFAZLND6ZFXECk5tU9b7V6Su6qpY1t80M1XConMJPqvq5n6ZvuvsSm0ShjjkSrE63+3t7z3Il3kseNOte8uf++Jx29DVsEAxwNOoX5MDczYNN2wAamxTk9biOHAazRcRAjgN9j42ZqICBCmhqERmkBKbD1hkEOAwirT3xLoAUraDEw4+JDirdqWGofXn/L8bbf54BaLIB5wNe8X2Cwl3uZuzyIpyWaLpJ8S/DDNzZ8FLB5Cbu+jG3X8DkHQ9CTS5E0aImQ5WV+s6/bY3B1lefLXz4+1H22tbqxuxzcPhbKwfymVsYWqIstN0sz7ogwX/cMBHSaQATAqcL/TnuQgQXS+QwDCpzWhNlwCnB9dw0LxPV7DaZ12J/nWNOb5zYua8be5m9poHln2008ilDHAg/TWEdnFSz4XEyKY+2B0AYBZN8+6TLTNo5Td+K5HaDqdyK5FoZaYQdu7G84mOjYgRcbE2cf4204EICPN6JmCGA9vPTpec/LuQ4PdHYovU+D+yFopJp53ruFfBG+UdO/nTe+JVxbfr8m7coKF4GxPj9miqOPjjEXbkfDYVJv6SI705Q0isCUZK5rYHTYeY56nsRCNQ9jXMMyUtCwzjebS1se4PmMedGN2QmZpu3on9/WcbZmbpqQmpfC5unK7VlDwf3Fzb/frAm+NYACibIa38unlG/WsJXaqabyt/UyHjM/NAFONZ4efZjGu0TtzalDeFLLcVJZM43xji+ko4udtQkTMMBMv+xCzR7gBuoAxzQx7vaZNDVifyf4MQAjE2SwKZoBEPu21d7ANDHmGIPBCL13cDN/k6lZ/mbNNL/7PLEfe00Ng52rsBvj0fcPdB0vgZTHn7/S4FLXq5DT4/CdV7SPCx99xuZquZES7ypURvap7f3C+voZQwisr2uTt+W6S7/7lsFKsBtmPGsbzUVVAwCNfuE8wq4V4EVQvCyFQmXu7OvIpWvH2bvfq2DpWBi3Q+U7BsA7+90F0lic+CyFn9uwha7uxD8II314SOPduwwUArDku2auTdWqBoLv6klgggQLPxeT6g7PYzax5+fpg4JErwMjSs9hbGaKg05u36r9qeWLjMs22SNZrftikpYED9YsjcVVdZx9YRDDY4bjt2aHjXN7pP6dguZwttDdha6q4rzf8fz8jPOc55Skjfsr1ISKaM+rOfx6vcsKjz5X2AmJ+1j2q0KhLPi/lLML/uDZIv7yVMUX7RgOKSa4hUz5kkCE9SMHAzoiE/zMcWfzOvjWnLtTqjMTKAbmMismwDyjFjwu6FidufT5w9tD1l4XEFCSGBduiiWzpVOczLeH8G1n8eiMz6QvuFH8uwURCCcgah5ivJQAEjVutLmWb4XHlbpzHwV1oUXKked4e7ApwvcY8Vpz2tlAjfVkvJGU1hwW2B7OGDaax6gYOXFmSCTOi34hHSrnHJMBJuLsDQYwqY4DptvnAzrvsDkD5CC7eG6SHQdkE7N5hw0UoO9WNiYgYkcCC3CZfx3UzHElIJBSAI1wXH/HAFbpPZeTv1ETL/HXr2Eux1mkRxsyLvBoROLHT2WslbzlOXHJx1l9S0DENzF8bWdsdn2+CunvE64mXt2xS1EuxuynzZvHIsen5F0XybpAc/713YitvngLvZ3wwQGM306vlioYY4fdadL9VmI7LGzhfj99J/6cgspY0DUv+nPhGi6Fx3kHNsfKAGQV/vlZ1S4GNXA1aZK4U8WEaXP7a/5BWcOxCs4KBj87IXy3E8rf7L8AImF6VesT4FD8jM5oo3koHyFkcFjMy9JvLOW5CVsJVaOmOvJmt9nje8wto9XpJxqZrnC6sJrEpDbcgDS+L8hM13x8QKaXs3nLUjuA1qC94+l2Qz9P31E/e0czoNTa5SIZV6NOel3QnEIXwP9Eu+yz+yyBNyYqDS/xVwFpPh7EtyqObsti9+AVQ+N7E8Hz/YQ8HROY2Gm9Ebl3BW5Tk4sQiIdQGWNmFGO8aAYFjsYXPOZ0QMwbu2vGtSTcVhLjzMo3k6dDxD1mef5RvFedQccoF06rbbx4UJ3eJeEgZhtYK+I0ROyGvbevRnOQ8/J2sXkncS8WA5wBCg1c0Nx3kBMxeR0dGwfZBbZTzPTYpgb3JdXJmIitMnFJqOLUeVeQGMghfsNAlhq8a3yrNFnrW/2P48D3pAPSgeJEYFykCYA0Ng5UCOAM0BEXcY6/Z/ke4CY0QgRWHMAwmDLQY5pHc99s/VP+CqaLbovPwCRM2BJAqRqZlKYClPWZ35l+fuV9j7mQl1/mzPry6ws0ffP7zZj+Lny14ROBzWuWyRwbD1LsBG5O91Luuwn21YTHZfIi+jlDEbmxAzc5XhY4x0PsgnMKAze2k22ez8aiPUoxM7RDWtJE8CLDh8LrwheMIsev95KMvyZYC8Z5nNOfq/A/ztBUUFtdKpuADD/nkjUWK22JdsC1ApYXt3YFBewhzFpSH7hizBocAk+Ihttpj3ZaE94hdzAreRfchEPLPgNJULuE9xyOG+VxPtb3QQvTZG2W2ya3gb/b1Ok4ZKnz6MrhEU17Rz/vgCp+6Id/CD/49V+fu7QC1fsY5QKcHbj5BZ3BtcTqZ+2z6yhPlcXc+jfHtRKu8rreCLrkPG9izY8j13M317FNDJ1xuuIUwRc0KH1nXIcQ/DTjNgxge04vagOox1wHYmwNoVvi3iHidYA6CLFSu45LJo3urTc0FtxJkNZJZ51bVraBjTgFM0peLT5zL3sb1c2CFGtU2sadIN8HoyCtBfHT2Pih6s2/bY7vXPUAOQEQRqrBDwM41rXM+sO0sQaEch3j7I3RbW3IfCa3E7zDbTONW6iXPmGeZhxVcjbpEl8fw5KgKADg/PAlnuSEttO1NAw+4rD+BCES52nGtwJ0pqOA0LqcAWoc5Iy6mfZmUMOanPIMAzjjb1BPQMXSCL+P36mcizhryMBo7TVNDKJJzBOLyGPE+mckZeByLf3ZJmx5+T7hKl8nh3nZC9m8B002mN8rfEsQ1zfKK9rXHt6G094UvipwswsvCU41nscVbG0yQ5BQT2e7nAcGuFHt6S4QCyy87nbdK3CQhZFkUxSjmtOP/McZDdVwiRz8kwCdai4bWdC23Um+qJJpMxDIpmWpTV2Ip/YjgZ6/RdJ1pFRHCv5ebeHerRT5/Q6Q2aCoTDoJhtSPvnvrQkw+e7Rj9qumR11DU8/PmLMD7ktLyxqx3rsLt7WNuNzz7G4CqMcNT7cTX95P3AG6Zj7ORAkEx63hzs1Z6vN1zeM3hTfxsfdiellovB3NnQJMuWk4w2h0kFsAaQFSLAMDOJB827wJz3bRZpcsSGdKAIjMG9zzexe6KU3ILpI0IXyPSg1xsacJz8AB9XtWuD1qYNC/0C95LvVufOZaoHJYtRmgJmhVlmztkHhDwRZuGiZ70GTprfw6Ly0Pjmdlr0BJnedaaBPAOOi96E/Pk/iwl7uJm9JTnW5PT3hqJyBnARdxkN8Ef3bnbGZl4+xLj78OjExzY/F7zp/ABJueAWZOFtoZ/s9qxedo9kAmar9qanYzAekd99P+92M+UtO8RSb6jKLZd+E3YfhEYPO2ocai6EspeeGpca8nw2tFd01PS6H21SXOiyivKnNHw26n4y3hejcj57v6N+InEldhu7LiaEY8vfi/43vs4BqLVxywfaNhfoLjgBQzLj6f4iWT0Bv/TfqKcAuEadjFHZmkqQFpZFYzhFHm5jB92vmcddSO8zxdoxNRQ1B/ZHLGdd55euNQL/S8Kquaj1Vzra1miejkNGZO5rufF2XX5/UcFDw/q8IO0IkA5zn6yMwSUxtuVrwd4O2bdyb0Jlq1Q+/PaACeTSv1/DyEbFXcP3yAdkU/O877CWmtmJtlwWj3y2Sx/YzciwHvAZhe4qU7k7SdgPeavB7HYZEsyrV2awLcDkHTyUOaDHM/zk/VeYbl1usCoGSqJuFxbQuo5wcTtpMm2MAzYjzzvGcOy5fVBniYJpZi3HOUWNmJAbKltXad/ZCtx3YSL1HA0A71rjjnq6PJAmA448EbQ9uRTfR0AFDX3oSWdhtIk2KbLON1nNe00VDP03B7X5Vh6Ya1wNo4uX0DiLLWzsFWN4AiJaeijesdX0iHyJ20Hqa5GeUkD2bFmYCQC+cwYZsACKalOZezNQZaAohwmb28CxlGpLsnQubhAVhiEgX9IH4VYKf2jbXrDrzEOCzanbJTdyUvXXPCvJbZm7pJuJ1D34CQTyx/cmbve+D/W4IOPxLYfJoV4WtTvr6Et9Dymrgfc9XSvk1eAkFvL4fzXmHLFQjclbw7hVOdBXAO1STFgY7tpsNYoN/CkgRoAy1Dm3LgPM9lVz52BftlWjbb0LlNmjU7Zo4U+eb3ewlCRJLAY2mAOIPjGgvKr2prKtAJjdDeK9lIMxi1a4GEv615sVlXBSv1rI+FCpqM3nMCFDP7s/qeZzarqyDsdjs8DmtdRlkZsFZQZeZrvef3s8aws0ZZG7R3SmCOB0xDl1pYBO040J6e0D48DyEbina7QZ8/QI4DP/TDP4wvv/wSrXcctwP380R//jCSlzaU8vfq3XuHdZFU+qLpzevztJw47yx4VA6jF785vdHaMfrmqekEuy2lkSmwooB0i9CXcRFzuhrKGN9IQBf5IPqiHZH4ndNljQ3XUaisJuyNLefhZSj3EwOGHM/yZRq0zG0LtoVgYCS0tiPe6Rs70ZYGEDivS7Bi+dvmAcQ1ZNzbTvd8r5jARS7EVwlNXcc894Id+JOF14RpYNb87Kpw9jKeHJiScJyo09x/7YabnMBRNCp8qSVfojnPubApWpiu7bQ3M45w/oMOBjdmDijI5fI7BxWS84i8orZZXth955Z5BG4obhqzmQ+l8ng92+S9KTDn9XWBmFUM8lCB1nfhmxM+Ath8fC8+WihfSvcpYUykF0DFrhB5+Fje7sHQpwCXNaeP3wW4EKfLr6K5AeDaG83fjRYlpjQWLIWo4NS8YJnmwgTd8zy97MMEZxioyWAHWDUdvki6oNDnIfajgJpZvwIOhnlSCMn2rtrfh1C+vrsymcvpqI01+wnKoGgFZFd513qsADCb2AHwO2EYcHi78E65tzcDh+ycgeu2A3VRX27zcCJwnqdfgLnTLHGojgn27TCWaAa9Zuo2zFjMjfYwczuenvDh+9/H8/Mz5DhwfnieTgU6+vOHQdPtmjWuQGbOlo1gnf/Kku7Tw+v48ZUzgZyTbUtgThx9RfaTB8hmgSfmNxRnHTr7fSaFg1gqaH/2IudvQrRgaCjOZXNj/D1k5fzdeQNJ4LQYmZOUo43vrtnReeDf5DmREMyZZ9YWIiHcgBCvfZyK340zi/nbEKCFm3aCltBKL7wo5Uz1Kem9BMmgZZyfsbpEHjLp8A0eq2PXqbEdgOhoeW6GI4B10Ox4AWuPDuoyPmfjovnkpSx0Gp3gdlMDtOu41X7i1k4Im6IRWMF8du9lggRiEvAhMzQzQUPKjxwBwDQu9tzTcwY5mGtzLyZom9/WdwtoWcGQfctyS91G4LirFPcSCJEg4MWwy+trAzklXAGad9HUeCH4FJF7n9+3IHzmMzYbmEvhtW28WwBqOZ+iQVqIkcd0f3z4XPlGnldCUwWU9VtmYlkzk1OGYOxnUjzN3IGbi00V/Kumw95jAwLGtwyMAhzlmsTuJHsLg5flNau7gF1xHNEnWeOSF/GqceA8K/haPaNF/jsA4HXz/LGEqqmo2qIat4bQNu1BGNOf8x607/JnEGp9U0rdAsPqGMABasp/P0d43KgOj3AHCctGezhCmP0mQxvXzxOnNQQEsPNX8/txNDQ5cLRnp23WBDubgK9vja285D00N4/jbLYzNmnFJWKR3LcDfBhoaNHn1hfI84nnIBAaEhYd6nmO9ZdsnniOrHzShXRFSltzHgI88cEdSK8gZn6uZ1Cu+LUIp84gosatNapj08rpXYdbc6y8w9OQlmMR/Jl2NTfVs+6qqc9sLspsUKW+rYHBUeJrF5sfu02rlbddtMVIOYfeoDsAdcNNTojcCdgY8CgalGmClr8Nb2qm0THPakD2ghYamwFimK5BhwEppL/L/TPOmtTTgupNnHULVvIMsXfUj2lgqQPDXZ65hWsnB7DU8vZiFH7tgfc+xgv6/YBhbpbN78JXGD4C2LxVOH8cb5fb5xH/S66CMkFfDtdL4e79Ps7HhmD5H9fue9rE/1VnUEK/gwktE5w+Rnpj36z50CKsrOc/VkCTAdH2fhLiHE5rinIFzEIwZmstJeFqCOTW1pamgDHKketQBe9cNntZWwGOCRO1DIu3045UTY0t1qs5XIDAsY6vIG0PugbtAWL2QsauX680MVswRm1gwlTUJ9d5D5izcLyU6Su9QM9zAB0zh8QUagRox7G4z+W5kH4niTXPMRpJ6fn9wxZaeFhFCxfpNjmRiKGWE2lxLvLkcpNgbNoJsbytZJ77rJWYO/zW1wgBOPOfOnbzGQkOGSwTrTvp3/nZnEOpDBNWAjy60LwR1o0nQuHC/BgvcTZMYPNm5FgBS+QVY6hv6kKTOtEqFxV1V9B8+Wncwljir3wi6ldosHiq08wstDqeE2lZUkvRsEtVMZ6XqCltUOtuvG3GD1fyKwgyjfVoFzNDVtzkRKMzNnDgggRY/DcKuKkaGT5P48/jG2YZXg4YyAAOXhLICfDjizAwXTsz/2G+kHpiBTY0FJKsUzZ0hBMbfSnn/GsXr47zPJ4q/OHNgb0U9tWEPM6uaFi3fT4hvEXke21+34Lw7hd01nhXT1diepEVtgvqRqx6JT0IJlgTvCgUvxxeTcNVsQ9y/pi8aznrlJysQgDREHhW/dcofbXRFahnvPZWaD5YkCmaB8AX9GpKosoaFRZqic2Vbd0rbcQwzdp/2+3yqdcpr5tX+WOTV+Rv9K+C+l7TkYX/aw0Mg5r8faepMpOtmcPDPHflchlMG5/7qXXn32zCVuOwlmwIfCaviXtAQ6FvpTO0NZbWpGPT3NjZLu/b1oDT7rkZefR59mtZ+Osk5DGyULWGS3bzGcLLHGwRTV/x5fG3KDnmhMI8hZmp1Cog1x1+y8YEKJM9vU+BxD+4WBewruY0TWYf77Mgdmuc+kr2mks7pO73tgiWsT3wQxjvct5XmtbtxsEkvSE8yNXxxGLrI9HKtMPWvjbfIAHGHGQR4JhE+mZHyhPRRw4QZ/9HfVYBOb1JvJzAyVV7cB0Lb3m0XrrYTAI8n0gUHcCms/OA8cF/JxM0BxoZ/Mg0FYv4oYFppNVhwNEmYTZ6ZHaCP3t9V5AzmmEFMtEW11oa4sTLWpIfNyDnwXMNj3jHrpzaz1+vXP620q82W74Lnz+8qynaW/rxaoh89oG77Hbh5ZWgRN+/uRYS1lSvr+XHTub9grYv3picwZcKgcS/1pznbq4tjlCIBpseWpF8iN3e2dkJtbMuFM+1AwKwhzMWjK9MuuxdFdJDYAoPR1dmL5yOzwVdmZosrVKFG3+2POOAv7UHa6VW2kcJj4COvQ8Q0zxtt4tQCZyxEFbzSM+pquFcYdCTAdmuja40LHttjuW7ERLFRiKW/mcN2K49VBU621yOYwrL451gXlLY2vCkpOfctb1etLPQm2Ns59381/Lc5ZMi124JWfxBuOYxF1mSmKPrFzGhfJc20mUND2cnfnfMvSuOpnhCjB0rSSRcOBuo5ezsvZ+pkbX1fFzXutJcT3kSHzG8wtnqBDkDE7Mgfz1vaiMorvvMgIX99iWI1RaI7y72OrGjD9beI14k64jYkzwq722n0e8Q68p9TtzW1paqcbEnZZ83Yay+qV5wF9mDhrmiBNOKuY7s5TIAFdVfow2qI5PomGhvaRKXTwM45I7W+IzNiDiAzAAqSCCGQYYu6cAAyLU1kacRMo4mZSAzaA+gx2lyPAKD9D6aJqfhUN/J8o0Dc8fMRaTEyvTs5aeXwY5D0RekrRfCK2W8HQ1eHq9loKFEkWwL+GWe/YqyFe/qFe1dPax9g8O7ApudMPAo7Bbcmt8u7lrOx52x4QUxFUpC8BrhEZWPv+4YyuPwsqZmASs7zlJe7NapCmq2plIzZm3tuQRhmKJ1yHD4PIV2SZ6vAKRzMvX+GQumXdmZoQHZ25EJMEZ31XbsTJ9qHNPQmDc226U1Aa+9IDznNoML/TuPYly2259T+kyn0bWOG9NOjMUypw0HCQxyCBgS/TuQkMw5pjA6ZIJOAqYs2ppF6wNA51kmB6zI8PlKc8bB2jSBIgnhjsu1cw/2+7gdOI6G5zkezy7jLhUB+nm64NOOhqMfuN/vy9SXJCmGsEW9sdB8fYj0jSurPk6x4ygZfFxTUb8t7y4liWs+JgIH1E/HBDgi0AmMTVg/u+JomdoYb+NpHLanEjXAaAIDQGhkjGwxITnOBbgXM2QgFDxgPhMYqkAhaWNkmtJJ3G7PGwhWvtHHQ8bK99/EP6JOwVt0FmpCKot5w/O0OK0c1MePuuhdT2SF1hwBIseH1Ce13bgulo/x5p0jFiC0W7WuVs4ACQYT1rHP5brZqBJFYr9zP/lbKaDQeDxiLNzaCbUzNq5pqUCG75UZNR5tFmZi/F7Sd87PKCmARtQ5JcsOqSwwNFDnU9kErab1VnlBJqlp1m/X8TL3uxZLdJN/pnKXKp/LeSM//ZSwG/T1/Xfhaw9f6QWdlRm+ZcH9rONmV+BFeCt4+5yhylnjdzB3Z26vINgXS+P0hVnlN6vd/Qh9Lowd0A7tHeT8zIXmHdjZgQ8Ai+DsJmW8+GMPxHbmUPadvW2ZsN/aAdUwOzHBxLQUu0tEr3ZvK0CodJhZmMjwElaF+gBd2+w9bxPi2YsZXxoIrG6e2VRrATVY+5U9mAXAue47No3rfZxfMdezVubuwlFuV/PiZsKgQMah/xr3hXYeq7y4u+EPH+6+G3+eJ773wz+M/v3v48MPPuBUxdnP4R2P62NlIkxWqlBaQ/324hS8BBCvD/s5+Zi5vSqN1reb/EzwJ41tw7hY8pAOoI0LFg8SeCbP6b1jIpzxuuzGswBvwq7dM7RdJ+bYaCJ+JsWEW9MOsegnM43lTUolp8E2OLBJ43MxbZZEXeoczoqZABb2joX+RMpMZ8CgxSv6OxKZmRwnzeJ+KczrbvSMd6Z9ufdxd5jORtLZd7bxYhkM2qjxhERo3fUXC7a0aTHz8R1m27wq7RX3EwUYoqITkFFru2gpNBl8pRFylePAIR8A+QDIPCtkwEOMBxRvZO6GmYHOeOfmZeSqOVrtsdkZ1wVEAzTKcY98MuiiHol2Le0+gMFj4LLOr5eAEKfeIQArr1K3puby3k32+0jBLWlldu/XFB9f2HfhXcJXCmy4u98CanZxdnlffXtUIss/+4+vpeax8LCL82joi/97QfcmS5HYddxpsK4YWIojeS/E1yxd0zN1puK3Pu6ahcNhfjZQzjjisN9tvxLwg74MLq4AEedlCx9H4119NplrLWtmKl07bZD9NvDD1ndVI5UFH13K2JlyWb5cZjbNs/pitq+5gB71yWdr4KCm1qGa+oVWaQdCRj73+x23220DdOL3EIjW722aKmmPEac6zsFEHU3AYzqB0FatwYDiMC/reH5+xvP9Pss6ofdnaDtwe3rCD778MDQHtwNiLmmfAPRf34738VeWd/V3ft7Hf9WO3469lHcvsand0dv1OwsjLNTIfGa+UAUVE7lM2DIJcXChuwKtK56eTHuDeZlh7MrbCacOoCm7Vba/oaUBAqyMYgj4kAB8ahwcTyZd2M9rr5mRD7gjg8gfzrs0fcEidHNbJlUN9m6oOdiGiueNOMvTJpEk8w+BmnhcT4ttDJSD8jOaR1PP+YbIyHpXERcis7bLAGDw8f2Kld7Nh9iwiDDqNjZBhOg2sdxoyxrnaFru17oCGs3WTuYRzsBNnyhy9LfgJnegPSeQ0kgDE6DG+jwoXQGLznbK84uBEDfPDogYoPH3m3trOD3P0at1/+KO64WOPMtX0LRLmcdB5T26xL3K7VGgWV/efMbwGpHwu/C1h68U2LxH+AqG7m+s8O4Tbb9bUpb3FGe8zGZzIg1Nmguo6YC85D0b1oaMz6sG4Dz7vICx+9mUKpxUs7Vkrjb/NeDCQrEJ2UaL/d2ZaVl5i8mW5PROA5macT4MeCr42WmaGHTsQqXftCY7AMSBQZJpdh6V4zu5Exiyq+UrU71deUfaoccYPzri3+93b18DaUbfzlxnrzGy/m744ukJT7cb/n+//n2cqlOIOdGOA09PCvQTP3g+x+4+gLt23NoxhJ75rgoB13zorRPym7NSVkreQlkVozjt0Vp44kKAINAmQkOc86ggYIvtNpsAvYwJfvdSPXbfGQC0+cPAQDcydZ6Zm8/MA1HTz98ilVb6fUGTA8fNHLPgDgEor51wv6azzQJcNhRvnqQ8rE0IDC7lTjDm/T6FfN78oCyWTSh7vjJZZXDDGh82p4WntTTqiQ3cGN0NikPuAJ4xAI2BD9PYrFoXK3QLbKixvI6XcQhca+RtwInbqUC+lI+iAhrKZ7cOeKqrbzmf63A1yj4t7jeGS37VRPikecf8vgXhKwc2n9KuHwtqHqZ7BPZD/fFJNHzMfsJjNfEmcytj4ZBXZV/3xHZxDASD4LGDMa05ZdAw6AqTqeNYTaBsl/1KA2OCcAVAnAend0CR8lyF5ZEP1VeA3s/Y5Z1lmSCvCtxux7jcUXI9uJ4GWOoibbvY+YJQFNp7qhMofq3/qkECWjsSTSFQmu33HpApgHN6INv1g7Ur02Blcpz6Owmf5UzRFfDh56s+5nKqlonf9z7a9PZ0w/PzM9rthn6euN+f8eHD8zgDdLtBpze029MX+N737kUIWYVO8b/VuOLRrOXG8n+4AYz4B3mUwELgmuMnh32exp9IkzPrYyZBZsYkgJ8BGf00z+D1AXBv/3/2/j/22iWrC0Q/q569v+85TXO6wW5opBukYYSGsSOoMY0jNiPSc4fJZeYPxmicKxeM0UvuCJIYCKYTTJAgAcU4GXKvOmCuMRrMZOLFX9yhvSORId4rfQUV7zXoNDI0AzTNge5z3u93P7XuH1Wr1o+qevaz9/v9nvMezlvnfN+99/NUrVq1qmrVZ9WqH0tCNqCq1WV90i50NHIegXxp2xDDXCyNifZbkuz7CoU04L3oA4aco6dL2XTiZElhWdsg5EFfsO8c+Ib3TtnyWY9E47OiVTNV4Itj+lCWRLFvSzrT2KN03V6nUNqujVhLCKUOG+jn2kqMMSR0nZzY5GC8KsUIU92dqxHjQb7nydYPAXUPlVl+m6u3kIrHN9Vd283wIHv6mdDKTdLOQGmy640fG88bReadUzgjacfvfe8cGUw2uxkemGuuJ9cqtp73xRHtqu9eDVze1AgAPU2F/HPH2LVI9Vm4r3ClYbN3s/52Uxy95cn7c01l6712jwiizKOY8Sat+OS6cI3BsxU/jCUX0Rqrzz0E1F0tA4tiijoQCEAnwuEwdoBHD4YACgvs7SZ4x0LzTshv9WAACpSEjnzaJVGA7lMhEoNEpXJ3V5ZcpVSWXw0E4UB+bzwoII+GSUrollUVeaAN5BHIzWhJeeNpckRU9zz4Lb3RowSWO13609rirKk1zCxflRCsSdDNlIbvUubodYv7mkbeLKGlv7UNghlsLk6VZXO3j++QUsIxEe444Vjprbcn5PUEPt063lDrYLTHxkfTcvth2YKNQcpo0GyhgKg4dqkgC8DOJdFYXmuSe7al3QmMNTMeHYvEjocEFtNa6oqAlRmUzQEBAlxNTkOe2Z94JmBVAG5rC1UvCI12CSO8qN3ERChLMm1d+LA1mOHp6Ylqlbp5GScZAGrL0jqPlshy0HcsI1LeddV9GlwTOgBcjYOyn2QAbZ1Mx+OANT7sHp/WQagcCmFP1u+yCg1HvlqPE5mE8izVhjE/DgMuvpSfuTcIBcZ7kZbli5QWgOX+mfKc2p/8lnz0IBxvTAwMlvDbGkAjTOHqbuOdL/tYNjH9E4dNRdKjpL3hOu6uy2tv6HgKqvpZePrCK3qPzeW5PHCwAGGU2T31l+vIjI3HjpYDpeGdKV9fX/tR0ZB/8imVGg/B5yoehyXhdFqHx0DrDHuGBc5i4Nijl0saC+LtswqIBoO3XaIEFKC/rutweZv9fjhoV9EL32w5Pehv0uC4Wd8bCBp/jGB1ltLnBYyMBDEgtPwNLDHXAxOSOXGuzEQ2r5FYUTV+88qUB5WmP+VtthTPl0l4K0ac1KWV5Wj5W/lZQZTZYySes9HywU5GQDmOPFUYRmVTeSLgtDIoJVBmrKcTTqcVeV3NvSPegImfo1+jMAUhBihfrezO6bANnrZUHseHw9E9ZF6siwa9ytYuantFEhGWJbX2JjppaW22UrMGa8tBp6YE9Apo1SbPpm9oG7CTHjGPzlZgbocOEMrhB7a/NWOVjI6wmUGMGgO/GZ0x29qSBcXme1se1vjyvPd8l/MXZK+M5Juhl6Qy634Se1xypK8TRGxOemOc6vOSD1rliH6QMqpRQ80A7QcgmVTS8qaq631dhr1RUFmWNmSMAhlDgK58S/Iys0sD4zdwNkdW68lnyo3sd+mXkvVGjTdERkYNJmltuplBc26C+UkgzFnbZUf6J8dwtoYe1oA5G0aAB/4Zjxv71eHZcc/XhSdcira/6Y5izlLGuKPfMfDGO3LfBHhtEI2zppt57zcQLu/qffyunG7Eu7w7RXrbs2FzSOdEVt21bYNmHaTLjPzY4OiXLSkfcwBbhhxLztKPe2Qa3wZYx9Jaz06/lls3DxfgRu5dpC+GjORSjoCmQJc7mYyWitkwX86lClV5SE7+Ygw28Vn0Fcpi16Hbd2pcjvft2LTWYB0vFyMQWb4rYDFZ55zbUkSl2+cjn1Zk5XeqIEiOwyUcj0es6wpeFiBn5JoPVYMwywZmCzw7KZdfs4NNe8/MuHe6arAWmU3ikS36lhsJxdC/6KNPCAR1uK3BRB61rjOARU+j4szgpQJwyKdCOld8Gg/E0QAuZ67FPW81HlG9G8QaDLavCU0/NlBogwVC1n7h4HUoe2jfNetBfqbvCoBnjWPbMJt/t1oirFFj9ICWoe+vfvigBs7kdDWRSjOySOPa5dJNMlxMUFtOW68h92I4ViL9sGv2vZBpQ0avN4OBqq9U9Ld4leokRvEi+TROFOQPsyl6wBo1VeeytlhviFjjZmDMUB8vQvWxthj12zHauRZKd0PupTClp/gkia+guYX+LgwXkOra0evEaHgthCc0bPbXpKjga+r+IdqLU6IzAzs08uu7zXWlvtTuV2MnPrg/niY5dsOtPBQALIP4aGnR+K4aWcMqg4Tsr4AxLkxs6pd6AT0IikGWyEUvkKQdLXvrQzS4BnmMUg1AeTQI1APT0xulE34knTUArPwKzgkALNCNZeoNPX0ejbU4w+yMSVNHYtSIASjemxis12vE1+y+IyICyT0qdZN3zrmBoLKvBiVOqlPR1M9oN3rY1yd39dtoq+CCXhkjOoC6RccPx7uNmwGVeazaH2qhytHMZt8Me8MiM2MBTWRL/Qd1Tbfrq937mnbWF4UwmbS6Jw0NsG/pwNFTroW0IDfbd5M0jYcZu0EvBKeRHs3cKHpzIRrnjSj7mGIQEhUv1nBQIgKxtic5GCCJhcbcyZ+DADLDGKDU8mjmQNAnIxlEowdQ49a+Y3nuiqB6hamcHme9NMI1daeRWUPDy8CIx72LcX3o/RJB607ingMx1+OvDsDvDPeD2x7CSNofvPHb/pkWrqKdB2TiWdgTnqpT0aTjzepxu7nM9/1ol99oIfaVnW4aRJkrmj3Bq5dLu8B04IcByk9Ab09alYMxV1t/7wHKFEycyc+CUQtq3Wxm5xkI6QcDmAPFlaBPr3Ukg2e3TArsb2UfeCTs79FSLWcKOE+Ife7LG8tib9WOBt3YMxZA9KD5jjxennc9CWrqtaoRZ56nmYEil3BaoyyFZSSjMPKutWfs72xYc7ljiRIB7Z4lKqd0ISFxOaxC8IiQcTm0Zx4wxgjDqtuwYkg7l7Du05wLA9DvCF4T6uREz68fxi20akAypZasbLz3QLQ1QsHAllPpRyiyNb3SG+yNYr/nyzZ4oS3b2ewkRvmt8fwyTCOGbpLB7NuJdSR9XIC99RgEDwO7PAIZE38rRNk0wu23n0CAnShymfXl7Oxo1jhkyjfSKaSzUd1zrsTIxrV5Wp2GcAQ2j478liqn7r16gseS9D1Z99WU9N7QGRs2UlfzPTMUftv3PR/9++1e3EPqiFmG6cfAZhq6NnNh2LtD+1Whd6GadBMPzwyQpyY8VYbNK90unA4fZX5vhrcd+veV0p//8wTZ2d+DSLtPXxuQL9/j4jVGU/1mZl7BqR/gMnvwPALVafBs9nvkBZF3kvvIWJgZQLqEgz0dZnCiLo2EeEHeLA+RQXy/tRTNx5nLxC3ZCM8EYjG2DbJR2RpA6mSig54Fetb4irS0zqgZr2M5aR6jPiEHD8Rym+l3pCWB7gpE5sIgQAnIJ+S2TLDWR91LtAkILgjjAwOuJGZRcPuOoXqZgxBVEiNNM1Iho++RYjRuSt/Rvm+N9xFYzmAcZFbd0EKdSZd4BWiWAsqsfAOMfdVvqkR5X4wev8xpph3Fs5jsUWHU59mVEb6P2DfGxmt5JFKpUqxIpzd7/oYvDEe9Z1QNQ68njNyi7RY+bSRJ0xtwnnbzqBhaI7kJaVmSltEHB3IrXd8HBt4j61GqzwnlFDQxBAttNWjEi6OjnbRHzYfcJ5nvCN+7UsJLcBYvyr1PQrEC94TYSYy66XTMUBmIPLZLcR0zoxgXWmYXBFc8O/bIBMqgcDP9eFXYDxn303sdhHs1bM41qy3b4X4a/zi47jUb6a/uE/dTghg8/PfPMXkHeoiuPcxm8zdQz/4nUax1KOAMeyjXlnfF/1ZpOI+HGWWzOflqtJRMZvBGRsS0nAOQrbz7e25su0pyLJLlt8bR5WV+Hfg5bnxZKgjMCsZjXGiung8qXh470Mcyx5PTYign1JU6HS0Ba7Ol1sMTvTk2LkSe+kyWza2r0FHjR+OzOwSCjBztEshEhCUBJxAy52pkL6DTCjDjtK7F8Kl08pqx5jUAlX19iybf47MprQgcA0jfE+zA2s3Gb9A5Z7DIr3P78AS8JyLcrYzjTdnbJQphqUsDCfUEsax5tMsSSb07nayo55OgBk97RqTAwMoxxLEa3PbnQtMcSGDyKkZMWayWKsjRU8K0nRLQDLJGYzT8mPzk4AIJOdelZYMyN7Vj9Iws69JlV14udgJixJd4wSjEB9AOHmjpqzAU5Otfo0mWvuqEgBjNB+lYFiam1jpJ4pq1gMwaPbaXbg+j+dcKILfnZvwyxgyqoUOsz7Segx7VklQRZPPcxusbA5GMUZonzB6wzX58TknZdhnfXaJjWrsLD4GzysrrjzB2TFmZIaIHDlfZTK8Sr89CC09w3DMQm5+vznnjdgPvxrv7Co4vh6YHTNj2eA8TASM57Qv3u8dmZHxcGi4BdqmefmRTLcviTjwDiiEid9gAgD35zHoCLL8jr8TM4LF0G3/1nxEPc4+Bhui9ifGICKsxDizgjuWRd/OZdZ+/lt3KAGDOXbmZ671B5SiyQE8OdUidYWRPrLPHbPd8QfelFE58GSbGDFwU7n7LXUeFF6kP7aySxPJlZ9nJ7OOSvzUz1tMdEpUT7k53LyEtCUtOOBwXMKOcGgfGAXq07Cz0p1zNI89OxLo2tDZqPRV7uvMwzkjh+bccv9n+FlMRg1hPpzosVE+8UsDsll1SWfaXG1isOiMWzbCZUO8usfIoXww3hVKuv5OBkP2JWIK5DTquPxMF3VLjtr7T2iMp0DdGugV7bH7PxjmZFBDD3pIQPkniwXWxeg9LLTczqNOTVS6Grh5/XQxWgp9oEX1p89XeyE3OzAV7q3y4JRZ5iwZOgybbOaPCd9GmuqzNptX6Ea4sDTsh1DhnNcw6r35mEDJS45gNvWyMJ/t8/NuPgP07my4W3BvpZuLHltF1X+4f2kQxg0nojJaIk+bK3EW4FseNTET5dt/Y8KIQOmLrGw/I1LNT0a4L974U7UlsVT8sXdKIRxbKFvXt6JfxH5VZ//ZJgUwMFH/UcnQ67CHyGz43Roeo/zUjJ2+ciYfBBn962FZuIYhBA7iZ+xhm3ge3JIYZh8PilmDE9NG4Kccmq3dI2WKcTjrLq/fpjPfayHdnb5OPu67Cg4/TvgPI4VYJV9aUwDl3eaoc0MpuQWciAlKCNRpE3trWuDEWDTD9LnXUH44Q9xYxF6Artt/IY1b4pXpZqAVuff5ufE4LUsp4+fFd9SasWHPG4XiD27u74s0hAi8Lbu9O8KcfeXlfHaIVGcMETERwqz8mdR5+XObxEa/MRAvPjBrHL1VgXfYqrQwcqBg5K5vi1QpaBi4JNZ7UNMzMzgMioYFnI6/OcBk9N2DQGT5sDRgFxq0t20kF6BHHVD0uYnNGcG0DGX5FmETjuDaNlshZHO6OpS4RGzvYULBYeCE1SJtuNTKKEzSWTkbZcwjSkwclb3YxlUPvWdbv7UQ2mZTiYvA2G7HGL/INxkwra/V8dV4EOXLeyL4zssoER7uQs7Gny9Bm4/7U4KHwftCvtwO7uDGd74sbnd1ONnUGy8QgiQ/i7wstDqtPz5F+tQM7GfF2hT2wkfMs7A9PYNjMa7DoWt/aZ23/kj6xbSSMAdAu4m7Wo+ZDvJXZNPdxkpDBLnbGxlpHfyZU827cF/cYg/Mwm5OR+by2nKg+9xc9ajrx4ugE9LbQ2+xo/S3GReeZMWB7ZHzYz8KD3w8keXmvQM07gPQBly0es8TzS6dckFnWbA0ie3qcL0e394XKLKjsZZG0dt9JnOi0fIjco9GxdjT0sALXtyt/5X6iAYBr2EL5mwaq8WqilMjIhVwdWa+UrQ/rxWNmcNY0pw6kljzzaS1HBi8Jd49vcfPchmoMbXS0ZIrCu/bMKYpwgMSZvuiAaQRsW92ZW3bzgZc0Xq9xej1u25OHpcos13YpdxdxZqSkXgXOjJUYSyp3V1mjxBat7AMjiISoZap7NeKN9QrYR/qEETccU4gr3ocsegnaP3UDezAClGEQ/MEaUa7WqFiS90A5TpunRcrn5W6nikb6qHnJEIRq+lejFSY+2lK+GtYweWDvoBIObTltexWDqdBBuycmM2CnkW0zZmYkoN0rZMd/6TluiWvlV+rS1a8B7bJHJ9aJxEnLAeV+r9zGOS121SXwvyn8LvRCBloLAM3H0GvDaPIjGvLbwfRiMvKJnXvLGtmV4d6SDzXL0xFCdyo/HiAfvme6rxPDawNhXB8uaYKXyvmi+K/RSryI7Qfu79eStx4AwINZAaFEwLquIV1NM0FgKZGbpbcgNrvlX5PykNznUr0SFbhbUGD3oPTGGDeA33tduNG0aW0oPEZPA9qfpac896elxTijIOVa19UYJCNjTWhRu+tGDIfRpaiRFd3vosbkcIaavJcsemuAcpFeSqmctMSyLC1VYDumHY0p3aNTaC2HpRl+vK5YDgesKMc783rCentb93qsePz4FqfM4PXkTJKH6mZ7+3rDzHsTXMrwpUqHuycGdFZgDwXwRAAlwmp0AkgB7mFJOCzk0m8WoQJlMcDn0cq+OosPnC0Y23JIX4B1+ZO9QZm9wSNkFiIs1ZgzDovOaIjYLxp0qPF1PyCaZ0jv4SFHs6T3E0q2aM5gCM/JpLfPnczqP3pxZX1uDJZRfdln5U4Zat4toU+gJmMybYJcnGbLKj8hlLou36O8Y5oRz6KTyiW99U4rsGmP1dAKVBSm629r6Fg6MLSedoByFXc7FdTltJ9uWT0LwLd927fhi7/4i/GGN7wBb37zmzfj/tIv/RLe/va3g4jw0Y9+1L37R//oH+GLvuiL8OjRI3zO53wOvu/7vu9iXu7dsKHJrz2GrVU2Uflelq/S8+rj7HD51IQtGflJIFNKktOqfKRLVegYWBQqI6VM3R934BdAA8q6mXPs9RjNtumfjysGjYBgiS/vbDzl1tL19AE1fOweDQkxj5iPvBPjwRp2drmVNTS40Szeo0ir5Js7PuUW95xzuWyy5pVzxum0Otk52Tq5WCMDzntW6soafTz0yBhuh7xvhVhHOVcD1Rh765qn+VrebZDle0CVdVqK9wflpnsiQjoccbi5ARJhORyQDkektOB4OODm5lEt0UyjzcJYx1D4FMoKOA3ajog0khsZ/h0CPMvoxSHOWo+yd/FRZc/A3SkDRFiWcniAxCCjTdZVKaxZvSGxHUVZtsMIrDUR41sjhDyoLn3CqNIaX4yJtU5iZKMLCFqDQleMkQz14ORqeDHgDBXJLBoKALcN+kswNHx7gacJO5FUlmFJH7LxWy5sDAW2z6q+CRKkKjdLxO1zcnLs+2Q0moTekqTMtklLXdali5kdTfmzZUfT43aJmdTZuG2S+WF5XZYFieqpaJDP3H4T1OgpJ6cZ44dY/6ohZI+O7k9W84bP+Pn5v1hCZ7AGmdMZHUPM/Ql8U+FdHnSaYTD2h5j2zROrtCtsyVZUa1nXv5GIoqyfNMgem/v8e6hwe3uLr/qqr8If/+N//Gzcr/3ar8W73/3u7vm//bf/Fl/xFV+BL/3SL8UHP/hBfP3Xfz3+yB/5I/gH/+AfXMTLA5+Ktl+KVmdGoyZSkfF7TuHCEDOEmdXb2Tj3RbuEv8sPD5BZTKuwz/Fyed/bl048APKdqGyotwcIADrg+aVRvUHijYf+cIGUCmiK67bPLX9a19yBJ2vQyLtiPCgPQ8BVf6/rOiiPLJciF29JsnFa9rrk4b6escdGBirq4oicU6KSz7IMDb5Y5rKMDQC07NbIS4n05KoQqI0AXiYxv3hAhPV0qezRpYl0WztiroZMWT8PqFeQcwZYDbTD4YiXX34ZBOB0e4tECcuy1MMjAFpSORXNeBI7o6QKfm6+bIQrBztb/ZuToiOlIaqRB9lP6MpSYpdV04mDAzb0tfT6IqMa93BIWGoemYtxKSd3RaN1Na4QaePl8AGoIGq9RxvPeWMAMNUdQ04v0DC+4mHWcgLd7jUH2MPzciKZ3/9HpJiocUAjONrTlMykWsWb3fqP1cekecRDD7TuvYERtKWLIXuJqnZqfEhIKPLdapDlUk/Dh6OhHGiepa7Fy5aSOS2utps40re0MICS9TAE8SqlKs8YX+Qmhllm8cxoDfWAOxzXTOieeXWodHw/iXTH4RxyiJLte2cf/zzNOr46JdGTPNMELgrnTJ1xuAcLYhJ2FWsgTN6d+NdP+NZv/VYAOOth+W//2/8WH/3oR/H+978ff+/v/T337nu/93vxWZ/1Wfiu7/ouAMC73vUu/MiP/Aj+/J//83jf+963m5d7NWzOAfGtzhSfm7H4iYMZxu6B2oj6FUYI4irvy3Ic/+KgTGdp9tI2NM+msUrVDh2pKj7dB2EBtgwixcBAew4AEYgLOBB6LX/qT+8Sz9CyeIMm7sNQGnrMccxfvlvDuw2YjQ413iINC9ZLHAtMlF/Ae3a68hOZ8nuZj8CmLCfzBgNjWRYzu6vpjZSGMiOqRg/5NLaMMVjjSMq4rhmHw9LFFe+bLXdv0PVeO81L87SeNaJUTm+rBvGSErAsWA4Z691dAUNpARjgtZyjlZbxPTYjmyE+v2YoVuA40AkBxTmP5qzabBc8YwgpVqFh/p3eHhgDagqVMhSZ1yOdkzECK3A8gMoFqaQkpV2nVMvHZea7QSwLSlmP29XlqMrcSGtJ3xGd4w4hCMaHK//GhIClW0C5asMmepZ2qLpD9sbIvh1t54WRaGQJH+2XMdS0S/q+0fSE0UuOb0yMtJqw1Wc1cE6ZzTI72wbllL6evsjZiY63d5MJX7FPLeYZEeqereTKaJs9UPcesh7uMMoLrHWIagQTMoiyuTBXKKrBZHmLz+S5KVH7fukymTG2CCfXwYvfG1DWZI09tk8bM5N223FQ29elRk3h4nJjZFTOqwg8SXAzTOMo3P69hwzvCwRbegBefPFF9/jRo0d49OjRPWY0Dv/yX/5L/Jk/82fwYz/2Y/jpn/7p7v2P/uiP4su+7Mvcs/e97334+q//+ovyeYKlaONK8/VAiN17bxh2pI7iuRQ7gyVsleS9TwR4FLLN8T2s6zeVMYYrl6/0VfmXlGM3eOnUdjCXgS96YHQWj5sxMs+8zqgN4lDzIqjUxsuXxsdBj4C5AzREvpmYWdMSJ9e/HoyXfTySBo3HkTEiz7eX02kcy3cs16icw9n2SUPvn2tdbxkzmt7zLUaWXtbq+SSiurxO90D15fB55JwLgDbA0Mq5NLuS2XI4AMx1aYvMapd4ZUN7aaxLIhyPMucjbdzL5eK+ebFCmccVIAcLJkcoZ6tjb7Ay7jUXxmVdmlWAqtRxidOWdbHuJYntTcHYOI/oUez0EEnb81oq1boQw6gH9/pQjB21I6RfKiiOofUL9vqi6cDAo5Bp+dQfzXgzfAwDK32rX5n7UcSWxX0XZkxfLO1cl5TZpXGWlwio43AqsRqPoeyjGu4AM5G/D0j6by+K7nNo1FlZwbaV8oPILDMzy9LsMjRdpiZLztA91yVmmhbu3faSsihTW9KYZrZEXL9fiJFMW5Q+3YjZ35NwP/CpMbGh0u4b/WtoMrxCn94/fry/8I53vANvetOb2t+3f/u3P3iejx8/xh/4A38A3/md34nP+IzPGMb58Ic/jE/91E91zz71Uz8VL774Il566aXdeV1p2Mh5MPvizsKow8bv59vG+UY9jbEvgy7JJXnvj/WEwQyQD0B2VzynSA2ARxhsu3R16kcHvPHmc0BOWAo0DAixs/YjGvY9YAZAtsbYYAPugHdLR/OcbWb3PMyMgghO+vzqwDipGLu0ZwaEOjDgDE6gma6BwHzG2i5bs7KnYdriWfMz1X4J2hjobvFgD2MYlpQrCKDiwWE7UJIA7eo15N54masKmv4ikMXIuwLV/zqiW7oqFjmK6Ez+59UguW+bBkdTAMZvy/qdiNomcsu6GKANYJo0ozLN9EPP8fbzjnQVRozXNIwB3GTiN8Ngwlu3bNU87w266E32Og6kMHUG91qTmVWu7xobgZCk9JUP8eVYT7oK7lxjlTKZ+HYCg8ZN2DfxYgw3GZk60LRVOoFQ1LvS1lpJxJjrDA4tkTVibK52n4xKb7SHxrE9NEB6Y0fymKmDrV5p+XFauaO7K5gKssP8r9fA8UdsoDMl8hSHn/mZn8Gv/MqvtL9v/uZvHsb7pm/6pm6SMf791E/91K48v/mbvxnvete78If+0B+6z6IMw73fY+M7zdb7cYw4KRC/b+d8xYzEiAxKVyc3gu0j9+TN+QlMk6qUh0LcyGcczcxmjTNThR9ET9ABQ4yFmedBWe9nweOyNWZvNGx5C3oadQZzBJYrz3ap3MizoXtQJvw770P/PgJ3T9unUS8HAChfmveczxI/t/LGOASE+vDHOW8ZTc0Lx+j22pTndkmeAgvLvzeiNL3kLXKuxXSTKF5G8TPKqOImoVOfp0TIK7kekPMKUPEonTi3C1admdGBUwM2gaCz6ruoQgjoW3oftrQZGWJFhKwv7HcJUY+NsfB5Pmo/avI0MSxpKWNKci0mubqihLZXqwBnX7Z2HG8wfozbRIvb0hWp6oZyBrGYiezpWVA8kJcbo1y/0V0HVbOZQmtCMT5st1T5aGSG7PuAU7TMvqq0vKzvzg13Rp/aqGRYlr1D2eZnvGc8akuGnrS9kWEmmeikjq9LKW7sCbavyfts612aOBsD0HheyqdFITzvb7WM0p5B9kS23lPb8TgJT7LEfAZJLqF4DmPNQheX/Nu2FDLiCx4muCr0Zd1D8/6NCI5fpA1fINAd8GQfI/dBx9ID8MILL+CFF144G/0bv/Eb8dVf/dWbcd75znfuyvqHf/iH8RM/8RP4gR/4gcJKFdBb3vIWfMu3fAu+9Vu/FW9729vw8z//8y7dz//8z+OFF17A888/vysf4MEPD+jDDHN3feTiPOcp77PZe6C/T4V4Ree77v0YQ+jBy85wH3kPB3Dmduu3/Ab6W+3jEikLnPt85D4LBdFR7tYwsXtmuNNUCoZ06ZKnY+MVsN0bVd2g7gwSOTraDv5l/4Evk20FA6DgAF0v07hszcrRlmEW/Lu+RUavlPBsn0tdWl7FE1SWlvnySv2MjEHXFhKBsx5cQGTpAmXfD7sLU90yQTK9j+Ro7ywYqb1PywJwOdEqcYFDCRYc+l7vjZp5vPjtkuDXwI+N4SowQCYS7PdzWW8q3Q1N7IAMw+7N0eu/6lHdFSmuzDjI7HgGOBmIW9vHUuvWA1E7uSFP5mDVG2IoF2aaojDQAFqqYGXUnuWb3Lki8QvQVloJWjdUaSG0ZysyAYZtMqh+kn2HchKY3ZvEsQxAJ5diFOrsu61Bq0FI0hAasLeTIDBl8uXU0E+oaA5UJzxUt3q5upbFbMXQaG/jAVnizK1u4ngRDVfrXXJDQc3c6cq0YNR7z2OTfftRZ3S26d8PirncaDBp4zDUMTxDd+c4uX/D5JqwS/6+WfnXph/ei1HzFIS3vvWteOtb33ovtP723/7bbjnZP/2n/xRf8zVfg3/8j/8xPvuzPxsA8J73vAd/9+/+XZfuh37oh/Ce97znorzu/fAAQAd7/7QPo+b8qjTxmOlFRsJ9t+Br51sGJPxE1zBSPAnnHB8BgjcqMWaZkTXUGlhV8VogakN7HzwC/v4aG99fJGkPErAGhSud8WSMDIno6bBx4qWgEk+OaZXs2LyzNKznoHz1RkgHBqoRwJz1tK/mnQDKEqrBkpbB7KuNE/OJhpGXl+BljZPbO5qmHZ1GJ+9Fjv7AAKlPcvT8zO/YqHSMKrEKAgGu+SzLgtO6AsxIS0ImgNYMvju1Y7PFW9sbNAj/2s8NjUZ9jHOGy/R5BHHm0RA4idwuHG0jrfbb9mtp52PWWlhk1znpARkrMyAePi57nw52h7iAXhGh6T8p9cUpvEWzSDkXsK3vtP9K3FiOZPJmeIA8CmWpnTkKucmntOPF0Ob2phUXsgm9O2gFsb34+iCYk+OEbpOfHOxQcsp1ckj2P43K0+yuzhuj69ftBaRiXCwe/7VylU+P/Jr+wLzdACp7VCNV9ECz5Zuh4/mTvJx3OpSGal0drIFEypHvrwPerhijgxp7gDA6ymAcz3B01picBQLg5xh5M/5lwRjMU94uMahqCtMUt0lS+H0mPkw7vwcZ3PcRzQ953POHPvQhfOQjH8GHPvQhrOuKD37wgwCAz/mcz8Eb3/jGZrxI+MVf/EUA5eQzuffmj/2xP4a/9Jf+Ev7Un/pT+Jqv+Rr88A//MP7W3/pb+MEf/MGLeLnSsNnuAtqs+/f3Z7hsd92nYw6gBHaK44FN+Umfuk9VcyldAeKyid7eEi/BegLcZZ5hYJqB9OadgQBmDOnZfCJdwN9hE49djp4GS4OonLY1Wr5m87CnIOnJXZ6HMu73RomAfTk2WuP6vKIsR0vn9rRCLa/yqUapLDnznjYbpDxiaEbjZ2xAqjHkPC+BbjQmbV0sSyqeMiknqdzSsuDu7q6tk+dcLuQ7reWelZvjAXfVwEmm3+rfyLTpQ/9mewHaOcNgmMYaGMEQdhhjzNCZzDxHI1AxM6JkCdgSJjdkdl0NLRTjkoqObB5Rdh9df1+kTQqaBaNrfJC22jXKziJy/caWPIAVK5G4R8jpIjYsVSFl5uKRUjHVuNyMMcHTngeRv0pbFvi1/lHfNE8SV6BJdZmfMcYy1Fgrxyfr5JGflBDPuUeAts65WVdqjHl5ytjX61kpsxpicHVj5WQNOBbZgr1hFWThat3QTbURZk3Y2mXLh1ls8GG4dqnZk4X7AcvO4NzIJabiInSlIF21NYYn4WRP2GusTVJv4KLux0Y2TnUMlbYxip8mEPoKhPe///34/u///vb7C7/wCwEAH/jAB/De9753F43P+qzPwg/+4A/iG77hG/A93/M9ePvb346//Jf/8kVHPQMPusfmIcM9K5bYoCez/ONwSdz7irMznK2MflZqFmt/vZaOXQwLAd86415Asge1Mu5EA2JkJIw9LLY0PRCKnpLGKYVZUTPAl/dwXopdpSeqd6KMDy8Yb3K3G+rF+PFL8pyXKLCjhowaRWJMiFdHytPkGmQps6BW7uV+l9zSaXGkjqNxmDpZElHntWlLTaiXw7pmLIs3xjwtoV9lsq6tfVqvj6t7LsZLLogUh8OhnIxGJzBnHCgBlHHKGad6h83RlLQ3as6ZNbask+c7e1R3qlUDGINg9Nh4zI1o5LowAv72XcOqXI0ZqvtpWGWZapuSS2bHRdJ2UvLrQW9394pNbYiyydsZfjVil//AYnOH5g70UExu32ofYPN+kJ6oeMGCTrMcy90wLM8r/1lu5WwJvb8vUfEYCY22ZKwKedTnYpkkBw6CJpvGypMZcv1X8qxVvSJ3//g8XL618qxxx0DxqpLZXt/GjVJyBtSYrO1vXcOhJSafJtdmCCqY7mPvC9MW8qC20bmlfOMwj8v91031dd8ocJue1NBFIj3HfxQgabttIWRoe/a9BWnc90nvgcL3fd/3nb3Dxob3vve9Qz3z3ve+Fz/+4z/+RLw8wXHPvw7DA1b668N4NzNoqIOL8Y7IzH+8LybcvdgFuVwRqBu/h8dCF4/JYu6BGaWX5Vwjo8YaNBLsPTjWg7GungcxFnQ5HA8v/4xB3q/ripx56B2JnqlRM00ptRvY+zwqgMj+8k9r+Fj9YverjFhnZpxO/b07s2V95fJMX4514g07HBYFKEY+MjubsxjNuoRtJl0pL1Px1BwOC3hdcXd3BwLjcDjg0fPPAwKuKOF4OCAdjqUdBZ4BM/cRZTzh4TURHmBqseDI6lFbCCuAUy7Lj8TTJiBSvRbU2uo5lgREsPm9a9qI2XkonGHuChDK4/ItoXmgMJo06eOXeKWticNJ9u1Y/lsbIzmGXJ/H9s6Mqjcw9TI0DydM3oGG0BcdZPXWVh9z+YRPKX+iegeN8fpIvnbSohi88tkbQlYmCDTUi6s8JJS9XX7yxfNnjdxmNuW1DUqvKH5/HYWnRXR7J5hMgmfhNRCu9ti8Ou7YVzjsmp3YT+pyMlfMu0xniPeFMZ86UzaOE4cynR3tvSeDPOsJXhYk25vml2VxxlC/b8NXVFyu5o2X3gsTlzzpK/We2H0gYuzEPCywHy23c8suoF4YKbc3wIQuqjxkf9J4X1DciG+NEyu3VAH7aV0b78ui3qHRMj3Nr99oHT0zeWCl6rI1W6bk5CF1avdHuXszDB9iJIv3RngR75Itq6RZDge89NJLWO9OOD73HD7+sY8jryfc3Z0qWCogaM0MrCuWw9F7fTAGbv1hAdR++Hjngs47bvV2GsXo0LOJL+BwpMsswtyi3+WvmaiG0pSSJ5Ec/gA8OpZ2tySq+0+K9ZIzY80ZjwYXtorhMgIfBPXCzMJoyaposrKE0cfPrHkC1JbISXEFFEu+LX/xWAx4UHlpkL0wYswQ0OqAaiYjzc+iY0xZWj7mYdv3FA0AnJEX6dLBsY6pMjM8urINDCCJzlw8UW3me8CL9HHhtxlyNSM54tkas+Kx6mRfFVqTY3cRqmkfJlkCwGmpF/qWXEZlCqq88WgfXzLed8ZVF+4HUV+N2jZ0zHXkeimdIzmXzY60pt05LwzHSsSwAp3+HDFiZyJjmicJe2dsLqH3OghXGDbXS+ayrtkrnfvOxw7CIdsLJjEvkcceQ6U3Ei4OuzTr3FC51Ag7Fz/uo2BmLMvSQLJ8ry9rmlT2OQQDQU7BEjqOD+YO1ALAaK+MgHALfmy80bK3WAabbyxvjE915LM0T6e17gfJHQ2lS5oWaoRY71f0Oo28UGJcMHPZTwI0L441Oiy9kWyFHzFGY1pb7ig7NU57Wc1+lzKKDP34MVqyKAbWaIlbAkA3N+BT2WOTiXC8ucHpdEJiRj6tQD4hJXKboC0sHn/XZ/23Pua5WcI9WuKJEnbWznmyLqYBhGwApBwmwrDH5hbwuWbGjT1aq7Yl8dQwgAwu+0dMZnKAiDyycNPikKjyGnnUSYHk66YYJrbdxFLLRnXTEGC/6+Z7OSzAycsYww5UodY/BVEMvjfvQvAqyDPUMshSrmaUkJavx1/UvEa2rnSZXwT+VW+Ye4lkX5uAeWuQ2CVejXfmTgbNaJ0Yhck9J8OnpPaHF7R2YQwz4aHkwS2d69MDQycV4bnupPHLg0FzgY1yaZCyzntkP8pux72ck13q42rldG04b/j4mr2U9pmC9PbKmARfk/+z8FDh3vfY+OAbzqtb9ZPWOdUBI+11Xdc5y8MTha3BecTDk+Vhn1iV0wOLEsNuxlc+/VHMbk9KVSQ5r26GTdJY8BzpwuWtwNfPvHOlnwcA2Bsflr6cpLVUgygaLyPPlHhdAPW4WH6WxUiQ2XlwLE0W60E8CmDdIG/AffRM5Wz3q9T5dO6XlzU5V8CCQX2pzLVcKSWs4ZjnWCfREBzxGr9bA0s9PGLIxf1Htvy2XkVkDK7HDue0YMmMWxZwU5YASt3LMpwMAPWoXWpve2AM8ynf+j44N2rGGEGf7hh2R1mM9Va0ZWwcx4gxWjo4rmBUJyJ6eCDVlZlBTDikCixpKcslk25+P9T7bHI9RoyhgJ6hxwYL70yie8zJiMaI8EWSOvFjkBCLnhwiPTGs2B4CNb1AE9SgMCtVqzdKl0raJVzWyLCGgJNvqCOCNZgm4ygVI5x53lYE3FsKSYwrngM34b/UAUEMxVY/hs++NCUk2DpzxF15bEqqOphrPIJf9hcNSaHR9CRUn+nyNGoMiKz6SRUZe7IzZNxJUuc65O5Oe1m6rdezd6Nn19ol3WqGTUJ7DKv+3bWi2xMc39YYsW2A3cc+oZ4zep4wvJZORXuawhV7bGoDv2dGNJTBxIKHS8LuNBTi2umSizLejnytnPqh+sLEob/2fPQAaytcXg67jMossQLMYOMNlLgMKg48xROjm9H7JWT9KVoWQAjocOUa5NtKIBinfkmBdlzqIWm2jK2RR6KLE+hzQB9E9qQyD7HtUjgFSqKxNU3kQ4CEYsV+07/O4KqxIieSjeQ+Mo7672J89EvYBKxYg9AaWbYtyG+fWgwJxppXMBicV2MQARlUPFimDOLNI/MfoDeOu3+rIajBf5/9mqXwTylQUDoXrw0fZiENpPyNmuYol3aAwVZ8q38YOCyppvN7JKRPt3plvZDRsjfjiTBmRfb3AWgHFwihBvSDAS4aSrxNkbLFRKUcWj5AwDZ1cUXn6XLOUB7SmGo46F6gLm7Ub6buRFUImKdG38tI5JNCvxTyVGXGtaoLL+p56bY4oq+nzKYM5qXXyYW+9i01gqxhmEVHD4zrpmusvnR5MSiZfKZdp3qGlkPBByQ4hNEvdpNOw+Z7fCeFMnH6LDv5jCONDYF50sv1w4TDJwr3oKV25XEv+vAJOXgWnp7wwB6bVy6cb1ZhPoDnr8rr0erowczTDlVwjb00v18m8tCDeIoa74n7nKiNrTkjyxubgXYO6OPsfflQ4GqNBL3zxYPm6F2ZGRaNshn87H4QSWt/2/wsv7LnJy63AnTZ1Bi8ePr2ubu4dODxUDreMBRQKB4hm260Z2nEcwFbIw9WMK4G/ETjZVTfNjddxqInuRVMYgxU8QIZmt6zAxSQpbwJaIyAp+RPFfxV4ygRKKVyqhIzwBnWrGOgvDe8k1JycpPOaNvuaJidGTXnw9xzo72yU16ORfes/R4Z3xJhW6f1+3DI8dnkRlTqclnacqmcMxKpMSNAOS4VW5n72cUmXuovjBxw7fVk3+7JvfWiKW3P6BcTz7V5ULuIWNmbjBDWeBTdEidHyHMt3pF6GnlLO9oHZZugrd7ZBMMstGwCr9HrI/0W7OUXP+N3yx8FXqUiORbC8uUmUvRUN98GVH+TecGwD/vQ825ld2ZANZN314TS3oaE0ZdvSMHFmPWJawJzkNtZQ2wexUvpXHscKbPtWMN3nUKO4/EZNjbp3xvQGhG/X2vzvi3XpzTc66lo91Gte21fCn/bYcdsyX5im/w8jWHO27YCOhe2FJc1MBRsctMgcVwRYCoUZkq+YFFVJEPPwwB8Ww9RDHtobD3X5VIznv2Fk/GdPYWo917FgVyNMMu2/x4AXLInu43KoXUy92B5A2lUxpGXJs4w++Vymq/z9nTxNA/lU2VnebDeHZcmkZNxWhaAEhIRkrlpnKFL0rTc1Wiy0pgYbuPfM83gaW/pjwfTL4KczxDvQWs0Eiak65K+vOo9UwLTBCi3WXWSdGTQyEAxs9IR1S21pe3Ke4bIpG0foc+oV3kMUK3uafkZ7mb6kEK+rX3Xhtwb7b4PeNZHYJ/Db+lyAx0WDLyhngspFVZPZBJiDycihg2kx8mEDR1t+q+U0RlwJq4ZIlwbaxMpng1nlHYyif1DLN+oIhqN+sdcj6S2cYJ0ezU8DOqr2mLtmpF8rsde/dDrmBGPl5uT2i7lb2+weudZeHrDvXpstuzWPbb23o61z5DBYHbBDz9RwbkXg4zmxoFuVLy/MPYYbSepaUJFPDlv8/KN69wvNZNgl0/ZJUURzDfarKeLeeWjA5tyIcBbPRVEsoeC+gHU5Gv59B4kv8xK4m6B+9GgXGY2fbwQoyv3bNQs3pn5gQEjnhIR1naKGDeqUR5bZbIggpVJx9coRKAQL1wdpW3LyyCy9ntqSprGYGkjjpaCMDlyGJQAXlsBKKWSZklleUo9L5dSOb0pr2sDcxH4NBqNES9TV7YLe14PkP2TEYDuPDcbCri9ktn3zVG9ayU9d/VR1A+EUtcHtVYAKsv8ZON5q1MCeGCg2n0Vjg3oCVnkfms0WXIk9CVmtqUatEPZ00OkHgk7kSJBNrKLB9LypN5fanFFY3Qz3xNeYrG9/vJ3z/TtwaTTwkGAfS1gq02C1yPd5DwXeciyMTtZ0ZYNCm9GRyR4HmzrIcOk5sPt8tE9niVRw4xSGQx/cWqTkfQMuVftDN0m4833k4dPCAJG/Xv2dCvMYscevTenaHifJbRBaysEhIYo0GtNN7YN70JDRmj0785U9j1YP8/22FwXrvTYbA/XDyE7Mn+9zTyxodvjjV44mwYYhFe2TWwf+zpO0u8h2aIvXXOvLj7bkYcsFYbU2NAmZw2c/rfumegHOb/syoL9uPRK1/DDzNxJOrQN+JZWa2XO0PIGUOcRCMbaKIyMOQDuIIDCtzXO7KWenp4t88ibJHLRDfI9D/aZGIXWmLN82uOi3f6bYKxYD4uCJT02W97Z5SS9Iax5dsaMLUfydVW8LXWZoBcGkBakw1HzB8reHs5teRxRORr6cDiUcsICs97QkeezvTB7nsmbveEJsROA2m4vmaosqVz+fnndqKzJAdllsZ4pPaXPAo9cv4vRYHW+1H9K/kSshtVrRsUTVNoCowDg3NqX8AZDuTcmiajLYyR4a1iJ0Z6qDmltMoiZa3y4PmDeG2PFezbl8knDcOijtjyJKJSN2ilzVm455OfKNp390zhi7CT0e2+aIQQvY9HFtu5GrdFOeLm7y1hL1vJ3k1Oakzxv9lgoT6kjU+6oO2KZyfz15LQC6ksBpx5U9q1ugmJqGS8Zqa/XEPeJca6hdV3+27K5jzKVXVYWhd6HFn4WHio8yB6bXo2NbG8f28e8Dw6smpiMSCyzUSHbAK62gx/sz/O1l+42BfcgkrPFJ81xPOswf675Kd/zevRhWZbu8ka7TwbogTkgoh+d8jU6xrj8lk3k0UCJxzwTtGqZ0S6OjMHOthKRO3LaA3j/jCzxSsguQ5MTuzxvaGVA45Lb4CyGlpWPNSqigWVDPPktgh9fZh387eEMUe4StwNABpzZC1CjxysaUzKrXo6PJizhOhNJM9r/Y5cFjWjL92VZcFgSbk8nnE4nzbOexrdWPhYq+yXWzG2PjZbR94Sp8brRO1Qvxl41j99rl7numO65sckieztIz1UMhwjlS+lnCbh5A9L6cchses7lND+hleRENEYzgQhwrppuA70Acx7XAZl4vrVTuxTTk6ueC9bN9IKZ2dCSOI0iaz9gwLW9rfuGJb92VHR4Fz0whOplqvRTLAADoyt7m/oPkx48MMOpK5/xAFeDRXgBfL+zhguontAWywVjzEmaxl9pR2I/RePH8Ub+neRpZSY01PNj0hgdYR4qUqhEUlVCsz22XhqNjUGc+wo8nVQc58VQXXBPHHRuvPpzk49xiHvbzuTccnkiQykyOlJqLt2TGy6TIeKysGXtXkvvdRDudY+NhOtkN65BtY3re9pKsz3nYVva0+6Sm80Cs4/kHsgM//ngUc6lotjT13JeFeC34PnrT93SJPaEqzirab0ZBaT6wwS8kRR4Z/kTwEwY7X8R70mcKfSGmsznK3+pLnEagRsB596g06OgRbJ6RDacBwLwvOhdPNZbpbUz8s7Y395g0D09EkZ32lj+9eCC3Hln5Fk7YSzOgLtZWGqeNWFfPFijy0slfSxHrH+uAJiZcXt3KsvLSO/IWI5HgBkHkTcKIF8ORxxunpeaLf2wqY++X1L765/r9z0d0+W4EWff5MIwKOIVVNl16GjEcXjec2N+S5s7HPH8Z39huekepQ5Oa3Z3EnH1qByWhIM11g170m5aXQfIYQ1NubwWdcZdeqctrpOD0R3W4ChAGs07QiEvz+e8rlJs85N30aBo74whsFDN3+hIkSMBbXlfDF0dkt4x1MpQebDLuKq5MSxXM0yDXqmFacaCyEdONEuhyckPkbOaS1qHTaOF9uonq8jJs7VfUpYojP+xLBZjlMNLhkVvQU9KG2AWBS1KvP61V12DfII+fUWYaZFXhgeeSO6a/P2Yt5sDW/GxCV/Mw5k8noVXPFxl2GwZu9pO+uFgPrtwQYPe01p0tDO/J0ZTG/ngGjm5IW07s63dMF4Ks/meJwyufBS19VS+WzyM02xDLh9VBzQb7E95J56FZdG9MfI+/vXZlAFCjRQF0sy99yF6IYpRowaA5cvOdpZb7SVNakBcLsyU+FIWXf5g2v/A2yP0rFEXl7fZv9aSXDnsMwAoXooop+hByznj1O4QSp2hGX9bnqzBp/Lo48sFoIAuU4meHBsY41PhZsZZP6EfwWL5flgKzM2ntc7wlvtqyoldBXSf1owVwNve9kv4L//zv9XkavtCBIRkvjk+XLyYaox7vBTgUoZSbuQsvTT01R1KdgbmyJWA3HMhHXHjJ7zxJfzh//p/AG7ehIUICYRHh4TDIWkdk2njqc/cwpUG0Gs/IQHFA/7LxAJjrf2h83LUOMl8L+llGVs/WjCX9tJpIC5M2YkyB8htHraTm5zFgJMJl1H5T3m2fVzjtP5l+GApl+EqS1mcgaSeJjKstlRNlr6cNrQ6gpGXTHZADQyZWNB2o8+sQWmXiI1k2o0TA66EZ/nr6taMH+1RSs2wsnnH75rbGFvcZ5jRm43T59LO8MoY9ZCCpdghSScOyu+Nku+FDjGDzeTn8SA1TERnQA+5NnTOuH0Wnt5wlWHD4XNf7Pm7i3aT7GltihDHn3vZu7CEW4MOhydblHf3p0B8BPz3JH+INJEXGTj0OGRv5M29LmpMAOIl8ABb80Sb5VfgrEujJFhv0KkC3VmwS6hivHXVI5/j0cojkrPlS1EebJ4xe9+PlF3z6WVVDDG99LQ8th6octFpA0R5bjgK3ZnHpz0PBog1fIjscdPnZdHRdmWLcf3vCGJlbpDXjLQkHA5LKz8BSMxYiLAQ4XhYcHN8HrQ8t53JKxaeXMPeV7gkD2v0HT/7i5pXdOXSZwiEJSUsqVwusuYMzv1elKHRZgxaroxFAyhVQ8oaLlu6WdRB3IdjPRsW5KMaSysXA6oYPGckVIG3gH2hWfoJjL6a9LP2rCcdB/EoN3blEm+QlHk2YWQMReNRyln6GPV7h6oxY/mQ0a4YFuSMEzFeumWttewCNM+Nlckya8tuhn01rPr08kw8UPl05zI9x4PL7MHCJfQ9xpin5OGvPn4EGnCytZ+bE8/nuoiLcn/y5NgQphF9OZ8Kjws/wN/rIFy5FO1VlM4lre0aPNLNqr3yoUIxXHfWWhxtRsWx81+X5zCeJZqzEY2K7lSx6umwy41kFs/yLpvsy94YO/KU7/G0MKAAKXtAwLIkB66XZekH1wDcl2XxQDx4HIgkP2tk6SZ5tzQq5GGfN75cHL2A0ovMX04ZPVFCt8i1zrY24zA1sLTIgQDkl5AJVuiNR/1e6kI8IAODtMpF3+Uqq748LR3U0EX4lIMVAo7x9Ud9/QGlP+V1BVewtKQFp7u7MqtPBDosWI6P8M7P+l/w+37PD5bNvsaItB6QzUm/qZfFxrks3KtZZbs+IwhyL4l+ztr9qjSXY8Z/9cf+e6S3fDZO2Uw0UF3GUz0dRJpGIJlVwwqCPUiv+NoYUnBguOiQ2obMDDwbtq3Hs7zUZVNywSSBsdQzLJgBrnYBbehPS5XDM13yVS+ErF5jOWacKx92kz8Mn6JvxIsi/WuAO9E9YXR7jdp3tn2r8gSU/lHzZ/jLOl2ZiXBI2jqYy741oC4THMhH9LzltCU2D21ztfnKXiUCytHK4Na+2fzn+MQ8cJXPuU63hRO75zayKjhXxmsw5zZWfe0i2Mj5OUx+XitPElk9+Cz8ugpPdHjA+aak4Pk8hQdoXRZcb7FwQePudZ4Bq2dTx6HuHkAL6ZeLj4e+OIzpj8pgl5VFr4oN4l2xy5gaUCXffsQTYsF+BPUjD44NOUwzRmNgdKCBPdJ1ZDyIBOzlnNGYE8Nic0ndRv2NltEJn+J9EYMgzvoW+RJOpxXLsphT0kqexaPClVe7SV/K5fcEMWfdCG5Yzmsum+4r+GgbeAsjjS97iIQ9mKEyXJ6T9+4VA9MuK4ShV1CnkJHlgFL+YrgVo9ggJyyHA9bbW3AF3UwH8JJwc7x15Xf1NPg2/7XVz7fqu9eLPcX5Ux9DDbtrgnBZtEszOwbvKyfs3zz3/B2Ob/9cLL/yIRDnhk5ledLKGZQTOHHzkDDX+jdA3QaXHzxGsVIVwB9lP9O5YnTHPHO1hOSCxmZISN5Of3Az1FwvCpM0DDkO2R9VHo0F01ydHar6iQ3vKplRGTOX45SB4nlpHhmgGjWzka1/MvK4MhlZmTxrCnOU9nY+cpobWvxCZ0kEnROb1YW89QcKxGDbT9R3y+HQxRvx2VN7mHCfo/q4Tn2bGeYXhcnDn08UzqHFJyaOMxkQtSWlT4utE6Zd7oXe6yE8yOEBr4kwaTFxRugScveZRmeIz8w2temMyVHPtZxbJslDdOLV3UthjQyeeAgG0M8AeAnlJCUfb7QUy78XwOLfn/OktDyNkUNEZemMmTHt+VbAXgwPC7U0j2iY2fKMnsU87A9qXz3/ykOGGjn9Xqbeg6J8+HjFkDgclpZfYyPZ9iqD5WCD8UbQ5XX9O1uPlie79K/ZwzYNCEgJy/FQAOWy1FlrwvF4xHI4gOmIz/rMf4N3f94/a8BbVESTbffkXDgX17/fQ/W+BqbmAAizxppPzImn7/rf+pwA/L7/7Idw+JTPAKdDA7/NkBaF6/q6fEfztsB6CWx/rT/bPTGWYwukiXQZGHuPUCcYtR5Mv1LDw2nl4G2g6n2x/QfgOjlSjqpuxhjVVN1kjNLNZZ1a56WRwo+KIPZO1HsEyFUuRnpoRpM1Apm53C1k9JCIZjHetb1jh8hN0+nhIczGMDUeN9sPl7pBRpbOqQio8cXwdUr1fTuV0pRFePBMmno+09N8z+3H6E7MMg7b+rW6M6bZEebx7xsOb4dZG9jib8bh7NlWadj8uzuMGi8PW8Wz8BoMD3LccwlnAHmIx5txrgtDevahGSAugSr9k72Lxnj465JytzS9zXMh0Uu6r86I7U/Sg/ky4MsgLdF6Pqy3RL47I2dikKREWFcL0sdHAG8Fb0SpJ0CybTOCHD1E1NGwvNvZVBsiHWuE2DLGNfjlsTE8JuXT8uhssHpgyvPZ3hpLY2v/jc9nbISJpwcGaFiwNkrXl8EHAWJsfhePk28zQiOlBcy3BeyQXqiIlPDZv+lf43Pe+S/wSW/+pcngOgbvs15xmS4z7dWWb0gpLKkyvF06JM9UyCyejT/LUwCmznwyfuOn/3vQ234P0q/8EtLp47qJu/aJqhkMKDXH22qHa7xg1NaYCmh3OqGlMMAZPh+W9m0Ka94Bfm+I7UcC+l07szRY97e19BWcL0Ta/kLgamgkADm04cY/i8FWv1eei5eDXGVZOdgylHqQTfv9SVU9a6TlMxGtxwSMdoS3y5fR+Gqa0AlrW0eLoRgNS6ndZgvaOqkZiTFBgZ6UsZvUybLU+ZIR+prRfF+I/f3+aenYNDVSiFr7tYTODB1DHeN1xpa87lGWsXpeK9bLJbMHe+m9DsLVF3TOGt1Mbq+EPDfwnWekn6h56sL8DJwWwYdZ4WUQ3Mjr2vKPWoEcgxk9BwqAZSDsl3RFL0W3F0fimfgx/Sjf6J2InyM+RqV1AMjQqL8Cn2N6EciP9pqMDIk9hpnI1Rt8noadERdeBLht5RXlai/1i+Xy6e0SMTE8GtXGbxT5zIs3CiMPVVyqI9O5KcojJax8wKe89efwlk/+hSYHCv9Zjs/1pW2uNcb5uA8Xph4LjRF+j7nVfUe+XBqh6KUv+O0/jefe8huQDjcOWxDkWOYxUhKqYrzPWebBIGP7vC1wbXeSkkMKMQ6gbSsC/lG9dbqQVCJKp4d5HR3Spbj2SGWdo9B2TVBjUmTt+3zMTnRv4MB6ShqpEIlbNwr09KvWLbuk9tO2fjtstbShcaoRPDpimodfC0E5/VD1kpdlpOO9QQhvLwlW9TiWpLyDDnh/GOm+0XAJl+qq++LiPJ1XU5M+C09jeIKlaJtDDPY2tB46jGjt7B5tJmug0McovM2obXWfh+oy13bHXWl2apW9tXQpp015w4LM8kiWH/RAWONI6JeV9YaHpB+duCa8jJaruZnGEGZLzcbg3Q+aktYaZiMDxj6fgXj7fvbdG0uG9/rby5/NBZpGQAP+Rkv0Wr71zxqktk49LW+oWF7s7LkvUy8LV86WaiwrF7/xl0FpAVA3hS8LQAlvfeuH8YY3fKyVaqaNfMlVb9m/cehjUHg7z29Ga6TOzh9ccEnYA97HMch9AMAXfuH/jM/6HY/x6BMPyLDb7ql5Htok+8Cwl2DrXcC/xYixnY4mHDyQ1h8Rx2sb92Q0P3sXzXgyI0JXgh47TOSXrLk+N2z/ypxr9/Zdi+uZ7iZYMJClKUgnfjLxBnqzTSZgXHfNHxTSimEGqvtxeHw1YpxY8XfuSF1xV09a0DAmwI8LLT4AkL2SdG+POhN3G2Jshq1kTw7p91Fo7ad1Csyx1o4c9+V7jwZa4Pu1Eojv/+/1EK42bLYG48va+QUtbdKLLsrTjlazaZUBh5L0PsO2wprDlGEaBobzmTv17aWhB1VuG6zSNgO2As80oNBTJdKN5qM9IRbIxks24yxn9Cg4sA+4vT4RgCs/VPNKLc9zBok9BlrSyP6bbimdi5cc7ej1yXX3rzVobIHJeGGkXPGSSyszMcKki4nMs9tPxFM5icE0lpuWabTsTN7Jd2ZuBwVYw03oKLiqcCaCNvZeG/WCFWYyy8WhjOef/0X89nf/T/i0t/6s6yrRfImrwvcZMX3n22cA+SdbYawNR/EC/wNGYs4RPM+4VK/NIMhgysDv+I//Gd74Gw+gw3PVS6Mnf+Vg5MLUc18ndeAi8jfc02TiAxH4+xMNYxcmaSPWOKpElL5pv7aw6NulNYQyR158viVd4SsP+pEPvfHUyh4KJphOym1PirRxxDM29hrr+/DQeL+KCZNs/QVbTfWSjhFtUgoAJd1b48tq5M/eoyu8p+Rbpj1Z0xYnVgFDy62G76iOd4bNjk5DLHNpHvOxWzTXwwfeas+zNO3ffchjrEkjxctQzMwY63vUs/BaDFfusdm7p0TU6fXBDZmzHhTDyBKxCv/eQynnTCb98PIwYauIPW9m0N4RLjtxLUKiCl4MeAbGs4x2Hbm8jydnWYBMRO3OFn85pwGzgb6kk88to8mm9ekBIj0qWgZoa0wIeHaAXKQyAA5xzX3kxYKtFq+VtdZxoDEqu/Bm3ylPhp+sd/TY8luDYVlS29fUZK6EKx27pweQtjf27qjh09eBth05JYkIsCsWtd6D8VvLl6WtLAfcvvwY73vP38UbP+FXa5x9Gm3v031vt1Jw+7XV++J7gp5gdi6XGGs7L57GasC5fdY6DmV49I634eYXXgQ+ekJCXZrYeK65mB3uHQBlNm2+HpdMaJ4CApwCHA0Zo+GB4EF5IkJcCKtzB9rn5LnVWaN2LkDdHW3MOmb0EzGmvOZ9o1x1ihzSIqb3yBgVmZAx+hJ5miLLNk6EfDnSGwQCcFgIazb9jS3MLuXNrDVu60eMIdULZk8RfF1Gubk7iEhlIQch1sfdGFnSc7Nds6F1Wd8YBNvQjNBs+faEcyP1QIvupm2Z3NQxVPul2u3bTDWql8msjzvXBXuCy5/lH3rt2C6X22zn6b0Owit6KtpIpgxbd1dAgAuT+D0gQyYm6baiXN9a5rMa4z023czFVvk3y1Rebs+E7AmTTJjMIGLuTqHeSKmxIMc4CxCwx/va0Hsekg5Qlis3w+qPW7bL4UaenNlSmBEfzFw2nBpjTPiOXh3v/bD5+L031hPTPCKBjuaRWqF9uT0wEsNS4o88HSpTf9jACGCllLCuuTvlDqynUSV3T04pj9zXAVRAVtPaS0XjyW3LsjRDkRluCVD03rXyoMRbllTvHmEcj0ccD+VeorwkgBK2vKMU/sYxzC/ak2aez/4wT7HHqNmaaT0fxtp6BHxb3VCRzXv/kx/Gp33uryEfP7E21gwGY826/0kms0dewaHRjnLa2GhCQnjwfCrIFn5L3toOCLL3B23SAIG+9zLpRcBiJMk+NAHz60DgYmBk5nraouVbNZrUl9ULORtvVgTObPYQoVwkKrVmj66XsqKWN9UEbUistKwEOf4Jb1CjIDOwMoOIW91rmamWu5UUttUwi0GiwiAYT4obR0QvGWMFamwS1RPVWnn9/qJYLjCQxMoJYbu7+HHwor5M1+HXa4b+e8PJldCW3prl5Rfw7sxoM1yJYgZsPDkeehaehnClx8bOr22FS7uQj3+xrT5qkayKbyuv68MOEFE/dci81owbzMXsKMal+fj48zmUzdmYtsGVwUzIudydIjODYoeUO0d6z0oBvgrAnYdBpgHNuwKMdTlUBFf+fhYP+AVYoAEnAcklrr37Zmu2LaXeW2HTscxUUuk/dtlEWVkWl58p/yITnXXs96xYI6p4SZQGA118Kx/73XtwthvYsiyNpl02aMscDVrxwMkykWh4WplJkLt3BPDaONGoaelYZ4iL8SngkvD4Dvj9X/FXcGx31hh5DL6NevEwnO2PttdUK2gq47Gu6LUkb/fFQc7XhF7rs3s74s6nLe/yJ3861jcy0kdexIFSA7qedGv89UPrVo0epd6Avmkf0v7J0Gkcsj5iqHcSzMhiONe2tTL0jp2WJXXr1Qsgl/oy8G04++bbucZjyLKoRD6m9C0ZAxo/0r6hhpXQbS2DoDImAZeBhuOq1JioviUYDbZ6OPApBlk8dAMyadQKbiWqExZSPjEOhbbQ1FP1rC5suUwN4MaDkU8Xh7wxd21/6YcJo4xjVzmTyeU8XDfiz3uwMSInEwuXBT2cYzutbx/70gyzq+SofWf7/GkPrxU+n6Lwqt9j86ArQS+dknwtmupPC89B4WV3fbN6YIjqST/QPSolroKSVC95BHTwWdeMda37OyZ7W+KspR24RvtLnEfCeF8irdmyNJ+3Dg4yKFv+haDka5edKVhT2iP68Zhk8cB4L1B2y/G8oYAu3shrE2U1BmZeFuIhikbSyEvX0qLX2XGWPuYfeeku+ByE5jk6HpDXFbePb/Hiy+NB+onDpSSflkHrnmVB5i+G/+i9/yO+4Es+DP6kz0AGY10zFvJeMzlw1wYxnoF+/wkDnXdUvQcKUkfids+J2pKojOJ1cAZGjbxMxEUog+qS4Iw1Aem5AkQxnizWFeOGWma6ob6yVmhVj2ffd7TczRBoOg5Ys3zvDzfIQLf0joiwhHvDpF6sh8TyL0YWmGF3UjK8IUGw6Y3+wXYXYjBOmd09aX2cPlBkGL59JoL3It23brgUizxQuLxUTw3AeLUZeBZeQ+GB99j4MJ+3utoWHxFrGe2ZcZ4yNnh1P12Lu29junOZONmPyhcIj+tKqI9PodkbGhgZDloyixgGcR09IEaPgnofR2bfmHWze7znRWfzxyWxM3ijGX4BvpGGTvwH48QYDaPlL9aooRBXwlLzW5sXJp4KpnDLGgz6rvdCyXtZdmZnMXPOWKrBKAaOAKkcy3JGVrZcscw27tCYqYaT3Q8lz+0SObscrfBv9jQwt/jD5u9olX+IAGLGYUn46N2C/+o//14cl9uJd2YUdk7BTNXNlibRmcn5rOn+YDmdLUtTWSJ8iXQ8BTuHKr+BOb/DtATcPfpE3D7/yXj0ax/GQitWLktvE7SPCVtEJh876S0AXowAkSH1dcX+H4D8nhRLr3mEgNbXWhyqy6wyXHtsZZT2ytWwYbv/w9eMNSS45aETBLbNu3IQHB2hXYwnXVanPBOWmiZOqES+7OS2LZN4Wizt9p6VL8+rH3lcvoMJCpGVpJL6kfyXJtvCZaq6C1rS8M3wwhzq1Y+Lsq+rxEnDBh3bfv/sDJDY6NT30e81iCE/QxaX5LONL7bg1Swfb1JvadUeuYyz20NrRzhTnlcj3PdJZs9ORXvFwxjA63AfGq0o92HPsbNc1A0Oe8J+RTPg7eIY8/wvSqOY9B6DBwm9mtFasu8JKSyLkE+eeAoUwCswp7bUScA/ALcsTfZwpJTcHpRlWVzaxp8zXNR7Ie/Gnh5jCMAPttEzI6B8WZIzlspvalKT2dvDYWkz0eKREvqjJVajvSQqBzUQ7ZK6dV2bEdPKQgQqGxN6WpNGNJoosOWVMo48LTYcDofu/TmvkOy3krjRCCr7dnKoB2BZSjmJEhgJd3nFf/Hl/x2Oh1tj+AWgNvkbh9g79qU+b0ZFmn0uMfa9d/0J1RFv2u+954VCLHnzH777g/iiL/kXuH3T2wEuhr5f8ilp9HAOM50eOCo6SGbdXd5Erd07/k3fJWctwfVrmQiQfi+gjMGd10jSSlizemgam1APEgx/BYYWIBemKorcBHQxd7XtdGN9LJ+rmSyy/MZ7qOTABNXX3MkhGeBnx0dZxCbyVlmgJYgyz5Y2ikepLRltFLXKG1UydRrkIHy3C1VZJ3FauTN7/UQqX12qdw89adTt7QDSY/YNUtcgiL0pTH1hjneKmB6KBx//PvVYM7i1A80zeJ2A/tdDeOA9Nnso3WPorJF9PIquiWTOh330dT6hH7LmaUZqextmdMuoNicy7Mtdc04Xhcy5bfS26+uXlLAaQ2Jdi2dBZuet96AYHXaZlpSzB8IKcHMDvbpUq8gzNZAzBt7jNddqSBQcTOCcdS39QNmPlmU1PtgPrOJtyrmc8gXq61PSWoMuenlULmhll3fLsnTelcibxGnvwqy3GoAEkDF+LB0eLbFTmRMREICGjTvygEl9jgwqQPfl+OIoWGQuNO7u7gDOePFjd/iE538VlwcP1ns/xt7UWzEu06mjFLupXJDVLB8lI8DcapXZyWzlzc3NYxxeWPD4hU/Dzcd/AUt+2dV9D7L8KYcFM+skgOtz1XOh7cgbKY0uGRrQ/uN95eWXPXXLe3MGYB4ad6QH2i8OZZQ+3TKPJoyVuz+4QHSThMZv46s/LIFBTdAZZn9SHEcAMNclaWL8mfJHHm3gklgE1+TmcLLxlsgeGxb52MpqBLVMdgKn0LCjbN9qE1UDj3TPRlThsh9Uacx7732NnOPRuM9lfz57422CBI0lFVI6SGs3HeQaUO45m6PHa8p+f2jUarJn4bUc7tVjc3lzYOj8zDmaIY4MCqNMN7w0cZDY4vnS2YPXYnc4pxJm7+OQ23uL/EbeEqeAHb/8KAB51pm/kaHRzbhJOsgM30z5wccNM5Ix2DxkGV1cshWPQbY82fKp16dwYk8RcwMzjduQGiwcwIY3BMQQnBkBZV+Nl/9oOZktQwr1J+CjPjC0VP6RR/Gk5JxBSU9nmwVbN2KsWu9aNJgAf19QKSu3Y6BFxrd3H8Pv+qJ/CO3Z5U+9DP43uXeVVvvsz1Kjjb9ROBcnQLZhrJ6zhwlbZbDfLJdRfmRiEYC3ve3n8Ft+x7/E3Quf7mfV68yqq2coyJVaYtP+upO+zoqjUmk0euNEZ/vV+KH6wvZ5C33Ve8KNvvYzNqBe0go69Et1RRpleRkbmpiMb94rJXT6FQtU+e/rtJXXeDJajYkNNNSXpS4cBCXPTzPYXH7lzh4moW8OcYGrEefFcXURg8mn1W39FC8VEbolOQS/ZDAQHeU0j9Nb5Rgyz33E+wLoIxbOhWs1yDU8X4qtruXO4cfaFiZDfk3wlKE4foC/10G40mMztvPP2dZbcwPb8yJnAm3+hE4xzHnaCrPZlLiS+9x+Fb+IgDflYaD4lJc+SeVwEKmXLzUeYh3uqYcu3pnKl/FSQcPYOImGgU3fyJN/XwwIXfZlvRmjfLyxJbzF08Akbqk3/24wr2TeR4DtDQjq0okBWIygUYss0pZZs5FhMjLoZrxuxWsGmssZ4CqoaPTIRaFaFg/Q9JSoUKJQP/b5OV5n6fW3Q1QAgEePPo7P+I0/gt/06f9G40faW/nKPwNlQPb5E4Vxn5/H3VG3s1iXZHWGljVurKc56so4gfWJn/gr+JzP/f8CL93h33/gjQCyA582ut+dAl9ZzOKCKHGNsU3kI9PoKLNQiqpVxDTRwpCpfqNjwCjHibf80Pqq5isGWPmd4d9rOVUzS1+ynqfiM60ZQvOz5GZjBEH3yDidRMX4PNf35m+54kY19Ebo8aKxtrUDvZ+Is+7HjHd+lSyjLkFzMCh91jrFsPrr2eE7mMWZXrg9wHd0bJL+/f15JcY5n4ll+pRNNm4yogNMe3Bv52Chl2fsl6OceCifyZC7GWbj9LPw2gq7PTayAtio6vp8Fl/S9A3E09A/dn+WDsI7k0buSzF/ZfY48hvzPsc7zCz7OL7NVsrTPxvTjx12lmb2jqfv5jzM8/D1xGfesYsndWfeMSB30ozCbAC1A7iA/YjX4+/RsipvBI1PUBvRjHGl/kdLpFw5gtekixPQRzSSoqESjaQ26zsom+XRl4kcDf1ea4zIvbN5yhJCK6CRBJvhtzFLbtftx/LOQrd0x/APVz8DWZs0ku60ZmR+Ef/BZ/54X4aNv2FkeT9HIA8cFPo+bWHsebcavAQrojd84sfwzv/w3+L2Ez/d1a200XE+lUbT9bU+Jn10C7CP36hmi3tWJD/nxSObah545CYBqvdAIFpPh+I31ph2vcOsW5Xiz/XgbFKm47PGYZvGvqvPLQXxhkXPvep27mh4mzXqtcD7oAzDiSdomxlVlNOr8N8v7tI0qAtDiNg+2AbuO7Ia8ncV36/hsEt2Q2/g0x3k8ID7/Hs9hAs9NnV2CqKg/ckyfWxR1rNmNAG4LrXGHUxOQbiIcRFur7azNGdZIf+wzTwojtVkMpskSmuoqKLp4Y2bOKPk484VX5dO+DMDYFPokRtyMdvz0cwRhXc2roGSLZ8y8BFOK+H2TkuUDAgG6gBUj9QpM6mFYolDoATktRzvbO+uKbQsIKdKp8ThLANqzbsaF43f2oZlIC4b3stbqgvJ5aJJWW4mM4RNPoVkM1za2n7ZhxLMQ5151fIDZS8SdVKPDVWWcaXGczEQkvLQBfVeJLn4FABzWcqVqMxKlvars+ly6aY19mLgiu4YVT51JtW23bZErAIhoWMPaoi0JH8RbtknZC5ftfGI6tIRPSHN1ot8z3nF7e1H8ej4oU4b2bY7kv1ZoKqF1TJtJJrVrs+r02RTbuK7UdZTdq4Y4Lbpz/iePdNaSDfAJ/4HwMv/5s1IlOt+M3OYgLhVweXAC6DJXI+Kt/BY66MY6bnoi9oPvF/JJivtaJWLL6taKUBVTx0ruk72sJXek6EGiu7vKQQIVTc0XRM9m3GkgXlR+oDorcZQlQGTLqK0Jw2yIeHiV7kQiof4tK5Vr8go2QayJvai41LNg9pFo8nJuvQsqvIFJZzWjMOSqjxMI6iyplrHC1GRH9X7vMBNb8iyxDa6kPbxzPXS4jgRAr+sjFl0cgh2DOQyIqQEPPfCT4PorkXT3rWNd8b07yecW9+xn44N+2nZSTxLaIQXesSxP8y13JjXOmqP33lWd4Utes/CayfsNmw8dlJAbsFMD8cshPddoBtYDA0/TEtT612N406lCsjGaBslhyF0y3Zx2LiDxk5sAdMYYvpyRpnNBvw5vZ4PGkjO04/mVKXh9NXYFBWJ9nQ9PVvTnH4BH7/7RLx0V0G4AFZIPuxO2Sk8VJDAemhA5no/BRKA3EB3v3SsGlTrimU5VACPymXY0I6EnFcsSznIoLxJpdzt2NHiqxLgvua1GRLrmrEsC3Je1QirQlhPK9KScLo7mf1DsrdF9uTkZugUgzQ34CA85lwMniKDDM4rDocjmOsN5TmD0gKCP9ENjS5wWgt/N8cjgAJi1tMJzIV/gj1kgCpoVIOvYEYGkJGWhESlzOtabrNIaQFoQSJTptoOuAJKSoREqdHmrHRl6V2udZCWBYvswUkL8nrC4XAAZ+iRTJybzCU3aS+Pjgfc3p1wPByqzAovb3vL/4Lf/lv+H8N2bFuufN83rE0MPvd+PCjPh+proMDTF7b1ZR/e8Akfw5e87x/if1x/P063j5E5Y1kOON2dgFTbZZ1oWI7H0rbyCZQW5HVFXk9Y0oKV9cAMMEDLAs4Z63rCQgReDljSAbzegmmpIB+tXyKvOCwLVibIsriFCAwxLGo/JYDXEwDC4bDgdHcHWo4ArwCq7joc6+QLo11QzGKwnZCWQxnVqLwrHozUJmDWXGTApzuQnCJYgTdoUR2wLMX4Ycbh5hFOt49L3iiTFyx3X7HgeGr5Hg5FT2E5ANX4azxUuaD265wWJELtW6L5GTIDnkj3PHE9Wj4zcNcOLiEgpbLELK8gMJbDEQBwqmdUt3PhckYmqrqYyx1jYDAl8Lrq4TCQPAFKSzF6ci7lzrnu3SHQWvQQ0gLOa+nh1XWdaCm01xVYEpgWfMrnfSco9Rf3zoJFGf7JoAOokncPnsQIGJlb++gZI9lw83RqoZ5X/w4b7+V1MMoC/rj3cB/2EeN+K+TprNx7D1fssalNn6uMSBUny+sWzEyLS2/f+zCKN/TIYNbUybyzDX4M7HueBrFmeMXmxuTLbztPR5nCk/ItqpiRPhylkbYfzbkSo6fCgHFJ9gYUBclFOtFcHS1B+eS3/18GufYh1gWZh3tOkRumHz7rS7RH72zFoUmkXWnOxHvS9y6fOjtMIQIBTiw9b/2gN853tInetKraCay8RlvyKVAavXe5kb6R3GgQ39Joa+xb6AfFWb/z4dwIcX4EiXrhstRPGIKe2gqX8LLHqLHllu+H4x3e95X/t/q4n6DZw0fUQ1vxz8neejG7GGGsU1U6iX+Gn0uf73m/+W6EA+sznrSL++RljAX20duXT6yYWq5pmeYjlMUYVmx7+sT9GQnbI8ElJzT21asl3OL1sj02s7yuCU9mHbBlINqbA8a2kOV1mT8Lr0bY77Gh1LVqC4xYvxhL2KIlq2UqFRrNntocYso+/3F6AesR2mx14A3rJUTrefPxx7xvU557pOaDZdyQK90xmgOzOWqRoip9dobYqFRiyJCj42OOfU0BbDrFGOlZOsqHVzeayzZMtXXkwfJYpj7V1pAxfBdAT3y/d3Dcej8aMGa8EdA8CWVBRpUDh/QDsEZNcr7fWJmP681zJ8aqL3usadmnpbVuh1wyv5unkFEONRi0PW0batBIWfrlnjbGvO1sBW3XTfl1VCYpdoRx/z2Xw6s/so6W/U2jlkCAW0t4NtlcNvuA5bjVbp3UOa26WvejfB+iJs7piF0yH3Xkewl9P9M354H0k+R79lWX8Rj5XsrflPwWIDiX1j3tp2pmI/uTjC+zcE19vRIaaPfBCpPldE9zeHZB53XhiY57ZvPnnl8kvLEiGtEdKZ6Z6hybGT4Nuz+FcWf5vciYp/Dd/m2HeflG9Lfo1XcUPnfkvzeeP9ThXNzL2si5qMM2OEm3T6aDQHvk3CWavpn1nWhaXcJrH1/b9Dn5bOV17t257/cRtgCsfL+2vs/HuaSx7ox7DxOC22EfH3SBTtipNi4KHcm9orazaq9yuEgjXBD5Go1zEQ+X8HIxE6+42TKPvDPRg3fJ12y4QDfs0SNt6upyid9nHd3zkP4sPEXhwj02/bzwaHa9ThObdGitaDx5MWothaLdP2rjejojSr1xI3NyBDlus58D2eap5sejOSedBbATYTZKP0viQaycEuNjzGYj7Jy39lCXtysNaR1ymLlmpdNmzNlQMLacN/56aYUctWyjErCNqZRHhzTYEtkZfcvRKJ9BDe18HloG29Ye3/WLAcQTJeXYV6Y5gD836edp6NPYfka0RrR9W/V0oqxHSyFsnO7I7fqP7H0iQ0M9M7btSDru8zBe5OJt9N4dGGqSz7kBddxeZ61Y3wJzWfYJtg21+PSSd+M2xPGBfz40yPyzsc22bfJeDG+tAtgKbTyax50Z2l53X4lUTPI9R6q3ZBcKZIu7a0yHlubSYvNc2mM+tuvm0nB2ciJWZ0iwp1mdy+OaEu1tzrvohGdPQnaMmGZ0ucNxnTph+6VHR4Ga+TzXED2i2KI3pSWgVJj0HwGjnfH+3F+T3hf4nvN8pfl/lcJFe2z65mMbgQEirLEaaGmNyRgFG0IeATL7o4AijW3jKYCx9EY8bw+L5wcVmsbzXTYCs5kpZztvDwyiEWZpngOrY0Cr6pJRdRb3BoOFmbSRPvIZl5LJkxjXA2bz76ByWnwa5TVWlXOFvR22jIktIymW0poFbBMYIqP6Aebv9/BRnnlKoxOhHO2pkNhZZbHeNFZcNmZ4EQPHFbzyYwycvu/bPuYlbPuLTr4UFGbbqPJLiLqh42nYq9DojMP2YH5deLpHoeuB1qRjX5W/bcf7OIht66I899pcr3K4mIczhsEcpM4JzvTufZ3wtc2RDhD7DIuel96YGIPskSEwo3mpfKd0wtuez+tk+zS03XF40nt82Bg453J6muXwLOwJuw0bOTvKzq7a4EAuUZjF9p1sDBo8NOhy4BivN6qUv/g+qpp5s50ZQOMwPq3N5jmaHRx3HPb7HkYneDjKQjGWyIM4/XfgVYg8cQSQEfTKAQmF0WIM9eZWNIy09N5owvCd5j0Ckr0BQC6FxpmbUyOaMWwpt/6dtshhLuqamvLQ8WHqPb4/Z8yU59bo3jZA5fmIbjSzdS/OeOBU48T3w14D9C1N6s1cjdiliIaP9cBQ96Q3tIRSX75RzZ3jPL7B8O05mDFuZ3u0z/7Q9b1d1v440h5j4CpgoMpPFFL7GcHpNUbMNdxNY1r1fMGeoEvCg4KrmSJ4CsJMH8/eATI+Gs28VSad+xiKYTxOPkGYKex7IMtXkvQjwvlJmdnhAVuJdqmYKV+RyrlUO4Plf1jRo2mv68K9LN29toK36L0OwsWnokWjxAMDp+1NfPttG7RuNdIIstxACNM2ux7FwU6YGVVj42HOlTeuZmB1nxfmsnt7RrTkXeyabFKNKSqfw/IHZNZ5eqZ8+vcROu5Qp4Py1bbGRnFMwTa5771ZNY+9Ne7PgOrZAZlDOx0AoVgEtvHD92EegRsP420a75XYNYCfiWDrW/ll86/nbDgp0JatzdqS5dyaMtpjCGyW/tX+4NoID2j6fGKh5/0U4f3YwNlOE8OIg+0455/fXxgdwLA3Vy/5AVCSeLZvvMKD8S5bD5guQZv10acan4jxOGuokwyvA6/nNf/1YTC2R7uT3QfmJs6Yen8o0RXGUBDclhyv8XC9lvHrffcVFZ/R0jGDBxDYa7kOXuvhAsNmCz5F2MzdANavjxwf4TzPN9rSFN5aBeC51f0lliV2kRrwokjB0rE8+O43NQpM2kizgfRR4CCvyrOHZR4ADi+eg0q6N9XGqt3zyk1cLh5FKUTq8bjqvpxSNyaXTQXfGUrs30Xa8Xk092ZpRnnuC6M22T/fNJoaIDdAw4KpQbqZobM3zV5jyRkuHCYLBoOHzc23L2uQyF0+YoTEftGfudf3bmsseY0TPTy97wbIpi3YNulLEFP17+He7NFnIwpjuuNv89j9m5DbjkY9003xJMb96c6ErUb9xGGsf+490Fi21+S1RxxXg8D9GPkVR2izMp1nw/TCoLj68f8yyn38C4ybfTbTKxK2SrppXF1xotg1zWa7l86ENzf8uuq+xhJ/FcOzU9GuC/sPD+hgZf9GA3X/evC7BaVGv/Tp9pBJg5/sB5oG0PthI0LrMUC0IGkM6+e0Z6DXGxgxT2vMbS3B6CGflmRkRs48L72JEsrBaBPfDNF1PnVPb9xKolw2QX9L09eRBdeNHe6Vmpelpz6G5HNeRs+3ytDX3Mic7NtTl5ct1yiDHYOnhdfbbbP88nLfqjuteWcIdfHUgFFDtcYyjJDZgxO5G/Ud57UBVU+Nkaa50MLe+O75szRHhkg/wdLHeXUwzEOPW/vB5b440TMHWBC1k9wg2rlks/dnn2+dArIn43sKmyD0Wpq2LgKRWX7XgddtRfWgIjTEY/Ni922s6/T3/p7eNWOO49g5g4POxhmneM3g913hGiOeJaGV9RYMvc/w60n4r7FwgWGjgZxemi/H6rt+3EcxAggR2M2h4dl2qa3apPEAXZ6SS2NiOgQ3XuLV8zRWemN+/SlNvaKNKQI9MxJ15gvJ8x62z5ci9aWSJ87AYaXqPSceHsYlgCO/llCKEHFU8nNmQIszaBiz9tK3TUDlNg/b9ITK+Ll97+MPLLIJEyPjYivPa/T52BiZ8yWGhIAkNWp6PSF17svA5tRBI596w6jQqjH7Nm+e9YvWNI0h2RTaeL9WpBD42uif43o412LGOmI7jDXFZiDzhW3N6Ld5Oxm92cPD5O0M594LMOiJX+1ReoXDQ/Dj9PX2rItJ8ACMXBHOs0LDr68YkJ0F6vXoZWHbEJzFH03V9Xyc0z011hV7bGZhhEe2Y5/LagetcxMSz8Kvq3Dxcc8euMcZ09mCox7ASYo+/lbD86A+tyeRjy2QPu7so6G9z3nr0jGbetx1Z+bO+MJA/34GijXWeG/N7ELCHlBbWfaDv8rIcj4+DIBsmqBPRscTWAAc87RhPj5Fc6rnvPEyGPussp7p61H7PWdA9FyMnp/bszHgQWTJStTxYsqzZRye4zu2nJExbNPZdtXXqTVJehh8filnKUxZole5IN/mbXv37TXmE9+IoKxBFvfd9K1/rNOiRPaELe3z5EiMRz+eaHy/H3TYURFdEVre2ITa/7s8u55ntkQbwGvMbmc8f/xgYTfmnDdg7Ry8TWcrr7mtNJ4SiFnfexgQdUfxGw6u0ZtbfLvng8RPZvg8beFelMzDBDb1NAJBT1swY/y90XsdhOsPD2itg0BtxrMPs6UcMdZ2Z5Bc+1k3TRXNGaXl228Pibc8LAocuZUXgN2DbHFR/b19WtrMlPEmhc/g/BjU91LZME1h96Q8s9LaNizGu3e87PWpBYajpVXRCNwCjp6fcTvroauNFdqJSVzkMBuYepnP2u/caBmlPf+cg+xiPs3TsIPmFp9bA/FW3JF5r8ZM5d13l8aZxPFpRsDT98NmrIjOMdR8UMml9lvpOY+NvDGWrciWwQpiYesGLvXIE+p58U+3hvq+LuZ6dd97I9cQqcjyslFuNqG1nabLtY90Aao7F+WSEu2J28Xpj2fbHS4F7A+GuWaoHNA+9pQBoF3sTPaBEGBXoGqgvjq3wp766/XkZOpjiKy3qA5oTPm6xKDYo5mMrrhgj839GKg9ypjpyc0yzBI/Ze38WbifcOEeGw1kkDzHje4SBwIQbBqAR2fYirFk0hba+s6rAd9SLWCa8uHSne94I7Xj+RrnVY5F5mF5lOPZ8wiU9qXrfWlx5tqnnYH2mWHRX5Loac3ot3ZT20s0JADPy6yMMLQ07ta9OJHiRLOZ19HNfulAtidsGUEjnTur/613jWYY+ZycqFWJxsFUSpv8bhpBgzHHnmIW6cQ4gNY7xxRcW7njXd/7Yz76XhLpx9uaxssmtycZttqvpzNPN3ty2ftJuADzXGpQXcpR1+afEMn3tXVdcKlngO6CI567PnU/iG8anoT0TDfN3s/z2jqFcnZP1AMHqzqADeb3GhxCduuIYI9Muix3NqNzOOUVC7sye4h6LXK8Nx3zSgjtHsRAzGbi7X7ovR7CFYcHyO9oSMwALxllUp94JKJpmcDtjpQAO5jAFXySSUPGIHJLjXTqtfA6XVs5V2IWIm22UgHtsHLScqu7W3hK6CWqcS1fc2PGw0oL25QDMgqciwxEHlxTdZcu9g3f82lrdjZ3jy6FfPObxQNF0jJ4Cj5sGULsvgiXNm0vRWlfdtSbYg8y7bfld36pYMfWjudS/zY3a9pl9PkOeyT3cebtakxvbMTQ4Nsk7gTRx7qMdKSvW2NWTZgeIInxQyGuxvd1p/TDyWkE3evTGWW9yeNzVA1ldZUVgLzz8t5u9zHeLO5wX1AHoGKjIOfBOQdgY8zZ+5lOcbxQ+SF62sY+J4tXGvCp+Hr5tctmz/HBk+eTdHuM6D1h2BdlbBopBJ71+z35723LG3yeyceOeQAQ90/w9Mdl+Y+fX26d9vInJ+M+bN+RN4q/9V7rkhBb13Y/ItcmXFZmnN3mzY+959tT3+rH8betB69jzL7pASN76D0Lr41woWEzUhz9lts5NB0P89y1NJ/GKwQLXQaDJivsoU5pjH51C1PaW68IbJpz2/IG6A0MWRwjcUYDlx6jO+rYs+OuLXwYQf76nONzjevNFVt/np7NNSqC7QOelXpf/90Q1fHnc7KDWswBpt7nG6D7cozruUs3GIjGZ87FXPrWN6spz6N9Hw2dS2awRn6IUe57Buxe7hTekHkeDZzRSVgx53OyGeU7AsQjQ2nLkIt0GaXO5UE0mEZ8jpa7STiX932Gi/aVbMzkXQZor+NBYjFzB1BneV4rvweR+8CouS/+HqydDIaqraiXhbEeuZTOufijfn59uMRYuaxsI910eQ73Ey7bb/YwQH9vG79PGQxpNUvnobXxlYHxCgjh11/YbdhkWbFeBROhDYURvhjIEYaFMDquxAl+DG8I5eCAFoP9u2HHbQYPD9ux8h9gDfUQRfKfzXV0soEBO05+ET4zCKlb+06tkGOjIBqWdlY55tPNZbNkUJ9wfWuMK2tEnDvoIMZQyvUbR+DoT6mSfHvzlmqdzw0Cz2GBsFEGKqO+PXLgjJwhupEutiUQtsCtjWMBc2zvM1C8ZQhF2Wupkqfa2qH16gkNNTLjlIM0l/iO7fvwKbloF6ulpT5tLGs0uB0fwmvXpgxtc9CAbZ0U/u28HEYozbiR9hT640g/jPbt9fn7FJ7KOOy5W+Yhwx4Dg6dvtp7aCFuy6N/F/O7DoHA62O4wn8Tf824PX5cCvEt5cO8mmHVrtcp2uXqtvcXHtbzrexk3wkw8j+LGMJsU2sOzX1rWt8VtGi3/SYRr5CLPZxB9C6XwKCL5OPZdU40hzhO1xYvSbE/oqVwn9dDKEUe3c/nOw0jus60Rz8LDh92GzcoJvvoCbGPbjBTEosWOSoBBlBqQVhCp79VVG6EWtz7F0IYsgIM4lTR2hz9XsE+SQPknELIAoFhwB/j0QkELsmBotrJJfIogUeXil8dxA+9xSVmRbYwrNAdHEYSLDuN+m7gfR+mLnP1ATgTkygiRgv3YmS1tlZm880t4IhBtsmT/XtNRRZfJxw9ltzWrz2xumpbDZ4Tx3mfnwafvCT5wSz/FDiohLm3EG7OlDvwJYCPFOaLpy6dlcT2nyc4v+dQy23qy9FpTN/lHg6KXq7YsF98VqLY8c/TyuH11WiDQrf9G3cNq7NiaJAMwCu+aMIXBru0ZMP3F8lVoBEPRNGoLivpWaz+1diTFyHCZtb+uIUDbkf7uyAU+va6OZGecdyUb8NLebYz7Y3Ax52Mr3eazgRAZ2G3M7AFB5+JcQ/NcvGGZRxkN9MoleZ07FH+ebvuZznmSf0mDOKN0MfIGL5e901GnTzMzFnogPv69l9/zS9RmPG8HiwtCwwg/i47bAu7ny7wVd55mIOPYVibp/Z7LPfkNEcrwWUYf7mM7y7MLOq8LF3hslvKlAXi/tKV1HZL9I8XzQBWQOvAjnyzdSNL4mW6wQK9U9xOkmjLJy8qBYc3m0gCICQaFFMCjS7/EwHGgbIAalJ8aky1vmkjoy3dJY8svaF6NGi2zgpn5bgFGD5UExHnPjQetcwMkGDhVzhJT9goVMA6XvgezVtaz46iVQvRxWGVf5DU6aS0qKwq8cKfwfHl7foR6vzRtrBhH2E1oZQA+d89DaXNaH84IZYArvLbt6Cxti8mMK7UBfMiYZFsUDctoP225p3Vu2p5StrLh8NSXITO5Z/Yz9gE1Jjx9r51ETuz0ATU59Uv0hG42NRsPDRgtC/XPKzfBY2QloyG2Kx9jy6jZ8/6ScEm6c16i7i2HdBv7UmIee0DSfiC1kXZkzHCsjwtp7ni3h+awzOcx1xxgjW23afss77T/2t5xSVm3n28dOTCjYY0fLfxl+cKVZ2+a8i4YJEb+o0Xrvu9emtf4ma/+LYNjRleU6Djt7ICoMW/nykQb765Ps+kBi/tih7Ro+H4+gj8LT2vYb9hwXJbjAUhTRu3iRgtkadgSC8BSeKTgm/TGcQf5bI7k2pZvtmPQ1N6z0K3Q1wH0sLWOQ1qTf+OnRoqHIlgopNDdg6OOF6gxomUoeVhoaw0VCs9tGf3JYQr5uKPrIeh4ADMyMJvto0HgTQKMUrvSecConHi6/jPS75W7ec4ifTjviD0ZzIFOd8xvz4lNwzTO1/6e8duXSY0LO7irTLR/eCM10LbtWYA76RLHJhPiUDKTbsiffe/bnjNa2L6paRuIok5uM2w2bwN9rdCEzqydcOPTDGdSp8K74zFMeEDrzEmP+zqRepD2Nxv2o8xd+hC3rzXN2wsy9N5OD/eU45O+Tc/glYk7qdRel8zDTB7bqfo4syKzKOPQSa2uvCRsxb6M0naakWgvTVuVQqA2NzJndXCuXHvptWetbmgYMS4zslFs393Dw5MZZFv5eK9tT2fLm3Ge/1HcS+S8xYcV5p58RrLwcc7zOKPTpQnKbV/b28fbXpp9WhmP5zGeKIhuuq9wn7Se4nDxHpt9TYPc2033V9dyo+GwoUQtgAvq3ulF98p21/1Nb7awSEma5WkCIMNyBrtEzJY1mIAdh8UAosFkioWTfl/NmFufW4uzMVL2dGj6ZphuA4cBaAB3n2IWVWW9WeeDU3BGOVqQ50Bqhw4pfHreGKaNU//e5rV18bFCQxq0BmP0h4xsPtvGXTTOxsxM6dUKtcZM6HXzttfJ2kPh6BGxSUY14do527je81LttxKv8m/jWprK+wCR0Kxv+V/WEBrys/sGbOWha46ROfas9szPnmw9nz0d0bU1Oclj5PUIbWKU/xzUjXnaE39KZ3JF/XWg8bq0l+AOYXd4R4shNi5rfNP32jEv1xkD/h2F39vptxBHLME2rW1QPIq/tz7EozHmYT5ueI02523Pu+04sZHEQ5mUldHYsEc2l8rbv9tjZFxmYI3j7i9XXzOjsIWB7sW0eRauCBfssVHoMlOBDSaEPlQmh/xAPR7Xz81BRehuUwVzISwpU/AZ87CLr7aasAFtpsXL0bAKk/xSuvKPXwZklxCRvq2i07J1qojRPR+qA+NxiHG6erMu2iqkftlNKBfisjFrLPU7XIR2pEv6QjeUu1T6oNGsBPojEzzA6aGmS97xp2H+dgjaGz8xgQJb9YzITJ7hk6rsRgMJRX5G+zNKbJGGwkFbG3G/kG8bHOj0dV/jSuM3gKkzNMjKKU43mPitLU/aqqn3Ma89zRHv3ujxaWOb5UDDtdW4saiBSq83rB7xXtWoucbDXjvOPrzk0Y+JsbNnbff28jUOv/s007gc318TZvnPuBnnGWXW8WSMTH/U9fyAkuuB5eXPt+KdS7Od18wSuozH+5aFG57DvpTzeV229Gwc91LDZ5x3HIX20Nr2NO0B7OZBF90sMx4pUEkeBt0x31uj5zydPt8G+zMeRntMzxkOW/Kb1f/eNjcq90OEZ3tsrgsXeGwKQFJA0MNrBz5hf1A32p4XcIQz0bDSPDO4GQWWNw9SPM/2m8bbbqCNTgOhlSYrv7qnyOdujR49sDqcnSQXe0oairBLJeOX+lm6qRuYJS8YOfQ0JIHlwZdeARlJ1AFgUy6jTEcgoWze7gGTl7VZRgbfdlre5FuK+wwKP8pgBKS8weTLF8thbPaa1tZwZS7womWPNE3OrL9GMm7la8ZRfdoGAbejq/FqAcSI3kwW0sy1zfXy9iXwixtD6QZtxuuQc4bMuO5H557VdKzpfZPgtuws9ouuJzPCpExEE3bXoG1hpobj/RUzI2YKVGzkQaHOhD3ezr6v9n30/G92ZYgGV6S4DwCOeR/y0PWtSbqhJdgf2LAN2C57dzGtkRxrnZsr23bT3AKF12CfcRqvZJiw+XvG1/l2sW2Q9Gkn4NzyEXmT2YZZWQIve+riftuT12qiqwxL43ROCc37uOYx42VrWvjJ92DNdcfo+d72MOZLx87xGZZDRgaG10MaPM/Cdrhgj009PMCCJNOJnfFAjLbXpm4yJxBC34PAhtFpYz0E8r9yjNvGd3uyWAxbuz98TnETsI+kJbaGhRbLdw2/5IUViHa0rVFGxsvh99QIeO2BmALp3qEKY4iIGvR+KuGvN8u8rFsLYDbLIChk5+FcX1Ipr0hq9N7y5g0gG7PFjYPMuMmVuOTTWh4tSPe5jFtELKXnvT8woR/8vOnZx++/ax/w7aREjANQ5ZsCwA7lyIN6iMNdBPsx3vDoZdOm3IEHNDZWUNNktGNCQnvseRx9zr7bT23Lob2T5X0eV9uTbcvsTjfk9l0K2Y/SvZYxEpkVONDYgvz7QNQ47tyoMW86wBdoOfC6j7+ej+3f7fkWmiHsOgzgkkML+rSXPR++k/qcDFccEu3j8/zSqmt4vw965+KNAOYe2qovLk/rn1N8ME0z/r0NtrcAdEdPGkanrKvS4iC33ZU3N8o4fEr8cdxtjNX4Nx92CLXGVnvsno95mfHswx4jS1HdlM6UCLmyPHHgrbyupPc6CLsNmxM8PN/qgu24ZVvJqPZAGAHFyzCGk4GuQCTS9L5/xKY+MpZ6lOCNmZnRYcuhp7i509EIbdZcjq219FpctgZMpUkldm/EWMPIG1NKRaCTvrd9K84ct9PFyM9JcJdCn0XPTqMYvC3qEfAy9ION/FLvUhyMxilGba8+G3RY4aWVxbQ/8bq1TewBGHatkWJZtH4V/mpr0vSX7Qc6tyASiPWivIwMRJemDSha2JFBOTYiZJJC2rqU3JZVa8kbFLEHah0w2Zrt06wdH7E11HIRgWT5af2O+t0uS5WEwqOVJdW2GJeQaRm1X/iWKLVA8IYQm/Ts8opl7oFt3wpo8mqk1RypjXfxbQ/KeGdM82TDsvB97BxFfXopEPbfXSvepGN70p69Q3t52YxrQd1GgjlI7Xz/u/jbinN5exqMwH6o7xI6gLuTj72y9gD1TJrKx4j31rn4gnKH/Gd8RrQyfu7jTN+x+9jQCXaCZc5b+b2FzPfssZk9D3XuhGJHiEkcjOW7lc953vYZlX3wB0V4pX4fls2zcE247PAAB4ZGzciCRdHSHJZu9BDGfo5pB5g01A4Kr0bAV+JQoOXX5nD9mFAwClrW1ltzT4+vZshmf2fMmaVldgGXAGubD7XDArhlWlLYPRncju2VvPWAAq/aLLBtIMvUpwOn7lQw/aa/lSML5PUZAPaA3tYyGxFTpMtoZZqpfoWRlpfeqOibSdxzQm7Aim3PQQWrcEl+E7KZqdc05XvzTlRDGK3MPrh6sIybiFHu9s1sOZ1NOwI+vcGAxrfkpPVGhk8jN/IgXnjw9R3r0UjM9DVrsDQRUM+jBZ9N4ubYYHeHTbifyrYh+V6vHm7PCGVZn/AelzmqdMxyvOoldYcV1HbW9CGsrHwL3jMEnh+c521gFnc7v1Fs880CV1EoEwB4jsftNDufbay9iXHO5X/OqNkn4/1pDGvDxvCkfNi2e5aP3flsGw5b7yIwHQ7pE/r9DqgJH6Yt9kvLzoHi+nx4MsMcMFvet+WyA0i38XrGm2TVDxrTvAnOSBiVbpR+ViebSwejrEe6ge3XqKXHec/53FmnE1pdmsmBEJthcGfRs/DKh92GDXcdLELaETh1T3eowTnt7diXPR/ltCuFAaCljDoz3C4HRRvlHcyLwL7P1SxlEQXAXI+H5UBToameVeeHLg7xPOwewbve52Bg4zC+/d7DU5sOLV7LoyZ38KGrbmsyeKC1RXvebvr69d6xWRwB+1IH1MB/72GZDTCzUox2P/XBt5mxAp+13ljrPtX4iUiezTspkePF/LB8RJ5GvMU4o3KMDJJRHuz+7Vtp7A8SV+s2Gi0m7yCY8i4uVa17awYD27neo6ltmi2pPEy47wF5P0B++HwBYHbp5ijtw0t7OygmPM+zD3POY5u7hI9tvfpkYa/Rxu7b+ZLs4dbFOVtEvzQqxn0S6XijVqY/Lk28EaX78sqHS7PeMlquzWPLqLmU1n2l2QrPDg+4LuxfisZ+H0AD+YPLDzvT3M0QKPSQ7jubSYpQTOObFDSLXd57UDNo0MZY8QcDKISb2fbuvg57cSmp8WOXosjvEkdBctxjJMAJMLPkhGHclTWuqkM/P9zLMNZAWDbG6PgRnu1AZ/NTSSB8V9OlW5rGhi6P0yFIycYZlSwC8j6Gbw1W0fmB06e0u33cMdHdyOgBtgsMYHBsui1VdxFaINIPqD1k7+KbOvC89r8i+d4803RtAWnYUR8NY2+a67tZfjau8760Mtl+MTIk+uHLfTdeHP2TAypC2WoaySMFnuMeumxoelOVzfvzEzeDxRihjDOttCfMW/o8/0vzuIQL+WWl0r+9lI821SHGwQQAnqO9F3i7d9FCqr9d9x4Q4PB8dLCKBqst97WHvXLs0rlpfvKRyMYb0IqgnffIfA/43PBmbKTqZDxMNJ+gY8gYaZONe/R2nY3CSHvN6FH7uHR56oyHUd6z5Zt72lYcL+c8jPPA4N04r+2DALrnsU22RkkXrSDb2++ehVc2XLQUTTuz1WT6xUIb3Xw7C9Lk+iVOA+KONux3nquK+X6Zkqh4RoRXu/le2nsAoZ3yKESsESH7TlLNOxnaAnhEE5FNAzV2EuKR0FQvWlTIlyiCRTGmLMD3RqAYodE88UqwB6TlV2p7VPQEKa25qEgVzPW1o0OAgHl9roOONzvaxvaREm/gfU9bGrcW/5TME00X5T0L4tHpKfhYIz6GLJsU/f0TvnXHMmX2JpyNPE43PuxA6sx6RnT/C7WK87VmjBwdg8GsdWnzs7ogw8o6GIrseafwOasna6wQ+pom87cO4gNArvt1VL/Vfm7ies64HZOtfM1bxPhNH/bO516yv0ulDffpvnWAkLvnPl8KvyPFbV53A3G/UH/6bhZrH0jb9/5SsP0ktEbt/Jp8fLxRSxyn5u7LRp477s3S/P37LUMnjvrDJX1d+5yHve+sntsLqruy1rHOXha9zQf1dT+IOC+DHXfG2mZPnxtvrPfjeU9jTx3uGBc3ZN7TPFc2P3rM2vM5Q3vcZ+4hcM/LE9N7HYQLPDapghI2oESDNyIYdrNAv6zCptHBPjYHb/RoTII9hcinkHwsOAfiAGD2pFRQZuNC+GFt9B60aOyyF4bd/RMF2FY+OfgbyNMhk6uXkpoV6pGpRk2jbznRVeFkUlg/x7juek+ILWWhZw08kZfN2QBYRyieuKY5KvDtFZm2B69srBK3bxjQAxEsHTIxwj058qVv0xFserobY2Wjl8OL5qehAAEAAElEQVTnVvy9QegJT76Nx8Auf9dTuDcYSqOUvVHU8Y1mgGidecM7tlil3d6YwtvFf6M0XdZdS3BsAUCdDIhLLpVJ4mKsaFkmhk6VDxFPjRsA7dhnbv3RHvGMRtGmjS1+dCDHaNC+Zpjc39bOGxyX0tyieA0In8bZA6Yn6bfoX2IYDOOy+QgVuXdV2QiAjYDoOTntyc6DyoKkup5oD0/ZKXeTeJO3rX0a03RDDLnnxKtL4+4B2pelGQJuju9HgTbrO+72tOgrimtfMxxr3XHdbHnPzhkFlrMZfxbjbNGatyVPruKYSQWN6nJOM46E22mfhYcPF13Q6aChA5jywM9bFo+GpeK7GIXYnp7JxL2hBsBmzd/DUIX4PQvUpVSGJo2SJZ0YJWxAG1VgVFAPubzrJ/uSFMAjKEkNQydJsiCpGDXeM2MNCzKbnSWFeQeM7/MgKynbrduiOJNLv1GcbSwOYpSN3RRpQu9gIFULoug8RPRq1ilt7jnjWi9WAo5fhjF8LH0fZBCVeA3QbzSP0efuMBiwo0q3A0HfC7h7JzJocjGUW1q3iT/0PNa6hTEMtO4L7Qxfa1bqsa+LUeKHgtoyWjvxvdjy50tajRbzu6Xp9FSUi/+Tkspvb+SFU9FY4hRvaPTSkZECt+V6vf7zfPXDfF/ftvX7sG8J2ThO32bZ/+buiZPxKP+t9r/n1LEpWOIoOfnqrQcba4Jhzr7b5CuwcXF/35HXtemmsmvfxjA3pjvH2yWGzhbt8btoJCjP7TfHNP2Pvled53XP+y268/IH5V5fjMu7ne+oBrfoeJpbRsDciPKHFozqf9uQtXnPyzjifyvNRG4c+BnDRpOupzNDmttt5v4OEXi97Iu5z3DBPTapfe8BkjxFa+ytCTrPjYKgPhhvj6Gp45R9bwwW8jQUmgdDTH4Npkasj4NjnBGXLPlIka13xYCecMEmNd58jva9UM6WnoCzSphdfO6ol6UvCvvivqQoSS2cGCD9DHk0Zbg9tVK3SqCCQDZ1IPIODUDhjRmkyNa0jUGDtL6MIrm+Fj2Qiksr42kxWgr/lEPkEU8OwkqxhvR7sKpys/xa6K00OkgidScDpRH9sM4HpYs7hGz5opFjAX6rAyox7ADoyxt3Osn3mre098BXqC39HgwhY0705WN2dBPQjGqCkQ0HbwvBv3fDnufPaBLHEbPdpxZ581KZtDr3fOTVnIXzIGn8dNiHJuAgPpr9ngOt8Nwe2W1+xxOtXC8dGDV7+driKYIl27dipKms+Xw99eltSxoD0Tm4ndBnE4tqqzZ9NeqqbXpee434m6Wbt4fQy3iUxo8p43zHY8U4/tzoGafvVyOwi0hOrOfrfrsfb8k3ptnA7jtCz8csbxvv/DIzNyLuahc9X/0RKyNe/LMh2LiovXJsjwPeRjrkfIt6Fh4qXOCxSRv7ZozqHda8B9bNO1GNFnKawQ+cvklRp07aCWIuDzUO1PhAVS5kiNpBUOHObLDQEAwGrt/IPuVQFHLGhuTYQGRd0mbzjN6Twlg0atRAYptGll6RhVkWfFmDCHUGVECxGag6WVlwaWs+AqFRt65UIwCo6NRSULkGWo6szW1syJCj63nSuhnCtyGYcPVpcvH52RoRIDFTwnaKQHn1MNvIpKMRpgrY1wmZc07ZyXlL8Y557QyjVo9muSNsn6zp2PQV6f/naLfffRtQ8z8Au6o/ugMFROV0+XBZvsZcj2/X5WTkpMqOUUlv/2ITisdUtzLaNauu7DMoMTJybMxx2+2fnYc6ClJ8XAeE5VtATzPviy+VBTbs4pDLB9MNvNz+8QxYT60G25/ss1C+zXzmcYTP2N7PpdF3o1bfp2XzGUFr1LdW94x1Ilq80Xuvq/oeE3nzeffP53wY/Sg02FQtgNHRuVFuPJGfch/18Vbceb1EPWXLlmuXlj7h4oY21E8AjsKs3J6DiEOsrGMLt/n25Y38+Pr0fcF6+f1vn+doDJm189l4E/X4rJ0FngN428470pC2MgvjdjTrh08cNg49uZre6yBcYNgs7UI96noI67tBl20gC5rGgYFq3RSAocA39CCnZjonLNmmrR29AZU4GhDc3SQRvraLG10il9yUrFcYNsVW8+6B3LVB5D5vuDN+9uUbgUR5Zg2qUW6xJQwVutOcurzMSnlELy4x2y5JBJLxXS+3OZCYARL122kr9CCir29y8rPPlGsrAWqUe9DQt0onVT9KBHoyMJNNUXINSyFVLsGgMXT75X8GcFWdAfg+6FKRNRKthDXfxofRE8UzIpGlzFyXiJK7EFS9NNS8tHJqGZMuB20HgQDV66Ky9mXUM+8y9NrhLpj2XkS+1ft8v+j2P50JW8PY+F2ERIOn3D+bfZ/SsM95EMcilJZf1B8DANbphPLM8zfW7K6/c/8+Bp7IYQZa+3fSCif0TXzhycWlvuyla5WW3d2JJfzWfj4up5WN6qbI+1h/jsHsuN6p6Rqm+HyURyij0bX2vR2RVFOEuE65UpvUi2Xq68UaST6OlWV75xqzNzj8OGLLNWpP3pvr4nNpz6W7hDpVZTrsn+M+6ydGt2US5WHLtG+CmF2pa562nYa8x30rGBumHii+gxdP3473eJNI++KwgJ3//1l4hcNlhk1VAs4oASB7Q2SphW6cKK/tJm7tljaUViIgpTXhauTILCcFGpKWDLqxBg+BzMlN3DwqJsvGTb+0rtMOIbZ9S+hdVfP5Mgs//bNLAodfgf9KPpzE21LSsMz6rv2u2lMUaPmfQ/yxstF/PZ99LP8tztGPBqUuT0Xm7ffMi2MVu6rUcQ103LaKt4ZIT88PcnpZqatxQhtEGNJGLTDv25k3ZuZ1KCWys3lWar68Mph5eahHEi2tiJicDLyhFWu5PLE1TW2pna1bLQ2bZ5Ja6fp65RDPyMsACxVp6ati0EQPjTV2xOMrB4FkKw/SmhkO4FyNkDMdu5CyirKWpzvGeuRz8X1s5r0Zjr1tmVeI7OLFNtvTOeepcSeStfKx+R7in+F91HdHYcrPjDaX1tf6lYw9m/RjDY3A4Dz/cTCgqbAV9JTluXxvxrjwHjK1cbvnLY2fpLBB6OdO6ra8/eg50jvemJGJjtmsf6wvjedPTfR0uekXa9yZSdmOZwoyHnkUZ+jD8uV1Atov6mQt373cCFlWTsjYIGnZx+vlJQO+Y6/VvfI/aHmmUVlArjIyfJgEtr31ZRyyMyjDFBH6Mtd+MNKBs/ZXPnsDYya7rWVrEUvEdjeq+3nZ94dn99hcFy4wbA6wKnY6XssG+OCDdUZFDVFZd3TNOcDElaY5Da3RzGq0eHCvQ43wpMtheuhteaE60FnteXZileKD2KX69y7PDfLngjcQNjVKSMXd964obuATKUv5+oHQqr2RIhrljo7+mNs53UCfR+XoczXR43gdMtHBy3kFQjRb63YPhOfeRiYnTX9qrbZQWzP90jeY35pdN/DIAEcjNW4Hvugx0jjWICE2p/9JHrbMpHFtSa0cbR7OLDFdT1PFHhvLTaZfR1PK8l0MzQRgRTnVTHhtFOuR7fKUSDw3uXhl2JZRgwVcyb0ZS7TRL5m2GE1qIR/fY/u+MOoXPVic9x7eiCPAgsL7OJD3+Q0+uY874ioPns3ys15PAG7mt8nN5Dvvt5iq0BG4o8Fzm3/UJ9tgL9RuSNODMc//niUwWo+2vDLrL5GCLA1PLd1AT3ZyHPRGSWxpzmXdg2T3vGahfUjLJzqqTbzEpW1D2VIz5Pp3+t0vcTOMINa7MVaCTEZlbWMtKyCftRfb7qWs2ibIGHHc8egmigbema268/zE+us9gVu8WzqzZFqPczpde47pQ9+Oec6moWPbmPE+xixPguiehScJ+497zkvTHLG6PCTycKTFZf1iDQTfFT29OCCgdfjcgEDboF+jlz0llZ5VasKdLJdjPyxQmIH3s9V+L4tlTH8Zj1Wl2xRPAE1dWfe2f0cndsVoJsAsmTmjZaCd2/JuJlirJ4Hr95iup9VD4p6HsUTse48MvKEwJkbhwbjkoQBWyY+pt3Q8LInN0VLYcmtr0BlXA9ANxRFosm1S38bZ2j6lbz0ekUh7kVz9krhRT/V0OjOFNSUAPwHHyedvDBJJ5fbIGer9MJ00Lvs+anWJbTsJ1IyaFYxUy0+1RDpD7Y9xLs91KCMjNxukJzGj3mUlsKVvY7GH+naouqz9OqsvlAKbySFDrv0eXqgYWm0PFHy77AGR5utGC7NnTj/H/XT7N7UHo7wB+OVNPI+nv/sZ2QFuD+lmgDBG3AdQS0hD/sa8CBCOz87lEcColWXHpJ+Bdm2VVVfM0ox5sFT88h5AvMKTGXKnJyXJ2Aiz38+1r8j3lP+alzV+2vtO9DJR5VHDeR7OjzG2/Mqz1TK2H9tFsV4uPt7cmJP6cfpf8IHjfR7m78aGk6/zGT1Nm4Nug5G9GeYHvJxrr/M4Iz7G6a8MrqPeE73XQbjgHptF8AFck5sOsiMbVpaN9XSAQfNm88yA+rhsRGpflqRZdU+NSK5r5GG8O9ToteVuXDt626QvVMRPQfBN+dzwZ+n4eML71rDXgF0nzC1VXSHpSJtuBIYCWGAMenw8+1s+x4ksZPecKu99yjh09EuQ/NteutOgDKsnQ9IH0c0U19a7XfrDzMbLoOlmQQenP1mTIsrRA9KBEShljQOUtGpX6FCTdUJAZgWlP2pbiMvi/MIyWyafvxgkfraZBNwQwpIg0/pUfC0/tLehpxqdQwSsbIwbqkYUV6OGBF6W33I/jr2rJpmSxn5m4UUC2uZiqnL08lFDSZ63umhPYt0KZ8ORvPt+yVg2MjTYvJktybj0GQ9K5PMOAkUPHDeBhgO7vSm8xav8HkvTM+IA06AauhFuAq5mI+GMv/GzQdlME4meBD0VckxrT52W9L0x5tNNDBmYumr6hLqK7uJPeIOJN+bDx+P4MowJI5qzfG2bixF62Y3pzUIvw9m4E+VmtbFHGW6YGSAQqzcHXXHQx8Z8nC+f1W7nxtEZ3bjSwTyfE5vmOaQ/jNR7DZtCiEDnWXhFw2WnoiF2DEUc8dhlP9tr4oQWSPLCaGGnwpzmrUZL2wDMkOVlRNzWqtsZUiFLlHSN/EQ9WcAVPTPXh3HaoC9cuMAWeWqCVXhb/I8AxLny2jQ0+BZjxzyGMWXQGYAMGyUqv2g8bQ2q2z4gP7SUrsQop+PZdivRarxGblty0ZOSJcnZlNv0tH9oKXp59Ov1VV/0esGmd8UVebhY3ids69vG7D1JWh9y11S5gLMYNaLduD2zJ6Shga8SV9tGMp+9zLyss4vve0zEVjMaDxm2tJxyG8HVHPTa77O4o7Qzfvbwt/X9knj++dgYsg/a8NVVVGilPONpXsO7QNZmmkE67vXbvA76UVOCXyo49vbKu543BaRtD+egfNu/z8tjJt9RPZbPGc15P/X0bJ3Pxg5Lb7uHR7rnQtTRANz1ERKHB/Edz127Hnm0zvSNkOu4Lubtb16/o+denuNxpm+H87qclW3Eb3i2p5PuCJTL332F+6T1NIfLPDaY27fkvveztQUc+D0AnXFkaLT37r6Q6JWp+VWjRt7n+j0RIMvWmGUZGlfyhTs58ahs1o1L52o3D/cokC3EQDWN1VSEgDC/d6iu2Es3ou0BQ7N4M1XsTinjKhka5BHXajdK/fyy5rlHYeuQaX/HGKOlak+mY7aWRIzysfmHAWJYTjJEa6swhNm8K+1Y5B4HWa05rdce3Pfl0Hi1azl6amgM6LNZLkaRXsnF94nRdIGvseh1GcXTwUMnKtzSNcIwBUEHb/ku3hIpf/T2JLuMo8ogU9VFhpfMZULFCjbX/kEoBo3kl+CNnBHE9kZaaMO1/+mq10ELDxXO0f06SDIGtnEfxzhN87ZwLI220rjERkqqaagvL/Vl77+OgdOsr/b9thupdt4Eb9P7yCPQ1cUd8lLixra+Ce4mDPZy68tm8xynV1kOgaQwEC67bnvNOMQfs9rtpRrVI02e9+niDx2o3ImJLmpvjHn6Pn42T2O82WieJ89Vjsqqq9euL2MS/IDMOvBgJMt2ilqjWzReXx5G56V038eG77gPDNpZjdgfkU/DeDP5+ufjdjtq6115J6pSlubbkZEnaUb8PQuvXLjYsBGUFsGM3fgKaCPth5iWwOnDLl5rKRJJ1rTrQQEJ3E5hIwEbnNuFmeUEtwIfEiloUyNGwZDdvxF3O9h9OtYY8OBQY3v4d2nYm2YnfemIRmn47jaa2bamTZ9P69hsgYvnrGdjoBgbQ3P1OFNifui3wGYG4S9TMp2CZVPvjc3xIObbh20x43y2a9JvfC+8mPpqP03tGYKy50uW23HtO70xEVutAn9bvtYf2K8zb6clKnt6spc9BGRUZjOw2Rh+39FMMtrHmyFXVUY2fGh+agwVY0OWoFWvC9mlY4VQeWfaURMXY4U51tlNuPggQK/Jjfqjm71stEXYgXSgcsdhjPDOR238jvuhBwk85SPGtwZOrp8zuhbkjpeYxBY8B7yxrUUjRsGSyredZuf2kPSg3NPV9jgHuqEYokMovCD0G90xq0WvB/vyjuLGd6EuDJIjlL4t5WObpOkdcveg9XU/KkfU9n4papeu9ht9HeI59OnHbFVKFOL73jefzN5nkFn5bPVNP9r2L61eYGDzdL5ufGHb06w2YheX65jg6fQ8eV7nXpLttjpq4HHknumRcZuKtM/1OY1D3cN+DB63QTvJmAfvbb4WCT4Lr3y44PCAutiCoMvEOw9Gi9JmCB3IQnhGKHfXMJqxEptUTE/tk+uyEFn7L8AqtXiJyjCVQFi5rJSnmqeooUQyGFjoo0MEm65lF8EMAZdRuv37UbfRH6PuaQo+zmYQaDOOh7N7glUGcYdLD7VMGjfajAOFbw2gn9EHCrjjPpJRwvhsRpy79yOlZQfF2YAN+NOxaGMNeovb9phAD2postAWCvOtgXiE+mgDu5GpaY/MUWrea+lL3ZfReoLsIFpko1KI3iYwu0E7DMmT2dSxD857o6h9th0xrG2j6SKTWwIhky5BA1BTqnGSQMica9wG4UAgJHMsq/e+GMnFjftWijx63t66Ulu4HJNFyPAkQcEDd8/25DECtDG9e8f+Xfz0YEOe+/65DXokzx7QWm084tHzNq6oyEsETueAkvttZ8RNv9HamIFOeafvxwBd9UIhG/YHVJ0Qj//OhvYY5Pn8R54XrSMPsns+dSx25NnLqRkrtYu5PtD0nZ5uNqRp+JktGY71VyZ0rK6Ud+x1V5eR4gjJa9a++7wHegXaKkrJIr1YX7Z8oiuToxHzjv1quLSwtSfydTQKoXH15Yujgb7b6quR/64P8lzOFtGdlzeG9RfztF6l+9DJ90fI0HsdhAs8NtWw4UHTMz1BMYmsTdeYxfDgcAGnXf7FDtNQR7suMWsARJaQyN6b+pxl0QPDrmqnmrfEAwwAZVmWVtUioSkj6R2tcbtjo023Ydj94MPQDxHx3SD9FCD1wSqlpso2AdQlwS8xOt9HyPw7zn/yBR4YG4rkY53lYaS7A6AS2D/bWRUV+whoyDOrADnU9oi2NnEDIFiVbnvf7rexfSQYLK6o0cOo3gz7LvIu7qjSV8lPUADGMxOBt3y3YAwujgK1Md8tplt+OmpntTaIWo76mWDrh0IqkWw5LEA1hHh8k+nAuicPIObq0Sk0ohEkIIow3m+jgVue22EMSxpz2AZG56nO8xp9lu9Gzw3f958zenFZyVbcUT/f4jOCjL209PvcEJFnI9k7PdHpGK8/HHBkbb2jsl8KhLv4HN7FzfmsaWzdWlp9sJMgvbwsyLaGQ6c7OdSNvTNtmJ/KwzTHLp7IeyzPYCyOlk+3gni+2ye3pPUf8umGfAFsev6oPYx09zgQtCyDMgXNZydoYWQTFz2OxixXfhYcZ+ty3zi81W96nmMb2Oq3xrAyY+N8/6w3UHqafkRTGVD4jVDf23rjWXjlwuWGTQ2jKvSGzFg1ecBRO1tFsaS9xavBNuNqIaMaNwRu+2xkLbvTUTWLZHqWe2ZLUk9/yizenJqI4YyduDxtTxhDYftkPK8U00uXZESaMTab+D7nUTqrSkdg2YOD/eXe08kdDO0GV6WizatyROF7x6vJYcLISImPAI4f3JSuU3wc085mmWb5T3pW06KmF9nBtaX0C8u81MYDRetrHN7VkaJ2T5//qFGB28V7MTe71DPm34fBfppQAjuoeElHg6t0XD9UyZ/1gunel2icSL0Uz5rs3auphJHQ9hgGwhid2NQdgP5ACHRVNe6HeycWLgt9P7BgJ/S/yXdGz1dHl8fx7Wcs34imNSLmoGfO64i3cf+D62R20iLmMVufH/P0unTG30j/mHdS7kFjGOmwyMdYl/k+dC5+Hwew3qARD1t93y/BG+c3otvzaXoO1zbcoAYJmyHhYPwZvHd9Mbyf6fd+ZPXk+/qnnofhoD0YZ6SpuvGBQnyAycvalqONLV1ZesNd5XUeEcS9SVs6bHs/GhnZm3rhGH/cT9u4Fmma756mlXNfIRzT3FN4dkHndWG3YXObU2sK/Qlo8LVJRoDkmxfZGeCKkOTSv3i/jeviRM0Tk2r3SkR1Tw3KOnlicFtyJsNP+Z2QKzApxIuRIyciweQmA3r1zHT30qjxYRVW6yYBZM/CTCVfG0ZGkXa/uSFiO3mkZ2NEsLFtgo0p9WEMmOZxfURrCDOozcAPaY0GsEmYg5zREokzcdqzbbNV/I8j3qIC1jXXdX8J9+3TX9psvTVwWNrvLYteHlsupSU9RF5oX1VeHM/N+KzpWwGMohBPETW1oDwMqsuaPtQ9jzsp1PMknKWqI4oxU+6xyeLxBQG177f3Jr9cT65LthYq020vTZBbHwykaaypQRhBTfOYDWjPjMBrQgRapZ6DB45gZkNVBjGdtJH2zCxZ6eLZTzOD3oEoRNDsP71s5pMKQwDT+O2NzUbbgRzV/SPZj/XARv4OL9HQSCIj+/acFaTZ8uvvEUCcgTBC1GmjyxGdGNg+7/OKdSJPt3Sh10AmGzbvSMdqxwfZejLx4/gQ29WAoZF8Yrm6Nmf6bOwDWj5DLvDdaBpV2RtRG4HdR//7DD3bPuT3WJ+N20Uvl16vcZdiRCd6xuz7mGbW1+2Y5tuJvetq7CWMZaYgm9iHzk9iPguvTNht2NyxMWykB9b6pbZJRntQayLGONDmYHuaDokKKMzvFl89NIm5gpIC7MohAgWcMBYQcvG2cEZCqvyVQ1ypjlkZaOvkVwApKYDpTyzSjhlUqSnRBMBvYGjqPsddoY0fVcwWhl4fZnCoVxgqifNwbZTPdoptI6NXfKJaem/E6CCDvX4lW8tjZaY5z8FWD1zIvnPAxQwsre8kz0tQwH64L/HtMzU5qN3JUtIzwLLBviSwByCUMZ/MTdVGLiZvK4MwHrtn8Z2uc5Y+rjEVNOlvKYX0+m4EbnpHAYC8iH1KAM3IuCeXitrBJAl1qZnVTyTSrryzP/Ws6BPDG/ykSWCqBVd3Ye3UCJTaNELyXI/k8M3t0XKMmR4lYIw0/QwoxU+3+d++bwZSv0zIAgZHb9jP+nYW+5+l6wCWKRc20moZo/7rokx5sjxbHmL8IQ9dX6yy8U0EI5nZ/KI8xmCsptiQdUzb9Ah8kD7b52vpjuVov1Nd3sWVLXLlJsOv9zzbNqOtfcuIirzFUPRPWeGhS7HY9ougpy2f4z0eZqziriHqVyPfKKOoFez72buon2d0RJ/1y69jGUJaK3eydUEAsR//jKfJDXbQevN6gMJ7Len8t8Tv9xM1OXT9zNOa8TPSzZZP21+eKDD349+T0nsdhAuWoh0gRkc7AaXKyA2ydp8MM4hkFrc2BQJklplqHABuU3+h5ZsrVVrFaCnGTWZGSvX0M+ayPhclnpyIxmAkYjCvSGLccF12YoCJ1HczbmRjsdGqEV4PlULXlvcZA2PAtRUuaKC+T18Reu62c++Gmoty8JSiN2mszGZUZKAt3+eC8CDAKDU3eM68MUpj9Dsw7H6X5kVuNrsbeNoIYTf4Uj1hi9tGVuk5WtIK2dlODfSa3Bo0sV1bACPHnnP914MyiR8NTkMn9GpfzhLDH7pgZ8hMylCEtqG38UU6Xpo6dwAXAHFGGfYSMpX0xXOjJmYGtUMEii5Rr05ywqpxBbxTrEc28bWFaJzea+pKaeuLtJ6uGab6CYC+xhgj2rbmOcT3NHJO+OjH3ghUcMc2TihSW94iz5oMFRj6+HDKlvX0GeUnvsdGXAA+F3I8tkM1rIKvJCUfmZtg+9LxijoxVQG742CyvIVRzhDPhmez104bufYY2f9pjX0fpK9UsGcak13awzYpaz5t4zwDj25ewuFw19EfHoXMgRTEAFZP+1AerEaw1zNeX9uuGPV4dr9mqrizSrp3rW3b+BzL2Bsqo0MSZmOQvD3Xr7fez97x4P0orpRv9G5Me2Csx4EkGHCurKz6f0zvjKdz8I6B0K4Ge5tCYZTlLe/P4NmAzkx+z8IrE3YbNo9Xqkcrl98NRARtIcaN7E/RmZY6z9L0sWkatXW3+erm5bHNt+S9UPHQJDAWYuTMIMpY2sCB6rmRizoZzIRUjZ1U0+sMa+Ej186VSI2bBpZkQDPxrfLVLjlQSbGD20Bb0fpuQcRdjP22iuet0ztdjD7VZXn573MaAgXim17O8zy2gz+yeCSHsbE2N2omxksAROVzwOdg0Gy4KfChUihv2nLKRp3CVg0Pka10RwO4h6h9XSmI0o+hvMgMJGYDjl1ptq+9SixVLOVbgmJSK1XRE34pH7HSInkgp8FVvaCaoNSoyEgOEKAgU78sTYwe32rkWbnXRr02DOPVMYJRjm2btKXpvWOzvnofIS79EKPAGy723769MoAXP/YJ+Nb/7o8C6QCcKvhNCevdbSWcwRWwl4NbGOvKWBbC6XRXxoNlAdNS5JMzmDOYgcwZSyJwPQFzXYs5vFDJg3kF54yUDqCUcLq7RaKE9XRbaGZGSnVxoVhOVNoXeC2TDHkFM2FZEuhwRF5XgBJSqvHyiiUlrFz8+5TKH+cVzBkg+Z3BpxVIhdd0vAEtB+B0W1ocLWY8pJKuDaoZlBYgM5jK+EvLUsW3lqWSxxtwzqCUsJ5OOBwOyKcT0vEGAEDL0oyvJIeB5LWkW1csN4+Qc27XJoBzbfip8ZISgXPGcvMcTrePcby5QWbGf/Q7/u/4rHf8FBJl0HIyrcD3Ras+2nJhkn9mp7glm9TRLmn6EUVPXPRjhvaXDbA5vZSz8sA+r7EnRnmMfaKPO9eEfnLH05jxp7o6JLI/aUwj5hPfxXps70wd2teNnok/yoOgdT+SYxx37fjbxZH6IXRjcE9T6cS6Ef3lDJzReD3hEe73fowyC8/22FwX9hs2vNQlXeV3q7L6TKGdfa4QSJeV6e9W/QyzXE2bVKNJ2nwyF+CwoB73TGW5GTOKguVi8CRkgFHgCMkcVeGLQdXoKUAjtTLZs0P8bGqS/BCba1ji0ulbtrZQCNuqTiDFOO0FoWq9frLS5x/b/AxkP0mYDVR96I2jUYx9PIVlYM5dPDY+vMLyS0TUu+IVrFOyAhSaQUzo9ipYRUyW9mwo1EE9NXrcQAm7WLYUcl9T7WNmof5YAVO9B0aWYRljoT1PrV2146nFW8v28OOS12zg7EPPS0nIre7i0QLiRU7NUwstZ4tGCmShd9YkJKzISFyBJxi5oq9UFEg1Vqp3rKKD9q7qI8v2WulnrkdGQyeAtvqY1Ho0XjqAwxOgE3VzyE/AhsNoA93ELZ60EXZR7XcOaeSDgQK415dLyyMC84rlUAwLMAHV296M1tPHARxxON5gvbsFn25Bhxuk5YCUFgALMjPWu8dIy0FHkMzI6x3S8QY5n0AAEiXk0x04JRwSAVyMi7QsWCmXNnk4gHOuRsxahX8oVJelGEpg5JyRUqpiKu0qI2Ndc6GxnpCYsJ6o8nqsqK3A75wA5BPSTTE2EmdwWqrhWwxgSgvAJa+yV61AvrKygLAcyvjLeS18pNJS+HRbjI5Hz2M5Hkua4xGn0y2Ww7Gd9geuvse0lHXXa5FTPp2QDgtSNWSAjJxXMAiHSg9cy5lXHI5HrKc7UFrwj3/sP8WP/bP/PX7zO38Sv+23/g+hIXkda9tNaSu25ffgWJ9rHLa/7AEALbHGEa+ttuXtPLZHYptO38X7ZobxpE+0ouybyW/9yoigSzd7F5SDG7vO5DfMZ8YzW9mNAP88j1kc/25UZ7XeWX/3Oug8L2ODSd/JHWitDQ14i21GeR5PxT4Lr1zYbdis0EHXBp1R7HdgjFRXPOZ0NHhvjLktuKZTR3uG7I1h98rm5Qwq9zxmpNyTSTvoYh3fPs2+MIp3Lu01ts5gJcY87hX0n7ZwXsHOB+Dukwn4n/8wcHoJmVcQGFlujaMC5ADgdHeHw/GIlAjrmrHmXHGOv84NYJzuTkjHA3hdFczm7EAqM7Ay15nmChilwaYEXk8Al5nVNWfc3Z2wLOVC3UQop99UsIJ1LbNkph3kNYNSXcZCCeu6IueMZTnU57kd+lHKQEjLgtvHLxeQx8CyLA16ZJn95IzMjMNyQF5PyOsJ6XAD5BWZuaSpxogYSGvO4NMdDjc3ZZabEh4/vkVKCcuSkIiwrivuTitujkfQQsh3dbaYUuvHOTNSWpCWBHA1xojA6wpayuz14XiDUwVp+bRWuRJAhOdeeBmf/5U/bJaklf6/oOgXMXbsu2IYwWgYbvv1pL7jqWt2W2vUhUPjZRBinD3gZfTSbqYdpT3Xl9x3Srh54wu4+7VfaSiEHz8Gp9RAvJ2rT0Sg400B92AcDkcwJwAFhGdeKw9Fcvl0V4wbSlgOUs/ZeDsIh+OCvJYaELzD66m0a6Aaw6Xcec1YjjdtqRhVGjmvZUxZ70BUjQIw0uGInHNdLiZeF5Sy1Vou3p0KsxfCcjw2HUHLAcinMlmQytJsXk/AWgys5ea5Sr96bbi2suVQPEI5l5NA01LGvZSQ1zswEoiAw6PnkdcT+PYx0uGIJOnqYTq0LAARUlpwun2MTMXoo1RacALAp7s2aUCHIw6HA063j6sBBCzHA5gS/vW/fTd+9t//Vnz2J38Un/fF/41pDQYVkozLxtqg5OMO29a4B+TBu33gfIQqZnTGY8M+PtxUhFsWtT2ujkyl+wqzKQ8f5xLDa15v98NNV6fOkNuX92Xl2Uoz2YOFWLfXILNJmCneJ6H3Ogi7DRur7u1AbIG9jatp7DPZY+ONCQEI5N7bQwT0MxGwyD4b+ZPf4PZJ5ntCrs9yO2iAACwoy9jaHRZAiUP1s/Gh9KRlSB6N19oCqb3z8w2Sh0/jZTOTof3EIO614TxwiqbqqxXGfHhT+ryErNI5NyvFpoYYBOQFy//r9wP8GKfMWJLOcHIuy2ra3o46YJ9OK6guX0kV+mZewbnMVKeUcDgsWBIh0wHEGaeVkepMsm4m5zLrnBJOd3dYDgfkdcWaMxYQEi2gVMA8QDgej/U743TKWA7FQMi5DbNYDgWMrWuZyV4OZQ/dyy8/xs3NATnXfXCZkbksdSllFghPuHn0HO5ub0ufrDPIOZd+QkQgOhRP6pKQloTHp6XMQC8HHOpSoHUt8pCtBKBUQd1avK9HwiEVYJrXDE4JaTngkSwJYtTlOVJbVVPVvsrZXMxLhMPNEae7FZyA28d3SEsCn9biATscSjsgAuhQNUc2RzQwcjVpEnL1XFHdi1csxe7AAOjMrhg0YiS3Fmb3kpC09v4wBg+VBp+1ufj9HhcMsx34ikvQbB/i8EwkpNptPd1iOSw43Z0AEJZHj4rH5O6kngcAOa9Ybo7A8Xnw7UtlNn4h5BNXYwWgdKgn2QFMB+S729qHAM4ZeT2VNrAcqqG8ArSUpVjVO5HSUpazne6QliOYc7mANSUcb47FWFgWrGsG51Np53kFSAxaMeqLYUREWB+/hPToeSAtxROz3jUpcDXMl0MxujhbQw5ANUo45+ZNYq79jXM1zBfk0y3o+Byw3oHEdK5GGJ9OpSy5TD1SvgWWMnmQqhFG1WjiXDwvy6PnipdpKcP/cjho26lL5spkyQI6HJCWhJxXnG7LcjziFZQWUM5grGAGfnUl/MsPvwG3/8+vx+d/yX/TtU9VrkbLthe+PdngYb5fpDkkZ9MyfFxDsQfmJV4X33Ui9fwrxyYuaR/U4JfU7R9Nbfkmxs4WMZ6kaU9VW/Yk5xpjZNBYEV2CFlz76ML5cXo2nm8ZXX2cPm5v5IzejfKl4fdn4ZUP+w2bgZEhg7CtYv9cn6nRYp4Ru3fNwDHP0QwCAQYZSyqGx0LlN0Wjphk0XONVoyapcVHiK+8a3xo1ufFF7k+NHQErCOVrwzwFmRnZ6Ye+6wW/s34mT0nQinPTqCpiWJ6jMoxwSuK80sZON2R136czPmHZmR0oemWoZqSANGYC7h7h+BP/CXAqYOxwIOSVa3uSAa78u6QFNzc3WPNa2ziw3q1IhwVEwJIO4MQ4nU4F0KViDMigmBIVoIsyC1uWjRUQnTOX2elUgEaqYL1xL6CYhbeEvK66RItXLEsFU5xLvgwcEoC8Yl0znnu0IKUFK61gLMVIycnJiMGt5aRD9TZVD0zmFXa5GAFYTytWzrg5HrGuK5a6hA5cZ+oPCSkV+dzd3ZVZ9Fr20+lUdEDODfjxutbZ8IyFFpxYl87k0131zsgSn2IUUc5gXnF3Ytzc3CCj0FmIwEtZ4rSIscUMTks9DCCpsVKXtBbWyxJXgbsJ1PYW5qZH7EEDavgQvLFjD0Noy8zI97i5cdN7yu36f/nsjJyNLjw3WOxzo+nYxtO/5fgI68sfL/s0KiP57q609dquU914zwzQeoIsW1vXjGUh8ErFS0gAJcJ6OhVjZDkUL+Iq9V2MZ85rMXAoaX8gYbLUQToei3FzfFTe1zQAkG8fAyjLuTgDx8Oh7d0vZHIxNGgpfelwKOVbH+PEwOFw0wAvpdSWsIFRloctx9Ji1rKXRdoIrydwSsDhiKVOJDBnrHenYpDdPUY6HADhlVdNz9UI4VyMOQD57iWkw6Om7sQQAwinxy/hePMIdy9/HMtSvGIyvmM91X01S/H0ridQOmrNN72TiqcKsqyTcALh//fLC176n/5P+K2/+//a2iagZov97b+bVhyGKgb74cu0OxlLo0FB5Peq6PJe24b1UbeOw9GjjkY0AJqN1vXQOYCPNLQ/U5CPjbEVP0pb08S48my0VynyOB7xfXzmHahgVIeTB/55X29D+U+f1eehqL0R2tP1/NAg7oiXnaBtR3i2x+a6cP4C7Bqsp0GBvnhZBEiU7wuqIWG8Ks0QqL+X9q4YHgvK/Gj7Xp8fwDiQ/GUcEmNBxsF4ahYwFsplv02lLb8PNr/qsWk8QfkVQydRxgIYL1B1+TdDRgwn1D/x5ngZjb0zekCCqjzfDbzq2oLeMf6oxT5pK5510PvruNcEC9SAecnH5qL1rVkzV2sso5q2v/rpOP6r/wLHn/qPQbfPFzAt3plEdZkL2jKpw6EM9ER1aUgFummpi5HM6JyqVS1LsvTAjMJdSoRlqYCwbhw+LAnHY5ktPiwLDocDgOKVKJgtYVkWLIdDXVLCOBwWCLY6VM+JGETN+KAFay4nhK0rN6OHmcsyNRk0md2sMxFwrDwdqtGR6mZjaSKlfAlUjQc5wW2R2WQwFqI6WQEcD0vxAB0OSKQeHVqKQZeW1JbHLakagCAsKYHXtSy0ISrANpW4xcAhLMuhpKnlgoBh1okTSoVWWsRjo20ifmamuuyu7JXg+oxZ3kkJUeMjpNn4Y23DJT3cp34XnrxRYePLd4Q4szQ+vdVe/g9DukbjJQIdjgXc143vtByQqHj/luVQvBZ1nwuqwVLuIqsHvSzFa0HExYtCpe0QV+OWEpbDEWmpy8FkORWvZe+MeC6kb4kVtRxBnItBIetzazstzbcYDMUTVL0tXPpZ4auCSSp3pKH2vXy6LeWvG/E5r8inW3BmLGkpRlReq22yNuCOauDJYRQ5M2g9lbGolg15BaViMDVLCzopmOrS0SKHur8mSX+oDRwZ4BXr3W2BuFwMOwK1/Tdc+y0A0FJ9jFm8z6VsnNdiBNV6E8NxRcK//6VH+P/8kz+A0/ocTnzAiQ9Y+YDMB6y8YOUFGYf6bkGun2v7XLByKn9YkLEg12fZvGMkrCjfM/zfygnMCav0RSyufzV93/pqqn23fta+n0UHtGfS57TvOXqtzyaM9EaPDGb9ORnaOu3a4jOafml5MEp5WnxNU8qQWhzNT+L5Pmx5HPHOQsfos7N/vOPP5ItW9l6GCGN2RF2WRpSz6q8Yx6MvCRJ3lN7XY50I5WrovU6MCAnf9m3fhi/+4i/GG97wBrz5zW+exvu+7/s+vPvd78Zzzz2HT/mUT8HXfd3Xuff//J//c/zu3/278dxzz+Ed73gH/tyf+3MX83LRUjRRoghNQKu2VjX5pgKIHq5N0nlq7HdV7PZ5Mr+TWSq2mCViqX0HiHJdZqbQJJm4mq8YadodWnch2zXiczblBUDZyaE1d7IyMLIIshva+J2nZ1Yns2ehV/Ew0iSHbcrzODt5uTiMTbehQdMekr6vS33i8wrXIdt03Uz3R9+Bw8+9G+lX3wjCc1hRT3FSdhqVAuQTODNyXbrCnHFzcyx7aJLZ8C7ehJSwGqaXlLBmrntD6glGWfoC6vI2bsYUleP7ylKx+ltm15aUcFc3LpcTjbgekEFN4RIBiwH1SzVMgLKPJlUQJMCormzD4VA8PiJQqkZXznWfTkY9mr1KMhVQtVA1BKl4UgDUkxN1oG7lJB14D0td87/42eFStlQ9WStubh6VmXwWmVRpVOCYqBxvuywLkAiHtNTj3ysfOWNd13Ii2nLA3ZrryWayHE0OCtBj4mXvjByykGqZ7abiQqO2KagHxx5i0N9TxK2uUNPJexfHtEM2caQdyBtPPb73Id5Bs/nJ4+cC0CglpJsb5McvV+CewKe7uj9E+kNGOhyKvZHXIr3q4ZE9MLQsBTvnshRKypII4HoKGOo+spSKAVxOw6ztkFIZC5ZDAez1FDHiXE8bSy3/4hUsRkw7mZNXMCXI8kEprNDkLKeeoXpY1+qBLEtVa4cvHqa6n4ZSWQLZUBAYxEvrbzKBwLKUda21vq7FeGv7U3KdLc/l7qpUPTaVLhGVPW1Akd16Km2w7tuhdES7oqGeOkdUjUOqlSyHJ1SjkKqnxrWtigtSWnB7u+LnfulTwT/+5fj0T0h442/6EaRHL7o05ZDCOPLYBhW0dNewdfyVI65Ld2f4S7Ltks5qjLbxRAla8Go/e+5inMZFHT+ED03E8OxbXmx620dVrmTkkZqc23vxIkl3AtCOP2seJks/5MV9OVUDTcZYw7WVy0MEL+MBBhD+yf4e0aD4YJJPiDuMbjBEyH+Y35OE+7aQHtDaur29xVd91VfhPe95D/7KX/krwzjf/d3fje/6ru/Cd37nd+J3/s7fiY997GP4d//u37X3L774Ir78y78cX/ZlX4bv/d7vxU/8xE/ga77ma/DmN78Zf/SP/tHdvFywFM1XlwD3ZuQYJSUb+OPSs2bQkO5n0aVeYjjId6XZDBaMlpvl5i1yzyk3Y0SNmmrzB8Oq8eKeWR56o8buCwIMz6YcCjfi/Ix9N1Ir/XOvfiVc10i3gM3DhpjrOf7HymwWpoNRVT7sntva0FrMAJaPfiaWD38u0otvBuGuAddcvRoLlQEm18FMjIMG7OrmfpLlL3X8SElrtt2NAcLd3QnHsh4MDT9UYAYq4Boom+a5zhojlY30SARiOSK2ZJRzbqAmV7AnILGcplYBW905zZxxqPsPyrKfsixsXWXjMlfQWYDbQoQ1r1iozgDmtR3vLkaLhPa7Cmepx9WWlwJAyxG+4GIAFWFz9VIt1WgrS/aEBzmJjVBn8ImBXD2ph6WmR9Un1O7ByjnjIMv/wA3UpUVmLQmMBcBatUs53rksN6tGjtpMZvTXk+cI3hWu15AoXKg7fyoAVfxioZcFDhU6GWjS7TawYjbprLYg8+84xPQN+6D/7J/1s6rLo+fLcjSmelGsHCcMIOdm5CQicCoeulT3niBn6AZzQLwu5Sjn4v2gJVWPSVknIHtiiqFBmp/IjLkZ26X9MIoXQwrCzdvJRO3yafE0NqCc17JcEqR7vMpsQTE+kp4MWO5yq9MnVXeI98l5TsUbw1xPPdNJhGKs1Qadc2lBdaO/7PVr64EIbYIARj/JsYapWI3F8KTiVUNem34rsi+8y5JPSmUPnhio5XjsXPUKNzkV4zDhcc74uZ97J+4eJbwjrfiET/9nWJ7/pdZYC+6OJoLV4NwiktGh9hh3G1fbqk4DuP0wDZ8Eg8Q05ktG09448Xtp7A8/6vclVS4FJWjv1qVD1PGr8RFOSjQGj0MTQpnUCAv89zxuy0DLYWNHzbX1/XwenubAuAFgz7I+X4+0q66jsbP5m32dPpz58PSGb/3WbwVQPDKj8Mu//Mv403/6T+Pv/J2/g9/7e39ve/7ud7+7ff/rf/2v4/b2Fn/1r/5V3Nzc4Au+4AvwwQ9+EN/93d/9MIZNCaIgbZeyBkiJA6AZIoAYC95AKcOephPDROipYRENEDVarBcm2XSjvTZi6Ji9MX6fjH8mBwVYY8cbLwCMgQTHr5EVvGxmXhwpt9MqwZi8tyBK8IGtGykKuRLcb5ePygaD3z0QIxeXWWsi/crbcfjw54FefAvKWYBcIiRZhy7LOki/V8LlsW5Uz2vZ0FtOLFpRjkFGW/pC9blfnlXelyjUBmxQ8dakJANUedFO/QKrR6mGJZUTzhRAoYCZSl8YF0OBqtFDSz0+XQA3e0lSIiQmneVF8ThxlWUBFbmcGFe9UbLvhYA6A591PDRupFwHZNmXQdXTUk6PogqGqjFQ0yzVi0TVUwagecmogjjZB6VlVeAO5roEibAiIdOCZUl1j43pyQQUTVHyKHcKFahQuWzwQI2c+smqGyyEabC2oRPNq9cRvh8x29loY+RsDvAehIyMnBmw6Z9HSFq/V5kxgHR81IxbXvXAAIDKPhswKGfgcEQ52U8MlnJqF4thQ0WGnIv3rBgsqEukCie5ejnLpNrSlo4CQFuPKUZMEppclsEV6xZA8TrkvGrpSA0OLWShuyQAywHr7W01NErdcT21rFnX1VihujeG8wlIB6AaKGTiyQlobewQjxHKAQj5dNeW65WT2lCNJ7R+VA4g4RoPSl88QswoXua17efRY9uz6fQEXjNS4nbfDcm60dpI5bAGmQQRo+4uM/63l4Hl378Lb6UT3vi2n8ThEz7StSbFEX0rU0NGqkJHFdXmHvRGCCrAt9/no2HUD0ZB+pjlvqPCNpdxuu0w8gr59z1fcawbDe4aZxzPcrgf/GtL3eIx5rOD7rm7hUK9jyL3fG3nGfnrSVYZhhcPhNQeLLz44ovu96NHj/Do0aMHzfOHfuiHkHPGz/7sz+Jd73oXfvVXfxVf/MVfjO/6ru/CO97xDgDAj/7oj+JLvuRLcFOPxgeA973vffiO7/gO/PIv/zI+6ZM+aVde+/fYqEHswH1bIkbVsBD9WY2BVJ+1PSzQvTVlBlkMk9yeLyaO7JUpJ6GV34vdm2M8NO20NPsJNWrcyWnue25L2JzBBL+S052aNltOJwDKyEhUiQU2rsuRVdijoKpoq8v9+gq9UTKLUyKSixyVt9SK/LW1xnVd7/KxtyO9+Btx/Nl3g178DQCfIA55AcdL3efBpEc3u/Xrte0vFSRTKkNuOdZYzZHCH7flZsfjse7TWepm4wq+E+lgX2eEE1GlV2ExmSUjdca29ceEujm4LCFrs8ikZSoemjo/yCW+2G2HpTxPqRhnZf9MAfMpyaDDescHUVtGJ5vCAd13syypGGdVFmwqqZwQV+dZZF1ak73EIXexIiUd+Iio7C1C8f4UOaXGh/B4PJT7TxZjzDHQTqEjklOvxuvjWy/n0J5AdX07gev6ftEaLZ6sR2e/Nr/tg7HPuUyad3Eg+2bU48jmd9yLk7VZTP9inxF8DLb0JU7UdKM/WbpYqB+Oj8oSKQuqweqhEC44lxO6qgdQljyVOinp07KUE/0qIC+b6FOjlw7lzpu2w6Fe4pna3pnadmD2YdWlaEn+qmeVCKClHA5Q9De1CYJEuv9N+qYYELqnB0qnXuDZlnDWNh+NJc4nlaQsEQMXz1Y1OsqhBEvpH6h3tzU5rsYLVFtPPVFR9p6JjpB7cXK9CweVT+mv1I6rrvkyV4+xeM0IS1qMQVSNouoxZgZWSvi5l074X//dF+CjP/tb8Pjjn6z7Z7jukTF7Zda6xyXzgmzey16XshdG4pTPlgZmvwzM/pjwOdprs7mX7kwcpYHuu/bVyV6VGW2jJ6x+ic+2eIrvt8rW8+r7M5vy6PeQp9sr4/Xjrv01Zjy2dxLZ/P2f1XUz2W7rPpuHItuRbhzRi+OCp3WJUTULcnjAff4BwDve8Q686U1van/f/u3f/sS8ngs//dM/jZwz/uyf/bP4C3/hL+AHfuAH8JGPfAS/7/f9Ptze3gIAPvzhD+NTP/VTXTr5/eEPf3h3Xhd5bBSYj4C72R8DAf7+dzEySrpy+VnWTfht74tZmkYSX49edvtpahw1ODT+Qjr8Ntptf4420bjHRujB8Oriu2c1HgPWe2MNF7tEz0Nt82l85joesosXv8/DtilQCMmsA9ufmnQroz1xNpPEhGN+t0rRJMP1k+I7uFqQ+KNPBpBe/iQ8/+/+U+DlxzidHoOozpjWo2ZlUzylhPXurnzmU7mfxRzLTAQsh3JcbGl3CemmnGAmPactH0Olm8pCp+VwwN3dXUOUsqeGqGzk5VwOAuBcfAHFcCkg6u5U7r6QDfxrllOVUL0lGZzrspJ6WhtXhgXwpZSArMAlpXI/yN3tHRhoS2MUmAowy/UemBOY9HbzXI+/loMTlrrsrGRb78moG0wSdHO33L9zd7ciJSAxN9lQrvRJl7AVvtdazlpGpHawQl5zM1YWRt1vQGWWHozlICc+1XnfBqi5DeSyBM32SULxfLUHIDAYic29Nhx1ZjEUVxRPEFAv8yRC8yjVtCxkWU4uKvytjVbh1Z9/JP3adonqyTGssraASd/Z/px9d5t/xSPJGbh5BLx0KntDMiPjVAG87gkhAuhwLCcFLmX/R9mIKx4NgOVyyZwBKseBM9D2XxHKfpR8usO6nkCcWn8CM/LpBDqU09QaSEfpj7zWybClHPktxzEjHUD5VA4ZALX9LVzvejoxwOstbp57Huvty2XJFoKHRzwjmYBlacvvluVQgFnWO5Rkvx641FxKArhWZE71kAA52bAaEymVwwDqQQzpUC8qzerpkRaVgLrpq3qF0wHLsRwfX/bvHFr7l71n6XAAKCEdUzO2iuxSGfdqOTmv9cS6pbT12rfWvOJ/e5xx+pnPx6fkR3jhN/0YDo8+hjYR01ZHVGNMGn7V8U5j13d+FKn9o4q7XaRrGrgs+2y7pCod7dE6Smk8beW2D1D4tLl0e9TsBjpJVxPFE5lla5Drb/F3eBZ5c/FCsGBdxwBtppGe/iaVW/s8EzYiNd12Jq1HQCMUFcNO3kZ0HJaQFQ19KxtxPtOLT3P4mZ/5Gbzwwgvt98xb803f9E34ju/4jk1a/+pf/St83ud93tk8c864u7vDX/yLfxFf/uVfDgD4G3/jb+Btb3sbPvCBD+B973vfBSXYDhccHmCMGPK/kyibpnSqcWCUkDVq7EZ/N69p35v9LM1Iqc/0YADJXz0waEaNvY9GeRZjyBk11pgRcGGWnqHxDNhzggoWU1vfw+neyNFgu0g0dsZdwxs4vYH02grnuv+5UgVp8vi5VYptiZT8lu+nR3j+p/5L8PqxskmWgLb/RSw+LiCCOON4PJb7YyrYWupmY1k6Jv2gLTcD4XA4YMWpLjEroxJXI1Y2KMuhALkaMNlcfVxsirovhOyQK8vB0PobEWFBMnkxDotcYMg41QMOZGaZKo3Tqd7XUS8bLJvpc11qb/q+mXEmIiCV08twODTplqOwUyubrLABihdlXeu9MUR1cK8DCiuwublZqjFUDKW0CK8V7DBAKeF0WusN6YSc60ENVJe+1ToUQwpE4CWBmMoFoGCs2XizKOEuJ9zdnfDouTJ7mKnAnwUE5oRMuRhiyHWfTOWFuIIn3WMoR0DLDLqYdqWUCjRXE8fUrGmtfj+NBQayGC0+tz0sAjHbS7o0DlS4mh9+xmd2RpdSOfIZnMG3L2N9/DLapnwqhzi05VsowJiY6x0tCYkzwHo8OcD1pLOM5aZedpmWajjktk+KDsdiNKyn0m6otI3lWID26XRXl6Zp/6GUkJYjTutqTjEshnte1wrWAVmCRssRN4cjGMB6Vy/jlL1BQL1Hptyjg8qTLP9CKrW5nm7L2Hg4Qi6P5cxIx3J0M+OA9XRX7qVKqfRNZuS7x0Ba6r6XFTjdSSHqIRdc5ZyqTkhNznK/D6r3plwaWvrjyiuwohzzLMszDzflGOnDsRw8sCzlEtFqxMjhDCAxLKiW+1DuMaqHK1BK+OXHKx7/zGfjrY+fx1s+74exJAYvj6uRX1sN2Tup5Jm0cm5LP924KZXorQzTN6j1VmsckGvboxGWoDdrai/p+wDV/WMm/3bNQKVkllVZHlx4IFQ8IjvlwTy2Ut4yJmKqkR4a6SWbz5S/6bttA2MzLdfUxqvq047Q2lZeI+R2mZE1DdYavS96AF544QVn2MzCN37jN+Krv/qrN+O8853v3JX1p33apwEAPv/zP789e+tb34q3vOUt+NCHPgQAeNvb3oaf//mfd+nk99ve9rZd+QDXnIoGuzdGjAQ048ZuQRPw3zwnsIcAiPFhDBR53vbD6JK25q2BoWe8N/reemlkfbH38FgjyRk0xhCjUEbndCRfPu1qmkawmtLzsiwdK8KGcXe9d+OlaZuae5tZ9OrHzVqFNEGLO/IzfqOS22ZwQ3FtdHQ32EBqdvQbAB/wwk/+H3G6/eW2TGOpXhjxxMgpZcKTGMFt8JfcSERT93ZQakuAjtXTktJSDAhmHA4F4Gcqedw8OiJlwm2+LUBAlrZUnte6vGOp6+GlRHldaxuts+PV2yJLmajea8FyStqSGuBPdYlcXlfcHA81TT06musRtqlsuE+pHPW61o3RZYtCuZ+FwTgeCLe3MhO9uCqS42GPBz3yOVdDUDZwJ+kwlFp7zOsJy+GI05pxqLPbMmw2b03JAMwZzx2PuFvL8bOH5YBcwcWSxLIq/B3lYC2UY6ZTSjhlMU6LfG7vTsVI4aLxcj35sNxrUw2z2E5rocULs0q5mMGkhwIkAxtWaTFiQFoQZ6CXtDTx/DDQZspBTSpdz1EwFw2j2rIMHjtntIzfyaSB/V2erbd3OCwH0PEGBfASlps3lL5V7z5CbufXFW9J9QKCFuBULt2st8+COSMdjsDp5VbvpR0mEE7Aelf3rVRgL4cAcJUOEWg94Xg41kMK0CYhcl6R18JvXk8lf9SDKY43Rf75VMWd6v4g1As5M3C6BcB1iZgeCV8MlhNwSODbx8iccXj0fKslIgLWUxmpxMivB3UAxTtzWuvdPHXp6OF4LN9Pt3VCoXhH1scfw+HmDUVXZMZyPJrjmHU8YuZiGAHI613Js14ISqkYPQnc9hxRSsh3L4OguicdDiCozqHqocN6V5e1VcPucMTheIP17jEAxkuZ8HO/8Ha8/JH/A975G064/YK/hpXk4GEYo6Yer1EbaNPa5HfU6PBr4C4bn2SdCJETxeyYbDGjHdWsSUJsV+vbtyENJ5OG2nd7qEDsm+cMgDgCnnt2bny1fXdEZyv+OEQq3niLZRU9FGW/Dz1MeOJxmnO8s41EJv5ueraOY7x7R2yvWnjrW9+Kt771rfdC63f9rt8FAPjX//pf4+1vfzsA4CMf+Qh+8Rd/EZ/5mZ8JAHjPe96Db/mWb8HdXZnQAcrenM/93M/dvb8GuGCPDSBGSv0OBXJtmRjEiBCgZ4wOSQPdUyP3x4jRsRD8Hhv4e2rkJHq576YcIlDiyz04/k+8MfYAAX1n85b11xSeExkPDdSoagaM+e6NFB7+abx9zd/JeyvCA4S+287CpUxECVwikQG1s8l8TQEEOj3Cmz741SD+NRzrnhWAm0GTUqp3xaR6LHIx3vNabis/HA512RMq6E/1NLKymV48BeAVd49vi7G03qEsKVlxe3dXlowRlftvuACsm5uj7tGp1pJ4hg7Hur8AVDcGi+GV2tKWpe4PWVLC8SBLqrgun5Hb2VM5OawKrtx/kZr4i32xVN4SjjcFLK5rXSYEwu1dBaYFjYCQ8OjREUsq+3COh6V4QqgYFsebI1BvUl8SASh3lxRdUTtfXS6kFbogrxnHm2PbsMyZ29/dqe7FqLFPzOB1LftoqiF2OFSZEeG0ljPOlsMRRKl4pFA8Jqgz1MvNIxxvHpWLVGFPSkttn0tby197s67xHu91se8ZhBV+PTu7OJGe309j99pw+L71J6HXRn2cWX/sNRt19NreAgZgPBjpcEQ6HssG9EZQYQDJiYG3LxfPaT41Dwhx8cbQkoohsZSlUTUh1tuXimFwuCl8yGlruVxOS/XveJR2VCYWylrHBenwCIdHz5dliRWgp3rM+FrvsVmogncqxnC5aqAehkBJvW5LwnK8wXK8gVyum6rLcrm5wfG5N5R+SNT2BNHhUPfjlaWbqRniQNNa1TNSlsoVvqnuSWO5rwel6xwOCw43N2XPWfUGEbgYfUsBC8QZ+e5x6W/V8JMlaJADBwAgZ+S7W2A9Fdm2SRVAvG/L4dCOvablUO++Id2Pc7qDTvasuL074Rcen/CvfvEA+n9/tYzoOLX9NoQVi9l3Q22fjUxXtn4Y+pLfQ4M2uRRH7NEeG9+vtC/afu9H/zESiH07gvjRbzg6fdztZ34NR98vfR5w73vPwlhH0OBvrmdmvEa59X/z9M5okPtipvH6MC2XM2bGPPgwQ2X3D8Yeao/NQ4QPfehD+OAHP4gPfehDWNcVH/zgB/HBD34Qv/ZrvwYA+M2/+TfjK7/yK/En/sSfwD/5J/8EP/mTP4k//If/MD7v8z4PX/qlXwoA+IN/8A/i5uYGX/u1X4t/8S/+Bf7m3/yb+J7v+R78yT/5Jy/i5bKlaKzGinRjgAGq78U46JZ6WYMmeFeoqIICl/q9MdHLIvHUWMpuf44sU1M4Yj04Qst2L1Yc1eKjpbdx490yZGVjnvefEs8GDp+jbsHmG4/jPGBDrWjzAWlL6GWxJ7TYze0f31GQLiH92mfg+Z/+SqT8q2B+qe15WVA8KABX4I16aSXVmfy6ERvFa5LkxDEweM16l0lawFQ25Oe8tj0EC1BATkpYDrVV5VyAE1WgDy4niYFqW5NDDmo/qUAJYCyHcnLXqd6FwbJLHKirXcpG2UNirGXzCQ7HG12iVWd/M4rRdDqdsCxJvSpVholRDbDUZrgPdb/NsizNg3P7+DEO1WCQu0DW0wmpnGCA091dO/UtpQTKwPGQmveGOYPqBYlrzsWYRAFc66ms21+IkKsBuiSqx+wW+RyWcsJcurkpe1yy3KmdwbnkczweylK406nkJV61uk8I6VBAVV5BxNXfWw97ZjRvju2NKzISCCsX74z6TgBZQkaAW0KTSNbiqx+mwQ0WHarpJab2GP9M2gdDeyyZmPEZTZ77Xkjh97iXjgBaacIE5BM4H0A3z2F5/g24+9XHkOOX01LahdWQnGVPWwbdPAIev1QZLqB+qX1LagaZwCnV/ZoAr3eljyQCUWmLp9vHWAHc1PYBSih3GlHzZjCoroLMZV/c8RF4PaFs9SkA/e7xy2V/y+EGTAsIuRn6lJYyqVHviOH1VMuSdMkbc9lzwozDzXNl+erpFvl0i7Qc6/6YFXw6gZfSt8rdUMVQKB6gesGntJPa11pLePSG1pZkn1GrcUpIXJa6oaobArA8eg4whr1eWFru3cnrHSgdgXwqe21yOXJ+vbstPKQFvCyQu9xyXsvqjfUxcHgOud2bU6c267HSa0p4cQV+8sUF7/rxP4q7d/9lUJLdaTJOE9o4XA1HNbq01cryVLSxnFQmtiWztn8X6gOyJ6dNMOolI5TEHY10Nmt2EWkcPxCj8IhDqeyyu9i/UYG8lrE3bjyHIxxwOYjv9vRCvb125Yt+m+UxMkK2yjDjffw5pjN/53mlwbPXR3j/+9+P7//+72+/v/ALvxAA8IEPfADvfe97AQB/7a/9NXzDN3wDvuIrvgIpJfye3/N78Pf//t9v3pk3velN+If/8B/i677u6/Dbfttvw1ve8ha8//3vv+ioZwAgbuuQtsN/9iP/ZxQDQY0UMWKs8aLPxKjhLt0CNTRkeZlcvCleGqKBUQI9yUxoS9qWv9kbY/fZzIwbQJtigTHWgNGZq3gYQme8mEMC5sZNTGMqoj53leO+b3W3Pu2IRvdwpvlGmvWiNNuDg388VjpDBcKzlD0Ik9YoMzIMwuGj78Lz/+uXIN3dgfNdbQtyJDLV5Vp1oATqkjSu+zbQQHCiAuhlWUSu9zksdTM/ANze3hU8AYKcnJZrGqFdyiSngxXAx9XgAAsYKHFSy5+bMXFYFtze3qKdxGQkwABOd6fitaF6B4zp6m1JSd2PkhJhPa3l5LLMOJ1OzRMFlP027cLDCpRkGVxqS35KzmV/UJmR5nrqWmLGcnPEyx9/qXlT7N4oW1bYTc9EbTkc1RPR8roW4yulejhA3UDOZX9BWhJ4lT0GVPdHMTKvON48h7vbx6DlAD6dymxzAtLxefDyCI9PGS99/GWk5z+GT//ffUBPT2y6SLzGfmLET4IYHUDaEgH1XMt30QWjZbBOXxDaO9/Cox4Lvw0Q6t6F39Y46YwZU1dzg6f603nBr3z8TfhL//1/XTyHzz2H4/ERjocjUiqnjMkesHYqmnjr6kQAt6VktX1QMXxYllZVbd02wgNA3bjOAPh0aku60uEGYmqCgPXurp6yttQlaHq0M6Xi7eP1VD0w4iGt8/niIcxrWepIwPHR81jvbsG1rRbjo1Zq1RkykQAw6HDTAHrr+62eE2g5grksUlyON1hPRVfx/5+9v+nVbdnSArFnxHzXPicv3MrMomzkkpMPGwowNlLJbmFBB5lLxxKyRMuS3TISv4Iv0QGJH4CUiA6W/APcQO5QEjJCCAtogWW7CtmyKQpISDLJvHu9M4YbYzzjI+Z83/Wutdc+Z988O+49e71zzpgx43PE88QYMcJlVOw181bjOTPj8oT9p78R5mR07CHbxa53czKiMqDPH31hgORp87Th77u8AjxP7hpoah5iysZ3s1YosD//FOPpg/cZN82jnHSixfTphOHpwwf8jz78Cv7j//iXIeM3y3zax0+95thIin8GKW/PzWjXa3gZEt2zEqhgvZOPFz5zYCBvDKcfe3WUFm6SpCW9e+nWZy9//zFS8KlVdT9duVneW0jN5FAK3T/3X/xXb/r+r/7qr+Lnf/7n8Uf/V38Rl6dv35TGWbg+/yb+r/+XP49//+///UN7bH5Ww6sO6KyTrAl5dOGzTPA8C+bscM0kJklWRiEi3e0y09gXYtUJT2qGAHpca+RmEZIAJ/8EGQfAUcuL+n6pG9wSnNque5wjwD8byrcJzxmj+NkItTTrRtDXpnGr1qK1nNR8+Nf/Jb757/5n2K4foXolJAgQolCfnM10K0wu3DvZ9AMj6VggDqwV3wnhwGXfbTO7bTbO82L2WI321VGgnNniHr62DXM3cmFezLylnXio+qGZYkTser3ishEkkDBZaeLMG+G+mC1riiooB3ri90TEtDvQcM8MdY0P4OZpFn/bBuZIsmfuObnHJuG2QkzVNQTPz143fr7IPnfbByASIAoi2J6e/ODPGcBQbb3B5owxTHPrABniGicHwnOfOUZosy9O4hxcDVXsIl6vtmoPJ6CymWckkyrTvZxZHUwV14ZNJJV0RwGA/6URm4NuoUbGD+T0+DtsVTlrixoe8ZqTiMv9XGFWVMZBQtzzv7hxr468e4sEt/6u99RQc4IC4blEA5dvf4Qf/47/AS5PH/r7HAuT3rAMkCsI3kvOFeFtTHU6Id+i/yg37HMfGvu5iJ2hwzEw9zjXxoCIgp4P4YfZYl7d29+zmVlFc1qfMk92CJfUc78GiOchuiyPyRnKDwBjw7x+9PHkZ8jUdvLy0LuYEZo9zF0DbpEc+H44kSR5tS7aHCFw5yEjGs9IzR4RhIyL+5sEln/X6ACSpoMcN9EXBNAdwAjiZOUrs5bYGGKJVRXzI3DV4YcNwzWcmgekIk36OJZijpZVr5lxJhSDh8NGTfQ5Zx0XXguR5hpYPS+FGodU/DQe09VjPt4Sgljd+JaU/NxDEWteFGe1kc9w5/n67NMJyW2KdUz7Fi17uabP5GM8W5KhSVvU6+diXV/Di+FVzgOq5iXNzjqZqZoUIzWuCVk27UvR3Bi54Tk2VZPDtGbEby6bi+alEx30eO23kxoCupb3AsekP2MdIMq4CsQbGpo2dl63cnSb1PQ074XTIXx/+eE8yZdkQ2Mrt4TOrXCEWBW+aYnWJ5RzwcQUpguaD//qf45vf+UP4HJ9guo1XhXfUEq3r0O44R4ABkTqWTUOou0tOwzQQYSBFQN19VwnwMyaYpVXEcSJvYqulq8KshIIBLJlYWU4QPS8XS5PqZmAbVTn3iACCNu34+5wh2sz9j0ACTU8XKVlOa0OHOBDwhyPXsmiNTxv4eEMwDY2dzAwo07FiYrOHUPTScBU2B4Af5f7bIa42Q0kNi/PfXeHCCeAXmwfzZRcHX6mFsuJKkmpOQ8YtkfiskF2ugq+AGPDPn3Pkgh02J4ac0dt7U0oNl2DNtk31B0FCIKssIXNMUCeJU7nAHQsED1B6/NOcqqbWok+mGmCIBuodx2ArYswBJe3QFQ6KgggE2OdCwXZBvY349fzO4B0KiNj4PLNz8XZTkGsVWFnpMQnsF+vuFxIJjgOvE5Ca3eFzNRIyLYn6fD9Yrp7a4gAbiYZCwsjf5/VhODiiw22SDFnAeg8W4law7nHuUhwohPmo5xorInjetsuQUgQSFm8XhRj7EGaIAKdfo5PrTfA3t+f7bskOKNoVKLpJPJlHh23bMWxQWf1bOb9QNXTUjpSAy5P6TKefdFNCsW1zpiexzGsX2tqX0O6jxEaXXGzvd3tL6TUHckN2y48T1LWiRZX5klqIHUUcnyhPS9UDNnvFeL76SRG0zHU6U/L3zWsM9uteFji9fcfB+Jremf5O/vOrby9lOe3hCzT68pTw4qc7rfD+p3XfrcgursVcYbYPjHcY5NvTe8HEN7k7rmSmQ707W91o2zXnawkaeE5NhN9/82y8V/q80pSbpCaQo6aGrs9Z96PZVtJSjz3Z2WtL8FLuXePwPBehf5nw+wtQyQwwBcSuv3szVgv39XzGloFM0qt89m3//q/xId/9/txef4RIHt7J7UcLmrFADxP394GgZynLlwt1iA6BPXcM5Hftn+byZUYMJl1hVjtBHnT0syM55uJqRGJxWcYKXi62P4aHi7or7kb5TTrImaa+zRvZZIAWgG/5nSQG4Pt5PIZWiM+UAd08HNvuB9JYgXW8ymuL1W1vUA0vfGq4Rk8lk+SK0Gc6O6aqH3nfhuJ8gcomWqAktOkKKbaeT4B5LwNtiFQGJiUjXsTrEDb0wdgu2BOoxGsG64zk+BA0qNZjHBNMjEL8GI/kPIfiUmuuAfMSxCmVZ7EZ+OLpC10XhuECTkGVo3yWVhBT70fv7XfW6/bM8RMkHMxNWFuqmlufy+RS/shgGxp6gW4hiQ/JiFAiuQkkSBRcc0MFwessbYE20AhMlYYaimGu/qO50x2TusbAtcU2QPxSptsKxlQKWRJ0vw0arkOUrhMCXNL0wzGQgbERJ4AIhtUSdoktJ1Zd3BS45ly2RKTAWUM99b4PXOhbhqpPNAzersn78QjztLpUpZZiPOA4puFyKz1H4M4tdkQ26O26wB02PxMjQ0krs31B/u2e27zxaTID2swxiL7mqKWggsEgE8vmnGV+Suz8DlwXl0/S7tCSKZ8lnNDT+kW2D4ih0cDv7QiCVKK8n3+OUzUdSZby1bz9BL96e9memVh51C2l+rmrF7XHPQ4t9O4HWfVyvS3cw44T/U17fU1vGd4FbGphKK6XY5DMv15MzcDwAM2g9RI8Uom5b5rZpoZWpCafCbAkbTUb8f1jOFT8wRkOTqRyd+huQEKEVrj5j2sz2UdcsfrvIeW/rHuX6Y4ldScEZx34ztrQvzmnTjqE80x4q1PnNe23rm31u7lX/8vsGHim3/zB7F9/DmIGDjgSuqakeGroba6l5MioA6ut5DfXEkOr2UAqB0J2EJvZd4XCcwBwVC6g+UeEYIfN2US/1SsOiYu4m/zhDYdT/jBfgQ+cLIgBOYa5ZsiwNRIb/gKuHGVzTyOwbRBO019HITwTJvhoG0Lz1EzTVNUiwmdhMwA/GDBOXtBAHOPOgiE/FE9/V2Gnck4pNTDAGTG3qEh9Fwndggie0ohfsPTAeB7fwagO7bLk+3pmdPqXiTMBOs6rvuXi7t2P0kF67FO9iI1Rj47NyirE/yqeznGjbyEtoefkf7K4d3IaOQxbx01pR0c9bFX41CbY/zAwbOT1wqLOV5qaGDZTZ76WnmpF9ciinvisrEz7OwXB+10P6yzlgSFWGQpjMuokSIH+ZPn5sRhlikTqmaUwJ3aGnEztOh01NC2a/g7zMgiMAVBDmq3CJlUu5MCPLRUlXNWMX1je67ukHTCXZqQywGLlieJjvT3FmHEcStAarPqc+o6ZSFAJQ5EcFUBdCxeSa1T0b18OA8QHlYLUNsZVQcbw6LL2BQuGiRpyaopPUKjlx6CQkt13JrMTvrtUien4/QmiJbjs7O47Z4UeYRDntex3EK8I4d7VUZnXuRmfMaxvEh/L6JKiXPnO2d5u1Uvj8S5k98jYJJVZJ2Gu/X6hiA4Dt1PTe+HEB4mNtsgoUmCUM27qnlYnHOzmJ8NATZ3n7ytHtLkbF9NEXDlWpQrp8d8RH4836u2Ju+xX3ftTDyvk0eEe5D6+Ps14WzN4vil+qE+OdRB98Vobe6ragD0Gu33EQKz1vQJhWzCRBW4/If/Aj/33/4v8YRnzOtPwbPgOfEDtPHW8MBF0mHnayBIi3kb8+/FvhufkBxEqX+4gh/Gs70yI4h3mK/RrMRdjQmAKeaKVmAHdU7JlWhbjLbr4fmieZYU0FPrZ0iaklWcBCcIor1ux7CJ22FuOAUgkhqAAUh+LzwaoABGBTC8Dh16F6CZG78LUCO5AizOnEGAqBGj9jdX+uGEx0z9LjycEQgTmfyGuPMB39wNOm+Y7tr34mYwdOjANHqoc14FTGvQm3Hzl7bZao1R3uJx5FL1M27St+QuAHp8u9KwsxJY/Klt/TbG03oN9P6lS9x1nKZzAEBkCxfiaSZl/UfdMURoGOhRjN/RzAG1qYhDJzXGD8ch35HQ0CSxMGzs43jkPhNVd0wwhmmVYm+JwWc6wZDWz8W1jSPKwvOk6lo0vxvZY704ktOZcklaJUsuxricMDzs48jP+zHQbiQ9TnDQ1CCFNouyyksw9+panfUHH1vi+ZEoG4Q7yNob/gKcyF5c3nrdiZuc+Zhku5Kc+qC2ZtcN8PNgBAoV9cM7J+C/J+d6L1d6BOymZ9yPx9ay86Q813E/R95aoj6266KVtBfWURjxpN5ZIy1fJclZ494kOo+FF2HAi2D+DWl+Ql7O2uF7D70xbwY9XP1QKMSXGR4nNqiamb5Zf70m6bC9y4VsVGcBSGcBTYNT4sX36j0s2ppGavg9AJ42AVmSF77D6/xb44SARxeCa+j39IH+fFuK1CnjxW+dCsM17RNh+YqQ+0ruxLl1syMdV3PfojE9rCvHHVSt5MbvKQAMbL/5O/Gj//f/Gk/6a4BMBF6yAoEexIaD7N036dNLGT3+ENyKAJcnO7ST5do2cdfQIAq2dx3061Rcnp6wz909qhkw6htYzZRFfZIemwEXcyEtzncIbi3v2wAwRngF2y4XO+STRAyMKthkc60DzeEUIptvKi4toYDC3FDvcwaRUD+Uc056OeN+oC3AVmxody9ncxJKS2htuPfnctmyTsewa3DTuAEn7m+Br7YqV7VhLIwgbZRV9O1iZ+zQacH12T1hOXGb7vZ5c/JEcLhtm+3lePrGXesOjE2x7WXT+en8VOm0nsqGl+ZCAq++erKarSQpWRPLfTe3p9BcdXYA6GnfI2P9dycy90hOaqkoiQmSecgttYduJuVlT2AqQCMyxNsK2+sGhOYD/q4fQpvvlEUHf1P9+9W72nT36GYqlgdtCgAdGh+ndzVqVKu2RqGu9aTpmX1QXQui2rUcbaM+Jx8nCnqoefepziS8H6b3uLW8GvVvXtz8PJlGaiIj9p+7vQZg+3i4D7DlxwvlY1PcXM8LijwAtc8RCraVX4dmNNsOILlgb7LFjKkD0M01sNPJibrDdYXKxFBbgBjujho+lvpIoflajhCOFxMlVRN7RkZY+nNmUXv/2eyo7YHUYmc1sPQNMpzRJK+syJSWqII2CGo6LV7JzyMTcJ13zrK2fpuLrGtWbn37HqSIhtDzMt5KI75RMnqzDpbGuBXHy/S9kqyCL94tvR9AeIXGZgbJaORCTGyktzIAOG7WF6kmZzQx8/016E4DLP7sRIfpAxAXekFmynfCaYH/7SDkqLmxv4xzMn5vi67DPSmP7isr3ta5zkHJy3TrreFBT+CvCI8SrWwZPb1/BrAGxsefx4//6/8tZP+V9ERFrYqbUGybAexnd4W8bQPPz892IOfF3L8SEkISiIxxgcA8CvGMCoWaVzJQXpibZAC4XC7ANUHdhBOfUVZhQdBAgKfu2cvOsxkONsJNrINykgLbAyRECQGEaRc/NAGgaY2GH+zu5jzq43VcYIcQCi5PFzw/X+3cmKcnXD9+xLYRhBrhu/j5NYDiurvpme8TGONSrFEEmwzsc8fT0wXzuuO6DfdkZa23PT2ZR6t94sPlAoXvk7kMPD/bietj2CGAdOxg9SCgnmf6arpOyz9BvQzBcM9qTx8+WDsL3WBfMD484enDzxnhg7XrVEBlYCBNqGrP9a3rLndeH+oYPuKAus5fNTRJVAjIbC+ABnk5+0bSzCyDlKcWt+7ROUq8s3GY9xKxECBS0lqfNPPNSoYRHrk0x6WWFMZWgLfkB5smlEB5JUl7gHeLHW777JoEx9MPwuVjzvavWHz1fMahlb44YXMLgaZAxsU8om2XQoouCCLWmoZ1b+BcSeqZr4KIZdC98gxtjciIA2xD21Q1OoAtXPj+sbk/gz0kBacRqtByiEBHJV7sKep7jHx8qgK6J8lz5wPcp8Q9dcwP+4UtLGV7UoaUjwEmOWKPDR1jcP43DeWEYPOY9C6YXgipzQ3tpHJ8rGO3G5RmyLzk6DjeOz7r4RZmWKfS43g6uyHl3/MvvTq0Iq8A/wTwH96XFvV1377DbOoij/oH3gfGfMfhZzLTv+XCqzQ2q0vl1MQYucln1NrAVk5OzMu29jdJU9PUCB0PFJJDwVU9okW+AKBojNDJi3iandzYO43cRN88kqBb4bXd+WWScv69Llwf+e4nDDTBiwz/ZI5ahGePWDcontVpfb0L/2NLcHUYKhjXH+M//W/+D3h6+o/A5VsMP48l9nuUvR2qtmfGLEAmPnz41ibPsQG+iVc1tQl0s7qNgZ+6i2UeJsiMJohxL1xj4OnDNwGQ9nKGDcH53ElYfCoXceJgG4TnnGErPgvAMbMZ26fzzbcGeDgFco+QYwz3KOYe4kSg+x6nqgNwM7yB6/MzdteufPOte1KDAj/32wwKhFbKYbXYqey5v8UPP+Q+GgUw7Hu7ezUDzDnD9fkZMjYnmbknITaDo1j2a4LKMTYo1LVATtZ0ulcn19SEy93sMTondgW+/W2/HQOKH+1X83YlwPPccJ2ujZIdwITuO+a4HhYnCIuq8xDej955GG4rJKKkca0NrxfTtKMZGZ8Q6sFXpEt8WdIvQCX3Wkh51letawiCgujW9p0molatatHYUDO6+Vkx82pt5p7qggSMujBgaQy6Hx7HuDzLRmiOBQBq3s9C6+PvWL7NXKtuBRc/DA77NUsuIzQX6t7WeG0gv5I4akKMlAxcEuBXye7mV9wDE2Qs5hlPw4m5Dd3cr2biV4P4COuG2kSmM0rvYh0BST7UiJII3LmC077QVgkm3VFQG+PkcH9+DhNSekgLU8AgM9PlzY4xnoJcRvlJlqhhESd3lEmusZ56gc6rze06XVtji5xQozMCpm3a5fAuqFwQrQA5iYwdijsh9I5WCFy8wT6+jrmi8fSEo33WcP7kfA59dGbW9kOWm3WvVpYj94B5rBCG9+fzWzk8KD88L+LfqzW2fuooEs/T5R6cAr98NN3Jx5rTVrylDg5pnKRbBOJj9iWfN4jifffYvGNaX3J4mNhcXE0f7ptBwgLToED9BGja4vcN+zRhq6QmnAKgmpd1DU5Ltzkk8Gn04Oa5TGCe96Y5OhFQx9/H9xG/cfr7/Obn6UWHsfu5Outr0j1narfTlBRkBylVflbhsq4oU7ja/Cj47/1nvx0fnn6M6WZUtF3n89jT4QlMmnP45HuYjlzaafkNIM6wgKYWhZKRHoSqiRXBkpZ36RVtd8IU31I/I8bjxwbgMD3JvTYQYL8aSbNPpbkOz4nIM3DUvag5EYqsibfFtP1ALA8yP3TRW8/TSUcMwsZseE7E01INk7gMEsAJ0GIyV1bp4SY2rtGCJsBY9zLRvCls+esKdvu01c5lu5iJ0QD+f//tv8Gv/dpv4Hr9Tex+IKsMB6OtTydkEVAPUuVJL2OlGMd7TClrOsxjJCfz/LuazeReHLsmUTkOJEVZ1fZ32l6fuO55X0sdcLyCq+htXWMTElPMtPLipp9RVyJxSGNqHBzsVgHBfS1bugVX3TP/dHHMnHq/DI3GTOIDSOz5AM2jnDgFCd623N8jsOc0v4pzXjzPcN5QDrE0ErKl2/ZyOKXVR45Je0eg12eE8GHesTmiSfImyAMuOXgVyH1rYgsRseCiCtn8EF0SvQLQpeQDUCdyM8iWKiDbMPJXXFKPzTVUxdRNMYpLdnq383oL5yRpyhsyUSfG9gTdnzFkYN8H4IsdY9ihvoqJoTAzNAwMsUUKCf+ElJM+LpzEExewd5vHQltAyvHAMdDn+Nq/2SwQ8T2J2oB59L2s1SWFDqBrfEUfr2+F0UX03o0DIBbPymdPvnwkKZHOm3K4vFtJxL14n/INvK0+H6nL8+99/yToa8jwOq9oqPtgTKikVqUQC0kyUU/obu/HX8ad2HB8jxqbI3npROZ4n/le4+T9+ve14XN241el/TkZ+GtJ0+eKexqOwjjOVSguUaWulhZA0Fy/BmhKwFGzSVJEMLBtG56vdsgngUtV68fhgH7NNPPcm3xncy0Ew7Ylycn+2vM1hvh+mOGeyTQWfbnqGm6CC/GozgZYOmpcAMF2Ed9TMxMo1L9F4xTEzZ+pa4O80v2cimH3lHVoj/d9t7N43PSrk04ngCP3KwEOsoDUcpRlOBFqErydhrUT9wb5I/z6dcP/6Tf+JwFk/nc//megm999+pknY8PcPwJbwnR+iPBdFxnz5lA0VC+FNVYnOISSuc+gb6Wupejp1TKcU7TbuupqtMO4tvpvt/fnj7g8PUE2OyhStosfFAWYe+PsU+bFL4lNEJ85fZO7a+N4tgsJDfs3BLo/Q8Ylxlrs3fET7mvpuO8tQKaiAHNAZDONI4kytRBAEqFF41I9KUbNUnMkpcdoHkabDhXUyczmpHr6QZo0lRPIxcz0TOs906XxuIQXtPiG151AfOyU/OxXOzxTfD/PfnWvaiR1TkLV64F7hsL5h2JePQ2WV4quivt3+Ly5pxYKVY9mpGqqYmLD1IENEnsSBwBzmuiLOyw7YI4Fos9YXyyUCitVZoj9No3AnI2EhQjG3UMrH8LnnJbXUDU2L4VXKWxwv4yfGl6bl88WXotzvoYvPrzCFM02YvcDMvsZNZz4636Y3G9TSVA/ZLMRmupswJ9TA0SCQjFtphd9P03e70QHJX+d1Gi9iHtnxOc2Gbo/Ks4Ewz1hUddvbsOKR778unDIk9a7t790gDf1xhsE6UEzs2YJefhmtPQKEiXX1bmRtm16dxBA7YiUNOoqjADhEYlg8rrn6m3YyTNvuqziSJIhqO8H4fdVw1qDE35Mngu5Cu2KA0JqecJsRcX2/ziBgWtKRFJ7RPOytmLsaRsREFyve+zhCUcC/pz7gmiKwzxy0/+MfKufBE+tlXtv8nfmvjupyXFGs8HqqWrOmQcZzmXzuJdrSHpDY/ur2vPLxero//P8I/zd3/jP8axPAcYVgv/jf/iDGD/3m/iDv/6P8KPLR1ynAs/XJEplQPCtUQjOaWh9MNuvXJa4ebfup8nho9Hn1ny0JOCHiCqxt0CRZwNVcGIrktmOdHEuJa2a5+DnJyVIKZt/eUCnxsc4plLAiqRJ5dyvrpHhvhmeJ7PHu8l5K5mBEwr+vKampeRv+Lfk8mRmThDIxaY9ahRBUgGEKRd0T+40NsuPqS+9T++FXEsxj9MA9rUvzOsV4+nCBC13sxIGzwcU6mVJUgMbQ3Wq8j1tuk8nLpRrFoN9hu6So/plQC5dE6TFc13N95mnRTuPaLqTgqyzQccDCqju/s0Nen32uE4iSeZgsi/O15k7rrsA2KCyw3ba2Mk1RrN2a0u1PTYQ19W4XKRr5+pwZYg0EhPnZZFceem4BzLn2j5mBDluzsmOLP922XAkB+ezP0fha4nEGUF4T1zQZdLL31nvPZKXeyTnrd94KY7eeKB4HVn8rOHOVPPm9H4A4XFi0zyVpRla7mcpmprqzYxTnaS5WXUHXYlOaGcinVnS5bc8XUMyhYhkngQUQqt5WjjD9HAmRO6ZoJ0PDVlu3VKx1ndeH76UkXYS1qw9KKQq2KrXGU9aDZvFkRyexXRUDpOMCRNGbAKn+n4Z9bNcbFXfJkp64rJUBSoaK6EkCdzDIjE5+mQNBEGiaVutFxOWkmDKr6d7Ips6sdFUJcqlJRnFnDsu7gmNhK2avOWBl3Yo5r7PRuRUp5OFNNMSj8+w+Spr3Ofgg6DZ5Jc9S+n8oJOn0DCFgwUjdmMzE53h7SQiGFuWVIDwOkfPVqyvSKde79MOVvV7SsLoTbvjgt+Y3xRAY+89iwDz5zCx4XrdwyFCRqlAQ92T2Sn8j7p4RAtzBhRiMzNxqADrRl2jtQqJpZxKcLjXgLKzrlUnIFvNYrjjohMZQY3WS3lGbjj/CrjvRmGagtiXsV+BuWN8+LZrUyuBD82IAfC6vyRXACKTvmBhJRhbesdjBQtSQ8k+Yb9nmJaRDBmvoAvl0hdFyl4bLynz4vty9ESjIbJ5uu5t8bIZwN+5d8s/6hqfcCIQaWc/UjejMoKomUcn+LHfKPbCeN5U3fyu1FssNIjX8Q69XgE3Z4W3MRc9wntcMcUzLdOI8tnCjxYX1iwLXMPGvG4uK7zvRjUrdgzsMHfPXBC1PjuR+9qmv2dlG8jxbouf4mnZnjkunLgxbyxmUfDFYgLlIHuYpMyto4PLAWlE2+XAihaO8xlTyetjzJVefRnhy8nJdxNe0iatbf01fFnhYWIzZPpel7LRv2zgF1k0LJiH54LuqpmanDxUU9vv9l4jLiRTAElThbkRpxAdxArmQmZEF7HC8AKpeZFnvI8oOEKRzxfOcizt13mZ1kXqt5a8A6f8W1uitnLEVwKTYi/vYapC5sx7vjK6bSM1GvsOnXa2Tba1p0PQ7sDeNs27nb9kmgkCbOKcCrNtF+klckASK5+CAsZSu1L3y6QDAzt3B8XsI/fEZKAdNfNTiYuRKT3EByTqjwAzzXUiYgAeOlSINHU15SFwSrDKFfa2EuwAAwVP7pFumuUFKIs2zz1I2Ts6SFYA//XzL+D/9tP/PnBzFAn+X//J/xT/w13x7X/4/wJj4HK54OPJcM9vJOSpz8BSRdc4jgT1NNYNyrxfQVT/d6Upxy83J8OuJcmFHNZfkhxuuu7Lk8LXyzfPS7P0Iqi6xoabgAmiVd0sSWKfiDm8kEIqbFwqzbTGKCmT9JkDDSVpk+H9ZoTZlpY+qdA8H4ckgW7MC/E2DUo6JQiTyxXdOAkxk62tEIUkVlYPE1P37Oti3r509xZSJyfjUvbIpLYyxhBJYWtDgJv2YxzR0UIdqy5fmkSW3mPV9x7J5cniaH6j9c5ycKcynVg54Oc06pZ7i4KkhYkb+wUAddMyykgB9ulmg6AEZv+fUJcF1NrYwhO9o1qiVWtjpIbanWPPpVY3xxv33iDrgXUnSWWU7bf2izJ+JNKstR2R21M9PK+5XJ/0GfJr+K0fRPUohz4xvR9CeLXGxgiFNlOyleQMmog1opJwtJ6HUz2itfQquQFA7Q2He5CUki4inQqB894RItwSEuekRk6idJJ0G9DUSC/HWXPD7weSfvjd7zw8xGxymqjXWF5VB0t8TuOJW0QHcPODOsHXdKtpCAmQqntIKw2qaW4AB/rboolYN9IDKBvWHSSMvv+mbqKv+wDSs1hqhSrZ4Owno+5F4f2TiRZogIimcOs95qOGurm0muzVTfust9SgIM7rAagF45jUiGPAs2ZZ4ndM85p5quRp1HwKHLLnxvOqIar5+o9zw7/bv+ksZGEIv375T/BxfItvPe/7nKtqN97VVS6dRXrj+GxSxutHseKylB5S/oL9BkbCuUo913jl9/S4VRtyBp3uEZoev0te5nu78MBLObQRfNEAIuHdLvZulSJzZR3kEnBAr7bBnH2SCxvqCwh2oe6AIh0KSNGOCslXcVlskUap8hxv7HuRvSEB/sN5QVSQk5iyAV/GBt39r5u0CeDmlggNAkiMmAbT8z1s4aEsCAmJTm917j0MPrjVeoZpt6ntprz1umQeYo9RLFQYobMFxJR76nmhlixJ5aIxYRtImohNFegUIzHDCM1gXU+4dznWi0J0BJYIV/BwMCjAwAhTNAH35JSREP3eF7jiSbkfUozjKmo1q0u9t0YVSjxgX61B4t9OgPLZK8ONOeBr+BzhnGx+pZtfVniVxsYIR5KXrnlZSc5RQyML+Yn3g7z0uAftTSUoQWj8Ov7eeSb12sItde851C7PT/DL4137U4XQI+BpJUFvA1x92L5MrO7L1/s1VPFmttJ9jU1t5QAmInGWStiae/ypRXsT4ConJgKjWlt1lb4WZSYiB7Uw9jOJEefOgEJF8xDmHjVZoalGrzHDRBXO4qQ6PZ+ej+nmdvxOi7kQGtaZBfemVEz7OM1HHspkGlonvu2Eb6pGFQvrYoHY4ZQhQFg6JeBzLXUWwNHQq6Xt+axupQWOt0obn9cZH1JLZfUW4HKpXf7X383PnMOUs0Eha4+KOl5l1HHl9iTVptGy+sxzO5KMWtutMqH39iOROSvx+jtpbCwz2TK8cQK6Ky/jrIJxy96MNGk6KaxxB7MWIU6v7BkVmnp60tAkOwTnseGdpEaTBMXCQqlPXdpTWG+eD9dMRj8tJLH19WbiBicm6UTA6mNGfYTJ6zJbRXJBajQHlzKt9KBob9V81zov+VQfw4MmbNwTkzI16qfmayELHL80MdXybpgFxpjJWUUA7Dqgant11Dw8g/tsVCZUxT27GWnmIbyAGF7wbCiMxEyvA1E/Och/S1Zj7wshhbhIEJXdZHrqZFiL/uQglo+a2RINSZPWfNwKEnHWlx7HHt9teAT2vxTnnkR9a7lvvb/e/97p4gRXdN8vvR9AeJzYLIdutn02ZyQH9bDNqnk51+LcIjFylkaBtFUzU8+26dNxfgvlnRqOA+QWnLiBJ4GcBG+OtrcOky7Qcjp4bXpfzHAF8HIN+5yVreY3CKAIbLXWSCEXnDgmN54LJxP7yxqMlUn4BIwC1Am8HeicEZ8GuuEevfzR1L7BvZ3jI8X0DLmZmTglqJlQs0HSsoDpALU0JeOzYnIRQM1rbMmzgGCSfbgCF68xSXBSzcQOaWXGElACzaxNhoGf0LRkZUacWGnGEnx1Xb1OhKBM872EbgqRCdWigqkJKvCLH/8Vvr3+etQ1+0DKGFbEISMvXJ/fS/AiN2LeWm45K0BSl8ZXWnoLXDqgp37jHpFZ81nvaXlGYsO9YY0gaAG3RSaR/FRtjh20q0ubULvi+RYuWBgwlwDmmY9OcLPPK7z/FJfrufCA1KK2KlLf31ZucR9KyTuA1ITMIqVYlrlDxoWlD1ANUbh3lLbnL+vPazoGOgkL88J9fkteynvmAMDPkSpjtMNy3u8aUZCEgQQMaI4HWlqlTpcpK/crmrzcp5kZkszEeG7/WH64sBhiWm06GGpyahJXFLJTPmxfl7JnpshQ1nj2t7qgEwmUEhZ514vobtxrtdbYvf8zxT5uHwPvtXvW3n0/1DiHnC+pH2Pj5Pp2/nr6j5Sppv9e4dG6efy7j5bka/guwys0Nqur56KhQRKHNElzEzOhq2aU+EB6NMt7EHfj6PfoyYyOApopmnt7qdC2w1yg7p85anAYXjd0AuR8j9zgdeLhLM75ey/Bqf6+Hm8xnIBUnD2+kwsSFy338lnmtAKqWU1qFBibuAUH36JWp4BmcXBTQf363Oe9wftxYB4cpyRI65v1NVZxm618IU2jgoUCCIxEGGA3UxdzDrDP4u1Kl2oPYuVEKbwdRap2Lt4s3yrEJqCe+mZ87okpdc1Nw2sPsGLSpbTdq/t/ZqRF0GjAq+7TSa9OvC5Vchi1CgIu7pcY24indOP82+Sn+E/Hf8S/mb89C9GSVPzSr/8/8e3zv8NHr8M5J7KFtcTNBGq2pNRjz2bfi1O1MW+ROj3lDkHzW3b+B0SKGY6UNwjUkO50O2w+yZtE8W7nu49Nhe3l2i6b7YkRsf5E667of26mVSS1mWjxPrJu+ZsgebYOEiS35klUjVyYQEBztQwBdI8xynNODDAzo2mOtgLHIenumAsO3NOj/EZoHDt0ZfkMSxfi4XMWCY2NQ4fYoUVhhlKOQDlm/HDRU40T4p2qFbZipmmbOmMwpwTeNJR7leBEksNk1NSsL5IBaliLt8NwPLC7xsnbZ9eBOQc2amp0YIM7DZqS+64EZj4o3r7EH+QeXkVD0gWB9QUUrbS3Qx0bnr8ZbZ1jJkdRyvrsC/mNSkrqqDv7an//dniMFCQReyzcwgW336/5WEtQUVWtp/6d+v4xL8d3jmmscW6/cy+d3movxfk+w9c9Nm8Lr9hjU0zRihbl6OFs0dZQ6KASoZwGq4bnoKWJd6dP0CQ8KH+zezbyIn04NM3O6dS9XESUG3oFObk8u7fceZw8/IyFB4t1L9oqujXu1VbjBFR7TQFnDp5JKqZqTl/avxLejGAgfI9VOSlkRNpi7xhOr1XTxak/rPtmuEF/G/SOlCWJU8zdLoJOBvo+kXpoJ4GXxblcLubZLbJbAE6pA2qEOLmSXNRvVdM3nTxkz747hsR+maiAwJ/i2DIJhmq6bYY/My9sBIBlRDZCwyRHaZMchLYfquQX2lxFx/SmKPVnT37P06/jgwj+q9/4gF/Xp5aHH4+P0P0jLsNdTfPLBOFHVOK9LF3lVk9pOEY/CWcTcH92PkZqae2fNvWWD09wAkshqKBXyQKsVBqIy+Km2U2f/DOswIRjMK4V2PcrLk9P2C4X12bYm+zbcW6K9k37qdnzQsqw/WrWSbNxxxYey4ZvtK9al4BQs4Jgr6xYFRig5UEzDSwb5k0bU0zJqvaBmsIyLuI1nucCjXfjLBb152Xxwz6robWiSRkbWJjf4r5eRKIOjDg6iYyzaiy/jYyI+JhMsjJ9X44VrbjNduHAM6nG5VLOBOodwRwI7BjbU2TbzPzSi19qcMU2/zvJ2UVwVYHqgE4YuVGj5ptrvKHAFMWm4u6gec6NkXlb7CQusT0zAwB0YILeJ30RJPJOzQ2r2mUZ3JmAdFJj66kpm3JukPi3NFr2wVJPgQLKwusZyjjRVb8yPPL+GucW4Xk8/n0ocE/+fUnh+yU0X8OnhVftsQkSU0mNk4yDZ7PF/CzjAGhmbUAQlyBAsBUZf169rAErYcmpl6KEGp56T9BFzd2gZ2JmjZMZec0Q0C+Y3KxK+P4M/uwt6T7y/Kx1jgSHAErX+8QGgWuKNqBON746WEmSDHrRsYkszM0c2G8OkgYEe9l0m18XQHKz7R4umKMI7hxgRh6SxNjEWg8VtYXTPbQalhdz31ydDAzPN+3Za75IvjINgaJvxHd+2DGMkxPBxDZGpFW/Z+TMt54LvcQpxrYZoOW5Of7tfXKvxIyFZDoGYLr2fXqEs68S+G7bBXPueeCmwPPmFjtq7rIHJOq2Esn//PIf8JMf/Tf4P//673VTF7v/v/nt/w/8d//yX+HXrr+B39wnrvuOfSrGNvC89DymRS3HoVfL2dg4n8TPxtI6Ro6SrlK982dJUCTkptV3Ar0wvfHfqt53eUdr+guZupNfxo8lpCF4enoyWTxnuH6mcw/TRPr0451iXJ7AfTXhMWtw8zhJGbKjev/ioZ82ngsBUYWMSxIE5tSJw9x3j7oc+tm0RYBsw7SP+xWhA9hhxMH7Knbe3z391U01+64B+TG2OMDS8DjPfsmN+rprIVQwMzugLLgIgmRTywUB9mtqW3S6mkJKfiwt5cHFUdBFcyYCHWje1qa7mmeeuKfNNMp2gGpoqan1cTmXzkUKMXLvePtUXHUzLY0lh8332bAOVQSbcvTNcPEsOp3cWGWKn07MI3wGTP5OekmDuZuIWtH8QRrj0qrMHXXUVrKDeM6ZPcchlncyJTn5/Wi4Pxd/KYD8pXy8RKDeGue90v1CQp+C3ie9H0B4pfMA+ITZXTnH+TRtf8xCeta9M/E80z1qdwAUslTXNap2BiApKtftd0nrNbXT5VHeY7ghYe5/Q98kzL700K0eHi9dX3e3dw2Un7ematfUwAEbQbrCNA1GApw4AA4Wav68P8mIK2ooJIC24nLZsF/tfBNb9SMgP4JMAurLxc9tKR3EAFSCiTBlWDrDcAKDkeeyAMCVgAKcQl0bo0YooIqEpwbw1n5GchVn3wABOqhpsbqz96oXN5av/iW42S5bND4JDdPfCCK5mVi9JUWMCHGjviCesy9tm4mnOfeEEa5tul7dUYALj01oAiclnTTj+8+envG//4X/e1npNoB08dPcQfmlRqBk871NDnFYmWHuAjMXdGRbu8ESbs0kR9Jw7E+879dNHuWYCHDm9UOdTHo9c5AWhJY9yEebA+qe1fvLLyvxYrqh/VMjv/uckOeP2K9XO4zz6Zswc+RZUnDtxNxttZ9nF8nYWlVFv+Nf11BIegqxfxxQKwTUBjG+uHfAuV/TPCo0pgCmHRhKciTwuCBI92/4+S2MFXmExMG0ZfSDppFmGrfF+/bSzLiqSeA9HsS0JRCxwziVEk+8yT3vrgXbnr4BF290v0L33bQjXl5h+6jGGV+AET2I5Hk0AHB1V9LRf3Icsh+4CEGaWIWhKNJjmslXKOWky2ex6w0T12loYariMgQ6BJsKoBsUpqlRCDaIm+qJpzMwdGKKAO4pTUIjV9ygq5QxlGUQ71uK8LVo+3XQ5RVnE46wig+oSc5bstRFJ0jGwaTdqUq1vM8g5d8fCDr9Gr6GN4ZXOA8gCUnzsYMzAXSX0F0jQ+1LJRk1Tt5Di4Ny72w6XQd7Jy8PQ+wzEvODD49Xir6q7pju7dapIG/9XT8VOhkZ7o1LjRjAtSIjN5rWTxLsTIITcUIhOdFBgbn7gXea4OVyqWYvmT/uaYEDPABmwjE1J0ggtCuqSBLlIGcPsMPJ1rUxQMYvJCbcIY8RE66q9lZTxSzny4DlK9cJWoBtM5Jge2Ru9YHb+zLUy0PgNHcDbpvvKdj3CdG9a5nC/G3zM0lSw0VNmOFDsQ25ofHiF2m6Q+0VXPvUy51VYn1kJ5gT29thWoTd6rH1PCc4WcIb9fIZgx6/yFwMb/vcM8POXlmXetwaUgtSodONz7f3jvkoUlvNFG1cLpAhuFyeMGRzgGmr+4bF040xD4Kshz/GurqrY8U1DTzNnum1/FCTU0xNmUsShOEmoiEU2BdHmk02TY/UH06OXWMTFUCTJrLfck6LxdkB11JNr5vpnvzE8+AD38gV053ZR1G1kdTEMG9+xsv+/FMvnz0Ynhb7fC5s5EKBjC1dwvvii427EXmyxPybc4YDgkoCWf9WtdO0XN4ec5/leda5wEjcVQfmFFy2DVDBCFE4zaRX7diJXWnMrkZy3NnAICHx6h8Kt/IQ7OoLO3G8RHqqZPX5aUZgaSY6lmD7h9Q5sezooy3TrmPnYUzyNXwNWsbee6X3AwgPExs7R4YEp++nadoaCQwS5AfIfTXp8tnTjd+MizD1YBrS4uV7lcTc+tsLgdtYZJU8n4Bb7kP2t6WHd07zfngZ3BxV9Ofx1nfOCUt+0/hEtnw2gx0CuegEHRwJdge7QDFzKt7JtLRp7lnxfiXi5hGFQEDM+YAqrvtuB8N5YWLCEyn7ZbIYQQZCKwIHCiigra/jxYoxDMTTbS1Xb4ebmlQiojT/kATw8WxO1+RYmmPbsF/NRCVATfk2gcw+E57O6ZqcLfcCDNrwV6zDPTVx5kwxP0GSN4anp4tp1EZtc09MZxBE9UP8kjCyDc96l0ad1AapJKeG0Cj5iesybBV4V0Bl4OnDN+wNUR+R5l1BUsPtOL33H8fb+ZtHMlF/p65mjUPAjNAkxB4C0LRODumdffdeiaq0Jlnatg3b0wfXvrh5IUmNH3ZJcB+4+LKlZzPdXXsr3nc3N0+i2SLR7w6RLQ4C5cKD7Qt58kFt+1Pm9dnGhuQesuGaitpPqDHhIocVieNMMK+7jY3w0EbTseF9u2iW92c305rAXoiZWFtQoywYkMtIOQUAY2vmjzT5NKInLjLsmZm1XsDzbUJrCXFFT5qtitihnpaUuVMOczzWB8+k8jOGkqhp1jW8X5G48Ewr125TM0uZmM92DGpQoeYZfAzsc3cCNbBzApgKwIjXtpnwGapQ33NDU+AhCsV0OTz9LDH1nq4YHtecsxhxFq9/aji5l0aC+HJharpDAo6qMi405UJVfq5YoI7RdeEkr3LUngdKpMcAyvdBpFbM8rMCp28R1fX52f1bcb+G7z68QmOjobU5un3uZCa1MxY/7hfztcSBfs+FSCMsUsXDGhZA+UjQN5COez1dzm7mnfPv3BdKP7uD4Rz8VBF9dKG+vlN1c524OPzgLpFCcpjOANRMqYaM2CujkAS8vvKfuxAENFSIDf+c0Ap4p5OAaj7GlUakkiaAiE4t4LxuaK5FNlC2bQby9zl9A7tPeSRpW6ZTXbKGSdWyZygA0kgywpXeCvxXsweC/+H1QHK4bbnMMEZ+X6SUN8DSQMmiEywSs/zgnLPVj33fiRxBmoPJ6uGN5mwQxN6Das5xueS+naohiwNDyx4CapLmnLhO4HpN0yiBAtO9ZTU3W8eFlF6Xt+jA/Xv12XENeKUpWd4CZ3NiVYIriT7bPAc5MCWwemTH371SrWOdpElhAHzqtP59vSLI1148k8nAtnmaQ1wTsOd3xsVIThCVZ58bxN/fjLxsT9A5fd+MP4Pv24Gt6lMTYQQDZpoW5lDU8sI2wF+ejABdnqwGd8t/AHMkORYUEuKaInOzPvy3ERkjB7YzPlxDK1MQn5+sltT3ycjYYoO/N3D2fVCuITqh7dW7enr+jcnN995rmF7IRXev7EQLZfElnBAgv8E9N5GPac4d7ADNK0SePJ8+XsOhiO13ClIWKw5GOlU3TL1iqJGoOQaEk8YQ01yNi+1nEhub4mM0SI1qmCAPES8TzUzZOyeGwoid4xq4SRt8H44CcdBnEpbh8qlovMq/wv6tOUqb2VoZQ3U+CZIT00Qd46wrtHt9FJ7B6gzfJ6n4WSE0DLctFPj88ffO9H2vDbJOQe+Q3g8hPO4VjUSmkJokK32NPbUz6b4ZB1LTNTfA+rySJXuO5TfKu2u4S2BWrFDvKXpy55LkszGQe/3uNX1yXVl4Jf8r6awprVfnKd9fc1rAlOa9g0ZG+z1A/IiH0uM09hYbQVGbNGQQ4Oahkcpnkj1JYGRkq5oBFPLpMmv4qh6mYlf39lXwDIGCaTh6lRleSDDP/Su7A7HLZXMPZiki0wQtzd4ssXRwAMar2opgZAPbGO4ZzvJH4pILrwT/M8kdpOyv4aQeuKqRIjuPJimrpatB9KrpG9MfiwYnXOUKD1h0e/fNTMXGtgX+q0Qo9jaIgRC6wqaWi2HQCULpC0zDyiMlrtX5vhdwXWrCc3xfvtx4dotCHPUsxzeOImnVfhIoaVwnVapjOImOtHj1K7WkL4cc6/mfAkEe4KZOJbsIkyeORbGUUuNSvOaJT/CQspleA5zDSRy2Aalt72OSbcyFENMgzMwDtRrsC66VFDouEIFsm4ECLhgUE6uoz+1iz5i2atSveTsrWZPR3Ma3+BNokZ3ozX0vpl9FLqiat7K5ex8Xz9sW+Wd7w7W51KCNywXz+ozU1ND0zGUKZda0vTYCJyFzD5mgOvM0TNcWxR4pl0PMb+td1aW2TkwFppojASNJ7uVtwvK3bcAOYPNFId97q+KGo0JyI8AwjcxEelgbHs88qTlxAc19N5eptigWPVmp0bGXFOnAZdSxJMk9Qwvn/e2o4a3PujTJ69qNpcSoZEpanNvhS0aznwlIfVKo7bXmT5d463tfw5cQXnmODYCwUSVZOTmXhgd3AoBfV+IC/8vV0SQyiQbXVdADoZGTe3dCCpgTAftoAutLcY/LKdri3CcVt8DElyyEHg23WmaFdqv5y3JdSA330phSJV1JpDaHOhhfnRX37iUVuDqU84lnyMDGVbvhWhmfrUkcmJ9RQQiqBiHzWt0RcwWOz1OD4umJ51bM09pWPB6R1EQdKImRHPJV66q+U6dTEjeIu05ORtRJVIApmmbY7wNBGeKL69xTIO37NX3WGWDmftWddNcaCVaCNqcGeST5WUptqZdhx3ykSVrmmZu6WUn2c7oGSVqbaN0ofmdMrj39nJ7cv5cAp17d/1L+ba3cyMpKxGocAL4zoROdXpr+/ZckE4GdQsDDc22MKGg6lgWVpZhsnxn9MggQyQE8WVV3K3xJxxLsfz62iTDpgtg4jvi+GJcq7qBj7UASm/VH1okYmBaOhdijU+qM5q/bVkxbjZXlOoFv/g9xr5kHAczVsoZ2h/vU4NqHwyGm8HKCMoafGZGHaNvyiqXjDgPgY7+Up417utWmkwPVIEBtj5wiFm/YnhBA5iwHE1t9RL15eXaFyfIprqlxIuimfRgAdjUzRDqGCa2Na3CQmhu4tmiDESXbL+jkRgFxzQ4XZ+FEhXhGXSsTy2l+8Ke4cwMR41jheqZ79mjBTNvq/C7R3pX4ZAqVsGR/bnEXEXFLatwO3zfeOM/tfcy0ysr7ZX4kzu3QZWHWliwxbiO4rzTn+wuvMkVLLQ3yN+pve5bGK0lyEPGSwNSuI/HOeu/4d/19Fl7TqTQ/eXzvxvi/D3deE9YvvnU49OH0qP3to6mu+ZIlxkvQLpQJJ3GS6vLvenKR/Z70iFYID8nNVIKaTD80BzV3PJkcrqVwssBVuIgXIEwDOE1D2EmWwjyEpZCYt3dqgAShhTBwxfwluBfk/pScoCRAT9SW5y/yW9pc6QUtzHB4pkw2S06KvfXE60XLN+yVjJ9e1GjqYfUbWrAGdHKiZn4BbflJU45OcmYxXbON/RcANGuJrBUNVn5znexrbYYDguWemUINXJ+BcDEc5b01hhLw9LtnMWtejtcZq8KWVb7cBwH1/ZWslN6E6E0u8LivgDvRao4OJW/JeWrLvZDuTipYl3Pfk2AM08jEOAjVIZxQCvoZMucC2DQXwChnrjQyCwe325ZjdSThZa0kcOT45a4Lz091twzvI75XR92NNdzUTL2cYaYaZRNT9Oy7eTukNir6f9Z/G+v1u5OuqatprYN+am+N3RgBmZoJpmrF694XaWRA9VqIUvY6eqXMhZnqxrmQCK8z9UoVfoakqHRd5tubIklbLGQIpp+qKQOQKfZjTDOnGxr+IJQ2On4WjqKQGnA/je93MmkPcfcA4mcXmYySMFGzhVrx+vRzcqJvazglUCShoXuKo5xOeXkwBy29tI783hMQv6rGJ+Me5c89afX9hV6iG3DqEO49vyunXpnWo+EsjfXeS9dv+7AC+i4pZXo/gPAK5wEJMamVAZLw2ESZUDShZ73nv1MCgOIUJS6k34u/lBV+r9x6ZTgTHw+GOkIPyOZ82K4Q5vsInzMP98hK/fZ5vN6alazE1K+9R9Xfs72DmOTDNEcIXPLTURc+uVbvYwABIAJ385wbaj1IdHooAJp/S3fgXEdSkOdeOvibdQWxwdDAfzqneQ3TGWb3fH4EEfY8Nv9HLgneSl6BAH+te0tY6rRyNrO41pbHkdXAzKjvamS0TelFOxQOEkRC3rBgsQKt+T31ewGuwLxLeIWrbcUck3ju+8S+77Yyf0Art8OtKEe68LZwTEGWv/a77qkRLWDK6yBLnW3QQdcj3z+uL9d81LHOMUViU+O1/raA+FSDHsssADAMlHeyoqj5yRGU6YkMM+cKE9W+64/aA85lYBoOwGPcM98rk2aZtNSCIkzbbI0fsQgQfTlIBcBN/2ni5GlyXxo7ptIcdRl1OkvZC8Hy5+Ea2+MMniUELfWYxN5uuRDgq2UfV22e1ArVhRDvYdRouOdChZ/hQ4IIswWZU2zDv2tq1EmNaWRSe0Ot+KZiZEYUKmbKa05OUhPWvKYpwtFRziICETOFG95KQ+yTJC6C2I3pcRVJOLyupN+x8kq0dc5LPvI4LUWTHOF/preQGyX5flm+LBK3hc9Hes7z9bMHq2/V3NfwJYc3aGw6yQlVLtJULeM0qHogLH1aDtnp1zk5SPv7OcI66Ze83ejTN7Dd9xgOLMv/fp5BWaDrybMDvKVlSqwEoj4raTpuAODn06j1vBnPpFxLXGu1Se/Jx4FtgKJ6D6Mnpg564bihaGZ80uYEs+4bSS0MHHA4iHegRMCQCh6JbxzAHiRWdD0DlQPY93zfTM1vehjTWAkdw10r96LZhFoZEzTPOLwR0p7/SHZIQLpGpT9nfe8OLOmgIGG1w3KJXKbZ2tK21ErZBTUHJ/C/mNZFHY4OyCfrK3Cl95G7w6aC6POIxxFQ3z3GXe/e/vyq764gKGFQNz7rXyJFiHpbF2Q4RsvLUWNaS18JSOofcpHBRunwU+7jQEpvY38tNpnHvrGx6pxqe3u56QKZfVgqUfOosek+ayDGCUE7xzihq85WtnA77gi0m2SOGBNQ1/7migUTd6wvaVLme1RakMVhN7UyrQ5G5k8EQn92WymnKpQHhEreY96TyFq+xU1wlZsUFe71J0nXvF59o0qvl5wta29NzWlzLgJJGQLAN035+LYXpgp2iDGIYa6ZMYftl4Fpa6i1UdHQ2qS2Bnlv0hkAa9QIjtGbWVw90/xsBEbhuVUi4qaHiVcEwNABdS+x1u/dLfkLmMBaN6looUSn8atm5pTc4MVPlm9//tC/8XpwFLKs8bulby1fCZpIGVTnpagrOb1eg8Q80dPp310le2SkPn63IBPpQOOd0vshhMc1NnHSb2ptTAB38tKvcSBBlhbg019J3+6hxDtC5NtDZ+3wrw0vvr2iQ/4l7izg8x6puPWdu6DygTivCZ9jDJ63pD8LcHQO92prG07w/R2NxJgr1iA4SFIzVZr2AhBgqpuOlfvqE9lh1TKBs0LtrBSUiX3mRGfl8X5e3BWv7kaGZO0maEswue4Z2Rxg2HeOHsMgPGCz9C41UmYALleu6+b44SRo44GfXuFB8MTqec4Z+3xKxm3RguqfyEsnB0DVxqDXOQo4LBPXcILRNOOJwUDPZgLkXgMZ5YBMYk0Happp7766zSYwIubgiYBHBKp7tP8Ym/3dBmSXvhcpc97a7GyKPIt3NhWeiZNGQnSNeZSKKXxg5SlwJ/fLaHqOO6zuViDRScGt0CWxLM+qbt7OajFnGhcAvjJ/GeU9T8UJyKDjgLlnWXhuipcxwDsXDVD6pY9Zc2ahbRyNsdnZMZu7QibhYDak7L9xQGxuqM2ph2mJtgb4s+BqmiN3hgDmRVCEn5OHQQJlnZsb7FW518Xqz/ppKXfDfJLj0FS5UUcykrgwLdaPqh826u+qqu972zjocjwGAYGZ843hTgwQcaNcrI9CxmI/m7eHjhzcg2Zt/n6OTWBSm+XkBrD3pwDb2DD3iW0YmdChgNj+nel7gO0oTz/fRi2OLTSZbNVhJmXqPXVEv3dHBDCSMwuGidnBB+gUQLTECa+ZCDnPL9Q1A0E9G4eEjuPT+nslKtR4dgKUIN2mneOYfUSLw/BdEJ5Hwu18HGVMe8EnmrP3tS7Q8N074Ofe0vma1tfwZYfHvaI1BwBJWAxywv4KQOcCGTcFBA5/Uz6usLev4x/D5+tf3YyhTX6f8cNnpVw/9YgQOmbvNsl6NKxFP79evtz2vJwDorWl7UfS30mC46RGS89SdTO0Sm4C5HCTfJmA/ZlCMXcDvro7cg7SkMAcDq6bZoRoXUspaGo1J9Kd8GpRbZPdcPt6etyiw4K2OZ+gVNgTPUuqoMOnliVfNU6ck0BwFrewO88K4XsEIV7WjR6gWIFBWEZ4SqPrZS512/eqKU2WRR3I2UGMZg7Hes93TY6URWUQkNbV6swzPN1wtGT9xDcTE2AYUSlEy3GD1dFW0hvY/EyVfU7sU3H1fnZxkL1Od/dMN26TmrM490MjOSWcj6fM27r6W+/JkkOJf3sqEedBkaFY68VSHtsT5vWK59/8j/jRz2dizXmEescl+W3JCDKXJUMi5j6ZZ8wAmHPHdnmCupdB7gmJfVMciU6IRixYcFD5+C2b0sbF1+TnQGgN1cBvrTLZLp537m27QsYl2pBjhsQJQH5HAdPWIGSBPd7cJfkzhmxxcGh1WV4q0X4O3/vjh5CanCwEXZIQhXxywlefK5Ba45mDTUOr5ANWS5pKj46KPNdHvK1M27P2EwntldXdxMA+BerEZZvimpmUE9ybs5FIisURj4fhBIUanGn3Y+FGJ1QGhmqUxVxBi2lhwvOZQNT+2lwy42wb/o1Sak4NDKXHQcsoTF1kJTNJhuq4XzU2vFPTr0Qov93Bf2rBv5ygXbXiN9dIJy++BIruCc2ze7cE9KN475Hvf0pYNM7vkt4PILxCY1O1Lqm1CeB24vbZwFnX1iQBOlvtPCc3ciN+vvdy7i2FUwj++lATaMLjVsS3dabP1QXfWv7jGJbz55z3Vdr9UxO18q6W3lVdOtcza0hm6t8JgUqahWis/gI03ahnrFQAwTD9sEAD3Ya6zcsoD6UksLa8zjbJGZDipD3dGxDNUtRXXKcfCMcVy6o5stKKa4vKbSn91mfPMfJgwQAWnPSYx+LBiJqb63XHxV0nG76pmqqZ4M3fM4zCjbblftRZaofCpOSg2YliWF0oCRCiTGHOp/DDG9VNwnY8PT2VVVCJd1Td+QMQbrpzw38S0uH1M3eaE2mYwalrsjBtFfhpG9hE8NM5MZ+viVqyAKDG+jyspKLfOx8tBDQV8CBNIbTHjlRipZbXGu16DprYRgmGpD0/kqJ7pTqLU/8jWL98+Abb0wcMbuJnedtStoNUmncJANiGdp5pw7oZ28WAuIi5H/Y4wwGyge4J3emh7GLugelFbb9CwDGQfZTeCOEb/DF3yGbnsYzLJfp1rYscp2bCxvFTXVtXF+8sK9sryk+zOmoS54RiGkFRNVJDF8oka14fdUUfvl8FrqHan3/q6ZKkI11MK+WKxpjj8wa+iwbMByjgRCjKxvtsdycsWXYAwwzn7KyhK6iRxaCsEuyzmKL5WWRDgE2GExfFlGEeGXXiMpyMCPfUWN1tYkREYfsRtyFWpjnD9fOUZnFn3UnpMMDdOUsuGg21PAxV0JZ3Cokax9osBCU1yeJzQJPrJU7dZViJCrWt1le7vEC8sy6iHYP3FNzqvffCY7Huhy6nHol7pyzL+2fx1lIe0q6Fym5+COSDh1pbMN9Lef4avvvwSo0NQIjZzc7sfmhuHGARykac0PIcJ/lOfvrvNfRVDeDTh14PPYd69vAde/FbBM7tOI9kTx94fv8rLxQ+wMIxzVq3/J3xvBfY0hsmUJwDeC8JUuO7vtR63FQx18DwidZQvZEF8QnVvzJcizE2CUAeHnpQgLfCDqhkeXyFcPik3OzgHSgYyXEA7k4HiGdoWrK2th38Zufi7HvuHZiYQayGHyhJ4BraJIL+5SBJamdsT4sBKysLLB132RwEwdBCNB81PFUDwxxnHrK9dVr+Z5xNkh1Ap2IPMMv6zUNAq8ZqlLp8enry5EnkphPUnNxjEzlLPt0UZdvc1IYEz/f4eMOSFE3dzd3sVFwdFG7bhvG0scc1MBLkCvdHwfpM2t/jqKqkpn3ubqpnkiNzXK8dQ8IOjrQ3uRn6tULtrkwoD2V7MmDsJmnmLpkHYaYmQf1QThmbnanC/jM2yCbwTRXWntfnUlc0YXsycDx3b6KRrVQIhCpcw+maGi0E2/+JPVjbBcB0osD3vF6pzdO6f81JAPujUARRPpD4+BsSEfxbSBAlgGDEWS667x7VF2lGkUk2gLP3iGD78I3tMbl8CHPAGHPbFteABhECYMTIv8U9Oso8ygjyyHRJYmyouyc2kitQXnodqNgCzximgaKmbb+aGSgU+xQzRVOFDtvfoqLQkWZjA6a53sRMzS5+pk2QlWHe07ivRtwEcowBdqXBtDGL+Zl6vVt6Q/gXGGrmZ/ZXMXiwkspy5k1qqpQe1jggFFaf4JhDLtjIKmfYo1aNTX+yhiBHitIva79K2fXoIu/7kJqTcMI49Hgrokb+FwaiPcby+/z7BxJzI5MvvbumU9Hru2FSDtX3Cu8Llb/Y8DCxAbpGxuAk73eCA8k467Panzu8Xe/fy8kXEF5iBy28pqN/EaUD8NacnInc24BMT3+nc4DU+ozUzsRzhLkaSY6hVU+toE+6eeZmcWsS76UO9Gt+u1eg80mEHrtuFg5GjAi29z1BfGyMVxSAp77h1SflMPNgvvNgPdaqVLIkNmHvqtj8/uVywfW6p1YERgA1pjYEODFsphFnKg+9LCSGU61rnMytrIHU/epen6IuxQkMiUlWTpCyMXyPM+9bHBGeE2Tf3opnt2ilWCVOssT9UTz4VIqZD/mf+iuhYWPdjQHZBmTf7ZDAQmIQv467Lx8WA6X8/frRFG7HPT7poEiWOEWPc5fWvEYGsFc2WCFGBMYoWgN62YrdC938MDUkilCRIgG9QNx8ykpET2dxICS1GmrANpBdVALzQW2sAyYHs6wLGwoOkflOLHLskRyBPHtTHJbJQ17HMNO0xrNIdNLEreY9zoPh+TJ7OhswxwlVI2KmnjlE1fLn9R5OTkaazVrSW8SX7eJkn1og3/vh+2osvUvIiPx2jgfxlRK5XMIcLiumg3xVpPtvMdPCqYKr2oLLmKatmRCIbXHyw3PNZbxpYgZ0t78DEiZouu/YNl8sGgBgv3UO175MT3tg6AySpKDHtOEybYBnDjH31fmAQH3PX44q/ruORSu07Vlcx9sK4lHu57g9i3073JMqXw7CsPBSfuL5mVrlNLyOWKyOOt4z7a/h+wmv9ooG0JRsISzSyctKZqrRUYeQnefaD4+j8c9hkN7T6NwOfSp/HSA5TSrn6vinzZvl+vRmub7zkVe9cy/Dr6uzbrN/m5y0e8vqy0pcasVVIkMaTNJioJj23oXoIM+zSaIzsPtJ2ZHnMg8o++wQO4sAyAMrXdMAuAlZMUcjeQkAfph2bG9GEhDCfgkAoDNLrciDPme4bzVwMOp5DlwZZpqKMHejrTg8LXXSg8irfWjfp03us+x7sYKXMuQ+mbQYJ2GwhYtJF9dutsNxqVLK1iYGmspkHqe7T65zx0aC5kSqmbR5/ZMMNa2S95ZK1LgOqsXEjECOxJDA2fb6RPExJ7B/fA6Xs1H/sexZx80tuHAiw07vPR76aF1TreOFMQhGK3bv9vu8VoLA8m7Pcd2Vo/G9Y756UNAnpp+JJIL9uuNyYR80b13K/nQoFYCyBwqafdcu/ffijpsaWfvrabmZGp1kjM3IBjY/bFKG/eZCh5Of0P5wnKgifatX+Vsoou9PG9sTdL9i//jR7o0txqPOK3Cx6Xa623YUcg3x4owBwQXQPYnOzBo35wfUfnl9PD0VrVeZ0pXLF32BxsZCGQQO4LdtRLzoT048dO6gdzjVa9ZJqZYwRwu3iQLdn70tKNey7sJFvZi58T4Fu5hMH+qYws/NGgJgt/0wQ82EdE4jnBMTQ4ysbIpw+LANOkWZZmY2nCyp2QMMiB3WrIqtODgJM3plmWx/TbzrGvbBTku5L8VgNuYdq8cw7wuNKXsPzc2KjGa/Kv8ep2E+7eNI29UbZM/t6f51cSJUgFSSuAtF7pG4o9zI+/eub9+zvLympu7NAZ+EKo9fUvVzlt4vvR9CeMU5NjMG7UEb4yM5nlEoYC77ac4n+/rsbAG8EqTvPZyNq3fJGCfvcufFdG8N8rdnrbZQJyK3vnQrjbP3WcYiwEVa/PV3BUsTiP02VXuzq92fk/sMJEAQV+YVSO9a4ITaAVY7TwK+UVUo+DxtRdhLA9JMnqiJ2a/LRn2Pnd7K7G44JghSZHFzvk/QThCwYQvPXrOtFHs6Aj8l24R4aIg2z9dmAN8pQ4AmVZp5WVI8p2Fzc71QcpUV5TQJY11IpF1XwOacvrfHZQRXwcuEYhhOm6e52v9Huc+8c5/R2DZL191JA4j9S1FSb/vNV8AFCHJ7ebrged8xp2LfFdzfsfZ03xoOlJ7anx/De8msFbBkypSOhDHWbvS+VPfukOTE+RyHwwOPuV6l7jEfNbb9mrC9VDoVspUzoEDSC2hoKuAb/Yv7Y+9Do4Bn+DyjsZAwwqwstH6xV8VnIkV4XFNubrebBfTX8Y+i0fBnqrbfxvu7+pjh+Stju5hnMdmKJmREPkSo49sOftJp9tQr2MmKbEaGIG4+hshzjtEJkeqQwPYOwR2ZUCZFGb1Pz6t5hwtQPMz9NM3uQmvlJBRzx7g8Zf2OS9ZP1XSvg7bIrsw3nSTDCdMENkAwsSt8gUoxRVyOsZ+SOJjGZtOJy1BMUWwK20czrI3HNLfO1OrMqdjMazR0CngYsbKfiu2P4Z4aUuuE1wNDrA+F8wKxxbahKGZnSSZsxspxOCsJUaVvHfQ9ORylPRz3x/QarnnNK43nskb2ures3MZdrw9FbryF/PDdG/d55/bzl67vZ+i1dKU+O6LTLwKt/mDDGzQ2FE0UNoxB0OKkJwZukqAaAtpK/bN0WUG/fjC8HLeCgXfsgj7qtEo3LKsTIhEVQJg43Bs4uVK4XLdP3xZ+Z+FNqzm30ioeTjqpqd87Eh2fq1F7SR7GyfvV9Ixn2kjErQd0QiemmxtAEGZJdGtqKQqq5iH2hRAEQUPYc/9NAJSdR72hTAxuwuBuacPZgH8rALYW6Enw4ESorsiixLFMpVZF9wT+pmnK82zqyh1NTiyb+T7Pj4l4roWhxii0P9MOVBwOALygiF7jRCxza7fMdMzzUhwjbdSiRFIVcNX82Ltz7kZ+Cmhoi+QVMGlUE3YCS7ZvIpPQqtG8jfUxxDygbWODjKtb/pgL2TpIKDFiWEte3wrrdC03nqVWpd67nVrViubkmsSl/l2fVQpk+9VSI3I73JreCcWW/PgY3i4X39c10uRLbN9ImKPZwPIE3DNZjD9+VhGaFUW+V8IsGpZsNvs13WzsWISlRRSA7qV/e/25ydbUGftZzF/AxMTVx+uO1lnUJYWbwLav+pirHtAjN0KN7h59Il6PxRIjZ9WpRzNdm7u9M80DWDWzFRm5z0ZYttK+AoT5niSV36/Pbk4YI95JHomZhsyYator6DStmKlr6ifAM23C1HafuKrgipTNIkhPZB5vyIDsissAFNP2zdCl/QSmuGnaVFfITQxs/tcIz5gT6ufk0OmMHSfAPjlNUWefLHjHSj5kYNeJDcAuJDew1XXKNPGxpRx/rGKXXeTNZQwN9VFapvs+Yv1D8LYr8rPOrflvfVb62EmI0vlcEeNsieWdKHoA361p68krx8sVMzwWXhP3teFe2m999smB1gPvmd4PILxKY8ONvauWJv4uB1nFYZ2IF3Ns8N76ndPrxxvjvcA6w2FKP5MSr1qd8FeWd7TLjE8eLKzqTmBWOHVDGN0oyMutVe9ly1VSU0HQGgcRVyIurxXFO5p2cpNkp9Sfu/kE1Fc2K9h3AO0rybE6z8m+5ovPvSO3k15U09vNYmZRZgnXfnh8UPuS+anaDZ6KrjwkjkgAAE1rtrGZKVgFB6Uh6X2N7/inAywkgCHAyDbhNyo5I9LIaYy9S9JETPNbh3EeZS0krQDHDJnn8LLGnsLVchi4GYNmRoW4CZD7bhYAFS5+s+cxnVr2cPAQTKrnMalCgyuHcC7Hyv0KSk/OorgV+jjKVElcDE5LyT9cLqfmpkKmc43NS6U53re65lj1PJUBOed+FHKSdI6uusPEKUrFQnPlPze7q6fBfV6RZggB73OD59NIe0+ij+X4N3OhMm5G9kWBGFFwsBGmjlEDvoGemtNDJxDPB4kDSto10GyvmHiWCchLlTUUWihb/olXXJN5SMPdNosfFNoOsoUAQ8DDPwE1bZTvWQsnAQS3kS8z2bJ6BXgAqXkkzN+1nHHODejYY+Dq7r/D8iPalPXCmh7mRGBTXKbtwJwy3OuZX0+7HpjY1DT+wzUzQ43kbFA734l7nkhyaBAdImBgOOGZMEcw5KUTCKJyFpq2ptYz2PM008naKc+OJqUraVlTzxTqnfIsbiXg0DWhF8LhnJg72OiHAafX8N5o9Gt4NLzC3TNQBUvTxEidanMAcsrIPTNdwN6Dzy91iXXI3rq+de/4xftxHg6v+fALeTm8f6eQGiC4C7zXh3utcj9U0rISmeqedn1OAanlmp7PVgLTiQ5N0oY99zognkqTK++PJytQGiCmCniaPVhnV88/kBN5mE4VYKT1lxKgLzXKCXqZDahBqKvstWI5wY/Ih5v6MKaDuA5ienkr8Yhps66OKxpYI2ESwDUYPvstB8DFNGsoqgxzacCUP5PUKDNjskIOKbYyJMg59tFZAWP5VtZhhe8a7aqq7imNXut85Xn5hpYf6lVxZq72HiH7bCc8cd8apErgBnp6r++/GHc1XTvU9yKIoley7dmmlDftqG7L25w7VAmuy6b8FcgHEdjiOnLU8iELCM8/jbRE9NFKexCgQhDNflolmBgBKG7TY28QNX5FGMi2YV6vJY/ev2+tkAq/xzm0nJOjSEcIba5c91BoaTYSPGpbt1Zc05gWUhROE/r4OuTW5Vu6sPY2p3wpLwivRZIocLxWMorSXn5/E1Pq7Et+4nfB8zzjNDywDWCbAzomVIe7dRbXiAkUpiU0+cqFo0zdRz9IZsD2cIKUFWOe4kQnBANTppnLQSF+Fk6YzGkYW5aCuPAQ/mZ9LnWuZR6RHKPZegoNzc3Z6D1igJNP3Hx2YOR64/690Ifn4WsvSc234LhPD32UHSVH7TNrDeoS452C4sxfzael9wMIrzJFA+pUm6LhzMiorc0rPrnFP19nfuzLB7O1s1ngkU5z652XCvhAvJi0HsrIWbxV2B/faWCjJFF7R9e4wEFY9pK6M2TV5oT25XBWzcjfKr5il8+mm08QbJoL5QrrkpgQWMeEq+ZCdK1aETGPsr4/ICxUan35XNVWXVknxTSqbuDntEPtyRjpxat5ZykZindGj8ODKDswWzLigDQ25CsAanziOxqrk3V/EJNlXsNJsJM2HoY5wz6/1F0DZSQEGnM5TddyskfTQiVJS0lDq5pqUpckA6G5MVwlvV08jepq2Jwr2PieSi0ZmhnerdFUpz9eL9C5Xbei3jDf5PjSkkZ+X5p27Sw/SW9q58m9ZxavmqVxQNwTQCWvusRr5Vg1T74fKwqkvT2qllPhtj+1NMytxRUfZxbcbJSetVjmOLQzD5QNjY6kg+sK0gKkxACvfUvT1TPJTcAcce0o3/H+Jr1oLPOc01xFu4tldY1j1P5StZNaSAKsNhy05VUifi7ItHb3sdc+4WWD56OPFfYi09LYPihKbgEHsVVL6hpyfkxvc0KS4d+05nPNXDkLp/b57OvaYKOIutx3bqPiZ4oZsVD102R8oMkcwHBvb36MAMK5SfYLOmoxuzLmhH3T4oTG2HM8fD9QLrWZV7VY3HHNU7VByN8A9wyF8wBIcR/tY7Rqjgt5b3NNOVtrRWLsXbdn+tL/M4HTuOv0ss53q/Bb58pHUIm9ly3ezdz6vXspnOTyLIs3r9dUVnO7W+nXcn5/mPVreIW7Zw625Z6cNf+tBNZudP6Vszhnb1BA1Odnb9/rvGt4uFM+Mko5Pl/z4fX9W+mu78ga4bEM6knmboGm9cEKco4mZw78y3V4PPNnCQuS2GghLlr/wk0QULQ1Ogrxgc+3RMmlaMFcBDx9vG7Oh07fUL0AYeX8XLQs3vG42ZSgq2GyxOKIlTchoJ+gPTpNQrq76fyehpsr3keAHEsLxaQj8xjtSnBQzLAqeI7aUsSGaAg9rqGRC1bjCCcDBYZUMy+RUrcIgJOXdZoq5/uUvHanDuukWgaVt83gRvL6XmBmad89/oU7DpihOdt5yCoILFEatXetnPTqaOrtEJpELW2TOS3p10UAlvSo5USJz+/c2kvDMuQ9aW/ckrlrOY9BjjGKZlYcXNujGWOlp1u+rQiNzNx3Py8GfuZI+eJUCD14tVSMSFlfrv2HmmAv/RhB4ifdQpc+QffsVSNnaVSzUxIB/7KTFp3axkxqGL2niJ9k7x4RmXbKC+8DcWApXTJbHQImd83rn9e3pvMSnsVFJwtHqGvfOJqgoWmgQzM1/SyfkXIzFx74ruS3JHtcT5NlQ+sDscemwwiEUFqClo6gCnfuQicAwFTKKXEnGQq4w4AxgTkmoG42x+xis/OVZADTtC/WbxWeAhTD99KYuZ3q9INtzNOaeahzbRv4W90tNE3y1Z0Q2PPBehDKB3XypaA0kVqfNxa9EMRoCaf2cZU21MRuY7eVNuH06uzGmtFb6Z/FXbHFY2k9/q171y/l4ywvsjx/DIF9DZ8nvMIUrStvO7ApZme3Qgikn9XmXoDKEW29HDoaqsneHgW3RuJDlf2KV9Y3C2io/OWWgMktpJzQKsmppAWg/i9Jjr8bJKW4ceZf7fcP5EaLy+DYxI6coMUdRks5yNNBbC1094ympa2yzPu+2yGf7sa0wGwA6eLYsE/RPFQy4S+a/bV7OVMNb2dBDpSmUQbG6K1MYV7Bxmq+JgnYY7VUi6tVN1MxkJ2aC2j5owbyaVMvbrKSEy3rw14Kl9LFUQKi7hFAk5tS5z4xhrhTAY9PkwoFwv11BMl8LoNoOFCsXt24p4m4i+Bg32fLV6zCe/4IXqeaBi3whH8vncF26/Vbv3Hy7BxqVEmaZe5jrU6ccnivU5hFJyNHooPld8/tmrsOe7rokx7TE1U171tPH74BZLN1BYLi4fsw4iwXGLidO8a45Jjd3SvY2GzemNNW+IcDSy426MxzZiChqdOSYQEASUcdNhxmFghJLqid4IG8BPiRlt/DEGBnhVi543yqUrOWjnlxm9erpzHcpsq1TqCXN8uXKsyDIR0r1HEnuY8u8lLJFMdyOQ8n2ot5EzsLaDx9ANwZsVdSEKQkaPQ+VwiKrQZEfQQ0LkSGBFC97ZknK7ON16hXLny0gdLQe7vHxZ1GbiZsT5RrdcTN1USM+GEYOUkX9m58Rg3O8N9i+24UJhsGfyO9oA0RO//M5Yg1pXlNS82MpSO6mYyHabxtD9z0vUwaxD01NillaBbbFy6iRookkOUa4CJD1KKs7x3fPwtl5L+AJc5T+O4R36cToC8lfHX3/LbwKo0NULqMptw5564PpnMI5xV/ezWhPz8beLcH40us4nZoXp7upK83r5jO8m5N9KVsJW58KSMPhTOQcw/4JHEpz9UJTDzz/+J+ITkRvzxz7UzfZzOKWRpN0Pyv/1aMBoZZr/vczUsO5341DcnuXoeCOGzmKtjIgr073UY7i2e/t+3SVkkJLMRJxSSY9r9aNtgD2ufrqEsH2Uivak0DU1atBx0MbEl+moaE3xd6GCvGMwVcQtJbmSJNWVgnBPXpXAFBvIZrvGjuZ96vBHPvG5iHCHa1yXyIgYfrvPaVXKTWxvq0BOFY0Xe+Y6u8T1u6/OXGZtOAObhmWQKjiZsmoZBHy58dXPqMfd/x9I2TX8IJtuVhoFbof0ZZajzW9Uopzsaa3c+x0cdbX0rq6XUS5XUJUh4DdCj053S1d8lbK+sduRRVLQLIhuef/hQftifTbsIBvbAW+NvA/3Z5yrTnDpDkwNt9u1gbq9dCvOsHVobGghnR5ozAE25lyvmM97M27OybK9C8+PlY3d0ZAjUX7hI6yFDNQ4wfb/mZG9XZb2jeZa8aQa9n8phWY/qCzejjnW0iA3q9QrZ+GGh6uTIzLCO7A3LJfLLPMOt26KnvkeFzP+wTOp1wpUyr5LGBA5qoChDnGGFS9ZvtHbLbM37okCmDOA6mpqMMO8/GyiIqdGWQK27i416GORZopmg0a1RsTnDM2+WExgGnaoQH5SBQ7sES+KIUx5LmOTy8xmZ7crBB3TtbeJGM8YAwS8u0gJ3lRFl4K9oeHkHMvilL/z7MC6WXa4lV36nhbLjrSbxzfPBSeNx4/mv4Gh4Nr/CKpkvvyyFR//KJLPfeg0QfocDnC+cDN798NhgPZl26Pk/hfJNU3f5wSzpk1RI3wMxJ2uf1t4Aqz1uNq3oSDyfxUEFYXbdi3H5PNe9PAOHhzMnKrkZY9vB8NlKr41qa3X/vehSqAu6V8BUyDzNWQR3cqqSWJIhEr1ebe0hKJEB9mqI5kVgqmRt55ywncZeK7Boj1rfG+9Vlda4Ek1w4JCK54UvQxeNbngND7QpmfkuRK832vQ1zXw4eJX8DtUBa6sj3KLWV6gR9IzZTO4DditlgDCSNehXQO6xGQ9Z9Mew8oorr8xXjYi5rK1Gi1mawboqrXAP3BK/i3tJmELanp4ub1Z0QBjd5WUY6cnxUgCA3r48kSJB70epY48ekfCyf50I9V2frv2jfW4lV1e3cBxarHHlJQFl62zZwebpA4GZlBMW7oDkhGBswaKLje+W2C1qdhomX1CqwDuSHcSaSR9MCUiNDAhTlaJpFiWdspbnvRmq2S+mjXpfcnE8MHmfX+Jkwnl502bIIMkYF/wIz03OwHxosJ1qqprkam509s9mhn7pfDagHj7P3hx8CqqBMcLIXHbYQRdeYlCUTr8JgRE4oNyM34dpZMp0qKItWqWq4yLIoo+x8nJlMalnkyAaKKjgsBpmSJUmNyTGB+uGZ7PsKMcXSGBgA9l2hrsWhWZl9wMzGdkzorn4Isli/c7Mx09QwVQ0yM1XdG9uMYzFsL07OdnbezgbT6pgHwOHEh4SXy1kQKWTG2mqHhldaIzjWD0UVUxAmbJQDWYVJdGwKS8mVo6nX/4oTSJlW5LPKjBuI5iTd2xjq1jufivfeK53vPFQh/17p/QDCK/fY9L834/3MUvDHM/5Zi/czUndVUB1pbu0lueLcoe9Rg6OufQmTMyVQSnM0Ep40WzPCwzNhuFKfwJ/AjkB9xkZxhtjnkVn2TNqdsfF8iRkb9pu7184M473pYIzmbwm6jrN1kA8ttVeFmiLOoMgzaephoD29xqO0gNxKpjhBimArq8AyCE6yjCFjWSexOdvu0eytgvBK0uZ+tf0NzFMhXjSrQyFRDcQGx2Hamqv/igJSLf5AmgR10GT9gXtyrs9GZrbLBbIrpj7j+fmKy1MlJUvfuBFyDNyH/ozbeNqSvp49036//q0Eq67GfpcTecuTmsnm9vSE7fKN9w8nDiQR6oB+L2NBNRchgtCKkxT/O4abqdWx4eZNY/O4o1Swj/UCvBHmji67NN1I2/tufDQu5up4bGhMZip4sCg1hSQV4Ib8uXsaW2hz6l4ddnFdK87zmGORskOhz89RBHE1tIwNsiVhUQh0v5qs8MNG7VvDx+Hu2rFbJLtkZz2stJYPWafcYwQAuu+Zd5JFalSDbFUX3IIxywGtLwWvPIoincB0sz6405Dp8mFiYqhgnwodYtqNaZovDO6t4fwzvd8Y2ZgxG+X5ZaoTOnym8j01A9b30pxY3UIgic4QdXKS+qLplTy8I+ShuhaqbjGlylEK5R60I7Wo+pDXyCeGzwlFXpP2PVn2M0tavobPFl7n7rl436j8/gBhP2k05EbQh/O1XBMIPErE+lsZ7gKDUxnzlqHlpbXllINoelWK7zKyj1qYDuy66dkalyTFpj3fQxGkJTU1vGY8sw6imRlMM+Mr2CQ09nxEvF1dWwPT3FyvV2wfbHIdvjJKTUecfC62Qh+TeWUyjplXcyyo7wvZhhEkHtKnuRfF9g30kcB/64rpjNPJE9xcfRUv3in70FLz4vVdVqUtLv8uJmSFNJhSaToRs5c4FQ5fJ8xN1HkyOAFV9cLG8pgDhFp1tuF+o7kKaIZmIGHIMCBIouF55IoiV7FpK88yHccZR6W0azoQmA7Eou35vWVVOEyaNgM9c+4YOnERJ6GD3yAoIMH2diCyYhW0vYMcLylBpFwf4Ud9J69X+GEut2se+nvnZmWSJZD6/CUTtNt5u/1OyZMILh++9U3+M8nouBQSIQ20A4gzpwx8X2x1PzydeT3OPd0ruzmQuHmozt32VUCyP5MAixjZKJ7UQgw4Q08yIL6Y73HJQqzjAlDM/RmyPUF2xXh6Mk0NW0IG4KaiIsNMQqlZCqJA71zSK5XaRL6775n/yAeZvmmjY9YsZnnWv+mmWbPO6fSktqqk5tcuhzej7YfUVeOcggfUjAWxLIeSyhiY+9VNzXzcL0RTZGDKKLmpVEuzfWiytRB8ul+33+6cAQP7nLZgNdzsUblXZjgZsd/boNy0vTAQMe0Mcq+NDb0JFTvQeYj11SGkQ+KExbV9SqLjC2F8B4BguBbICJY5PEiLAVlwACWRhMc08eanyVqRhtHGXeZkV3d5iXx+1CyfhT7Xn8V5DxJ0S8a8F2lZ8yh3nj367be+91BQjtt3Cu+Z1hccXnmOzf3f503sZgcPIvWXWPmt+490ondl9m/uHze+rvZM+40O7Nbfaz4OSZ9DqHpnfaVPd2dg6zzFrnnJuLz2RX0QsM14JogzauJvnl8zldfU2AzMmXtswhRtphkTRHDdd587ucHW8jliMj1pB3KGk8GvqkacaHLCtMcSv1SsTnWzpol9qjscSLLFOuLKsb2eE03Y2LMMDmam2/EPs39wMzoDCAT3q+exMLMrXIH5Vtduxbl7Aqw2jtTqTFJR1xhR+zF3IzWWDwNVc85oDxHBfr3mqraXpZaNq/MjND/a89+wVHVdne25trecdHSmP4bXvRjAnrhav1GFTPX+m+CCIKEBCWR9tiErrDVt8Q7v+BscK/mbcUvGNfMTmjF+UWliV9+pozhNk9QrRiL9DmpeEm33ZXEZ/3PH/vFqBzxOzZpQNbLh+19E3CHHlntqtstTfkkGwlMVc0niPgRQP3NkczMsEiexPWZjcy1OcIHuzly8/XXuZY+Mk4vxFBVPt8bUOpqLc9svE1om7umhLPH8VFPIJldDI1JqkWZbY0B1hzs2PghtWlFFqk58ATVthFXG0kDFXE0VIhvm9aMRTpCI7JjzGdv2BHUzublPbB++sb1PcEFBE1PXjEIE8/oc9U1QZoSOCxd04kIKIK71qiOEBVpwAzu4l2tC8jNeSzLN1GzHxOY0Y6qZrSq7i/83ROwbvsCiothk8zILZpigWa+mW+lNNiMxvohD87ShEgcnD3dwQVNYEtDhs5/JiBF7ceBe15LghJXhIjBsbrB5bIZWp0omiWb375ZRXpdVeK3QWJRzBfhRoJWwmq6uhqxHkfuSqesZnrh//Ugaj4RbOOg90n4/OvY1vDa8whTtCHU7wemTY33nNWFVqr7u3f79PvgeefPlNL+7QLD3um+/Np964/d9yroQnsPhm4WkAEFSVrKjoalxIAygnVVTNDLVzfNez7BR7sXZDHwPwb5PbGMUMFHA/GGmpBczX/3S6V5zPL9a9poQL0U6RUsChEebVm+cm31yc7wLQa6a5gZ+z91Cvqit4cov71GTY96TCBu1zP2aZEYS2E7PVKwQ8lks85kmaozR3p1uvpNldOMJ1TC1I8mCmwMR8E2dQcTU8848QiS8viknYzf5M0ypUR9GmCyv2zaKC+u1h3If1IyyKplBlVDTQM+cOwTA5XLB824r9xGnpKrIzdCQxF5Hkw/2k0puzqnEOgarhhPtupeQcfPOgoGipAQ3HeTUHGLJ43mofftMMlY5YNoTuTj426itcEDsp70bQZ0Jhvm2awji7BSOnaiTUoPeX0RSW4i4599kO9ETn++DGbIlaamavYKpQUBtTASqRmxicWT42SiVaUivF0vH5QrHEPcNVW2JExobhi4147DORTvjedWQV8hDK0Xjfuwh8ndAxwCqqZHis9CMiTtOALBdnMOk5mxsdHVfiybm8trJHrVqY8szcICSn0nzRIUKPcJFc5V+WfpkdLucH+ldcwCYLr9YRxPANlMBO5XjMeveNDEuy8U9U8L3zzi5GcKFs7IAM32fjE4z4/U9MyrTu4PJP5KczfcWDTW5OwoxsUUj0ywJFyB8348CbrlMg+o8kJiOT6pr56qVhRbyQvkaLcy4RS5kMoe5rMq3LgnqyKzx3oqazmTQPbn06eE85aOsOQ+fMW/d18n7pPcDCG/Q2By764kIv5fAm8I6pXJwnSX7yLT82nA2jd8iUre+c4TUD+aprNYfEos4GUUezdAhgWPSR7p6boqW90a0T9XewIkI/1atzdQEcu1smvWsmtDQ0LlAmqntMFA+CcjXCiIIDRCQBGC6adkEzaJq1UmAGro7TY9h2hq/7rfhxLTv6a51EriI2CHWDtZmqURBTp4BRrymbT/7AMQ8unFJTzx9RiYoqKYlNAurYMQAumYiyvpQXC5baHC4cZ/mPRXn8VyWWQBo6So2+fpGfCOBMx0VFMA1V8CGNNsDtU1IrY15pUPu61GE6UcznZPjauFqWjc9rWkVhe2yufvgXANtb6xgOdLM/Fn1JpXpLUnon2lyzLTBeiLItMQ/lcreKJXQ1JAgpv99UIrfjVNJDUNzHLHvwHZBsH1BEFwA0HlNbcpC7qusGdxjw34Raosya0tqR619HCEIglBVcByAvow52zhezNbigaZ7afXvktwAMcYTg0uYZAnE825a2vR2Tdng+37CfXmSO6uFJEAcs7EwQQcNdMsc5pRL3ay9Ys0v5adGATspbRoWxvN8GhMDaK7bQtfOwttlyBFCI5qkWHzUKvf0aMwaf9UdrnGfDUebV9dgF1CJM2XC7Xy4eDZ5N8NFs++x8QM5p9hiyBBgiGtlMLHBPUbrCFM2Cnjx/iFeh1LkhWhiGYrPEeWv83m/QaO6Cde4LEdpVDmT40QiiaMcKP0h6ri1XtzU8q0VbtyTH4/B/yqP9M69l67XvNwATXfzcSvUb5Wx8ODbX8PnDa/S2MhyDZxNh7reeGU465z3cpVvPYLnz5/d6/zH9wNI6nnctZuv+Xi8w3eg9/2FDi4auFIpoqcfwOlTYtPeNNO09mwhOOVwzmaGVklP84yWNdT3Uhz74wp8AQNYg3beySmi18dqv+RE4A9O5WUAd+8MgqW7aP3D3lI0J/6QSShz4at51EwJX5egRIf8CCRJAhCbjvu3kfXgrpxRVnDr6LJvSGhv4mwK/1bLhyTZ4aou653gkh7WFDPagO0AJE6r2rFWj6GBQozL6vGK6wJRV16WOW2lluZvJJpCoBblnvmtbNK1KQ9t3FdKs67zXwtT+eyohaljrWo9o+iH1Bi/kpveegTH0U5ylsa9cAMQaM0vx7HaavZMExutspMOPtRzoMg81f4DkvQEEjRvsjij940F27DM6mM46inAontjo8bDB62EmZl9LwwUuWIuLDj3zo1YqUg5RLCcrqi75mxFsPZd0276Pdn8UE1qfXkfgG9FJ+FpMqRVRifeTdDlh+Pd6inSNHDTtduUU55MJOH9SCTyHdmM1aIie0korKKP2c0kD12OZCb2FsKITJRR1QjDyHoc7uGMnJbF1+kunF17M8WuhxMUFXHvY+apjIdxmoOagU3VrSEVm9gz+59p93QoBs8yAhCmaE5LSG54JMFAOhKY/oyijTiHcoqLcYchKWvVFVKDnJ9WjQ1fbjIjxkhN/tB7T2Xi68INuXJI/ZUhMijLdUn3FKzdI0xn4f1R2tdzbN4W3kVj05/fCKVz1TW9R7vCKuvufuKF9++HlzvxLWBz63v3vr2mdTdeHfdrNktC6zi+XyMO3OtLDRtX85Jyv4G/JZ5m3DNSE6Y1TXuThCbPr0mztHjm/9UDO2c4GtAwPztO7plPTnxrXWqpiGO70AxkrcVCCuo3+UdykkiAe56/2IVAoCu1XU6KAg2wNZZ2zOZ0kKIabkajHlDQvsJW4Zx8cP+MRelAmxNp+6ZILBi2/l4qshY3yZtmFkiSTyZSgsPAw2MEqAkwlYmXdiz6EkXZv1Paxs0WDThoaH3q0Kr93045zwHYCUTpD1HLZ6DhqEtZZYa2+9LjNgzAOIW0lFVdtHwUs5Ml1eN3zsMtGnSUc0kCKghqYkwknEicAm3ec6AWyaEALh8HoV1EageF+9eaxkJK2uyLEuMutKXSCTqkwLnQXErmhbLT+18ufkyYydcIQR575ioJCgGvvudnpvcx+vpFiVcqPBYiinazVVYpNr0JanzT+kksoHk5brZw0bCsJoE9T7mfcE2LdW77S7xHspusXcCfyYlGwo7DoRwQ914m2OHaGa8mkgYjBPZdFbE9NCPoqp8w4yZuTmiGKMIMTBFumgUaZGmbRopMFk9Pz0zPKB8VLjN1YAjnEraWuhapWA6UOh4nrXFsG45M9mUtfWoFDN5HG7lpNX4Yz0qX0mBX62kex/9ZeKkch55SMsBbd+I89I07oc23NwHV+3zra/hs4ZXE5rzrtmfLTCnrvcOEvobHhkf/9nkK97rhXbx4+mQRqg8z3zMRcUz5/vB4OY1PCQ1Q6fF+mbriQtvzSmoS9DSCAxKekSZoMT1UkpP7Z/bQ2iCcBRipGekNjVobTfeuq+cw/uYKnwFiz6OvzvIsk7pJPco3FTzNHLAJ21qE5lSevgMLmlutTSbCOtJ8F2j+nSsgPVuJ40Z9+9RoYKKCk9T02D1qQjK+AzMlwKcpWUmnkLJeEMuHmdkJ4KAyJjhqS6Luc72QE+5K6sx0ro+rSkgi24KiWcu4ad6GsiofCHgtQbyTWXStkR9SQw2XIknBGflIQOATfqnfgBSaNIby8J7+W8t1jJ24n5rSng/GT2APVkOJc/YX5du3pJ6c3Ds+83wWPD3GiPYIM8gKjFVtvwvzOxKAnmkT6te430Qlc3/QSLCvE/R7B0k4bW6c6Xkt4nkStv+nTJOhwSgb7lDIEb2StWx4D1nOylrroo4foSwxweJuifNwU2TRmvbB8kHtlTh+9Z7jMoPDo2pMs1E18ymlb7uci/O4RPpZNbUPKNsm901VDWpWmveT2RcSbgXKbMoJjjBFkpCknh6X9RPH5hip4RiZAoxp73MvzRTunQF4yObQQm48jeGezTCsPwwMbMi+lSUy5w+D+7CGFZ6aYQHlnwLuIS08qHn+47eXbAB+OKc/4MJeEJVawazvSmCKnGgrpl2mZQ7zafbTnNNQ4me87yfomg1Oo6vAOsmuvNQJv+tQhel7pfcDCK8gNl3L0vvIA5W1zlGPfvjknVv9c70+G2af3qxnU/yt1GX5e/ZeipCX6qTMo/cRh2T8m9lb0XuJuMBSrK3cn1eNzm3tTGpd7F7T1Gj9m88nECZp9H5GJwJxrYKrm6NZme2rJBa5EdhNuGrl+AQtVagVQLBwCmzbZt6bygphq8o6easDFPML6ptRU8sQq2pOcjD9rBytxEBioorD4Lgnwc1jdm7W98AN95Gn4jqZjhGC5KwdIIvugKeTBwLLRkoI2uq7S5gEBUH6tub2mt82YmD1zANCq2mdYasEa8R6FsUPvisaHIAr9wnkJkmqly3O7pkTOv18o+i9JOpWNgUn+ULUWDUuIXNi7JqRjHEWkjAl4Vk1NezfJDg5tvgm86ftrpR/Uf6eCA5F+WbPaSsJ8VJ/2/7SqwLSVJGHSppmjBWZ45BtNS7mCrq6A659LUyiANuAT9MsH2PV3MbyuSUA979meuhmZ5Iag+hbCsi4GEGBNPKbpRRfYNiRqjPPR7g19v7u3z6YiQaR2+wJ5QAXFIr5W7Q20ZmkfMq283pJdZY3w7A0tJAQ3X2XvZhGqBJNLzfCPTKC4KgvZLCHcfEj2oWLKkBoa8TPvMlFn5SRdSylnFn63skkXhc6xOeUIBxOeAbyeCTTkhRiAjct83xs3PQ//GDMIU5kYK7ESYaU2hq7P8QWxHSas5rNNTVbnHwDqA5sQ6DYzUECYCQaprUBhqdlZQ130N7eGzjY6K3PKsWIjtBfXsxv1WFMaqvZJ/y39/UwYwsyv2KR2sNuy5SM1OfDNRzwSG3fF8CcCHIt56V3PiFwkUTrd9e8nn17De+Ql6/h7eENB3Tm5MZLyYfnjX9IZZ2C+nO52Vtek8/bfe5m1t4tvJT6Sho+rbzvFTIXFWjxbyc9lbwACbjiWRysmXFXTc10jc7qDY17ZlY3z7y/F3O0KzU4MdNXAV1QYORTA9SWJSfLefXCpQQnGpuQLU4e1Ln5YZl8Rw4gqNSh0v3xUaoTnNWzZyIfBFIicTZCleP0ThQTGgGGb9ofww+ng++dAZoXpdSKaJhphZmBZn5UESu0fsJDnLodEIMAKXCy1Q1JJrVMZ/uIIOJOHDRITSJtSzD339j7k17oBtyTHeslV6Gtbr0bMF/VjTbrRAysjm2DyhW5Jan3e/7m1N7BwKKZWdo6jJMIOrWm3ceaOlCoz7qU6O/yTs0bgNikrLFamyZSQbwKYpBDams5avzMQZUPxDjMxxgbxtMHAHY4pMBJgEcS2RoYsmv2u+nAHJi69xV/7zzpgGDJ8/ASc6V/bOCEpbOYXS0l4Tk1UABbdRygkWfbrG9ETHz/C5BjxGQBD5CVBSHBgadAdKZZ48yxxLIJ8myfmDvnHiZ2se8otFETNE9VB/yV1NARQVnTt19jmLc0d8Mds3TVpCgwLuWcHzcHldqX44ygeSSxXi/cPxSDfww8lTPyKqi8FRhnejx1b2ejLshE/WnIs+FyhQstRkH83QmT9zu9oJkcHQqAe3NU/b7RF9tfY5q66fttphSiY01i53v5EZ0W9ugTrA8XgybXrZNihzo5c29pAs9PNEm0Y+laIWP7cgdAid/NUjMee8aKSNZlmZB8uuqe0foL2/FTEU5VPN2OtFwXMaH34i339Pz29xO+amzeFB7X2MjS8o90tNPw6RW7fvYWcT9Ov59CaDqQOAKXT0n9JbJX09Z+ecxUvz4ioiNmKQP/HngyrMh7K/mpdLQSFr4j8fuWxoaOAnhtpmYkOvZuHMoZ+2xGxBlji1Ocm3mFF4UakBkrwl78mROdAS26Qs02ERHscw/QEKSmNoNPnGPbcL3uvgrnk2klLn4/NBlsOEFoVeDfTNhoB0cqAbz272Y5JSY2m9xHrDqrl9U2AM9My+PbZRKdXJkXP7RcvK9YfiKfNLsrVR7loi0F8+SAa/M8gHJbjFixn6RHtOzWa7tJVputinLVG+YdTwZXk812fY/V6Oy3u6/6X4bgozqpGgOXixmV5PBx8yOkWViFAUkq6pjpY1pKWkeTh/JeIzWr5ibvrWNVWz6yjGsO65ttRbeN4fWbed01NrU+C4DXok0S4PrTnxbyDZDcSbyjqJVStTZh8jRCj2Zx6N5ZxM9X8bFLAO+r93U/F825ZCvgmjXhnUrdk6GZhM0YR9SsQIExTBs0p5pbZM+njM0XQqZra7yGtAJG1ylMelNzED5SyxGLCEWjxcoX2Ty/JBPTx9mA7nZ4aZjDFe2OQiiQATWTOTgJMfOzweV/60t+oKjuV/vesPRj4Pkht9yrM3gWUC3vfg0CxDaYcwfq/qc5oeWA4tKh/FaZpCJKmlGFBqfIEtPeIPoQTfty9kKal3l8Iwzupc0XekAy4YKq7rURKC7DzhG7jA3bnLbfBtQOwg7/9H02Qwcuw2WIjIhDndwgcfKxPGALWlA1D20+tmaQG5d1oDmby2VQExNVlXUIEl7/hlDT7Isf3OcoXeqkbNNyfd5MK5A5YOkzCHgrThVPy3x+GudzhjPMdSt8F/n5Gm6GV2lsTsPa2Leutce/TwFu96A6Na+T+Brv3ndupXMrvVvv37r+pLivGajvMIBChAlw82Rzzd/1r01i4lpumo9x6qgkBlCkQwBoEp8dSHIDJzTIQzinbphAmJzthcxcea4NRsy3LBTNnOYkqKjaABz+Zl/VIAsBUOdS7gDpmiYJ/vT6bGc3CNTBPycTT1HR6nbqDFM0ak4SEWWV24GAaPf5/XUamg6QkiRF84ZrZR4uquqb8YvGKkARK8ELV4lY38tEQMby5lphVmvW6/RzambRNk1/xvNzYjDEd2hugyCiqtq0NYwQdYjcXLwezAgAW6zqJoHerzt0m82Fao4JhxHcNyMJEtZhG1liHM37dfUztZr8BsEFoq+w3HVBgXFZN3UjML8Q5PI01JVatJTvhXuLfpZeOqmQMbA/P4db4+2yQf0Q1NQyFGkt4hu9k1amdieBvGNpO1g13CdXkCV5+OW4OCD3Z/R6xtMa10DTtnmFygVAmqSZxys4cSJ4ZF9j/3SiEDLQWy1In5WNLoBrncbKeD3LhlraSszFoK+RtA3UMkk9M4ZEDuw/3iZbeliLs2mWvgNVI0zb5o4M2BYbwCaTPFxY3YSwareDZLVgRCI0ku6QZfLgz6iFUoSTyTPkXeuMEu0/23uVUCP7nKTJmW2hVEDdiYgoxA9VJrmhqVv0PbiW2YnoHHYyzQTicFBVNyezCQlXBTb/vHUfhe3PsTnQTN0oe0xuDWi4sicBC29pTej4TZdb0Z6U6ZJ1m5qa6B1tLyBUiqZFM9ky+VTtbzRWNFGRO98FyF/Bmy5/5eR39IPyri5xV6n+KED8Gr7X8OnEhuFW5/2kjqCnV2d/V9l37/P30rn1zhrOnr/0rYfJjb6iylY09QmhKjl8Gstn/rH+vMwrZX8MeL5yeERLhwBmZrN6Qxuw87XTQYBqfSf32thzRDrq1xMGSC+bm4qp+knORfSGnM0KDrvkstejrvwDwJAtzmlhRe0OzIevuMbeF3DDNG3kCRr5Km3p/QZNIjaa2yBNOEonqS43qWnZNturMuMRyyUNDHASViVQSoI2iubEvl/P+1g6lr833e0riRgB3NzLWTZeTwlwJfYoMZCQrGTJ8ZZNnEsWRiGj3ItALViamPXDT+dh9TtBz76bhswOugMuQ3AVwcdJgMKGEwcilTS0yin3Ag7YtWZvOptf69jK4koZjwQnPWj5cZQvBbYUTC3nKbxjSMI39ysUT7g8fYBg+Ip+Or5owJTL7aOCLQfX7rHOzkYxs596KCYJa5hBiYE0jOIi+XIpRNy1DkGIfaGCZm8OAsflQ+RN3QxOy6GaBvSd1Oi07+1XYGyRTnzTzeCs/7lJnKrd1+n93POgXh4neAnAmDceqDmzDcM5yHCTPVYhNSySJMc1S5FvIPbaJJ6T/K5VkWc5jpT0PCygDzTfvYCHntohnZel80tpr+ynJEx3e+bJ5Kkn99ZXUKuS5SFBgRmJyfJSHY92K8kOBO7kxt1AT/e6iNwrI16oOBsIg0Leq1HNzbQ7DEhNjS9OAYBrJqlJUj80VPycHX6N6zBSylr333SJUxlA/11lGMuurOSYN3GIVfvLgZB+7rCCvlv32nM9j98Ktfbv9flnDjEo3jG9H0B4mNiEfLs1Pt4x1In/te+89OzRZr0FRDoYuU1wbj177Eu304j7JwWpc1C9jrttBUXKb5bJShhgivfLXgDG63HLu8WsrBIaMzFDe7YrEI4BMDBnnlWzB8FhmsMJTZKm2fIhQRKs7NPn6q6Wr3bHVfjqav4VeMG9CLkpWax6IgG5eoMYLiOpkNaIlVQMEofS5PX7Z4H0KEFfmmvxc17BwBBzVAAE4ZpuNrINAmgnYwpsm99zksJDL3l4HqLOfD2+7SWSxWystkHpz16p9F5GcpTPe/nHNrBf97WbFjCv4AnnXB2vdcdzaVjvTLuRWP/OGILLZuB5930+3zxd/HtlFRNJxpvfqyIbV8pTVzU7JSr9EGVcHdyjFw1OuR/nRcWYzxX30LjV34pEcy1ONN27hCipiq30O9kdm2/kZ/2XM10ChcG1aiSCAj+1XnMTfiE0kDzsk6ZTXulWtzwY1gG0OY8gqO/tlIA3iYptfN/DfXPKmATKuVcPtpp/eUoXzYwUe0pgMphlBpyEuzzAcK2BYlw212IsGVRg6tVrWUKARUlI9HXGgZ1MJ+onxok6yRnRHtrao36+zwtWTWnOF3ULRFp0WR1e5Zpmzuvay7V5+5xN0KuHv/7MiNRZINlpJlRa25q1kOIzisjxUjSh0JQhOT+WMSy2AMcmnxAnGgN7tPkEdNh8QW9qRWNmRGQ6kekjP+6R3PjCzvB+Y1oVGt9a3nfkviJ1AhZFA4IIKWhmx/rwsVr7QJEbZ3ty6OWtts0nhzKHVJPtmDfZLhH/0z/ZPvJu6X0N32X4dI3NLQS+3ntTHz9dF/hOw6NfvlW8ev9eVb136PmmBD9+eQVMNpYptDvRqWCqilxoHrhJczKanVFjUz2fdU2NFPIjTWOjbmIWe2x0pLYGRVujKaxZqMvFDAD2ffqhbL6/xsFObHRHmaw8gW0IgGHakLlj27YQ6nWldk7FGAmGBFyRTSA9Jw+dLPC4AH/DPhpah2wXSu60/SewGdtwLUMSrIifMxNIRUa0FWJS5sqjuDlYenpDOBcIV73Rzhp5EydP1/2ahIJRNM01WMatAAKanFXiE/ubfEKNOsmvlxossNS1QiPi0rwtn6+BMa/X3QEVnU+Y5kz2LcG1v0HdU5iIEOBpbSsQUpS2LKAKHWQlOKK3pE5kjr+Zl/6XGclUK/Qog6L0i0q1Xi1f60r+ErK7lHRVsV+fzTTpcrG7c0/wyNV7CJSg3T2qBZiMYuQ4zSq2/R1GdlkrgnA15TILuvv7S1wxYG+kwl3tufZFxmZ5HdWkim2s4NkeljWFzOlu45ELH96XgjQRRQs34medUmtEs9PowxxQ0cOKsGAdKiW295tJUnmJ/MXCzBiY+7WZimnRYLUaFpjWjO+rFocNlD8eMRZ21LzGHcaDPRNqzKJTzpQHFGXSLrEg2jsTaZHBEbeOuyWtFgexANW0Zag/i6xWwfSijAnMMSBCLbrto6JnONZjfND3FqmQtBipGdz35ESGC05DzGxNgCQ1stk7NqicGCW54UGi3Bu0+3yQ5LrL3SQ91cysmNkWt9L5paN8Xmv40zFP0SbqMb2jYR3fooxdc3KWM23vrGHtPd9JoIL0PdP7AYRXExtd+sPr/X73jvaddZBPDLcG6dm9e0PnPOXX5gQnQ3h9luE2tMvnAXwX4HQAVbrGqavIhcRoITjVnbNWd81lHw2S1JxdK5LUTNuSUohTIWMF2Jhr33TtepjM1loRuKkJCjBxj14uTWPCj1Ww0hoOlkg02Me5n4QEQ4tKn8lRg0Fzl7phWByUxopyYjuEkwSSH88OCRVBUDyOcVvqq4JFn9B1TkiYmvl3hwQmU1XsuocGJghTExDMP7U6AnClsZKYwHvi9ZVaFa7q2qnnW2h74v6yCqw8WBQAN6CvWjBW2XbZSltYL7L9UsCudBRAXVX5r6RZNTQ5wdtVhwUocXo/zDHVx1y8EO/3cbiO9zXdVuaSylue98gvCX3l/wEgNQ+ucUmALaXusYBPIwVT954u05j09c0sMc3eH4IRcd8LTYLoDADsu0VbtIwJxKJDtqi6diLMHonPGZ1nzswJan84dqq0ZbCsurzx/n4Ab9VFenbEqO9wEy1mnkfXzatzkagvpkm33APZtp4HODmjqZpnABRIYYoHjjuTiaap2WwBBjPaIf8te0AAyHbU2PR+fRLqgCt/mzamPFs1NPbcATHlOVIu1b04rLPU6Hv9ic+JwrNmYheef3Zgj76qXo9pIDbAfZNeny7/Vej0eZqNgtctz9bBzP5KhzbhJhooTgG8/pw40exOQt5yEahobLTSBGS/DukjLc4ZEUJ9P2r25XBs6ZdIRpWtK/L6tJB675TpNV/v85Wv4XOET9bYrL7FZe1br0P5Pe145azDvm8nfjQvj8S5VUQOkHMQ8ZZy3Afqx1SPhKY+4/yMArJWMNVMY5yAWFpJYpLklH02TSszuoaG97SSnTRHWz2mpclOz0+e+cAJbanlBZBxv0szvyoCWn0C4EpWbkK3iaK2J5BgNzVDiTuopYi+HOlQgCYp4kv8nnLikwQk4d0N0vIsy3W8w0ltuhtWqeOqEJqykk3HB6BGqOC9nICRK5leJwSrqnDPZB0XreZg7IyxEih5szYZ6yc80kmlbXzufXVp76b9IXB0ULrv0/YHeRnoznbt/wnIziZWtiKB5pkUyOmx5mclNFVzumpszhYeLJFEdnVFNb5XQcwha+8tS61TbOPigJWe+WpOKiIVH4PD98Rww7vnJ8in5H+qUHeZG/F13eOFKCyJA0gspPSXWJ03gG1e0SpwLO9F8UaAXAnPZpndOiHakoaUMqMQIgJk1t0iBwoByX1lmQerpVpPXr/hr1xbs5JY5j4bvrpjXQDo7CASKGfd3O5PVY7FoaBLP0vTweln3azp1NjwZqNc03x40Mbw/klCdXgqQTlq08b4XDU27CfCulHWvo0531Vp8q59V5yMphc8MyWb5tlPTFOnIu6NTRH7x6yWQSf/sTzmJmn2l6a4E8O9m3kXb6Zp5nzA7jPe8ZSmbKmoi/ynSMAzYHcbAXVyelvOvAEmnoQqW4/3bn+B8/55ns7T/bxB1Nv5HdP7IYS3E5s390C9efVpnXn9SgEy79gNHxke7zM4X0rrdup64/l5LXSTFj3c9996BrDyXd+uASM1xfQMK3kZN+772TTl3a7p6e9UcjN9clsWfM3rVkyYZWqVjBNe4BZVZDoQsFVQWVeHaxL8XVZ4g/QQ73ACXrBC7Ps4LDH2duP6cm85tpm0cndtQg/VcUD7hmc0TEwktUiJBjJuNaeTISicstWRHSpaHS/4n6JZ6WUtxDJA01Juyb4qknseDAuURMWBxtmHkG0sAncVvmcWXb3FOrT+RqAg6JP7Gs4n8Tq5s1+cjSkc7nV5tkq0ThIafEY1FMm8aZTtvDes5XiN/Fz7KArydXAHifplLsNEJyom99k0QFFAZovPdJb4kScnBQmEb8EU9su+j6wBXEUC97K/LMpTyXloFnEIsZ8FEucN1XwRmIYZ04F4eKkLxuc/9FBWyxuvEbQ3YSSLTKo1gqK9OIL+vloPNwHkeVXMYy5mrN9OefoAOWmFd5nlcUP+sy1K3ziEG2nHaKmcxuXIKvcA+H671NIoktSIAnOw/J6naYSCswt1LPafmZJZgfyssNTzgwRHVIFhM63C93UC5nRC4FojX7BDqduiEaNXtVm66rFOUmYIxf9CcCT6TV9MWV4/kwqZdouc8vaMUqzD6D0w1tfwWy+82x6bg6YGOM6nn/aJSOS8y997/3ac88ntfl7Wop7BhvWd4/du5+Q1+TnGPoLi2/E7MD6CKouTmpoC8EJkDrcn7nto+F9qbFLbEloZoJCa3G+j4Bk1Es/sN8o9RD6Yxzm14BFFumNNYVzJBVvLTCe8tDQ1WATtWpfi56bcquBGWLTWNr+cJiLMV0z4XKVF5onvSJC10uLkHf490+YUtMOJGZpmLCylF4HexUgU0i6715W9owXk2T6D2Dwc5I5ltHbZNj8XpgHXUiN3MHTdvFu9nakXXjwfqQQqRgSBn0o7ViIJQMaGsbmmQIZtei79nZM4V2bZm7o5bScbAuR5EiV0+eGAso4tpiUI4l7T5vhDeSe/SCBX2mqp3nMB9DpZcz8Q+Fmf0rlD9RJeBZuTiMhm9gm7Yv+SBNIAuA9jiJ3TkiX0FuF5TYUw5Bk4QO0PkdUAe66l293jGsdhdmcfJ4tW0EPDhGUMtG+1PjgLwaj1IImoy18R+J4MaX3+MNeEN8ZRJuWUIbYQMTJt/3h6EixEo2qMmA7zUwqcCwRWJ7EIE+lkLalXgww0c7vqGbGGANRoxWltUyr48H5k/rTfJ3OJUS3ZxumYIGV5gPgYo+rmaIsJmhppsG41QGu8CaVPPKhuUJn2DWqA3MzMtCnce0NSw7ZVYPKw5hk1PoQe2rJrM2nBoqXR/GZUhdd3VJp02UdLRd4LjZwnoGXMZsVn69wKbB7KupNecGMWfhRb/QyHOte+V3o/gPAKYtOkSt5KfHOI9XA6D7139tb3E27KSQ93MNoDKd9/8igROz4911sRAlSgVOFaamryWf4dcT39uhIQcwBwND1Lk7VqfnamwRmoe3TMqQC/L/Et5V818wqCqhngoZeXk7KB7oltbJiqsYl+BcW2EmwXdMHZ7bCRIKOMiThfRhJgxaqyT3r73LFdtjZRGwEwLFaJAhRGbHgWj1/HcGxAKc26qimaTcja3lm6CZzZYNtyEz3J177vAUIUM9KPyc7nu0F3prp6UfN8+Fk19ZDQZYbLs0NYh0EESJBMm8ZzkTIRT0qync4CQRZNc2YxZap7htiuOU4k9nQeKUQvaQe/jJl9rI89/63rWKxxetx8VgByw9XRMqCtfXsVh9eWu28L/KqIYO50DJAOtKOvwPunk2Me2qjQcJ3LeLHBXwR0UzzEXauLLLnlYJr+nvubmrvv9B5RPzJgK+m8Zj0VDU8nxp48zRkxMcTdG7M8SDlTNYyRLmB5CgdqheaTfERRHGCWBoo+x5WJcm6TlZf5KMLOSxfeHd08kNpTepwLueYHcsa+P5oT1kNiSPLUyJFoM8JCuKhmeaqDgtBmHPcT9XIef6/YeRVj0d+jnhCmiFJUXBrg3HusIhdS+LbfQyE8wbh40ObwHTF1oi4TAvUzNB8boq65GeHlbJPN6m/A/+ZSynBvaiQmKrn/cZUKIes9v6JS0hHwsE9rMyt7HvjZOxnviORCTZhvR69d0IkyT9LS6Y1cJd9bJM0dIvs1/ODDp2lsDoMYoOdKytS+ylLi30jqxuPPFjJL54Tr3nv1DVbBGUB4sAreFE4n88Pzk/suaXSJZ39HCOgDmakaGSWZcXIRoKyak41CWtzL2aKh2dd47v2MmpnmSMC/kU4FnLiEHb8zhgrwAlwYwaiT3ojzH8QOa6ymBsQEFN8KXLZhntZ0WeX0egwPZAu7HYMnomuQDoV5OLMMDAwgtDEkBgYOGcfeG/QYRawwE5ADeQAnSs54L7U6ubqdvcOe73MPwBiTuselgwPGj3fFXUxzFozb3BdAIJt1PMQ8CrW9NYokGKN+J2lBmb8LSJRWboB9PEfIGKOZxdF0ggRUwBPGJy7b1sYytVJpdqNeX/6N0KqVLB44YwLcvpcL2Y8bRPH2ZB6QOLYSnf6pBOVVo5Q5Rrl6Y2ir/UsgbvVKkM1cMsfmcBBAO9iLtAJClQUKH6sVXSH3mQyxtW8lWC2kAT5uVIYfVLuXcSTZhqqxWMLVUW5819JXwhxVYCCfJIZFdScHXSPlNVE2mFGbmri3yyEuJFQHBhHX660aGEWlOxniGTdMyz6aQJ+EcmUCPO9Hs5MEqbH2M5mTWlmxMgex8PKKuamWsflYcLOrbF4MdO2QjAEd2yt7JAuVwDj6SRu4GR3L84hWriOqa2tUU4uTGo6cQcLki4Oz1GuMV/HzbXS6d0jfT+PkRoR14Ythc2KTAd3pdMbaLLQ44f3M6zKIiv21/uUmtrU9/V/BiLjQAWBiNi2cy7aoLnXNT5JA60demdIrmzKmksMjApHyRkUiaG+tkqqn07/7SP85oWGHsD5/Kf5nDVNR1Gjvk94PIDx+jo3/jYkx2At6j2J/fyh8qaz7fr5eIipvHwivI1e3gsbfZfI6XNf7Eu6c+18HXQBy30w+J7gKzQmqNuWopSHBaW6eqxla1eBAChGqafK7CFBCb1nw83JGMbegSRTV9QGRC6hXpHMAK14XgdVTmQwp3sByGIzB79j7c09Aw8khNCCSnmvMbbRPJCJ4ujzZO1PD5fTw83SuVwNQU+lGWrCVQ0kB+AnScCIiPlxz5k6tUwXY2TcSZCHqiZeqZcPpMqFRwzL9LJjmzIG9huTLD1uMCW6S7DFeHrIZgKsCFrbfulQb8bVdT53Y3aXw2Abm7hM7vJ2U4Gvg6ekJvxkl41on+3cHQ/6FkqlScUvoeKsCh5XUFC0p70v/ToUQpeTlKwfoiyWJ9varZNUL5gxJpq3fyWXzxYWRG+2RfVL8IE1diGklaTkexcYDkBqSuWNsT95HCEANhA93ZyzstYOHW5YFgzqIoX5oZOtoUUNDBnQrdbBoKJqCtdZTkSujpN3NN6XLLHc/LduTbdgnQRKnNgrTqqiaCZ13zOpRkWfLyNjSHI8EjpK+LmLUM57GhjApWzRY9l4erlkJqrhGTZd+uC4ecg+QqprrabTox05Zq1OO47BRPi1xlnzEYkAAxgTqlIk1C+p5DzNUL2vcFx42bCQhWZOALsHnbotV5jRgc+sAxSzam+Eu26cO6HA3/XOayVt48ZtBZkyLAgx1ouJ9wSmo5V3EDvP0ughrbRmYbjw3kM4v6O0sKlE4doqWPOaMqsFBuXtAiy4W9SCDatOeyaCjpPk0erGmt17fS/1LRKpfw3l4vbtn/9sPY9LzSIeXzlI8pvF9MeQq5h6Jt4YbtbGkfX79aDgbiIQJVRzXeFpALee1YxzeM1CQSm4CrHyWpGe4IJZIL8lNP0izmZzxIE6geD+re2yGu3S2Z6EVWtKq5mhTDODPtpm3Awsrthw0LVyJxBhpPlYCV8EA13yITcj0GjbqplgFYrOHk3/zDGaaHjihYVrDXXW2b+wzyMcxlHGiXutVW2AZtlXiuvyKnDzC21p5iVoSSy7fyd+5asd9OJmbnlPh7FW+oQpsbq4BdccOCgDpupnlH2M0N9JBWsVXKAngkGDJiGICpa20STXTItcaY+C6O0l04DBFcJ079uuO7UMxwSPwAWxsSJLltVnYn9rmgCVa1CiHpVpp+jgupA/W99HquhmfgNCrhwrohB86LDw1IPOpwdCUAfiRfVsDELtGJhBOJRVA06b4+Ik6hZlKEUwGQXJNnPVV0m6SHte+0GlBAHTNhY3S37jpXa/XNM2aRjAwzDS2amMi0AW15nW4j557xJ9+lg+zX03O6pk2ys4qwLw+I5Cpk4aM51U1NvBwTmqXZGw25soCpFWRj8PyvXF58u87wYciDxNlO8z07kU5ijpG7DDOuV+RHxyR32jlOESU1ztQFjJeF7JfH7p7u+zkpnX1ZC8sqncRQTYUwDPFQnsDLhKlDJrq/cfbMHg5aYkTmtCsiGKjWZqoExqNfTacpWiORp0NDTYHFLvYzh2drrmBu/rXIlWUMhJxlo2oUyShaVnFJ1WjzOc2bqzpssLvGKVFVTcJ45qeqviV0pft+rwvnBOR40zZCdZ5qH2j2ANEei+9/52EtujyTun9AMKnOw84CfcsFb7U8Dmz+0WlfQNs1d8VMOV+FoCERuM+4eXxgM5dy7uhgRnYY78Nksy4BmfXNX5+WyHYgaLJQWiJUqPkwrtO5gsAaSuq/FckTI/S1arNx7YpVB2Ud2JQO3mzwd+LyVb5fuwZiLy4OdoQXPc9Js3YRutlMc9iPsUp0xrmbrkUzA6mzPM17PRyPauGAJ3pvYyHRJYV5NInAK8TrvYqcnU3cFPWOScWkjjlZKjAvu/YtoEh3oZe5xFXFfue55eISJjshUmbtwFzWrfqAPADTEmUxF0JWwumJoigww5avQxzJT0hHXDCya8DAoCbds/J5+vGZDc9O44/u4/ytbNn6zR8Too7yFiy8Q6CqkgE9QWBfcfTh28M7PlBl2PzvusgiSD5bNKglkfnhOqOsV2KBpHEph6eqa0CZZwDZjtjhW6L4S6MAZ4JYjettsalH+h5Ct9Wlls1OW5eJGOYSV5EK4dztmp0QVY0NBFnTsC1UGkqZ5pqGxib9SKurjcZld4dSYNNO5V5CRfSqmVfoBdvdafNosIHnwwjYVnwSAvQ4lmL7e0ag3Gxw1Ar2Xkp3OzIPbBbFy5ySKbGPTxf3iu8ODh8tLT2fZEkOLFrTGm+Ri1K7FTE0IltKMac2NjUADaYZmWozwVQu8ZwomMyaTeG7tflPJtStqJP8m1S1ZDVZWO8o+Xusa6SKp7JwPM3zur28fA6AfWapL8IAvM1vGt4J2IjqCuUn0ZqsgOfsf979++l9bnCWR4eG9ZvSfksVTncXaff4/017dR+5B4axhNfLU4tDdOgBoXXdTO/Il078xDONCkD1LUxOwauNE+re2j4N8gOPB2UNGwlOKdfA7SpMDnWDWATfAKrAnRhK3AEsqymrRycCcapM57kPpIxLB4dFzBNEMAV4FW/sbYnfPKc9ISE/H68wwnQyYbAABuJ0H7d3e5e4nnWQQFqw7REY6MziBzL1NCw3mhiksSipCoOmFRd+5KbaSP+kPiO7beJDJlHH5EADnyP7RqfkSR+vN4GHRvY6vtUrp5nHXOPUCVz3FgumnVijgTYj1MWcSo3glOly8mIv2GP2ySS5vvrX6+SGIt9nJf4ySVb6rdkz02Z+S5iUiJvCjiIz5PPeaBmHPzoZ8HQwUAub1sHiLrfrwDETdYmWgdBlj28MlHCjLJPRlZArti2i31BFSpbEAnba5Bx9fpsJmxlvNtrZgJG87r0qJimr/xW7k+A1UPd61WdZADm/QxiZ+rMPR0duGzKw0H5hUIKhYRHoPvVTrEXQlDEOUEiA3K5QHeP6+RGMWIcV8BLSEyzwdwv5USfCz3U0NQ9fHTwMLY0ISzETwFzVLJ2pTsTfbvFLDayk2XGWdzDPYn6hWsYCfxp6pyyyvGO/55lLiAxyHL7PhxBHJApqtjF/g6xPTTc/3cZm1OXad7TVNx7ti1aWfpGb9TTNzKj2BH0FgMkMtTgWBsO9bZ0IrQ7aRJB5Gc6OZpORuE1mZp4hNZGIDm+PWaXi+t1/7fKqzY/HWTqLQuG9wq1wz0iPdfOeev6U4N+KqA+pvcDCG8mNnfJRWnbWysl9rxUstzuELeaot4/pzDHO48MjmareyecdemzennNcHg5HGPq3efVZOb4rG5M7gk5mVGSlgRZJDXrdSUs6wGcdCigME3NFZXMDOxTmrvncA2NQoa0kqeBXVGIELDvE09bAte5wE4ACWo333g8w3LaJp/N19fU975wwnJPQtwvSaIQJCDAjk32OhP0V01EzMFBpvqmd0Fuco8DxmPl1sAMz5ehp6KNLqA9L7vnrZKSwIL+Pnt5eFeLeOYEYOosnZRExezuGXff94Mmpe2lKbMVyx7kcM4kjEE0sg5rmAshie+5ucfcJ/a9TrbBGKyFAmkv/V+QXtlKG0GBp4t71yOJqhOwSpqRZVI4jq9jOJMVnaR0ktOJjP2eLT7TIIhwsxAtX5BFOh6EzisnuxdU8qU6bazuV+R+q/7xAO6hlZmL1y0jRDKKCamqveOHTJqpl3c2khtZ9q+UFlJVYNuMTHEMeGdVgnN2Xp3AdgG1kDanpRmbuOdA5rV6QDOyVg/CtLLEpnwSjjAbRYwHmusd9hz5pGryWtN1s9fTvH7E2J4s3siV+0zC3WTrdH/EXsdz98N76zdZztJm7hgArMc4pLcyi0w3an+kh8V4FwivjtcVv9X+e9bVGpHJuKrinKrIgFMik+9x7jsqzkJ4gfv8zNpVwfPPhr9Y15zKOpaRDbF+NHxhS5w8J5lQjH2aS/w5MWAWBFOnmanBZP0QQEUxh++zmbbpf4NrdyS/zSocqinPXTbkcbG2v2bKjPzAF6smKllpNdzq0OqgEj/JOREo5NteOuI0ie+eiegSa2nA9deZ9H0tFXo7KvsavqzwfqZoeuP3WZxP7i/H4XE2ZD5nFh752nc/LDoAWkNvImm/m0kXuiYkgZe0uKk1SfJSD8+sXsxIdvZifnZV2LVrbnZFEprFLE3DQ1rm78wMra6cUVPhOMcrIIEDxBwBhGbDI3LOq4QE6CZu2Y/cpEPTu1YQD82YOWm7AG9umul61p5O5cGYGb9OWACKMwPF7rb99Jg2XesQsyxgy4VFs+MsKXtLITgH0x1xMzGWXadjT3EwJAewK0Cc77C5BkXnxOaEYRQQGO2FSsbUs6uAb2yukyVCAzQgQyMvc3f32WIEpFZagTHRRtOBtIhgXC647BNzPoeTBuaNq7aIFc0+2Z7LgvsSotZWhY/d5OxMY7OkXDikgn1yNTPptbBeB9Z7JNxbQSSmUWCfE09PF1y++TaAuGofl4j+lmmO7cnMxKSU2hONcXJYFNNlkJT+pXQOYf1GHEASdNX9AdTqmZygd7ZE3f277OfldFrvIwK4JobeEFmOdCgSB296GYJ0NYKkzJhrX+lRDu17LOfYXEMzfbFk+KbzFbhrLYA9HDRLKz0h3RyzjmtdlwS50LDvqKaBXN+oZaQMZn0awGYzRkuUfBz727G/nhAhlsX7ReG8JcsVsnvuNOWExS+a22k3ownFPI+x71CbLK6RAeg5bYTMFM5JamkPUSMlu0Ld9Bi7zyHU3ACYYnqUoamxcSfm2CjmSz0a6XKZT7fb1e4iFur6nkmSnxUtmVvq2uYkLtbXwilNk+sVadxoz3J5XOsu8zm+q/DIl9Y4L11/Dd9l+Cx7bCK81Lan9PzRDvHWd1dgeivWba3NvS58xvlXGPHI918TzkgWBcRL4CjEjuY1SQMKeQnTHI93IDV6RnSK04BVi6M0LSPhqfFwIDgUyUGcIk9+r2gmKHDtOgECwVVWmE3427bFKmydtPqkVoQ1JzApq1N8X2yHTAKgOuHmZFmzQWgp5V1uUI9JJQAIwDM/Qjvis7XhmRn5OAMEzf1ydImy4hbZ7igoXbzOskBtcdKrmwZBymQk66scDtrz4OYWUU1LviXdWycAZfuUbw0xbUoFLMrJdYFBJV80P1OvO/E8hQkKxDfyWpopGe4A/Kzc09Df7NqaHJ/S/vJ3Hb/sTNGXeiOe5/Ezz7lM3h3yoe2fEbTvr1o47vWyfBf3zOxr+x7712KBAlbuqdM1VSUjlWyLuBexeTI8+sZwS6Wfv6Q1LwStamfPQzTOl4r9NBzZJG6KcNnMtKJ8yN/la4g2bETCpVIjNQnGc+gqeC5N9TBIpwS9fuTYL1KYpkwVanzZW4tGUxHnU9ktl7qUxT1zVjdxIGoHteehdZy0CKuC9CwuTp77dZUVTWSzVEXmZvar5kla0tG9S7o0P4PUv4xvC2KXYQTINNmW5uZabSMa0wmUkxrX2KgvZkGm5UXc3KxuDYD7s6H2BjOaFWrPaHZGLf6E2oGeLnHCJf46tyjiOuRiHXNeP5CUUTGnodblcZmoTVG8K/1eDbe6zy3M9Sm47D3x2/0P6SMD43Xp/QDCGw7ovNN9bngCOiTxvYaXyvH6lBg+V2e/NSD73NxNV1B+978nwOngBa1obiAhvHm/aWVQPZTl+TVHt82V5IxGang/99iQTNXvrGSHcVDKjQCiATxQsUIxBYMGCOIm+PDAVSu/TGpxi6DK07Z5X5oQ4p6c1RQkHBNoBaL2mTQZQGE8afZCgB4AzF+s5i8IQsSH/q3JGsu887ukSJMH9S09WINJlMlGsj/xDAXWIVMOguD3hlSNl+dTxOswv1k9wh03KreWCODBv1XTxe80TKi274faOHGHAbjuTnCKVoHfYL3RGxqS4hzC2Wz5QljHbL9uvecUfK2S4DzcknunpXh7kASIw/dyTHezXTWTAW7E+6b3A7+RMUgkquagEAKSCC7ERKIotUJSDgdmqu72eQENnMLKmOP3cw9Jbw82g51xMzMhAFHXJe/1cyE/SHbqahQTVtMmx0p5edZK6Xkwgp57YGLMUEaoLxGJ6UnirKBSx/yIix9wwcJAa3peo3yxhCvYrfWbOQ3QS+QPCVM6Xer1oVAZRbm+PQ/7w1OPWwVWV9kK9DFHdO3fkvBcBpetlhEpcWPPFusi5gi7HlDoHNBhuh01AQXwvBmYEwG2VZuf6aqbLpmdZJeJruSFWhvrq0OLNaLSeUv2c57RA6TTAa+gKlDRfW9nXXLOsmhSHq0kZ7W3OZr/llcBSOtutzyo1XCUei/HuXXvNc+/hu8nvFJjc2zGLluWCfa2hDkmt867t65fivNI/HKhZXgdwzkYWGthhRW3fj9yfS/cezexp9AjM2gHzEm9/rZ3JCY+jWuSCQrQ7lSA59gc9sL4372SlfJcC8mp6VMLM0sZOqlJ6NWEeiVbWsDOWidzIk7lljjNAnUlMYKpPAJwADkPa7yTQKw+F6TwL7AAQaYqIMt5M7FE5KHkv4Id/4AWoFC1NvEqidN6LkwpQ1u9XcrI7ElJNNYrCCyXOjYzsDRXsXlPl8JlnUkBBvw+idGIjdIoWhXE3px1z5CWPAVmirqwfmJ5KQWMZ54XN6WLdtRst1YnWsiNIp7GynxP/ubi2FGqLGPyhd92Y+27Z186SIibefkcwbCUbxxfhXA0EAqhyffijBkgK1IkNtqvXglRiEgLUr4370l7p6vZsSwf7vI5vsUxGenmxn56YItx0PJf0m41IYeyKHhAL7+R5Q6B3WIzvZNy+fitxKbP2WDnRrdRKBqMthCira1aYZZ8tTKVNuQjw+7ppe126HIz0kG02q1MnIaQCV4RNWs9ItISIL62QIuGsDMfXZmWbSbs936vd08j/wM09UWMcwHc7q1+iK606SYg5yLPPhS2BwY6k1sIIJp7awAuqoGzc5i4Dc/CWOve+8QoMp8a2qMkrBVayh8xKFdzWqiStbydT9rQrzLluFCz9oizHvJInO8lzHO5/Wnp/dYP72KKpuXH6ZRR6vIEf3734aYke2Ny75LKW79NkQsEQNIOlOKZlndCoFfth4Bn03C/zIHUaDEJUxOB3Mx/cBiwmpM54zIztGJ+ozWvGS/IlSLy2PLMeP6MXpZ0ls3mkpMMgY+Vchw66ykwiorWsJG2aL6SO7umgkA/PT/xZjRIbMSXkdoMoNz3MjArQ8yMaxJgDTdd4fzoiJ6EIOYOQfMoqxG3QwFuFKUpQn0YQC2wmXheza5a0MlFkwEFGNU68486ySpnf8CBSqkXO/ehAvwsZ0yA6/sNoBUiFVcdEO/Xa7SXijud6KoR0JSx2tv3dcXeb+7JhMcm0fPpOUlclpP61ls0aP0tJ/ffLaj3CSH5gOdwMb9q/czNXybdEWt2WCDKCEWeteICLMzC6JmM7aPc1O5yYKanrsjqwjylAHgM3+QPbQsZna1q5mVOjMulEd7yoeb5LPeGbZjzamfbiLk9hgiknHuD2ncL4cqqq2SJGq1R9u+knIDAtVuZe7Sx5SCqoXeNuqrysY13LqAoXPtNrXAIdsTZOsxSaMFyc/3dcGdAHRRpnv9b99vPeq+SzlMgw4fH9B66vhGH8lq9LAoevOlzno+lnAvp9BnA5NxgbW/e0azuOZPbfyNIi9BjZ9TPLHKEJ+XULsD5RSGifj6OjTRqdUSmEbN4s2jd2z91TGcQSDj7uV3xjMm+mlf1+f3F6q/hhxA+/x6bk76qq4DASbxHZn+/F+BxAZAtH3cyKTcGVBFzWMHC5wvHAtwdpprP699GeA6am5wsea1OarppWWpampeyet00NAOqA3E4J8zsjJqZNB2r6VOg5+9a5k5kUOKkRqeSI0B8XvcN+JxAmaabrtQqrkC2diGabRnwJ1goG/TrKq7/tRdPGFPBCyNYVvmgZQ7mfhi+n4QE1CaPMQZ2N+tRIPeEiBRb5kw33ECT3DUgznrvfZ/EJ8gE/wjr3AFmkEY/DM7JHDdf256Hk7TRgRBP404wonEwRBy2qgSDOaU1i+xGnPIckmyeRVD4d4aka1tyN/X22QkklglUlaCuA8ze2LWWb4V70qRLpLOUJPoFk8pWtXud7OTvKh0ey9FLJVnToOZyUFtDIO/1Vk+cD6JGD2aC3H8wzB23zj1cGPMrApi5k5bxzEMyQ7hJuF3XqRgXLjignAHDqFI7TIwbouNq7lnJZQTPqwx6dWPfgo0THxvVaUGMS++3oBwKjYgRf+qZo71ZC8JWNfmkc4dsFyMJbl4bekiOrdr2QSZyRFU5GuUm4Wxmsrxexjiyr5njhZkDC1q8DDqZEXPUcK0le6TDKbJ+64eXvyH3TsyVQtbHjxuA5cbn+SO12EXIHz6y3usTQNtrFotHOc5nIZIWyj6wqdhkw+4jb+iMA0KnOw9QKDakS33b4bqFhLNzdYiGSHA2mPYwXbZLLGh5fM/j0FH2hWpJx0uoSzWvVaKlD7qMztbIulrv1bdYN1WDv7y+XGedtzb8ksLiGv1d0vsBhMeJTZH7pxNgyA72yNKTS1/RL6HfNCZ0LntOXvK/jxTgcQF5KzxCo9YBfiQ1Uu6dPec9Eo00MZvUxgBJbpywGPYsmpr4myRn11VjM5a/AAlX1SrV/PKe5aE+d4KkyN++4jtkw+4zQnX3Gl1R7DDMbRs5+VW3zgQyJ3XsEbBzxasAk4zroNmBxdzVXdXmKqbE1ADE7ldRhK2AOjHjCrNquGi279G8B5EPsI705b6snJx8dVe8Dtht2xxaxy6SzLniqPVyumUGCilB1g/3D8kuQW6SlFg9T05eTmSsxSXSXRfOEyQivysL+NRsxQBekpugx9iAMQF9DmC52vwfNTb3jWfYj/udWpe3JMq9986XYPL5skoaqedowhJX8IikWb5X5oI1VKdWc5/R9ytg5xlSFpHt2hcg2Aeg7p1ubBD186EiEztkXKBKt83pNjpAuYPvsV0QKyO1ANlx/Ho4UdIgU5bmfnzHLlqdgqCfl0FSfKxeLqnl3a++yNH32ET54IsS4WJZQzOVJCwP3QQ4tpHPaYZbUJ5WMsgKj/ZTqws3i5pQQIY7VRR3rT2CnErJPz1wxTfh40XUz65KwaJsV5eIlwf2SZyGdSAt5Cab6oX5u6DuJDva03dsk7308azdu8e0OTtwn2eY+I6ioSmp2AHHRlIAt0JQhYoRSpVihe3pbmLjThXQAYjOICVGblJ7r44KSFNIdgTU+KQGx0YyyYz/lYXcxIR7XglBaiBp/hyNgeUlRW/2T8Ncj2HAr+FnJTxObF7qM1UGtLh3Otxb+mFNjkT9BCUcVNDAJ/fclwdQJUz36Kgo/gAAcHhJREFUBWmFRvcAUI3fYpQyVa1GJTpJGOz+0X1zhz1K7UqQmmoONpqmhlqebn5WnAf4+7vCD9W0dHb/y706qakpWhnIaZnYxwwTSZSBf0XEXB+7cJVtCwJQ++fmZ69MrwCdCvXjnoej9aje0pEIeOoeF66o6SwfYJspEsyJBp467AsRllF9YpJ0F10Q5JCBesh69J/aOTT39IgVCK1A8A32HCfsLExvpAZzloMADWd5uYupGMmX+jkNBDZJ+rx93CV1Xf3ODcm5wb8e0Bkurcsemd1thDfutSBAJ4CU2mY+SXvcnYASsPMixsBlu5gmyFfUp4PujQ4lWNdqAE4xw430OcA5EzxnV/W6E5bbEoakD1F/9b6U3x3UlS8KIm7uT1i+tsrSJdbdxSk+G4Jx2SK5OMRyy30okX8pZARYNGyerO99G9sl2sry4udzaCH+kU8tefc0SQw8/dB6FGCt8wrIlt+dz5Bx6WQAPiaCJEk5DNQJgNr3ZClHq8Sog0KUIytcfEiSw/rUWk80XWuyajOPY5oJctO/aV/6/QT1I86/CdlbJ1ixA3ZNTtEZiGtT1eWty4R5ffZXRu4vj7agTFeo7nHg7aswgSKI9LGvR/Kd5MQ1y3P86BnIbdjm7CHgiyGaXYkiaRnc7Z7UJHJUKhBakumFsJ00ADAgor5wZ9dGVmnOpXaPregEZAjc+6gtAOq0vTTmb0CT3CDN0YZsbg5s6UxoOIERFL+Bkhp6didqy4zkWPlC5pTpspOgHK8px8r4CZmVMrMRIqzySQ99KutejtFOgOPLsPHTSNXdUBcx3iu9H0D4zKZon4EDf+Htssiru3He+rzF1fxaBUrn6Un8rcQhiEoQDonVIfs9CllBiZOumqnN2f2ZEZpc56lpVzhVRUcAJ/S8oeQFy7s2AVh8akkAN4OhwKxqfsQL2T1HrS+XyjTzolpCuvAyb0+r1sTTHVUbUFyZktDUObX+3QbmrN8AwjStVZCvikld5fV6KUVJb2/5+ppUfFtILDlFaOztaQ4MNCesmtGt1Ef9JoFqtkNHBjYvj4iX+w8kEqmymG9ON4Gz/Gia7gHlbB37XN27NKjJ80NQn5+vmPt0EjWwXS7Q67VsxU0nAvQ9xO26xwn2NSO39uv3CX10rPf6b6y/BQ/PeQXL3+ZEUzGvVzx98wH7vttZUctYBDwdP6QTfuDmdknA3DRuBbVYf02kSpfSwwH+uRczO5h3Xq/58eW5yACC+3ja26WBK3tVo4/at8phoW6W1gt5I+jRjLUtni2aldzz5oDVT6oPzaW3Ak3u9t2MvJLgS2p1qG0564FeftMaXKHyZKRmbG5WV+UeQuMlyI4UWqZI8vgdGRswJ57fGb+xcxaF2RcbKHNtf59PP+p/nUBPR94DAhVb4BlCrY1CMPyeJ+oaFUou9gubhbkoZBJt+nv2dIaM2wpZCZknyLb33AqdDJCYkLQsTLCbzlbd973wGUnDm0Jjxw/E+xq+j/AwsXn9hixJWX2AU19C6Mz8EUJiMW/FeRuJez3JWQCRpCAhdKknkydpyfeTzJTni0tlLaQk99ygaWWql7M0Q0sSRDO18HymTN8JkyLS1cgvojwByJUaH0QatXwoJnJRN8ssubkzgXXfRz10k2do0JwpXAeHjJJYQZtzj3fTI1jmP17Unh43zIYdsdAkC+YtdiER68RQRaoBllyBFgdFc5oZQngSKz0miu9/6wnTJBamNRmpiYoEJPe5lNVwkhKG6dqZdtChSIIvkTRLoymcVjfPOek1MlY0O0A6FphqZ4hsW21L9o/WKUxr01D8BDfPzrkD+xU6Fdep+OA5Sb1hq0ms4WjU9XlkwtlXj6RK2+/R7isOX9HHp+K1D7VnglCwpYYj27iBdrYlz65x7eJ0bYcU7Ur2tFwBljrHBGmSKItsF9BFLiPu1+uBpDhjCEI096tphmTr0ajd8RXwIDWQ3NMSZfaK4Hsrai8algX/pXYTgthDROcHU/3MT7Y4x6GcrCMO164sdvXVQYNre3TfoYN0vcyGMjAuHzz/Lj/kOKMn56RmNh252CfrPMUX0jX10zbWtaPHwmFC7jmryqYzDEOQ3jJX5F2i9PKpu2j8dYVQuJa61G0sBHmerckF05/ZFipz62xm1AND1M2/TfOiwsWkCZXNHAnoxBhmSmZj0U3QQp6rmbOBKMIO6mRfn67RmXQg4HMP54ohpDccm9Smk9RwnsGhr/KevUtzNj6rOmPOIXa99NaTpjm2x93mO20jdqAiN5Oh+WXOoWfP3xy+ekV7U3h3jc1j1fYODd6k5PHDbZWXfbuiwk/Ixn2r9AJwX/jIPShyHI4pFNo7Zaao3+z7VvK5IolBEiBu5CdBSFJDbYyZkBWSs7h1TqcDJDPp/WySeDAPmir1ei+BS/7NBduuZSIpsg3CJk6HC7s5FRiKbRvY/dC82EgPuHkIStpWMVO7X5YALeUu71VARWDEldQxBPtehJ5rPWbZAJ3Tr08DnDHLvFzJElewt23zgwAJ5nAIdG5Qv2PFyLJUoEGztd0J2hi2aTToRcQDsZbdI3DzyY1EY4ytddTweDUGLmNg9/1DsYLnUS/bFgeM2rwgBZDnZMg882LzQwFjwpQ0OyPZY9slILQEuVdLoNjGgGwbMK8QP4i0asDa+HTXz1G1pZq9Slqe1/dbXE/hDCyehUxT29/QhQpHUqa+Sq060urNBvqWwjSTkDuCXj2TRg4M7Ixx8SfpBU8JfHWaJmW/QoNQ7MvihFNM14zM60eMy4eQYgBys7qXj/vSqkOJLIeDPl2lubZ8iwjmvnv98b0CqLzTDTo5ACCLFiTOkJKRDhWQUSwfue8t9szIsWfRHBYoe4jCtNSvaxqquRm9uEzXImrEx6vC5QL3ajRCpHbf99jUTi9NMDC6Zv6L9qr28ez3vhhzq0/dut/Ao+afFeGu9xZkeyA8HPcVgL8WDR8z2vKZ4NwXtjzeLDKKC315OpK7YabcirNNrS+n4YGlOdTqngtnOqidMXIzPBNGgjTM0aaaMwLVaWQGrq1RsQNA4XJVuUg0sQmwa5qmCVgO7sVJMzSByeIBAaQYoGmSG9ZVb92Uk4EXguBIad5zSdtboePHg0hl31qvb3TGO+Lwa/gewsPEJjc/v358Z994D0LznuHYHV8CFd9VUF1yIGtu+xotp3OaZXHiCMijVUwkqanmYd0cbaQ2BkDX3OT+Gd6nCZqRmYE565k1ToCC6NR0O/Gq59kgypKkpnpVU3dQAI9qe0I2bJvF33fbRxH2+64xiZX/qGvXVNChAAycCKoZU2oDANunk9qMRITc8BntCM7xCbDtvhGwMXKmrXt3Jia6fsbSDOAfYGXicjGyQ/Os7po1BThPj1YgywkDXtMJWdWckKjYqqHXuuaKogzB3KcThBnpo+Qvc+7OBrwOm6c6WP1ffZ7s68HpeKGOytp+ACIf1iMr8DLGE44knCw5TMOHpyeI/NQ8uflOWwHSbCdGkOdBUuewEhHmC2fXJ6zl9nh+3TSZJMbePf+d1/fIzP1AxHdviq9pE2Ar9v1q/aZ6yvK2NhOuqz9TXwgoQD7GLJGPAbZ5vdqYhfen1m1spVmjsxfwWldePZ8AMPcdYytammmkQYKoh3Cw/uOkJ1aaGY9An2di+ULK9MMzIcOVOer9rOvToieokZ4KCnv9Mo5CS95134ENMQbrZm4Wl4d5xh68MfLw0jLuAKZ9iTKmi3Z/ThlZZK1Vc2pHpy9+pOYOueAU+ToMisdDHWdkDXX1PJmE/VwFyM10EzyX7n/cRxMJH6/v5rnkbUKxIQmNev3EvEAi4kcBDP89RbFxfvLvD8+rqu0bVVC7Q638CFNmaqXzWcYZStpF8uOEn5oaWLzd5f8Ms7cio13uCyTnJLjZHYc0e75q66+L1C8ERvMbZXxwJs0KPlZ3NNwicV/sDkFuyqvrS0e16aeFtvr6Tun9AMKbNDa32vS1798LL02cL5q3rRO23Pj9BYQV4Jw+i7nuDKrYe1r+1qmcpEbLM7hmJYgDCUfVyEg6BagHcCq697Td39vh7p3jnTzvJgiJ/53L31iB0Qq9upYmNDm6lJPYvZh3AObVKEyttJuhjdEJSGzWLyIuV2Z9z4xqOYTPwYq6WUqK2mW1Pj2kZfvarDNqJ3fhH3tMWD7lpCLhTWqMPIOH+SYoCLec0kkWV4PbKjiJRhTZB41q2HrnaiJK/Xi903V2ISnNzMdBKtT2NqxyI8gS/+cTnIgRleH7YHIDra96S7YP/JujtEt83sEIQVRdaa/e22RkXVOLsXl++2bWpUbqwJXy9xEBV2fSgr+8QJn/en8JB0lB0NWkRGps8jozKO2vtjekRHrLdCgA5vWK7ekpnEI4c/YI7MdOeGDPTUNSHHOUtifYZr9j/xCmVVSxMS48NwTe/E6puehDmXeFUibUikCvd3GX8ggAWMF+5lndZTK1IKERLZrFWnP0XFYXO/zH0u98QaTuxZEB3Wec45Pv+rM4C8hzu884pLbmgYs5Ug6wDbfbVZsUf3KvT7py5hjtew3h45HaXXaNFh7tdA7ij+OkkJKapiy/tWjMz7KgbVpZAG6SiSQznYi2LkRbzSXvlbNTIwPQW6diqoTZrc2C1NKktoNxfXepmZ+FuRrn2UqUucvGFqymkNT4IpW7jXYD7bbHZngx+G327RjnXuaBLJtV18m5ZEF6CqkBF9DqFJmkpmq5rQl8Eaq2ResRRcta0qvP27O3gNxPBcZfw7uFx/fYEESwA70hvOatt33hRloNaNZwmxx9L31U+4CPDJzgqPW6gv18sZKaCmm6tsTmmiQKq7lZEB8d8byZoS2anE5YuDen78exdPhtxLfzOvNMApbxJf9GXJpm5MpumEhEug76kf25AsJW5dHfy/26Csj0TlpjFd7ZiNLv1PQKSI8mb8v9BejBK2LJePWS1UCCV0M4O6hx68QhCbRqsVp8i2iPpsYM0Pb68FUp9Th8hZ1AEDyYr6B67wg8EJHtmFhibTvmXQPTztYmvYaGH07o0LNVL8HxGOYVak5fPS3p9AlzWUNfBuc6iZ4KtCi6xuWj8qb2O/byXLrIxKXGWcBfPjuTLHK8dSjIKZTMV5wojo1t3om1mb7YGB6bA+4gn6W2C7qpZLb2Cxscs8dhyeo3KxFvcgLZr2OBwXpAda1eqyA1SAC9s/FEeymgmiZqZ2P2VoPX8RYmp3V8dVFUZJ16VUuKlswwavuN7eKupKWtfDOk9mXNc6kzVTfbyj0iDcmWeg0uJBLOIhwVZ128FiTEZ46E4UTsnr+KtS5vv3f63dNMd2zxCJ5IUqPuFMDeqLOYlOvY4+J1qi6T1Bfb2NqkADbeilNmnd59XWPj8entboQmkfRngktuihnkxuTyxMBoi1WAxsIitTe5GLjWhKLb/1nOQ+vD8gulWdfeaNTULVl6bKfXyNt4oSZX78lJvPcAj2Xcv0t4x6S+5DBejnI7dDH53Yb89ong9Qg3tXivyPjnLONZGQ7f40b5pZyhvSjx816FOJ3UcJy0M2aKw4Dq8SwJDUkM3DnAWMjNcDeSnRAFMTqkX/Kq0vJW6yAnZv4uk3U846QvXVgW0EJNQwUwunSO3JNCMakRN1bFHF8RkBOn5MpPmcAJCKLCCbjc3pnCnSCBk38cHnrSux2Z0pTOopHILVPoSd/nilbzgKYF8C5YpG2ELHnMONlnpV4zTyyzpJe4ksPe0WtbczJcvjXkKK5SU8V9lgnN2JZZ11mE5m3LC1zzP7VCvBx/xzo9D6/DZyX9rATUntXKnCMkR3yLuEoLXmi/vBFKTl4dav0oYOSgsSkHtbGy72Vhe0Q78LdrLdqSOfMpsRCwAshDIVU7afd8SCHa+agOBHtXmNfQzKQJ1qG1owMmEeL7zG/VJDVhV8reF1G4sU2jTx+D14HXY9XsZhS6pG4l7gsm7ISRxYC8LgZc/i0LDGwPLHcR5ZVMcwW3zYscDlVq9yX/Oyn7Tfy3NhPnksO3ck6q8Zeh07Koka9jto/p9/m+juKYqzXlARf1OEfP9b9pFhS7+vw7Bbvf41lydj083tnvgWv5PefIOPD/fN6O78CdBMVvoDkUWpwLpXfUigU49K0960LmGd4Bar2gxCn3BeU9OWmPMxzV22QNNzHkWbgBRX8o4a/8lb+CP/pH/yh+9KMf4Rd+4RdO4/zDf/gP8Sf+xJ/AL/zCL+AXf/EX8ZOf/AT/5J/8kxbnn/7Tf4o/9sf+GL799lv80i/9Ev7qX/2rr87LK4gNO8vbJrwvO8jyX73/WLgpi+88O4u75uns3S6nOajPCIy0waxFAHUtTmpVkvD4+2cCqxEYmpyNQoDOnQuEYCMJ0hT+ihRwCSA5yRCI46Q8QBAxT4/mF3VV8TjpcrUn2zwXJ0s/iKWmgj3iVO/SVKWv0OziuCiVpGZtU4MzBZigE4dajjFG2ZuDICj00AYUs5qCGwkSCYwazCXZ42Xt+8q8k7DUGb9+hv8Wu3uPZHsRKnGwPUF9pbS0WwWT7Su1Ort2JjRysmQs2k/XJKBLHli+4W1ax1+OtwpGOhCpk6/efHaMu6Z/XuIeWu8odZH3z6ZyRiIZ6lBrhRLxnNyCJPeQ0/Zx/1nMv5R3vJ3DdMrqm3st0mRQIr3WU8OkSYOcKEmLSLR/ah9yAQHs9xwPkdnWCTuJUrSFh+z/JZ5I7KNJ8F7i0ZRrdQNNksASSsmRprkYvQz2hY1SNmghQhw7BbijrvPzj9h5PSDxZ1y2uaRGgK7XmT5zVpwR5LhjXhDPegt6FoNk1rF6p7ffnwTPJ9qz3+3vY/N7Au57YZE5LyV48n7Mb+pnpHLR8WxODQJTiUglLUlqpo6F4AxcZ5KZfRq54X/7zHTnhP/ObwfRwQC9oDbCVctCbFFxQCM+FbMU0tOeFRKjMJygVcJ5tepx4Snbb63+o6S7e62ly5ThEN1O+70Hu9bLoSX8Tv99pvDx40f8mT/zZ/Dn/tyfO33+a7/2a/hTf+pP4Xf9rt+Ff/AP/gH+3t/7e/jxj3+Mn/zkJ3h+tjOvfvVXfxV/8k/+Sfzu3/278Y/+0T/CX/trfw1/4S/8BfyNv/E3XpWXN3tFOzdJ6/deatv69vkazMvpZJxlkpKTSI8keAgFPpwAOhPbFWTe/oZG/CXtG4Px/F4HuwGGtMZLONOdCowUBiF4TgSKCuKAzQWEHTU1LviKwGr7dECSZHlNYZbn4WgpU2LPjNeEmKe1OhHghA+IHYQ9kSApgA4ryGsnCEpfrY/JeDo0mm7GxOuFeHAuB3y/Med1/2CYR3m64sSBk/uu5sFN0B0UqCdce7bAXH3GnpMokka5QNDnf+szmodxP8rgKeuaYzrdeGadJecre3UEcYgmwSXrNDCUV8xYVum58stJgM4VaCwWHsck+3ZOGFknsxzsyP1P1SeVjJJfr9PYp6OI+skDIDdcLgr4vhtx8wja8OcYTPB9PlWcC5lbd73UhJSWqufv9rSsLQdrbmT5QfICaG5elzMqJe39Q/kenBxtn8gT0QjATck8FXAg9nsQNCu0ay1rP6xjY07IJU8TCrRR86tAmIhtW+4PwfS+gnLWh6cxcw9V2/+yjnnvr9CyGy1kR6sFrK2udN2MxgEA1fBghjnNXfVu7phlc2cmNU9lbBiB8jSphZq7j2uOnTTPTTnD8vQ1zuw7EvuDMpvcZ+OjwGUHhHvWzISvL444uSUJGsc6OXT1WoWHwPFbx4nLzCKP74XHcMX6xjEzfcTo4dmaDueGhT/n6/4g9kvGooX4jJc0VT0xdWcAAkAHzdmsL09FeEKz9lKIuJmY2n5TUbvepJBmnYA7ixghVdM5QD0wVMW8rMXxYyXfQXh9PkrfoBYsHy5gWZsx7ut8iCLb3bQu0s93174t0uXCKsdb1Repd9oVHxN9n5M/fLHhL/7FvwgA+Ft/62+dPv9n/+yf4d/+23+Lv/SX/hJ+6Zd+CQDw5//8n8cf+SN/BP/iX/wL/L7f9/vwt//238bHjx/xN//m38SHDx/wh//wH8Y//sf/GH/9r/91/Nk/+2cfzssrNDacAIoAWZ7casv67Ha8T6O4x8m3f+x0vlnn87gXMO7l7yr/ufHOku5jKz/HOKmizaGoLtw10k6hGcISufJxXB0pRINk5qCxGW01RoFOWMIMbbjzgFRf85pn2uxNpY7Mf3w/y13LFOVvbVNXbdIeme+2/SJStBQHiZOgpD8z4CCDm2ZJkJZmLUI0Vj4lXRCjxNHST6ojg23kKnRYbBA4QVsagLkyXr2EjSHp2UvMdfVBs8S6gZl1yZIu86SePoFa3S/EjfyVMJI8bNvWwYwUqRHkgivoo6WtU09dvrZrzZvVtC1BXgeWRljsjJuI55PmvqfLXWrAhqdd3dz28ZZ/+0riPXkh7b97GpuaRpWuS6+887tKifqgC7sjGTrmuIdFWD4oqmMBYNswtg0im433fQbZBtSBsH+nNvjS79pChR/qmu6NM6cmGMx98hhb9Int8qEALQdGsZLiCXDMiASYl7F5Hiupsb0zgH9bea2dJARzEeh+NcBWCMjcr5bG2Ow91plfS8k/PE9ju2R+YvzsURY7v8fkQ5qjqfftPinKtsXZVHYrHRZkE0jKR3XCEhXusgImNwbbUmHatN3PJCpkZjVhU50uU/DpQUu6cX1jTr05/5/8jfjLBHDj26/Ncsxj/p31yASal6X5GXCd0szIrnOY1mam1ubqpmbPKrhOi/M8i9YGo6Rj2hrGP2h2qBUqmqHM24h5X8NU3XFHsRKpDoXafxhtsTXm96aFyXTWJjpruqzfR+TzS223vn9Lcn4ajv2tHP7AH/gD+B2/43fgl3/5l/Hx40f8xm/8Bn75l38Zf+gP/SH8nt/zewAAf//v/3388T/+x/Hhw4d47yc/+Qn++T//5/iVX/mVh7/1iefYVKbc7/W1CwdMFajdBO/9nWWaLl84dkECqJsS8lP73OkykL4Q5ywv0h8JQLvhI457adCt8KaawrjGptm4oj3nMzNFoxBFITmId2hnuwqzCROekW7Y0XYTsSBMyHTrc/AZgYD/nZEHBIkJcKkJGi8XidUZnluz1TNdJOtLgTzeOe6kOQUPlrNzAPKMCa2ZZaLiIFpJqBS77PbOEAy27dwR5lYOFiY1DL5hHkAAhcgaiY5/Z/XwBcDPtsn3w0sYBHByNufENspZMdQGaR/JCmAbEntWmK96Nsxls70Tk6PaSZkCfmApUEmGrSDPICBMR52ksLxVu1JXdeM5pOBLKZWUnyEJZaB3Na8cKx9de4vV3T4Vu05bOWZbs/K9fCTIJJzH8fg2AVO132zT+renTCMjLXfQroHjitXplCvHEsDTClOmfnuR68dQv7FdLqgg1kC9191+BUuoursp14jZIWR48fZl4sDnl3JmDfx+mqMVMzfJku/Xjx5VEHtWijaImojYVB99e5ZxIIUgwNxUX56AMRzUl7y3JXk7Hye0yqLg4ZtRRVww8JrkQaUYJGGWVppxKV/DGJvFFwSBshjiHuemubMu3gNVFfP67OTJvQS6W24SQn6ThCzkz76XIpaJLFbavb23DSQ/1TS4ygFevzh6jjDjJHRMovBufmNgUYoekyv62DoQm2A+uT7kVQChRnyNu6Ikl9N8wjrTzB/3FFatrggg6meI7dTA0EOZL04hPV2KDOzT23iaBsbmKcUUO5OGc/7m/dRcUbvnswGQhNOJAABzHgBr6yGSrqE9qxOIRYApdLvv59mwIk/krN33qkSVvD5S1O6J9CaOGAp3RuctWs4fK6nEW1pa/3ana+ANp+ERteFLYRKZvVNw2fGrv/qr7fY333yDb7755v2+cxJ+/OMf4+/+3b+LP/2n/zT+8l/+ywCA3//7fz/+zt/5O7hcjIr8y3/5L/F7f+/vbe/9zt/5O+PZL/7iLz70rVfvsTn+Prtem3qVCscGvzdZvia0VRWUuWiNeKsI7KePZshXi+3jJ+/x+Y04NgEcoUkfenldV3kDY5dkK9yxxbkTwgEJD2Zp92paFRNztm9mj+dpm3t0GGCkhpqfM43NxIi0UnNU8y5ZNmU5HSQrAB1xD4U0sQ6qBza6YbZV+Ozec1ay4k1SgPO6B0dG7lNhPe9h624TzBjFpMlBSXoey/Ym6DcwATdps30ml4u5uR3b5i42gafLk2t8iilYAAGJ6yBsgzb+TqQ2OvyUIFF0n8yN+W3/zv+/vbfn1WU5qsdX9ex7IfjLFhKWLgEBJBAgJIvIIoHAEV8AEYEcOoMECckSETHfABJLhIgEQUCAEIROLMhAJoGIBGH/fPZM/YOuVbWqZ579cs4+19f2U1fn7mdm+v2lelVXdbXR7KHG374fWfbU3ESbDgEl21bmc44ZZtu2uLBwgkX3Y4KuoMELUqMs28OGTx4e8PDw0MsViza1Orprn4edI/Rx7Hmvw3zj0S6W5zcoeFL4PNxh4wE2pqA2xobdMQWcBNkX89IpUH8+1LnDWhqfK7t1HRK/d52Qo0Dcuu955uBdtJPykJ3ZBTeX4h2PE2DnHUPrP9RvnruqdDzn1enfsnmV2lkK8gB4+abvj1nOMcT1MTUXIoRQw5Pl4+8UYo7Mp9KoMTfbqtcpzd9onsW5l//CuCaEEguvfNm2BPxmebeSsBbAis+NjfMn8iMPCcGsNKXzvdnAePik5twxBcyxqcMHashC4xa1HNtW5dEREPWzbcs1T2B51t240REVebD3PL17NS347FjGrp3DL3hBf7Yk/eKd8vhXFLmnWbMwhzh0k5HnXaz9K01NaGNCu/KIqZF59IF3bnhHjc2xaG984N2B+Q4jvo0Z/uCaTq3Q9TmeR9CJwFyDqSmqC72JBcrKIy0zuG7re1nTeY6GuOAwW9qoMEJhiRWfyuaMr2GvsNPKKW/gxhPdAJPvNSg+H/rFX/xFfPnLX85/f/Znf3YZ7o//+I+TZ93692//9m8vyvP73/8+vvGNb+A3f/M38S//8i/4p3/6J/zar/0afud3fgff//7337J6H6qx+fzptXBCsOBPDOkkrgmpQsu1uQvD1tkVPdjPyzEthRC08Ev6Xt9KECnTnJXpnBlFD0MtDNpvQ3eBbbl3oRocMrt93/HJw5YBHHX7+Eyun7fghr8D6fLU5SLH0vR0AdN8mnoNG3WG45hpbaEdyJ1NxEV+y6WdE7SPEDhmKY64Y2APExfScRx5eSaBBus0wZvnXRMTq3kKKwRhYwuhis+sU/zRMibwSjCURZn1oknJ4dkOh+/Ytoe4JNXSc+cKGniBKHReOuDQO0mkveMbR2MrY3ar5W7/oIbO+71FGlY1Rg9WZoOGOOeNOTrXe9eruFc7vB9CPb11ea7Z4C2stTDnNNc0+kzq9Bb1qVEZbbk9YEL9OZbmmZuHOrsS4Je7/7No0eriTU0wNuD9PhggxkI6KSjz0ykQxKWZ28MUHlqis3VS1hkiZAAlwLRKhjBCLQ5s0UYcS/A67wLTFmLwx7jYE9zFCS0VBbTS4OSFl5N5YMg7Z3mTzzho7unOi0LjAk8/kF4kVUCkYORzoyDP0kQ5/HicbTymxieFzKxWXEC6PSQfLYckfQ/1iLNDFNicQs9LwOArBuurl/+FLz0d2U9Pb8IXloTWIl2FP6Ib5nmauvySbqN57tMxz0Qd5qnBMCAvLLW4bJN/t0hrbi6WwwfnMAUAi3M4doSWZs56wPMunekw2rDjwPDJXemgBRBt0hzVWd/YWpxamUUD0vmxIS8zVaEcpQ2vOOd5eJuWHvUb7z8WyRr+ZukB+M///E986Utfyte3tDV/9Ed/hN///d9/Mslf/uVfflHW3/72t/Ef//Ef+Od//ufcjPn2t7+Nn/u5n8Nf//Vf43d/93fx2Wef4b//+79bPD5/9tlnL8oH+JEKNroEPvW+P7v8/7UMy4FaxArrvjyJNc6tKtwKv0Q7v+vmH+u7JtC4fqudEPU+1jyRAe07z8fkRZnh4cTjgs0ppNAcrc7e6C7KXExVGyTrcwo/BeRLkJF0FuxJwYjpwiZWoEkdvISausyTjNaw73uZn+lubPZZlgjByUFtC233y6NXLSoZI3HRBA16fsNs5p+3paMEgU21P55LTB8DXkOJu9eG2mnmuyacGM+8QOobcDKEmykUxcw5jtJEwctsS/phWB1cPfzIg51NYyKLzx4mbvMiuJHl4eWc1LCMbcPjvpdQRaHFwvRgxNIml6eal1ldzf6o/xhNYOEY0l35td/UlA8+zc8e9x2+T9OjbduwH44jweVRGPg96HmMVELb0GfLmdAEGY3DcPUsf3N9j7ZiPENLV8PMPDSXKjnzUpFozguXVCaI4UCm9nBsD5muHzWjchPhVL+Y9DGm6fERQGwidME/HVdQU0JvJXEzOtzh736YGoZpThOOVEKjUvfbpBiBFDJirJRTA2phFMSxBQpYldZWACEZWDgjMZvzxsYIsy3PjQm01o6+8BAqLMoegC8vyzUpn6RVpqzIyTBlkWjLYHLz85jl8jn2uaGCmJ9W3lnYAVG9eTdN6x8KPwcvDC2tDdMHog43AZzVH7KBp+ajfD8HuwC1T6T3zBJ/EcFinlwjG7t8fkWZTu9XeF9GXIDwO6DMnnNhs3xH4fg4Jh+eVp0DhzS4gc9hSnkcwJh/pyv+MGCloO8ON8fwMBPzA8M2HIi/7rAQsCbPOqby2eIZluuQw8tPBCzHXK0fnG+Klvr7/OrVjMnRZM4W37vsmZvUcMIL4/yo6Etf+lITbG7RV77yFXzlK195kzz/7//+r2vNIdgmNru+9rWv4U/+5E/w7t07fPLJJwCAv//7v8ev/MqvvNgMDfjAe2xeR7pEf1yqpV5enH8u4XMdnX9Nnp8Z2apCvoqT3x2FxZe817JxWinkSDeHal4GNfHqQogKPDQza8IKaJI2BRo98OdywL9MvXBOX8qqgopqbxDx804eR4vX0zi3Y2+LRbhKyxDDHtoPaj64G8jJMxdpD7zC3UvPPppnPVykFwHLmAyXQgFlAZo7icSTh+9P4yQAF9OCzQP3haFGakhOiyIFL+uH+amVGFamYsAUNuiN7TjqYC7NTPTQdP0M4ezgouCpldK2eti2LJ/B5nmVaKfDOYKKzOhYAOgXl0qYGCdjFDDlzn4CvWybOqMkCD6wYMQFwP9Xd1oT8phvaqiYCE0MW/mW3zfOp1wLDWf9ac1K5F8sz7J90OMYJiAwuuXgd77XfGuGVfvg9H4tb6+PPl9pl0TQkn44PHbmgVS8Hj7dBpa7Z1TbM/bFEDFlzrAE2dRupBvo0NAS5KcZ1bZJYqLhMPIoqaOOkVAfm/ALjq3pVZDnaiI9BENqc73mx0w/5kJoe8cWF4HuO2rjhbvPI8d5zYfgLzam977jwAgb9dQoIfjftvK++He6E4ptGBsXwVinIFaamzy/RCBrFS81MLalADqdRkzzugxXOcbGz4YNhhus4Wm6EYc7930096ebCV0F0c83zFBfVPw17aewhRT3SkesUfP8SPDtWiuthiZ5PUFI/E0nBUes98ec5Tuxho/AAeLuOVxCH8fA4Rv2Y7qNTjfRTjM1uo02HL6h3FOXKXs5JyIWscIj4apaN11p1rYHp5z/BA9lubUZC2ec8IRgld4d/dtzdMZvb0ANPL7Rv49E3/ve9/Cd73wH3/ve97DvO77zne/gO9/5Dv73f/8XAPD1r38d//M//4NvfvOb+Nd//Vd897vfxR/8wR/g4eEBv/3bvw0A+L3f+z18+umn+MY3voHvfve7+Ku/+iv8+Z//Of7wD//wVWX5HDU2ydaXv7e+Y3l+ow7xZQDeyvapJBpHwRO8MjirBsifq3bG+mcIgM91V7U3yshWTcwZQlEYmTBjJDOb38Y5HVCLQ2EIEifWbgjTcHH9CClv5JEMmsAEhVOK0XJdrzFSDHpm1rRBmbYVRjmRx2F2uxGA+1yT2sF3r9Z2zMVyz0Oz2vEiAKlphkiz9CTGuHNj+8DuPC8CbNsWplwzSWLn1DvMDLLkh5qKyP8NVi6nIwTBkTHxSJcYmEkfsfvm6GZjzlju2GN3XAWnETeJN1MvGDCiTVkWK01SO+QdGbAtEAJcnvHBjR3dCJ9aHgpBLH/UPfOMaGOM7Es6SuDivj8+Atsu/Vu0cq/qjWsm0CH7dRjVpvSZ3ZffaJZlSe5hzwKLCi5XXOZczhmizwsTsMS0mZqhZogmPMaAbWHe5QiAPJp2ZdZpQDU9WVFJUvOeKtwQKA5+nTXMeSkbFnkPS55nKTexJoJw5RSmjX6Em2VqiWJMa4M58/bwcjaFEwpWZaZmFb6BZBkTnIz5HPM1DmFTCNPD+RTs6RXNxpbtS01sCjRGYW9kfpV9aW/JSziXy2sdQEcqkLnJepnZYi5k4f45PK0pk+bvEKKGiVe005oqH2x9dyZb2/EWLUP2RmpzFjwX9snv1gOu49prPXk6G47tetT5yRRz3eBSFOnnGsAkJOAcKtGnFuZrGNjb2jN/plHaXCRATQwgfRn/DZ/aHTdgRF/Ps1oHBrZpmgbDsAPucz46zwuK5gZw7B68ctqlARYOrL141Vgb72IYzLp6tloNF6mkKYdT/nOrZ14w3n7C6Vvf+hb+8i//Mp+/+tWvAgD+4R/+Ab/1W7+FX/3VX8Xf/M3f4E//9E/xta99DWMMfPWrX8Xf/u3f4hd+4RcAAF/+8pfxd3/3d/jmN7+J3/iN38DP//zP41vf+tarXD0DP4ZnbF5Kc1wuDOU1tAS/Kejm+zPQ7d9uJ3/WfgCNVYlzgQZlPJhRhi/4Qq2LCjXh/wTlulkFojrEl26ZocJMCT8ZT8zTFDL13RFrf3s9VygWbWWAH2zDG5qai7akF59+50IB+/XwOZieE+gsPZQLg+70C5RN0FK9GMghQQ3LlwLFaVx5ma6lqVm1gy5kVMmD2CjrawLO5jIwthGHtnVha61VwAeeGooR4AdH2T2Df1cTu8jXKJDIJEngBUgb6bcJktg/0602BdhoNwIrAmDu0ksZyuURlrxkJhnri17WaM/DpxbqcT9gNs9pvcOZbPmxCgktzOnZl3eyVFrN9ovZgAky46++g77zFHr6ewl7KrfOyPoW0B5q1OLyrcKyDetD5umYpolx1wz7jv9lXj41T+nJj1oJ5iFjbH4IgC5Azo+ja2RaLwT3SUG8gHjOWEOC7HxB8BTzso0yQ5s71bgWZpOod9bnBQWCOcVCwPN5rw3HJnd8fOsgeDXbc6JWQO7G8bwU1VRSsOq/8vJWAk62pZQ9zXyOvQs3XmPn1OQ5JwVMa/2XhbTMRhNLSgXxcpIud/3B5L3ntWpcb2+MXdOy0p8/viKtJ+mUznXDKEB362Fo0sWNotGSqZkOq80fGgnGUhCNc7Q0YZ7mx2TkxjEY42B6PavpNGzEuBzxbZq3eZytSc/jwvsNHncl8ewQ52fUPQUglr8EFgp3163lOLdUFy6f7Odn6DXD9ybx3N1b0fGGaS30F3/xFzfvsCF9/etfx9e//vUnw/z6r/86/vEf//GDyvLegs3rOzzZKs7DBhfvnhpaz3fOaSPsOU750v5emMZz8Z5LVkF6hzLzty/h+vsC+RQuEuYsXkj0xt9VoKnvoaFp53M0b3235AdkOZDlWcuue8lY6l2/Na3MT37Pj1E3+dcBdO22BA/OwuXuWGoxSmgZyfWlF1IoWAp6EY4LgzoomHkZN1wzSt+1thRs+gFIaStDmhy0cM4zL/Pb4Y4R6VPcybXpVIf4SQHClgAmZ468eoyzuMx2RHAEy4SUO1Igsxo/XKwieBVIgFYKMyanP6zyJGA56H3KkF6qqu0LGPO4Q4FLbYOok00gvkCfKpuv5bxePO30TZfQHrfC9ngnjc3lOxVqvKXZOUjjGPLca2nt7/xV79ajuPE9fqpeB4BoP5Ge+yJg2+2HI901t4sxG3F8RhryXQVtOKa5Wz73sKqV6L0Rc03HT14Aq5IB24oDmXUqbWMyKqt8qLnhRb/GurOl01TXl7JTY0MHuX1kmm64OPujbwq0Nkt/KkwzWzH+DVkzUelGO/ilGWbEWEwM5zkaz3otqSb/FRcv10mfPl5hiAuSpjlFvfW9xfcCxy3sM/n7dRAKHacsRahuM0yGqI7Zq/LUGuDIgzQyDuq8TXzvEx2IFNLdtOn9cHNc0MF/nF7DkLypzZvuninU1N9ZtiM1PnX2ZeZKRwfcV7DktTOE2UwjBZ0489eG482+lIrGmZ7clMlo0oJe62m1fbX/mt3ao+vqcafPl14s2Pz0ddPKlXThQCxePcYFu7pJK4tP+JFpnjUbiQOW7yqoqLDiy99y7by8vxB48sJOQMKVG0q13b2ljcnpHcwxBaKshwgMLu8ZfoFpmYcrLIvvDWt6glRt3OrJWiISyGYu8rUwUnOHnOuBkTV7rSXgLqcWoASntjEcaRw8bMsCpukMGhXgKVBIUJBQNt4fB3fotLxlBuQuGhkKA9yhhjB11cRIfYwdJrvndBYw04w6m5RblmyapLGNNWUFMvnNy8tZA7BRruPwuJvmwpzDqwwK9nQzmZ7sVNBUskwIJzrPehVOloVQga7E71sVDNu1L+dRP9t33V5YZgYg6ZzqE9/zvctup4SL0dvaVufT3PH1ELyjXKlpqzuVMn6yUeFrxz7vhJHGorBT9eU8sfqdk4pped1kTm1mTidJK589EBWdA3Thofppgno/RIPEGvlsJQ+PUvxWU+csKJsN0dpE35nF0YeqE/Hd3Bg3pHSuDIntAWQZahxJWhZ1iDKMtVzcQMidAIc14UfbUBpH8u88xDRQlTvDzBG7L91xolvvr8KtWcXvlf+/DVXBVr5z4kMXcT4GqdZtWQDqY5pzIcfugKXZO/WmBsNhlahjYFDIFa0MdSbT+FeEn3AekDzMMd9hamo5pQ0jBKLprKY5FYCf95Nt+i2IJ1BISUdtqPav8i094jIWrPdIhe9U22vXfa4h34J4XcJb0Vum9UWmDzZFU370PK2hrmK9JMzrqMq4pnVV+hcynJzoH04r4y2IopBmkrpXBtTdcgkfDjTh5cgzMkPCjLx3JrU1+U2FIJqjUUixyi8AxgSIBb1UALs6vKjh9G9CNKbFsMST3uNMLW28E5DTwesZoKQXolyHhXFaZZj9kloYMuFlHAVwpjkNgNLeCIDX/BiG4IcXi5Y2AoDYvJfb16LDHZuFQwPvbJhaDI/fxoZcGDih05D7aPJAPco5AfIL8iyBarpOs1TbXYSFw6fnsTK7q3oDNFmq80M0ZUmztKWOLnkZEF57wI4qgMt2iHRYuhEjb96/QzPMAnIXsAw0j1h5xaUQ04qzjsUq91mwuSXU9LAavwC4ttNZKGpCD3qbKggw+doBQuXj8pXzVseakqeHvQEMGTXiNYxjPiI04DCBj+U5jlmWI+YVJxlQh+AhYzRyCC3CpWkqKJR4Tvb0liZjpu1pUSth3Lvu52GSeQWW5JkTxj0J8rJT7EBsTkx9hh9x9ifLiBaX/IQgkWAvBZVFWGKflElaCUPZ9raODmTbNPM5iTe1QkdcWipzKQUxK2Acbd3YTEaANDTWhxeR6wDSZJ6DFdVwT+R93kSp1n0G+J6gx3WBMpgOvssQmGuhyXzW8ZFdH2Pr8No/M+pSYn4b+X7we9nAavwXMz4vAp1zbt4BNtzhYwof0xETucoAdUIWnvXMDw4nwMci1MwiDw73mC7TZbVwIy6ZgMQz1IZK18Cc2pn8ADnKM6DJ4FQOzuFxtQlyJRTd6fOjVwg2T03wHy86D0OlE4y5fNad96epc+cVniZEIfCXRS2hSH5b/kocdelMISXvqfEpyMTSDd5lq8INBaMp+IwUkOrOGiDP3dSqnoIQy9XLyHhocKo226XMLBPzdQkr52yqTS3xh0uaBXKitZP7EGwEQOLrY4LmNNl16TMBB0OZZDDBQ3aTc6czFuljGRxlolG2zoc7bGfNLM26uB7ZoLvaAgUEFjYM2AtopPAScZk/79VheccmHpPgJZAF2Djc8bBtAvYkb7ahH+EStLQ/0wUsm7rqUEKbtbQA1N0+AXCGjXIAwP6TtnOZdFmm6INh5Q67gbEAr4ZavNTsLrs78jEc2B93mN5RuPC8Op3R32aWfHYZHqfZK0VkeouG5izkXIVdw3FR13zW9AqznfbiY6EuzY3+vwO1W+/4QK0vnIfZ1VlEQIiIYIa4xLL61GBxx5PAhZykAZLi0tusVArzKMDsnq6G55mYIffKYJZrs/So5vsOe3iQcyuA41AGUWAp532ckxF38drOfBgb24DhKKwcoPcxB+JAtAoNMW6HcQpWy6eAVgLilC2EP7Fd9TySAQa5xBMW5xUi7eSNHMizzyzPQtVM4AZECjJ0Ca0jfQXlshm1WfVZj5NN/gryiruQ8f+zkZdonKwvyLBj3wt6XcFdfpxkl6eyJwuVCZha0PSPLPVl04SJcQqmKdzMNCjG7LFecS4NQzv7OLcWpmOAwxwj3IRjAHYcQGhsjuRXVvfZGLU0Y6KT48j7eCjQTCHGQsszx+mwmiPlqloEl2yKLk7lZg2ZlK5LfG99Y6f1DW5193sN0pdR7uC+YXo/BfRKjc3tRnl2nl+Guhoyt8K8YLY/Q2/ZpU+NjxXi3Cr7CtabMFDLSxcKluf18kwKH96EldLYqPaFmpnU0Bz8zbCSzg3ztSqDCisMW/W7gnVr/fs++BKfDBwUdvozYsE/qZAb6poMnHdYTDMuj8spDzxs5dL1WKKS8hyKB0jxyUDhPbt0u7zv8ZuAnInaSSBJuBbevMr0SsebV/6ys00hY10V0ztS/J4mcgQgXQsyyy19Y5GHF3BhgdQsrrmzvYkpCCjn7e0e5TazPA9BoZFlPY66b0QTdke7A6WXxfIOI/Zx7lxb3Q/EeNNF9gbYXn1pwMPDQ3kEWurRhZJ6dz2qNc6VoNLTvaWxuRaMNN+jleFl6SrHqRqFyJHzUWeCzi41LVtbygzw/R382GAPn6YmrnbtIwWdm6o9CGFkWHfLvuZEb2UFVjneTTohLv2LyzKPx8cZrglNCMDfz3IBi3kZtRQcmxz0Uu6+EVDv+ppBDmzhTTBaN8awzjW28AiPZ8k/GC7moy6VjtJ+ZnUQyDS5rKQBA+8OcvKRZffOjwMjNj1SgON9Q2b9fA2AEpvJHGc+KYSx7BSSss5Yu/n8vgZOD3PFtOVbyi6Xn/362800b5ThIvqtGLeB8lXsl5AA+ExrWZyA1LToea4DFkKISZiKOmI+mM8ceG7GMB2wzMuRD2y2wXfOjwOHMewBN8fhhoH5bYRXtRgZoZ0RbQ2Q76YHtZGaJWCmbc4NzKWjcgqZxCmEoa2d/eG1YUHepwKTtzje8gB0DN0ahHf6POg9TdFucZ7Pn55mEJ8/Pdcq65RaYVCDLXSDLN9KO8Gwda1fmo8lG7EUUCjUlFbGUsjp2p0ShFLwcU3bMm8KUfC1bGhl9AhTQpi0g4Q7kk8UCFiFGwUHKuRQs6OaEoNh99rFrveV9hjT/GILpsx4JQxUvxUmI7yzwANeCwQItGfYbdNdaMB0sRchaWprppBADzZMK8EOy0GQmVqHWd7B5xBExjYvQSN4UCFH3Vo75r03CMAy09DFMeo9TOoYC2MAEsuTn8h2mfXeYeEKNJcV7v6JRmr2PzUuzHCCJePOu5QrL05UoOxl6kOhhoCRbcmFfwAlAPmBhzHwGIKfA3j37sovWsF+SfUG5lmFlwuhxm4JKkvY5YzMlZCiLqN1GT6n59k9HdYzRuTBXdDlzA0kTr2vXU6t33j4JMHuEe06AqivpogUQM2mgOHu8OMogR1YCjEKkAOhRZiuljlXc6zkmD1i2jE9k8s8M1KVJxhVOpNgOLam7qQeO3ivjIJ0g83LOOM5L6XkZoBoZEprG7zCuvanzscdAb7K7BVStslvPdKx2sRA1anl78f0esbddpj0J/L/FGa4yXHaSPF+hq60viVUemxsULuVrWnhWELOaHWvpis9tdIKel9evSmdJ8/b5HMhCd1KugB5D1DrhMf63IXrucnj2U/cwJoO2SNdC2sOLysDaj6nMGMYPFdnPq0PMeDm2OICWnoso9YEmO6gd7dponZ4CkD0mDY391CXdXqc1Qn309vMPYQjD8En6u8zT/GLGlPDspHIRsrtdTV1muPd4Oud9xVDequuP5GfBbEPT+8nn14p2Hws8eGLIpZ8Mchv/D2Tal4IW0qAUTO0eocUUupfman1tNZnOg9QAaX+rmWuf6s2apb9um4m4ewUl0JPCTkESgQUkxmOEBTm2ulNMvGMJbmGxmA/9gRq8NqJAmZ+h5TmeNy1yCWAEBTJtzwrA+SCT9Cl5WEx9zjDAgEIXHx4PoECAu+/yR0kn4Ia83epQxQmgE/suBFLjAk+Hh8fW94FYDzrRSGKzH3fJ2DbRpmxTWFrFPCSdhgmoC7aaAyL+2VoXob0kMWOYxtvcQ9NCqA5FKzyI/C1anOOC/e5+JoZNhv44fFuatfM8DOffIIfjq2cmy7Cwk2Sw7Ct0Bok//pFms/9PQskbQyfwq6L81XZazY+veStYs2ZZ9cYDoFqqjbw+O7/Ab6jLaocyxGmhI8eZmIVMTFsYLomXoJli7Ky/6ktXbQPBEFZFtaPGwEwHMcjAMP2sNU4DOA0x9kIYSmeB58jj0FhguUfufFjsUs9tgfRPnpzrezNlKzGcZ2F8YojB/wp/IztocosrnrPHVflLv4l/CkKPc3xahwkmNM+YTs1l9xoaWcSsjHxsCp7niLtrzekk7b/OXolmrVXhP0QymItwJ0/r2pIGb1paKJ7uNaMmBc8czIiHpWAY0xBaIPDD8dmjgPHPB/Do2rU6kRYel7bMEJYqXaKlX0KRA7sNvPcoyxH8jdLgQwRR66UTQRxjTWKZ3804eROnzt9gPMAlV1fG+fW81NhfHn3Aha0LmYfmW7s3d4sp/L3AvCczsi/TYhwa2En2GbYi8P/iBuEVcjxKcTs4VjAvTydNa9pkl6lsWhtWA8pRzsfA5zCsV56xKJAfz9fk9/ZRl7tkI4DMlwJNu/ePeLh4UF2hCNzj5GzHMA9BEC7d3CWZlgBtLjTn9oY6VPDFEowCnysdvIVuA4vg+lGGtvDFvismLKG1Z3ufd8Dp3lqZZo5FgDEWZttK/afbXagdrGX+dIPDy9QnAufW5mw6Q5zaHKOMLXh5aN6zoVaFAA49iMvCJ1maCXUst0tyrjvewC9Yy6ieo8J20buvUmgLeTBQ949PuJxnwfKD59mfeAxBF3ol9jaIiYLpHKCLoiI5kTCnb5BhZJbmp+jlYce1K56q3OWNZ1rUYW9oiZpHRSd+THRAaca23s8fBLz9MhzH5nXBX9uZ3GAuLtTTMLUZA3g7kVEoWBhUiGb5l7t/IstWS9rhR/TRBFh5gkVqJC7zDY2lHYkhBdqJfbScFJbMX/OvEYIMAbg2B9hNmApjEyzr4MXg45tmnHmgAzNyphh2DYUclIbYiZ8ZUI+C2Gq2nv2myeq1XYoDanzXNLSbu6e7UshJzV/cXHvbN499hpGE6AAxPrCzkYnHXgcXOv39yG9DyXBtOANeZ+zYEW/Tz23MscSkmWO2ZU84xZV5R04aWZOVZIwDvZ5lF7rI/xXD9XT6mFYnK8BeZGFQt7DWUCZce8+hY99R7h5RteqhCdBH3MubXFGa4vNxHmGixdDH9MxgM+Lky2tKCiwGNQ4YGp0jjhj2e/qSRsBU+2zp0ldta4p+5pvXNoNaOuApFwpcGjk5uktNHinz4Ne7e75i9dZNZDqicCrv3trKvb6mhwWcCWg/loYEFhyWlCoZRntzEsJCSqIAI6BHd3krJugrRqgSr9+l1CSAoaUkfF7fQl6pXyOXlapu4KOFk7eZRkdoIBjhgDuhk8eHlJY6djcZPFSO/QjNnhrR1+9JnHnMk3dqIERAQNRlzzsjnkjhMkBfkDSBgWq2bdDdnx5C7junvJMyGwv7qBF6b0WHC2Tbm6aGY6wfeZrs4FtxMH7qDesvKQ117ZeV7SNcO2sShdHCZYjbfCrHGMYjmO24VCzFkgcpk+QHAU9mcVwMYLF7fazECZ1nUl3k7oO/g209eciSY3RnmZG1zzkSoA4/15NyICzg4D6DfAw7NnUbI1zS+hhvriMj2ig63jzmUJMnVG65UxA61z9Ej0l7KocB8zxbGlG5n0+JvJyHMee8Tg2pzvx6W3r2B9DI7Hy/RJoFESuoPI49uxzaByWOwd23b1TmDvKh9DqyBh2Avww/9L5CLO8zDBNOBH8IMIj54TX3B0G30t4mefS6qZ3E60ohRamfdAE1mzWBQO+7xgPD3HWCDln17Uzz8zUzlIA2qP6kJqq9YBzZ+DZXoUQvf9GzfUEm+9NUpYfAWDhKP6Q+CRTBntJ9SGdAcDk9zyfwrODOQ9SqAwOkJNYBB6ZN8lzQoCgmdgegpFFvOFTYHELpwA276fZYm7wEt6p2d+xsShx5sYwMMId9B6Xf04ztMm6QvQJTRLC9fTkESPMuPV8THGsaq0D5UygNWw+mjx4e2IqXXCRFUYWmmVGvB8dB2Bv6KL57u75mnoHv7brFF6s8dd3t55fT2spX5PS7dwVLj2X71M5FttQyOHybgKwMgnTsGdTMT07I2F8TLvW/NY1N6mFiXd6JqaEmFmn7kgAUhaU8OL6rtqiBJQKU00x8113UnucaC8H6Hpa24XLM8EVYk0uczJZcCloiABEMNw0K/B+qR53X60Eo7Q7z0sIJ1FzUrVX0C+AKACNClTaLjQFMDM8vns3hSWCDy/mqxod3iszFyIvL2vZsiZlnPFL6Ih2Y9nQijOXslhcKLRZAMRZjrqsbcap9je2P4AhDhscPu+jCQFnmOExzMNgtZjlpaHSR44pRO70wJUfyi782GtXmSD0YduAbYMdDjtoXuhT2MM1nfkf66gg++ZMlkW2vzuHqfROGpwLD2pr3ifhZwH8J6EHwJWGxpb3VS7LOAJ9lrYBgNAkhKMGajcAS2HB9z3HvQPzIP9xTI0F51nMTbhjPDzETwFgZjDj3KWpGNuLGoy6U2fKNKOE5zngp+yn2p2YS2USN0EYzy3A6lzaDM6x6ZNfyYbDkeaTM9NjP5LvFLacc2EPk9A51+YIp0akNbGxDzyA0GjjPpJEanm2LfmXCpiNRJvSulXKXgkvRdr3rDM/DNsyTfKT9LZWuxd95OgS+/xyey4rE7salhdL8hUa6c9SzgUPr3FiBF6k/GHEKbB21zpfgRJuqPPgdptnQjE2aEILrv3cWKpNrdTzO8eUh2bIaub79Ip24MCGqfSuKzodG0Zq5Ke76Q1u01RtRNgRpZ38P9YgTF3NBsNuU1PNMzUH5jgaeScUxMEAG8drjEX96H2NraCH/j17L8QXq/Wx/HE8Idzc6UdOr3T3XMvaU1D9R0O6yCpTqXcrKcQ7v+1MyU9M6ulWuDXEXX6UNuY6TJqYJc8vuKPalQL302nAUxdwqsZGhRr1lOYSvgs1kjZEcGraHnShhn+XMGzjyhP5r9qBQk4tzrJ5WPWXtTnNlXS3SZCDGWp3kYsyDwYDuRjomZRpFrWBbmvd57mWNtZCBe8S5tSvsaJ0oWldoVzKW9+mWZbnYcsEDtEO1IrU5rDxw1xwxsBOt8/cEUYXoMymxqtuXhfBhAGyb0KbM0pQM42TWNfSyQB8no2hAEchaq45s3/yHiCUkJV553bjMlCQlc4Fdm1+asDy8DV3kn3uJg6b5nSbGfZTr9Sct/bcyU6/RcMiQsVJSOHfNCfTBfMsuFwJQKuQ0gSdkwZoFWrW8XghxJw0N+SrJukpt6SgGyafY4MfO/wQU0jjHyuAmyC3QLFgiXrK/q9B35UAtLK3nJNAaQ5KUNJVzTHh2IE0fWPZQK1TH3u5Ksrud847fo3xzvrRs1hppRZQlG1S69g0L8vMKlzeL8Y5px4Yo+xHeSCb04g8JlYYaoojUeUrCCEQwBQ2A0TO+sg844YMMLVVNItDtIWj5ceNBQpWcoPONUZ8KWbMtpdIF0v16dUzoGY234cD18wmy+nCsy8irHU5JdQCF++LsaPlpol3Qzt5qS6LVHMJsBRkmkVMW2N04yQO+o+pVzkwz9sMOLa0iJjfCisUJpgi0HzmuR2O1w0DuzmG14aToQSNI8YlcMzfQDgRCF4mwg2fe72IMTznI7mgu27hVH+I6CM8ES29DyZuPLwVXQGTn0B67zM2syPPk06Wmwta317O5BeEeeq9luMaQJ5L+xQ9n//tVF4Cg2yZ5F1g4e/6F8/p1rnOxzi6iRhN1M7CSgk1/WxN5ZUXfcr7SiuXzhIy9B16XG0HFyba00gIKPF62q08Hu2l9fW54z/GyJ1QpFq6OsLE3GyMuZNfoMmToVJTwgWjeSkyAM7v3uIzbQC52LeRSCxGQMbiOd0bF5hQr0LllanI4/xKgaPzmDdUeZgmi5tv26p6Drs6Mkiww0VjCe9W72epZqelHX6CGW/acS1FAqw4m8PEWg151gHTzE2Q7ek32yHLLzjU/ZhnfEQouqXhYCx97oJLfdfR3me0pPGEeZpJft1Mrb51bQ1nUDVYL39PHy1skY5B1qCWe+RXWf4jbdGZxrgc20N5QwOW/GIc0RSL+aVbY4aRWRRjMfswBZcAGhQquGOdc10O3acmRbFDQ1OhDSWY8wIFCdQJIoUn8GB/CjOo9ERz43GGJwGXs5WlzmF2lz1yS4Woi66irIq5BIr21XDx29LEVIGfVd3ReQnYNllsy7bSc3tTKNZR5JlW23jKZj6PlEu6DPIy8HYrB+Ga14FsfTzjoJfTujosZXQpj1UebCJr/cyyLOjHl/IJ30u1e/Lqvl4xS81n8iyO2dLvGvvyOOBjgFt/1NxsdsR6PYUbAKk64SWeY5kC6RkNpSEaPqPReYFhCjgHppA2f8+4vBmKY8wxhR3EBp+eL8rObuus8DnZsDT5X+eJ7zMG7vTW9AHOA76o9AJm+GTY5+K/LP2r4Z2M5JRWMYkE7+iCRtOeEPKs3zNceURr52f8nPaxCkS3wmXZ+C0hXaurCjJZJ19hWgk8Gd4haSLz7mEUmnWOXmB0WakveyEW95CYynRFii2xNzVLYSqnS7NoBmNLOTABlPf97cIyZWufmZK/assGg+9gpIPJK+xFG20VUFqrKJCXumv6bSc9/1UbnsZ61Jd75nM9mqYCqVEDd809bss+g+hSXCUcPedjNS7yPFAC3wrHxGh2t97xsQqjev/hLO31glUj8UrLApQWRmc3E3dJo37rbFlrXjPgSjDp+a7pnZ/PQk1BWS7YqqHp9VaYmuJM8wxXc4HawRJG2LeSJndKiVYYQAUQUHOC6FO9YwZEMkg7e2omAgmeXCgX42jsorVLaiH9PK6465LXuK+xl3M2QJVH/JcUiC5z1Bl0upGeTbM4TWC8hVjHxldY3jUsdDebZb8Y6yftgmUw8rGeh44OvpFvh0M9uV2rK1wY2UV1z4P36een6FbYF6fxckAb+Px2Eq8p91Xa7YcSeTaa9knX7Or9+v+cinN+5Pf6X45V8p7drd1xai2l+E1e4NNkcgo0A0jhZ46XEU5S8r45lsMr7Tk0LU8Cp4c0Wc+HI11PH7Awg9SGi/JlEWM917JrnSFzumlcrdL7gH7MYh3HvLz3jcjvZ2yep+rKMzO8BSs/X1pL8Aac44m8TqzNr997+03V6uhultU0DF2oWQUTvbumx9dwQGpwFs1L3ZejwoRqh6qOCo00Pqd7Ql+vv/k+0466u4a1BDsMlxZjp/TkPWqsmVmex2jujSGBkrnPhPadnn5oSkZQEQANApLgnYdlkgW8GqQxw37ETcnMY9GAcOrMlrW4X8YK07FdKXyBwOVoXmAgi4uummezEuQdMKtQ0n4vlelnWqzicmcb0jkKAFWgirL0u4Y6SFJisNXRANjmEZ8HRlOokTIz34Px2b9WdWAYG3P8xEzAnDGSZbyv2YJcC1VQkK0HttaSnjccfSWkqNZlhu3wsKcPpCbH5R003hJe0l/RYsFRi3CikdG5AGLxVWPDMtocp/tjyJ5ejbauF4fDNj0fwwaa7ZY8aqIsAdMenvdqxakdf9YI2d/ZoK3eBG01lwyIs3d2FoK1HsuGB7UTvQ6VZxdaDkmjwnJOHMnwKARY9kGVf6nzgs+qfuyZEEKblzPRmmj9vdJrmpht6z3IzRPUmTxt32FcK6TuLH2EP8amRa3E3cUTHNaKSRVXpnwjWH67Ap5VjxcjhByjH5nsycePkscVPdU2Oe2s+EGu3VYbqFzfDndgDAwv07QjnAfk2dQ0rQw/Z3F+jGOE5m8sWfJFmxpCjvrD0DWGVk4VZpy5eUCBZ/K14lRziWJ6vPah1rguqUY+n8OwuNM1fVSNjSwbP7F03lOFPK/Q4fw81wARanjmReCHnms5a1u6V7Pmjjk9nzE8F5QKo7CLNriHlLXCq4AhAlCrT68jX06GZ6f487kW5g7roizey0Ic4C0PSdv7jucIj2RZOmGI2QvrjipQYC7SBICxjbho0BdwUZoaxwQsW1yOWZ7LWC7WoUCW8kQFBnmJZgCubk6juQMm6WlPmFke7p997ClssMb0xuY05VIQFrnUWYPqYd5EzrCACBmtwcM7U3xrgEiBjoDyeQu8tz5VAEWa9/dUmdh+6YXO5sWflNMIpjL/LIrXmDTMg+4CrLlYzvLVjNAZrUJND1v9AYhwI1xhFUBUWFkFkWtBKJ6tfut7TbuFrwdWQ9rTI4Zq1NavaN9LwHGMhw1+PJab5RxXdREuO4bjFAC2h0/kkD3HhWecPn445mT8UFZwR521QW4I8BB9Ct9LuYYN7OF+GfC6GHOpfzWkATEXCtM35hdn5AZwPKKmahe2clzmhscUInyP27MYRoF+Vrg0V74/wh4+qfEOmUOofmgaE3nfFzPhpzZgo1+sCqD6Ny9dDTO7DBDCk2yA8KwbbJQzlbRDY/35swZlY9OGNiqrPzp17YjfDPcUULnUsLwHPZnM5wiUPg42IzeIPATfu4xVmtGnrIwRepZpnkyNy7GkC/h0/2yG4Y7D6K8VOGIumRk2n05kRmhoKPzkpoth4hEr72gDczxSCLfFr/ZkNVW/fi7OZE31txss2Yj+bLDXpfeTT68QbJ5rkBOLaTFXMAbcnlQfZ9K9XYpPt4T1Na1Blqv3JUj48g8A9GxMeUYrYWWn8CLx0gQtf/OsDQUo+SfamyyLHNCrNjOocAKJc4ZQIpS1vNb20XAFFXkZeBdYetxMFJY7i2MMjAHsR4lmKdRo1yfyqV1/gokEB62vOvDi2Ryut37EQeMAPzxH0ncvLWSGyf4oAJAhnjQNEAAe5TL5DvAS0mDcIpwMERYOP9LdNDAXDN4tM3mw5XmGdZ5Wc9WBfm0HdWvNds0TASkUzfc0xdOuUI9NWd9Iv8qH3O1LLY0A4ab9sRpvRqcEiF6upmxgMs/UxBmPYYZPHx7w/wKQru1h8oNjp20RWMW7mM3LiGdSqxA0n8fpd1tqoy16GW9zm/PvLhQxNBfo8xkaqxaMX5pbvZtCIHJsqhlX5meWoH+aoHgOpGN/nCnSwxfzzN37Aqd1FgTlapn1i/HE+VLaGM4bJhtOAiLRQ9OxgYPeycaIuL0PYADGhv1xz3AA8nyM7zsMA/C9MLuj5jzBC5vALM4WzDlPIb/CChmm5iXXiwMYWwEvCnt6YH8BXsZuyIJRI6bGpEVOLTc4h9nnFnW1nPPsRwdq84V1tC2Fxgcon144RZZNmgw9SKvRiYn57W92+1O9uFjxbzkSOJXHl+cPoT7b3ivNp4S390nvBnF8e8xZBwWVWLu8BBdHeEyL35zB876aGn8OYLNtun/nmuKOYcVPBzbsOKZ3No/3udkmQo554JwZ78DUBum6PEujm5h9muTcj7e1wfPTITx8kelNNDa3J1nv5Jd09/WyvC6+53efB90q/wrUK+wVzBCI4QWJDr+AQcuB/x5W7rABBQC5n0ametfY9Es4DyA1OchFu7RCLHMJVVU/3XPWNescl18KeBYJxFOTOC0L2y2e61+kIDu7+1GM6Kq/JkPSneoCzRUmGGDs8JqupjYFin2PW4OGlctlszS1hwB5TZfl5YWWbJwjfPybWbo7Lk9tVbzTjBJJj+kyTIF4uTcGc0WxcFHLdigTONG4BINPMMTnSJd1yLDx16VOwHTprEJH6zNtHyDvOqiEpY4EttG+UxtH2+vq9zwoqu5z2B7ROBT+qJUZcGwbsB+Ox3c7/GGXEYymCTlrYa6EBV9Gaj/8bxIm+w8u/dyFmzUclvjammvZrsp5CQiRXfzEMq3cXjU5vd4cNyPPnsz7UxzW+8mGpMS+ljSdbomjtO7ymfMt2oqXtHqmNqs6Bo5HdbM8PzjN19jBzpIgTUdFvYLsldAEWXj/gvu8V+fhkx5e5vuMP4oD5hzZMQZNuyLuvJ0w+Qrowc0uxIzkiYiNjfB8uDvyPBEZCOec3qmlF6bqJgEAtylQdQ1nmOZJ/eaEqos4bdRFoSzXdIktcbRtHOA5ItNi1K2HJ5Bxc+1/ChTc/Fbzbg176/1T6dvFu4ZZWgC2wxPp3qD3Fm6iJCs60XXmpWkAvsSr1SfEgvnXiRmAEnKCB6d7ZpsaG2rvUG4GHPPSz93LK9+Q+TBchwlFo7lGjxRmqLlBbBzMVoAd8765DDM3OvhdLRfahgy1O1p1QPdoPpwOtsUb0V1j8zqqiWsXb293tE74sxCgpLuGt9N4S7qVbtmcF2voAO0MM3TJqEnOhbJgDv3IpwCCEkK61zS9NBNwHyUEgWtyaXh4eSciPwo3Bb3K7CvLHROX5UV+7/VrcIp1izowzpo2w6R5nFPwCmYo6TB5/j55bAuwve8HPn2IOyV474wIPYjnvMwyyjGG4fFxP51Xyf7MCwLrNu/TGZ7MwybAiLZIT0gKEIBygRztZpggYzw8zHM5kX7eEWPVDwXNkG6c973fJD6GzXMLUr65qIqXJQEN1ILsjwF0EuGK1inamWXb93nni56fUSCVLrHXNrWaN1muLJ/l7dSsI9vrCLBMYHXwEJbNpezx8TFMyDg+OdqUK3ExjrrMJS17gSaFD9uGd9WzqBnKVGoW0BxiLN+6HnJNhxoD+WY4hUP7q024aoFqJt/ipC2+83/k2VfcNYAsRFCQ92AsXethgPWzScex4+GTB9jYRKMS6R17lWls4qRptlticl7eetAF8wzDC27NDLKrEG3EPEIIz/k9oE4E9PCz1prhR5Rbza248ZHh44zIsT/Oeq7zIZwANCBrhi2EoXRBbnE57n6geEdE8Hk2gIcPU/hKQGWwvLR0lp9zigtsHR4uPgCYCCYitHBTRwQSNRd199Lahuke+4gpz+zrbq8cQ9xEic2KRxmyxrJWRgIoF8oh6xfv9EEQxhLnaeHlOt2nduZzdtwCpMrEX0IfCGyqPK+JNev38ijVHokXoo8dSK1NrunRnQcctATZ1vtngkaWhKZj8xLQIzQvaZbGuW/Ao5O3Fw9tm01mcbmnAz5wcMPJ52060w12xOP6DQuhpfihck7zyfv49a3x6J1eTj9Sr2h+4/d1WH9RuM+DLvxAPRNefp+iqnnYnO2HTMMm4MhvmpkxXkDMMEGj0IO6qNNRF24C9R39IkIyHgKVggn1e32nFTxDqHp3K2wtdkBd0KlsCCVgucZFcWyPtdlrF5maBwUwpY2oQhyHz/tbvBbsWpTn5XIUMI5wPZzaiCECYxR0PW/A8lMIcPdpAxyXbA4KLrC820J3NG1pNzB8OFfaeB4lzsik/bqEZ1uZIcEggNyxpRaKdMg5iHbg1x0j4xQ4bGZHENgUmOTx8REPn3ySQM+rUcJbjRQXdR8R7xji+SLHdOnt7njYtribZyaVO/aG7rXuJKz2MZeA0gzbAPYx51EtgrMvuzlYH73nLY7K3278yz5Gp55+//D85l3nqs8trh1udsSlQF9gai7ma8kJbZqWaXuYJiV7uWRuZeU7mdgOhFYhLO1dwp4apDSmpYkQMCv32RBRHftjjpUWPjZykBeIot4fyiUBampy8EUYG1sba2kOdxywrVrJHVNIY9qyWcKx65JuFCPqDDZSZ4QXmzjqDGGG4qZSpLkFBJgTSJh/1JGbFryXRjdn4iLfyddidhwHsG0ATe/Y7qMLksfRV52fsSMFmpv0XkjxPB/fhr4ISOTj08tlMOESVjiiNPWerpmnq+bY2AuhYjiwI0ylkx1MIYaj9gDi0P9Iflw8x+AWmhY/MKzSYx2Gcz2dntYyvxCuEGUv4eq65pZpurwpgUd/fTA5kdob0V1j8zGoL5VPh/OL351ePuk+jG6VttYUywX5FuzhO32/GpWklkMFmQunAOUJDWKiVudophAzf6vZ2WraNhefmX9qVLzKpWXv54DOYdpvgpOsT392X9tnvX+nNEUA4E3YWfJkOPXvSCbrBb8WOJWdR0B+KBDObrVoGy+wBT2snGs2aFKhJlGa38Q3W+RHM5HQRASwUacHpak5w8h93/FAEA8CGZqZzR3QeYmnBx7sPvtzt4mgyx37fmAL5wjTfMimRmZUGeBlwqWCU9OHcGc5BBCG+OTTT+dB/zyfY7kLTu0aHSPwYCmAPLdQpnRIkz0CpcfHHds2aic7QB5vz64zNQssN8Melwju+zHPZkWbjGHYUSYqKtTcFFTQQb1hNT9TM7Ymtt/QwIhgwu+GUxpXAozqV1qYZKdXcVgWEdOce6V9j1qXb2/Ps++nvD+mece2xXih8Ftaj9KCiHADpNbD4rbyBqrzQskSPtnzLlo8i78FqOOcGu+PAUqQiXRx7MC2wcaG4/GHM4+Hh5nHsWfQasY6KSCNFmxVBIphpREB6j6ndi6IRbd5bmZs8nY6KEnAFWcEMC4AFOeomJxVx+l5NzLBo/+N+WPRN+7UTlkJK2OLAePF4Fiv00YC2hx09+50xGmqRO5uKb8V5mRZ18pWkS9f92H1NGB46beXgA578jGI4/IF6d3KomNrrGvFOTtpjLWM1gJKgKfw2jlMrunxl+ZlU+tO7fsBuGHEIX09zTUizA7HZmOan8X3vMsGpaU56CIdA8O5tkZ+yXMttDBiygbEBlbx33Qw4KVVn5obS75GoYbzkRtfhjKJnuvYT4cQ8UWkVwg2twUMpT4lrqbXaSY+k9/Tefry+y0EnedruTLtc/wGTy6AfAoGq8cznM/VpAZm8XimZmYZ9kCEt8W1swpGyL+8mLMLNSVwqcADeR8rt6znKtDxmSBY2surfdQMje/Y4zxLUW1bgkyWx1uy0AOCHAt6yD9TUs2CHjZmn0X8PCSfAsYSTjNHgUBbV1NqG7x2gnJXdikX09Gd6LnT5bqp1Dx95UvY3GTl3InEqdXIfrPFvtqpeYpFZ5/apO1hC21JAZ4EkC7ljexXgS4fE1x5lnPiGbnZ3cuhQpkETm1UeXRiMgfRTvYNtVXbNub5J9n+Vc1Say5MD1iwCchGlGEzw7s0kWqjMoqv4jpw7QFtFWDEDCIBjc60c1hIWuDYMQ2r4dY4Uj59bpiz70yeocnZsLhGQC322dIEtwGg2jmOrL32o5RvjDz83zTirHcIs8VAZ0XKW54ALNMaBUjXUlNwS4YS4SiEHQ7YURqM/TG9VHaHBBdkpx9VxnQAEqXZ9xZvurKN8S1CjVnIHOY6hRZAPNvW1Tta+qv1Ej5MS2Dp2ZCal8ZYhY+V0MFKHdHs1b4e/XIcB8ZDwMQxsD8+wo5dLmH1unMq4vBMA1YhRiv5zAJf43BBDzdQfmu/NYzJan0Kd9H3dg56EzO9AqRkdk+pau3GI4f/C/M6y6My17Uq1r+f4jryzpicYlZcNM9FxjO1NOYIeX3OrzpiNvU1AwaLzTo2yWElCMEP+AiNDUoQMS/TsBJmeHbvwBY9PWTZXDy8owku0agxkttamPVHOfH5EPLD5zx+I7rJt37C6KNpbG7zoPfpbJkxT777mNTLneurLJkKa9Yw5/AdLjVNiGMRbuQZonlxw55xqckpMzQVlGhytnpVy7zUXTFqLRQYVn8lLt+v4Rco2OoLaafSzERZHCII9bQ0DlnN2j867hQIKRNabevVJWyaoVG4MElriU/AfAjwzwP46MQF1quhZhoNiGutIYCewGtqhKbZnC66BF0ebTi1LsQlc2N4Ah4V6nhJ22zJ0bRWeZElIIycbYQGrOh4gGZ6JfB0DRT7vu6lqf5q9/wM7rgtAgkXEy+NE1st983jXJGe9ZlNVOeGmOK+7zhEgMmW9LlTmHbX8S9OPbVZXgJLH+n5zs5h1nBY/rZ3hvQmdQ6jcdHC4PSu/+7vBKBwLCHArAilKg7zu7Xw3KUUMJzmTDEG2/kTbciAQeqJy5hGBFqALqd3mUFSixMCF/FxQ10B/GMQm5iSUnsIk02IyKSNHed430MzOgdmuks/gvsO3sAZ/TdGeBQD6Epa27c5Ksk5L3Fdzt1Q4IhxboNaMeQcgtztk23sczd6osbFdbNuHlDwyAlKfqOXo3JcSpnjjJvve2jqPNqIhYi/7LvgS5e72zUM2nOWcQ37CjIpymW+N3DFy7IRxnYZsQa+vSdotdOPTLHlcS5vrRXPp37d2L6Euo4fmiNHOmw5HNMBovCMZoKG4Om1aMkG1QYPEzLX8JNBBg8Y4RV0npEZLmGpqQwtT2l1BnZ4emnjxijN5lKDI8IV6xVTaobgOm3c7Okm/nf6fOmjm6Kt08dufLueJK/kVnjJpHt7OoF1KFQ5h1PQ75DD/ljO05w0NKrZuSHsAPJc52gmAGBaXbghH0YLN6ldkgnTte9Uv1ZHJ+ioPCp9ZJ0BLVO1Y8ZfvnvmcwXhEC6QkYfnXcA9E87zGoKsqNG4Gp8FJKqEeuFjg5kJACyBhObL+IUXBFSIZmiCLNr6FzihNmPYwKMcvGaohh/OX+qsgABE7iy1XSdBNRMM9XTJ9CNEgUd2NVtPwWUEUZezBI/VPd5cOKd5nmp9hPJeHrnEM/OnSUAC3+ob7XuwLj5N8uhGug7Yy7ZDgh4XcNCFmXpXDaDvYTWLlWsUWPHSeqBASMdiul2i7/TFWcDWdK5/s/W6lmP+qvQcnC2ttxtoSfA+IYwA5AqTrZIgG9NMMc50QEJGk/TxkJpNgpxlLsqcqgwKeGY9ZFJSeDjCrXHfDLCcm/O3TBUEYFIh3QDw8Lxz3PCAv/aAtD7LLBsNNgb8Mdyy125QtoE3cz7hTQuAzZbI+tRv7mA72zhanSa5adomQg3DNCarbZ78jf/jeUIpQ3iXI1DUaK389CyxUJ9n9T+dHy+jdT6h52d+Gvca5hbmuP2+xuFNuvFtHT236HbySx3Qpk5L/VJzdXrRtYn8XQ4uyIuZXvSP2dS8oFapybocbiO2aUP7gimMc/yE8/W53ht5zpwLI+o3Y9JPrJiGBkY4IuxhR3pKG9JoXH9ownbl3KC1MtcryNp+p8+dPopgwylz1a3PzeM1jk6/NzqO9aJ8z6W4CpcorgsGZLWrFgT6bCloIE3OFMBfCDRpfqbnbLoGZ/2bWpmTyZuWQcqeZmFV76oP8tlbvXp/U2ApUIssR4dwvb7VuJJ+W8N1CVuec22emoNZZ08GN+3EJ/e7PYo8vvcQ3hZn5MKepmd8J2GP4+iq6EWoIbNfz/bkTmykqWnnT1em2cemQS/5rNljCjokIe50NZJV/TyX5Rd3hk8rohcAZbhCf6D9M/tjBvelnip8INu6ZcHVU4CFjo0Orlzw23w/7z0a0xyNgmRbjLp2hMVt7/pobr/rXf9tp/c97mwKP6XZ0+3POq7XWbLWR+PrO03ZLnr8SmNT4Rm2uNdI245IWfihtinc8vwa6zF3SG0ZBytgWISWHOMstOVr5SFzanBsBF5eeMyZal6y7vPMnAoClsCmj0NNpzSp1Q6edeG76WHsUcpZwntLjXnxOzcu3MN74FqnPs+qbtVIlWXsYbf5q0e2nyDlh1HhKopJ/4SmCoBe0Nn6jNk1IUdHnrzXSfQKSmGrvbwV+rm6P5dOn3FvSdzWWXp8WSVy+bmZCiSVfDovObiqQ+IAjqlo3MM8PIdxDlsTaMhhpiMAejmLUReqH/pFqzAcXuUUgNqYGq2GdP2Mab5m0QhpjRD4wMJxiGpkcq1meFKWKfil8JQyV/5Acm5PvxH5T4ce6aMINs9N1+sl9/mwa5h1SX1bOjPvNYcCfIQmWp4rASHiqcDjBZ+8XaIpwg5Ue1MH7dd7aZ4UbjQ9RxOijswf8pf1o/DFdyUAAcg4BTqqXdqecpRVFRQMU20V5W3lsMpXnlv5dL0jM6SAIQtqmm3QJCN3k1ifgi1q5kS79Q7IFlAFyHMcnF80MPw9VeLoQ4zhDhdrjwVySrk9zL9YTo88CHIY/gjTrCPuFDEBgzUeFbhY9JXHerTUMRYCaqw2KTs7lQJLenXyMkc59vMFgWmnfDGHLTRw7S6djIVwC23pgEB3zMD20LxEwOTfFLDixTADhsmhZddRuPxD/kaGwUkI6mF1xvR3K8fofxcuk5qdakmt1/r+jEtWoYn59/EBEJt4Cif6Drk5woU/dkpdzze5oIUCraktSR7DeXBkvyifL7BrUohgJin1W/3OscUOEX6RVSmhtzYcwq14axPPRqnNgAqj8zM1O8KczCxNyjIex6tpah6XWs42oWfA3JQA2528yeoMEj3EzYho5KjNCK9+1npXOwevDMcPeU5qWCi8ZBxEC1G40vgtC4bNzueFpxO8VffrHIjyrMux9F2j64H+NJmK6Befr9KyG49vcB5inbvPh3lRQh+JZN2QuhPb5Pw0SCdaOoihme2I+UllKnW9jukowMMV9DDDiOsUSh/MMzQzZC6t1N4Y4D5COJrfBgxHmhXPzb0hwtZYxm3T4iA2TPPdOnpo3P25dMCdLuhH6u75i0LXrON6gS+ynCSru+Ra/25BFQHyKGFF3+fBfvk32X93JMC/O1RD0wWYLgiJaRoqPMsYEESeV0GnwMWhcRySprSHC5CIOnYPbBHXVXszzdRL27Tmb9yEjz5Yhcr5tMUdL1UWT21B9qICJKDs5GVRphYImGdi0mNZxhNvTEGZhwgZ62F7zb+ZuwSTz/M4irv10lBqjKQ+NKNKr2nKkAPr1DLOg/dnYaOK3kdvPoWwkvfKOPLQZ8afBcq2567opuFYvwZ2lQIomyXQ5IJp/N0HWCtp1aPaud57nP2Zd5WMLcwRpiSFmq3I31qq9f1ZeJHZa9fvZ5nO7XyVtv7lmFBbeYEYS3pMS0B4e99DrAY3trzp+NISTCC/Fzi27QF26MWcJt3E8S0DgGMj5l85l8AEwD5BCN0tmw0cx6Pkr7v9HN+7uBuuPC3T5Vhk2zIB1oNORAS0ZwNwHJbgnZpEUCNq1Zq2Ab6XO+t169w905rmeEdqhiCCEoWh3LjhN9WC+joG6oltkd7OeNaI+QPzPBQwyyyrXHMkIGbL2T7Cc1mHqp6M17D9YeukLKpFVQHsCic6zt/eF0/eircKK69I/xL3flQSveplvmzLszBXQ5EdUY2rfAe4GlOuQyL5Qs7vKJDD5CLMzlN4toYchQ4A5jd1EDCFkFrF9FYmam6mUONWrqE9yjacfwfMpiOa6Uxg3n0DHCAMsPB8dmg80CV01IXMWOeyv41XtLvzgPejVwo2wnmKmwHv24ErE/ug6Hbx9mMSl3w+yYKOrq2pMCokKJC/8oQmGhWvO2nm8/SEtrew/MZ0IH9H/c3y6Z7zLOetSzTP5T/BrOVvCVmZdnxLYch7G/Q2iXRd07vugeoJApB5eHXfd9iD5ZkbRJiztoDfglHx3hTmv+y47nuZzMwwE6CMbTRTJgvXxY2RiAahyuTJ+8cI4VUuuDNYN9tCgAWfTG9slve6GMIMzQjaCwRtsfO6mnixrFVET1O2NLUToc+jZBsvTMx27AA73yWAnLvi2xjlbW7U+GjdEu1UF21GA3GWW+2wdxM1y4sY4S73f1DDhdQAZUljQTLMem/bAHzDnhyFMzRLcvl+mkCoNqa4AIWamnnx/XR2RtOsfM5CTrV6xatv1yO8p3H1fCXA1DmqSOtC25YmVAFCpzvzmfaxP2LbHqquFuOInVB3Vva0rYByW3coPPCWewfGiHucpKoW8Xleq81jjsGmBAxtyzDkxZTaNryzhUJXQK8JnmwReub4m846UEKPe9TXYNtogkrF7W1M87O6IJQry5xXA33umsyT1AwtghMu8hwWl+m2dpcyzScRNNZ3gJvnxaKVQG3CeNQnN1OkHJvx8mMZsTnwKLydR/CTuKHxlKvwMv9egz9qQkR8XWBemsDt8B+Oaz4Akz1HHN64Lr42c63LtZYBJdTMcJ4bDCko2ORE053z5Ne80NptwOJKA0NsMLqHOekMM6jjsQ10RkLHAywcL4YdPhnQsDE9jcZvwwELd9STtyGEIccOk9slar7r5sxHa/87vYheLNjUTtHpS/vzPDP5fOjWxHs5KZS5/r7CErqgXeFPFxIWQQerBmMKKtwJo/alTNGGCDkl3KR2Q+JkevF3d5zC1v0xswwqeLD8XbgQiBZh5CaHTq2+FFbW+LOux8X71nasT5ar94+DDgMImkeaYeWgtXIlvI0CPVLcjD/bPkA+vweI3h427I9HLvpuspgbsUdpGRSEO5DaG9WUTBeYFW6osEHQFjyTHs7oICGJDPWg0OAt/xHuZE3QQx22V2BEAWkBRNF+WaZjpp+X7c3Koe3p6y5yEC8mhbMYC6OIxerxccf2MKo8Xi6heeeO09uaasNcDndne6pwSGA4L/W0KM8hA+zh4QE/hAgK2b0cjavgcUgVPf+VNoZ3MVBYLAEnu09g20mosUq7C0I9/EqrENTf9eeCrApDnHDklL9fhokNAiBRqrvj2I+Yv+dxVEBvOZbdBNQaI7zEdo6/0kwaAF40QfMmQ4xjIizMbyNMwjwAFQx1Xiwv6LTI0UTrYAL+TTYZdrQLLcV2yoIpuAHY5QJeM5jcR1VDM8LHeCxzMK7B4Z8vHRiUi+dqOpuaHlS9ARGUppQv/K7zysudXat98cwz3KW7H7UTn/cEuQA9ZJ2M2ig/Umh7RPVR6gdWfCh9uILHDv/1W/w+gYEXoAPrc+y1ZKcfnxel1PBk9pfvs9m0DV/SBn2tIE9Oo0vHvEcm13fywdC8ZioUbmIaGDFR3Dvjc4ofsUYyLOVt8uWBabI21/kjPWzOtdRhNm1fuMbRm9owT4cCMMfBu6O4tEYe0/t6eGBD8XKDhdc15eYfQPczNu9F72GKts6WVw76Z18vDOlmBD+9uR3vY1CJTivI5m/9V2Wbf32ujvDUuiD/VvwR7pxHflvvrhErUfGKVvGP9s2kTKq1OcOlXuZbUKgLafnOz2nM36PeG8CDJkdwJI03AWkXZs7wLdiJrKH5RRZoA5qAYsBZqKEQk8B+lrclGgx73/dw3VqCSZqNAWUyxbyOCaR4uDcX91GgPT1xEWzzfSz+3LE6di879iiTFBCAxeWXBt8LwANhLmeA7wQXUVdqlwA8Pj6WBqftoBfYsqhjGQP0ttQDljNcNh94dof1aZdqBuBELGbbwxZYJtpGypmaM+kbLsYOxN0c1fdHXoQYZy7Czdu7x8cQzCzHkBmwe8wY0arkCE8ESm88Z2HDIlwteMqvVg1Q52WrPnRRZJzKg+X32iVPbSC2NIi3Jbjmt851visA5wB3Tc3x/336gB/YAI4Dn/zMzwqosAZ217KMbcOxP85LOcHzKgiQP+Y5n5grKTCYCAYQgB0uppvmgR7XQqNCcgA49hKW4u0x7WJLMKbwEaU2w7z0k1oIATsIPp+NKyZr6XkNdZ+Ww0r4CH5Tmkdtr9LKqDlrEyQS8ZU2q2T7ZUD4Mc/nANJWSz9pXxmdhnh943m3/VEyG9XfYpKG4K8WDgM2OX8VrZBFyFylatlfjLL89lOoc5hl0NwKVHW5mZZl+OJAF2lkUudSZhY3qfJ/OtzL6L2SkDZ4Lv7VyiAGbRmmwICMTczTMtM0LWxhnGdfKOR4HuYf5vmOns0OABvmPNrSO2Nhiy08nA14uJuOtQGO4WNuVvp0WmBRnpxz8Y/ndHg+aIYoa4+36KdHvHtTOPuId2+X2BeYzH9ajO7udKc73elOd7rTne50py8w/eAHP8Av/dIv4b/+67/ePO3PPvsM//7v/46f/dmfffO0vyh0F2zudKc73elOd7rTne50py8I/eAHP8APf/jDN0/3008//YkWaoC7YHOnO93pTne6053udKc73ekngMbzQe50pzvd6U53utOd7nSnO93pi013weZOd7rTne50pzvd6U53utOPPd0Fmzvd6U53utOd7nSnO93pTj/2dBds7nSnO93pTne6053udKc7/djTXbC5053udKc73elOd7rTne70Y093weZOd7rTne50pzvd6U53utOPPd0Fmzvd6U53utOd7nSnO93pTj/29P8D39zkjSpe2PEAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Open 3D preview (only works in Jupyter notebook)\n",
+ "if colab_compat:\n",
+ " if scene.get(\"birds-eye\") is None:\n",
+ " scene.add(Camera(\"birds-eye\",\n",
+ " position=[0,0,200],\n",
+ " look_at=[0,0,0]))\n",
+ " scene.render(camera=\"birds-eye\",\n",
+ " num_samples=512,\n",
+ " coverage_map=cm_ris);\n",
+ " raise ExitCell\n",
+ "scene.preview(coverage_map=cm_ris,\n",
+ " show_orientations=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "30a9d1bc",
+ "metadata": {},
+ "source": [
+ "## Gradient-Based RIS Optimization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "232796ed",
+ "metadata": {},
+ "source": [
+ "In the previous example, we have configured the RIS's phase profile by hand. Sionna RT offers also the possibility to optimize phase and amplitude profiles via gradient descent.\n",
+ "\n",
+ "We will now jointly optimize various RIS parameters, namely the phase and amplitude profiles, as well as the power allocation of reradiation modes. The optimization goal is to maximize the average received signal strength at two receivers which are served by a single transmitter with the help of two RIS. The scene is setup in such a way that both receivers are only reachable from the transmitter via the RIS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "12019ce2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAJOCAYAAADPrwPMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABy/klEQVR4nO3915Nc15nne//SlUWhDDxQQMGbAgiRFI1IyrUoM6djImYi3pvzx83diTjXEzETMT2jPj3dkkaUoUSKFFwRIEA4OlgC5Ssz3wv0Kj755LN2FUkAZfb3E4FAVuY2a2dlAr+19rPXrrTb7bYAAAAAbGrVtW4AAAAAgGeP4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASIPgDAAAAJUDwBwAAAEqA4A8AAACUAMEfAAAAKAGCPwAAAFACBH8AAACgBAj+AAAAQAkQ/AEAAIASqK91AwAAz8fs7Kxuf3lXH936Ql/NzmtkoE8TO8c0vmu7BgcH17p5AIBnrNJut9tr3QgAwLPTbrf10dVrOvfJp7o5X9Ojaq8WKjX1tpsabC9ob2NRL0zs0dGDE6rVamvdXADAM8KIPwBsch9/cl1//vhTXW5t1f36gFSR1JZUefLw3tKMFj75Qo16XYcnDqxxawEAzwo1/gCwic3Pz+sPH93UVHtY96sDX79QefKnXZEeVAf00dKg/nzllubn59esrQCAZ4vgDwCb2I3PvtT1xR49rPYvh321zZ9/96A6qI/n67r+6Rdr01AAwDNH8AeATez8rS81W+/rCPkd2l//NVfr1Uef3X1eTQMAPGcEfwDYxB7MLqip1V2w22zX9HB28Rm3CACwVgj+ALCJDfTUVW23nvyQynsq5o9Rr7Q00MOsPgCwWRH8AWATmxjbot7WQlfI71KRGs0FHdw+/FzaBQB4/gj+ALCJHdq9Q9vaM+pvzhde3Nvfmte29qwO7Nq2Ng0FADxzBH8A2MS2bxvTmR2D2tV8oL5mMFVnRepvz2lv86FO79yi0ZGR595GAMDzwZ17AWCTazab+sPf/q6/fjatz6tbtFRtqFWpqtZuqdpc0HhlWt/fO6yXTh1Xo9FY6+YCAJ4Rgj8AlMT9+w80dfsLXb33WF8ttDTSU9XRHVt1eM8OjQxT2w8Amx3BHwAAACgBavwBAACAEiD4AwAAACVA8AcAAABKgOAPAAAAlADBHwAAACgBgj8AAABQAgR/AAAAoAQI/gAAAEAJEPwBAACAEiD4AwAAACVA8AcAAABKgOAPAAAAlADBHwAAACgBgj8AAABQAgR/AAAAoAQI/gAAAEAJEPwBAACAEiD4A0CJzM/P6/z58/ov/+W/6O9//7vm5+fXukkAgOek0m6322vdCADAs/fll1/q/PnzunLlih4/fqzBwUFNTk7qxIkTGhsbW+vmAQCeMYI/AJTAlStXdPHiRd25c0ePHz/W/Py8enp6tHXrVu3YsUMnT57UoUOH1rqZAIBniOAPAJtYu93WxYsXdfHiRT169Eizs7OamZlRq9VSrVZTX1+fBgcHtXXrVh07dkwnT55UtUoVKABsRvW1bgAA4NlYWlrSxx9/rAsXLuirr77SwsKCWq2WJC2H+2azqbm5ueUOQr1e15EjR1Sr1day6QCAZ4DgDwCb0NLSkm7duqX33ntPMzMzWlxcVLPZVLvdVrVaVavVUqVSUbvdVrPZ1Pz8vJrNpt5//3319fVp7969qtf5LwIANhPO5wLAJtNqtXTz5k397ne/08zMjJaWlpSqOpeWlpZH/VPwl7TcAZienta//du/6ebNm8vLAQA2B2r8AWATmZ+f10cffaS//OUvy4G/2Wyq1Wot/7EdgZ6eHlWrVVUqFVUqFVWrVTUaDUnSG2+8ocOHD6unp2ctDwkA8JQQ/AFgk0jTdV67dk1LS0uS1BH0UycglfxIUr1eV6PRWB7dbzQayx2Aer2uAwcO6PTp09q5c+eaHRcA4Okg+APAJnDhwgVNTU3pwYMHy+G+Uql0jPSn59Nr0pPgnx6n0f50BqBaraparWpkZETHjx/XqVOn1vIQAQDfEcEfADawVqulv/zlL7p69arm5uY6wn21Wu0Y4W+328udgHa7rUql0jF7Txrlr1ary8/XajXVajX19PTo4MGDeuWVV5jxBwA2KKZsAIANam5uTu+//74++eQTLSwsdAR8SctBPz1nn7dSJyCVAklfT/fZbreXS4U+/vhjLSws6NVXX1VfX99zPFIAwNNA8AeADejx48e6cOGCrl271jFVpx3NTwE/PbZ/qtVq2BnwnYQ07Wfa/vXr19Xf368TJ05oaGhobQ4eAPCtMJ0nAGwg7XZbMzMzunz5sj766CPNz89rcXFxOewn6WJdOyWnLe+xpT9pRh/fOfCdgVarpcXFRV26dElTU1OamZl5vgcPAPhOGPEHgA1kZmZGU1NT+vDDD5fLciwb2O0FvmmUPz2flkkX8qZOgb0gOI30p46C9OTsweLios6dO6dqtaoTJ05oYGDgOR09AOC74OJeANggPvvsM124cEG3b9/W/Py8arXacqi34d5O35lm8/ElQCnQS+q6wLdWqy13AqI/qQNRrVZ14MABTU5OMt0nAGwABH8A2AA+/PBDXb58WV999ZWkr0ftU5C303am+n07l7/tCFSrVbVareWOQ5q2097Iq+hP6iik/z6Gh4d19OhRTU5OMuMPAKxjBH8AWMcWFhb0zjvv6Pbt21pcXFwuwUmj+qk0R9LySL6tzbcz/aQ//sLfKNTbUf3UIUjSGYGkUqmop6dHu3fv1ltvvcWdfgFgnSL4A8A6de/ePf3xj3/U/fv3l8t1JHXMxZ9+tnX99p/1dB2Av1h3aWlJ9frXl3nZG3alMwbpOVviYzsJdt30+rZt2/TWW29peHj42b45AIBvjFl9AGAdunv3rv74xz/q3r172ZCffpa0HMR9Hb593o7cp9eT9HwqB0qP09/+j29Hev7+/fv6/e9/r3v37j3dNwQA8J0R/AFgHWm1Wvriiy/0t7/9TXfv3u0Y3bcX6FrR6LukcNn0vO0Y+FIeH+j9Yz9FqH3carV09+7d5fZzUhkA1g+m8wSAdaLZbOr+/fu6dOmSbt++3RWw7Qi8D+qpgxAtb6f0tCP6qawnsSU+ab1oX6njkK438GcgqtWqbt68qZ6eHh07dkxjY2MdZUUAgLVBjT8ArAOtVkufffaZLl68uHwhr509x5f6pDn6JXVcwJvCeFpWehLo7TUCdt30ejSfv+0UpAt62+328rz+UVlR6mSkx7t379bk5KT27dvXVV4EAHi+CP4AsA787W9/05UrV/T48WNJ6gjwUufdc30nwJ4JsDX/9nV7ViCN7Ns7+dryIB/47ZkAezMvScsj+dFc/2lfW7Zs0eHDh3XmzBnCPwCsIYI/AKyhubk5/eY3v9Hdu3c7brxl/2m2N92KauptwLej9ktLS8uj/XYdSR0dgBTWbRmPHeGPLgpOyzSbzbBkyLZdknp6erR9+3a98cYbGhwcfAbvJABgJQR/AFgj9+7d07/+679qdna2I8CnIJ5uwGVv0mXZun6/TKVS0cLCQleNvr1Q2N/Ay47YN5tN1ev1jouF00i+32burr6SOo6nUqloaGhIP/nJTzQ6OvqM3lUAQA7BHwDWwO3bt/V//s//0fz8vCR1hH4/e45/LZUB2ZF8qXM03y5jR/Pt63ak3gd0SR039Eo/2w6CPxuQlvF/vP7+fv3gBz/Q/v37n8p7CQBYHYotAeA5ajab+uSTT/SnP/1JCwsLkr4O7EVz6fvl7LLpb18iZPnl7Qh9tN2ief59u6Jwn5vyU3pS3vTuu+9qamqqq/MCAHh2mF8NAJ6Tubk5Xb9+XZcvX+64iDexJTTRHPxRByHHT7MpqaPe307JmZb3JUF25N+3I7pfgL3OwO/fH9vjx481NTWldrutiYkJ9fX15d84AMBTQfAHgOdgenpa165d07Vr1/TgwQNJ6gjKfipO+7r/Oboo1/JTe/oZe+y1A+niXLsdX+Nv25lEo/y+jWn/fvvJw4cPdfnyZbVaLU1MTGhgYOBbvrsAgNUg+APAMzY7O6tz587p5s2bmpmZyd4Uyz62s/P48J9m66nX68szAfntSPGZgVyHwY/4p2k6m81mR51/WtaX/KTrBVLgT9cW2Hn9/frNZlP37t3TwsKCZmZmdPr0aUb+AeAZ4uJeAHiG5ubm9Nvf/lb379/X4uLichC28/FLce28vQg3Wi+FeD9ff9SR8KP5NoinufrtNtOyUucdfaOpOqNOgw379kZkfr20vXq9rrGxMf34xz8m/APAM0LwB4Bn5IsvvtBvf/tbzc3NdcybL3WW4yTpcZpmU5KWlpY6SoFSnX7625bi2IBva/mTFPpTKY59Pi2X5u+vVqtaXFxcLvexMwDZEp60vu9IpLamNvgZhPx6aZm+vj797Gc/09jY2Hf/BQAAOhD8AeAZuHr1qt55552O0XU/Uh8Fdunr6TtTULY37rKdAFtm488G2Pr+VA7kS3RseI/CeDQtpz0jYO/468N/dN1ANL1n9HOtVtPLL7+skydPfpu3HgCQQY0/ADxFS0tLOnfunC5cuNARxH3A9XXvUjyTT27Wn8SW+tjlov3YC2/TWYPowl0b2v3ZAVvH72fq8Z2J3IXHtu7fX+sgPenovPfee1paWtLJkyeXrzcAAHw3/GsKAE/Jo0ePdO7cOV2/fj17c63cz5YtC/Kdh2jmn2jOf7t8epz+9jMJpef9qH762YZ0P7NQjr+uwG5X6r5PgN9ns9nU+fPn9ejRI50+fVpbt27N7gsAsDoEfwD4jtrttu7evaupqSl9+umnmpubW76gdTVz7vsR+pWWj9ZL+7LrR9uwwT9iw73fj38t2oYd+Y86DOmxv94h2tbCwoJu3bqlZrOpEydOaPv27dl2AwBWxp17AeA7aLVa+vLLL3Xx4kXdvn1bMzMzXaPnkrpG6aNRcFuzn0bjczXx0Qw5vuzGXuDra//99uw27Ei/36e/JiA6Y1A0y1Ba3nZQoranbc7NzenTTz/V+fPn9eWXX3aUPgEAvhku7gWAb6nVaunOnTv661//qgcPHizfGEvKl7rYG2j5UXU7Ap62b9f3F+9K3Rf2RsvakiE/Vacvv0lTcSZ2hiFbv29H7HPbjOb/tx2HWq22fK2Bn07U1/83Gg0NDQ3plVdeYeQfAL4lgj8AfEs3b97U73//+45Zc2xtvy918aPVNsTnymmiMJ+2ZS+y9aLn7c/2ouBoXv1cLb4N92lWH7+fNAWoXd5vo2iWn1ar1XFBr53lqK+vTz/5yU+0Y8eOru0CAIoR/AHgW7h48aL++te/Zuvh7eM0Om6n5UxskE53vK3Vah3z90fTgaYOhr1Drr3w1tf62zMEadsp6PtynxS87faiDoAv+0n8LDy+HCl1GmxnJyonsu+j75Qw3ScAfHMEfwD4BhYXF/Xee+9pamqqI2Bb0cW69vloJD4a9U9nDOzrKfza8J62kToEjUZjuWOQyoDsdm25kb3Lrg3laXnbsUjPpdDuy4D8KL6/gZd9bO9InNg2+OlF7fuWfj5x4oRefPFFpvsEgFUi+APAKt2/f19/+9vfdPv27eXnciE+Pbaht9VqLYdlP/tN1CmIZujxJTrRGYcU1u08/faMQwredhm/vJ+VKD229ftLS0sdN/GS1BHm/XHbjkd63o7k2/3Y9th2pGNP29u9e7deeukljY6OrvbXCAClRfAHgBW0Wi1dv35d586d0+PHj7W4uJidpSeNsNufc/Pf+5trpb/t82nk3m/fPhd1NvyZALt9+zi1p+gCW1+G4/9OcrX7dvt221Hw950IH/ztcu12W729vdqyZYsmJye1f//+rk4EAOBrBH8AKLCwsKCrV6/q8uXLevToUVinb6WR9TTynRvNL/rZdxwsO0WnPXuQOgQ2+NpOQrRPu5/U3qjW3gZwG/htaY7UWavv25GCfxTg7WO/Pb+c71Sksw+Dg4M6evSoDh8+rJ6eHgEAulEYCQAZ8/Pzunr1qi5duqTZ2dnsxbl+FD39HS0bXRPgR/D9+lFHw46a22Wq1eqq2mmfS2U9fjTet9mGeTujkL+42I7mR8dj22+XzXWEbImR7xS0220tLS3p0aNHunTpkiTp0KFD6u3t7XrPAKDsOCcKAIHFxUXdvHlTH3zwgaanpwvDtNRdouNLbdJj/7cN7mn9NLtPbqrOtF87+p+7MDaa8ce2y47q+3n3bVv9OrYD42vyffmSHaW39xzwbU+v+w6CP3b/vqb1ZmZm9OGHH+rGjRtaXFzsOhYAKDtKfQDAabfbOnfunP7+97+HpTLRqLnUfTdaqXP2HR+io5Fu+ziVDPk6/UqlsnxhrZ3204f+qLbf7jM3u46kruf8aL9nOzz+ImF78bA9xqJSIfuancYz6lT4dlQqFX3ve9/TqVOnul4HgDIj+AOAsbS0pD/96U+6evVq18W4KYimUes0s4ydpSexy+ZKfnJlQpLCUhu7jC99Sc/5ZdP6vh32sQ357XZbjUaja3rRFNxzM/DYswH22oNKpRJOt+nPPvg2pHb5MwJpn37/9njTMR86dEivvfYa030CwL8j+APAv/v888/1l7/8RQ8fPuwK+7mAnnvOh9jEB2pJy3f+taE6LZOm5izaXy7s+2V9uU10wWwK+OlsQhq19yPntVqt4yJmux3fIfHBPN07IAr2uVIl+9gu4y8i9mcIRkdH9corr3CnXwAQwR8AtLS0pI8++kjnz5/X3NxcR9D0Qd2OZEvdc+xHQd+LzhLYEfOoLCexc/FHd+217Uj7tm22N+9K7Aw99kyGv9A3jfjbY4qm4rSh3D6X2pjuCuzbkN6HtM9GoxFe4xAtn/bl34dqtapGo6HJyUkdO3aM0X8Apca/gABK7fHjxzp37lz2gtCoTMc+9p0Du0w0Ou+Dva97t9cL+BF0P7tOGjlP+/RtsGVKib2AOJqD39b95+bEjy4i9sfuR/Dt8tGFwdF7G3WGcuVAabtR52dxcXH5HgxnzpxRf39/eFwAsNkxqw+A0nr06JE++OCD5dCfK7exPxedJPWj94kvZbFhPSpj8WVD0bZ88M6tE10EW1Qz72f9Sc/ZIJ1b17IdkW/yPkZnCKLlV/rZbqvdbmtxcVHXrl3Te++9p8ePH4f7BoDNjuAPoJQePHigixcvLof+6G64ng2hueWiWn8fZtPjqDQosXPr233adex0ntE1CZK6grqtq49Gx+0Ie3Q9gj1G367o/YiukYguSl7pse+sJP7sQa68qNVqaWlpSTdu3ND58+f11Vdfhe87AGxmBH8ApTM9Pa1Lly7pypUryzXzURlKFFjta1HJykqXTdk77aa/7R+7LRvIbQj3d9m12u32cu2/rdf30jJ+utAU/NM66X4Cdr+2LdFsQf4aiait/md/wXFO0RkP3xZbzpTasrS0pCtXrujSpUuamZkp3BcAbDZc3AugVObn5/WHP/xBN27cCGvgk1zNflQzb9epVCodF936Gvxc2YsN9ZI65uf3y+VKh6QnQb1er3cE9ugY030AfKlR1HmxN/bytfv2zIRfPj2Xfo62n+sU5DpRvtMTXWsQnWHx+2q1Wjp48KBeffVV9fT0dO0HADYjgj+A0vjyyy/17rvv6t69ex3PFwV7K42GpxIb+3zajq+Dt49teLcj4X6/dhYeOyd+es23OT2fRrh94Ld/pyk4UwfBvgdR4LalQdEMPvZne0ZA0nLHwnZO0kXDvqNj37+0rn3P/X798RedAbFnHuy+2+22xsbG9OqrrzLdJ4BSIPgD2PSWlpZ04cIFTU1NaX5+fvn5qNY8qjHPlfr4EX3pSQBvNpvLd6y15Sa5m3JZdpl05sCO9NvpOHM3AWu3v75jbnrOTh+atm3LYBL7XOp0+LCdC9l+uehCaV+Hb99L2/FIAT26YZh93i6b9ln0e4va2dvbqxMnTujkyZMdZzcAYLMh+APY1B4+fKj3339fn376aVe9fhTa08/2AlgfIHOdhZXKeRI7B78fjfdt87Ps2LMO0f7s82k79gyCfc6W6iQ2tNvj9WE9utjXrmdH1/2Nunzdvw/y9rijfdrlfR1/UQmQbaP9faW/9+zZo+9///saGhoK1wOAjY7gD2DTunXrlj788EM9ePBAUn4GHv+355/35Su55aLyHR9w0+NcJySV7vjgH43y2xH96PnE3g04lfv4kpmiUX4b3hNfwmPb4Wv8o3Vte+30oVEbUtj3o/92Wf8+RB2IaL9jY2N68cUXtXPnTgHAZsOsPgA2pevXr+vDDz/Uw4cPJXUHwchqSlhynQRba79S+VD0x+/Hdi6iZXLtz03Xaevvc/X8/nj9zz5AF7XLno2w1xzkSpxyZVa541zNexqdfYnOVNjO1v379/Xee+/p1q1b2f0DwEbFnXsBbDqffvqpLl68qPv373c8n7voNWJLU/zyufnu/QhydAGq30dig3K0HdspsVN/2vXtcUadFVuCE60fvR9RG6XOOxBHJVHRWQm7naIAHr1f/oxDFPz9sRZ1qHL7TuH/woULkqR9+/Z1vScAsFER/AFsGim0nT9/Xnfu3Fl+3o9YF42a2+XTNu1jX77jA3nurEDujIOf7cbvwwdkX7MflQ/5uv20XT/DkK+jT4HdXvhr+VKctC8/pam9sDkqFUqv2QuQbech1zHw74ddz3cMopIiu62oY2Aff/HFF2q32+rt7dXY2Fj4fgDARkONP4BNodVq6c6dO/rrX/+6PNLv/3mLgnUuVKYwG83Db0fM/ch2mnUnF1ztWQN/HwFfmmKXscHddy78iHt0Ma/fbgrofhTdHocP4P5sgX3dvg++5j6amceWMhVN15m27UUdAN8B88vlOg1++/Z93rJli1577TXt2LGD8A9gwyP4A9jwFhYWdP78eV2+fFlLS0sdI7k2xPm74yZRYM3V3/vALXVP0xnVwtu/0zq+PMWPqNuaeBvW2+22FhYWOubJT9uKOir2OGq12vJ7lLZlR/D9cdbr9Y4RfX/hbbo42Hc2Et9RicJzdMFz0VSg/vfntxXNmhS1S9Ly1Ku5jk+73VZPT4+OHz+uEydOcLMvABsawR/Ahvbw4UO9++67unv3bke9vR/9jUaDVxr593Pf12q1jpt3+VH/tO1UKhNdyBqV/+Q6F4uLi+FZATuVpb1LsPQkyNpQ3m63l5+z2/ej7dEIeyrj8VN7+k5NCuS5sxE2sEfHGgVyu17035TvQEQz9KT3yN4MzJc4+Yudfbut7du366WXXtK2bdu62gMAGwHBH8CG9emnn+pPf/qTZmZmJHWGVztlZXrNBj8b6O1Ir/8nMSpriUaT07qVSkVLS0tdd9xNr/v92JDpOwLROu12W41GQ4uLix3P2ZHqdGYjtcHfCbjZbHad+fB1/vZ98lN1pvbaTocv+bGh2pfy2BKmqBTIbicdj32PfUfEbtuu78uI/PsdrRe1w643MDCgV155RXv37s2uAwDrFcEfwIZ05coVffDBB5qbm+saZZbyN9tKckHbhvXotRSc7Yi+3bfvVOTOQKTHubbaYO2Df3S80UxDNtDa1+0x+jvk2hIgP/pu2+pH4m0HwLY9LRv9bnLbtnxpkX2fPR/obcj373HuOOy27Ptpy8V6enp06tQpTU5Odq0HAOsZs/oA2FDa7bbOnTunK1euLId+KZ6OMgrU0faKlvEh3Zem5PZtt5krZSlqow/7vi1RG3I17bazkJuZKDrzIHVfvOxLZSLRced+N3493yFb6Xda1GlY6bmikX6/b7u/hYUFTU1Nqdls6syZM4XbAYD1hOAPYMOYm5vT5cuXdfXqVU1PTy8/7wNvVE7jRa/5UXA/6u3Xi8p9/DajoFpU8mO3kUaY/fajEqaoPt2ecYjOGtjtJ36Ee6XOU/R+p+1EnZFovdx27Xthn/PlP9HvyNb4R++rHc23ot9D9Hhubk7Xrl1TrVbT0aNHuegXwIZA8Aew7rXbbc3Ozur69eu6fPlyWN7jA3QU+HIlIkkURqPyoKiDYNlA6UfsbdD2ZxP8Pv0ofFonldL4C4h9ByD3/qRZbxqNRkc7bPuj40+vRe+v5dsQ1dQXnQFY6UzCatb1gT0qF7LXKERlS1Fn0pqentbU1JTq9br279+v/v7+sN0AsF5Q4w9g3ZuentalS5f08ccfd8yRb+vIoxIcX4NvA5y9yVS0Tu4uvNE1AD40RnX8SW4E2XcOojMMuU6J35dv49LS0vIxpcCbOgCVSjxFZrvdXp4Nx545sDcHSz9HNfv2OPz9B/z0oXZ5O4tQrjPgf4f+vbC/O392IL0P0fsXlU9J6rihmW+XJDUaDR05ckQnTpwg/ANY1wj+ANa1Bw8e6N1339W9e/e6Rmij0GcVlfNE/PSc6Tl/d93UEbBTZxbVpEdtTY+jEercvQZsYLd3vvUXEKdt2eXt84uLix0BOR2bDeH+rIO9yNaH+BSsbUchHUdUTpOW9WdD7HsV7c+21c/YUzRLkT0eWwKUu0A59zuy74O/X0K1WtXY2JheeeUVjY6OCgDWI4I/gHXr6tWrev/99zU/P98VNKPA6EfXoxINe5YgCnk2aPoyGrtdu7wP7WkazfRzbvTfjnLb48iVltgyH9+u6IZgaTkbqO3yNlDbxynA25tbSV93DprN5vKNvXz5VDRqHpX+2NH6tG37HtlOiO/Q2M6XZTspUWfDn4nw5Tx+P7nyJN8hs+9hT0+PJicndfLkSQHAekPwB7Auvffee5qamiqsubcjwzZAp9dskE7P5YK4D35RyY7tFNjwHbUtrWPblztD4TsO9s6zdtYdSR33B/B/fCco6kD4m5LZEXs/si11X0ibnpOe3CDMvw/R6Lz9XdgbauXWS/tP9xvwpUG5KTjtttLftrNgO0BRGZHvSETb9I+jDkilUtGxY8f08ssvZ7cHAGuBi3sBrCvNZlPvvPOObt++3VHO4UfcVyrfiUK/L3uJRnR9qIu26TsGUZCP5vmPtmP5EXDfMUnB2d+cLCoTym236EyCHem327PttXP8p2sH7HbSPqLOVVRC43/HflTe3zzMb8eXA/n3NSoVSs8XTUsadZqiMwLRuu12e3m62TfeeKOwQwEAz1N+egsAeM6mp6f1+9//Xp9//nnH6LgvU7HBy49423X8z5YPY9GIvF8+t/2obMSObOf2Hc2eY7eTK1fxpTV2RDziA3luZqPoLEC0f/u+Rxfi+mX98/b3UdTuqLzKP+9/t75EyP/Ooo5A1FlYKfRLX1//EX1WW62WPv30U/3ud79bvrM0AKw1gj+ANddqtXT37l198MEH+vzzz7W4uNgVpnJWej3x4dxvIy1jtxmFPR967Xp+mSis+lF9X2biz0LkRqPt62lUPD3ng33UMbDtsWcTispgorMbUbtyz6d2Rtv3HZ/ovSs6G5OeK2pf7nOy0uen6P3JtaHdbmtxcVFffPGF3nvvPd25cycsDwOA54ngD2BNNZtN3blzRxcvXtTt27c7ykdsqLUhtyiARoG9aOQ3qgGXui9+9Xe8jeq8fZD3ZypseI5G4e0x5kbTizo6UeiPOjF2piI7Y1E6U5Gmr7SdG7s9K80c5N/j3PUTdgpRX3dvR8ujY446T/Z9sscTrRP9HL2vRZ0k+3769nvtdlsLCwu6ffu2Ll68qLt37xL+AawpLu4FsGZarZY+++wzffjhh3r48GF23v2VykJ8GCu6qZWkjmlBozr6aF0/a06tVuuaztNvz3ce/LGkkJu7y6xtsw3Tdl9RqYudD99OW+mPIR2Hb5Okjtl8fAcpYktr/AW5/nhyZzn833bKUvte2M5Raqvv4CT2YmjbVvu33ZZf308bGr0n/jMQdQprtZqGh4d15swZ7dq1q/BGcgDwrBD8AayZqakp/f3vf9fCwkJXaPMj0dFob/rZhlIbdO2Nl6J/6uyyUfj1nQDp66kul5aWlmeesctEJUVRWU3624Zyu4w/PttRSOHadwBS+/12fAdhaWmpI5BGI9jpOP0NteyMQ4m/VsH/bNtq92M7YInvpPkZgPx76fcftcdu23fE7D7tMtG9FKKfi9j3Na3baDR09uxZHTlyZNXbAYCnheAPYE288847un79enaE3Yczq2hKzvR3NLrt1Wq15TsB2zCdlvWj8ak9fhTZd1h88Pc3e7KhP72e2mg7ArkORHps72ng10/7iUpfUmelXq+H73WtVusKz75D48N29HrRBcLRvP32uPwouj0+/5zvHOQ6P3Y9e5YgN6Lvz+DY15PcGQF/gzVf2jQ+Pq4333xTAPA8EfwBPFetVkv/8i//ojt37mTDvQ/AfnQ3qgH35TR+JD8axfejzj5YR9u1wTbXscgF9rStpaWljlIaWzIUtdt3cny4zo1O+7KjtK0U/O1c/T5o+7Mn/n4EKdRGde6+fMi+L/6xD9fR6Ls/C2JH7X05ld1Gbr7/qGOQnvefn6Kbk/n3zK7vf7bvVTI2Nqa3336bsh8Azw3BH8Bz0W639ejRI/32t7/VzMxMdr55G6ZyAd//sxWN/udCnb3brA3BUXnNStuOOgbpcSqJ8eHTn1nw4bAoEKf2S52h1neO2u22lpaWVK/XO445bSddQG0Da/pj5/L3pTFRiYwNub6tuUAeBW/bmUnH7jsffv1c2c1KZ41y93KItlG0v+hz4Pfjf/e2PZVKRcPDw3rrrbc0NDQUtgMAniaGGQA8c4uLi7p586Z+//vfa2ZmZnmEO/3JjVoXBbzcCH3RhZg2jEbh0Ie03Gh1Wj7Hts1vJ2rXavjlollz7DJ+1N0vE3W8ciPh9rXcMUXPRx2oaFQ910nwf3w7op/t8/6sid9ONNKe6yz444n499sfe3Q24NGjR/rd736nW7dudd0QDQCeNoI/gGdqbm5On3zyic6fP69Hjx511aRHJTiRKPgVhXMfQKNtFYW7olId/zhqazRCbV+L2pFrc9QmX7vv9x9dtBy10wfi6LVoP9G6UUfDv2bflyh4+xl47P5yxxvJ/Y6Lfm/R8tFruTZEncPo95iWTWc2Hj16pA8//FBXr17V7OxsYfsA4Luor3UDAGxes7Ozun79uj766CPNzs6GZSperiMQ/RwFcVteE4X3tF504aldLgqauZKWSBTi0379NJV2HV/a4ttt37votcTPvGNLaRI7c489Nj8Sn5bxx2Xfk6hUyR6TPZZ0cfRq5uv3241+P2kf/vnob78ve2Fw0VmhlaaI9Z81e1zRdQi+E/fgwQNdunRJzWZTExMT6u/vFwA8bdT4A3gmFhcXNTU1pYsXL2pxcVFS/oJOKxoZ9mU8URiMylP8dn15SdHIuw/rNojbfzaj7SVprn/b4bH78cfrn7PXIdj9p7+LOjhS98XAtv3NZrOjnr9arS7P8pOkfduf7QWqUYfDdl6iNtllUgfAd2jS++ZDuV3f7t9vO3rf7DrRHZft7zya1z/6vObuVZDWS9uM7udg17c/NxoNHTlyRCdPnlSj0Qi3DQDfFsEfwDPxu9/9Tp999lnHyG4UAKNQGkmvp0BoA1luNDpX5hGFYx/AUuDNtdmPoEclKlEwtUEwjTin47KhNLEX6aaAnpbxFw+nbfuLV31QrtVqOnbsmD766CMtLi52jdSndqT3JgVwH75zZy7s3P/+mPzId5rhyC5jzwTYAJ1+tu+l3a4/br9OUYchmr7Uvn/R/hM7NajfXu7sTLQd286JiQm9/vrrXcsAwHdB8AfwVC0sLOjf/u3fdPfu3bD0w4uCdQqD6XU/EhudMSjqNNj92BtQ5Up9fFjzc85budmJ0rHkOh826PuyEPs+2NFwW76TO8MRnXWwAb6/v19vvfWWDhw4oBs3bug3v/mN5ubmwlKZXLnSatnSofRzGon3wdj+bDsdvozInxnw+4ru0huFfN85iI4ttcW+h/51v91chyEtH7U9vebf+5GREf3sZz9j5B/AU0PwB/BUNJtN3bt3T++8845mZmbCUVJf0x3VPqfni8J2ju0U+DIg+3o0qm3LMqJt+u36ZezftnPh25L+tjffiubCT+v7shN7597oDIENySmwpvA6ODio119/Xfv27VO9XtfS0pJu376tP/zhD5qenl4uS7LbSPu174U9hmi/PvTa9vvSIHuWIlrPl+P4Zey0qZZfJuLvCeE/G7aj5a9L8aP7UcfIlwlFv6v0fvjPXdrmwMCA3nzzTY2OjjLfP4DvjOAP4Dubm5vTjRs3dO7cOS0sLEiKa/R9mPSjzP7nKDwWiebNjwKVLz3ywda2N8ePhvtRfv+cHQlezfajtvmwubS01HHGwG7bzoHf29urrVu3anJyUgcPHuwYQV5aWtK1a9f04Ycf6quvvtLCwkK2rCYqnYlCq+/w2GO3nZxUtuU7gLnj8L/D6HeRK6GJOi/RzeCikfqiMze5fdvPty/vsZ299JmN9pHW6+np0dmzZ7V//3719PR0HR8ArBbBH8B3Mj09rampKV27dk3NZnM5yEQj5/axDYN+majkwq7nt5dE1xLYUGlnzIn2ZwNaGu2NAnd0XUDaVxJ1bHIlQFGojEJgVN5jR7Vt4E4XyPb29mpkZEQnTpzQ4cOHuy7glZ50mC5fvqypqSk9ePBAc3NzXWVVURtzAdk/b7flz/ik99OWdkXH6PfnS2oiRR2CFL6LSn1y28295vfn3wv7OHV4Vjq29HOtVtPBgwd19OhRDQ8PZ9sFAEWYzhPAt3bv3j1dvnxZt27d0uLiYljSYvlRUCsX+v3rqxmrKBqFjUZ+/bJ2tDnXltx2/Iiy7zh8m+OORsPTY1sm44+xt7dXw8PDeuGFF3TgwIHs8aSLfXt7e/Xhhx/q3r17HRdNF713ufZFU7b6kO1n17Edraj8ZqVRePvaauRCf/Q7jS6Yjj6T/nnfMbHvm78Q2x+37TgsLS3p+vXrWlhY0PHjx7Vt27ZVHSMAWAR/AN/KvXv3dPHiRX366afLdxyNRrbtz/a5JDoT4J+Pli0K8FYKTlHdf669K93V1gc0u43oxln2NTvFZHRsUcDPHW90jYQdXd++fbt+8IMfaHR0NPv+2PUOHjyorVu36s9//rM+//zzjhFp/37agJ8boffH5o/F/+ynTS0ayY/Cd+pM2DMfto1Rhy76PUZt/6YdztxZpcSXL0nqapc/Y5SuyWi1Wjp16pTGxsZWbBMAWJT6APjGZmZm9Oc//1mfffZZV+mG/1nqHnVPtemWDWtp3eiiV7u830euPMbz27Q/r9SRsG2NtpeCd3RRb3oczSpjL9bNHasdQY62n6b6rFar2r9/v370ox+FpT0rWVxc1G9/+1vduHGja7pU+75FnYLUDkldF91Gv7PoPUylLWlK1dw+/OclBf/c7zyx667m7EB0/wW7ndzFvSttczVnHOzv3B7rrl279Oqrr2pwcHBV+wMAieAP4BtqNpv69a9/rcePH3fVwUehpyjERq9H/EitH333y+Y6C75N9myAFM/J78NhblQ6OstR1Glpt9td4dbX0vvOgZSfBtIG7BMnTuiNN94Ij/2b+OMf/6gLFy4sH7ff5+Liour1evh79x08//40Go2OG7v5YJ6mMm232x2dF/97KerY+bBs9x+1OZrL327Tf+7s2R3/ur2/gW9n7rvi22vX92eSqtWqhoaG9LOf/Uy9vb1d2wKACMEfwKo0m03duXNH77zzjubn57uCj9R9UaIUl9GstgwkKpfwAcqvF13gawNZ7mZiRW20/DZyN2pK7OvR1KH+YmF//LlRdV9yU6k8mf3le9/7nk6fPr3qkeci7XZb586d09/+9rfl2X7se5mbkcaH4Gh03QZ3f3bHL+Nr4Wu12vKNzdIUpL7kyJchFZ1t8PP0p/fd3znYdzaiz7s/9vScfa98mU90lsx2ClMnwneyK5WK+vr69Prrr2v79u1dnUIA8Aj+AFY0PT2tK1eu6MKFC9kgGgXfXPmNfd6OYErddes2qPlyDvvH79OPztqQ7vfrt1NUtpGCqj+OKPBF2/AlOkUB3Z4NiEaqU9trtZoGBgZ05swZHT58+Kne8GlxcVEff/yxzp07p8ePHy+X/vi79q5U6mJ/n6kcKW0ndxOz9DtbTflOtH7qGESdDvs4+jz6jkPR8UWdgfTYf77852SlDlpaP7pQPG2rUqksT9U6MDBQuD0A5UbwB1Do7t27unDhgm7dupUdKbeiIBiVv6wUgG3QT8vY4OQvPE2Pc6Pxftm0Dx+kfIlF7gxG1CYpvm+AXS61y94cyo7kRvv1x21LnqrVqkZHR3Xs2DFNTEyor6+v8PfzbczNzen69euamprS/fv3ly/mtnz77XF4vhMT/X6Kym7sun476Wdbe19046uojWm03Yduv69cJyD3evSdKOoc5zqTiZ+adnx8XCdOnND27duzxwug3Aj+ALJu3rypCxcu6P79+10j3F5uxN8+tq8VldP4ZYrCkd+nXTd3cXDRP3u5AO5DpQ3idtlcm6MOhh8R9u9VruORSjpqtdryHP379+9/JqE/mZ+f140bN3Tx4kXdv3+/42xEOu70c+49su9DdMFsLvj7dVcqrbHL+IC9mot6/fsfXYju2xutn44z1/mxZxXs98f+zova6Tu21WpVw8PDOn78uA4ePJhdD0B5MZ0ngNDVq1c1NTWlr776KiyDiEKplQvsq329KCytFMxXO56RG833gS7aXlGoX2kk2P7sX/fvq3+fUtir1+saHBzUiy++qN27d3+r2Xu+id7eXh08eFD9/f3605/+pEePHoUBNfq76DPig7j/jNnnIlHozi3nR9xznY6iz3VUruNf8+0p+owXHdtKn+Xos/TVV1/pwoULajabOnLkSHZdAOXEiD+ALjdu3NC5c+f08OFDSZ2BOwpM9nVfYpOWSaKRexum0uvRPOdpudwdcf0ydjTVT7+Z9hGVZqwU+IvOANjX7R1p/fHnAmt0fFZ6T4aHh/UP//APGhoaWvHMydPUbrf16NEj/c//+T81Pz+/PPLvfwdRuU5iR7ujqULt8fhl0rZy5TL+8+ifk76+WDbXgY3O5ljR++33FbXf8tOR2uOyy9iZs/y+0/P2Wotk69atOnXqlA4cOPBcPx8A1jeCP4BlrVZLDx8+1O9//3tNT093vLZSYLfP2Xnq7bo2JKf9JVG48oE6Nze+Xyfanu2Y+MBY9Lzflp8VKOqwpFlibJ25H7G3x5bbX2qTv2vsyMiIfvWrX63pNI7NZlP//b//d3311VeSOqefTGE16rj5oBqF2miWI/v7se+rfQ/9vvx7nGtHLvyn4O3bYrcTdUZWGqn3n+HoM2G/R9GZiZW2XalU1N/frzfeeEOjo6OF1zkAKA+CPwBJndN1Li4udgRiKS6PyNXp22Dj58iPyiGKSh5soLKBz4dDH55tG9NyPuBHQTu11c4sY9e3otmFbKhNc9GnZdN2o+3YY82dUanVatq5c6d++ctfhu/V89Zut/XrX/9aX3755fIFv1Enyi6f+DMxdjk7vabvANr10zZznUHfkfOfI//59R0Ny9bq+3V9SLe/c3vs0ecuet5evO3PEEUj/kXvc19fn958802NjY0x3ScAgj+AJ9N1fvzxx7p48WJXePajzr5sIXcmQOq82VQKJnY2G7t+9E9RUUivVCodd4bNdSj8totGT3N3AfaB3I48R+2K3o+ikf2o3MN3tHp7e7V371798Ic/XFelG+12W7/97W9169YtLSwsSOo+nuj9r9frWlpaWg7NfptpO/59yy0bnX2SujtVNmxHHaxo2/aY7Oe4Vqt1fBb89qP3IdpPbh+5z1vaRnQfjWi9SqWi06dP69ChQ+rv7w/3DaAcCP5Ayd2+fVsXLlzQ3bt3JX09a4wdjU2KZqCJSjESOyK+mlKIXDBLP/t25QKT3VZaz4dKH6b8+nYbRZ2N3Lb9VJDRcdv9pj/pYt1KpaItW7bo0KFDOnXq1Lq8S+v8/LwuXryoq1ev6tGjRx3lUP499eE9+lzY0fQ0+h+F8qIQXRTafXtsx9bzHQX/+bVnJPx6vq3++eh4ovWj4yk6y5Wzc+dOTU5OateuXataHsDmQ/AHSmxqakpTU1OamZlZfs6XMyS2dt2HZF9GURSgEx+o/IhubnR8aWkpO02nDWR+jvMolOfaZZ+PRqtzI8fRMfnt+hBpn4uOYdu2bTp06JAOHDigwcFBrVczMzO6evWqrl69ujz9q5X7ryYK1fa1qIQm9/taqWMVPR+VEdlOgC0LWk0nwf+c6yTbz3lU7hR1kKJlos+NXc53UAYGBnTkyBGdPn06PAYAmxvBHyip9957T5988slyeUYSBdIUVlLwt6HEh95cQEvL+FHwaMaTtKwNM7Zz4O8YG5U6RGcnfDv9cdtt+G379ybXZtsuv72VpA5NCqNjY2M6ceKE9u3btyFKNKanp3Xz5k1dvnx5Ofz7z4SV+7xEYT432m75zmgK7NHFxD405wJ11NYo+K/2c1G0TtH74J+LLgTOLeu3W6/XNT4+rtdeey3bZgCbE5f5AyXTbDb17rvv6tq1a8uhPwrPSTTibX+OAnhUlrAavnwhCkvRzZSifRQFrW8yKuz3UbRcNMq/2n36EefBwUGdOXNGExMTGyL0S9Lg4KAOHz6sF154QQMDA8sdGf/e+bMaiQ/u6bF/n3zYXc3ZhG8zxuU/z+kCbc+3O3eWKFp+pf37Tk+071zHItfpajabunXrlv76179mO94ANieCP1AiCwsL+uijj3Tz5k0tLCwUBqJopNsvn0b/VwpWPsD4UOdDjS3HscGpaBTWl9/k1rH7zYnKJqI/6bVo20UdBd8+u0yr1VJPT4/eeOMNHThwQI1GI9vO9ajRaGj//v166623Oq5T8HyYLQrGq+k8+tf9lLJpe7nRcL+t6ExR6sisRu6MVDTKb2eQynW0o/VsuVD0nvmzana5xcVF3bhxQ5cuXdL8/PyqjgnAxkepD1AC7XZbc3Nzun37tj744AMtLS11zE9u/86N6vuRxejGRHYUtmiO/nSBrC/z8I+jEh5bxmH369e104hGHQ9/TPa4bdtyI6lFz0UX/9ogmN47e61COs7e3l69/fbbGhsb69rHRnP37l398z//sxYXF7tei6Y1jcpwbFlYWi89n9axfIfCB3A/Yu9vslZUXmPbGO0797v2HdLoc2GX8Z9Je8MxK91nILU/+gyvpF6v6+zZs9q7d6/6+/tX3bEBsDER/IESmJ6e1uXLlzU1NSXp64Dg64QjuVIJX7bhZ/LJzfFvFYWy3GhtbvQ4amsU4qJt5DoYdj55u25qq79rbVS2kruJlFetVjUwMKCf//zn2rJlS3a5jWZ2dla//vWvNT09vTx9p/+95EbBc2G9aF27DX92yf5dr9fDs1BFZwJyUnujMwJRRzRqY+5YovfKdhJy38vVtNlu8+jRozpy5Ii2bt26uoMGsCER/IFNLk3Xef/+/eUQasNsdNdQf7dSH6Z96UIuuERlC7kw7gNeNNtKNGOQ3b+fhjRqfzQiHJ3tiAJbem9y4cqHS7sdHwrTtiuVinp6erRjxw796Ec/Wi6P2UwWFxf129/+Vnfu3FkuMSs6w7Qa/nPn6/2bzabq9XpHh9Qv7zu0tk32gmAp7iT7zu9Kd2X2Z4Jy28yddfBnEoreG7/uSu9vpVLR9u3bdfz4cY2Pj2e3DWBjI/gDm9i5c+d0+fJlzc3NheUKfgQxvebLdIrCWa48xz7n142Ws2URUmdJR6vVCu/U64NTNIKbK9fItcW3J1d+4de3naZoX1FbKpWKBgcHdeDAAZ05c2ZdztH/tMzNzenixYu6du2aHj9+3PW6/8zlArPvhPqzMul5u137O/IlMEWzPxWdCfNnf/x6fvaqou9CtG37XYg+N+mMiC8DitpddBbAn+Xq6+tbvkAbwOZD8Ac2qX/913/VF198EQYCG5pzI/leNHpvl7Wj7rm78/oShagDkur/o+AUjdamxz7g5Y7FnjWIwrwt2UjL2pHcXFgrKr/wy6Vtj4yM6PDhwzp06JAGBgay62wWMzMz+uSTT3TlyhU9fPiw6+yM1F3OkgvM9jMSzYNvf8d+3dzZBvt8KuWKRtbtNvz2ozNJ0fUwaZl2++ubtRW1xz9vv2/+fbKfxWhbRd/z9Pzu3bvX3V2iAXx3BH9gk1lcXNT//t//Ww8fPuwIRD4YFN1oK1ca4C9I9SHKjtbnRh39cz6IRKEr6pzY/fjt5kZxowDm1/fHkdaz+1sp3Pu2RssPDw/r2LFjOnTokPr6+gq3tZnMzc3p2rVrmpqa0qNHj8LSqdW+v2ndXEfPjsZHnUwpfy1KrkMRtcPuLzobFZ2dsvuOPudpHbsPH+SLrqPxHaiikB916qvVqkZHR/XTn/50U5afAWXFdJ7AJtFut/X48WO98847evToUXaZSDQqGgXn1WzLTk2Yth11DqJlbFArmqM9eq5oFN6Gen98PjDaEotcJydqT9F75sNmf3+/jh8/ruPHj5cq9EtSX1+fjh49qqNHj6qvr0+1Wk21Wi0Mt7nfc9QxiEa30zZW6mxG94aw+8q1YTWd26L9+jMbkZXOHn3T77Q/Br8P+9yDBw/0u9/9To8ePVqxIwZgYyD4A5tAs9nU/fv3df78eX355ZddF+f6x/7nqEwg4oOC37YfgYyCkx2BXE3nIlomNwIazari2+DbXhTabTiLwmTRc9GZhUrlyYW8L774ok6ePNkxjWSZ1Ot1TU5O6uzZs8v3KSjqIPrX7WcoCrh+ebtNG7Z92VcUhlcKvPaz40fYo++C73D4z5h/D+wydp8r3XjLv1/+tbR9f68Mu26r1dKdO3d07tw53b9/f/nfFQAbF6U+wAbXbDZ19+5dffzxx7p9+7aWlpaWX8uN6BWNLvpwkgu5dvt+GxEbfGx5RzQKaUOZL4fw6+SCfFI0e4sUB/ToTIQ/Lh/u7Dppm6n+OoW3er2uV199VQcPHgzfozK6cuWK3n333eWpPv1nz//+/GeyaPQ/+j3abdhlI7bsxbOfzSg4+/0UsWe60s9RWE+iWav8Z9W2ISozWm0pU1p2fHxchw8f1rZt20rbYQU2A4I/sIG1223dvHlTU1NTunfv3vJzia+Bz/0Hb0f4ouVWE5L8sqtZPyq3SeHEXyTsR9N90Ml1TtJ2Vztya/eXAk40l38KarbO3B+r/TM0NKTXX39dO3bsKGxHGX3++ef64x//qOnp6a57I/jfc+oI2PfdXuAtdZeJFYVo37Gzv8topiG7Xd8+/5y/4DzaV9qevwtv7gxU7vviQ73tgNp1o/fDfqbt9u2sVq1WS9u2bdOJEye0b9++Vf1bAGD9IfgDG9i5c+d05cqV5bnRc6E7F0Rs2PXTHOZCR05UGuFH4aPw5P9OI5F+9DQa9fX7XmkEOFceEQW89H6li4yjEdmi40vbqtVq2r17t1566SVujlRgZmZGf/rTn/T5559rcXGx63Nqz6JInZ+H3Ii7FQV7/5p/3d4DwM/2ZJeN2hF1Qv1drYvaa7cbXcSbPltRR6LZbHZ0XKNt233kBgWizkKj0dDBgwf14osvhtsGsL4R/IENqN1u61/+5V909+7djudyI5L2OTsa6s8IpDnRU7ixI4B+OXsdQbSMbZflp+j07YzW8ccejU4WrePPaETbKwpwvlPiSyns8un1er2unp4eHT9+XEePHi3FdJ3f1czMjK5cuaJLly5pfn6+qzOV3lsfoKXOki7/Wfef0fSzPVNQdEOsJDrzIHWfBcqdfYrOXvizV7nOse+Y5zoX9nX/mm9XNC2uXSfqfKf9phvOreZ9A7B+EPyBDWZubk7//M//rOnp6eXncqfx7WMb6P3c37mzAYlfzioafbev29FLScuj6H7K0dx2/PNpW76so+h9sMHfBshc6UO0T7v96PqBtG5/f78mJyc1MTFB6P8GZmdndf36dZ0/f16zs7OSOjtUUv76isT/7iqVipaWljp+Z/azntaJPjvRstEIeVQm4+9F4W9EZvfl928DuZc7sxUt548j6qjntuWP17///f39+sUvflG6mamAjYyuOrBBtNtPptf7X//rf2l6erqjJEXK1yD7/+SjUWsfZHw5g58tJyppKWq3D0Tpjw/xRXdgLSpJ8J2YolKPXHv9+5c7k1A0zWh6fXBwUEePHtXhw4cJ/d9Qf3+/Dh06pKNHjy7fyXiloLzS2R7/2YjKZuzfK71Wq9W67tYbdUb8Mvaxr+mP9ueXiT6fUnfpkBf9exAtnzvT5beR1pufn9f/+B//Q3fu3FlxliEA6wPBH9gAFhYWdOvWLf3xj3/UwsKCpO7pCYuCuZcLSlEoyIXgXFlMrgQhKhuISm/sMfhOgw880Sht0XH75YrClD9eu749g2A7RtVqVb29vdq3b5/Onj27HFzxzfT09OjMmTMaHx9fnu5T6vydRUE01/GVvu5wFnUA7Dbs/vy+/XLR+rkzUL6T6p/LWekMQW6dlb5f35Rv99LSkt59913duHFj+d8mAOsXt+MD1rm5uTndunVLV69e1aNHjzpKcqKwUBQCVlrPj8yn9aJSimjGoKKSgbSOL/lJ69s2pP1HI5k+8OVmcomOyW7HH589Bl8b7rdrt+VHgsfHx/Xaa691vQf4ZiqVil5//XXVajVduXKlq4NpP38rXZhu1/OftShAR5/HXKC3ikJ2TjTVpj3GqB3++xDdkdq/HnWUio6haPDArzc9Pa2pqSktLS1p79696u/vzx4vgLVFjT+wjqV652vXrnWF/ihk2//kfSlPYte366Wf0yw2dlkv6kBEM49EoSbabhS0Ivb6hCK2zMLedMgGIB/qfWlGu/31xc6r0dvbq6NHjzLbyTPw/vvv66OPPuqY7SfqwOY+q+lv3wm0v2M/Ci91fqZXKovx+/efZV+rbz97vtOam/3Hr2/PQtjvWlrH35wrd5Yg+rfCdyZyZxrsz1u3btXExIQOHDhAiRuwThH8gXVqaWlJ77//vm7duqWFhQVVKpWOUO5DSSqdieqKi075+2XT8na7uZICP/oZzXSSG1WsVqsdc7FHIW6l8gcfdmybbUcm8Z2BojBkj8su6/ddrVY1MjKyfCEvno1Lly7p0qVLy3P9r/R782eh/Gc1dSCj6UGLwr/9nuVGxe3nL3dWzLcjmlI2OgMX7cOf9bL7je55Yc+URK/792Cl76HteDQaDe3du1ff//73Va9TVACsNwR/YB1qt9v6p3/6Jz1+/FhSdwC3p/ejsoD0tx8dzfEBIhekisJHLuBHr9sOit23H/2MRlXTcn5K0Vww8XOuR89H4crfOTjaR6VS0cTEhE6dOqXR0dFw/3h6vvjiC128eFE3b97sGk33wT4XtNNzS0tLqtfrXZ/R6HHRa0Wdw/Rc+jv6jvgbwNntpAve/cX1fttF6/gpT63ojKE/Dj94EB2ff8+r1aqGhob0y1/+srDDAOD5I/gD69B//a//VYuLi5K6R+78Kfho5M+OevvAYcuB7Pq+85Ce94HcW+1MPCudLUjr2nbkQpW9o68PP0Xvgb8hky/l8dODRm1Or1erVU1OTurw4cPasmVL+N7g6Wq325qentbHH3+s8+fPL3f86vV613SfUWD2HeDouhB7pqroZnLps5Y6D347SS74+u9lNMuVL02LtuvPHPiAHn3//Bm96HOeW8fz7bZ6enr0n/7TfwpfA7A2mNUHWIdSiEkBxo6k+ZBiRUEnmjnHlxWk5XwHIroA14aLaITQLp8LFTY4WTaIpOAVBfto/n0fkOx2os6L3Uf6U6vVukKeL5FI+z979qyOHDmiwcFB4fmoVCrLU6V+//vfV09Pj6R8yZfU3Xm0MzD516Mg7kt6ciHffkf99qNg7M8k+e9CNN2nbYP/Dvt6/rSNqC3RvyUrvXf+jKP9ftn22PYuLS11HTeAtUXwB9YhXzaS/sONgnh67IN4+tuXyHjRaGcUFPwIZS502/D+Teqgo7KFaMQ+x4afqOwjWj73PthA5n9uNBo6evSoDh06pMHBQUoZnrNKpaKBgQFNTEzo8OHDy3Xk/veXavetqDOa+2z4jqLtQOa+J9F3KepI2v3nZrfy34fo++2DuGc78L5t9rqAaH37XNRB922K2kH5G7D+EPyBdWhiYqJrlpwoXFh+hNqHAxteoxE9KwoZflt2m0Vt8dv1y9lRfTuKGAVvu83cHU2j14ra6zs3uXZWKhXV63Xt2bNHZ8+eZcrCNdbT06MXXnhBu3btWnH0Pin6rKbHq+kU2A5tUUfCdzSiMJ/rFEc/2wCf+4z75YuOPbds7nu+2u966lgcOHAg3CeAtUPwB9ah8fHxbO1sNHqXFI0+R50Iy44eRhcKF20/F5ijzkpUUrCaNq/UhvSaHYn1nZ1cePH8mYK0zZ07d+qNN95YLjHB2urp6dGPf/xj7dy5c1Wh3csFcv9c+rnoDNZq9rPSa9/k+5C782+uBMlvZzUdjtUE/6K2EvyB9YfgD6xDPT092rZtW9d/tFFte+5xbtTevm7ZU/e5oBxdQ+CXLbobr9+fbacdQY2279eJ2NFLO/qf2m3LNaLAZC8qtm3p6enR4cOH9dOf/rTjTrJYe9VqVT/96U914MCBjukjozBcVOoWfbZyI9y5s2/+M+XPIkXfL7tc0fc1dTzsZ7ko9KdSpeh7HbXPnkGw6xWx7fXHtW3bNjrIwDpE8AfWqUOHDoWlAStd9Odfs6JgkfvP36+fC0/+ZxtO7ChpruTBbsf/kZ7M4GMDeXoP/AWdUQhLUxv6i6Vzx+ZvXJbm6H/hhRe4G+86VqlU9Oabb+qFF17Q1q1bl5/znz/p68+n9PXMTol9zbKfrdwZt3SGzl9nInVe5FpUT58+l/7znvtu5EJ/7jvhvwt2mahEybbFbjv6/vj7ERw9elQA1h+CP7BOHT58uGNKwlxYsI9zo4o28PpRRr/N6LHU2SnIjZLmSgGiIJILMr6kwl9AmQKW77z4syGVSqVjuk7fuSkKSml7+/bt0yuvvKLjx4+Hx4X15eTJk3r99de1f/9+Sd1nvex3ITc9rdTdAciNmqfPSdHIvw3Faf0UwD3bibAB3X/P7XH42XzsdLP2uxJ1guy27dk8ux1JYVuiZdJ2ms0mN7MD1iluqwesY+Pj4/riiy+0uLjYFapTgMiVyHg2vOT4QG3Xtdv19xKI1mk2mx13RS1qV7QNG/TtsebanxvF9EE/KjGKShaOHDmiyclJpuvcYHbs2KGBgQENDg5qamoqDNj+DJTnO4VRR6FSeXITsDQFrP0eRmfeovtD+OV8Z8HfoTixc/znOvJRaY89dr9udPM+v2/b4Uh8Z6JWq1HbD6xjjPgD69iRI0e6wnN6bENxNHpt+dHz9JwfxfNWe/rfbqfZbHaMbPoRQltGE4X19NiP0KbnbY2+73ykY08jrFFnwpdqRGcETp8+rcnJSQ0MDITvC9a3gYEBnTx5UkePHu04e2SDte8w+w6hHZWPpvW069jX0rbtPSEkdWyvqMOR+47ZErq0rN9W9F223/NWq7X8/bT3r/DfvbRM7kye/ffEd14ajQbBH1jHCP7AOjY2Nqb+/v6u0/Pp7+g/ej/KHZ0JyI2c+/DjX/OjgT5M+TZGYSqJavRzQd6XKuRuPpSW8+HettUua0f80yjrxMSEjh49yhz9G1il8mSu/+PHj2v//v1dZSxSZx19+jvXCfXbjs4YRN+13Mi4XS6aR99/f6LgndaNXi96zpcx+Rtv2QGC6Bit6Dvb19ensbGxrn0DWB8I/sA61mg0tGPHDvX29naMcK8mdCTRCKEd8cyVCkTr2uWiEUE/64/fjt9GtH/boVlN58OPwOa26V/34atarWrXrl2U92wiW7du1eTkpHbt2hV+vqX8lJVR6YxfJ7etorNoflu57UT7iM7A5fZlO9u5C5aLRvRz7fDfU/t6b2+vtm/fzmw+wDpG8AfWud27d3cE0Sg0Wys9lxvpj0ptLB8yfPBYaRTSj5QWvW63X6QoHEXtjzoOqbOyc+dOvfLKKxoeHi7cJzaW0dFRvfrqq9q5c2c4D38U9nMdUyvaTpI+g7kL4qNlfQc1vRaF+6hDHrHfy5U6K369lfhOdKVS0eDgoHbv3r3iugDWDsEfWOe2b9+u4eHhMIT4MFEUEKJR8KKbgdn102tREIlKJGxJjt2WL5Hw664UuOzxRtOa2tlH7L5seYMvaajX6zp06JB++MMfMtK/SQ0ODuqNN95Ynus/d+YniT579nOWC+h2OV/KFu0jGjX334eI/a4UhXvbluj1ou9+br/2GhtvdHRUO3fuXHE7ANYOs/oA61ytVtPw8LD6+/s1MzMThgWpM0jkphiManQjRVNeptd9bXLU8fA3y7Ij7FFYajabYTuKjiFqZ+49ssu2220NDg5qcnJShw8fLpzeERtfX1+fXnvtNY2OjurChQuanZ3NngWSvg7X0efZfvbT7Dvp+cRf+Jr+znXOo8fRd9l2rtPr0XZtm/1ZOHsvC99JLhJ1ZNJ6AwMDGhkZ4XsErHOV9mq6+QDW1IMHD/TRRx/p2rVrkp5MlelH0+1/5r5kRlJXgIhGAXOjjysFlkgKRXY/dvs2kNh6ZHtDpdWE/Oj1opHWtK+RkRH94Ac/4ELEErp7967+/Oc/6969e8vPRSP69rMWBdpcZ9qfTbAd0bQPP91tVOoT7c+3y7bNt9tv054By/3Xb/+9sNOG+rN5fl9HjhzR8ePHNTQ0FG4XwPpA1xzYAEZGRrRnz57l//jtf8bRSF/R2YDcMp4dna9UKl3zlftt+HDj5/r3Ici3Pe0jN3JZ1M6VQr5vw549e/Tzn/+c0F9S27Zt0z/8wz9oz549HZ/rxI7e56bMjUrcEn+DLv8Z9CP5UUmR/65FbAfDty9ab6XvSrSMndI0OhOYXtuzZw+hH9gACP7ABrFlyxaNjIyEI9p+pD43z779ObqxkWeDjb2LsN+3Len5JsG9qDMSjV5avq7fdzhynaHx8XG98sorzDxScr29vXr11Vc1Pj7e9Vql8uTmXLmRcd+JtY+jzkCunEhS13SY/nG0D79ses1/J6J9+7bl2LMDue91+nlkZITrY4ANguAPbBADAwPat29f+FruP/ai/+CjqTdTyZAN89GIuf3Z3ljIhgwfyHMh3wYmP7e63Y/dVjRCmvaZji16b/bt26dTp04xMglJTzrTJ0+e7JiJxo7I+7tF289w7o7A9rvgr1lJr6fH9mfLnxHLjdL7gO/LcdK27PfPno3wnXbbzlwnPPq3ZXx8XP39/WEbAawvBH9gg2g0Gtq9e3dHDfxKI/9+uSjo5563isqKcuUKft2oTb4NKXAVhRCpM9hE+/Xbrlar2rFjh06dOqXt27d3tQXltW3bNp08eXJ5uk8pf3bJPrafrdyoeq4kzv6dHq9UsrdSeVH0ffKvr6Z8KPcdz/3bUqvVtHv3bjUajew2AawfBH9gg6hUKhoaGuo4pV40oh8FC7stX7dsX7N/57a9UohYTYfCLxeFKb+fXKckei2tt3PnTr3wwgvasWNH9phQXnv27NGLL76oXbt2Ldf8S+oanbefLz9HfxTE/ZknP4offa5XCv/+Nb9erjTJf5dypUC2nbnvqz2OoaEhDQ0NFf57AWD9IPgDG0itVtO+ffuyFw7an4tG7aMymyQ3e0lRaCgadc9JwejbXCPgj8Efiy1BOnLkiF599VVCPwqNjY3p5Zdf1qFDhyR1l+VEcqVwRWfict/P3Pb9NqL7V6zUFr8tK/cdTj/b+xFEZx327t3LFJ7ABsK3FdhAKpWKTp48mT1tH40y2lF0qTMg2BDhL2TMjdbbaUMTGzKiawN8W3K1xX70PndWwbbfjtDa1+v1ul5++WW98MILXHiIVRkaGtJLL72k119/XY1GY3l+/lxoth3pWq0WfscsH6h9OF9pTv5cxz3avl02NxtP+h7a48yV+tgOvb1B34kTJxjtBzYQbuAFbDCNRkNDQ0N6/Phxxyn89J91mn0nN2uPnVs/8YGiqHwnLe9H/tPzkVwZQtT+9Dh1ItJzuXKEaLrFvr4+vf3229q6dSuhBN9IvV7XxMSERkZG9Jvf/EZzc3Ndn1/7GU18h9p3Yn2Jj78XR2K/S/51f3YrVyrk182V7di22eWi77a9cD49NzQ0RG0/sMEw4g9sQMeOHeuamUNSx4w8lh8JjEbR03J+1C/6j3+laQ5zpQP++ehC3rSNNAoZrecDlu0gDA0N6T/+x/+o4eFhQj++lWq1qtHRUf3qV79SX1+fpM6R7vRzVL4TfU7ta+nz6jurafkouPv9p3WjZdKfNHtP0RkL32lI3+3cGQLpyfey2Wyq1WrpxIkTRW8jgHWI4A9sQAcPHuwKAlJxqUBR6UEuqOdGHBMbLtJ6udKDxE81uJIUlKIQ4zsjo6Oj+tGPfsQc/Xgq+vr69JOf/ERbt26VpK4zUNEZMl/+E3V2/QXEvsMdnQHzHXF711+/b9vGpOi+Hf47Go3u22VTm/bv31/w7gFYjwj+wAZUr9e1ffv2rlP+vma/qD7e/mxr7u0yPsT7jkA0h7+dbtSum/i59n0dsu88FI1Y2nZs27ZN3/ve9zQ8PFy4LPBNjIyM6MUXX9S2bds6Ptu575GkruDuly96zY6429eiM3ErlefZkF509stft2PbFV3TU6lUNDY2pnqdamFgoyH4AxvU/v37O0YHczXFq7Ga+n6pc8TTB37beYg6G9HzuY5J0TSKSdp/rVbT6OioTp061XEjJuBp2bt3r06ePKnt27erXq93fV9WOrtWdO2LnzUn8dcJpOVXe5bMduij163oGKLXbBnRxMTEiu0AsP4Q/IENau/evV2j60Wn85OV6t6LXs+FEN/xyJUVRduKwkxUdhT9nM58nDp1KntXY+BpGB8f1+nTp7Vz587wrJb3Ta4vKerg5ra3mu+cXzf6ntnXct9Ff0aiXq9T5gNsUAR/PFWzs7Nr3YTSGBwcXJ61Jioj8Bfo5YJDes2X9aS/bTCIzi5EZQs+QOTKHXIdBFteENUsp3ZMTEzoxRdfJPTjudi1a5fOnj2rgwcPSuq+ODb6ruXKbPx3yz5v11upE+z348/CRdfx2Ndz31/bLj9F8MjIiAYGBlb5ruG74v9VPE0EfzxV9z65pYWFhbVuRmns379fjUaj40LBJAoO9jUfSHwY8GEkjXL68GC3Ec2pn2uLLxWy2/Rtsm1OXn75ZZ09e1ajo6OreauAp2JkZEQvvPCCXnzxxa7vUNHF9f6zncpw7LU16fmoQ5y7cNd/9+0y6fsYDQz4Ze3fvmQvld9VKhXV63U62s/RwsKC7t/4dK2bgU2E4I+npt1ua/bmF7p381PNz8+vdXNK4dixY2o0Gh2BwwePqP4/hYRcfXG0rg8o9vXEbi/ty1tpX/Y6gijsVKtVvfnmmzp69Kh6e3u/w7sHfDt9fX06fvy4fvzjH3d0iFcqlfFB308PKhUHf/998nfw9hfoR52K6LF/zv9bYvffaDR09OjRFd8jfHfz8/O6f/Mzzd76cq2bgk2E4I+nplKpaMeLJ/Xg//kXfXbj1lo3pxTq9bp27NihRqNReHFe7uLB3EV9drQwyW3fz0JStGzRRY+58iL7XKPR0Ntvv63x8fFvVEMNPG2VSkV79uzRf/gP/2H5rJvtnEZlOLVaLTxzlpZJP/vPtl8m3W03ukt30WO/39x3KB2D/342Gg3t3LmT2Xyek09v3NS9//f/09jk4bVuCjYRgj+eqq3bRtWandf036/qi9ucnnweDh48qKGhIUlPbq7jg77/zz2NBBaVAaW//X/80Trphj5+/Uqlkj1LEHVAIna60L6+Pv30pz+ltAfrypYtW/TjH/9Y/f39kuI6f/tdsCPp9uxWWreog223Zy8wttuPvu/2uXTWwb5uFf27sGXLFu3du7fg3cDTcvuT65r+8yW1H89rZOf2tW4ONhGCP56qSqWi1rFdqv/hsj792yVKfp6DsbExbdmyJXvHzahm34/m+RKEtHwUyn3AyNUb2+fSz7k79ebCTqvVUrVa1datW/X9739fo6OjjPRj3dm2bZtefvllDQ8Pq1ardYT6JBrFt6P/q7k2xne+o455ej53gbz/DvoORVo+6vgPDg5qx44d3+StwbewuLioz89dVs+7n6h5dBf/5uGpIvjjqes/fVC1BzNqX7qtz65eX+vmbHr1el2jo6Pq6+vrqM2V8jP6pNdy5QU2kEdnAOw8+1bajg8edp/28UrXADQaDQ0PD2tyclJ79+7lP0CsS9VqVXv37tXp06e1devW5VKYlT6vK430p9dtJyK6g3Vu3aJl/PfPf9e9vr4+bd++XY1Go/CY8N3dmLoiXbit6vScBs4cXOvmYJMh+OOpGzt6QNO9VQ1++kh3LhP8n4fR0dHlO9bmwnhRvX6uJtiG/1ypz2rCeNSJyLUj/Z1uzHX69Gnt37+f0I91rVKpaP/+/Tpz5oy2bt3aVYpj/y7aRlENflEwj7YVrVdUyue3bTsPY2NjlNk9J/ev3NCWzx/rcV9N245xozQ8XQR/PHWj27dpbveQeh7Pa+7G50zv+RwMDw9r165d2VF0Kd8hkPKlQf6MgR3Rt+ulEoKibdntROv79uzatUuvvPIKNcXYUPbt26fXXntNu3fvDj/7lq/xt/xsOmk5+x2Myuz8etGyafko+Nv92Lbv2LFj+VoiPDuLi4uav31Hjdklze/aopFtY2vdJGwyBH88E30nxrVUkQa+nNGDz5mK7FlLJTH9/f0dFw+mkpuiO/r6/+S96NqBaHl/nYAPDtE+c2Ho8OHD+sEPfrB8FgPYSIaHh/XGG2/o9OnTYSfX8wE86kSn19Ifex8Mvx3/nL+Wxncgotfsvvv7+zU6Oqqenp5v/6ZgVR5+eVf9nz1Wu9lS7zEGPfD0EfzxTIyeOqS5LQ0N3ZvXFx9+tNbNKYWhoSGNj49L6q7ftaOCtkOQ5P7Tr1Qqy1MH5qw0E0nRBYl+KtB2u62XXnpJr7zyCrXE2NDq9brOnDmjycnJ8HsVXXAvdc+6U1QeFF1EnJ73j6PSHn9GIF30n6YKTW3atWuXBgcHv83bgG/oztQ1DT5e1PRwj8ZOH1nr5mATIvjjmdh7/LAejvWqZ66pmcvM6f88DAwM6MSJE2E9fhT2o1HFFAKq1eryPP7RPP12efs4V5ecCzL2LEG1WtUrr7yiEydOfId3AVhfvve97+nFF1/s+i4WXfiek74vuTN4ue+7/R7nrt/xy6f21Go1TU5OamBg4FscPb6ph+9/pN7HS7q/rUfjJ7lRGp4+gj+eiVqtpsahXVrqq6nn2l3NzsysdZNKoaenR6Ojo11lN0l0it9KATw9Tn/7GmH/mv+Tm5vfBgp7L4GBgQG9/vrrOnjw4FN9P4D14MiRI3rzzTfV39/fMSOW/T6l0B19d2x5T/oT1eeni+Kjm+8VnZnzZyNsuwYHBynxeU7mZmfVc+2elgbr6j/MLGZ4Ngj+eGaGD+7T7LYBbXnU1I2/nFvr5pRCrVbruqttbhTeh3gfQqJyoehiXltvnKT1U7iPzhikWU+Gh4d19uxZ7d69u2MmFGCzqNVq2rVrl1588cWuGX+i74a/oDfX0bai0r2iToTt5NvXvAMHDvC9fE5ufXhJQ7MtzY0NaOuBPWvdHGxSBH88MzsO7dfMri3qbbc1d+nGWjenFNJ84lL3LB8rXVRol8l1HKJrBOx+/D5SYIguHqxWqxobG9PJkye1b98+avqxqdXrde3du1enTp3SyMjI8qh8bhTeluAkuet20t9RhyBXUhTt23/XK5WKxsfHs6V+eLqmP7ymnqY0u3OLth3gwl48G3yb8cxsHR1R49AuzW4fVPXKF6uqYcV3Nzw8XFiPG033txrRNJ32cW47UclBtVrV8PCwXnjhBY2Pjy/f8AjYzOr1uvbv36+zZ89q69atXWU/K13Ia0XB3y5XFNb9TEPRBcDtdlt9fX3MrPWctFotVa98ptkdg2oc2qXhMe6ZgGeD4I9nplaraefxQ5o5vVe9D+b04O69tW5SaaQ5xK3caGBuxh27Tm7Kvyh0rDS9YLVa1dDQkN58803t2rWLMgKUSqVS0c6dO/XWW29p69at2VK4aAQ/+v7mavejaTmjZezfPvjv2LHjmx8gvpWH9+6r98GcZk/v0Y7jhxgMwTND8McztXdiv4a+f0xLO4d05wOm9Xxejh079mQEydX42sAelQ1Y/pT/aq4VsDMApTp/H0xGR0f1y1/+kukBUWoDAwP6xS9+obGxsY6yHlt7n6vPX+nsWirFS9fY+PIeP8tW9KfdbuvUqVPP4tARuHfuYzW3b9HWl49r74HxtW4ONjGCP565PQcPaPD/95aWzlPn/7wMDw9ng3U0Iu9nACqakaeoI2CXqdVqHSOZ1WpV4+Pj+sUvfsFsFYCefF/efvttjY+Ph7X39sJ5G9pzM3IVlQOlM2uVSiUcTfbfyYGBAcp8nqP5ize05f/+ifYcOrDWTcEmR/DHMzcwMKAdxyZUP8YsBc/ToUOHJHVPzxfJhXjLjhJG84hHHYrUCWg0Gjpx4oTeeuutb3EkwOb25ptv6uTJk12BvN1+cjOtaKpNz3ayo4uC7Xe22Wx2zQLkO/9HjnDzqOel3W6rtmdU2w6Nq7+/f62bg02u0uaKSzwH7XZbczMzqtZq6u3rW+vmlMLc3Jz+23/7bx2hIZX/pP/o/cWFvgTA1/Xbv6Wv5+L369ifBwcHdfz4cR06dIh6fiCj2Wzq448/1kcffaTHjx8vP++/T6up65cUlvnY6XXT3bijUsBWq6X//J//s3p7e5/JsaLT/NycWq2W+vr7ORuKZ46rR/BcVCoV9XHnx+eqr69PIyMj+uqrrzrKA5rNZjjvflF5j1c0BWH6u1qtatu2bTp8+LD27t1L6AcK1Go1TUxMqNFo6OOPP9bdu3e7rqHJlfLkOgH2JnmSljv90Rz+6flaraaRkRFC/3PU8+/vNaEfzwOlPnhuvsnUkXg67Bzcqc53pTDvL8i1nQRfElA0d/i2bdt07Ngx7d27lzt/AqvQ09OjvXv36vjx49q+fXs4Gp/Yu/fau23772d63n9ncxcOV6tV7d+//9kdJLrwfyOeJ4I/sIn5kfZvM3pvrWZWkTRd5+TkpPbs2UPoB76Bnp4e7dmzR5OTkxoaGpJU/L0rukFfVJ7n10uP0/bTjcYAbE4Ef2ATGx4e1tDQUEddf1GISMHdjiAW1fhHnYNGo6G33npLu3btYi5q4Fuo1WrLc/339fVlZ/DJXZTvS4Ci53L32Ni6dau2bt36bA4MwJoj+AOb3L59+9T37xdU29F/W/cb3UDIX/ibHhfdyKunp0e/+MUvlm9MBODbqVQqGhoa0i9/+cuu8G+/hz7I+23Y0h67jL3fRnqtr69Pu3fvfsZHBmAtEfyBTW5iYmJ5Pu5cHb/UXftrA0F05960nRQuRkZG9I//+I8a4CJu4Knp6+vTP/7jP3bNqW/n+E8/+5p+3zFYadaf4eFhTUxMPK9DA7AGCP7AJtfb26uRkZHlUX+p+4670tfBP03zZy8e9MvZsFGv17Vr1y798pe/VKPReC7HBJRJvV7Xr371K42Pj3dcM+Nn0fLPWXaq3nSWL83iU6lU1NPT0/XvBIDNh+APlMCOHTs0MjIi6euRQh8W7IigHzGMOgDtdltbtmzhxlzAc/Laa6/p2LFj2rJlS/YGe+ksQPo7lffZcr5oJq5t27Zp165dz/gIAKw1gj9QAtu2bdPOnTuXf85d2Ft0917/ePv27Tp16pSOHDnCHP3Ac1Cr1XT06FGdOnVKY2NjXa9H8/qnDkHR7F3tdls7d+4Mtwlgc2HKDaAE6vW6hoeH1d/fr9nZWUmds/TYEX/P1w6nev6jR48yXSfwnPX29mrfvn2q1Wpqt9u6d+9eV22/PXOXRHf9rVarT+4Y29en4eFhOvBACTDiD5TEli1btH379uWfc2U8Piz4GX8GBgZ08uTJrnpjAM9HT0+P9u3bp8nJSQ0MDGQ77YnvCPiO/I4dO7goHygJgj9QEgMDA5qYmCic+zt3g6/0Wr1e1/e+9z2Nj48zOgisoVqtpr179+rll19WT0/PcknPSvfZSMuk73S1WtXExATBHygJgj9QErVaTWNjY+rp6Qlr932HwD5utVrq6enRj370I42Pjz+/RgMotHfvXr311ltqNBodZT5FN/ZKP9dqNdXrdW3fvp2OPFASBH+gRNLUm9FdP/2IoR0t3LJli37+859rx44dz7fBAFa0Y8cOvf3228t36fb35JC0fOduqfM7vnPnTkI/UCIEf6BE6vW6Jicn1Wq1win9pK/r+qvVqhqNhvbt26e3335bW7ZsWYMWA1iNrVu36he/+IV27tzZdQ8Oe5fuSqXSMdPP6dOnVa8zzwdQFgR/oGS2bt3adTMv3wFot9vq7e3V5OSkXnvtNfX29j7vZgL4hhqNht544w1NTk4uf8fttTv+Tr4DAwNddwQGsLkR/IESOnjwYMfPfsrOLVu26OzZszp06BCjgcAGUq/XdfjwYZ09e1ZDQ0MdYd+X/nC9DlA+BH+ghCYmJsIwUKlUlu/Gu2/fPjUajbVqIoBvqaenR+Pj4zp+/PjyXX7t9z1N0XvgwIG1bCaANUDwB0poZGREAwMDXSOAvb29OnToECP9wAaXRv4PHToU3m+jr69Po6Oja9AyAGuJ4A+UlJ2hp91uq9Fo6Pjx4zp16lThzYAAbAyVSkWnTp3SkSNHlqf7lJ7M4LVz506+50AJEfyBkkrlPu12Wz09Pfre976nkydPrnWzADxlZ86c0ZkzZ5ZH/iuVig4fPrzGrQKwFjiXD5TUnj17tHXrVm3ZskWHDx/W3r1717pJAJ6RY8eOaXBwUFeuXNHMzIx27dq11k0CsAYq7dw9vQFsev4mPwAAYPOi1AcoMUI/AADlQfAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJRAfa0bAABPy9zcnC7d+Fi37n+h2cV5Dfb0a3x0l8Z37NLI8MhaNw/r3J17d3Xrzmf67OE9zS7Oq7/Rqz0j23V8/yH19fWtdfMA4DurtNvt9lo3AgC+i+npad34/Lb+fuuKPu2Z06P6ohYqLfW2qhpaqmv7Yq8ODe/SC8dOaaB/YK2bi3VmZnZGH350UVcefKo7vQuarje1VG2p3qxqy1JNexcH9ML4UY3v2qOBAT4/ADYuRvwBbGizs7P66OZV/fXBJ5oa/kozPa2O1z/Vgq4vzumzx7Nqf1zV94+fUaPRWKPWYr1ZXFzUB1cv6Z3pq/p0ZF5zPd1jYbcX5vXoi0t6aXFeJw4cZvQfwIZF8AewoV3//Lb+cO+KpoantVSNT2DONdq6PjyvR48vas+dHZrYM/6cW4n16tO7X+ifH13S3eGWmtW2pIqkzs/RdE9Tf6s/0NydKfX39un4xOE1aSsAfFdc3Atgw1paWtJvPvlA1wZns6H/ibaWqm09GGjpf918/3k1DxvAP914T/cHUuiXfOhPmtW2rg7N6l+vvq9ms/n8GggATxHBH8CG9fdrU/q8b0EzPasLYov1ii72PNCDRw+fccuwETyafqyLvQ+0mK38qnT8NNto6YuBRf3t44vPvG0A8CwQ/AFsWNcffqGFxjeZn6CtZq2iG3c+E/MalFur1dLlz66rVesu7Xkifn6+0dbV+5896+YBwDNB8AewYT1YmNZSzT5TyS3a8fr04jzBH5pZnFeutCenWWlrtjn/bBoEAM8YwR/ABuaD/koh7snrA41eVSordRKw2fXXe5XvLNrPUsU95rMDYGMi+APYsLb1blF96Rus0JYaTWnnllGCf8lVKhXtGhp98vlpr/RZ+LoTUF+Sxnq3PNO2AcCzQvAHsGEdHt2j/jmpuhzcigNcrSWNzte1Y2zbs28c1rVKpaI9O3ZpbL6hWmvl5SWp2qqof66tQ6O7n23jAOAZIfgD2LBOTBzRzoVe9c1X/n1Q1pf6fN0RqLSl3nnpbH2ParWagGq1qpd69qp3/snnYyX9CxXtWOzVyYNHn33jAOAZIPgD2LCq1ap+eep1HZvdonpLUtcFu22p/STU9S1UNDE7oH988Ydr0VSsU7848wMdmOtX30LF9RsrX/9pS7VmRYdnB/WzY9+nTAzAhlVpM7UFgA3uzr27+tMn5/Wb2i3N9LRkE1y1VdHO2YbOtnfq/3rph4z2o8vi4qL+6W//Rx9UvtCX/UtqLd/B94mhhap+2BrXK/tPase27WvXUAD4jgj+ADaFpaUlPXz0lS5+/omuzXypVqWtrdU+HRjcoX2jO7VtZJTQj6ylpSU9evxYN+99riuPPtOj5rx6KjXt6RvR6d2HNDy0VfV6fa2bCQDfCcEfwKbRbrc1Ozurufkn8/TX6zX19fap0WioWqWyEcXa7bYWFxc1OzerZrOlSqWi3p4e9ff3U94DYFMg+AMAAAAlwBAYAAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAoAYI/AAAAUAIEfwAAAKAECP4AAABACRD8AQAAgBIg+AMAAAAlQPAHAAAASoDgDwAAAJQAwR8AAAAogf8/ZrqMGh1cpRIAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Load scene consiting of a simple wedge\n",
+ "scene = load_scene(sionna.rt.scene.simple_wedge)\n",
+ "scene.frequency = 3e9 # Carrier frequency [Hz]\n",
+ "scene.tx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "scene.rx_array = PlanarArray(1,1,0.5,0.5,\"iso\", \"V\")\n",
+ "\n",
+ "# Place a transmitter \n",
+ "tx = Transmitter(\"tx\", position=[-10,10,0])\n",
+ "scene.add(tx)\n",
+ "\n",
+ "# Place receivers\n",
+ "rx1 = Receiver(\"rx1\", position=[30,-15,0])\n",
+ "scene.add(rx1)\n",
+ "rx2 = Receiver(\"rx2\", position=[15,-30,0])\n",
+ "scene.add(rx2)\n",
+ "\n",
+ "# Place RIS\n",
+ "ris1 = RIS(name=\"ris1\",\n",
+ " position=[40,10,0],\n",
+ " num_rows=50,\n",
+ " num_cols=50,\n",
+ " num_modes=2,\n",
+ " look_at=(tx.position+rx1.position)/2) # Look in between TX and RX1\n",
+ "scene.add(ris1)\n",
+ "\n",
+ "ris2 = RIS(name=\"ris2\",\n",
+ " position=[-10,-40,0],\n",
+ " num_rows=50,\n",
+ " num_cols=50,\n",
+ " num_modes=2,\n",
+ " look_at=(tx.position+rx2.position)/2) # Look in between TX and RX2\n",
+ "scene.add(ris2)\n",
+ "\n",
+ "# Visualize scene\n",
+ "if colab_compat:\n",
+ " if scene.get(\"cam\") is None:\n",
+ " scene.add(Camera(\"cam\",\n",
+ " position=[50,-50,130],\n",
+ " look_at=[0,0,0]))\n",
+ " scene.render(camera=\"cam\", num_samples=512);\n",
+ " raise ExitCell\n",
+ " \n",
+ "scene.preview(show_orientations=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1e964b4f",
+ "metadata": {},
+ "source": [
+ "We will now configure the parameters of interest as trainable variables which can be optimized via gradient-descent."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "66ab0f3e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Make the phase profile trainable\n",
+ "# Initialize all phases to zero\n",
+ "ris1.phase_profile.values = tf.Variable(tf.zeros_like(ris1.phase_profile.values))\n",
+ "ris2.phase_profile.values = tf.Variable(tf.zeros_like(ris2.phase_profile.values))\n",
+ "\n",
+ "# Create trainable variables for the amplitude profile\n",
+ "# to which some normalization will be applied in the training loop.\n",
+ "# Initialize all values to one and ensure that the gradient update can\n",
+ "# never make the values negative.\n",
+ "a1 = tf.Variable(tf.ones_like(ris1.amplitude_profile.values),\n",
+ " constraint=lambda x: tf.abs(x))\n",
+ "a2 = tf.Variable(tf.ones_like(ris2.amplitude_profile.values),\n",
+ " constraint=lambda x: tf.abs(x))\n",
+ "\n",
+ "# Make mode powers trainable\n",
+ "# to which some normalization will be applied in the training loop.\n",
+ "# We cannot set them to zero as the gradient is infinitely large at this point.\n",
+ "# Ensure that gradient updates can never bring the mode powers\n",
+ "# out of their desired range.\n",
+ "m1 = tf.Variable([0.99, 0.01], dtype=tf.float32,\n",
+ " constraint=lambda x: tf.clip_by_value(x, 0.01, 1))\n",
+ "m2 = tf.Variable([0.99, 0.01], dtype=tf.float32,\n",
+ " constraint=lambda x: tf.clip_by_value(x, 0.01, 1))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65716e63",
+ "metadata": {},
+ "source": [
+ "Next, we will setup a gradient-based optimization step that can be iterated until convergence."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "8ef0b3cb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define an optimizer\n",
+ "optimizer = tf.keras.optimizers.Adam(0.5)\n",
+ "\n",
+ "# Helper function to compute dB\n",
+ "def to_db(x):\n",
+ " return 10*tf.math.log(x)/tf.math.log(10.)\n",
+ "\n",
+ "# Define a training step\n",
+ "def train_step():\n",
+ " with tf.GradientTape() as tape:\n",
+ "\n",
+ " # Set amplitude profile values while ensuring an average power of one\n",
+ " ris1.amplitude_profile.values = a1/tf.sqrt(tf.reduce_mean(a1**2, axis=[1,2], keepdims=True))\n",
+ " ris2.amplitude_profile.values = a2/tf.sqrt(tf.reduce_mean(a2**2, axis=[1,2], keepdims=True))\n",
+ "\n",
+ " # Set mode powers while ensuring a total power of one\n",
+ " ris1.amplitude_profile.mode_powers = m1/tf.reduce_sum(m1)\n",
+ " ris2.amplitude_profile.mode_powers = m2/tf.reduce_sum(m2)\n",
+ " \n",
+ " # Compute paths\n",
+ " paths = scene.compute_paths()\n",
+ "\n",
+ " # Convert to baseband-equivalent channel impulse response\n",
+ " # Get rid of all unused dimensions\n",
+ " # [num_rx=2, num_tx=2]\n",
+ " a = tf.squeeze(paths.cir()[0])\n",
+ " \n",
+ " # Compute average paths gain per RX\n",
+ " path_gain = to_db(tf.reduce_mean(tf.reduce_sum(tf.abs(a)**2, axis=-1)))\n",
+ " loss = -path_gain\n",
+ " \n",
+ " # Compute gradients with the goal of maximizing the path gain\n",
+ " grads = tape.gradient(loss, tape.watched_variables())\n",
+ " # Apply optimizer\n",
+ " optimizer.apply_gradients(zip(grads, tape.watched_variables()))\n",
+ " \n",
+ " return path_gain, a"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ec2e2a62",
+ "metadata": {},
+ "source": [
+ "We are now ready to exectue our training loop:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "aa6fc15f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Iteration 0 - Path gain: -101.99dB\n",
+ "Iteration 10 - Path gain: -72.36dB\n",
+ "Iteration 20 - Path gain: -70.63dB\n",
+ "Iteration 30 - Path gain: -69.55dB\n",
+ "Iteration 40 - Path gain: -69.03dB\n",
+ "Iteration 50 - Path gain: -68.75dB\n",
+ "Iteration 60 - Path gain: -68.58dB\n",
+ "Iteration 70 - Path gain: -68.45dB\n",
+ "Iteration 80 - Path gain: -68.35dB\n",
+ "Iteration 90 - Path gain: -68.26dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Create a storage tensor for intermediate results\n",
+ "a_it = tf.zeros([0, 2, 2], dtype=tf.complex64)\n",
+ "\n",
+ "# Run training iterations\n",
+ "num_iterations = 100\n",
+ "for i in range(num_iterations):\n",
+ " path_gain, a = train_step()\n",
+ " a_it = tf.concat([a_it, a[tf.newaxis]], axis=0)\n",
+ " if i%10==0 or i==0:\n",
+ " print(f\"Iteration {i} - Path gain: {path_gain.numpy():.2f}dB\") "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d7fb42e",
+ "metadata": {},
+ "source": [
+ "Let's have a look at the learned phase and amplitude profiles.:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "6faf40e8",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAGhCAYAAACkrlnHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhcZ33n+zlr7VW9q7VvliXb8r5gy5iQQCBkAiEzA0PIwpKZzASYkGfuTbi5ydxkMhNISIZJQjIJywATAmGSEAIEMLbBGNuSV1n73m5JrW61equuvU6d5b1/nLW6W1K3ultq2ef7PH7cqjp1znu29/v+tu9PEkIIYsSIESNGjEVAvtYDiBEjRowY1z9iMokRI0aMGItGTCYxYsSIEWPRiMkkRowYMWIsGjGZxIgRI0aMRSMmkxgxYsSIsWjEZBIjRowYMRaNmExixIgRI8aiEZNJjBgxYsRYNGIyiREjRowYi0ZMJjFixIgRY9GIySTGgvG7v/u7SJK05PubmJhYsn2+EvH888+za9cuMpkMkiTxJ3/yJ0iSxOnTp4NtvvCFL8z67Gri4x//ODt27MBxnGty/L/6q79iw4YNGIZxTY7/akZMJlcI/6V94YUXrvVQYrwKYJom73jHO5iamuJ//I//wRe/+EVWmkZruVzmD//wD/nIRz6CLF+bqeW9730vrVaLT33qU9fk+K9mqNd6ADFixLg8BgYGOHPmDJ/5zGf4t//23wJg2za/8iu/QiKRuMajc/G5z30Oy7L42Z/92Ws2hmQyyXve8x4+8YlP8B//439cUgs6xqURWybXOWq12rUeQowrwELv29jYGAAdHR3BZ4qikEwmV8yE+fnPf563ve1tJJPJazqOd77znZw5c4bHH3/8mo7j1YaYTJYZw8PDvP/972fVqlUkEgluueUWPve5z7Vtc+bMGT7wgQ+wfft2UqkU3d3dvOMd75jl9/ZjC0eOHOHd7343nZ2dvPa1r2377tSpU7z3ve+lo6ODQqHA+973Pur1+hWNC+Cpp57i3nvvJZlMsnXr1gW5D/wxHTt2jHe+853k83m6u7v58Ic/TLPZnLX99PT0Zcc+32tVqVT4tV/7NTZt2kQikaCvr48f//EfZ+/evVd0HRZzbpe6by+99BJvectbyOfzZLNZ3vCGN/DMM8+0/f69730vP/IjPwLAO97xDiRJ4vWvf/2C4iNXep6f/exnSSaTPPjgg5w5cyb4XAjBj/7oj9LT08PY2BiDg4McOHCAN77xjbP28ZM/+ZNs2rRp1udCCO666y4eeuihy44D4MSJE0iSNOd/UZK9++676erq4utf//q89htjaRC7uZYRFy5c4P7770eSJD70oQ/R29vLd77zHX7pl36JcrnMr/3arwFuYHX37t28613vYt26dZw+fZq//Mu/5PWvfz1HjhwhnU637fcd73gH27Zt46Mf/egsv/k73/lONm/ezMc+9jH27t3LZz/7Wfr6+vjDP/zDBY/r4MGDvOlNb6K3t5ff/d3fxbIsfud3fodVq1Yt6Dq8853vZNOmTXzsYx/jmWee4c/+7M8oFov89V//9YLHPt9r9R/+w3/gH/7hH/jQhz7EzTffzOTkJE899RRHjx7lrrvuWtB1WIpzg9n37fDhwzz00EPk83l+4zd+A03T+NSnPsXrX/96nnjiCV7zmtcA8O///b9n7dq1fPSjH+VXf/VXuffee1m1ahXDw8Pzuv6LOc97772XX//1X+ejH/0of/zHf8wnP/lJAP7iL/6CH/zgB3z5y1+mr6+PL33pSwDBtZ25j+985zsUi0U6OzuDz7/yla/w0ksv8dRTT83rPPL5PF/84hfbPjt27Bi///u/z5ve9Ka2z++66y6efvrpee03xhJBxLgifP7znxeAeP755y+6zS/90i+J1atXi4mJibbP3/Wud4lCoSDq9boQQgT/j2LPnj0CEH/9138dfPY7v/M7AhA/+7M/O2t7/7v3v//9bZ//zM/8jOju7r6icb397W8XyWRSnDlzJtjmyJEjQlEUMZ9Hxx/T2972trbPP/CBDwhA7N+/f8Fjn++1KhQK4oMf/OAlxzff67CYc4tuO/O+vf3tbxe6rouBgYHgs5GREZHL5cTrXve6tm0ff/xxAYi///u/Dz7zn8HBwcFLfraY8/Txpje9STzwwANCCCEGBgZEJpMRb3/724Pvf/u3f1sAolKpzPrtN77xDQGI733ve8FnrVZLbN26Vbz1rW+97LEvhoGBAbFmzRrx2te+VtRqtbbvfvmXf1mkUqkr3neMhSN2cy0ThBB89atf5a1vfStCCCYmJoL/3vzmN1MqlQKXSyqVCn5nmiaTk5PccMMNdHR0zHLLgLvqvhhmfvfQQw8xOTlJuVxe0Lhs2+a73/0ub3/729mwYUOwv5tuuok3v/nNC7oWH/zgB9v+/R//438E4Nvf/vaCxg7zv1YdHR08++yzjIyMzDmmhdyfpTi3medn2zaPPPIIb3/729myZUvw+erVq3n3u9/NU0891XbeV4qlOs877riDQ4cO4TgO73//+0kkEvzlX/5l8P3k5CSqqpLNZmf99t577wVoO86nP/1pBgcH+ehHP3pF5zU0NMSP/diPsXbtWr71rW/Nst47OztpNBpzunhjLA9iN9cyYXx8nOnpaT796U/z6U9/es5t/KBqo9HgYx/7GJ///OcZHh5uc12VSqVZv9u8efNFjxud+IHArVAsFsnn8/Me1/j4OI1Gg23bts36fvv27XNOlhfDzH1s3boVWZZn+fovN3aY/7X6+Mc/znve8x7Wr1/P3XffzU/+5E/yi7/4i8HEvZD7sxTnBu33bXx8nHq9zvbt22dtd9NNN+E4DkNDQ9xyyy2XHcOlsFTnuXPnTiqVCr/+67/OE088wRe/+EX6+/vnNYb+/n7Wrl3LSy+9BLjJB//1v/5Xfv7nf56dO3fO/2Q8jI6O8oY3vIFCocDDDz8cPBtR+M/FSklOeDUgJpNlgl+09fM///O85z3vmXOb2267DXBXs5///Of5tV/7NR544AEKhQKSJPGud71rzuKv6Op8JhRFmfNz/+Wa77iWs+jsYi/45cYO879W73znO3nooYf42te+xiOPPMIf/dEf8Yd/+If84z/+I295y1sWdH+W4tzg0vdtubBU5+lP+p/4xCf4qZ/6KX7+53++7fvu7m4sy6JSqZDL5Wb9/t577w3I5BOf+ATFYpHf+73fW9C5gGsBvfGNb0RRFB599FG6urrm3K5YLJJOp6/JNX+1IiaTZUJvby+5XA7btufMcIniH/7hH3jPe97Df//v/z34rNlsMj09fc3GZds2qVSKkydPzvru+PHjCzrmyZMn21blp06dwnGcOTN8LoeFXKvVq1fzgQ98gA984AOMjY1x11138fu///u85S1vWdD9uRSu9Nx6e3tJp9NzXstjx44hyzLr16+/4nFFj7MU5+lbUB0dHXNm9O3YsQOAwcHBOcnp3nvv5Rvf+AZnz57lj//4j/mVX/kVNm7cuKAxlEol3vSmN9FoNPjhD39IX1/fRbcdHBzkpptuWtD+YywOccxkmaAoCv/qX/0rvvrVr3Lo0KFZ34+Pj7dtK2ZkZX3yk5/Etu1rNi5FUXjzm9/MP/3TP3H27Nng+6NHj/Ld7353Qcf8i7/4i7Z/+xlBb3nLWxY6/HldK9u2Z7kH+/r6WLNmTSCzsZD7cylc6bkpisKb3vQmvv71r7e5xC5cuMCXv/xlXvva187pvlkoluo8P/OZzwDwtre9jTVr1sz6/oEHHgC4qCLEPffcg+M4vPvd70YIwW/91m/N9xQAqFarvOUtb2FsbIzvfe97rF279pLb7927l127di3oGDEWh9gyWSQ+97nP8fDDD8/6/MMf/jB/8Ad/wOOPP85rXvMa/t2/+3fcfPPNTE1NsXfvXh577DGmpqYA+Kmf+im++MUvUigUuPnmm9mzZw+PPfYY3d3dyzLm+Y7rv/yX/8LDDz/MQw89xAc+8AEsy+KTn/wkt9xyCwcOHJj38QYHB3nb297GT/zET7Bnzx7+5m/+hne/+93cfvvtCx77fK5VpVJh3bp1/Ot//a+5/fbbyWazPPbYYzz//PNtFs18r8Nyndt/+2//jUcffZTXvva1fOADH0BVVT71qU9hGAYf//jHF3xtLobFnufAwAD/7//7/wKu1TQXtmzZws6dO3nsscd4//vfP+v7e+65B4Cnn36a3/3d36W3t3fWNpIk8SM/8iP84Ac/mPXdL/zCL7Bnzx7+83/+zzz11FNt6cQ7d+7kjjvuCP794osvMjU1xU//9E9f8rxiLDGufgLZKwN+CubF/hsaGhJCCHHhwgXxwQ9+UKxfv15omib6+/vFG97wBvHpT3862FexWBTve9/7RE9Pj8hms+LNb36zOHbsmNi4caN4z3veE2znp5iOj4/PGs/FvpsrVXS+4xJCiCeeeELcfffdQtd1sWXLFvFXf/VXwbEuB3+7I0eOiH/9r/+1yOVyorOzU3zoQx8SjUbjisY+n2tlGIb49V//dXH77beLXC4nMpmMuP3228X//J//c9YY53sdrvTcLnV+Qgixd+9e8eY3v1lks1mRTqfFj/7oj4rdu3fP2m4xqcGLOU/HccSP/MiPiM7OTvG+971PZLNZ4TjOnNt+4hOfENls9qKpxps2bRK9vb1zpg9XKhUBiHe9611zjiGbzV70XfuLv/iLtu0/8pGPiA0bNlx0nDGWBzGZxFg2XGoSvd7xSj63KP78z/88qOH527/9WwG01cVEMT09Lbq6usRnP/vZWd8NDAwIRVHEn/7pn875229961tCkiRx4MCBRY232WyK/v5+8Sd/8ieL2k+MhSOOmcSIEWNOnD59mv/n//l/eOtb38ov/MIvcOuttwJctC6lUCjwG7/xG/zRH/3RrGzA3/zN32TTpk0XrZF6/PHHede73hUc40rx+c9/Hk3TLlmLFWOZcK3ZLMYrF6/k1fsr+dyEcF1LP/ZjPyY6OzvFyMiIEEII0zRFNpsVN954o/jUpz4lqtXqJfdRLBbFl7/8ZfHLv/zLQpIk8fDDD1+Noce4RogtkxgxYszCpz/9ab7//e/zp3/6p6xevRoAVVX55Cc/Sb1e51d/9VfRdf2S+/je977Hu9/9br797W/zqU99asHKCTGuL0hCrLAOOzFixIgR47pDbJnEiBEjRoxFIyaTGDFixIixaMRkEiNGjBgxFo2YTGLEiBEjxqIRk0mMGDFixFg0YjKJESNGjBiLRkwmMWLEiBFj0YjJJEaMGDFiLBoxmcSIESNGjEUjJpMYMWLEiLFoxGQSI0aMGDEWjZhMYsSIESPGohGTSYwYMWLEWDRiMokRI0aMGItGTCYxYsSIEWPRiMkkRowYMWIsGjGZxIgRI0aMRSMmkxgxYsSIsWjEZBIjRowYMRaNmExixIgRI8aiEZNJjBgxYsRYNGIyiREjRowYi0ZMJjFixIgRY9GIySRGjBgxYiwaMZnEiBEjRoxFIyaTGDFixIixaMRkEiNGjBgxFo2YTGLEiBEjxqIRk0mMGDFixFg0YjKJESNGjBiLRkwmMa46hBAIIa71MGLEiLGEUK/1AGK8uiCEwDRNGo0GiqKgqiqKoqAoCrIcr21ixLheIYl4iRjjKsFxHFqtFo7jYBhG23eSJKGqakAuqqoiSdI1GmmMGDEWiphMYiw7hBDYto1pmgghkCSJVqsVWCJCCBzHCdxfkiS1kYtPMDG5xIixchGTSYxlhe/Wsm0bcC0Q/7OLkcNc5CLLMoqioGla4BaLySVGjJWDmExiLAt8QohaI/7k77u7op/NZ18zySVqtcTkEiPGtUVMJjGWHEIILMvCsiyAWaSxUDKZuW9/HzG5xIixchCTSYwlhW+NOI4DMGeG1mLIZCZicokRY2UgJpMYS4KoW8txHGRZvujkvZRkMtc4/GM4joMkSViWRblcpr+/PyaXGDGWCXGdSYxFY2aQ/VJEstzwj+sThhCCer3O0aNH6ezspNVqBWP0g/mqql7TMceI8UpATCYxFgXfGrFte0VOyL7LC0DTtMAVJoSg2Wy2baNpWmC5rMRziRFjJSMmkxhXhJm1IwuZfK/lJB11rfmWy1zk4lssMbnEiDE/xGQSY8FYCrfW1ZyYL3Wsi5GL4zgxucSIsQDEZBJjQbAsC8MwAtfQK21CvRS5GIZBs9lEluVZ2WKvxGsRI8ZCEJNJjHnBrx05f/48J0+e5MEHH7yuJs8rTVqcmXHmk4tt29i23UasMbnEeDUjJpMYl8XMlF+/luPVCJ9corpiPrlYlhV8P9Mtthxp0DFirCTEZBLjopirdsQnk8VgdHSUgYEBstksnZ2ddHZ2kkwml2jUVxcXIxfLsgL9sZhcYrwaEJNJjDlxsSC7L9R4JbBtm+PHjzMyMsLmzZsxDIPh4WGOHTtGMpkMiKWzsxNd15fsXK52sP9y5FIul0mlUuTz+biXS4xXDGIyiTELl6odkSQpkEpZCGq1Gvv27UOWZR544AFUVQ32Z1kW09PTFItFzpw5w+HDh8lkMgGxdHR0oGnakp3f1cRc5HL27Fm6u7uDni0ze7nE5BLjekRMJjECRH3/F5NEuRI318jICIcPH2b9+vXceOONQT8TH6qq0tPTQ09PDwCtVisgl4GBAer1OrlcLiCXQqEQkNFCzm0lIJopFi2iNE2zrTo/JpcY1xtiMokBzL92ZCFuLsuyOHr0KGNjY9xxxx309vYGx7oUdF2nr6+Pvr4+AAzDoFgsUiwWOX78OIZhkM/nA3Lx3UXXC6LnP5fl4luGUf2ymFxirHTEZBIjqGS/nEAjzJ9MKpUK+/btQ9d1HnzwwUUF2BOJBP39/fT39wPQaDQCchkZGcGyLAqFQkAuuVyubbK9ngLdfrDeR5RcTNMMtolbHMdYaYjJ5FWMaN+R+UqiXI5MhBCcO3eOY8eOsWnTJrZu3TrnKnoxgfxUKkUqlWLNmjWBkKNPLkNDQziOQ0dHR0AuK9FqWYj0zMXIxbdc4i6UMVYCYjJ5lcJxHCzLWrAkyqVIwLIsDh06RLFY5K677qK7u3tJx3yx8WQyGTKZDOvWrUMIQbVaDchlcHAwGPO5c+fo7OwknU5f08l2MfGb+ZJL3MslxtVGTCavMlyqne58cDEyKZVK7N+/n1Qqxa5du0gkEks57HlDkiRyuRy5XI4NGzbgOA4TExMcOnSI8fFxTp06haqqbWnIyWTyqk+2S3W8KLlEe7m0Wq2LVufH5BJjORCTyasIl2unOx/42Vw+EQkhOHPmDCdPnmTr1q1s3rx5RU1UsiyTz+cBuPPOO3Ech1KpRLFY5Pz58xw/fpxEIhG4xbq6upadCJcrsyyaKRY9TkwuMa4GYjJ5lSBaOxLNHloo/EnHz/46dOgQ5XKZe+65h87OzqUc8rJAluXAIgE3+cAnl+HhYY4ePUo6nW6rcVnKAsqriUuRi2EYQSpyq9VC0zQymUxMLjGuGDGZvMIxn9qRhcD/bbFY5ODBg+TzeXbt2nVdTLhzaYopikJXVxddXV0AbQWUp0+fplqtks1mA8tlqQoor8VkPVcXSiEEp0+fRtd1Nm3aBMRdKGNcGWIyeQVjOdvpvvjii9x4441s3LhxxU80CxnfQgsoOzo6FpwttpIKKC9GMHEXyhgLRUwmr1D4ged0Or1kdQiGYbB//34A7r777quSrbVYtMwKcOVW00ILKAuFwrxciCtpMo4mYsynC2VMLjHmQkwmrzBE2+nu2bOHhx56aEncMpOTkxw4cCCINeRyuUXv82qg2NxHh34fMLeba6FYbAGlP46VBL/GaCbiFscxFoKYTF5BmMuttVg4jsPAwACnT59mx44drF27ltHR0SsSe7wWaBqHwSOT5cClCijPnj2LEKKtgDKbzQIr0zK5HObT4jjuQvnqRUwmrwBcrHZEluVFTfrNZpP9+/fTarW4//7726yRpVhdX40mWzKnrtpENt8CSnAtvXQ6fc0LKOHK78PFyCXuQvnqREwm1zkuVTtypXLxAOPj4xw4cIC+vj7uvvvuNpXexUihXG3oTGDYk9fk2HMVUFYqFQ4ePEi5XOb555+fVUCZSqWu+jiXitQv1YUySi6+WyyqKxaTy/WPmEyuY0S7IMJst9aVyMU7jsOJEycYGhri5ptvZu3atbO2uZ7IRKVBwx4Arn2sQpZlCoUCuq6zZcsWurq65iygjJLL1VAScBxnWSbzuAvlqwsxmVyHmKud7sXk4hdimdTrdfbv34/jODzwwAOBf3+u/V7riXm+UKUmDecMsPpaDyWAf+3mKqD005CHhoY4cuTIVSmgvBruRlgYuURFK2O5/esDMZlcZ1hI7chCLJPR0VEOHTrEmjVr2L59+yVrJ5aiD/zVgi41sJ1hVhKZwNwBeEVR6O7uDlKuTdMMyGVwcJBarUY2m20jl4U2CZsLV4tMZuJS5LJ37142bdpEoVCIyeU6QUwm1xEu1U53LswnAB/ty75z584g5fVSWEws5mojIRsgzl/rYVwRNE2jt7c3aCoWLaA8deoUjUZjVgfKK5Hbv1ZkMhNRcmk2m8G/fcsF4i6UKxkxmVwHiNaOzLfvCFx+0o/2Zd+1axfpdHpe47me3FxJpYlqTVzrYbThSq/dzALKZrMZZIodPXqUVqsV1Lh0dHTMu4BypZBJFI7jBEQx03KJu1CuTMRkssKxGEmUS7mjZvZlX8gLuFgyWeqJ61jp2+wo/OSsz027QUa2SEhF4NoH4KNYimuQTCZZvXo1q1evDgoJfXIZHh5uK6Ds6uoim83OeZ9XKpnMHNNcbrG4C+XKQUwmKxgLaac7F+Zyc0X7st9+++3BKnchWArLZKle8KOl3ZRb/weYTSZVc4oOICVVl+RYS4XlIDVJkuZVQBmNt2Sz2eBerrQJ13/mL4X5NAqLkks0WyzG0iMmkxWImbUjV1rkNdPNtVR92VeSm+tU+XOsT5+Z87uGNQUS5OX6VR7V5bHcE9qlCiinpqZ4+eWXkWWZjo6OoNfJSiKVi0m8XArzIZe4xfHyISaTFYaZtSOLybmPNrKaT1/2hex3JQTgJ43zrE3tRZFsLGcSVW4XnjSsImiQlG1QKtdolLNxLYj4YgWUxWKRyclJTpw4weDg4DUvoIQwNrLY2Md8ySVuFLY0iMlkhWC+tSMLgSRJmKbJ/v37mZqaWrK+7MtlmRyf/i7bO9487+2fG/8069JuLKlhnyAnP9D2vWGVwNO4lFNjK8aaWgnwCygLhQIjIyPs2LEDSZKueQEl0LaQWkpEySXuQrn0iMlkBWC5+o7Yts3g4CD5fJ4HH3xwySaD5YiZDNX2Uzf+HJgfmdiORdk6Gfy7aR0np7WTieVMB3+ryfErHutyYCVNUEIIFEUJgvXgxtb86vy5Cig7OzuXRI16LlxM0WEpEdUUg5hclgIxmVxjLLR2ZD7w+7IXi0W6u7u5++67l/QFWCrL5OniS5w2zrEjvZlq/U/ZmByat9/+h2PfQFFqwb8b9vFZ2zhOOfhbT14bfa65sNIspLmuuaqqlyygPHTo0LIUUPrjgeUlk5mYi1z8//wWx/V6HdM06e3tjcllDsRkco3g146cO3eOsbExbrvttiV5KFutVtCXvauri87OzmVxFyx2QhRCcKAyyPOV5xltvMw7Op9Bl22mjJN0J2+87O9Hmv9EZ6KKECBJ0LSPzdrGccI4SVIvLmq8S42VNAHNh8DnKqD0M8VOnjxJs9lckgJKWD4310IwlyJysVikVCqRz+fbLJe4UZiLmEyuAaJuLdu2g2rfxaJYLLJ//35yuRy7du3ixIkTyxIoXyrLpOplq3WL59Fl18U3ajxzWTIZqBxjdWYQgGkzRafewLBP44gmshTNUAvJJKWXV4xFsFLG4eNKsrh0XWfVqlWsWrUKuHQBZWdnJ/l8ft6Whl9jspImZf+Z9zPB4i6UsxGTyVXGzNoRVVUXPeELIRgcHGRgYIBt27YFfdmXS/Zksdlc5XKZl/a9xFlpDC1t0q2H8YyaeeCyv39u8m9YlXH/HjXydOoNwKFpnyKt7gy2U0RYX5LRVlatyUqaYJZCNXhmAWW0A+W5c+ewbbutSVgul7voMedTY3It4FflQ9yFci7EZHKVEK0diUqiLHZiNgyDgwcPUqvVuO+++ygUCsF3y5XCe6WWSTRFuXN9H05J4dbEOTJKM9jGMo9RLBYvKgVSNWuUrRFWef+u22FSQdM63k4mUhhTyasrr9ZkpWCp60skSQoaf61duxYhBLVaLSCXM2fcuqAouWQymWAMS5EWvBzw45pz4WLk8mrqQhmTyVWA4zhYljVnttZiJvxoX/Zdu3bNyq6RZTk45lLiSsjEtm0OHz7MxMQEd911F+flCqJU5bWdp5AA2wFFhoI6yuHDh7Esi46OjiDu41drf2f470A2w7FE3u2ZQXitjUyaNFkZeCW4uRYCSZLIZrNks1nWr1+PEIJKpcL09HRbAaVPLCtVAsVxnHknGVyKXAzDoNlsvuLIJSaTZcTF2ulGcSVkIoTg1KlTQV/2devWzfkALpeba6FkUq1W2bdvH5qmsWvXLpLJJAdGh9mR2k9SceMmF1o51iQrdGoVNr1mB7RSTE1NBdlDsizT0dnBZOpREpoR7Dsf+bs5g0wSciP4OyXblKwJdH3NlZ72kmKlTBj+fbya45EkiXw+Tz6fbyugnJqa4sKFC5RKJYQQHDlyJLBerlUBZRS2bV9xP5mZ7/6lWhz71fnXWxfKmEyWCZdqpxvFQsnkUn3Z59r3culAzXe/58+f59ChQ2zYsIFt27YFboIz1Zfp1kvBdhNmhjVJN2B+vvkMN+R+ikwmw/r164PJ5vHhR+lMTwNQNXWyWouC3gCRA6lC0zqOEA6SZ65EyQSg4bxMjpVBJisF14JMZiJaQLl582bGx8c5ceIEyWTymhdQRhGNmSwWc4lW+uRiWVbwvU8qw8PD9PT00NHRsSTHXw6sPMfkKwB+4VO0B8PFXtaFkMn4+DhPP/006XSaBx544JJEAtfWMnEchyNHjnD48GFuv/12tm/f3uZvLhtfQ5VDF5whwnVNqfVS2778yWZY3R18dqGZD/6u191CO4cG48VDgWsvI7c7tgx7bg2vmTBtg6MTH6dhPrssZLyS3FwrgUxmQpIkNE1jy5Yt3H333Tz00ENs374dTdMYGhri6aef5tlnn+XEiROMjY0F79ly41Ixk8UiWiDpWyaS5PZyaTQa/MIv/AJf//rXl+XYS4XYMllCRFcW85VEmQ+ZOI7DyZMnOXv27EX7sl9s38sxcV1uzI1Gg3379iGEmLNPytnqKW4qHKJmhavLhGwFf1vO7JqRU6VB6k4YRI/+NpVdA+IsAIPnnuDIgSkKhQJ3bDHa9uGIc5c9t2qrxLPD72Vzx3HOV7+Armwnl/hFstrbUOSlWZXCypm8VyKZzMzmupYFlJca13JipuVSr9fJZDJX5dhXiphMlghXKolyuSD5fPuyX2zfV9syGR8f58CBA/T397Njx4453QJPnv/vrM04dOgNKpZOTm3RrdeCAsQEZ2f95tvn/w6HyDEj19YmfJA33iDIcx8Tk2Nk1fYVq9E8S71eJ5VKzXlvysYkL47+ewynxJRxE6vSKYZb3Tw2tod/v+F19OiL1zWD2DK5HC6XqjyzgNIwjIBclrqAMgrbtpfMzbUQ+NlwC3n3rwViMlkC+G6tKxFo9Fcec616/L7sq1evvujEfClcTTdXNCnglltuYc2auWMTJ6eP0HJGgn+fbxbIZcfJqC2m7SSdapNOdQLbaaHIbrCzZFQQif1oTpitltFawd9Np0jWu+RN+wT9uTQdShpCYwcAhQmee+45NE0LssS6urrQdd0jkp9jXX7I2/oCRftBvjpZoGpXKFnlJSMTuLLJe7C0m82FXUs2Brg20iWXw0ItgEQisWwFlIsZ11KiWq1e1q19rRGTySJwpe10o5iLTK6kL/vF9r3Uq2A/Ky26X8Mw2L9/P4ZhXDYp4AcX/gRBeI1qkTqRKStNp9pEkxzON/eyLn0/AF8b+ip6wgIs6qZGWjPJJxo0LJWUatFwRsnISSSpScNyXWQNa7Z8Sj5R56GHHqJUKjE1NRUIGNopm3OF/8MtnaF+lxAy35jqIymnqNoVylZ51v6uNibq/4N0Isuq5G1Lts+VaJksts7kcgWUjuO0kculCiijWMoA/EJRr9djy+SViqVS+o2SCVx5X/aL7XupLZMnhv8TfdK/Cyahqakp9u/fT2dnJ3fdddclfdX7J5+nN32IYjMsrJSkCCmJ0PKYNJ5nXfp+HMdm2HyRLo9zJhpZNmguUVww8mxSpwCBomzEcY7jACWzRNMsYsqgRd79tFxBURS6urro6uoCYGBqgMenfotCpsQps4+uusXWrnOcrezkVMPkhrR74LK1dP1QroTgx+qn6U8eYqT+7WUhk5WEpbQAFltAGcVyBuAvBX/McczkFYioNbLYPPAomSymL/tcWGo31w9H/pT1+teZ5qdJ2X0MDg5y6tQptm/fzvr16y97HZ6b+AtWZSCfqGI7EoosyGthxpUkhWNtWocBeGTq2xiR+a4ZsWSqkSC8wM3oOte6B9E8T8Ke5pyVZnMqDNrn5DrRq/Hs2EH2THyGtZ1uirKmOVQ0iacv3MAxy01yqJXrkIChqXPUEjXS6fSSrOIXuo9Dk/+LHTkH03p20ceOYime4aXGUsi7XAwXK6D0m4QNDAygKMqsJmH+u3QtLJNGo4HjOLGb65WE+daOLAQ+YRw9epSpqakr7st+sX0v1cpzoPQCPdJfADAt76N64U6EELMkXC6GJ8//gJbXX0STbcaaOVany3Ql6tQsjYxqkovIqqi8DMCL5cew2+LuIcHakcx2CwlN6uKfJy3eIp9jE9Oct5JtZJKSbabsSRJKN18bfIznW39PQcx8BSSUtMNkKQmY5LIFSuYkk41Jnn/+eVRVDWItnZ2dV9T6eKH3xHFsurVHAOiSB3AcG3mJMstWUqteH1c7a8ovoNy4cSOO41AulykWi1y4cIETJ06g6zqdnZ1YlnXV0pCjqNVcJYfYzfUKwcx2ukv1sFcqrvuk0Wgsqi/7XFgqy6RulTlV/G/ckHZJtGLtp0Pcwa5du+ZVESyE4KXpz9Cyw22nzTSrceMQo0aBreoEWaVFxdbJKS3y8igvTj8LUhlFDX+XjATeU5FsraZTZtK6F0PYnG2eI8NBanYamGobS7V1ir+e/BIna0MkUw6tGUF6gIapk5BTmI7prkRNUAsar7vldUHDqOHhYY4dO0YqlQqIxZcCWWq8OP4N1ianAUgrBucaT7Mh87ol2fdyWgFXimupzSXLMh0dHXR0dLB582Zs2w7uuRCCffv2kUql2iyXK62Kny9qtRqyLC/p3LAciMnkMvAlUVqt1hUH2S+2X1/0UJZlbrnlliV/WJbKMnl86EOsTx7HFqBIkMkM0y265/0S/fPZr9KZvsBYrSP4zBThyroaIZlJM0NOaZFRDL459UWQIKG3aJgqKc0ik2jStFSSqkVBb2A5Gqps0nLKfGdKBmzk8qOsX/MSu0tb2Tvcy11rXVXiuqPwN2Nf4JwpIYS7yrPl2WTbsHQSUoIqYHvXr2yV2/SjtmzZ0lbvMDAwQKPRIJfLBeRyMbHKUvIww/Um29Jvuey1E0IwZX6JvKyT84h0rPnIkpHJq90yuRz8GFuhUODMmTPcf//91Ov1IN5y+PBhMplMW43LUneg9OMlK+0+zURMJpeAH2Q/efIk9XqdW2+9dUluqGVZHDp0iKmpKe68804OHjy4bLIni7VMfjjyKbam3crz8VaW/kSVTn103r9v2S0GG1+hMwUZLXQ5JaM1IJFLWveC8ONmhjHLIOe9l6VGlpQ2DcBEM8u67DSyBHWnh7x8nrpzK5rcwWbjMPf3u/EWSXZodZ7nYH0VSaXFZya3UXIkFAkcv02rMrvGp2lpqF5asinc70tzZHPNrHeIpqReSqxy1ZqvU7PvBi5PJi+OP0JvapCBSi93dAy7HzovXvZ388VKJZOVOCZw05DT6TQ9PT1AewHlyy+/TK1Wm1XjslhrtVqtBs/OSkZMJhfBzHa6S/WAl0ol9u/fTyqVCvqyL1dx4WItk5OlFyk3/5E+L4lkysy4ZKJVmRTza4P7Nyc/j2G5Y8joLcqtJHm9SVeiHgThc5ox63dPVW/AFBp+sYgRCbZHq99NJweM8v3JJOvt0/z4hpeotRKcKq8GCabMNMesAk/V+hCSgiLZgED4wX5FUG9ppPWQ3BqWhpJwWazpuNZAxariCAdZuviKeWZKar1ebxOrnJCmyXeNc++GMww35/fqDdf/F+tz7dZbj3IW02mgyYsXP1ypZLJc/eWvFBdzb89VQOkvKI4fP45hGOTz+bYal4UG8a+H6neIyWQW5pJEURRlSRpYnTlzhpMnT7Jlyxa2bNmyJDL0l8Ji9lszS7xc/FXSEbl32wlfpGllH/D6S+5jvDHJtPRdKmYSv1JmysiR15vois24kaU/VaFLr1O3VdKKRUYxGG4VOG1244jIJCdHFFcjpoyDgiLdilIb5se37gEgoxtk9HOMVTbxnXO3MZ3NoEmW+ysBSCBF5FuqRqqdTGwN1QvM1+2md0xBxa5SUENNsEtBkiQymUwgVmnbNh898dv8RO45ALq1szy950m6O3sDy2XmBLpv4inW5wYA6EiEopW6bHGm9hg35N7qjt+qkFWvLNNnJZLJSuxn4i8qL3etEokE/f39QW1Yo9EILBffWvXJpauri1wud9lzrdWWLotwORGTSQQXqx1ZbF+QaF/2e+65h87OzrbvVxqZ2LbN109+iJu7JhECmrZKUrFIKWHw21SPX2IPLv5m4JMk0yZI4QraiKT2Fs0M/Sk3AWGslWNTqkhBbfLtqZ2AFOUPdD08dlKLusgaPDOi8eC6kxyZWMPNPWF1vQCqSiL4W8InIoGsmjgOyDLUWu0KtE1LI+1lilXtOrrkqreUzfK8yWQmvjX0JJp0jrTnqksqJl1bJlDK/YG+lO8e6erqIp/Pc6D8JXZ6iXI9qSrFZp7OpOtuKxrfg9xbOVrdz+nGYd7S++4rGtdKJJOV6ua6EoJLpVKkUqlLFlBGa1zmcmf5bq6VjphMPMxspxu9oYuxTGb2ZZ8raL2SOiI2Gg3+7uhvk86OevuA840CmzOT9CWqgX6Wrp++5H4OTBxFSrjqv9HJX4kEvC0RvpxV200+GGx2c8bsJqnYyJLAdBQ02SahG0EQPqcbmLaKKlsMT6jcuuooIKFlTU5Mr+LGjgvULR1ZFqiS06aq4ls1kgRGSyOVNGna7a+B4Wio3trBFjZJJYkhmldcuCiEYE/lWzyUH2akkWetR6Cm9gI3bfsZwF1w+C6xo0ePckR+jv4tJ5kyUnR5VsmFWl9AJqrYD8DDk3/NxuSmKxqXP7ZXysS9nFiKgsXLFVAODg4iSVJALh0dHWQymauuy/UHf/AH/OZv/iYf/vCH+ZM/+ZN5/+5VTyYza0fmMmUVRVmwZeL3ZT916hQ33nhj0Jd9LixXR8SFktT4+DgPn/hrbtz8XcabYa1LxbMmUorJdKuDzsQ0Bf38RfcjhOBrI59CIkVPtkYh2aBlK+iKTUYP3TVJNTLNS+AI2F3aiiUUXPlGaDk6mteXZKqZYa1WQpKg1CowUk7TrYfdFBUZ7KTD8al+Tra62dhRQpctmuiBRRKlVqOlkkqamDNqTQyhIVk2eK7ttJLGsJpzBuHng0eGniWnj3Fz4TzHSqE0jixCqX1d1wP3SNOsMzjyxwCMNjoCMjEiBTc96nmem34UhwvUnSsvZlsOMhlvnqZ3EQS3EslkOQoWZxZQOo5DtVoNCigff/xxfvu3f5ve3l7S6TSnTp1i69aty0r+zz//PJ/61Ke47baFqyysrDt2leGn/C51AyvDMHjxxRcZGhriNa95DZs2bbrkA7Dclsl8eo+cOHGC7x/8FplV30SRBHmtjP8zKTIFV0zXzdOtlamZE3Pu7x8Hv0UyNUy1lfTGAdOehEpaMyh7bqVOvY7tnXZGMXhuYgs/XjjWFiuxIxN903KtOsuWGCx20NVZo0n7C67IIKccjjRdoUldmVlIElprpmeRODPuTcvRqFjh7xKyex5XSiY/mHyam3XX/bYqGV7XHuUMtjO7CO6fhr5MwWsUVrXCdPF8thT8VpEEzxa/AEDFGr+iccHSxyeEEJya/s+L2sdKJJOrIaUiy3JQPHnHHXfwzne+k89+9rMUCgXOnz/PLbfcwsaNG3nve99LsThbe26xqFar/NzP/Ryf+cxnZrni5zX+JR/RdQA/yN5qtbBtO4iLXGzCX4hlMjk5ye7du1FVlV27ds2rOnw5YyZw6YprwzB44YUXODV2jMTmz9Nw3Ik+rTaYarm6YB0Ra8J2wsn9TO3JWfurteocrP29u23k8TIik+KE4ZrsumIz0XJX1SnFpEtpsDU9wfZEmHosIq4wIYFhKgxO9yGp7vWSlNnnZtgatkcUvvXTFsz3XF2On1Awwz43hMp0K4zRaJJLYlci9jhYGsVST3Bz3iWTzkSdsYZLyEnZZLT5dNv2Q9VzTEtPhCOVw/NLJZqcN93rNWWlGbHcDJ+6U2L3c09y8uRJJiYmgsXRfHA5y+RL577FP194at77O1r6AauTL1Cz5pftdyVjuha4FlIqyWSSN73pTTzwwAP8y3/5LykWi3zuc59jw4YN5PNXFru7FD74wQ/yL/7Fv+CNb3zjFf3+VUcmfpB9IUWI85nshRCcPHmSvXv3snXrVm6//fZ5pzcup2UCXHTfU1NT7N69GzSHSv9f0ZUotWlXTbbcyao3UaXpyb/rEcmTYvOFWfv89IkvkNDdehI94sYSkWvcbKuEd4Pz+yc2cHePK7r34x3HwHHJWxCSuHAEZ0o9FPKNgBzUhI3ltD/GlVYSSbhnklRMbz+z77EvzSJp7denKTSmTQPJ+40sued+JWTy5Ze/zT3Zs5ytdwWfRbtEThrfa9v+H4f/lJRepm66x8wn27tFTtouEe+vr8OOFH52bshg2zYnT57kySef5MUXX2RwcJBSqXTJZ+tyE/fe8jP888RX+er57110myiGq58H4Fzj6ctseXG8Wi2Ti8EPwKfTad74xjfye7/3e0tObF/5ylfYu3cvH/vYx654H6+qmMnM2pH5rn4uZ5kspC/7XLjalokfzxkYGGDrjVvZY/5n0so04FokPoxI/5Aps5s1iVEKiWIQhDeto237fWn8KFPKbqxmio50g1yqiW3LKIpDQg1rSeTIatsSCqVmgo16KHvSoTa4NXWeg8Y6kGzqLY2WoSGpEnbLvWc+OcmSxHQ9Q082DI7XzAT+IZKq6ZWqSJGJ043J+OOQFagZOpmEa400hAJIZJU0FbuGb8ks1M3Vsk1q0rNsy49xaroXmPDGHt5rydkb/P3D8z+gI3sCgMlGlrRWJKsblFoZCl5sSJIElpA5afTRFgDKNdnRf5c7fi9jaGpqKsgY8rOFurq62tJML0UmxyrPMW01SKjwZPFp/tXqN1zyfKeMETam3fMptfYCb5v3tYpiJZLJtZSfbzQay1pnMjQ0xIc//GEeffTRRalwvCrI5Era6UZxqQC531mwt7eXu++++4qqXZeijmUuzJS3B7di98CBA1SrVe69916+OfGbrEkf40y5i+5Ena5EBcNRSMh2sKoHaHjZVgnFoGzmKOgV0nLYU10IwVeG/opkRlAzEnSkGyiyoNrKUUiVSOk1DFshodjk9HC1rQgb1ZK4sXCBsXqOvrRLCg/mTnHK6KOBTtFIkZBsUrpFs5Hyrll4TiUj1UYmVTOBSrtlEoWEK7uiquE+qkaSTKKF7UgYntWTklNU7FoQtl9oNtffnfoBD3a75KBGsti6UqWAkLuVMziOjYPDS42v0+FlKdfMMF15rNkZkEmHWudgfTUttGizSYpm6Br001HXrFmDEKItqDswMNAmVmlZ1kXfhccnH8FBRggbpBmuM/8EInhx4m/YlnHfE3OO1svzxUquM7kWqFary0omL774ImNjY9x1113BZ7Zt88Mf/pA///M/xzCMeRHpK55MlqLviKIoQSA76jq6kr7sc+FqublKpRL79u0jm83ywAMP8E9Df8CatFtE1/JcJookuFDPsyFTpDdRCeeMyGq6aucoUKFTKdKwpkmpHXzx5b8nmXFX3nYkztG0UhRwM7Am61nW5EpkNbcSPim16KXBto4xd79mgoatklIsdNnhvswgD5duIZM0adR0UliBuyqhh5Nbw253J9YsHdUbb1ptBecQ3nX3LyUi6eJP3g1TD77XZfezfvslzooMk/Uy1VaNrD6/F/t4/eu8rcsloFXpcljxrzeZtnJ0ahXScovR5m6eLh8EZTwYazTeVI3U5qiSw8G6m1wgI4JamaI5d3adJEnkcjlyuRwbNmzAcZw2scpy2dUcO3HiRJtYZcOucL55GoUCtpAQcjspV4whcskNwb9tx8ISe4J/p6TZrZfni5VqmVyrMS13avAb3vAGDh482PbZ+973Pnbs2MFHPvKReVtkr2gyuVTtyEIQ7YCoquqi+rLPheVsr+vv++zZsxw/fpytW7eyefNm/nbgd+hJfYeaqZHRTJKRrKeKFyxPqybTZo5OvUJWqQbf+0F4WYKz1aeQ1O0caj5KQnYnNk0NrTgnMilGuyqO1TPcnKiT0E2qLZ2s3qI/U2bYKLBWLiGQOG10k/DGZVneA+0109JUG8NUSGg2ptT+sNftBKrkjkGTHWRbQqgC4UVB/P+rmoVlS6iKwPAIqWmGxKSgsYYS/7LvSQbOP8REXWHPxAF+fM0Dl732/zTwGPf2H2W0UWBtZpqUajLc6GBDxs3CKVpZOjWXaM7Vv8454zyK5FBr6WQTLdSI5eVEiNwSMsNmJznN9EgngYzBlHXxVO0oZopVnj17ltFR16qJilVO9HyLAg1ISIy08tiinUzKjX1tZLJ77B/oTQ7RtBWSik2HUqRpl0kq7YHiE9PH6E1n6NTXX3SMV7NosdqaJDuPdszXqv87LH+XxVwux86dO9s+y2QydHd3z/r8UlhZ9L9EiAbZF0skQPAQOY7D6Ogou3fvJp/Pc//99y/JTV4uNxe4hHLs2DEGBga4++672bJlC18d/B/0pL4DuKKJAD3JauiCj1yqaS97qKCVqXsZUqoUZjqNN5/jf539M5BMqg2XhLKpJo7jBcjncDOZJmzTJtmUn2B1tsRYPY9hu4/i2kSJY/VVfHniXgbMVTielWMH+wuvU83wUo9nvOM1W29LCfa/9s8vGkJqtlzyML2tGlaYHKDadf5D/7MokmCdVKa7s8KhSnucaC4IIRi2PutmqxmhFVM0w2fFjnSYPN08huIRRslw3XjZRDMYZ06vB3+PtgptdTGOSHn7Hr0iHTZZlkkkEtx4443cf//9PPDAA/SuyVGV9/OmrmOs1adxhIyDzVRpKjiGZZ/EiaQ1F1t/jywJRpod7n4lGG48M+t4z05+jYp96pJjuppWwFD1uXltd60tk+tBm+sVRyZ+kP1SRYgLhf8QHTt2jEOHDrFz505uueWWJVupLJebq1qt4jgOhmGwa9cuOjs7+dKp/w9H+m6wjZ9ZlVJNJpvuA5uLdD80Iy6rUcNNc87rYb3D8cpLCNwVdt1w96UogqY3cSb0KqbtXv+0btIyZdZSxnLkgCA2FSY5Xe7FdiTOG3m+V7mJCcdd0Vpe/GIu95bhWRFa0mpL/a07OomI9pbstE+yTiRy3fLIxPaekablWyaCOxJP0OXFKm70XHhj5jkuh78f/Bu2drqr/ejEH9WIzCpuvUnRSnHM6A0+92tpUppJ3XTJMqO3KHnXc6TViRNhe4GvbtykZk9fdEyn6y/wpy9/Adtpj/3NDMAnk0lGU5+lYir0Jyqs1UrY3rV99sBzPPXUUxw6dAijMcJ0/TQAJ0svsS7j/u1n5wFMtdqz/Vp2C7QXmDJPXnSc/piu1sRdah3CdJqX3e5aBeD9Kvmr3WXxBz/4wYKq3+EVRCYLrR1ZCOp1N9W1XC6za9euQMRtqbAcZDIyMsKePXuQZZmbb74ZXdf58sDv0p36LlmtRMuzBFQ5nFz8CasnUQ0kRhJyaIX4vvuEYlC0UpxudvNifXXwfTRW0vImFUkSTHsklaLJeqnIulyRG7sucGJ6VTBRbesY4/GRHfyfqXupOwn8y+GThOwFsDXNpmW5x/FTgmUZphvp4NgNoQXuMSCIn/iEZOMEZGja3gShuh/48ZfX50+xq/sYY15NzLbUBCAw5fZmWzNxrjZEU/2H4PpG06O7vBgUQEoxmLBS7K5tRJJCa8mJXMOpiFUzabipxSNGByJaMxNJD76Yq2ukuZ/ni7/Hgeoh/tOx/8pYIyx4m0kmFXOYpvkkd2QGAVijTwdju+XuW7jtttvIZDIIq8jBo99nz5497Bn+UvD7qFuzZbdbcd8//x2SWp1i68Sc4wz2cRWtAMu5QPki8aYormUA/mrLqVwpXhFk4kui+LUjS9nTemRkhN27dyPLMjt37iSdTl/+RwvEUpKJ4zgcPnyYo0ePBrUuhmXw+RO/Qss55B5PEow33ZVOZyLsMeJ4rh5ZCmshuvSwYluJ+O5HzTwPl29Glgiq2C8WK6maCVpNmVtTI0w1w5fixq4LHC/2Ywv4/vkdPNm8AQvViwW0WyTRzKtmU2/7DqDUDFfEDaG1ublkaXYmXsv0qt99stLck2zaGj1KhX+/we3hMtzwrpPWJCNMElqdilmftT9wn8Nvjvw+Ka3FhPe77lQVy7PA0mqLc/WOYPszrQ5Om13IEpgeMSqR86yZocutaScxTYUxj/AD8okcf64gfMs2GCh/mHNGBgewpWl+b/9fUTLqwZij78qB8n/lXK0zIOPVejk4St1pUCgU2Lx5M4WMzQ07Oujb3EsmG1oaGTVcfCQIs/0ATtddi7honXIzxC5yDa9mzERijIo1ctntrmVq8PUiQX/dk4njOIyPjzMw4Ep1L5U1Yts2hw4dapuUl6OBFSwdmdTrdZ555hnK5TIPPPAAfX19tKQmXx//CKsy+0goYQ2J3xOkoDepee6UaBptJbBCTMYMd2Ls0Nzf247Ms9XNNEUCSYKW58pJp40gViJH9iW3bO7KnKEnVeXmnhGOTK0JvtveNcpXztzHC2xCUcPrG67QvcyqiHurZXkJAJH4Sd07H9uRMCS1LaFAlWZXwftk4vORLEPTTNEwVf5V3z7SXqaXHSGsPrWKJMGzU+2ZLz7+6exX6Mm6E2jVu6aa4rQVKY4Z4d8vG91Beq3hX8OIOrIVGa8kO5wd78WRZLfGx48lifA85yKT/aUvkZJrDBo9gUVTo8Rv7v/vTDerbWQy1TqGbb/EhmSRC949VyWH1bqbfFGzQx20hFzFYZx9zW/QmZqi7rkHuxPVwH3ZoU7ywkvPcvr0aU5MHCWZGPbGbFC25nYX+u/Y1bICVGmSmnXhsttdK8vEcZzYMlluRK2RarXKhQsXlrQv+549e6jVauzatYu+vr5lDZIvBZmMjY2xZ88eOjo6eM1rXkM6neZ0ZYBzq/8cB9etkdWng1WyEgkAl003FtKVKONrCcqRuELRdK2xbr1GvZXg++N3M2yG2j2m46UVy4JWy33oNa2G7UiIOvyLtQeZbIQvw/auUQ5OrMMREn83dC9HWmu839g4gbvHn0hF8J3lxV5895auhatbP6PL1QOTSETITJdnV8Fblu8ii1g8ZpptmTEe7BnA8I7RnQiz2DZoJQCOVma7aY5NH2dcfCOwGKyI+6nYCleV/tFqtsZJY1U4Hm/7lG7S9Mgy6iJL6VXO1WZf85Zogkcsc7m5Jo1vMmr20RJa6OazZchO8X/t/yhfPv8EDS9mcKj83zhf66A/WaEeKVhdq08DUG0jkxqOfQFJeQxwlaXBracptlyXnCo5yD3nqVQqfPf83zJeD/3+F2qH5lycLReZ1KzanJ8n1SmazuW1za6VZVKv1xFCXPWYyZXguiQTP1vLNE2EEKiquiSqu35f9meeeYa+vj7uvfdeUinXfbJcyr6L3bfjOBw/fpz9+/dz8803c/PNNyPLMrtHH+Pp8V+mN1MMAraK5DDuuV/ykcJBK5BKsZhozvF9xI+/e/RmDopOFEkEE2fUh295xY2S7NCalvnR3iNkNIOeTIXxekgoN/eM8L8HH+CM0o3iVaJLUiTjKpAyCc/VMLS24yV1M4it+EOseiKS0bbAocsrFHn0G321uc8MmbeuPYAmO5z1Ju41qTJlLyh+Q9LVmxo12msoWnaLR8Y/7rrAvONrkXbArQix9KRcGf9DjXVtgfSo1TTddMk7H8no0lWDISckk5CsBGnFTW2NFi6CG3Tv1oY4EYlrQegis4XNucI+Hk/+CR8/+gGO1yv0J9xkCiXiGlyfmAagZkfaLst1qq0BOjxBykpEe61qhhOfyLzMzp07cfJDgfUIcHxkN7t37+bo0aOMjo7S8rTQLtbRcDE4Uz/N50a+MOtz0zZIKRUMe27B0iiulWXix2uvB8vkuqsz8ZV+oym/S0EmlmVx+PBhJicnufPOO4Mezz5WomXiy7iYphnUuwgh+NuBPyKd+DoNK0NOh2REyqTqFed1J2u0bA1dMWcE4VOsSlXoSdRo2BopxSTtNcUaqPXwbG0zKb2KLLluGE0SbRO+OykKMnWDW1cNYdoKquyQ1lq0bJWSkaSQaPKdc7dyqrWKjmQDJRJrEUJya0l8CyliQbUshQyhHIssC+pGgmzKQEtY3vklAdEmb59QzPbgAqGAZEI33UJB4bAmOYbmWSrRrKTzRpa8OkWfXiMhTEpS+0r2SwOfo+Ble5WaafIJg0KiERQgJiJjKehNinaaI4017jV0JFRZtKVj1717pKs2NTNDVq/RshKMNDrIF9zJxY6QT0IqUGeckjWOLSwUyX2tj5W/SJcqcbDaRUKLVLD71p+XJNAwdLoKkzSaCTrS7gq+KyLtvy6wTFwrTTg2abWOYobJCErkITAj5Nm0D/Fs6Qcoch1HDifEVG+Nm/pvYmpqiqGhIY4cOUImkwmEUZeqrmOofog/H/oiaWX2ZDzaOO3J01w6qQLaLRMhnEDXbblRq9VQVZVEInH5ja8xrhvLxHdrGYYxq3bkSvqNRFEqldi9ezetVosHH3xwFpHA8lsmCyUTX504lUoF9S4j9SE+f/JXySb/CVkSAXF0JiqBaygaTip7rqpcRG4+Wnnt+/p7ExWKrRSPlm/Gjvw+cG9JTqjAi0G+3uDB/pPkE01OToeZbx3JOlPNDM+ObeIga4PBaGqYXeUEqcB4+xaB68vyjqdGyKfR8tKRVTcIX7MSKMJpky+JxoKC4XskpSgCx1G5ST7PunSodKtHftOKWGZ9So2EVqfYclfkPzz3FGUlrKfwix9TmknFv/7JepAeDXCy0UtduONueecUdStGs+Jq3ip/pLw6SIUG2qwaWXKtAoHDtOf/L7aOorOXwWYPTad9Ug4ciJ7Ls9ly44G3ZEYY9dxVnXqDaW/8a/QSCBFYJhVzEkUSZOXQei1E2gorkQxAjdPsrTwMQDoRfl6yXqajM88NN9zAvffey0MPPcTmzZuDd+zpp5+et1jlXBBCcKr6NxysfoaGY9BwGrO2mWi6GWuOmL7s/qIZZgem/m5BY1kMfCmVlaaiPBeuCzKJurVgdpD9SsnE78v+3HPPsXbtWu65556LrgBWimUihGBgYIC9e/eybds2br31VlRV5ZFz/8APL/wiXam9mI5/bTyylR0mGq7fPhutIfHk5lNqg1LLXYmnI9k4DS8Ir8oO/zh+Jy1JR4n0SvcnNEkCx04jLMGO5Gk6IhliN3Rf4ELEV55LNHl0+mZACuIVsiyCeIg/pUbfHcv2V4ReMD6yym5FuiSWDJdMVNqfhZRiBu6twH0WEZvsbFW5p+sMXYk6k4brYlqbng7iR9mIZbfea8713NQhphpFXmx8moRew/RW+UQsqaKXEq3KDucbHcHng6Ww8ZjvrlJlEaQTR8fmtzk+U+9qSwYQbT1fwte4aI5iOyZ7S79FQa1zot7f1l0SQll7//OWrUITuhM1yhF31QXP5anLNt1qNYg71ExX/iarWNR8dWO9Ttkjn0wkAzAjT9FyXLdgJtHCcVwLwcGkbIXZXpqm0dfXx+bNm5Flmfvvv5/Vq1dTq9U4cOAATz75JAcOHGBoaIharXbJZBjLrvPd4Y/wUuVvsB33uW7azVm/KZvuuCRRuui+fPiWUtUsU7I/ixNJfFhOLLcu11Jixbu5fEmUS6X8+mSykD4Ipmly8OBBSqUSd999N11dXZfcfrHWz6UwXzJptVocPHiQarXKfffdR6FQYKg6yCPDv4MqV+hMuZPeWD1Pf6bcRhxuk6UK3cla0Ao3mjI7ZaTpSDToSVaxhYQiCXwX8aPjtzBidlJQDLSUiW3JKGp0bQyWIXNjZpyNHZPYjsR0I0VHqoEsCZqOHrh8HrlwCw07gU4ziJUAmKaKFolzRN1blpDRsZG8z3TNxrRkNNVpk5+vWQlqlo4uzSaTaDhfgsC1lrQMNmfCbJ6RRoHuRJ20ajLcKLAhXaJPr9B0FJKyzdbkFLuNjRytHOfE9A9IZ13inG6k6c1U21oUR6X2p8wMGyjStFVOVfro7PbdVeH4K40U3dkayUhGl5DAtGVOOwlIzCi+9HS5jEgl+pR5nmnji5TtBllFZdAIrWy/yZkUiVEBmI7ErblzbZ8B1CPjX62VKXsB+OHKMW7IQ1a2uFDvZUvBdfFdaObJa+NoismUlaZbq3Oq2UvTUckG1soqoOqN9SQd2tYZ5+RaAAsRq+zs7AzUbofKZ3lk9D+Tz40BEi0nATRxcGiJFgkpXCw2LTe7TOHyAp7+uJ4a/T/kUxXq9kmy6k2X/d1icb2kBcMKJpOZ7XQvVTsylxDjpRDty/7ggw/O2Zd9JparSh3mZ/WUSiVeeukl8vk8u3btwpJafGXg96lbz9OfGQ3cIQB1rz6hO+WumDXFCVNgJcG00UV3coKMGmYqmZ7eli7bFJsFepLTFLQGB8prOWH1t62EzbqOkm8ie0F41XC4q/swU1V31anIgsFqDx2pIQBWZcocmVxLRm/ystQbrIijyr+2rQAm/kCjIoZ+qml0+6aho6nNtqpyU6jUHQ1tBpnoig3CadNd0TQbxbZ4c9ehIE0a2rOwJltpNqRLKJJgqJFnW7rIukQZVVgMtw7Tk6jgPzn+Nc8nG4GgY3Tq9+MIx8v9OFqk4VdkG1fKpUZGb2HZCqpio8gtBis9WJKMlLFD0UovPTiBQ8Wuonq7nDCeolPeTcXu56y1pu18pMC151uE7v97kmUynvWV1xqR7cPrvVovc77hksnJ8tP8SB6ystl27epO+B4VfTJp9dKwdbKexSuIysucBH6CKOaqMbmYWOXU1BTDw8McO3aMRCrBMe15Er3fI5+Lql0n0CQNU5g07CYJORyvI9yEBU2aO9MrCj8AX7UfJg9UzMNXhUx8KZXYzXWFmNlO93K1I35g7HId5oQQvPzyyzz//PNs2rSJu+66a15E4h/jWlgmQgjOnj3Lc889x8aNG7nt9lt59Pxf87Uzb6cj+Y0gxpDRKkFDJd9NokiCSa9IMCqR4rtO0lqVqvebaMV4zXZfeFMo/KB0IyC1WQqm6Qs9CtSGzT09AyQ1q60rYHcmLNYD6M9N88iU697yXUGq6gRE4TgzJ5DQjeYHy7VIKrDhjUGNZE2hSNTFbMsEwgfdJzJNsdipn6OgN1mVLGN4rrSCHrroomnDtUiqbI/UoDc9iqo0IplRvqKAYNrT10pFrBT/70GjFzVlY9uzn+doXKvuLQ4SapUTjR4kHCQZnIg8i09QZWsaSSgoWOSlJ5i200joPDt9Q/s18MnEy2CTVQfJcbivbzBI7e1JVGl4rsMosazRStTsOhVzGkl2Y0uKBOlIbVBbsoRQGWkVqIp0G6HZEYKamqMSfj7V775Y5ebNm9hwaz9j26b5p46/g84foEeuOUDJCNWfmzPiJrrsWlQJeXY8JQq/kPJs4yRrsu4CqWodvuRvlgp+Y6zrASvKMvFv2kKVfqNCjBeDYRgcPHiQWq3GfffdR0dHx4LGtpyWycVUg/0Ms6mpKW69Yyf7m9/l2dNfois5jenpZOlK6BIpNjOktWnykTa7dS+ttStZw7QVNMVGiqQ2TTWzZLUi3clqsOoVSFQtnW9P3kbNTpBRLHQ1XBU7CITj0GvX2bpqjMlqjtX5Ej3ZStCzJJ9scqbcw9YON/PpfK2DEbOTlGK1uVJMU0FJWJFYSXsgWsUOvtM1E0fgVd372VghCUqqTcNR6NNmay3JOEGFvxAO9+qng1obRRYMVzvYkpukP1WiZmlkVJO+iAR/yrvOjnAD8m7Wl0OtkSCbNtoC/lUzSXeqTiHRCCzDrqQ7SY85GZBdMkx77jffAov6DQ07hexM0KvVsJUtrEuUKJYyNBo6iia5iQOyQEiK2xNG7mBNfoQRq0DFTjIw1sOI04GqV4Ld+pak4pGyqtmslydJayZj9TxQRJZgrJljY7pIV7JO3VFJyxZr9BJNu8HDE/+bdGTy7UyE17ojGoSXHI42Vnv3NDyvujOFJruflazT2KKFIoULusvpch2Z+A0cHmHQ6GVvdR1VkcQUCmnVotHSyaXa7/1YpYWjOqDC6ZHTZHoyZLNZJEkirbj1V0nZwHFsZHnu7DH/3dw3/R02dnj3+CqRyfUi8ggryDK5kna6PnwdrotZJn7mk6Io7Nq1a8FEAstrmfhurmiAsFqtsmfPHkabZ5lYv4dn6u+gJf4XXclpIOy/UUiU8J0lLW913ZWsB1lF/mpRlqDoEVBaDc16vx1vWjWD+oCkYvCNsTuooQUrblkC01uxakqLXqfO1h43EFvxgvea4jBcCmNPNuHL+XxpM5YXYI66q3xpeb9FrkRUpyr8DNwJt9Vyx+C73RK6FQa/Zchh0ZWb7bbw9bkcATukUXZ0jLZJrpStVHCevuRJQW8y6gWhV+tlTAHfL21lwglf7pqnlBzNVIoWcU4GQXjBC5ObcGR3/P61jFaz+3I0QkC3PsbNqRHOGD1unEcCTbbp6qmgIshmDWxLRUo75JQ6a3rPQUJQtLNYqBiWGmTYSZFnACQUVSAciYTS5J7u0+4xI9cqWjMy7sm3JGWLDqXGBfNZMhERzZzaYtpTb85pBmXvfBOyxbDZEVx7n/wNUUWXu71jWpTMwbb7dDHLxLYtHh/8LY5P7+NToz/J96s7OG924EhK8IyGIp0hrGSedMId02Rlir1793pilQfJaS6ZKJKgao/N+m10TC0MbHVf8FnDPoPlLLyN80IRk8kCEXVrXalA41yTvRCCU6dOBX3Z77jjjnn3ZZ+J5bRMZrbXPXr2IH936GO83P3nJNb9f9jsJqc1SKt1yobv83W3TSgmk16mVrRQruzJdkSLD/3srKxeoe5VWWuRGpOalcMR8HxpK1OOb1pHChIdDakpuHPVEGs6isEkHu3vHm1UtTpfYryWY7KR4SydCGc2mQQTnreydy2f6BnOyG7y3FtRl1rNUys+NdLPhlVTKFpYvOhDwQEEW6VxehPuJNDrWWMAemSCjPr+R40wo2lvZQ1HrW70yDUzvAksmzACV5kcceWUW2G9ynCrI/hbRALvvrJwOtHCcaBfmWJVYgqQONVcFbjmfAIN0qcdCYTDQ10DyDMylZq2FrgQ294k3+VkaaxTSwHJZnWDuRB1721NjqPJLbIREk5IgvFoT/uae47HGv00hftbSYJaK4zpaXKYLj7cbJ/E54qZ1FsVHht8D6uy3+bxxo7gjMKWAu6/DXv2uz1pCDTFfRZWb1rDQw89xG233YZIWSQiVv3hl59jbGwsyBidOaaXky+RTU5RakWKM60js7ZdalwvUipwjckkKomy0L7sMzGTTJrNJs8//zznz5/nNa95DRs2bFh0T5PlskzK1jhj6b18ffA/8bUTb2Na/Vl2bvwnNHUSWRJtlsSUJ81RiLiyKl6BXXeyhv+KmU7o3mpY/io4nOT8SveuRD14KW2h8N0LOxk0sxiWn7Lqn7MgZzZYk5wmpZvIEkzX3TTabDIkrHwqjCMAnK938szkVpCksBJfEbNiJW0E4020QXwjMnn7lky0r0nL0hka70JLh5OcbxH40CSbjWKSXb0DNCKy+6MNdyLsS4XprNH0aD892HRk9tQ3gCSTUKwwHhR5pkpeS+FMm76WEvx+oBlKzUcJ2C9AVGSHLrnK9tQYSdnkTLMbQ2hRWQD/x94fEq9JnOG2wnnStE+ChqUG11GOqBXgW02Wzc6uYS74gpTJMFaSm8NNCNDAW4xEanCSkqARIZy6qdG0UpxqrsJo+zychB3JvU5JeTVPF8PaHphtmYzXznJg7J1sKBzkyfE7sOYoZPSfhEABOoIxw0bxvPlNu4EsyxQKBfTuVtt2llpkcHCQJ598kueff55Tp04xNTUVtPvWe/e542mEKgSVq+Dqup4sk2sWM1mKdrpRRCf7aF/2u+6664r6ss/EUhYtTjVH2TfxaUzrMEJMsil9mp41a1iTcVdpU60UWa0VmO95bZqGraIrDrY3GXQnqxi2RkKxg5VqVjOomllSWr2tqn2qmWVtdpqsFgaXfZdATjdoWGnSap0zjV5OW64rzC0QtNFVB9uS6HOq3LB6jGozkr3TSgBV8qlm0C2xkGowWc/Sk3EzxboyVR6pbp+1bDFNGSVhR1SBw/HajuT61X21YkVg2TKqErpLooHWSi1FsmCQ8KTlJam91S1Ap6hxR6dbV6DJ0SBwhtXpMlmtxWgzz+pUmTWpaVqOjC479CTd8/he+UamnCy9uGKPdUsnrxtokZoXn6RynpWSUGw3kw44UVqNFXH7EbGsbCEjBGzRLtCh1ClZSbrUOk+VtgERvvJ+4ruttqbP8/ouN4idl5tURSTt1VGxHILfO8INmAtHQQK2ZUaQJSi1MqzJlNtjJXqNuq2RVkzSimuxnGr2ULTT9KkVclEykR2UyPWUJIvD5RuwJYVoG5lWJMGiYRtIQNnaymCjXQImSiaHxvfy0tjHSSSzOKzlpNEDCSuyWGmvp2q7voCEwpRp47dHa0T6lhRbZ+iOGDLZLsGdW1+DYRgUi0WKxSJHjx7FNE1G02fp2eC6xAwRWppV8+qQSW9v7+U3XAG4JpaJEGLRbq2ZUBQFy7I4fvw4+/btY8eOHdx2221LQiT+/pfKzbV3+mU26l/ghvTz2I77sha0ME13wnOtpBX34ZclEVgSfjW3LMGEJ56Y1SKFhlbO+yzcn9+bpJCoBe6tKNnUzDw/HN/GS/WuUG/L+04xHW5OjpDzAq3phBEUGEZ7b0xGChPHIn+fKfcE9RZR11QQKwna8DrB5BOkIUceiZYRxhgAdN3GtCUsS8IQCorioCoO9YZXWR5ZJ42Vs7ym73Qgu9+drM3ZP2TC612iyQ5DdXcF2pescqzewymrt02Cv+WESskzM7oAip7rMee5GU/Uetsq/SXFIfo4dcsVtqdG6dEq1B2dmq3zcqN9EvHToCVZkBIG/2bd3kDdtyeS5g1uNlW0Biew9hwZtWWxrcudxKO6a35bZVkisNgKSoOmo3CguQZNtnEcyEcst5Rk05EIrdGEbnLU8mXywxsYVZGetsZAqDw5ZXG2cQErIkfvx0u/PfhVDhq/S7KrhJSuoihQ91ycQdK11O7as2dMZ5qUx6sqAmirgq+ZQ23bGo6X2ZVI0N/fz0033cSuXbu47777OK+HEvtypCC2bB5aNtd3MM7YzXVp+ASyVHLxPk6cOMH4+DgPPPAAa9euXbL9wtJaJhVTZcTzM0u4LojuZDlwR/kSG33JEo73ljY8S6I3VcGf6n3roidVCawTx3OrpLV6EDdQ53BvRavUT9f7OWKsAckJGk8pkiDbMrg5O4Kk2MHqU5ag7Llzoqq2UX+1ooQv+ZFqf0Ac0diHHTS2ihCM6bu38I4VSUf2XXVRld+WzvnJTtRIynDDjympAhCMlTPc3OX2q/BJLac3mfYq3XORmFJ0aip5bhnTkXmi6rrpEoodIQ7PBafaVL1jRt1xfhZdRm9xrtJBUcogy4JGKyRFy3v98nKDLckxxswcqiQoKHVONlcFZBrUh3jnrsg2b8kfIqWYTLXc81itl9sSOEyhYUbmOX+8jg2b0xOBmzGjtbt7fFR8wU4JjjT6KYkUsgQNR6cQ+U1GtkmqFtNeTORYcTW245OSCAgzlWhhes9rSzRIyPdSb9VIySXONUKts6Zl8IT4Z2rJz85q+Vz12wb4xZczxuzMmM0UyR2TH59q2uG9btntPUwsZ7Y+lyRJlKmh5weD+55PhS2UbUrseeGfZ4lVLiWup6LFaxYzWcoGVhcuXKBSqZBMJgPBw6XGUlomluMw2HArk/NqnTGvo57f6yLlvUQJxWKyGfaVANfPX/JWo/7koskOZT9VWA4DqVPehBklDj9gXNCbNKwkT41t5YXqGgJXgaOA43CjNs4DawYwTZXJeq6tz0bDL9BLhyvSaGOs3lwZw1KotRKMkHclz3GrzkOl4dnNoCx/svAbVhH6+v19RFV+p6az5LoaaImoiyys1Rgr57ip6wJlL9somr476V3zvlQ5sNw6InEoP8j+yMRNFJ1c8PtASytCdFUvKJtJhNc+qg9wuBxeX6MVBvdtR0ZyLO7OnGa1ViIltxg3s6QVi+ONUOnX1+3yr9Ud+dNsy7oTsG8NJWULNUImhlACNxeEQfuMqNCfLQdWbVeqFsi4RJM1pAi1Hjd6w/HbOtnIIiLjXaepVgbLUTirdmBbIREZTqQuxuoO/j5ZFPyHNU/wGxse5WzlnXzvwv/FDye+wacbf0ItNXevk4q3KMF7F4KK/sAf2r69XyDpu1Lb9bnaA/+2KM55zO+c+yoJvUHJ8DMWDVQ5vDdrt1pomsbQ0BBPPfUUzz77LCdPnmRiYuKydW/zwfVUZ7IisrmuFLZtc+TIEQ4ePEg+nw/6jiwHltIyKVernDV8N0qJs/VuhADDm9RWJcv4q69ALDBCCFUz430WBuYN233Ys9p08Fs/IFlINKl5k1g0cL23uIMDxjpsyQwm7aRt8lDuFNu63d4YjpAoNjNkE0YgVui7THTVptJ0J45CuhF0XFRlh3PlLg5NrkFIcqT1bkgK/lSlRQjG7zHiuy8kKVxR+xOCHytpNLQgMUnTbVqGF1hWHIQj6LSq3OS5cvz2t9Fr6MvCyxKMeKnAfakKFY8oV6dLvFzt4izhBAhhtprWltHlN7YyaZi+nL/7fcPUOFUPtbjsiOiijcwtqREUHMatLB1qEweJUSNP0c601YeAWxeyhine3HeUokdg0WSBtBT+3RQKrYip5QgZHMHOvjMAlLyFhiIJxjwruaA3KXsWWcErWDzT7GrrXSPPKLbMellwDUflVHUDtqq0FVZG5feFF29Q62k2SM8y3UxTbKXo0oqcaZ7iH8e+i6o0mJ1PBY2WRsuvEyJ8PiAikqmKtt/Y3vH8ZIlGxDLxCxbDwU3POqYQgpK0B4BiI3TdylKYjSYSpwOxyte+9rWBWOWJEyd48sknFyVWCa5lcr2QyYoqWlwIarUa+/fvB2DXrl0MDAwsW7YVLI1l4lfgnx0aYqy3w92vJDjX6OSm/AUS3ouZVVucb+boTtSDCaU7UaNqp0koRmDRdSYaVMyk66rwYw+KyXgjS1eqHkxo4E6oGb1Fh0dAj43uYKC5BtQ6SDaWLbOaaR7acIqEanF6uofufI2EalFuJZEkqNRTdOXqaJHU0GorQT7VRFNsJuo5VmVdnaOmrXO84bpq2vqdWDKq6oS1D7LAdtzgurBnp7K6xBWeh6Y5GKbMdD3TljXWaCTQE3VSiQZb1TH6cuUgGO9LxRQSDSotnZzeIhlJBa5GJEFGGh1s18ZIKiZ/P303JGSkyIH87Kykl9HlysdHMrqMJCnNJOv1Inl2YjNNRyOFe7xoFleXXGFzcpy82mTE6MSQVTrVOt8cv829Dt6mfu+YnFTjp/v2AXDByNOpN+n3GpopkhvfqDguGTRRsAWRQlTImkaQaRaNL1QimVbjRpa81qQnWaNm6LzY2Ni24kzQPmHnZMvtKSSbnKi7Tc7s6PWKkKeQJajC6/peQJPdGNmh2lqen7oDoSoIL/BuzTgGQNNKhj1fJN/lGhadAsgqQWEuQMtza/oWWtMLwB+bPkp9xlQh0R5zAvj+8ONkU+7nLSciuUP4dzSjS9d1+vr66OtzFw+NRoNiscjU1BTnzp3DcRw6OzsDTbF0On1Z70yczTUPLMbFNTIywuHDh1m3bh3bt29HluVlTd2FxacGR0Ua165bz6FaHktIqJLAcBRGjQ5WJf0CRInpVpruRL1N0qJqFkgoY6SUcIU12cyQ0Vqk1XDVXW4l6UrV6U7O1t7KqC2+M3IHZ50CflKl4tjcmzzLju4RWpJbiu3HOQqpOlVvtd4ydaBOJhm6c6KTRdnIBGSiqSbjkreiitxqd79WW6zEtOQ2i0lpy3TyrJrI92MTBXI9TZq1ME5j2QqS6bA1McH6bNG7Nml6UvU2K2KymSWnTwVNqtxiwEgcxktn/eHkjYyZBXoTNVcG36tSDyv1oVpP0JFtthU/Nj3LJalanC53uz3eIzEkKeKm25UfoGynSco2fXqZwUYvL9Q2c67RSS5lBIQrSaA4Fj/WcTxwv/kWUlKxmGhmWZWq0qvWONfqxLSUgCwcT7RTNR22rboQEGAqKiYZuUHNSDrvM+e2UelIo8gi+F1yhlSNIglUSaJqJyjZCpIMlmwG1zZ679PNc9ycGeHlYi8naqs5a3egZNwEigwtZO95FMpsMjGsZMR16ATH9v/v35+GkUBLu+9CwyMA0487emTyxIXPkdHaZZQ0aTaZ7C0+R6dnlEUdHk2nHtBJ00liCxtFmu0RuVKxSh9CCGq12nXRZRGuMzfXzL7sN910U5BGuNxkspiixenpaXbv3o0kSezatQtV07FRGPJy1mWgaGbp0JrUTD8Txj2vVclykJVjexNIZ2I6cCn5Ve95vYzhV4J7L11aM6l4Lp6EYlO3NL42cienvHoHIZt0OTV+NH2Cu/rPkNZMpqqeJpQ3QaZ0k4al4zihcGE60aJphlXePqLdAgcrvUENidQWeJ9dV2IFWl/uv2U57GHi/9JPHZ6ayiDr7qd6ysLxbnmHWuF1XSfojrj+yq05YkbeZJlSzSC7qydVaasxGWvmOGH3B+48SQqzt6Ltjpte4D2TNCJWUngNXiyuA0lCVR0sK0yBtgyZncmz9GoVVuvTjBgFni5v45+H72DSyoXuLd+dIxzenD/ChnSRspdU0WZ1ep0Z+7UyCIHRivQ98ZqVbcuMoykOkzX3nDtT9SBWktXCxYFPrIatcrQVxgb8WpLkzC5jgCbgeLUfx8sGE7IdLgIQOI5MvlrnhuQwFxoFvlW6jdOJbhqyO3nOtDCQoG60T/aGlQiPLAlsxwvwBzE19/7UIjGpmveMtrxioabd4FTpJB3Zw7NcabpUb/v3y6UhWvrp4N/pRBh4r1gjwfs50CwwasxulzwTvljlhg0buOOOO3jd617HLbfcQjKZZHh4mN27d/PMM88ESUR+8eRyurk+9rGPce+995LL5ejr6+Ptb387x48fv+L9XTdk4vdlr1arQV/2KFaiZeL3S3n++efZuHEjd955J5qmYQv3tTjddIPwGaVFxYt5VCzXf53zXnBVFpS8ymnN62WuyE4wEfqTviyJoM96JtJ/o+b1b5clwT+ev5MpkXUnGCG4VTnL+zY+yU1dw8HE0vJ8/l3pMGus5ahMG6m27K2qF9SOBubTyfDvgUYPtp/FFSGOQDE4EivxCSYqrOjMjJXoFrWajkjSlh3WqGv02dPs6DhPQrHoTNQDH7npkXAh0Qz6bkSD8EU/o0szmPBId1WqzGPFmxCS3KYT5le369GMLm//muKEGV3eJP/ydA+jzTDWYESkPhKtFnfkhhgyuvne9M383dBreKm2KUyhDuRPBMIR3KQMsznrFvdd8JI0ehKVyDi8sck2KjZNs51MkobJmsI0ECYLyJIIWjh3JhvUvPF1eJPmU+M3UI+4c3yJmNQcIpqmnaQkUjh2ctb2kgT9zTKv6z3OtJVmt9iKqXjErITnCS5R+0Wi9RkKBoadmLPNsf9/y4tbRSVVSl4MznBCy+T7Fz6LLAuv5XO4v5Tc3u/k60P/iJao0/CIWdfMQMDToYUmr0eRCrxYqTDUbE8zng98scqtW7dyzz338NBDD7F169agX9HP/MzP8MADD1AsFjly5AiGMbdCwWLwxBNP8MEPfpBnnnmGRx99FNM0edOb3kStdnkV5blwTbO55oOZfdnvu+++oC97FFfLMrlUU54oLMti//79vPzyy9xzzz1s3rw5OGfLe2OGvCB8RmnR9Drv+am9/clS8GIZ3iSTjwTXfW0ut6jOX3m52/Wkqm2pwkeL/Xxn8mZKnv5UgRo/1/ksO3PDqLIgrZlcKLnZYJ1J90HKJFpUG95KU0hMN9Pkk83gWH5TqnSiFbxwHek6DVNlqp5hinSQ6quoIrAgAol5mUCry4+pKNpsMvHnc+FIVIwkquYElo5iW+zMDnFPz5lgEldkEWQqRZWQ/eZf0Y6A0bqQSa/G5FBpTRBwjpKnT2BaNKMrYnH5k3Q2YWA6EnunN7R5/v2Vc59W4p2bnufg9Dq+NnEX+6obA1ehP1n6FpokCW7WhrmtI8xu8t1QBa0ZtBZuC8JjBpIzAMISrM9Oh/+OvHbRWJEviZJSTY5VV3FO7kJLhefvk3pKmm2ZuMkfUkCu4NevOGxoTLImOYmsOVwwCwhZCiXw/XsWSSH2r4VhtVsmTUcncrtwvKnLt4BM71mLNksrtvzAu3ucerNOQ7hWhKoILpQ6gm012aZhuzI7datJTT8AQCkSePczKwGQ+jC5BRs4Z5yddU0WCk3T6O3tZfv27dx///382Z/9GT/3cz+HZVl85CMfoauri7e85S1885vfXPSxfDz88MO8973v5ZZbbuH222/nC1/4AmfPnuXFF1+8ov2taMvEsiwOHDjAiRMnuPPOO7nxxhsvqih6NSwTuLQysQ/fijJNk127dtHZ2dn2veUZ7Oda7gQuHCmo3vXjIZpsM+YVjineajCpNoL6CH81l9FawQrbX3WrskO11YHlSAzW+niyug1LUrAsmTvkIX5hzW5u6Bhje9cow94L5WY6CVblyoGroB6pdi8ZaZK6SdMjjmjq6HQjHfw9XstzbGo1IEVa+YZ1ItFCMzMQeXSh6uGqP1iFSq6q7kQxH2ypJU0Kdo239Bwi5RFGVF6m5gWUuyLFiabjdwRsUvJWvZmIe8cUCjVLZ29jU5BVl9RC2ZQoMfipxIlI10mfYBKqxd7RjdTR22IlAlitFnl79z6aps6jpZtnkWnQCdGbsNeJCV7Xc5KC1qTorYoTkcSBsZZLgL3pcrDw6FAabVbQeqVMd6YayOOkLxIriWqqvVjbCLJMIm0G5+8nAURFHn1okvuZHXGBOQ7c5pzjjRsOs6VrzM3wM10RUEVxizej7kx7BjlYTjuZNGz9IpaJ+zvTs0Ki/efHW473W/f9yTj1oPARYKLaHosoe82y/vHlb6F799Z0QmsrGk+ykDlS9xpyXYFlcjls2bKFX/zFXwTgyJEjPPfcc/zET/zEkhVhz4VSqQRw2UaBF8OKzeYqlUrs37+fVCrFgw8+eNF2uj6uhmUCYfvOi2F4eJgjR46wadMmbrjhhjktMNsLeEzZWZq2isBdKQF061NYQiBLElUzCZTJR6qbp5tuR8To5DltpOlMNNrqJEpGB98au4GKSCMQdDh13rN6P9s7Rxmv5wL5k4zawnZgdW6awXIvPdkqlUaKjN4KffaSCDJ+akaSpF5tqyuJ9iZvWAlOee47EXEj+CnB0QnWtnyRRxF85xgyStIJJlgZwfh4B6lOg3oxQdauc1fuHP2paZJqmPeT0w2qpkY2IrOS0VpUzAR53Wir+J9s5ijoBr2pCqYjocmCjNbi+xM3YcpaW61K09TIJlpt7jFXmNEgnTbCjC5voqu1dI5WVyHrngyMJaGqgo3SBG/pPExaa/HUhW0gSdi2jKw4oRUW6Uu/Rkxxa244OOa4kaUz0aA3WQm6Rfo1HEnVYspM06vX6VWrQapyj1zlhj63nqJYzdJfKFFIN2hYKinVIhepi/FjQS9Xujnf6qTP04MzHQVVtpC9RJGsNjtxt8Ori7KVlht4dyzemDrOrb2hRWXaMmOkKWAgS67Ap6I42MLtlWMLCY2QHCzRLtpYd1SQ3WdKksP6I//+B+6uiPkyZvjJChbChE1dE0xWw/hDzWmfU6rWKELcxHHzEDmPyyQ5fIbVyDq2brc4WncAiRFj+KJB+MWgXnfjOLlcjp6eHm655ZYl3X8UjuPwa7/2azz44IPs3Lnzivax4txcC+nLHsW1tkz85IBjx45xxx13sG3btoueo+WRiZBkBhvdCOG+IJaQ0eVWUKXuWx+diTJ1b7Xpr9xcbS5/TF6qcLJOw0qye2wr3y/eSIUUMhYPaaf4v7c84mdU0puuUG5mMG2J/myJs6Ueb1xejxA/RTnSq6LqWSv+NtmEEa7Wo9laksQ07iq63c0TFi4Gn81VBd9ofyGnJzPoHQYIh03pC/x07z52dIxS9GIcmYiLp+i5t9KRCm2/2Cy6XTOoFQljT01H5azTPWs8/oo+oVqBKybaU913BfoB8RfGNrS7aFqwS3qZ925/mnzSJfvjhlun4MywTPzjrhJFfmrVfnoSoWXlr4rzmhFYKVGl47IXr+jXy7SEhCrZ3NIb6l5FrZUpT+oln2gGmXp53U1l3l/b0BYrija2ajlamy6Xjw6/3bLsYFZlbkmOocxI7z1d7gVFCi1FK8w2g1A92i8ecmasc6u2CkjgBdVnioH6/3dk35JKUvPMtYplkbcNFFmQSzZDIprRBrluXeCJ4lMYSig+qUUKOfOR305bq1G8PpuWsOYVhF8oarUauq5fsdL5QvDBD36QQ4cO8ZWvfOWK97Gi3FymabJv3z5efvll7r77brZu3Trv2Mpyk4lfsT/XMer1Os8++yyVSoVdu3ZdVpjNjrxopxvdIGDa1rG8lVLJ84V36mEgzJeZ9ydFWYJi4Od2Pztb7eLbo/dysLUOS7LYKo3zb/Iv8pPr9qMrNtu7Rjg5tQqAjYVJhkq9gGBLYZzpRopN+XHqLZX+bAnLkehKV71CRSmQB/HvhqbaVLyJNBlx95yp9ARbRVvqiiCLS4RdBv1as0i6rNPyq5wFxfEsic4WeaPOT3Xs56c2HghcQH6AtztVC1wl/kq9J1kJPvPdHvlIED6aKlw2U5iOzO7yDUHwVmsjPD8+Eu4/mtHlqwFkEgYj5QJDrU7v9AVrnAo/se4YXf11np/Ywr6RjZwcX8Wk4roFfctMRNKfV4kit2fPIUvuvfYTA1KRSXzSc2/1JEIJfV+aRZUEHXqDu1cN0ZkOM5CiyQ2NCNn5BZ0ZrcULUxuoSqm2JIOoa8kSMnl1NpkUPDHIJC1e03uavnyZqq4HrYwBztR6XAkZy7fwfTKRZxzHI4UZ733NIxvHv2be51FXXfR3qhTK4iu2RcYjBTc70b3+iXyrjSyb9jjfn3oESTGpN92xa1pY8KurJrrci4TMnmmLTjVMAhpqLj5uMhPVavWqtOz90Ic+xD//8z/z+OOPs27duivez4ohk+npaZ5++mkcx+HBBx9csN/OF3pcTsxVuHjhwgV2795NZ2cnr3nNa+ZMDpgJ3zIBOGd0AhIVR6PspQX7j05fshLR6/ICuKlKkATQ8vzKCcXi4fO38c/FW5k0c3Q6Nd6afp5f2fwEd/ee5eVif9Ch8MbO85yYdFfGWzvH+OHQdk6V+jhT6kFTHCYqeRKqxVQ1hyILyrU0QoTHT0Qmk5qX0ZVPNbAcCdOWOdnoDoLtUjSLK/I+mKZfyRymywarfi+FtjKVoK8wwb/I7ecNq47Sny57GWthfxFwLQK/NbEvOaMpDkUvXVaV2t1b4FpwUTw5fiMNORmxQuyw4VZbRpfqHTN8zuyIzPuz45sACQ2bdXKZXZtOkUy410vP2EidcKS+Dv8O2zOOsV4d51+u3tuWqusnBvQmw+wtnyCzaosJL/05JYf3ZWNhkg2ZIrpiU/YUCnKpcFUd8dwEVpojJA7XXD07VRY062FztUCc0nEwndkTW0FpUdDqbClM0pFxr62ecDg0HU5M53016sCa9knERRA38q/NDBHHqkfqdqudTPzBBfOtxw0yoTtrqz4VkD5A1XSJRpah6DXwAphoDdL0BB9rjbBQcKoe/q3J/STkmxg3TXQ5jLksR9zEJ5PlghCCD33oQ3zta1/j+9//Pps3b17U/q550aIQgsHBQU6dOsW2bdvYtGnTFTHxclsmM4/hOA4nTpxgaGiIW2+9lf7+/sv8OoSfGgwwYhVYK5cQSBStLH2M0+EVKsoSjDdzbMgWSXoTWEKxmDC6KSSmkSR4bPQmJhppepQmfaLMbZmTvHHNIUpGiqlmmq5knR3d5zle7GdLxyiyJLE+N8k/DN7DObmDYiOLhuvCefHMeh7IDOIIEbhgLEtBIAW+6HyqiePFdPyJQZEF0/UMF2p5WpKGbAlkxUb2srhkhTZXWBA/kcOJwLQUErpNUjFY3ZziX20dYLqVZlNuEsuRMR3ZneQ866ErGVpt1VaC3lSVfCJa4JmgO1Vv05vyf+sH4Qu6gUBiwOn1KvXDtVXD1NAUg0RERNInDk12Aol5/xyOTPRTNNJ0KQ22rppA020ahkYqMbvPiD/hBROoDBulCW7KD6NIgr5kmaKh0pmwsD3iyKgtxlsZ+hK1tiy1MSNHb6JOl1rDFm48Z4oMukeslUaKQqpJSjepGAnySYNcshEUFfqZVYdKayhaGXq8mpxmPUEq4/atsYWEZtu8PnkKQ5/kh6fX8eCG8aAu5LyVZH265ErzN/UgRVzPWQxM9bG5c4wJyZ0U3WfGDMhEBCngLoKyxEhszbJlDG/da7Uk2kPz7Wnlsub+zhEuyWqOxZa+MaYr4aTcigTSS3aWXly31tnmEJLU693riJx/xJITJDnbTANVjMi6cmgJMrpmwhd5XC7L5IMf/CBf/vKX+frXv04ul2N01HWLFgqFeS2KZ+KaBuBbrRYHDhy44r7sUSylEOPFIMsyF+qnSSZ3sH//fkzTvCJhSTvS6KEsUkHA1H/IV6dK1B0NTXaClWNvwq/7kCi3CjxXXMPLxmosWdBsqvzKjd+kK1nn8ORqVNmhO1XjfLUQBKW3d45yZGINNVSebNzIWLNANmcE4oGyDKNGgW9Wb+Oe1hk259wXTFfc/hG+ZaEqDsVamnym0VY/UmvpHK54sQBLBk980bIU9MikC2D7HQkVm7Ro0C3X6U+W2JQZ54Y1Exye7qc/FRZrqrLDSLWD1ZmwM6BLCClyuhFMSF3JOk1LIanaQepoTjcCCRWlTegxR0qx2FPdii0pKJJo+963UpKaFfRxj6Jhub1kEppFpZngWLmHzYlpervLqF6Kc6OZmEUmTUubQSaCO3KD/NTqQwxU3NiVJju8XFnH3YmzbTVDU0aavkTN7U2PO42a3s4Sss2UmeGFxgYa6Oi4JBp145SbKfJJg7RuUmklyCcM8nqTuqVxrNnf1qs9Kl9vm3CnOsyWgisumV9zlj2VHFvSCvubnTxSWY0iCZdMWolIvZHEuJRDlASWV1vix/fCAHr7ROlnCdrRzpctncD9FahX+qlvXtKC9xxLMihksIRrkW3RplEVh2SkrTIRa7XhWdy2kDja6CfpLx6irWcixFZ3TPZMuwkxk61y4NsZMUawhIUqLd2UutxSKn/5l38JwOtf//q2zz//+c/z3ve+d8H7u2ZkYlkWu3fvplAosGvXrkUHmXyrQQixbEyuKAovlv8rg7VpSP4sb7z7vVeUqmcJEVmpS0x6wo3+26xIgimjk1WpSRKeOyejGRyvbOOlSidj5jpMpQ6Kg2XJtITG10bv5Jc2Pc22jjHOlrrYUJhidbbEmUoXmlxCCJkD9XWccHrR9VAbS1XtwF8tHBmhwhPTN5KQj9ItKnSlq4CEkNz6GFWRaLQ08plGW5pp1Uwy5fVGj1bC2x6xyF4vjwINbimcYV1qmvvWDtKwNXLeavhU1RdVdH/fnyrTcFQ0WVDz3BQdkQr36aZLJulIhtFUI8uaXCno+wJuc7CcPtVWY2LYKt8fv4mGlMRsyWSSLXTNClbs0T4nNUOnI91sk/L35WnSeotnTm9ia6pEd3fVO2e3z3q0eNBHI6Kii3B4MHWKPt2tb+jQQ/dbycp416CE7UmiWH57X9VkvJmlL1lti6Ucb/YyYnegy3aQZZaINO+yIscuGWnyCYOkavH0hS1YkormxUokCSRvAtVMk7d1HGBVpsyxqX5WZ6cp6E0SiRpfKd3AkOlZdX6t04xzTqYsXhjdEsw0YS3KTBLx/u9fY9klkbTeom6Grapv6BtjlELwO39v0cQOTc5RtRKotk1vwZX3yaaMYKGR1GrBeVree3Cs0U9LaCSE7VpsXkKCJLm1VP7fdasbS7hegUmzxJpkGkPUsb0g/LrkepYKy60YPN+aufnimsVMVFXlrrvuWlRf9ij8bKvlcnX5nSEHawV2FF6mv+fPeGLkQf5p8IM8N/ZdWvb8K1RnWlBTHplIUpjtYtgJymaSYaPAV0fv469GXs93i7dwgQ5EZNXm12ocdlZzstyHrth0JetBwH5jboqXxjfxv0Zfy1mtK3BN+ZaCqjpBjCP0vkk8Vt3OUKWLbMLAERItVMbLrq/Zd/dkUw0s2x3zweKayBlF6gH8jC0v8P7OzoP8h03PsiMzTl4zWJWsBtlJVS/92JdEUWWHsbp7TH8i70nVZsWReiI9XhqB5Eykq6QX6+hK1oPfVqwkZ4VLXr4kjaY4QawkaqW0IrES/9b5hHn0XD+b+qfIZkJ3muE18jLs2QuNpqNiWxK6MHnHhud5oOfloFCvO1EPVIvrjo4jZDTZCRpV+V0PAaY8ZYNerxJ+wszwUmMDICFJYdfHbLoR1IpEizD9uMu0kQqacKmKCK9F2iTRanGPeoZVGZfsdnSNoss2BwY38I3xuzhtrIrI3kht1yqKSqQyPpDYmbHeC3TIoj1h/Hon75qslUvc2DsafVAjzdXCpAFVylK3NNaplWAfACWvHkpTTGpe/EySTZqOyqH62jZRUFk1qXmSLgndDHoD7SkKurUwntuxjEH466mXCVzjAHyhUFgyK8K3EJaDTFqtFi+++CKmaXLeSx/t0CroUoNNqe9xuvQJvjf8Or506kN8dfAvebl84pL7s5z2FUHRmxiQYLS5iicnb+Cpyo18YeJBDtgbOWt2YkteaiSAbARNsxzHbfkqkPja5O2AW+Vt2ip1U+P7o9v5YWsbNcV9oYU/WUbcNkG9R6TeQUgyPyzeyFg1H7Qi8gnK12+SJdd1su/8esatyEMfCZ5GrRTLVDlQcfWeNqRLtDyiCaqvvVV2f6ocpKz6mUdRfS2/cNNPjU0odjA2P506qVqBZlW0RmSimWWskeP52qaIvz4co189ntDC9rCBhL4U7c/hcOr8KvS0g6IKND3c3vb2EXUx+Wg6Gl1U+aU1Twe1QtEK9vGmu+quWRqOV2tR9qr3V6UqWN5YfEJPKyZjzRzfq7gSMD5Mv1+MLCjW3GtTSIVtAvxU5r3T69szmjyy7ZaqvLPvBe5cdZbhSicDRZdwRpt5nrG3UFZSbYTg3/G5zrlmhvEH3woOf+vVGPn/l51QMt4XGLWTCCG4v3fQFebEnq1fJoMVEFmKsapgQ99k4O6E9vToahBglzjV6GXEUz1wIrGScj0sxi020+Bs5GzDIKt0BJ/LUhhbWOog/PWkGAzXOGbirsSXxtTySWmpyWR6epp9+/ZRKBQoFApMWkmqlk5WbVE0suS0KWTJIaW26BD7sZW9HCp/kW8MrUeig4K6k7Tax9r0JlZn1tCf6sHyVlZCCCQBVSsJlKgJjRenb2dSAkvo4E2Wlu22pZUkL6lYErRMjaTudkD0X+DzooMfjm7jdf0nyesNvnT2fkrpNKouaNlSm+qtNqPeQ4skZ8qSwEHCQuabo7cGvv2qNylEm0BN1LLsraxBUsCxJde/HFV9nRF4P1R34yq6bHOq0sWW7GSw0br0dBDcH6vnyRYmgqyt3lSVspkgpVpBjCmalVVppehO1dsyoUpGiq5kva3As2om+WFpI5IqY9qgq+09zP0eMKoiaFoqKc1qE7M0bBXZEZTLWfLdDWo1r6ugDEZTJZG0ggQDe9ZCSXBTbpi3rt9PSrU5Nu2mafelykG2nW9F2SjUzCSFhBFcQ122udDIsTZdbqubeba6mZqSRJPtQI4+euSGmQCqqIpDqZmmK10nl2wyMN3NpJMjKiphC5kus8I9ybMkFPcYa3NFAB4f3c4pqQ8nJ0JV4ADuM2Ize3FYszT0GQKRYbW/+/+2rpqGipoyg8nfcBJsVIr0eYrUacmgLiVm/c4yFTTVQqBxvlqiu1eg6ZGWwJHzbFnh1Heovhb/iokIGUYty6atMdLoBYy2bRqR+WapLZPrqTEWrOAK+IVCkqQlzejyiydPnjzJDTfcwKZNm3jppZdwDInBRje35s4Hq0O/Qj2jVRlpFsjqLWzHoi8/QLFepS6VGatJPFFKuFLW6U5uy9SomglUxeFM1TWbp22dPr3OpJlGVVo0LQVVEZGsHwM/CO+6j2x01caI5Ld8t3oTXVM1ftDYzpjIk8GdXP1sKf/l1TSbliUjyxLMUPeVFZdMFMWhRgJbyCjYQV/1XKpJ01IoN1M8N74BR/XSPS2XTKJZXNECONuROGcWmG4l6dCbgexJX8K7fmqLl6udrMmUg2u7KlUKznmqmWVtdjqoE8nrTUpGilzCCGIc3V7nQF1xgn10JuvULRVddthfXkdDcyciw1TR1RYJzQokzKMTZKOlkdIsEpGYTK2eoKnoQUxB1yOuo5ZCImmFM3lkkW6agj6pwgObTzFc7yCllgMLL6HYnK/nWJ2uBFl7lpAptrIUEqWgURVA2UqxljKrkhVsIbGntJUzdjcZxc28atludbsmOxEZ+EgA2dTpoo6EYF95HWhu3MzfdiNT/MK6Z9AVm0orwYmpHjbkJ3lyYjsD9JDU3YoW23Yr+30SCdaEc/g6qnaCLtxzCKxAvyeJ30VSCgnKtFRSmEGMp27q7OwKiwILWpNJIyzs9UfRsmRSwEhFQUu4rrl0qhkkUCSj1fv+dXZkXm72kvIWV1GngRINb0nwUtl9l4pmuIgZM4poijvu0dZ5HOEgS0vj8LneLJMVU2eyFFBVdUnIxBdpHBwcbBNplGUZISTOGO7kn/V82D2J6UB1t9x0zV5fTyutlwGBLAuq3ncSDpLkiuq5oUv3t9O2ziq9EozDd7nI3uQpyXbwmT/pqaoTcSELTEvjH4p301LVQPwQwmrraPGaZbavJYIe44oDCBTNFbb0369KKwEIWpbC0dHVfHNoJ9WIP1zY4ePkKwZLbfpUEgKJ/WXX1ZX3KtXXpMqBXlbFc/nlNTcGUdBDXSpf/yoaD/F1yZJBMacI6k6iKbQTjRzfPr+TCREWswXxHDl070QtNj+ukNBsWrbMdCmNY8skU2ZAGJpmBzGnIEvNn7w19zpaDbg1OcKNuQuA228G3OJKHxWvULU35WZq2UIOAu69yQpNu919pMs2u6e2cNLqbysO9a1UVXaoeYV37Rll7sCPFfsptdyJSpEFhqWwxRnnwdxAkOyQ0w02d4zzzQt3MKR1uQ3MfFeen9rr7TVI7Z3R7RCgGl2z+lwSuErD9HBf3SEoaJRUhICO5DR92XKQYdel19osG//Z9q//gYlWIGEvy2GsJJ0IO2GmMzUcB4aafbQcLVKkaQZxsUQy7EA63sxheX+PNKdQvXOq2HVynttrc2rLkhEJxDGTBWGps66WwjKpVCrs3r0b0zR58MEH20QaFUVBIBj2JOHXes2sohOY71/Pea6VhNoIAnm+im7SK/xTZYeGpQWVWyVHo1uthfEQb2Xtrozdz/wK4ihRCCQkbDppsK6rGJCLHsnkceboI+K/tMFCOlBzFTiWG8gVVviITJhZ/veRe/nfA/fxzMRmbElpJ4vIPOJEtLhsSwILUqY75oM119W1KV0MiuDGgx727pjXpkOCLs2IkXQkGoG8ix/w7UnVgmvkZ//4CsiOkHixuIExCuiaHVTgR60mX3o/oVmBJH706ZyczKFlrCBHOtq73jDc3wZV/h4hpWWDjFHnoe6TdCbqgeS7P4EW9CbTRntDpIzaYqKZxRKe1Yjr/vJb6+Y8kj1d7+KFxmZA8nqGMAv+4iWTNGh4C4eUZlIxkpxq9rTFinZKI/zcxj3c2neOQqLBQLGX/RPr+D9j9zEhu8+2LIcpw47dXh/iQ9Xb3z/TUrBkJRif71ILuiNGiiJ9S9InKkeSOVPsZmP3hJs9Vc8G1012Iq0AvIWA7UjUqjp6R7ktVteIBOHLXhxN02ympvOcrHe7WV1BF0dBzRNwVFWLqpFACInRVo4e3X1GHQQ9WqhykVXcOOr9hQdm3oJFoVarXVdurleUZbJYMhkeHuaZZ55h9erV3HPPPeh6e3mUoigg4IJXzZtWTSY8EvEntaz3snenKkFmkK++6xNANtkICMO0lDD3HglNcgLhRDlS0d2y2lemCc0KSCOrGWzOFMmmmm3baJrNzMvhrrzD4D2E1oqihhL7PhkQqXiWcJsUhXXKICmR5JrI7Bv0inAEShU69SZd/a4760jDjRUkFJthr0GYP0mvTbsErcoOFxqFtu96I3L7xaa7YvOr0VOqGVS9+9tktRbFRopvj9zK2VZPMLamGVohM4PskkQw8are/SpOZdCTbndIf/KMurcs0+/d4R+3wVbO865Vz3JTYTQYz7RndXVGUoB9aZSoSOeUkcZBDgoPAep+e4FElbO1Tn5Y3R4UkkqRxIBo/CdaK+JbzNmkwYvj63FQPLem4H71Ze7MDXGm1IPlSMgS1Jwkj1d30NI0tAhx+tmDwWQt2olXVsLrC3h9XuTAaghaEXsLF0kiiLP4lonv1m1ZIJQIKUSq2JOyFbik/EWaEBJNQ0OS2kktKs1iRNKjT0/2BE2/zEjH0EYzkgHWTDFe6sREpUMNU5KTctRiSJCW09yavZ2lREwm1xBXSiZRkcY777zzoiKNsux6eOskKJnuKtN3T/hyFqsiwdRSRJodoOAJ/SmyaGseFIUqiWASSEZrBGzfIglfQsnS0Rs221dfQJUFpuk3HYq8/DPcYq6Srf/y0ba9JIXuKWboZ4X7aI+vAAjvZY5aKaptk25arMuU6eysoybCifu8lWfac/XUvZ4aPZ4OWV5rcsFLB/YzufLeRJvRWkGGln/9uto6K3oTpheEb1oqj47fzLiUb3Nf+SSqqWEqcHsbYd+9ZTI1kaHQVQ/6mYT1OWH3RJ94s1qDbdII71/3JDdmx5Alt63uBc8i8S2BvlSFerCadn/bE5HOcYSCg4QqE1gufmp0xUrynelbsGUFXZlNHHokG0qLVO/7adTD5QIjXsaYpli8UT/GT6/fx829I2zumMCwNL45dBtPWTcglPDaWN7zMEs2n9moN0Nrq+a5L4OMwaCrYugyEzNIRJLdxJx0okku3Qxl8CP3KC0boVKwN7ZWU0HyKuCTaSP4PGqhE9nHUDNM8Y1moTlRcUtb5Uy9wzvXSEA+ElypWgb3FO5Dk5dWkDEmkwVgJbi56vU6zzzzTNDBsaen56LbKooSvADnDDe/3A8grkq6sZGEYlNs+NIR7uX1+2ZkkwbNlvtA+i9OUjHbJmxVcgI3SFQjyt/ETVkVCEOwOjVJbz6Up7cDwrFnfabMESvxj+NOOu7fUbcWtE8WEk5Qoez2Mvd+40iAQ1Ky6DSbrJEq7Nh4gXy6iao76Ekb25TCehYk9nspwlnP5bcmVQ5iCdOeLz/jZROtSpUDheTpoA2xO0HkE00qvqJxIP5YZaye5WujdzHquSR1zQ4ml+hjN1cqsPCCys1SkkzBtfZ8S0uNNPBqGRqysFmfnOAOZZAPbvke6xNFVFnQl6gE1qffPjgaSPeVoVMR4U7flZXVmjjIKBJMedeiS69RMRM8XLyVsidUmNJaQR+TqFvHX31nU82wTbLsEueB8lpsR0EWNv+m40U2pSc5Orma89U8piPx8IVbOWqtBUlqc+X5/WicGc+jD0kKO2Y2IoWLfvwlkPWXw4WLH2PzLZIwbVjQLOv0FcrIkdTmXKoR3KMOrRGk/fr3RlbBaIaxkmrD6waabAUu05QXpxse7aIS6QMvItdP1SOuYGSmvMZ102Zo+Y8ZpeDv0dYk9+XvZ6kRk8k1xELJxBdp7OrqumgHxyh8ywTgXMv1k3ZqrsuioDepe0KN/suU8OomujPV4IH3TWjFW2lmdaO9YhyJDjWcdPyXOKztcMgYDn1ajXym4Sn2+jEWdz8J3Qo+818SNbqKnbEaV/y4BqHf3yeN6IodGfAnAwVky6GHGjs6xrind4QdfRfYsHYKXXWzxrSIK6hV0wLFV4BDVTdusiE1HcRNLjT8AkX3Hq5JT+MIN9NnvJ5rO5/uOVxefixqoNzH1y/cTl1KtKWOtgL3VjSW5NfdiDDhQXJoTCfp7K5hGu1JCr57KyFavL5wnJ/reJZ/u/lperUasgQ51Z1wkooVkIM/gigp+inAblaW+71via1KVXCE5FmpnpWkWHx9/A6aUiJYhMlSmMocVTL2Yw+KIih7E2om0eLA2DqaaCRo8f7uPdy/6mW2do5xU/d5slqLz59+LRcShcBSVRUn7IDoW7ORXi8z4RdrRgsXa57lOZNMAGzTIxHR/uwJ26EjHWl25i0yMnqLqhd/7NZrbQWT1VKCbHejLQ4UNHKToOyJNSY1i6aVZKDeg5yx2mJN/t96shW4h8dq2eCZG25Mo3hT5pRZJePFkjYk17A2uXb2BVkk4myua4j5konjOBw7doyDBw+yc+dObrrppot2cJy5f39lNNRyJ4o1yXLQa9yw2tVre1LuhKfKDk1vhen7mJOy37vdddn4L0bJ1lmfqkZM/9DllTBN+imzbdX5gIxUT1IFIhleihP0i/DhTqC+JTFX4WJ7TMYnETmyOm0KlVSihe6YbNGKPLjpNNv6x+jtLaMnLMxmu8WTSFnBhCFsuc3qOVR34yZJxeZczXU3+O6FNV46cEo1uVB3XTK+2J7vwnLTgt1Jxq/azusNHju/g931G2h6WWZ6tPjQd/+oDqY1OwhvWCpCCFQDOrpd95nv3vJdLIrqYDQlPrDqSX6052QQB/HPeVWyErhlfLebX+ciSyKoZvctK12xAxLVvGdClR0cJGwkMloLw1b59tRtTFieYnJUtdgO9cusORIH/OrxqpHg5UYnOdHk/976KN3JKsemVnN8op/Bcjd/O34fk7j7jy48Wn7/kMC95X0RuW6BmrFHxtFuh37rgihp+5P2TAl+cK3XtflpsqnQvRU9IT+AntFaYR6vkIK6ETURWShEFmnR3vDj1T7KaQ1JDuM1khSOW5IFtUYSx1aZsML205awWZXoDvbTpbl//2j3fSw1hBDUajVyudzlN14heNW4uU5UBwFoNps899xzTE5O8sADDyxI7bfdMnEnClV2mPIykfywtJ+6mtUNDE8qxfYeZj+FNaHYbf5n/4WatnV6VQNh+ynGDtgOG5wpfnL1gSCbR424snwff7TSu9Vqn9hl2a2DcOG7tyIvXpDZ5VsrflA+EmtAYY1SZdf603Rnq8iyQNdtjKaXzeTtQ4+80KYvZa443mTu7v+8nWfKu4Zu0Sb0evUmnYkG415ig9/hMem7vNKloIp72ptYdMXmcHE13xy/nYFWH37tg3segpY5Oy4SWClaGMuxHAmzotPdUwtccv4kqEbiD8V6hrI3Zl9+w7dQVdlhtOE/Dy5WpcqB9eXHiHqToQRMkBacDF2WAmgIlbxm8c2J26hI6cDiSEXaCfuQpDB1WpfDc3JrkiT2F9fQZdf58PrH2JibYlWmzI6u80gKfHX8HgxNCy3VaEGr3R5w9zkkqvjsHyoMzofTSs1LHIh+FsjQBy4znwQlzKpGIdNAkQUlz72VjhTJRgPlCdznrIESpCQn0mbgzmwrWIzMNUO1HARB/9mqAeBmgE2UexCSHCwoADJK6HaS0ckoKe4r3MZyIE4Nvoa4GJkcLp/kH0a+y8TEBLt37yaTyXD//ffPeaO+dPLfcar80kX3H3S+Q2XYmzT8znppxZ1QelOVIKPFNH3SccfVmQlTfwMdoMgqr+jo9KpNz4IRbJbG+DedL7A1M+aujr0VdbQAy39R22Ml3oo6Goz3g8jeXVdVJzDnZ3b782MDyoy6gd50BU11SCf9AkpoeWTiHyuRMrF8F4YfBE2b7t/BOy2xr+TqeeU899S6dCmQUfFjI7rn8upPuzEpTXYY81bypqNwYHIdu6e3sqd+A4akB+fYloHka2tFCMG9ZoK1iUm6lTLCceixG3R2uRaJT5A+tChBWgoDdTe25kuh9CfLNLzjVLzUZD9DS5FE0NHRL7jMqi0mPfecf0ny0VRhSaLhKAzU1zBmu89ZNADdaLVfcwhjRoosgrqZpG5ydKyfVVKZ3975bbpTNc6Uuzk8tpYnR2/gkebNQTGqEpHJMf3V+IwJP1icKO3PRXhNIZJERt0J+6UE4/TuUeDW8pWCaxK5iHur7gXv8+lmWwaej5yvqKyLIFYiSVCreQuQZCuw0P2e7sVmiuFIYkx0XNHKdtuROVN33107OvbI9FKxWry28270JQ68+4hjJtcQc5FJ0zb49JmvMFob45mXnufGG2/k1ltvvWgf96IxzmT15/nG6d+iYdXavotaJgCDDdfM1SV3ounSJ8JVs/fA+o9h1lt1a4pD3fD0f7yHVJPtGZZJky5rigflU/xk/wFWZ0rcXBhhupoKjpVOtGbVFiR0M0ztFbMzWZw5g/G+Hrp/DcM0YcfxawAiL5wvGqjbGJ5by08NTqZDiY9W3YsN/f/s/Xmwrdl51gn+1vqmPZ35zkPOmUplppQpKZWplCzbMgKLchmiwOBuutrIRYkyXe7uaLuLMh0UdPAfHQ7ChIPG0ARUF90UGAoMBR5k2VhISsmpIQflnDeHOw/nnnlP37DW6j/W8K29z7mZSimVg1sr4sa+55y9v/2N7/C8z/u8zuikuaaeJjMQzNOu3+Tm/laItK86ppE/08d7O1RK0hjJS9tHeGb7BM/snOBfX/wwv7f9fh4rb2OcdgJsZaLj9tcirhtVtUSgeXj1Jf6b43/AH1t5np859jX+7KFv8uDxl6Pz4htGHZyY6tZBaslrEwvNHXfEi7iA7usXx7q7lO6c+1ECh6Lsw48ejtWCvegnGCY6oZMS5GO6Wd1mAbp1mk21P8P36r21ShioMT9z6mv0s4o8Udy8uMGlepkvDt+HkWJGQdqvNstwAYjP9KI6m46yH3ue7U8yCkAm2pMjYoPs6y8tvNVUklMrW/Q6VSjkx8+aH1Bl9cUcApCN2Zl26ObNjFPwPUNCwJ7rGekWNdM64czOEUzaMslmnUl0/lTK1Gcq0eldr9rrd2m6xadW3nqICyzDdDqdvqecyR8ZORWwzmQ6ne21+J/P/a+sV5t0dM7SPSc5dfL1x1K+MjrKI4deoCu/yL85+w3uXPxrfPTwj4btxzfcuXIVeIVDTrohlYrrowWO9vfCw95NraHo5SPWJwt08qaNnh1GniXtIN9tlXIs2eG/uvWLgMW8X9o8yq3L17h74Qob4wUqUttbMM3o9uo2WhS2ga5TNMEY55mibBKry+WN6gyMIQHVGpRMhRGwppGzOluAjBRbqzKj6KgQLeZFw3BckBUqTEzMexVeDkWVGUQch2cnlhHXTRq+uX2UyqScmazy+PA0O6rgD8bvQ0nJVtkjzzRboy4LvdIakG5DkhO2XTcpWVoHYycE1FVK0mlmnOdqssdPHXucTDRoIzmeb/PC+ChSGu4eXOH81ip7pt/CW2kMHWakWYU2kvNOGHCQVlyaDjhcjEIB3dOVpTCsTxc51d8OdbTlfMJW2WGlmIaI19OCu2mD0tIyoASMTcrRtB3Na/uNJEWqZwrg42GHxdUJiWglVJSSaA2r5ZCfev83AatVdnlvmW9PTnAlX26bVYPygUFpQSJNqMWEKYvuzTEE5lcoo8zNFgF7DAhoosBH6dkY1hiDmQqKBfs87I66rCyM6UYzSErnjNNEs1V1OdQZc6gzZLqb0JGaJGJgxVM9y0iD69LOCtdVDxJDM05tEyoCpSGRgICqSshzxeXRIjqxfTMyMUgj0UJztdzlcKdgrEtu7x/nRLdVDX4r13BondYPaibf4fp+10w2Njd54tqzAExlxVm18YbbeHVkb47lbJNBtsd6+Uv8o+f/FlvTTZeZtPt8xTUvHiqGAZ6ZBsjLPgiLRRt1D13zoi+e99IyZBIm0CMT/uG1e7m6Y6P2XlZx7+olXt06wleu3s4gmdLxelu1l06PI8rZiBra+onf88zRi4GZ2ezgJOl9RK8sIB67k0QYdOCjOgy/10Jevgjv4bGsUNSlHw/gt2IoqDHC8P++9CH+n1cf4t/sfpCvqNt4UR1jPV2kzAumIkOLJByTX955pYkJBWJ/HEWs3usiyzyzDW73D87x549/kwTNoWxEpRNemhzjN658iH+z/iD/42ufYDUZIaLu6jySIgmMJgFXmsUQ1W45ckXhgoOjnT1GrkY272CgHR/s6182q1lw51fzG9fuRwqY6ITlpJoZzOULyXl0zX0WlUoTyCCZbFjeHfOh5XNMGx/YVDw+Oc0LpaVlzzcQQntPzU9C9O/J8vbc+PvCv4asNrNNtmWdooTbXvSsm7l6TzKS9LttXcRn7gvdaWjWjQMCX2O7PFkKB5H169D3c6NayYXRMv4paMbtPRXDWKNxQTlaZEKGDs2osKBbNeHDrvD+44c/wvdrjUb2fnkvZSZ/5GCuprGG8rXXXuMLj/8B3aINhS9Nr7/hNi5NVqwyrDBsTbtIYZioJ/n18z/D76z/W0wUmV/X/dAs5md1exjqiMP4E6nZcVLWxtUPBrl9cFKpA9smNthlIvmRtV2u79hBO2d2jvA7k3v5ankHX1TvC9RLcwCU5SPKPM4+mtkZJlIePIfdL+3wcozY9+CPVY4aJvxo9jL3D86TNRVppplOHG7sjXrXZyTQVAlCaQ73d3lo7TU+ffR5/tjJF/jI0Quc10uoVCKdpkw3t58TAqaufyTMqXAGpZPXaIexBLaVl4KRhrL2x+uMm1T8ieWn+djCyxwt9jAILpVLXKqW+a3tD6Dc+VyfLDKmQyL0TO1ovjkRYWhIueggOe9UjkZaW9cCQ8ue16V8yo4zkp41dCwqzJc64+J4mS+P7mCoOwhhgjM5qJ+kSFXQqoonXlY6BWX4ROdlPnPL09y+uk4qDS9uHON/Ov8I1/OFcLP5xtP42nsIqlUE8LCWct9lwhx2v8S+jFcwKgvX/e72O3p/yEwElHsJp45s0u228JZ3PELAtnt24hn2Bqi15LnRsfAsCAFjXyvp1iHI8M/G7rjDtbI1zDrKjuIifNOkXNpzc3sirbnVzlL4/2R3SsdkHN0s2Nzc/L6MvRiNRnQ6nRvC8e/G9UfOmSileOKJJ3jttdfo3L5It9M6k/VyA23062zBUgVfHdniaug6Fw29fMqO/E0+euhlFhLXyCYSzjo5EOVgLY+J97OK7Yn9bg9r+YappU7bTOb7BOLc3EjJtWmPTx2+zrcufZDfGN5PkyShmO2lsUPTYaJbGME9cEXUf+K/awbeaua2ETUu6phiOu9M6oyNusctvQ3+t6cf508svMCPFc9xzGwzqCcM0hF5U7OcjFgsJ9wirnPP4kV++PBL3HvqIrcubrBcTIJkid+3liqrQ79HE2ivdr86TqNMipaN5SNNO1Fw1sHkqSKh4b849AT3L5xnrHO2mi6r6R6XqyV+f+duQM44zInK7Ajf6FxV5VyB1T01vma24OjKq/mYHdcTMXEZxKE4I3FKt14+Po3IBLt1hy/svR+dpAzHtj9mYlKWk8oKUXqJnbgI7/uZ+i0clNaKD3IetO2RAEtR/k/jO4MMkE9RQ8FdEhxmMKCBkOEyktjh+MZb97N/zaOscFpnofsd5jKTiKrdkRayS6Rh6J1B3maDUxdsdfOa4dhur5fWfHv7JDXZTM2jrtpsY+ze2+nUlHXCme1DiLT9bpO353FmG0Zyzcuz0K4kbRscs0GfTyzcDY3mueee40tf+hJPPPEE586dYzgcviVjNYbD4fd1/vv3Y73j80zeylVVFbu7u6ysrPDxj3+cf3jhX9KY9iEQQnNhssFNvcM33IYx8PLoMHcvXglQ1XIxpEYwKHaZyD73dcecHZ7iUpnx2nSN2/sbDNx7D3eGXC6X6GYVo7LDcncaotO1/pCpyRBCUOmErmyCMZ+//S5P+nxx6wSfr08g3X3sjV6lMjKqmcl5SiWkUs0USMdlRh7Jzucz8iyzxkJKQ1MlpKlxfSh2brua27GRKjhMzbf3TvCp4gyNSnn/8hUwcHRhl41pH5XZh/Hs3iqrvQmvbdti9UJniq9xTOqcbjbBaRnSy2sUFrgum5QiaydjFI7tlaWacZU5sUa7jwFaSQzTKiGPOtTTpOEvHH0MKTQGyVo2ZLPuc6Fc5St7d6HqhDRvJf6NFkxURp40Mw2XzbwCsjuhVj36ZY53dsMckevlgh1r65zjSjHm+rTLUlGGjCSW3Bk1Of9p/U5eaI4FBlpZ5Qz6NaVJWHAyPVWT0M9rumkTJNc9xTbvNtRKsNiU/GeHnmSxaOuGz10/zheG74NugpnOZhszjaxNSprWbcQu2vvIn3u/z02ZQATl++uUpppGSbJUUzbZTG8H0joPKQ1oYes5C6OZAGdS5SwxYdBrZePjPqC9UY+Fvm3yfW26QpLMMiFvNK/kytYSm7qLcNM+09QgegqjBCIxGEQYQbA97GESK3IaS6+sl23h/XK5y39/509wS/8YxhjG4zGbm5tsbm7yyiuvkKYpq6ur4d+8xt93skajEb1e743f+C5a73hm8lY5lAsXLvDiiy+SJEkQaXxx9BpT3WKxmRQ8u/v609AMhpeH1tkcd81zy50h0zq1Mg+OktlPS963dI0Xpkf5Txt3oYwI2OuOi0A9A2bVqdfmqWJ3PNtl76mlsZyD0oJ/dPUufk8fIc/bjMFvrzIJYGb49z66yg5g5MR6Ul4xlwBv7W9cDN3vid6XmYx0Tp7VnJna7O2oi7yPO4HGtc6IiYsQSxdVdpzT6+Z1oKz67CdWUB67c+thEF8L6uZ1YGZ5DN07oU6kqBz6bdwx3da9zslim0I2rNeDQF394s7dGGQLW8UijzojFYa8aEUyg5SK265nMZ2rbFZaSMUVB3l5eq6X1wHrYKC91kXScGWyyLjJeXJ4ilc4Yg2wg2ZUkwQjmUsrW+PNWproIMkTU4VXpyN+bOVZzu+ucW7XOu/Xdtf4T/VdDHVv5jiTiL0V6kteBTj4y/0QmD/38/0h8SrdNaxNwqiJjagITYpg0LspS4sTup0qBDbhnQJ2Rq45sdNmXcqdnyd2TlO6/pUsaVWgY/p2rAR/cbiIv999/U1IoPT7Z0cjCJ2y1XQgaM0B7livTPfoSZvtnO6ucUv/mNtXQb/f5/Tp09x///388A//MPfccw95nnPu3Dm+/OUv8/Wvf52XX36Zzc3NfSO7b7Q8LfgHmcnbuJRSPPvss1y7do277rqLV199FSEE2/Uu18oNltKoyUhontk7x2eOffiG2zPAK86ZLGQlV0eLLHVKhtMOnWwYsoNMKBSg0oRvqtOgTjPcXSBhQtKkrO5usZRMOKTGLHfHXJ+ukGVl2yzn+icWMhtpebMwqRPqKmNqMhaY2oyhlKSZCfLde7rDEXahEGyVKVlExYwHOQWYKC7QVwlJt33osqxxRkGEmk47K0VRTWcx25HJSaTmvLbG83R/m3OTPsvFhJeGh1jrjtmd9ujmuwiHlC93xk53STBtMjqpChDLIC+pjEQK28Xcy1v2VS+vbBQuBGWV0us07fl3DipJDKMyo8hUC/FlDUoZPji4yF5TsJragWOXq2V+f+tuFLNFe/98C2GYqJxU2Ci0LDN6vZaO6zM77/ivNwOmKqWTNOxUXU52d0I2u5RPuV72WSkmwcEc6+yESZLnR6t8YfcYQ7p0XPPdtGmPwxvzxkj6smactIZ52qR084ZOWmO04eZ6kz9x8zMAHOnZus3j127iK9VtyFy2Cs4iChLcda5qSZ7plr3FLCEjS1WUCUnI1L46mj0nbnvO4SgjQ8OiX6qRZLmiaxo6jqklJYz2uiwtjikisoNXCO53SjukLK/J8oaXtw6zq7vunDY2AJhmDPoVWUdRlilF0QTixPZen62q5ySGWlgVwDQZwpFZGiOoxosYIVA1eFTLqAThztfxYpWXJ5f5yWMf2nf8fkkpQ0YCFi3xWcuzzz5L0zSsrKyE9/R6vQMdxntNSgXeBZnJ97JGoxFf+9rXGI1GfOITn2B1dTUUw15wHe87zRCJF5Sr3jgzMYatus/QqQL7+dU+YvPwRSfxXe5tZCVMRiNTtk2Xl8wxvl7fyv948WP8f88+zDfW389jl261M8jHA1Kp7NheAUqlGCOQaIwWDHrlbC9IKKA75VjdQbod8rM0vPHJMxXw77ZAv7+ZUUYwRpC1iEQBwfeazJ6fKSlKSaYi5+zIRubXXPPmnhti5b/XC1x23FwIaBvbeq5+lEgTmtO80Suco8jTdhhYkOPw9ZO8Ds2fnmWVJi0tOBOKW4t1dlWHPdVhkJR8Ze8OapmFYwpd/+5ZltIwUVnQBpuXUslym614g2uE5GVXX/OZ0okwGRI2XB+Jr5F00oYrkyX+YP19fG18O02S0cmbcP+EmTNuRg7A2BXhO1nd9l/4Irxo+Jh8lR87/hwvbhzj5c3DaANPb5zka+o2pqqYua5hymZc//DZBv5cuPvCQbNStrptLaV3fybh911FjLfxnDNplMQM4aaT12dgRJ/N9HtlEDaN4S1fe8w7dRhfEMu5+IwFYOL6m/JCMS1TXtlZnamVzIxJmJkCKjm7Pdv/ZX/f/r+QOQtphx9Zu5vvdOV5zrFjx7jnnnv4xCc+wYMPPsjKygobGxt8/etf59FHH+W5557j6tWrVFWbhb0dI3v/3t/7e9xyyy10Oh0efvhhHnvsse9pe+/ZzOTKlSs8/fTTnDp1irvuugspJUqpyJm8Ft67ki2xUW8x1VPOjicMmymDtHPgdj2gcKU8xR3Zc4FlNHACfsvFmDEFRTpla7pAnmqqOiVNalKgAvK0YqITO51RFYxSwe64R5n1aMqExmHXqpYYDHov41RynUxqZ2zVnDCjjcJslCjQSEZVTlpEhjRyPmWdkaZV1GvSUCk7bClQPdNZZ5VE9Zck1S4jADOn2QUiEACeHR3l5v4WqXveuk7Y0osdHuq1NaJRWTAoqjCBcjGfMtG57Y1pUvc3u0/9vKLW0taWmoQiU63el8u8pLB9H52iCXbF0oLtD/cvXiCXioVkyl7T4dHNexnKbjjvstD7jKxMNFOVhZ6Q0OQZQz3TbAbeeWVyiHsXr7DsFIH7acWFySKHOqM2I+nuoo3h6mSZ3924B7rpTIf+pMpZ6JbhGiotQ+AwMSnLsuKigGmV0i9q0kST1xUPpBf4wKELANy1dgWAL1+6k6fkSUgkWiVAHWR+kqgB09cIAmQVZWcwpyDg6ymhiW9/gbluEpKkCe8RSdv97pcoYXGhtFNGuzV1LckyHVhlQsDesMvq4mhmOmTlekyev3iSspeT5bY26LOheG/qaCLllY1lhiYHN+wtyYwd/OaOvUlVMIBlnVLp1hH6pYwJ7xk3ij9++D6K5LvreBdCMBgMGAwG3HTTTSil2NnZYXNzk7Nnz/LMM8+Qpin/+l//a5RSFEXxxhv9Lte/+Bf/gl/4hV/g137t13j44Yf5lV/5FX78x3+cF154gSNHvrvemXc8M3mzmKDWlkHx9NNPc99993H33XcHkUbbVGjQWgctLoBBavHXYTPEYHh+78INt+8jmCsTqwK64ozE0f4extjo0kdPviHKH0HixvgmiQrUW+kHUPlCca6CwUsTwbKY8ulbn6PrGCyealxEjBb/tMT9IV6zyn/3TN/BHF1WiFaELzTA7WtcbJlCrydJD1C5wuqZ0kblN/W2AcPp/hbaGI73ttHGkCeKHaef5cUle65GkkjDKFB/7VF0s/ZvXi5Ez9VPikhKXs3VMqQ0VHWKKQV3966w1fToJxXPT49ztV5uj9c7SHcuWvVk7Zz1bF0pz2fPbWy8zru6yYnuTjBGO05y3otS5knDF67ey+f3PsC2dvWTqA7kI37PYlKNDM5zohNWHHTmi8on2Oanj3ydDx89y7ndVV7cOIo28LWrt/N0ciKaWOjhLcLx+TU/5Cqed2PPaaRZNtfAGDPKgsijl0hxv5eZnnEmHdVw+9H1GcjVs7dieMsPhut3yyChkkjNxe1lLi30Q30kiXpq4lk5XubFGLg8bFkCKuoZ0SOX7abaZbeGaxuL7ZC3aOCbke0kyEvTHX7idSCuN7uSJGF1dZU77riDhx56iB/6oR9iaWmJK1eu8Ou//ut84Qtf4Cd+4if4u3/37/Lcc8+9JSwxv/7O3/k7fO5zn+Nnf/Znueeee/i1X/s1er0e//gf/+PvepvvuDN5M2symfDYY4+xubl5oEhjmjq6qVJMVFuczh0daqjGZCLhmd1zN/yOkJlMbaf8se42jZIUSUPpJOYDJOAj/8Tj9+NgINoipf2bcIViIQANCYoP5Wf5L+/8Q25bvRbvgN1mNCXRR4tStg+Fx5STaBpjE4qos3UFiKCyiAocmhPn4C0Lbbhb44B6oY/+LptFGi1ZdSNpB1nJ5mRAJ22Cuqt3Cv4cDdIyNHF6Z+wdRT8v20K7y35Cg2dEdfYG56CMpG4kR7pDTubbTHXK47s38Up5dKaQPJ+RxBIyYIeTWQhSh3Ol5qmzbl10dNtEGK46ORW/jnZ2eWH3CP/i2kd5tjyJkSJAeELsp/tmrriuVBKu+UQnLDpGlzGGm+vrfKh7Lghf3rS4yV1rV/nChXt5QpwGIalr74gdY88rTMe9RL6fJJyL1qH6/fMBUUsXti8yMObaWp+au780wna/A5lS3NrdJC8aOt12rrq/J3u9KnxXDG95skqvqHhmeBxfKPfL12fSXFNNnP6a2/76xjJj3cJsOoKrdFQHNMYKOU7LAlm3zjfTrSRLH5sh3DU4yi29G887+l5Xnufcf//9/PN//s/5uZ/7OX7yJ3+SH/uxH+M3f/M3+fjHP85kMnnjjXwHq6oqvvnNb/LpT386/E5Kyac//Wm++tWvftfbfc84k/X1dR599FEGg8ENRRp9g49SiuOdlv4ro8M8VPR4bXRt32f98rfytfI4yghSadj2890b38HuZnyHLvepMz7ttEP/mAVlXqmCHPv70mv8jZt/k//mrj+g3k3p5WUIheK5FF5jKK6f+AfbD0CKpzF67Nl/dycysq0EeNztPItyxswuPTeNMV5eKqYRCc/v2ZR413WBew2qYPDdZ5Y6tsYkBIz9TG63bV8/kSKa1+3rAu74rK6WZxO5jMEX4V1GApCVgvcvXcJgacyPbtxp35OadjjXnAENBWkJuhFMdQZm9nz4WR1EZAmAkSmC+rGf3bGQTbk6XeB3Nu7ld/feT5nk4Tx086rNSJxT9tRngLJJLMzlnYnrNRHa8Md6L/ATJ5/i3sOX2JwOeGHDBlNfuHgvLyTHwtluQjbpi+mz8Ba0rDP/nuDQDghAPHTl60JJVIPzS83Jzzx9/hRNlZNozQdWrgbYNssUk4kLhKLzuxfEGeNzYc/5ixtHw7mNJ3zq6Ln2wpxJahjtFZwbL0JuDqyVqOgHbQQbW/b59hJA9k3ttvvS7ttPn/7+dbzPr8lkwunTp/nFX/xFfud3fodr1669ZVTh69evo5Ti6NGjM78/evQoV65c+a63+447kzeCuYwxvPTSSzzxxBO8733v47777rthV6gQItROjhetM9FReL2Udbg43XzD/WpMznk3Z8M/nLmTy/AjepcLO8s9SyyvHtr02Bs6mdUhwyiU4n+z9HX+4k1fY1R2eGHzGMvZiHyk6GIN6ozyr6+HzESU9nzt1F0SFP1IvddnDGnUDe6lVFqobD8c1upyRTNPfCH0dZwJwPMje0P23DnxDtaz1XoO6lkoSqZ+eJIzEp7MMMgraj96dU5Ov5dXrcryXPQbO0ulErSCtZUhd3aucrFa5tHhnTOQjI+eUyq6lJHkum6Pu5FMVIYUZqZIrILwo2H2lAhecQrCqdCcG6/w+Og0/373g2zKRSpHjw33g2izNRHqQIqq8Z3nEqVbwz3RCWvplD/RfYbFZBomBh7uDXnf2hX+9dkPcSaz1OJALAgDrDycepBcyuxzF/frqAAjzpoHf97TzgGSKlE2fG1rgVfHK1AZ7ig2GAymYagYtNMQu90qgsns+e13y0CRFhKu7CxymQUaNz4hSU2bsUdXIj6ey1tL1ELa4MDTfGMySdSw2DSSYaDrt9uoo7G8iUi5ubfKx1Zv5e1a82yuLPv+KBO/lesddyavt6qq4hvf+AaXL1/mYx/7GKdOvb5II7Rd8HFmMlEtS6KfplydbjFqqn2fncckz+zaqNtDCoN8124jKdFGkkoTJD/iIUVgVUqDoasTenXF/3Dnb/LDx17i+GCHu9cuc6S3x7+9/iH+7fgBVpIxGD0jLR/0piIj7yP2qclRSpKlKsiF+7/lr9NrkmdxtjIbucYyK34d5Otj+YlXG+twbxlYDbLTvW0a3WpR+QFh0I5R9UZpIWquG1ezxcZOVGiflrPZij8+KQ1l6Ho26GHKkd4OjZH89pUP0pDMSrR7CRkBf+P0b/Pzt/xHHsjOcjTZxtT2fUbZxkWBndXiDVeoKyV63zl5dnyU/7hxJ384vpkvTO9hI1liXM3WtPpFC+H5ZsM4q/SQV5roGWc11XBbscVdy1e59/BFhnWHFzdtjeTfXXiA12jv8yow3zy8FdfA3HH4IvMN4C2I4K15h+Nh0MRE8vG47bj3pIpvXj5NjuJDJy4Fhl2vV4WgzNvpPG9CgBFL2u85497Ja769Z+Gt2Fn4YCaeBOlnv9dlyvqwZUH5mp+QbSBmuhrtUILhbi+k3yYKPJooAJ2ohp8+9RHk29jz8f2Unz906BBJknD16tWZ31+9evVNzXeaX+9aZ7K1tcVXvvIVsizj4x//+HesnnmQMxlGUvK5FAzVlFf39ut06bmY82UH4RxxdM+FfJeqkbYL2A2v8hCAp5P28pby6qMpYQQXt9b4W4/+F/z+uffTOGXY/+X6h1GZxEjJdbVAKjRFun9WeZKYMO2thc9UGMlaq/mIvWodRpStlKOEci+j3M4pR1kwzjP1hEailOFktun2YX9q0kQR63V6jJqMbtJwabRCkTRcGy1ypLvHtEko0oYdR+30RtRnJL3MyoLbY/DZn6ufFC3lOoymndHmst8fZtwrQ69bkgnFb23fz8RDkhGU4vtohrrL1XLAnf11Hhic5y+f+hJ/7tA3+S/XHuVH1p7ntNikX0/JygY9AlNCSoOaGnJRc6zY4abuBsfTbe5ZuMyu7PKKOIzKs6CX5Q1e8ToZSSdrQkbmjXw3qzFRx93vjU7yH7ZPhAbQ1c6Y25ev8c/PPsSVYmlW1WB+WmbINvQ+pzhfTJ+Bt9z5NmbW4czOyznY0bx48ThNJbn/0CUWFidB08vOGbHXJBZiHE/s77pRc6KfnPnS5hEmjl4cO5s282odaN6rUUpw+foyOmnP32wzcPs5NUpRE8nuTq8lo6QgvNOSIN2zPTUNP370/byd6/s5ZTHPcz7ykY/we7/3e+F3Wmt+7/d+j0ceeeS73u47Tg2eh7m8SOOZM2e48847ufnmm98U4ys4k0HrTLbrPUCAaIuqF6Yb3MeJue+e2TPOOGeylE94eXSYxU7JuCzI0wnCSWME45dVNCR0soayLJCJcje9ttmKgQt7a/y9J/44/+zpT3Df7WdpFiW5UJQkDFXBQjqlwWpBpb0qcP3BRotp1swwrnaqLouUbSOfF+OTFkPuFK1WUpYp9rY73HLiOnWdMBEpcq/D7nqXYhDJxGsBSvKTR7/NS+PD/Ac+sO8cqygGMULy9O5xHl49R+kMuKdy7o57dBb3GNc5S5GszGI+CdIpkzqnk01CBO+dMdhofZBU4W8+khfC1mS6Rd3Wh4wmyxXrjRPpi5hejZKWBhtFt69MDnG0GDJRbUZ0ordDqVIODUZslV3S1GLq202X7LDmwu4KK4fGXBkustKbcH3cp5fVFImgMglSCMZ1TpFOZ2jOlZKkiZ/nXtOJnPe0zsmSMvSypInedx9+eXyKT/e3eHx7jeWFa/y7yx/msllhgSlZqtBGIIQIjqJtOo3p5SlJ0oQx0HFjKrT6XGlqAntrfz0lJjHYe9u4qZZpqtje7XF1b5GP3/4qEyf82e1XrQyLn8vSLSNqssvSOjWTaUq305BIw4WNFa7RR1UJaaZJCoVuQKbEaBSVSujQICTsbPS5rjqQtfTfeIRC7Fh0LR3cJkilpnaHluuE0o+GMBmlKPmTh++im872zHy/1/dbTuUXfuEX+It/8S/y4IMP8tBDD/Erv/IrjEYjfvZnf/a73ua7KjOp65onnniCs2fP8tGPfpRbbrnlTVOHvTNZShfoOvkDjWY5s16+MdZYXZ7sr5vMouGGS+Nlxq4WMvQT8HyKLu12Fhx1eFBUGF9LcEwQb1Bi6iMINiYLnB+vuf3VqEYyUkWYKhgEJg9g3/iHXwjYK2ehlE5kiFvZCA9v1WwNLQabZYpqktJfKEkzjcxhd73H5rUB5W7G7rUuL0yO8udOPs7//n1f4ydOPsWhbAehFZRiH5b+optLsuaGPPmei6Dz5Gya1eayrCW/735bPoLvZnWoHzQhq2plVfyku/YcaaphwtLaiDQawRsbjnZcsb8EhrNTC88VTuV5ycnBH+3uAoaVYsK4srUTr/pcRVRVgIXcao2l0gRRQ++w+u5axIQDnzna4xAz75+ZnDnXFGikJBGGR1aG/C/nH2Gv0wl1kDg63wdvzWi3efaW/VlGziucp2ZWjdrf7ElEUGimHqqa3cc0U7x0+QgfOHGBbq9qnWOqQyOhCBRsExR+4x6e0bQTvu+5yWFieEtIMDue4Wei69zuw/rOABs0Al7ZOG1nzsentVGSvXJ/k+KMfJCWGAM/fWp/QPX9XuPx+Ps6y+Snf/qn+eVf/mX+xt/4GzzwwAM88cQT/PZv//a+ovybWe94ZuLX7u4uTzzxBL1ej49//OPflTgatM5ECMHxzmFeGduekoW0z3azy1RZQ3el3H7DbRkEr+wd4b6Vi6F50esr9dNdhiajn1XsTgqKTIMuQI6xyllujgaSNNUIPWvQykiJVjWSUVrY0b6KcHN38toNqmqbDbNMhcxg6DKBVpq9YVylJElcw2kjz43RIERsqkyhqxDaGqS0UMieIm0Eo2nKK7XrIelvce/hS3xifIYqSymbjEvTJRY6JZeGi/Q7NZvTDv/wysfom5Kb6nXev3iV602Pvhur6tlaS70xe6qwtaY6Y6Eog8P1svwgmFYZeVqG6n83MrRVk7Ka73LP6nleKo/RZFBHI1vrxgoN7i+8q9C8hxBccpTeI24C5rHuLhOd0ktrXhutsdYbsT3t0ct39g0zG+TW8RSpYn3aoZ/X9j1F2+/Ty2v2poVTJPA1kkguxDUqBg2u1Bbh81QfGOK9NFzmt0bHuaT7rDKegZyaJqHIVSSFotyrLVYnSZSVzakB+34SP1ALWkcRHM6MYnBC2tHMIcJcvLTCB2+/wM62dbzdaOpmWWb0+xWdzuzvBgtTer1p+P5GJWgNz20dpdYpSWZacU1AlwkJNjtvtBWC9H0xe5tdhnWBKHxhymZOQoCpJRRWNNJnN9VeDpl1PE3US9VEhXelDalOOdqbpXy/HcurBn8/18///M/z8z//82/Z9t4VmcmFCxf4wz/8Q06ePMlHPvKR79qRwOyArGNR3aRIrOHdU1a7aL3c2ffZg5qCvnDt/Ty3fTwMMjrU3cMYQ55UjF3R1DO5ErwBd1F2UbedxXPjT6fRjHGjbFd7wLEjqZP5qNr2h9i/j5oCbcwMtdQLUcb9Kn7VKmF3aB92GdVeAPKOLfLL1KCnkj3Z4ep0gVv6G5RNwtHeHnWT0M1qhLHMpVwqUmlY6JRUqWQ77/E7u/fyL698hAvDFY558UdXhBeCIP7nYSjvaIpUhZqCr8l4w9zJmjCW98MLZ/nJ1Sf48OJZfurwN7hZbM0Ujz2WH8/4mNemQhjW9YBGC4527GCzXKowp31Yz2YZHdfZv9IbA4Zu2lC6rMkLV7bZSjvwbDyXyfTyOtRImqhG4ldogp2rU5Vlyv/r+u3sZEmkBNCSMvbBWwdkG3ped22mn8RnLbPmIIngLW9j1RxBQ2vDxvqAleWRnUjonWPRMPVjnZ2T63QayrIlQQBkmWbkMpc00bxw5Th7sgjfk2TRsLZo94LuXGbHQV/ZXcBEGnXxo2yi82PGCWaYMCVDuA3XdRoMYSMiOrhRDJoiNEW/XcsrEb+XpizCu8CZXLlyhRdffJEPfehD3H777d+zSmbsTE50WlmA1In7jdWUjkzZU0OuT2dnvM8W4O1+vLh3jC9M7uW3du7j6c27SYWmdDCWNyReJytz0FeeTYLuFs1sv4X/T1lGDtM9WZ4lFcMT9ZyxgpamCoK9cdcWbYNO1ayibBFpWBkIUJfvsO/0LbU4zTXKQRiUNht6avckmdSsj2xktudgCOG218/auRyToPibsJkO+OL2XeRSsTPp0c1qdt1nfX+Db2JcdPRqez5n+2R6eTtgq6wzpGn4+PLLbDc9MmnIhGJpMJ7NQjwhIu6Z8SoEMz0KCeemK0A7+dDrsPked9/BfqhnneGgKBm5aZmVa8jzD9DAn4tEMyxnO/vjhkvfRxMg0IgWHAre8cySacYgq2gciJAcQPsOxxfYW/sdja+VxBmJX6GfZF8zZwupeoKEifovyknKdLfL2uFhMP6dbhTYuH6SWM134rve45klpZ9SmnJO2WsROvMlgcjCICJTRNDU5rUBpUghBeO/KvJ5MYplKsl0swAE7S0i6LqJkEhI3LlKkKya4h0ZUPUDCfrvYh07doxPfOITHDr01nSWxs4k7jVRkaNYK3rsNENe3JlldM0kJu7/ftRuk2Q8unOS//nSR7nuGvS80fHRdZ7ZwThSqqi/w0dFIUUBZmEu/2WN2U8Z1QfUT3z/SSINZ7fWrGGZw7uzqLYS95psjpz4YH+K0cZGdmP3sPjOYLeNM+WRmeP0eLKXjR9kZcD+Qz3BCxTS4fNX7w31Ak/99X9fcLBWEtUbgqyIc6ZFJPSotOBkvo0UBMjx+clxhLR4fbtaODBcT5/xOUPsI+VXp7Zu5c+7Jwis5jbIONrfQRvr1PYcc847E588eDHLfl4FZlroo0nbzMpLg3gj2Y2usX+/zxZ9wDFIpixkU6d4ewDrak7CZBbecgHKXMe+PGA8s56DYH3H/Mw4AxU7HMN0lNMrqrYO4oOXbt1mH/5Yu2XYH18H6/XLGUHS0TjnufERTOgxmYcpQfTaqZf+HKlGsLXXUmhF5VMeC2nZA2qPTWsRgsE4ARRRraTwgUIjGcjkbc9M4PvL5vp+rXfcmUgp31JBMz+6F5ihB5e6xWuXsoLNasiZvfWZz84U4N291eiEiTP8GQlDunxt+3b+47UPBW2g5WKMNoZEqtD5HUQCXSRoHPTlb9m6TlpIxt3VU50ijaZTtI2OHiaLG+g8eytNFC/vHmJU5mFbbSNcG/m1M9QFm9OuO0+GykFtOlCY3Tl0IdtFs0StJTf3NwHDQmrrTcv5hABbzfWHBFXlrOa8XAnQkd/nruvZWcjLQKP1xrRlQLWNmGWYfwK3dK4zbHJWsyGXp0tcrFYs3BYZW7+kNC0W7v4Uwz8AF5yuVhhs5uonR3u7TJuUPFFsT5wsjKPm+qypcNDXUj6lcufew54+sl8oWsjL9yP5+laRNZSh70KE37kvYSUdcWvnOsLhS76JcR7eMqbdpzQ9AN4ys/dYrI1VzU27DOfuAIfjHb1SUA9TlpbGdj6Orwd1Ixaeo/vGTDFPC44JJKNRN/zuyfWTKCGD8kKSt9BafGV9r1Aq7b5tri/Q3Gi+vO8xidQP1J5lcMEs0aFu2m8RRoKGaaVZSNK3faZIXddUVfUDZ/JOrxvVTEbNOPy/l6YYDOvl7o03FN3Be2MbleYOkxXCcHba4Svbt/GVK3eyW3VDBO6x3BDdZeX+DdqtUFVtoxrASHWCVIv/mw+KsrTtFSAYD4VMDY9fPt1mJM5Y5JkKdQbtozkDY51TOedhHFbuswXP/xcduz9aJDy7e5zVYsz18YATfSvg2M3q4Ei9wc6ijnWwjCWtBc9Ux3l+8xhdR1xYzKahec/L0vsMwtcPssTCZtM65fqoz9fP38Ru3eFEvs1m3acxKb+/8X6mOiOVGik1lZc7icJNP142zDp3GUwQ7qttEf6EY3Ad7gwZOoew5bTFfM9DUI92GVUvqWi0mHWoQXq/hbz8feGzoXnoDtqxxFmqubzd58ePf5tb8musyCGoNnAALx3jmwol0zq9Qa/IbHOiD2pmGhgDBDYbiBzkcJpGMtnOOXZii+XlMVNX5/CwWyfKSHxg0+uXbYe7uxbdftv17o/jla01hiKb3RcJuvKNovvpvZ4lt112MVmEKsSQVpSV6UaiK0ltUhyBz5Jb3AcrY8Ij2hhNR+UYIVhI3n6O0nDoRn//YJ7JO7uSJAnTzHpJJ1CCt+u9tufCRRqb9awzic29cqGMoO3IlUkrHikQCCG5MFnity+9n2c3jjGp+kG+3DN3sqwOIoFhg25NXcaTOiMwVEX4fDtLI+418QVadxyZIs01rw7XgmGOsWjvkGa+FMG2q5v4TMAPEioGFUabGZD5uZHtiJ3WuRVwdJG6r02EbMLPLskaqtoa2bpKyHLNl0e38epojbqxkbSnBYdOZqnZLQuGVcFLG4d47NJNPHruFn7n1bt5fuMY65MeDx46RyoMvXTKV/fuYCwKJqptAlRebiN2JnPzSNr5LPb4dkyPYZOzkJZcd/prG+7VwzFeFsaPwl3tjWic3MmuOw49B8/1iypkHbUTrPQQWp6qFvKKYENtDK9eWeEheZ6H1s7SFzWn8k36yTR8zq+gqWYEwypvHU1i9s1y91cyrrX49+gbNDDOKAbXknI75UR/j6OHd5lO5+pBvSiLdDUSnyEliWEy8rRgu71Ym0tKw0sXj7Ahe5jSvSFyHD7rSXKNLt2R+GTTwOZ23z4MCeA62k1mWvXfaBkjaLZsViJDEiWCzIsRkLmNV0axKuwzsph892Sg73aNRhZmfa85k3cNNfitWjHMBbZusl3vUZuGpbTPnhohnIHYaYYoo0mEf6jaG3l31zoaKQRDl5mIdIqZdBGJoBApU1OTSgsTXJ0ucuncMofyIXesDukXQ3aqDkliU/N57j4Qouk8V4yVdAKDrljuoY9YH2oOOkszTZIoJIYnr55kdWvKQjElFQqZGKaTjO2hYTzOubq57KAKw/XdAUdWdy2chqDTLxlWHWRiUMN05mF8Vdla1qrrIfHRpD+arq+fFCXbddc25zUpeVZjtERKhapTzsijPP7aTcjCMJ2kkEBTgV5P0Fo6qEVQ11ZTSTUCIQVCGJZkyR29a2w3XTaqBc5MjyITw8QxwxJ0VEcKrfFt38WcpEpbShGcGR3mgaWL7JR9DnVGwfh7jbFlJ1C52hmxWffJU8WkLFgoypCdeWhvqZgw1SmJtFFzkU5DhjpwkJcQgrJO6WQqOLmqSTm3vsT/6dY/YJBUPLF3kheT43xUvcwdC1d5vjlliRTuzMeaatM6YyGi4VZu9giBwXQAvde9R0VRPszqc9WlRJSCY4t7dIqasasV1VUGlEHANC8axpOcTqcJ92ev3wZdVZnRG1QUndnCfK9XMapyzrmJnVpJEjQyb2etxM+K2U3hcB3YXXvjThA2BRCNsJpbEutYCjPbsKgE2lPIXd0H2mAIIDcZtSjpmIyFvIB6j8X07dfE8sX3d6Lw/72sdzwzeavxyBjmgtm6yYIb4esbF42oOT9sKcIqsqLdro3ABYLxNG9hAz9vWs5i0TaqE1yvFvjKuVN849zNbOwM0FocKJYI8ZREj84IKqcGHCiWecvUCrWSyDCgbf/DSBW8tr3Kt6+d5FvnbuIb527hmQsn+fbZm3j56jHOXz0Uos2NiY14er0S1Qjb/Tx2cUUlZ5gye6LD5ckiN/c3GdcZHSfo6EUvlwpLlxWilQvx++kLyuF5rSMDJwQkljUmZdRY5mvQvs6awPHBDqfyLXZVhy+tt1PuxhEzKsxpdwbxnvwyH116BWHUTIFeNXImUXvNNS/6X/mpiMe6dsTucjFhVGYIAduuedHXIbz6wXJha0jxjBafucUzWkYe1kOEv53dXObSep+/eOwx1jpDtuseT5anAfjG8BYWswnGOHjLQUV+2wJNYxInqeLqKPuK8jEF3NdaPOw5D281NKOEdGg4Ndjm1KFNMhcsjH3joXtvvx/Vg1ztzUNoaaoZj2Yj+k6voqraGtHG1oAXp2sBavVLCNtPAgS9LQBTt45vWmdsbgxm6yMzhRXvHUE7H6Z3svY9scmJtiGNAAOykhRunMVi9vZnJr7H5L00/x3eBc4E3lqH8nrOpJvYDGPiGhcVFS/uWkZX0zR8+9vfDu/1pAC7a4KhKyp6GrAUvrjYziKX7i4tkpTtqseZ9SM8duZmLm8t0JT7lUmDrDkt3dZPMfTQhRQtbh3mp0QFZ6ngI2uX+NDqJdayoXufS/n91ZWzWdd21bVOTkAzdpGXewCt9MssLPbt3ZMkwrAxWuBwx35HT7b9IWNPC1azUFMWScTb3TDhXAGkqbGwGkSGzX2rNIAhMYoPHr1AIjQvTo5Ri/acTcocbez3hc8J2zdxsVzmPz/xbX6s/zxryW44X/O9FBerZaDt2j/hBn110obNsQ0+/IAvDwt5R+qdSJ4o9nzk7q6fdzSDogoFek80yBPFxqjH45dPcqge8bfv/7c8fPIVskTxB+Ud0UyQhC/v3ElPTGc+H7q/tR3kJSVRHcWdR3d8M/TeufkkfjsJDcnIcIgRdx++wqm1TaTUrnDuRjF7KM9lGEmqGY/nakUR5OXJHXlECx67DF8jeHrvKEg5o+rrVyCvZDo4PuORPQNbWz1A2g51/6jfyJLVCXoiEeMsnBOdEVQZ4jEMtdHIUjKuGlJ3Qy29zTIqYLvf32u0YHiXOJO3cu1zJkXUa+IM0W5jGxeHasxLO+sMh0O++tWvUkfwmH8ovGH2MtU+8jXCFlKF1MEgFtLVAERbRFQmYWvaZ9NNd2uipq+ybJlQ/kb3fRidqPbhP3PQ3PYEw2hccMux69x38jL3HbpE5rIHkoihFvkHjWR3zxkJ50S80ck69T5IzlOEc6E41B1S1gndpGUjtbNL7Pt9vcgX48NMEhe5JqneN2fFf6PH7YW0TLZDcsqtveu8NDrCueoQaQT74aDBROhZdeAmCU7iVGebP3v8cT6avULaNLPRLHBV2x6aU71tGi3opTXrE9e86JR/TahteAkdK6PSSZsgyeENfRrVWOaZXFIYdiYdzmyu8dT6UX5k8BI/cfTbnNk+wrevneJfXf4wTZrOjLE9Oz5Egt3m/AAqQ+t8fX+RCT01+wvuHh7r65JBWbIsxhxTu9zRv87dRy9zeGD7adJEM3KG3zsgHxj0+2VocvQ1OQ95palmMpojVfTLQBxpmoTxOOe5vSPUxksP2ReZm5YoEl0i5WVRBlazbLRb0ETwlqxaZ9NOR2w/bzToLZdVecaWBP+INHWKcDtRG8Wi6mAECIc8LP0gM/mO1x99ZxJlJt6wTnVJL8nYqHb55pVzfPnRRzl69CgPPPDAvu152WnP6Oq4BjQjmrbJy7/XGQHjcfvIKCRBCba9QUbD9kb1mUnoNYmUcT1dMp1pXHRZAIbNbWv8Bt2Sw0d2eejuVzla7FmjdAOIbWvP6XT5LnPXbFb0m0Cj1FPBrcV1aiF5Zuc4tw420MYEmqzvHfGGw9cO+oWNUD2jrFNUaG3Ie3Vo5tTqRk7EtFmUERxd2mEpmfCFy/fZ403aeRYYEWa2J3MspZHpsFH1WcvHDKucD6xc4lMrz/PBhXN0RIvplyLjajkglzrQmPfcsCtffPfyKYd7Vv2gSBQT12A5nhtgtuCOPW5e1EawPuzz6vYq37h6mr2q4P948kt89n2Pcs+RS9xz6BKvlWtcrlfDMbbHkgRGn4fXYscp3Pc2c/0kBw3Eiovy9x85z82Lm5xc3gqjADp5HVR8K08Ocdvv9yfhuniH4VevVwZVhvmMRAgYD51TFobH109SJ4lrjGWmudCzt+IsJQQ2hUFdy9jZ7s8EBCLKTISflJiaNmOpJcLBZkRxiIj+n7rj6umM5dwFWUAixDsCc30/5ee/n+td4Uy+nzDXkWItZBeVbqP91bxHZRrO7V3j/7FxkeelmamZzC9fhE9TjTS+FGqXjxR9Y2KNhaGEJFjag2YhNE0S9Yfg9jFBOk0h/0B7hzAzrEm1hmXTTYrrdmqaSpIXimNHdrjv5kss5yO7gbmv3xxbZ9LtWcNa9OoQBRr3OqwKBkXJkcUhvzW8h89fv4eroyUSd/weUmkhHbutLNFtD0OTIAXoJkHIFnMPMN3MPA1DR1aBDts1FTevXudLu3eFWhJECgDGhMzEGi+f7djPvzKy5IGt0h7rbtnlwaNn+fSRF7i3f5HcORU/3Gpce+FMu521om1eVNoy1YLoYyiC213x3fK9rGbqahvDssOL1w/z7MZRntw4yVbdYyCmfO7Eo6wVI66MFlEGvrF+C+eK1facREGD0aKdH+NZfK5mpkwSHM/8+N245yRMqHRZy6XRMgB95yQXu9PwnrEvUvuG3K67plkLa4V5LI4FaFlbHeI1k5HUKdNJxos7hynlnLxLrmdgOwCZmZYBGSXJw+s9m3Y4IgnMIbLxZyphs56t7MCASkQfFPbWI5lKupndv9ooFtLsHet+f68xueBd4kzeypWm6YwzyWTK4cJGfCPVDmPKaifnsdBhrGv+uy9+nv/u93+33ZDPiJ21aFSCrh3U5aNoXwNwD78S1qBp2gfE11HaWze6s4UIU+eCZpfIyRys0c7x8LUSFRWqnTORivGkE4qgjddDqgVZt+HQoSGnjmxQJLPDwDZcDafTrWlclKh8J7zb9rjOg4yGVpIr2RLf2r056JQFJ+KMUjerKR0EEoZs+cN1l8TXUwJdN1KkNUrwv7vlMX72zkfJRMORzpjrzYBtNYsfq7gY6zOTVLc6ZkaAgHOlve5+5oyPFRKhuam7yZ3FOiezTV6brqCMIHfBwIpjrh3u7TGqMrJEB+fr5VD89fROZLEoGZYZl/YWeXHrMF+8cBuPb5zg1dEapckAw9F0l//73f+BT5w8w12HrnC4P+SFzRM8Or6NFlD1WZoO+6yMnUkfSBkORmyUBCEwWocIfrbnxBflZ9URLlcLaAMr3XGQctnztRFP+XWijL1uFfpH/GhcD/X2em0Xu+8j8dR0KVvpFI3giasnKbMUU81GNUK2wUscb3mqt3RKBvX5DlUVZfK+rhT3mMRLCdhJkRHhwiThtM5AYVpL5FQwrZtQeK+0YjHNf+BM3sT6I0kNjp0JWHrwtXKD7Xo3KJR2HHaw2i2QKzlbl0smqs1cnrhyFQQ0qo3wdLWIzCaWTmgsRFSb1E07TDBCY4xs2VmCcCNb3S+BYTZJmJYZvX47QrYxie0MTw9mb9VVStFpwhNk/ybY3F7gxLFNEgc3+H6VNFOwqDmab7O5PWDYWK79ROdMpxmdTk0zyUiLMrCuwoNqJFvjPkcW9sL3n69WeVi+wsRkLOUTDJKlYspG1SdNDGWVU2St0/bUy9Sz3oRBGbvfjU4dDdUquWay4rbeOr2k5tD79vjC9Q9gOKBxLRpLO9UZa2IYzk2WVwhh+VKXa1sPGbhejUW3X57220sqBt2KrWmX/2njowyakrPlMoWsOTM8zEh32Ch7rOQTJk3Gbt1jp+ygJ7BXdzg/WWHc5GxXHUaqw05ZkKSCskoRiQnwlG3AE3xk+QIqki65Mlria/VtVDonj8YICzFrIEudYmghySzVVE1CoxOMYwCGwCbqOakaSZqafT0nNSnrw0WOLuyyM+pzeGkvwGRdV+da6I8ZNzlpYhhPCopi3GYrTs9NCMFk2GFheRLumW7fSuwkie0zGg0LXtw5RJW3jbIiV3NMLWlVffNWwTioGyegNjK2VJckYumGc5SAqIHcOovwbGlg2zecOh8iBKIGU4DJLLRshB2pkIwFdWaop/YeGTc1i2n2jkmpvBdhrj+yzsRz+sHWTZ7cfZ5SVxQmpRYNywsD2Ngjz6Bb2Jtu2FQBw220tr0QWuMTuHPXDLfd6jIR7WTDqwQpBUZbo+FvZiGMpYBKA1qgjEawP8rx0V5c3xhVBf20Dtsq8jrQSWNdLrC9JgCb2wNOHNukkzcooOhWlKQUvZrGZKS9hq6YkOmK4UaXRku2d3sc6+wEJ+ILqUHDyojgTHwWkmeaJ3Zv4tbFdVY6E66WC2SJZlTmLPXKdiiVb95MGxSSPKupSEmEoQbSxFBVbtiR4/1/cO0SPSdTsme6ZK6LXsrZOkE8bniislD01kFK3DLBNswAZQQne9tMSTne22FHd1grRmypLsvFmC3VY6mYslX3GBZdXpuukUvNtekC/W7F9WrAlbxiZ9IlQ1HWCWZbYAxMa3vtR1VGmhjn+AxS2qFRnvIshIDa8A19E9+4chOrl4fcl19mt+igMxnOWSzmKdxRCANTnZHLZmaqYlWlNO5zZRN3wc8NVEubmdkjvh52cbjM0YXdaISwk4fpj6l14phcHZYWJ6G+5WGtIm8YjnO63TrI8/s+EilhstthsDilblKe3ThKk0tMDSKjpX67gruMlH5FYp1uUpi2OVHD8HoXugLVheBt4rpJLTC5sQGYstuRewnCb0QZSJxzclMeEHY8Q21SMqPJVM40a6VeN8dDDnUHjEYj9vb2GAwGb1tB/L3qTN4VMNdbXTMBQhc8wLGiFZFczhbdd/owvGaoLVRxYa/tiC9Sj4m3+zZ0DCg7nMcgRdt3Ml8/CZF0Ym6Qh9vl1YOlJOAwvsAdpFGiWeQe947ntgNs+CL8wBZKO/0K3UCSGfQ4sdFeLcgyTadXMzg05fmNo3z71VOMphlNLeksOGqnR4sMbI3cfAonEdLLK15Wa6GG4bvZwyArd159f0W3sCOEu50arW0vhjdoYQ65AdB8YOmy3WZTMMXCV56BNNNbE6JWq+CcSgsrhsKsoworUs6PV+ilNZvTPlmi2Bz3SaWmVBmpNAyrAikMI3cdfCNc6CdyLCbPrisKBcbWtMIYWA9pumthpyV6ooE7xsj4bek+l5NlKi/VodvP+RUHJVNlaa2dqOeoblKUI2vUTTojl+JvNzU3fldKTT1JQRguj5fs8bjrtNIfYYwjDrj6oD/3eWByTcN96Lvd/X3Y7ZU0Dn5sqoRr64s8PzxMI2frcCKWifdF+DhLaVp4S2sYb3RRXqhUtFmzUaKFUP2rAFFJKAVynLREjrgUGj2Kqc+0NJjSi4DafZoIw1KWU1UV3/rWt/jKV77Cs88+y9WrV6nreNjdW7/eqzDXu8KZvJXLOxMPdU2nU7Zf3Qh/Xyis0a2NdSATM+HcaAuBYaLayC+TkUV1qywLlLL9GT4KDuKIc05EJKaVob+xL5mZa+IvhpdinxFrrGbpt/M6Uzs7fZQWpKk1GEKAdo2IXkm1bTtxkFoiuWAWea48wldeu5Vvv3aSi6+tWoPjdtvXCgaFHbWaJhqlU86XK0DUlT8nI9MvSid+aahruz/GqRJ7pk3Yn8SwkJec7tjr9Or0EEIIEqGjuRWt8F98DgwCbeTMKRaiNcavTawysJeXD70atLUwiByRJzv4OfUdSwEviiYUhWXrF9zPbn8S2xgoRAvFsa+BU3N7b4NBr6SMjCS0meH8tifaTnz044rBZmc+42i0mBFQ9Npr+yRVpLaZsIArpQ2q1npW6TpPVZAN8jI/XgJmoW+p0FLCeDhXW+l5yIswPXFr3OPZyWELJ/lb2J/fQrcKC97J5TrcE8EvSKh2cqbDIvSY+OPzJ80zuUyU8AsFyVZqK1CmfW9o/I2unTHQH0wQdYKo7d+Hk4p+ltEYzWqny7Fjx/jkJz/JvffeS57nnD17li996Ut84xvf4JVXXmFnZ+fAOUjfy/qBM3mXLI9xKqXY2Njg0Ucf5VSvHUWZuV6TibJF1q16j7GqOb28OLMdn/Dq6EbJkzTw74MT8dImAatuo9IwiynecPyDaWEuaMUEK08PLtpZJM2cPEaeNxhjwkOtjWR7196AQcbbF5yJjV2rCiwKbZ+oBEQt2RUdruwtslu3/RXbzplIQWv8NLw6PcyV0WIwOH4CpaWZGtex7ZoZPctGzTk1L9+RKU52t1nNxuw2HV52Y4DjznYhoPGd0TPCjYbS1Qz89rSW4Tx5pxdgt2S2g9939HsVYJ9RDTrWSGZpKyLp52rIORJB5pyIlFF3+Vz9SQKFrPmx1edY6VsD3vaNuOsU054jZYWpzoIz8k12xrQsLwsjtgX3+fG7McOrmlhnsqW7TOuUImvYcdmn193ydOBBz41ZzhSj0WzfiYfcik4T7uG6Tnjq3EnO1sttRl/OZiRCtL8z8XwZf209O60RjLc6gEAXBFpvbLc9vddkLbkCJZAT34MV8rs2o0kJZBClE9YO71I2reMZVRWLuQ08BjIlSawE/crKCnfccQcPPfQQn/jEJzh58iTj8Zgnn3ySL33pSzz99NNcunSJsmxp59/t+gHM9T2stxLmEkIgpeTcuXN861vf4s477+SR+x4KTsSvnWYPMOw1E3ppwqFBd+bvlZqN/AGkFAz97Govkpi2fP7gRGbr/697luO5Jv4seGlsKU2gB/tI11M+hZjX/IKtbXsD+lG9HqLJOu5nR59NCldTkiCcgJ706ueijf60kVQqDSKSoTMZgxGS/3j9rmCclzq2GzxLdJDsD8bS7V8gBTijnzmHKCXc1NkE4NvjU4yq+By3x+ebNz0d1mp4SabK0oN9dB7P8LislgFYyWzwcKRrr/tiYp3eqpODWenY16XOBO3qYf7aeLinZfjNOpEkMQHOmpeSkanlnfbElL984j9xS3eTe7uXWE1HkdbaASKObiVSo0zSTjr0xyZMuE8Mwok8ytn3BPjN36N2hLBXdbi0ax3tZG5G/aDriAqdioljB1bT2eFc/cE09JZMxwU7u11e3DrEddFD5KbNSEKfSEQBjmjBQQDBO75MoxWMr/bBZY0ISJ3ot9Gyrbt4ByJc86KBZDsNtN8ZGaMICgs9vVLTLZz6c5iO2dDP7HW/0SyToig4fvw49913H5/85Ce5//776ff7XLp0ia985Ss89thjnDlzhq2trRm4/Ttd78Upi/AucSZv5fIijxcvXuSjH/0op0+fJpEJxzq2blK5UWyVrhmk1kieHPSQc3pulZ73CDZL8Z3jvqvbj9EVgv2Rt2fnxHX3uZS4aZJgBHz0pIQMFOAg6kdM+XT708iZzW1tO80tR+vsOtZNPqgwypBkJhQohZf3DhG0270Yv3b/3Rp7nTIX4boPDVWHJ3dO0mhBnihGLrKtan8y3T47Y1m4RrY8V8GJeON7S+c6O02X16aHg+ZWKvTMCFsPSSVR/UQ3tgteChMm+jVKhn0d0mG3LjjW3aVSksV8yqjO6SY1wyqnn1VOlNHKwiRuPj3YefLQOoYw6tYdWxoNobpRA6tMYMWM+L/c/fs8Oz7Jv79+P0pIV3fzbL2IXBCuNzPf6WVaTKCEm5nCOkRZy76JiW3AU0YKDL7fJAws61hJmYXeNEj9+NkkfvWco/G9JcbAtd0B39w+xTSPKuy+cz1y/JSz+yUSbD8IBMsvBEyuujpJdHhtk6EIN62J8cYGkh1JUovQnGwVsN2nDmh0XF0ckvrBZM5p1IkOGU1fyDekBgshWFpa4tZbb+XBBx/kk5/8JDfffDNVVfHMM8/wpS99iaeeeooLFy4wmUxed1t+vRenLMIfMWcyGo342te+BsC9997L8vJy+JufujiJek3WXLfraidno5od4XvQqpRib9jllauH7MPsOetewsJ4eqb9fSjCR0wtMQt6AaIVfPR4fabZdrPaQ8HdPUB53oSIUCs5w2rxzqTfK9G1ICsUamqbBc3Ey1e0rBYgSIOTu4MpWsKAN1xbbjqjn8nuXxMMl/QKX7x4J9vTbpiK6J2QZ4AFFlC3ck7ERPLngpSGm7qbPDU6bamudeo0t/TMqN0wmyPukFZYRheaNNMobQvPMbb+8vAwUhg2xjbamzq14bEjOvj9np8BMjtvHTqufhIX1tUN5GCSzGaqx9nhr93xebp5zXm1CkZQ6pREtKOZYpZW0KJyP/tsq5qbhpgmKtSV/X6G8btRwT3eBrQ1I4DLUwvtLnatkVvqTygdlOe16IKUjLuG3W5N6bKUvWGPx87ewrlqxdJuU9P2kcQ1Ep99eLZdvt95ytzYfpKdnMaLRArR9oXEdRGvNBFBVmhItucMvxAY76TmB4CVsLzYoBzrPffU5QxU5fqnxJufsphlGUePHuWee+7hE5/4BB/+8IdZWlri2rVrfO1rX+NrX/saL774IhsbG/taGPwaDoc/yEy+2/VWwFzXrl3jq1/9KocOHaLb7e67Cbysynbd9kwsuMykmwvOj7Yp0tc/HcoYMIKtUZ+nzp5ib1xgzH4BQ+mhqMQKGcb1k4Oq8YEeHGHbXz17C19/+ZZQp4jH8LbzLJiBuao6ZzQqZgQcjZvrLppZA+MdnXTUYjoGtLGMGPfgBWfi6iY9NxiqSC085dlmF6cr/LvLH+C5raNcGy6ETKTrGFDdvEY3YoY6HUNGt/fXeW14iLOlY90ZEVhaMcMpDABzmQ1YY+e74MEa90QpFpM2CjznxvOWbv6Jl4UP1w3fC+PgN7//nsHWseSDLNU0rilTz8FZ8VgAD3feKjb4H+7+TY4vbPPlPduYCJbqm6IiYx+No53LNjx82pi5oCJrZlhaxkQij3MZSczwaiJncqWysOhybxy69n0R3jt734Q46E+Co9vb6/DM+eM8s3OUYZIjOu312JeRJMB09phEFsNg7neJodnJmG524ip7yCJUh+jREeFFullj2VZiVX+ZcxxRUOEdj5GQb1vRajXxJ0sgGoNJBdOpI5GI5HtqWhRCsLCwwM0338yHP/xhPvnJT3L77bdjjOGFF17gS1/6Ek888QTnzp1jNBq5GqhhPB6/rQX41157jb/0l/4St956K91ul9tvv52/+Tf/JlVVvfGHo/We7zMxxnDmzBlee+017rvvPo4fP87W1tb+xsWOLeqO1YSOzKhMTdfRf6VUaAw3Ly1wjjdORTt5xe64x6X1FdavGRaWx3T7FVmmLMSSatucJSP5efeAuObsmRVL0fsHpsg0F/ZWuLC1wtq1MacOb7JS7CGEQNcJFMr2sswYH8PW5gL9fhkewmAoE43CSZ0gkbkCEjtVcSogEchKoDsEz+ftQ8zoWi8tFCSxxrZSXRJpUEJyabrC2SuH6DPlaHfEscEuoG0DW5lQpA3SYf0tA0pzurPJr3/z49x87zV7HrDqyalQYVCTreVEkFeVkBUalNXnSly0q4xge9LnT68+zlPDU1wqV7joJir6YvtiarPTldxe68V8CggW8imKlIViSklKv6jYrTqkqaEuU4puY1VuMxWp8tq6TpYqKp0ghEApyb35Zf7kkWd5dfcQ6+UiG3KBxB3bVGd0ZTXjKBvXE2LM/N1ha08qs0baBxVF3oSaSY3rtZkf0TvH8MpzRROpJpfkbIz6rPVH7I67dPK91om4bGmpP6YyEikFO1s9rk8HvLazgh4IOz8Em92asYSuae/3jg7XzSiJQCGijMRUEpHp0LyoS0m50Qn9IKG712c1Kcgp6C6zPSaNIN0RJLW0Xe3CEhrCNxm/IVsr0YmttSRjEEajp57EoJGN9TeTaQU5dBFvadNimqYcPnyYw4cPY4xhMpmwsbHB5uYmr7zyCv/+3/97rl69yvr6+htv7C1czz//PFpr/sE/+AfccccdPP3003zuc59jNBrxy7/8y9/xdt7TzqSqKp566inG4zEf+9jHQmo4PyALWpgLYClbZL3awD2fVNiIu99JwaNgN2D7GSPoZhW79EAI6jJl89oiqVCsHB1ihHFOpI0SzettkIgeLAg3f541dl8S2BgN2BgvkL6sWF0a0StKlswYKdqI1W9gc3PAqdPXbeSKhcVqJHm3YUJCnjeU04Sk0Jhxgkgtk8skBteL2R6re92ddFFaWIZWmdLtNgg0Ra7QQ0tpVTonzRV1LRnR4fntHi/sHoHSKujmWtEdNiSDhsZIUqlRSJKk4fnd42xsLXEzzpm4zvaFdOoMoSTPZyEvVVtnIrAqyB4ONEYwqQomOucji+cYXc1Zx8qHHOvtALCSjdhUAw519rhaLbLaGXO5XGCQV1ybFBSZYnvUpVs0lGVGmlbByPqzbTMEYRtXlW1e1I3t/L4nu8JfueuL5Ilia9rjy9UdthckaRDCUOqMhWQ6A2/ZelATHMHMPadskd2YaE48Lb1ZIdElgdIko4zEW+Wmsc6knoPLLu0ts9YfBbiuCM2LI7SxVPPL68tcnSxwfm8Fs2DQiWvOLDSqApEKTGMdhu8ZsdCqsA7G3525wTRguTDut5lGTwXTaz2rueU9rvMBokWISUrrTIxyf7DNRKRbswbfaOxzKARCidA35Qv2+a6VOWqaBu3qc6XRyMZ+6Xhas7CWI435vsmpCCHo9Xr0ej1Onz6NUoqmafhX/+pfsbu7y5/6U3+Kj3/843zmM5/hz/yZP8Pdd9/9xhv9LtdnPvMZPvOZz4Sfb7vtNl544QX+/t//++89Z/LdwFy7u7s8/vjjLCws8Mgjj5BlbQU9Ht3rV6wePEh6rLOBz3v3mhEgqImyGZ/9Stn+1pUTurEMun9Yq5TrZ1dIuhWdxTp0wAvpOuHF7Hbj1cJclp2UpMY2ioXQzn6u0QnrW0ugQJ6zZrSQ0b5o2Nr0zYtT9sjoLpRUdYes1zAaJ7bjvJLQMRb6Sg1SG3uMifsij0kbj98Ltsc91gajGUaXBtDCiQDaYjM24QlRstKSzaoPU4GeSJI9RTO1AyWkgjytmZwo0ErSVAlprmw/hE5ZjkYY57kO8CFEqsPufNa61dJQBjbrPovplGPdXSY64+J4hdP9LV4br1gdrTpnuZiyW3Y41BszKguKdMKkyigyRV2ndItWsj7AWGmDdyKltk5EVdLNZhHclG7wf3jfH4S60ufX70UXCapqtzPVtiGzyGtqI2226SGquEbkVByMljSO4F3kVvpfytnw5Eg65P5TF3lx4xip0EyGKSKzhKg0tfWgK1eXGFcFCS199fJ4iQ9wkZ6D9Fb6I5QRNCrhzJUjrKsB14YLJAsaLa3DkB2FMsI+t6WE1ISsUXSsSrGQsYOZy0hS3R6ngemVrm0WjH2C/7PX05IQw1wCjdGCfFu2dUhbaLP3gXu/MJY4422MLMGp66CNdsNNoJGaTNkPNUKzluYopd42OZUkSfj0pz/Nj/3Yj/Hrv/7rfP7zn+ell17id37nd1hcXPy+OpOD1s7ODqurq2/qM+8KZ/Jm16VLl3jmmWe47bbbuO222/Y5o4P0uRbSPnfl7+el6nkyR92qXOf7RrVLIpa4Vrb1lFwmlGgSIZjdknDRWxw6uehHC9QkZ7rVQRc1yYJC9JRzCjc+npge3ChJkirSRFv4yPiCi5iJ2OySlNM8FNF1mbJXWnZYXjTUO12yrkJvpyQLymogpRqpLd9FGusQZGJQCFt8R0TU4Ki4P+6zNhi1jC6hqXFqANA+6D4ja3fRXRTHVFMSbx20gXqaARPQgmqaWmeSaKYqI5MW4vJZRzwxsS2SO7aTTmy/DAatBVt1j1u6GwhjODbY43e23s+D5TmEMCwWZRB/DMc4t9+e4ZQnbQe8RtDp1ExUhpSCppZkqQsWMMhGcbK3w788+yBjlaOUJHHPY3DC0jDVaZCAqaqUolAtsytAXzabyDILF01UZusSwmp/dTvNzD01mhbky4p+WnJ6bYvL20sMFkqubC5Z6ZVhQlOlnDq6QdUVjOuUss64XC6F7315/TDXywWuTQeU3YTJsEO60ITOflkoDAaRCMxEIgoTpHA8hGX7SBLo6pa1VUQZSVyYV1Bd7UGVQM7s/e3vJylIpgbVC3bfblNDui2RSqLFTJllZgkEJBq0wCSQ7UYkmAQS4ZpAc0FRS8YodApFI9Fav+1Cj1VV0TQNd999N5/61Kf4y3/5L7+t3w9w5swZfvVXf/VNZSXwHnMmWmuef/55Ll++zAMPPMDhw4cPfN9BMJcQguuvnmA0TUjusb8bu8ZFjeF4v8eF4SiIyWVpQtnomegPWr9gCYjCGktFiOZDbbBK4VJmaYoLigNkucKKu+C9kcykne+uGtlGZf67RBu1zlMojBGcefUYd91+CT1NoKvsTOxoFxNpaBCkrn4iOtpVJYGRN46zxX0vq1I4anLqMLFMKioSV4gWti8CaRlbCOuotLB3WmUsoB38iQmcfwxUZUqPkjRTlDqzExRp60KZU02Wsq3neCJBYyTSHZtBsFnbOs9CagMGIyVPchN613CNRTCaQVbSd6KPffe+vlMBHhRTDIJBt6Qiodup2Z0WJKlBKvsdlsWn2mFVJuUxdbM9T3XDbcut8oK/MZJEhczEYCm/BSoYz2RmVrskyzTCCGqTorUgkb6I3szU6j3c6TMM33zZ75T0ioqiqFHpLkpJSmMFIsd1jlKC37hwPyITDIcFaVcxVgVZBLklubLXMrOz4WVubF9S4SEr6zB0Jaz+lj+EgzKSpH1OqksddOMpwO7B0rRQl1uyAtXzRXjrUEUjSHdFiLHsJkVbIokfXHe/yVqQxT2F0qB1YgvvhSBp7PXUGYiJQWv9tgs9jkaWVfpWFOB/6Zd+ib/9t//2677nueeem8l6Ll68yGc+8xn+3J/7c3zuc597U9/3rnAm3wnMNZ1OeeKJJ1BK8cgjj7wuD/ugzATgg8eO8sWvniVv1jh1/H7Gqy/hXcPhXsGFYUsP9nukowJeIoVldOGdCdZCq/YDxmDdjBEYCVJL5J5A52ByrMLp3FJKOkFDE4xkmlqqa9Vgo/oGkGAa50Re55SdWT/CuuhyKt+hoCJNFAZLJ1UIsqKhIUN2FaYRtm4yFJgCkrp9EuPncdPRg/tFyZScPFEYZehkNZVKrHIyKWmqUVoiE2070VMwpcevCUVSsMfjm8VMyFIgzTWTOqUxwlFo2z2py4Siq0J0maQaje3NEUaTSnusY50zUSmHukOuNQMW8iklBXtJl2erPlrDY8NbOZVucUu6waHOkB3TYbkzZqfpstAp2Zj2yFLF7qhDp9PYelFauwFecf+JwiBbanijuWftImmq2Wu6yKgfIk0MEz+G2RDG1sZCjf5otbZ1FH8lJnVBlpZR42J7fRKh0caw2huypzssdifsNB0G3SlbVY9up2Zr1CUrFNU0p8g09TSl6DWMpxlF1jjqrgqQVZLbfUk6mmaaIDPrFMhVm0R0rMyNEKItqh+UkXhlgNzKqdRXu5hxZgOYxOyvkezLwt3fE43RkvxaBG9F7/MEF+GhMf8GA/kes0tCWUlkbTegXc3JZHCr0/B7uzOT4XAY6inf6/rFX/xFPvvZz77ue2677bbw/0uXLvGpT32Kj3/84/zDf/gP3/T3vSucyRutra0tnnjiCdbW1rj33nvf8AIflJkA3H/cyqqc3d7lpfM1Nx+9lbvvNbxQnmeQz26z0Z5q6kMlyBKJauzsiGDg/A1rwMXiBGQqsTBAXCMXjWy1hsJDYCGTvFDEzYlJ3sCkcJmJq5/EtZd5xosL7sw4YVcWPLN7lGOTEcdWdyhJKLoNY52SdhRmlFknMrL1E9kIVOHYOL6BOgp9PaOrX1SMpzlSWvmMTt6wPbRU1apK7Eje0kEhng48h9LFBkJE+15FcJ+qE0qVIed6TexsjsjgpQpN4vS5tFXvNTZAWJ8ucFN/i3GZs9Ct2BtbJ7HTFEgpmKics+IIT14+zbFsh7ViyKnFXSZVzqBTMZ1mZIPSyqh0mpbO7OpFWWK1wbJEM60lxghy0XAs3+EDS5d4dXKYzdrCWLFrbpqMyqRIodrpiRFNuNJito4ivDNJWeyWGCOdGnG7zanJmExy+r2a4bDL0mDCeNxhcWHCdJQzWCqpJhlZoWiMpKCVqsGTC/w+5DYQSzuKsrJ1NlMllsXmk43cEhBEYplcomMCJVcU2oVavqYym5HUFzoonbXQlNeTn3Mcfum5YYfZ1CCrFHeZZxhb4eNGhFqJUBYqk2r2PSQwqUxoiKxqBcqgu/C5hz/MtZdfeEcyk36//5Z8r2eOfSfr4sWLfOpTn+IjH/kI/+Sf/JPv6vvfFX0mcHB2Yozh7NmzfOMb3+C2227jAx/4wHcUKdwoM/nA0aMIYFzXnFpZ5OzViu2nluk8cwv9aZ9Ctr61VPudURwIzUoLOtmPufrAG53duCjoG868jlaWKWSmEegDs5DgoGb+5r537IrTHcP5ZpGnrh1n71rHZg0uEg7ij7550X92pgO+3fi0zpl4ra255j6hrEy8cSKYgec/i/xFUKD/DtF28BtBPW3Pv24kpU7D4Cu/vAS/Zyx5fa7KJJFTtd/ox/D6/S2rzDom/z7dkgSumSX+cOM2fvPCPby6ucrmqBcMZyuf4rTEwpCqVv1AKYFUmtt71ziyNCQVxgpVegmY2CEqwVSn9h4KmWisijx7HP77KtX2I1VOPNOvoSkCnOmnJvrvNjcQJU1DZ7yjG3dsFpR1VBhAFjSz/C3t7g9ZRL0ivhnR91dlN2heVFBf6aGd4vAMETGSRpnHlnVHhIxeNJBdPiAGNnOvEBodhRKkw3nAGpCGSktSd4c2WpM2giOTDncctb1J75QzeTvnv1+8eJEf/dEf5aabbuKXf/mXWV9f58qVK1y5cuVNbeddm5kopXjmmWfY2NjgwQcfZGVl5Tv+7I2cyaDIuWNtlZc2Nllb7HFha5dOkfHchSl93Wdh2mXrDnvXHnDrBdFFY4SdwOizBc9icthsa4OdsdUHbG8mmhLhwc9cdJgkxvLhpba9AT689/WG17vXlISphI5GloKym/HqlUMsTicMFqckmeUGKXC1DavcCtIWTofOkEQ0NoEdlNXNt2cidLBFcEPbU2ML+22vv/DMo9Q4aFy42F7OHEacmZhGuLqJdhRXdw2iWSZ+22oqIRfUSlJIHSzftYl1Jl2nH+aFNBPX6xKMqs9yhKEk50LZ49zmGrJULA0rBrIkLRS9TmV7dAQo7ZreVIKUGmEMN8ktnh8d5255JZyfQCmemcciXaOliaZoNuGi+nMSatDuPV72P0ms+GScmYwoWEinaGQ7e8aRB7yEfOjkT2pA0u1UNEg63YrKSNJcUU5yklyjK0mSqVYxwTkK2bXjEERyAKwVeksE1NJmL9FQs+pcDy0iJ5hwQMGdA1c6sYBfZyuxtPsoIxFChEdCxI+VW2pBkawfYOoSqEhZSiUjNDo15Eh+4uTtoV7ydhp1eGekVH73d3+XM2fOcObMGU6dOjXztzejiPyuyUziNR6P+drXvsZ4POaRRx55U44EbuxMAD7ooC5/5MPaFizPbW4zHrUFjb6xhi0R7Smq3dRFYwRZIlt6o0+WghZXG5k7MzsLTx2wlHMmMWMpMabVbfK7Eb2+7oUeuoZMX+MRgq2yz4XLq1x9bYV6mlrB4MJ9X0c7aqXbcdrI3S8vq5I4JpLvFA8O0HfXe12qcD7cMaQgREiF3H7FNZP2gTdGhJG8UhpqP5/e10piB+Mi41cvHeGpV04Fptb1yYBaS9Y6Q8CE8cJ+v71cvje23mn5bEdlCZeqAS+Vh/jqhZv41sVTvHzpEOu7AzZ2+1zdWGBrr8eFS0sklzOevmblYIZlK1S5n6Vlz2upMyQ6TEZMUx0Ug9tbxTk599lSJbx6dY0Xrh7hKy/dOZOZTETG8e42AMtdW/tb6lnxysWBfR0sTNDG0M0amkaQZ4q6tHPkG1evUr6DPUjXeMirCZ39fpRAgLWy1rEzl8lQaEwF5aU+xnXZx9IooVgf32ohy2gzNzR0r7g5JZ45Ft/+ov2Mfy6Ewda33D1ezJu7WoCUYTS3zgWFkfzXn/zo20oLjtdwOHzbM5PPfvazoft+/t+bWe8aZ+JP3vr6Ol/96ldZWVnhoYceotPpvOltzc+Bj9f9x6wzWR9bJtfZrR0AykZxbKXVwymn1sD4oTkAqb+5HLwr5mGbCN0JPDD/4LzBveGlva30hTMimNZoRpiz0bPft28ZWmfiP+ckwI0QDKsu13cW2Xx5iWo3x1TWEMhyfoNzzmQ8q9HVzVraLLTd2d4hSq+knGCbP4h0tcLDL1yvnaCKWG0YgoYVtDPGg+RMaMhrnZ5Wkut7i2HbtU65NFymn9WMpznL3TFKWVFKYwy9rEZp6GSNVQrOFFpBkloVYCFpC8dKUpKyPe3x6sYhruwscWVnia29Pmaz4OL6ETxHe1IVNEbO6G/5WSfgHKXLTOLGRS+TE3o2BJRVwonUssIUCd9aP82lcom6kTMNjlpI8kRRlgmL3SmTMrOqv5OcIm+YTjI7ytcNAavc+Wzcd4ZZLf62dQ4i6zZWEijBsgPduQAQPlvpaIyXg/eyMH4IViWZXuhjVDRT12ckRK8zfSRuCYFw7KtkCtITD+JO+rnPCNoapVAgetoyBo3hT7//jtk3O5mXoHWXC07IHku97jtCC4b3rvw8vIuciTGGl19+mSeeeIL3v//93HPPPd91ZPB6mcn9x48BcH5nl16eMqlrTq85wbt+sf8D8cjTqZelF0hl5pyIMxS0UThEUdg+w9/+IpGCuvKTHVusOxXaZg6WOhS0s+QbBgwCRu6LOxowmK5pt+NedZOwt9Nn8uoC9YUuTGbPt57b6qWdJbbHXTqpdR69vEJrQyd3xjhXGGeMUc62RnUVf3x2D0376qCJpkqCeKaAkJlAK2cvQtZD0MkKUxGdE2uDVMH5PdvoUdUpUsBkao24amRoErXDzuynQjYWpkDOQk8+UY0hpnLYmfld3SShl0RG+6uiTG/q6kEW3rLvCVL3bkmpqZqUexcu8+HsNTJZ4jXbhRYz+wCwVfYCI248tvfy1NUnqol3GrOZR4D+PJvMFd8zn4lI278EBH03X0yXsSaXn1viHWGhUVsp06t9hFcqvlGNxH7wQGw5qaz0SbonwrHPfMb/94AsxaTQFA2yhmWZ89mf/Gi7DaPRTperahrQBp3Bz3zofnue3qHM5L2qGAzvImfy5JNPcuHCBR5++GFOnDjxPW1LSnlDZ3Lb6gqDPMcAp1eXAVhddAq90R3p/5fMj9Vzf6srE3Urixas9aMv5rKW17P/UsoQIUIL26RS24zBGdTApLkhvhzt61haCCE3ttge49Pz2zGCepKj1rvwUq8tAM95wHFZ8Pnzd3NpbwmlnePzBjDM85jddqijzIei0v3fiMhhW3kasE5Dx5/ys+WjQrWHBlu1Za9F5SJNLTi/ZyHSzMNrbv8CuSCQBbzTMDP7G6C6feSBdv99dSg4kzoN9R4PY0GrMCydXEwitBsilob9jbeTJJpGJ7y4dZSHDr/KJxZe4SOr55DGBgjzSMh21aODhW2FdzohQXYZnR/v6+ophVNzKJwqcN6t0co1snrY0RXjgyN37DSRgCn9Dd9CXkZBfa1DtWmHW4WzldLeF/4+OShLgZByCA3FNRBCBtaVqA9IyQ377rmmb1C5ITcJf/y+21lc6NLzhXwMiSM0NFqTNDCYJHzmI7bn4geZyZtf7xpnctNNN/HII4+wuLj4PW/r9WAuKQQfPGZFH/vdWVbJ5rgVefROJE3aUxSktI2IBmHN103mXm/kReYiKa3lPkVaj7N7zDw4Jo+2vc7VE1F24urP7ehY/ya/Ha9On2L1kbwopc9UVGvsmyrlD9dv5fFLJ9gad6NhUA7y8BMCI6jG7oT7DuPwjFjVMjoXtSvC+2NuAiXHvnjaKrTy5X4lqUZE0JI2rTNZKuy17bqJkFkwqg6aCz/PnnMPy/khV/acu3JvjOlH+1jVSWhMzOLZK6aN3v1AL2ghTj/KwJ+zNFUoJTmzbaHZTGj+9F1P8BOnv82hzmhfZrJTdzncsc0U/cLiQ73w6poZC6+EbOV2u90KpSAvFE3lsjXnRIxn/nlZfVd7kJlB+/nt3tG4bMUoyeR8j3qah2z0dWskcfE91NHaH7Jt26sF0bM2lfueK0EbkwgFaQJaaHQOPZnyX/3nDwJwwkX9QrTORKeC3Eg+feimALe/Ew2L8ANn8pastbU18jx/4zd+B+v1YC6ADzqoa6yslV0f2frJ+l7btJilfkjRAZlJFAVJnzbHs0uInw8xk/EctLQbv/vsM6d56YXjIdrPouJs/B3GlxbiIrwx+y/myENnPrr2n3Pb8UFl6raTRPWY6NhFhHdpV6DdKfs8ev5Wzm2uMJ5k5J5mOmeMA4spd8Y4th7SGQHdEhTmJ/opYweAyUji3TtbnwWFOkqi7Rx1n3RowVTlrI8HrHVH1I1kpW+lvr1T6eXWqHZchO7H3/raVZJpjHJRuBIgRHA8Ebrpzq/9oarSQGvOg/ROG4wkiUZFkggBeppz9lmqUFpwZsc6k67r1l8pxvz5hx/jtv56cOIAu6rLyYUtlILVwRClYXkwQmlYGIxRjaBX1NRKkqaa6dT2etSh+O6zTHd5/Dnv+AmdGu0ov6aau7cKTXUtZ3S1j2nmmFNxRuJv1xtZnuh8ZruGfNTCX8H/RNDzgUV4ATLBdukLwc39JRZ6Fop8/8kj4Yu8s9QZ5Ebw3/7xR8Km3kmY6wfO5F203siZ+CL8+Z1dDHBhe5d+MTtq0Xctq0gw0htjE+nIy/lIK/woWkM/M2lx//4oYzuqO92K9esrvPL8CS6+0DYbJS4aNxnWIiWRE4kjvPnlivBB+tsX4X1xNHPOQ7YOw6J1xkLLB8ihe2eCix43xgOePHuaC9eXmQ6zYIx9gVykpi3C+1qz36zvgI/OiacH+2P2c87jXhNfXwozRXzknCqbnbgN+obA82487XiakyXaqe8qqkZaRlMjyVOFauz4W1VLS2f2/Rm+4Ox9uoe+onDYRLBTVbWZSZIYam+0fN+Iz7q0nNEem0dUhbCDu4Z1h0ujJY72dwDDYj4hkYYTPdscuSTHGA17qkMqNZNxTppo9kZdksQwGnaQEqZu6FSlZvtQiK89hLk8qRv3nOS6zUTc9Q9wYKFRuymjiwPK3S4zA61Se2bshZw9tkBxnz9g/98Guhet8/YZiU4OqKsYojqIfWl60AhD0gDG8HMffSi8/WMfuNmda0PtC/C54LjocjQi4LyTMNfbOcvkrVx/ZJ2J1vqG1LYPOmeyU5YcX7RRwKm1pRmD7J1IEzmTxEUqcTOfaOLvsPCH8SGzzwDe4Cwbl5n4cbsaweblZV795knqzdz1gJiDr9ZBTsQf99B9oOtovymzrxDG9gbESeAQnGjD0SF6Z2I8TOVQq71Jj4sXVrlycZV6L7PigLWzD36ccZDln7suphVMqVzNJHWZgZVM1+RFJNdezWaNMoKkRNr2PXjj/ezGccombes3fjKhM6q+qdH3hAQnOmdkw37fAKJpnYmtmaTCdsg3kXwKtHUfFSoZzBxHvDwE9vLOERbykt1Jl0ODPZpG0k8rMqk5Wgw51d1mp+7SaEnqrm0z17zoa3GtLzcz++OZZUXXZlNpoYLasfbn3J/DTNPsZAyvddlb76F00mawoXm3PYfh/joosJq/h5Whfw6k21AQxpYC4/W+4kshPFnCKbNkUAmFNHBir8tDt98cNv3Ih29zzskwHmlXeBf8xYc+NLsLP8hM3vR61ziTt5JX7SOKG2Uny90Ot6wsA3B42U0R7M5CbFXjmVvt73y2EqFcLukw4BsKaZ+Ntku93cgNSyhG0OmW7vNO+cskNK/1qc71IrPTQkQzn49/8DvQSJjY/ZLT2T+FBz/KEsA97PPOJL40RiLRGCFCz2b8xumkYPvSAnvXei37x//1IGOMP8cOIvIFeGENmKUHG5JU0zh8XgX5eZeRBGjNIGTkTFzmcmF3ld+6ei+Vm6Pui/FJ1MRoT4Hbnpj7fTQ5EwhDqQLDzh9OBHNN3X6DaWEs9zFbR7GzaAztoLC2viICXbVx+/zyjhs7XeZIAcNxQS+11OZ+XpImDaYv+CcXPhFYY75p0cOlvujuqd0dXz/pWqiv6NWoxtKClaMBBzjLQ3CZptwo2FkfsHN9QN3krUyJv55J+9yEjNefpAMzEtoPaFh4RZBHU7RjmDWmBftlgqeCwidbuaBIJT9z16yTyPOUxcY2y9a1JFWwOJX8yYffP/O+H2Qmb369a5zJW7neyJlAm50krsA+bmYVGPfrBUekk8jQdrKM4kJCMoyN75zBvwGuu3+/Tcti8fWMBLjWQV7ISHfl/s+/nhMWIPZcv8lcfWE+a/J6YSaz+3/DfiUBuTPGAZY5wEmU213GV3rUW3n756hXBmNNsgDLqHKfrWN9Lt8Fz2yvyfzsjzRSp7XmeRbmquqUscn5dnmcZ64edx3gJijreiXk3Bnz+X6ZxGWGIjVgtMvKtD2/0XnxB1qXVnvLMrlNRFJo4bG6Tlw9SIQ6UxbPgm9ms6ZXdyzWn7swPcygN5JEGsppTp4pNtWAr9a38aXzdzGsC5QWLPYs+WChPwEMg6zEGEO/W9E0dgBW5eonytVPtIfA7CFTlwmb5xZZv7bEzl6PxqRhmmd4LiISiv/bgRnJfCDjf2cMxTXIh8Iyt+YYafs/M5vaqA4ojFUBzgRLMucvPDzrTABOLw4QQqNMQmYE/9mpW/e9553KTN7ukb1v5foj6Uy8DMJ3UjfZnNqQ/fz2zsFZQ/RLFWGzSeIhFoHJoXMuo7iY2BQ6sK28UP1+gz//m1aHKYp6ozcKJSkuphSXpC1Kyigie50l9lK3n3P1G28rMgezpWCUibKFA/Bpt3xkf6PCfntXSfR6h+ZCBy4W0FgjbPW7ouObqZlEXfDKuoa6cQXiefaWz0iiRk+pzD6YCwSTaY6QgjPjw3x942a2Jx0W8hKlBP3QL1NjjCHPG7R2xXdtkImxopWilV7Z58OF6w7XYExC0yS2yz3qgo+bDJWSNMaWz70TyTIV+mw8jbhxTmOn7HF9PHDd/C0rzTso32uj6oQkg6t6wIviKL999h6eWD/F5MJYwAAAmiFJREFUi+ePsjfuMixzUmmYTl39xDuPyopHqkZSjjLqMmF3vcfubodz5w5xfbzAuMmsI52XrXsdWGuG3Tj/OM5d+95l6F/zf2rvv5kkuZrNdt2pRzQak9p+SqsCDHc0Oc888wyXL1+emWd+381HrUMnJdeCv/InP878+gE1+M2vd40211stH/CGRXgnq3JuZ4c8keyVFUu9lE3/hgMMqXLDNAwiDAwyxqB7jrlUSRaeEUxvMlRdjRCRgnAsnQszIqnCQUYGp/ek2Tcr3ktzJ1NJsitIC001MHZm++ssn5nQsxsVKVBa5+HniwiFlTqJAj190LB6dwghM5HG6ndJY42I26ZxrDA7i9sgSTC7IPYy8qRGJQIjNbrvthlZixl9LhfRl3VCkaoQjftbxRflPSSWFNqOHo76TPzxTCc5g36JNLBRDriwvcSphR0W0pJ+r6auE4pCo+qENNeYxs7tMI1E5MYxiIx1CMZmRUYxwyxCuizE2CyqNCkJup0LEkuqKEGprcSgH7EM7XhdX7+J6cRnNo/xsVNnODta41B/jxEdOrKmIQ3QVXBYjbXsTZOx3RVc3OogEs10O4XEYMZW8bepEtSmoJ4m6G0JpUQnQC0w0h6LcedQNjZwktpqYRFntdop9GpmxgyYBGYmhkafQwCNgVSQ7cLgAqg0+nuceGh7rzKRtjAioiKVsehXJaB2s9yzKfzffurHmQx3uXjxIs899xwLCwusra3xwF1H+TcvP0UtMu7JF1gadJlfSqmZ6a1v13ovO5M/kpkJ3FiG3q87D63RTVMarVnr2Jvm8ErU4/I6vi0mIFW1QnlnogQmE/TOJRb3Hb9x8R1sT4txzXte1svaJBOoxcIIR6UVmMSQlpLuhqTYcrsbQ8nBEQoYtc2LXoxSKDETKcZOxL8aI1obP1euyYUGYxCJ0+/xFGXfiOil8r0IJrT1pASSUUo6Suiey+2MEwPSBY6mFKHfxu9A6ammPvEJNOH2+gZHo0VkY9qLOHGReCwQeW60ynMbR9gad21/DW2EH6A5/51zUJ44wOAJ0X6+qtNIzNHtr2xJIdpYsUcpNGmqQ6E9KDL7TMP3WAAvbVpK+96kQzevKVXCIK3QGhY6NsP2dZDU0QzbepA/dwaDpCajlCk1CY1IIHWgY+ag1sxYCRxB2yToMwUPkXrKrzgA1oodxnzdZCYjERTXDYuvuf1raLPMkL2KtmERgTDxzQ66gCxz5y+3U1J/ZHCCY4fXuPXWW3nwwQf5oR/6IU6dOsV4PEZNr5EoQyMS/sLD76eu9w8Zeif6TIwxjMfjHziTd9s6aA58vFIpucsV4X1kEgQao3VAA7ylcxpfINWQgXa4veq6KLSGladg4WVDsa5vXHknCrCMf87sf4Ixn4emZpoXHYQS+U1vmDHOCc2LPvo4eI5eHDu+mZrJ3L4Lh4nHPmO+kD//GmozviEydJgBmqC7JBvZdsG7Ly7LnOvXFtsIP/XsLROUjU0kE+Lhtxn5EudMPKTknUplMr597ThXdheoGxnkW0K/jBevdD/PsKWNnsNg2vpIXSdBW8yzpYRoNbGMhsqk4Rp4XS7vFP358VCdzUxsNu2NrDa2eD+Z5vSKirpK6HdLlIKOYwZmjgWXuj6awHzz4oy500/zzkPSEif860FOxDP5bhSQJLR9QPNwlWg/l+0Zll8kGoXQ3itxgCRjkCEKbkRt4S2bRRl0KuhIyX//Ez9CvPI85/jx49x333188pOfZDUpODpM6MkJX/7yl/nGN77Bq6++yt7eHsYYlFLvCMw1HA7fs87k/y9hLmMMZ86c4dapYXuwQNKxOkY70ykMZvcnSxMaXwh0mbpBeN3CsHTXjqD1hWydu8/XsPSi4eqyoOlDUhpUd/ZYtXGZACI4KXAQQdO+6sSQePiBFjmbX9JBDekY64DOd0BPEU56TMwb+lB8N1ATMpP9J679j2js5+ygKGGL4Vq0kJczNNYARfCechUkYzOuRNj/xwainmZ0B1XbeZ1onrl4ipV0yO3FOlke04RT8m7TYvW6PT4dnRytJWWZUhQN01KRJgllY5xkiWSr6rJxvs/h3pBBNiXPGqbGzqSvTEKSa+rKpx8WwkRERtRDX96ZVC4zwepv+SypUYkd0+voB5VO6SQqSMPMrwBzAVdHS+xVHZYK22Tr58h7tlhVJmS5op5mdPo141FG3q0ppzlpr6Eqcyvfogwy05hJYmHPqYACW9NKbOZqsij99tcuc9c+EVARoNEYqZzJVtx9EG4lGf3NGPJ1C20JXGYTv09BPKZhJvMO6SGISQPLOY3RyMqgC8Ed3aWZnpH5JaXk5rVDfPjuW3nooY9QliUbGxtsbGxw7tw5kiRBCEGaptR1/bbCXT+Aud6F60YwV9M0PP7441y+fJlP3fdBdh/bpbthONLvcW04Du/LXQd8LEHv10GGVndns6BYuXRmv6bOQJazob/fZq30/ih/FmVo/2/aLOX1lhgnNNf66Ou5NQJuwJHxrzmueVGEh9rcqGbidkcEvabZfbzhHeUIA6aRFrZDYHITVFXiU+q74D2cleUWC9uqB3zj6Vs5+8oRJiNXOPYCjWEX28wk1EzcH6cT+5lOotqsyhk4kdhM5spwkTOvHeXSlRWGWx3rIFzxPUTq3paJmS+2583XTCJ9rjxXIUgItGZPhXaSHj6LCsG7c6Rq5l4TvLJ9mGML2zRKhvn1fn5J4uftuOxGTxPr+ybudSqdBNBs5iHn2GYtJBnfJ8Y6Gg83RfUosAGPz6gPLsI7yMzpWhYbsPJS6ySkauGtkLTe6NY2AhqNKqBwE1Iro5CNQSjDL/z4J2/wwXb9mR/+EH/+0x8GoCgKTpw4wQc+8AE++clPcu+99wKwubnJl7/8Zb71rW9x9uxZhsPhm5ZlfzPLGPOedibvmszkrV4HZSaj0YhvfetbdDodPvaxjzGtbez64lNXObm0wMp9qzzLRaDNTGKKsNn3n/b/uuNgg1rYz2hraaSHY29gmAFMqUMdJgRjsYGNgkRb0BY2S1G2fuI3J+Y27W2d3wcxSRHbCWZFQV9DJmBsIBH2Yfad8GL2EJnbHoDTE0Qm2irvuoK0p/0ipNMvE+E1bCXXUAp0xoFZkJf3CHBWrkiEQpEijODyzgpXry2zsjRmeXEIctieXkOwQtq09ROAySRnaXli5VBUezxCuOqUtCfdIJjUBZNRh92tAXlRkRZ2drnIrCMyxjqiMG3SuO1oK/zoYa5ldwxKJ0g3vxzarv1KW6XkcHZCsd5DdbPe+ZXtI9x/5Dw74y5rCyOuVDlL3TElKb2iQiNCf4nvTZLRPkKUTfrr2apB2pW55tvcZZmpgBKbiWgRfUa0I6gTbFab2HvIJMxAncLdX2gYnDUUjukSw1fGfZZYLcGvuedHjhtYyEldraRJoTCSW5o+77vpCG+0Hr7/9gN/L6VkZWWFoig4ffo0S0tLIWt59dVXybKMtbU11tbWWFlZIU3fOhM6nU7RWv/AmXyv6/sNc62vr/Pkk09y6tQp7rrrLqSU5DncfHyFs5e3WF3q8eSTF+FHZ7dTNyqEolIKnEhI9PTbF1MYjCuUm8IgK2fIlUClZsbAx69+GWwRfqb+IFrnYYRBGmGlUBzEhIqiuGhb3kiE7zQ4WMpuP9nKSK9rquPKwv5JuwEtW0M871GCoxNgGhHmXJjaIKQI2U3wbNH77UUxoKwjDPVr78CiM+EzkzRTKCRS2gFWkxnNJ8HW7oDt6wPkywIpGroLJRORMOhMbVYS1WcErRx7MNhS05jETk40BCfRMu8MRkvKUYd6V1gI7YqBboNIsUOX4ihcsA/m8jWYwCr3Bt2d51Jl/Pun76drahauVSx2x6zoETvDHsmwG5xJ6Vhu37p0Cw8efTXUViqd0C8qtoddFnsTNuse/X7JlJSiU1MjSfMGhROORLjpmgKZaftzplFI6+S1tEHG1EAqEJXAZK0TCXBWXMerCE6E6F4yThFYCPccGOhfNAyuQON6hEXkNLyzOQhhDRcpEWgJuTuhHgHQuSSvJP/nH3441Eq/lwK6pwZ3Oh1OnjzJyZMn0Vqzvb3NxsYGL7/8MpPJhOXl5eBcer3e92THRiPbqfkDZ/IuW96ZGGN47bXXOHPmDPfee+8+efsP3nGcs5e3kNnsjWdKDXOMQSkkCjMrFuuDOinQXUMyFujMkJQSlWvSSqC6vG5mAgTxyCxLaGyFHyFFa5RTwNdkGmbZMvOb9g+z73E0BlkJR7u0Bl1oQf+FlGpV0wxa42ASF2G3nOYYoo5QHYlWlqnk/ce+4ntwii7NCgVb77lE+zfa7/KZSZopB/MIskIxaXB6GXYAkjCEbWqdMN7s0wwahDBoLcKDLSsL5VXTFK09qcKQJpqmSUJ2JaVB+XpP/DoTAUiYZlAK6+RdIVrUFprSjolW16mV0Dee9j17oTwBIEsURgjGOmc06nB1tIC5LGxQ0hhwoy2qMkMAG9tLPDq+g9vFtXBq/d+7nYZyktHt1+zudej0Ksppl6JfM2pSsl5Do1LSTFE3AlloqxScYwekJUApIAOhpA1cIiaWwZ1/hL0fGweNan/fuCAmmuGTNFaNWpSG1TPt8cuZ7TrYc/5eFqKlBANSG6vPFW44aIxB1AZ6ksOq4KH33xTgbSFE6Dl7s47loKZFKSWrq6usrq5y5513Mh6P2dzcZGNjg1deeYU8z2eyljdbwB8Oh0gp6Xb3U5XfC+td5Uw8JPJWrCRJqOuap556iq2tLR566CGWlpb2ve8Dtx/nf/3Ss2zsjWcMc1Mr6ArkWEM/kkE3s7BMmiWUaNsk2TUkER1YFZBWoGYHCO5bRogAryQOiA98/VDIpt2HmQ+HjbS/OyD9SSpQveh3iUACxaZk9XlDnRuqJcPouNvcgeGh36xBG4FWgiTT+NbM1mk4IyRnnYgvw3i8XTaRs/QOULTje4UEVQmSxA7eYmQwibBGLHo1jYPTpMYrEWt9wPkwgrpKKTqN3ffEYCqDlIQsi9oQZFKkx7NaqE5IB1W5LGvGcQrTUoOdDEkzV0TyjLQ0VoQ22jYY1QYjBUVWU9X5LKzoMx8j2Bn1eWXhMGYCPVmB7eSxb3PFeFUl5B2FmiRkCw16mJL0FKbB9kg10jK4Gmln3jQCEhMK6t4xeAjQOCdiMnuOhKuvzfSUxMFEDaQWYkuvG7pXZp+FuJaoE0gU9prWs7WSVNtdBEg0KGGvS16kTIDSKGRtEYP/+oceJM9ztNbhX4xOSCnDvzda30nTYq/Xo9frcerUKZRSbG1tsbGxwYsvvkhVVaysrLC2tsbq6up3NPDKS6m83XPn36r1rnImb+UyxnDp0iV6vR6PPPIIRXHAFEXgA3dY7v7F9R2KtRRfDAg2Orqx60bbGz6S/8izhJHjDanuXJ7vGF0xjBTW3M82ejVRL4jBpMKyodT+m0sEhMU/ycwY5JlPmKiPw+uLzaFYaSXIzxv6Vw17t7SZkn/v/L4bCCNaRWLcZEVXN/FwRYyVu850g0Eoy+SSztHEs+YFc42LLmtJpCYxBpUIm2n4zCTaN5kZrEq8ibrfZ1dTWmcyAwv6JMwX46W174F9FBnMJG9oprlzJrPnWMzBXGDlTmx9wtdCvHSKonaWuCcUY2Qw5HnaUNVz4xiiHd7Z7bOyMuJbe6c5me5w82CTfmH7TLw0TOgvcddwn06awmYg/u/GzDiPMO7AW4iMkIlI5Ubj+hvIswIT7HWWrganobhi6Gy4+pgLkuz3RRnJXMAUw55L3YKNugqfEZ0GozMS31eSCHIEK6OEP/mILZx7Z+HFXr1jMcZ8x1nLm5VTSZKEQ4cOcejQodAvsrGxwfr6Oi+99BLdbjdkLcvLywdu+wfO5F24Njc3uXz5Mt1ul4ceeuh1b4qTh5dYWeiytTdhbbXPNcYzfz+IUXJz5xB31SusLh5i4fgCL21c5+p4yHPmOlMMQgtUYkiliy2/g5vD10xMraFgvxAjtn4iTFtHEQc5qXjfnUH0NRO/LxoXdKdEzWDY3gDvkIw12jqzkISeC9KMEuhaojYy5EpN47MFFWUNUqCVsQKZLtwVmYY6scbK0ZBn2APYaYu+aVo7IkMqNFliYShvdNHtPlsEyrSqx5GDiutVXr4+kRqNDIiJFK4o7SNzbbOEkB34S+mN7LzD9t/vvrepE4yxw70Mbb9SmPMiDaqUJKmhkzSMVRYFAyK6KNFBuJ93d22UmwrDhWaNF88f5YNLl0iVYqE7YUxGxxfjM1cvSZQ9Xb5eIu2Aaf8qEudEUvdFubs+Ga4mIhCuA36fE3HQK9KSPUwGxZ4gW6dl+3l6vWoPxdfL5ht746xlZdBjY8sFeAZEXsM0a+/TQpLXkr/yyIPzVyM89z7DiDOWN8pavhc5FSEE/X6ffr/PTTdZ2M1nLc899xxN04SsZW1tjU7Hyli8kyKPZVny8MMP8+STT/L444/zwAMPvOltvKucyVsBc507d44XXniBQ4cOkSTJG0YXQgg+eMdxvvj4K+Sd/Xzyg/YmlQk/fuo0t956K8eOHZv525/6u/8fLmzu0u9nNBMFKBvJuZvfKw9nia2/2J1oM6C6Ulb6tHEPnRTBeSCto5qRL3m9Fe28gNnahbbSFWnTlgdIWnaYNq2iWDqEagXk1KB6zsDWFrs26wXNKIXVCpFFhtd/eK7uIFKDqWkhMMFs6mPsz3WZkneacAyp1LbRrkxmm9+i7/B1HpuZHHDdRStfnyWKUktSqalNMmNcVUyw8H0yLkPcB/8FI28pyR7mwgjqOkXltm7iRy/HYo5NI0lSZdV8VftdtfPc5ga2bMc5k0xqagVTnfONyWl6mw13H7lKNU3p9Up2pl26/ZK9Jifv1UxJ7HErQZopKhJkru21zi18J3Js8T1yHkIJWxPxl0dGkJdy2YqrjaQjyHYECcJdFudEdABDA1FFS1c7CWwMd5ma9ncLgw5s+T8LEJaaWGuFaCS6I1hWGX/mRx84+GRFa95Z+OZEOwLCzLQSvF7D85tdaZpy+PBhDh8+HOi/GxsbXL16lRdffJFut8tv/MZv0Ol0vuci/ne7/upf/aucOHGCJ5988rvexh+ZPhOtNU8//TRnzpzhIx/5CKurq6+rzRWv++6whYJJLKtwQHDYfpm84Zz5D91kt/W+E0eQrgK+lrUFtTR10dK8k3M1E8/7ktENFaux2g9H+3jQfs57wDg0p40ETYqFGeLJjSEziTbqPu8YpzbSDt7RICcp8nJhpVv8m2XrKA/8bkTrZJwDiZevm/gPplJjXDd3oEN70oDfpnKNhK4AH1b4Tvtmo61CsNHGdafbJj5wysAwB/OYsHtNk9hrZPwEzRY+imEusFmQl5n3rK4s1UHM0dc3bBOmccGBplRpJE+DSyhbOLNpUibTzPWXGDdqWLBeL/Dl67dybn2N6TSjnqR2lvs4Jc21zYSkQdeCJNe2fpIacMPAvIgiQVImglDja+jEQYNtV5DsQu+CJB8mlnUYMjz3aphTbmi359O2QF1uCLBgPPkTY+i4/q9Sa2RtT+TPPPwAb3ZJKUmShDzPKYqCPM9J05QkSdja2grnu6oqmqZ5y5yLEILBYMDNN9/Mhz/8YX7oh36IEydOcO7cOX7t136NZ555hp/6qZ/iH//jf8ylS5feku98o/Vbv/VbfP7zn+eXf/mXv6ft/JFwJmVZ8thjj7G7u8sjjzzC6urq686Bn18fuN1mF+vbw/A7n0Hk+UHhv7hhh/0HTtltDZuKqlEcPrTA9t4kPDhZ5mXUTbQ19qn0Jglkuy7l98YwOBO7sdnn7DvI6OYMfJj97pyJds7J70/Y4pxTiespQvjKjSC/UCC30gB5zHyXP4ZgbEVgCsVje/1260k684s00dCxBn9G6TiePGlawz7jTKIlhEErGYZ2SVcfkb5ekjm9sdQdqKO3IoWLYGXLaIpmaxh3fuO+k7pOqY0VXLSjfu2xtFL6zplIZWX2pZ9Nf+PI1F+T4bhD4mpUVo/LkCYKIyTXqgW+fv005zZWWF9fCAyzUMn2Q8Aa7zzcufHEiABjuaxivnnRwVmignwLuuck+VCGfhb/cRtLiUhKZ+517vfx7BM/Zreq2mdMaEUm3LlLBTmSIyPJn/1jH7rh+fpOl5SSLMvY2dnhueee495776UoCoQQaK1pmiY4FqXUW+Zcsizjpptu4p/9s3/G3/pbf4sHH3yQBx54gH/0j/4Rt9xyC5ubm2/J99xoXb16lc997nP803/6T78jksDrrXeVM/lu0rudnR0effRRut0uDz/8cKDVvZFqcLzuuukweZbY7nO3Ep9BJNEpCgZP3FD764On3UjgLStp3+s5XSwPmrsXHemxCOk4/JERybIUqWHxBQszhe5iIp8TRXuvW5cJkWUMq5lgz309xGDaaN/DYQdtbk6Pyv7SZRDDhN6ZjHRdElRDwBp8rLG1tR/hijmG2In691euW93vQpraZsFE2A6/qBVk5nPmdTITsH+bTlKUFu18kTk/HHp95rbd4n6z2Uv8udnMxEuqWAVlL+bYOKPutasSYZwTaVleM1DhAXHCaGIJJUJDlml0Jck6DX5uvRCCoenwynSVVzbXOHdujbq0dRx/3IF85W9NOXdcub0rjRd/TKwDkRNBfh06lxKSSWIhWCFmnAi0GeS82Of+UQXu+6PHdbFXuOMsw++ktmw0AF1IMgT/1z/+if0n57tc6+vrfPvb3+a+++7j+PHj5HlOp9OhKArSNEVKGaCxpmmo6/otdSyTyYQTJ07w1//6X+fRRx9lfX2d1dXVt2TbBy1jDJ/97Gf5uZ/7OR58cH/N6c2ud5UzebPr4sWLPPbYY9xyyy188IMfnCmYvRlnkqUJ99x6dOZ33rEdFO8LxA1hrtuPrNIvMkZlzeHFggYHnXkWlUsnVOS4rHH3TWEuOpSSpmcvUP8KLLxsGVkeg9ZzWcaM6ssc9CXi32sz8wedg0rF7Gf9/sz7p5CZiBkjbpxD0JhQYC22E3qvCUTljll4fyeckcJSUWEfxAURPdhTaf2gKq/6O3esZsZhzEmpRPonQtgZHmcvHgqaVoH55GeVzG07DBKb//mAOQGxE2szE7uaOWVgvxKpw/GJeXjwBms0Lmb2nUbYuSuVRBYKowyisDI0pjBsm4JLwyVePX+Ire0eo42ObVjVOIgPhB8PnWu86mg6ktAI0pEk2ZIUlxI6V1JkmSKIAo7I+XlBSBEmk84qPrYwl8vivKRK1MDYLWwwsbU3aX9pFPVUgzKYXHI4yfnjj9zz+ifqO1zr6+s89dRT3HvvvRw9OmsLfNbi4bA8z2cG8MVZy/fiWOalVA5qZfhO1i/90i9ZGvvr/Hv++ef51V/9Vfb29vhrf+2vfdf7HK93VQH+O11aa1588UUuXLjAAw88wOHDh/e95804E7D9Jo9983z7Hc5yNo0KZykVksbh5TfKTBIpeeDUUb7y8gX6vZRu0gPaGaQqAObtZwwtdBTDyKqwBsxB46ycgfGKpl5J3DwSwgc6ScK0mT1ej3yliUS5WfVCmUAPBlcTiAyCfdBNW0hnv62fL0Kb1CBrickMsnYyHI4BtPCapEkVqi/QXW0HhrmINfXw1ty5EMDV82uYrmH12I59b+ZqG7l2TZv2nZ4i7LunrVGLqMHxJTLWOSVSU9cpVzcWGSyUdLqVnViYWBVimRiUitIfv21HYW1nxM864VjoUQrhmGNWzLErGzdzvg6SKj5gSRJNWjRQYjvRoaUlM/sq3UUpqxRtBJ20ZkRB6gkELhuUtcR0DGIsMAVWzDEDUwumJme667x7Zfdb1sJmHqXG5IJkKtB1QqpsIV3UBtugaGazJpeRCHdaRLSP8/ePFsImKXOBWqzPJXKB0obCyZSMpzWdxZRp1SCMpp4KEq1RHcl/+yce4a1Y165dCxnJvCOZXwcxxHx28maoxwett4rN9Yu/+It89rOffd333Hbbbfz+/6+9946zo6zb/98zc+r23tL7pvdKSZRoIBA2iDwgSBcEvhaaCijwU2woPA8gCIpiQEVaAkg3QGgSSpJN72WzSbb3etrM/ftjyplzdjfZJFtOknO9XnmdnLNzZu6ZM3Nf96ddn/ffZ/Xq1R3KJmbMmMFll13G008/fVTHjSky6Y6bKxAIsGHDBvx+P3Pnzu3y4h81mYzMg7XhWS0U0sAFwaAGHnMFK6Hrv3YdgG9qaiJ9TxMTXUk405JoqG6P+Hsw1PnKxVQNNmXwZSN4obrB4QsXQDrbIalMpXkwCIclzUfIRlLmdXS5FAKahqLIqAbRSKoRQDUmYc1hWymas4I5nigLJyJmYh+7oTYsHAKCEppDoAQky2UmqxLuKgnNLaF5Vdoy9c8zPQnU4YuImTgM75hDc1B6MIeK6lQGDKgjPa8FSRPIHhXa9LasBIWVhizJ4eQFCawJO4KoDDIJWxQKLbUJ+F1OXGkBZIfeFEvSq+N094yRrWQGVoSq18kIRFjs0IQ5owIJToclNx/QFLyELBK2QhLGCt7p0FAkDUloBFCQ0BCyHNan6sQ8liV9v25XiOY2Dx53kDYcKIoukWLWjRgyZCianqVm1dAIDJKUEJJsuI8kCOpZGFJQiuhnZV1D89LJkq5VBmGyDdMKpgK2eR9b1yd8icIfR7m36lt8OGwTcGZSAhXVTbrFiYITiex2BwtmF3a8MEcJk0gmTpxITs6RNb2iEZ0hdjwFk62traSnpx/9SUTBzBw7Eh555BF++ctfWu/LyspYtGgRzz//PLNnzz7q48YUmRwJzc3NrFu3juTkZObMmXNYkbWjJZMJw/MiXAsiIp1Jh7lQFVrnAfjKyko2btzIyOH5rPnXBgZNkKmQW3DKYX+ybs1E3lDCNklbMRpN91GrboHDJ9kkKnRff0INeGpDlM92oCm2lsL28UbP/pLeH1u/QFI4UC5Zf7bqMTVbzCTaMokoCBTo5GHfLqoJjGT44CRVwl2poNQLhhek00bQOFh4W1mWUTUNWchImkrA72b/1nzqytuQMkJICQJZCDRZsqT2rSxjh2Z4tUS4qVR0SEYyFHrNYlAFgj43wYMuHEkhJK9q9PZA1x0zdKfMa6Q4VLSQqb1uP0+9KNOBgwAQ0oTVo8QfcvL5oXxSZD8Jif6w183sYa+ooGKkKes9UEI2v11nSyxJgoCq4FFCqEEZlzdES6sTpyeEKhwoDr2ORjKSBSTDktOLEm37EUbCrhnGkG1dFE3XJUZqsEBPHzdEMk2r0lI2sLOGYcVp2BaJNmsGIi0SE4lenUzsK5Zkj4tWSaZVAiHpZPLDRR1b7R4tjpdIotFZ6vHRFEy2trYyaNCg4x5HdzF48OCI96aLbcSIEQwcOPCo93fCxEwqKyv57LPPKCgoYOrUqUdU67Rrc3UHyYkecjNsPRA6eYLDQfPImIkQgj179rBx40YmTZrEtOljACjfUUtGkpfsrCREZ8tLAwJTgl4K+5kNC0Y1e5CYD7uxWlV8kbJRzvaOw7b8unaiMSTShYKV/iskc19SRAC+03oO0FOYbfODKWUvRbmWzLRQjAldCukij46ARMOBFmr2NeoEZyMTxTiYLLAaRwkZWuoTCe1IQSv1WCEXh/k9cwVvuM/0mIl5caOJTb/WHYLNioTW6Eat9KA1OcLzni02BLoLDGyxDeP8TIvSPK4/FLKythyKRlVTKrurc/hoQyEVtSm0tzuRTel4o3mW0xHVevcwhrokCfyaIdVvFSnp8jZaQELx6ve+7DZSnl2RcR8zFmU1XDNfjcdKNeMb5n1iWxBZp92JyWp55GR0F5jDvn3Ub2FlkYHTSHgxYyWqzYXsdjgYnJYCgCYrpOFg4bzji5VUVlb2KJFEw0w9tsdazNRj6DzW0tbW1m9Fiz2BmLJMOnNzmY2sSkpKmDhxYociwa6gKIpVjNTdLLEh+enspTZyTLb/q0FV98PYYiaqqrJlyxbq6uqYPXs2KSkpeIzmRaGgyqikFNrcITTRErHfjjETU9ob47saePU2pIDe+AcJJSihyhqKpgtIWmmWIcPiCYUtKnOOCanhPDGnYjT2svm9NacUdlVZZGIPoOpwOxwEUCNjJgIrU0vSDJkULSyXojn1hl6m/lJiipP2+hADclNoLNMlQOxdWNWQCjIE21XkBMKrZE0nManKjaIJnElCd6s5MDLaTIKTjGyujm4uM2aiCaVjmrQ5eSIhVXrAGYJU0x8UXmmLKGI1YU7OgaC5n3D3RIei6a4rRSYUlDlQm8WhyixSEtrIzW4kPUO/N5zuEATdHSrgO9rIRnaYpmdneVxBgigohtUhqZLet94vg0dAi6QnPbQb8Q4hEC7dTWi6C4VTdxdqsmT4xTAkcKSOpBbl1pKMe9faVrPdlw6sFGSLoDuxSBI8Thpb/LgMmZRgMPxHBYnpYwez7eMDoCgsGt25fHx3UVlZyebNm5k0aVK33EE9gcMVTJrWy44dO5g8eXKfjKczDB069LiKxmPaMjEbWZWVlTFnzpxuEwmEV+WH6wMfjRnDB4b1lqzYQcftzJhJIBDgiy++oLW1lblz55KSoq+eUtMSSEnR8+QT2sHpcdAh/zRyh3qRl8BqohQM6ONOcCuoTn3Vrxq1j6a1gkeOmHAg8jDBRn2yTrBluTkdit6gywxao8dNVLPbokkmnaTWmqvHTjyA1mQqmfsxxqiZDbiMz5MS9T+4PU7MDlWSTXvMNP40oVkprFaqqc0yctfJuCokXLVh54pFmfYAfBSZALoki0T4xzXYTJgmFCCHFNxlLpQqB446GbldN99U4xgexWnbt7AuvLBlkZmWCYDHGQgH1WX90E1tiezaWcDaL0fSdtCLJAskNFRLhocuIcm6e6qlzU2i14+mCdyuznW5ZOP6yjqbRhaLmmOSbK/WQbp4Nd+al8u2MImOh5i1Jpq5fyItEpM3XU79P60tzQA0t/jCBxKwZOFEpKCE4le5fOmxu7j6g0iiEV0w6Xa7+etf/8r+/fsZOnRov4ypJxCzZNLa2spnn32GqqrMnTuX5OSu23B2Bnu2RXdx5ayZLD/tKqaoA5CMS+N0dnKJNIlAIEB9fT0JCQnMmjWrQ0bEwIF6frhW549sxdvl0fUnUjVmU/M7/sZ2QkYtkVlcaLXZ1TTbwxsVH7EdzN9kezB9Ku5GQca2EJIanuitfRuy9xHaVuYkbh3CtlqNYjGrENKqUpci9mG63NoCwfA+bD+RmUUXPoQwyFZY7jghCcsX76qX8JRJuGrDWW8SUanBNkiGBheYK2Td6tClGIUx8QkrXqCEZBx1Mp5KB94DEkmtMlkeL+2qalVjO2TZSs22rpukFyWqxkTuNXqyW1fVZuFomkKwJoHWLWmkBfyWK7IDmdjOxSTvxuZEFFmg+hXcniAiFO77bnaqNN1msmWNRbNC9DWK/LyDu9PK9ut4j1j7EMZvZrzXFKyeKLIW/p3TU/SbOzVZ99ebhXNNLeHEFTUYIDHBSaLkoNCRSEJC56KtR0IsEEk0hBA89dRT/OpXv+K9997j2muv7e8hHTNikkxqamr47LPPyMzMZPr06bhcriN/KQpmcOtoLBOAMTnZ/OOCS3nyjAtIbnNaFesQfqj8gSAlJSW43e4O9S0mBg3WySQQVPHYK7yjVm7WvqMsExOeRDchwyKxVFXNoJ29KND4T2dthu1QQyqqC9yNkLlJxdmggSzChYvWpGj7kukOM2MYSFaHOxOKI+rEooKsJppbAgjgYHWjrtEk2WItRE5cZhovEuFEAcMXrwfFdZ+8goyrVSJpr2IcWoTHb81mukUZodtlxpIsZQHjK6bMjPGKKZuugDjkYEhjEpPIYmhCGgBORbGO6TQIxivr903IsE48zmDk5Yl61VfwMlKzE1eJA6VODlemm7ewmbAnhWM2u/fncaAsE1k1sq/8Mg63igiC4rGlU4NVyW7FS7ooIoy2BMPx+Y4k0mEGsd++kghbykZNkbBiVfo+Er36xTXdWw5Fv17tAStJmvwUJ5988glJDpmvjhtAQ0PDUbtjKioq2LJlS8wRyTPPPMNPf/pTXn31VU47recKMPsDMUcm+/bto7i4mMLCQsaOHXtc3dKONqPLjrnDh/DRpdczPSm/w9/amtsYPHgwTqezy3iMaZk0NrWj1rQT7Y+KeBYMX390AyXQYycmmVjugaDhobAJSLrc+kOoyJ1MzLYPVFVDc+t/cIQgba9K6p7wNRKyMYpOVHcDhustIuvMgEOR9UQCM/huqsMaQpKSBpok8PlVstMSaPMHDVeXwGEt68NxGtN1YgokRvTKgA66XJocjp1IEmhmQaJZQG2q1kphV5o10clRH3SwsiKP5XW72LenjlCjYQEEdDeX0CTUdv1aBpsNQUK//mWXkS1gVYVHnU/YCpCQkHH4wtdXDkoR5yJhuLk0vR3wrt0FlJZm4/c5w7sLSMhOAX4JyaMZvV8wfjxzQhf6RVcABEI26EIOu69MpQQjKGKNKdq9av/Y0tOSsDIEo6VUEgyZIo/bbNGsjzxo6G0JoSfFACxdOJv58+fz1RljmFKYw/r16/nwww/ZvHkzFRUVBO2aep2goqKCrVu3xhyR/Otf/+JHP/oRr7zyCgsWLOjvIR03YopMmpubKS0tZdasWQwYMOC493c8ZAKQ4HLxx/+5gCszJ0SssDOSU8nMzOzShaZpGgMGpAFQXd1C9abqDktRRe5IHFonVeehoIrq0R9yJQiqYsRPPMaq2fgFTQFJiY4PvAVjQlCd1hoTTQFPAygRvepFpzETVZguOAlVi7yuimJYC0hosqEKq5j9KoxVqZFRlG1kzZljlg2TwH4zmkFoxYxndOVysb2qZuW1WUtC2DKy+qDbrBbZb0ymMgi64w7V92EKgrarYXKVJBBmnw/bOIMBo2ukoupBeEPzSzP0xIQcnrAFAr+xvRR9QSAiRiPJusYY6BN2c3MiO9cPpKU2US+JMTY2ichsRKan92LUzxAuxrS/2uMnh7ne0VfGIhHzNzPucc1p294g5gE5aQC4DMvf5HF/IOxJSPG6SfK6GDs0F6fTyfVXLmLSpEnMnz+fKVOm4Ha72bdvHx9++CFr1qyhpKSE1tbWCKulvLzcIpKsrCxiBcuXL+fmm2/mxRdf5Kyzzurv4fQIYiqbKyUlhTPOOOO4rBE7jpdMTNx61jyUVxp5uaaMZlngCjk7LVo0s8dUVWXAwDRAl01JSkkgspOSPpH6oyYwu9ijsC/9ZKNo0Q+qF5QWvYe2w4e1WrS8OZ3UmyhO2Uq+ERJ6mqdMRC8JyUzxMg/biWVivQqMWpLwsTRNRXOCohoqxH703hft6HdZwHj1g8OIQ2mSMYlqhkVBuPBQ5z2hV1wbE6DVUREiYjYCrNaxGH/rIHViCxeopgvOsg4kW12FhiyZ+mHGvs1AswqyDKV1jSBBfbsPEo00VqP63SrUdOjd/8z+KXo/FpWAKaVin5RtRBkKmjUsosPEbSdUSRaW9WVN/JpMQ0UqLY0JpOQ1AVpYWl8YfCEZEvudJSjY0IlRG25GJiK3E0aLaUlo6GX0YetSSMJyaenXXL/QblekZp3pQm33BaxtvW4HwwcNxBFlBUuSRFpaGmlpaYwaNYr29nZqamqoqalhz549uN1uqwVFaWkpkydPjikiefXVV7nxxhv517/+xTnnnNPfw+kxxBSZHEuv5sOhJ8iksbGR4uJizhk3gtsvOh9FUWj1+Qj6fBGWiT3VDyA3N1WvQA+oJGckAk3GlsaKW7HyK8M6YLYJ0HwenS4FH6B5JfCDKV4xqSCXHU2V1vGDIRVcoIY0q2hQcTr0NhlGTEciPIdoip7CaynJq0RM0sJ+2aLGJIQUju1Y84aEcES6pDqoxRrvm3y6v8YU1tRdG0qkbphshkYki1DDxzMsHmGSi56GrHpMUhJYtaF2BpR0glKNyclspGWSFZphXRnFjJKqW1WyFn7NSU+koraVQRkp7Avqv6ka0lAkg4CtLlj6q5nRpUgCp0vVBSw7W+Wb56gCDiIy3DqzxiRJhDW+7FIvQKjNQcPOdFy5PlyZPkDWm5Ih67EWYVhoNstWkiN//w5js5GI6fGySETTQFYMFx36YkUC1S2htJl5xjrSEzw0+tqRjd/AvKdMZYjm1rCwo8vhYPa4Ixfxeb1eBg0axKBBg1BVlbq6Ovbv3099fT2yLHPo0CH8fj9ZWVlddlztK7zxxht85zvf4ZlnnuH888/v17H0NGLKzdXTOF4yqaio4IsvvmDw4MFMnDjRCrQnejwdihbNXHGTEBVFpmBAuj4OV/hhstxRtpW1CT1TKfJjh+EGcBkB7jG5us+32ReIWD4GTalum2Uim5lUhP3Q5i9uxgHMvimOdoGmhPt22P1tHaTDhWTJt1hhB1k24gGdLHXNXRkT5MGaJmRZIqCqIAk0UwlWi1rySrpLz3RVRZNTWFLYOE+3PS4SGYwIz40iYuVMh2C0cYyoIj7zNdlIbc5MTYjq/WI0xooiTrPWRJGFrr8FVoymQxzI9l17dlQnOphGi+RIV17kq0ygMoG2bSmolU69T4sQhuKxCM/vVtZd5Jg6DcIbhCxbrsMo16CNgDRFd+lJmoZwht2vg3LT9E3MRY3xmweC+rVp8wUtF7BTlpk59ugqwhVFIRQK0dTUxNSpU5k1axbJyckcOnSIjz/+mM8//5w9e/bQ2Nh43I34jhb/+c9/uOqqq/jLX/7ChRde2KfH7gvElGUC9Ei3RRNH09PEDrOifd++fUyePLnTClmzaNG0SDRNsyQSTAwalEHJvhr8dml7RV9CWqdoK9qwy5SYD5RbUbg0dSiXXzCLy375HGV1TQjgUHUTTtfh1wKaZvjFCfvWrSwrtwy+8ASk+CDoFdYkHikzH3V96BjbUTUBbnDXafgydY+9I4D1W+oihBIet4zPrzI0O4W9LQ0RK94I6RNTPRk5XElvTrYKetW7IQkTbvYVjpl09atrljmiB+07nKP1qv8u0VaVOS7NXgdiuJ3srkHV+H7AskxUFEPFF0XSSV+W9NW9ec90Nh47bMagJAtUQ4W4gzvOvN00gdAciIMORImGNKFV1x7TJENHzbiGpsaZIeYogobWmaF5Zn4uG65ESei9P61b2GhvjARm92G9yFZ3n6oeoFG3IK3Ud4NETIukzRcOoqckeqhvbic1yUNOelhFtzsoKytj+/btTJ48mcxMXQQuOTmZ4cOHEwgELHdYaWkpsiyTlZVFdna21QOpt7Bq1Sq+/e1v8/jjj3PJJZf02nH6EzFHJj2JY7FMVFVl06ZNNDQ0MGfOnC7rW2RZtprmCCE6EAnAoEG6ZVLfGO4rb2YrWS6yMJdEuLncLgfTlCx+e+05pCV7EUJYveoLMhOpqm0lLy+FQzQbOzZebBOyahCV7gJTQIDsUPSMYrfuZjMzxGSz5kIyguX2tOPolbOgg+tFVfUUXmerhLcZEod7qWhrxxHSEE7Z6hOeluymwt+O0ALhfXRWE2L2OkG2xigUjPa2kvVesmV+m0F7yV60aP7NfLV/bmpuqUKXQ9F0MUf7udqHA1DdrP+WVU2tkduYbi7jAmmGy6et3akbBLKGJIFLqARkhx4AVwyrywjCS0g6uwsp3GLAdn9YwouGm0pTo66bGbIw9hmRlq3p0uNarZsk1UFzql+PtzvQM+8U3dWpOfX3ODHceyBrhhYaehxIGLpxpsSKHNLQEmTkgAZOCeGQkFr1wchGsG5QRiotDT58hgUSMJ5LM+De2hZ2byV6XNQ3tzNiQCZHA5NIpkyZ0mkfEJfLRUFBAQUFBWiaRkNDAzU1NezevZu2tjbS09PJzs4mKyvruBtF2fHxxx9zySWX8NBDD3H55ZcfU9+mEwEnNZl0pezbFXw+H8XFxUiSxNy5c7v0rwohrP7y69evJycnh+zs7C4LF2trWwCjmZHdR+yOXICaE90gn5f7L/gak4aFM9okSWLckFz+u7mEzIwkqmpbSUjygEEm1jxsd5t1Vqpu+vSN0h1Jw+rFLdnEvoQZPxDh79jdXNEpraGQhqNF4GrQEC6FMcFUCrJT2NpYTpCwNZGckkBFTTtJKUnga9O/b7pn7JaJkQwgQoaLRNVjQeakG5l8pBci2glOkyLHHL7Gtv8brh4pRGSPc804lhHdNydwIQlqW9vJTvJQ0diCI01GRUOWI/u/SzbCa2lKYPOWwQwdVAWA0xEioDmsCVxSI11JLk+QQLs7nL4r6LS3jiTbYibmZ/ZkBHuChUAnAqNqXg7JyI1OnK0awQQZR7NKKFlG9gtEUng/stBQkcMLIFPc0nRztYRQ01zIIaGn/7oV5ICG5lCsgli3y8Ecbw5Tpg1l5eqdtPl1C8Tn10nEDLi3tAWs6+/1OHE6FM6b3339rSMRSTRkWSYjI4OMjAxGjx5NW1sbNTU1VFdXs3PnThISEsjKyiIrK4u0tLRjjuWuXr2aiy66iN/+9rdce+21Jy2RQAySSX+5uRobG1m3bh2ZmZlMmDChy5vHdGtJksTs2bOprq62buTU1FSys7PJyckhISGBgYZlEnE2pq9Y7TjRy36ZW8fM4uqvzuz02HMH5bP3UA2yESMIiCOcW/R9K8KpqyE068dXnSD7QdJEZHtdk0ysARp/s7t/TA+NX5D5hWBMZipb/a2oqqDkw3JS3BL12cKQgJFoN1ai9W1+fdVL+BjWcM1cWwnUgAYyKAE9ky3CWjJX4qpeYGimogqBFQCP7jduz5IzycTRKBFKDq/8FVlCw2zpK+kFd6qkB7EDErkZKdS1+HA6FfwGmWBuC5FZckBzUwKbNg3BO6gNh0eFNmwBb+M+MKSPJVO90vx+Z4+C0L+vqZ3fo+akrLdMsF1Xg1hCQb1HjxSSkDSDXIIyrmYNCZlUv0SjW8PTCu2JkNAGrW5wVgcIZLlxNgQJ5CqW8LLm1N12wiGhtIfdWwB5CYk8cGMR2w5U89/1JRxqaACgzUYiJpIT3TS1+nE5FBbOHkVGSvesg0OHDrFjx45uE0lnSEhIYPDgwQwePJhQKERdXZ3VeVHTNDIzMy1y6W4R9Zo1a7jwwgu57777uOmmm05qIoEYJJOeRHfdXBUVFWzatImRI0cydOjQLn/06PhIUlISSUlJDBs2DJ/PR3V1NdXV1ezevZvExERSUzP0CcoefjAmwPBOsZ726wpnccXkzokEYHheOmJ1NUlfS0GSoKapDQyXsjlkhyxjPp5hrarwsUzXl19TcRsaveG+Izbro5OJ0SJCEbWabpcYsEPGowruvvN8vvX//Ys6o0OeIySRsSuELwkCOdDYpkuwl9c3I3n103c6FFSE3sTLyvU1xqECMjiaBapbCs+U9liGscrHbJglpA7WlHW5zfoTNXzRJKeE95ADzaniy9Ynasw4DTYXlHGdzGptYYxFQ+h6WLaAuG7N6HtwuFQC7S7a9iTjzW0FoU+8YMiMgD5eNfybmXIj9uxxywsqpE7dXIqkW2xuh4N2VJyKQkjTq+BN6wpJ0nv1mFlyhAnL6VAIIgg1+JGyXSSGFPwqKG0qkktB1gwXqEnUZuKDy7BIPAqSEQNxKgq0aTx4/RIURaFwUDYJHict7QFcikSTkbXV2h7QnxEBiQk6mTgUmQsXTqI76AkiiYbD4SAnJ4ecnByEEDQ1NVFTU8OBAwfYunUrKSkpljssKSmp0/li/fr1FBUV8dOf/pQf/OAHJz2RwClAJoFAoMu/dyfQbt+2q0A7gMfjsdITg8GgZTKnpLios62+pKgMGEWRrWJAt8N52PMZWZiHGlLZ9dYuxg9Np9oV/vkUh0wIPZU4YBYURrnUJcL9SoQk6XUhwfB2shUn6USOhCg3l/F/t5B5/CvnM/XKAg4crCU/J5WCrBTKaprwuhV8fhVFAk8LeGtDuOVmJs8ZxCHhY3d7ve6CMfbldCj4RQjZcGNJZvk0umWSVArtWQIckkUi9nhOtIaY7RJYJGT9zf7dBBB1Ajmo4D2gEcrRLSNN0ps7CSlyb41+XessZFiGmhH9thOw/qpfJ4c7RKDdhZAl/GVJyEkqWpKAgNBrcQLhgHdQNYjKXHBE+LbCn0lyuGeLeR5up4MgIb2xlKZamXpW3kUXemUmRLMfvC5cHidtts38gSCghC0/U27fIUdaJJ6wReJxOrjv7AUMyNOtc4eiMDArlWIOkZbspbahDY9TIRBUSUn00Njiw+vR7//8zBSGDzxyvOTgwYPs3LmTqVOn9khTqc4gSRKpqamkpqYyYsQI/H6/FcTft28fTqfTsliSkpLwer1s3ryZ888/n9tuu43bb7/9lCASiMHU4J688IezTFRVZcOGDRw6dIg5c+YclkjsrTk7I5JoOJ1O8vPzmTRpEiNHRcqxmCm8HmNWC9nSYaUj/Bwer4uhw7NRVQ3ZF6L549LwuVopx3YzKOpVj2cb2wlL3t5aoYYiV78Q6Waxq/YigxyC3y9YxIxhA1EUmaFD9LTlsUNz0IRgQH4aoAd5AUJJEiG/ilbWTvPKQ9axTWkWSyrLnrprHl/Wq7gTKiTcNToriPAww5XdEBFkj543rQnfdltoikAz04plCechSY8fyMaa3gg0m+KRB+qakGUIqGG1YUkGbBXpEA57ONx2cpdwNCm4yxQ9Iy0iTRlCqkOPTZi3gi24bv22GhEV8B6XPgnLUWQasnf1tNWhRC8yXAYBKIbFZcZIzHRdokhEGAq/mtsIuoNlkchCH8A3JhSyYNYY7BhRoBNEoiHUmJzkMd7rN6LbqSDLEhd+/chWSV8QSWdwu90MGDCAyZMns2DBAsaNG4ckSaxZs4ZBgwYxb948vvrVr3LZZZfx05/+9JQhEohBMulJdEUmPp+Pzz//3Gr921XGllk/YhYjdodIojFoUGZU7EJ/E2zWV7d2VRU5wv/VOUaPKwAgIcUb8euZE1dEIaWxb0tHKyKYK6G59P9bdQP21boanriskUcUV0r8v4EzWFDYsbfE2KE6MSck6ZOEVauhzx2WSKQZ0JXa9N/IYUxq9sslbPm7mgtkIeFsgdS94GjWkIQIV6ubmlqdpTVbVpXx1nZbqJIwCh51yXwFGW+VROIhycoWE0ZUemBGCgFVJSfJE5XNJZAMtjVbzpqNvhRXCHtFu5BBDsi4q2W8B2UUn4S9/EXYOjuGfW32Q+nNvcyMNU2KXJgEDHFTsyeIrnoQdsOZu/Kaac5m6rpx+wWMFs9Bs44qyq2lOWWdPBQJ2ejfEg64OznTncWN/zOfaEwfVYAkgcej3xCJXv3+8Nr0uS4+ZwojBh++Wr2/iCQasiyTmZlJYWEhixYt4q9//Su7d+8mPT2dxx57jMmTJ3PXXXfR0tJy5J2dBDjlyKSxsZHVq1eTnJzMzJkzuwym2YkE9In0WFYZAwelR8yOQeNBd3n048pqeJY4UHqQ0tJSfD4fXWHMeJ1M6hubLbcDQKBdd6UpgfD5WqKJneiAmTUBoFsYAp1UzDIMa0LuzDLR4CuOQdw4f06nYxw3LBeA9mDUUti4fo3Nrcb+jBWwEZT3NRjnrdm+ZnO3mZaUZtQyuJshuTSsTCs6s0yi7vBozS40fRyaQSZmerHmAodfIrFSkL5d4GrScAnITNJVN70uOUwOknFqxr5NMpGNDexeMs12QSVJQglIuBpkEkvA0SZQJD3hwArgd2Ihoulqy6a8vVlA6jeut2WRRCdPGNsbawgCRmaVw5jMZUPx2CpINUnEeFUdsm4RumSkgEEixrHM6zk8NYX/+0HnBXmD89L5yrSRlhK3SSpmDCot2cvlRTM6/a6JAwcOsGvXLqZNm9avRBKNkpISfvSjH3Hdddexf/9+qqur+elPf0pNTQ1er7e/h9cniDky6U03V3l5OV988QVDhw7tVsaW+d1jsUhMDBqU0amLWjEeKGGb/JMTUqmqquKTTz7hs88+Y+/evbS0tERkt2Xn68v75uZQxERpFoP5Go0+EDaSMt1GES4rCVSXbWKNnnRt6boWjEvgDTh49MKupSBGDszC6ZApq20Kp9UCkiE6WF3dEnZRiYiifQAclusnLNgoSxKaQSbhynEJhx8SqjUSKsIFJyLqPI0hRP7Hbo2BZZlY1famYeaQkDUJdwOkrQuhbGhgvM9DXmJaxCJBksPxHVmKdHcJK2gB4d4pWEF+SQNZk3E3yCTulXG0RJ1ExAlgScirWuTkb+8FEwHLMtHfhgzScRgxCjNyGjT2Y8X1zdiIoaUmXDJSUDehZJNEbCnA2a0Sj37/osM+K1ctnq6LggIOsx+MopCe4uWqpTMt4cfOcODAAXbv3s3UqVNJS0vrcru+xv79+zn33HMpKiriwQcfRJZl0tPTufjii/nzn//caYuKkxEnfQDedFHt3r2b/fv3H3eg/WgxcGCkZWJOKu1tfkh1R0wSmRlZzJg4yarUraqqYt++fXg8HrKzsxFCUF51gKRkNy3NflIG2lIno4YpaeGUp5BfBadMgTuJOcm5rDtYQYMT2mxNSzSHHuTWrRLbDjuZmJcMHnfY6+JyKowcmMW2kirys5KormlBdQoUny7x4vOppKV5OWRlhNlnXQi2+CFFNz9MInS6FHyG6rClFG917JNwNwsUSTLmywjfofWJPe7hlBUCCBzI+ncUQ69M1QPvUigq3qKbHqhBqNnThNIgwWjzTxLYkgXCGmZRFw7DetIAh0AKSVZxoSoLlJBuiiVUS6hJoCXoKdeaR7JZaALTa2m6uYRpJBmH8Tj1bK4kxUETqu6ikwmPz20E+Q23VcgYZ1DT/Zx2d5b+KiEFNYRDRvapqC4ZKWSSr/6a4fHw5Pf/B6/38GmzQ/LSGTMwm41byyyVh4QEJw/eUcTg/K4tjVglkkOHDnHuuefy9a9/nT/84Q89qi14ouGkJ5NgMMiGDRtobGxk9uzZh+3Y2NNEApCS4iU5xUOHUHAnvnBz5rNX6qqqGlGl63A4GDg0le2bqkjOTgYjEbjDajRiua//0ety8rMrFlmfbtx6gB/f929AF+BrCviMjFEJRZYJIsIL2jA3UWC0Jz4cxg3NYVtJFVmZOpmEPOBolsgbkEZZaT2ZOSkgN1vxFzvsldtOp4MAmp5gIKtGXYk+L8qqLsmvBPTCS9PGiyi/iUprNjWirI9tqdqaSyC3SwinQAnoWmOy0TvGYRg+ISOGU9fYZu1UIAzhw3BsCrAqxSOMDJMIFFBCIBShy5sYSst4NKQ2h/6eMHE6ArqbT5IkJCPIpamyLhRgTMpSSI9PBVsCkKzga/FDmsPakZl8YAbQQ0YqddAoAbXIw2GSiKxbHg4ZuU1FdRAmEcMicSgyUnOIa08fQ3NjDR6XREJCwmGfnSuXzGD4gAx2llSzYOZIzpoziqTDdE8sLS1lz549MUckFRUVnHvuuZxxxhk88cQTpzSRQAySSU+6uUKhEIFAwAq0Hy4+Yhdr7CkiMZGXn8pWGvRjGZ+ZmTMOp2LVhcjRDn4D5eXlAMydOxe/38+O9S1s31RFq78dayaMCthKli5XGI6ocxo/ZgCyLKFpgsEFGWxuKNNTbIWE2+3AR7DTFGG3dPgUZoCxw3Lhg822ZlD6yj4lPYGy0no8CU6rOrtjcWX41VQvNy0U2SmhqaA5VOSgjOoBpRVCXiJTl9EnPjMGQlCvkExRvGS2ZZGc4OJgSyNC06gmSNCtF0U62sOxnPRkL40NPtJTHAhVop12autbEUBbKIglIwC6G8mYrE3dKbNFsZUiZ1iLmkE+YKgPYIv3GHUnWpRnJMHlpBmd0Uw3l6bJKJoUNlqimniZsTLJrlgAmMr1phqWapKpSSYuCdlI+ZXaVYRVP6IgR1kkaV4vv73066R4pQgJ+OzsbLKzszutHk/wuFg0r5BF8wo5EkwimTZtGqmpqUfcvq9QVVXFueeey4wZM/jrX/96yriyDoeYI5OeQmNjI5s3bwZg5syZh42PmCQCxxcf6Qp5BWlgkIk5cbo8Tnx+lZEkUyB5yUtNZkZBZBqx3+9n/fr1yLLMrFmzcDqdJCUlcdr8ybzzynaEZLuBzbgIEYeJQHRLX0WRyc5MorK6WdfvAiNOEa6rtFxKWniydsrdIBMjo6ui1jhvTScTyfDR6IrBUiSZGMdyKrIuwSIk1GAIXDJqUxtkugi2taHI3nAygKLvVzgla7DR3R714wMyzC4Yyl3TlkaMVdM0ampqWb19D/d9vIFcj4taX5CsZLdOJpmJlJQ04HXIhEIaGakJVKtGbMoQarTLqYTMlGFhCm/ZrqGZqSWIIBXLmjFdV8YPoMhylGUorC6LAkNPyyQmg4gkw7Kwq1Wb/VZQBZohNKk5JD0bzqmLOOKQUFR0Ha52FdWjk4dKR4vE5XIgtWo8cOX5jBmu37emBHxtbW1E9bhZh5GVlYXTeeR7x0SsEklNTQ1Llixh/PjxPP30070qEHki4aS8CuXl5WzevJmhQ4eyZ8+eI1a0mwHu3jJTc/NSoF7/vyJL5La5uWL6RL5x+mSrbWk0WlpaKC4uJj09nXHjxkWMbWRhHrIsUVffBhhxE2MV6nDplo4sSfasXv1vnfSHz81OobK6meYWI5NKBkTHFsK6NId+nTzKkW+bBIdGgluhtiWAxyEjQhoa0NyuVz7XNYfFL01LwOV2ECBstSGMPi3I+H26JSA0FasfPITdecIkO1vxYAjrDjeJ0NNJYagsy+TkZLMkO4uHvtxGfSCELEN1i551FhQhhID09ASqq1tIS/dSVa+TiaVnJoEwXWFmhbl5frbaFr1SH10CxorRGESDgKChxmvVA+nMEwzq/WoE2GpMJLSgBkYMQzJFKs2Yh9nGWBjWiqan8gqnhBICTZFwhPSAu0PVLRYpoIHbCLR7bNlaavg6A6R63Dx4xRJGGZl7JhRF6VA9Xl1dTUlJCVu2bCEtLc2yWg4nprh//3727t0bc0RSX19PUVERw4cP59lnnz0qcjzZEXNkcjxWgT3QPmXKFFJTU9mzZw+qqnZYPfRGfKQr5OWlIlcLJimZ3L50HlNGDjzs9rW1tWzcuJHBgwczfPjwDmPzJrgYMjybTW111meyU1cDdnlctBFFJma8QBNWQykTudl6DKmmrtXKsBJAKKTq2pR2l5NPJ5VMT+Jhx19VVcXmzZsZPTCT9XuqGFCQRklpHVoiVFQ1gQTVda2AG4RkpaTqK2lhTaBgy1Cy9q4ZE6M+6cohPWBu9UeXwkF2KZpNAa/S9cMvSxITB+Ty6Z4D5HmdVLcGSfE4aDf3IxuOIVkLi0Sazaxkoy+Lw+ZusyLxtm2BsB4XuoSKE+SAhORWwa8gnGHLRLdyJF0Y1GVYd1JYl8tKQghhEZDVM0uxHV/WrR5FhZATHELSm19quptLDgpwS2EyMWt+rCSHcNaWu1Xw6HcvYHDB4avU7dXjI0eOtDoiVldXs2vXLktMMTs7m9TUVGvBFKtE0tjYyNKlS8nLy+OFF17otkbXqYKYI5NjRSgUYtOmTTQ1NTFnzhySkpKs1N5oMrFbJL1NJABzJw3jrbEDGZB55Afj4MGD7Nixg7Fjx1JQUNDldmPGF7BpbZhMIho1EZ6v7GhvaeWTTz6xxCjT0tLIzdLJxB8IkZbqoVxuRxMSQX8IEnVmkTWJs7QCvjl1HHNmjggXQXYx/p07dzJhwgQO+g6wfk8VSSl6OrNwS/haQ+TnpFDW0GQMGExvnUkimt3aiBZsFHog2uGT0BwCJQSqB5ztuptLMmTrARzIhMJfQwISHIfvtDc02cunQHZmCtWttQzMSWPPwVo8DonMnAyqK8t1XSzTcrD1WgkERdQTZRzVdLuF9PfRMQ0recIlwA+FBVmslioi/2aDTlyRhCmrevxFCgnL5RmyrDesmI5LMmR3DDKRQ+iZbH4V3A4biUS9GjfTgKQk/vD/vkFG2tH1GYHIjoihUMhyh23YsAGArKwshBBUV1czY8YMUrqR6NFXaG5u5sILLyQtLY0VK1b0e8fGWMRJQSY+n49169ahKEpEoN1c6dg7IvZmoL0rdEf91LSqDh48yNSpU48oWjdmfAFi3Wbrvbl4DgVV8DhQgyoYzbMcDj0zKzM9g7Fjx1JVVcWmTZsQQhAMhOsz0tMSEZIvsn2wJhi5ys/PfreAzJyuydDUOTtw4IBVmTx2qG4u+IxCTWGQRVpWImXNzeHvmitqs2FSIAQJ+hJfMwsubb+T5gJ8etGlEtJfne1gBiMkY1nvlBV8llmgvyQ4u07C2Lt3L8lBw/1mBFQ9HieqJsjPS7PiPR5vAqKlybo+AkN40V5sSceEANmycPQgvCxF9rM3CU+4bPdkNG9LREipWDpgqgCzF4kMCGERsbmwEEg4DLllfXsJzR/SSSTUBYmYunFuJyPVBP58+yVdumaPBg6Hg9zcXHJzcxFC0NjYyO7du6mvr0eSJHbt2mW5w/q76K+1tZWLLroIl8vFK6+80u/jiVWc8GTS0NBAcXEx2dnZHWILkiRF1Jr0dqD9WKGqKlu2bKGpqYlZs2aRmHh4NxIYZGKrbNeMqUgnBwfCXrRovDolyQqEmg9wW2CHtZ3QAlYAXhKAJkjbojE/b8BhiUTTNLZt20ZdXR0zZ84kKUlftRYOzmbCgGxKzeJFg7ccbiVClNGcY4PBEHiVcH95ACPDyAoqOxVCZvGilchmBOEB2dYYS7aLexmXKtHZcUUphGDHjh1UVlZSdOY8/rL1RcqamhFAc0AnxORUD4EWfVHS7g+GhRjNIkcBwt5bHsIEaE8DNxnDaPSlN58y+rKo+ohrWlvBWJR36P+OSSZR+46yUBTV5uY0LBMhJKuYNeTTFx0iKjvL3lsG9MLCgCo4e/RwfnJlOK28JyFJEg0NDbS0tDB79mwcDkeH3iImsaSmpvbpc9ve3s7FF1+Mpmm88cYb3Xo2T1XEHJkczY1SVlbGli1bGDVqFEOGDOn0uw6Hg1Ao1CeB9mNBIBBg/fr1AMyaNavbfti8AWl4E8IrRNOYCLu5RHgOU/X0LKcczu6RJIm0tDRmTBsHf1sD6P3mzdRgCcgo1sgt0/jeI0u7HEcoFGLjxo34/X5mzpyJx+Ox/pac5EEtrmLEkFR2OgP4AxoJCS58QdXmtpJ02XmkcCqtpQEWdnM5PE78gNvrot0JEJZRMWtBdH0rgWqQlhoy3E6aQJL0POQkR3h8oBPhli1baGxsZNasWXi9XkblZrK9ooacZC/7axuRZQlVErQayQMNTe262i9YbVXAls4bQQBhtpSQkNt1oyfoICydr6H3YwnJpCV5qDAC/wDR8v9IGPLzBrnKEkH0tG8VcMkyPgQOJAKG9ICMhCbrCQIhvwoJekIEhEnEsnCiKu9TPG7unDeHxWdOpLewb98+9u/fz7Rp0yzXltlbJBgMUltbS01NjfWcmPLvmZmZvZpJ5fP5uPTSS2lra+Odd945bI1aHDFIJsARG2QJIdi1axelpaVMmTKF7OzsLreVZZlQKNSnbq3uorW1leLiYlJSUhg/fvxR5apLkkR2QRql6CJyVuGa3U9uQA2GQHF0ms2VmZ6oy+CrGoritNwhhXIK9QcamDopjbXFa60MncTEROsaBgIBiouLcTgczJgxo9PMlhFj8vj0/e3kFyRTkimTn51KdVVLpGZW9IRpQjc19P+bcRrZYE1Jb1ilIZCFhOY2rwsEjY5QwYAKHtnSHpMkSHaFXRSqqrJx40Z8Ph8zZ860/OCneXOQsgRORaF2fxUjc9KpaW6jrbEdgdGGuUAfl6LoMQghpHA+tZmMZmZ5mTL6skTABd79EqQJRAJW7MXsRJmfkUxNbXv4/A0ydToVVEN/RU8NDrswQeB2OvCjGbpgKoowYkjWNdbT3bSg7gcLy+Qbr3brCT2zLrfdyWM3LmVA7uFdrscDk0imT5/e6WTtdDrJy8sjLy8PTdNobGy0egZt2rSJjIwMi1x60v0UCAS44oorqKmp4d13342pRIBYRUySyeFgBtqbm5utQHtXEELgcrnYvXs3+fn55OTkxEzgrK6ujg0bNjBw4EBGjhx5TCQ3akQOa+taIjW3rP/Y8p8M156zE4vMrDWpqGqiqUXvfuhpUfj7DZdx194XuPXeCyOkXdxuNzk5OaSkpLBr1y7S0tIYP358l9becINMvA4nyV9UkF6Uz56mdlwpBvHojUv0/0fFGuyFkkGhF80FDDcePj+S24umqMiqYuh2GfUeZlW7ueo23EmSJEhx6hNOMBi0VrrRRJjm9FDzTjmT5g8l1esmJcXNxp31pEkOkg0pG3eiC1D1Loum+JhJ6Er4t5RsledOp0KbQ6/i9zSCXKnRlm/0SzGugcvlQMiR1gIQETuRZIEwYybmn42OXlZFv6pbZcJohqbHZjq5x0Tkf5xOBdWvccmU8dxw4Zm9uvjau3cvpaWlXRJJNEzNq/T0dEaPHk1rays1NTVUVlayY8cOEhMTLXdYSkrKMY89GAxy1VVXceDAAd57772YEpSMZZxQZNLe3s66detwOp3MmTPnsC4hMz4yYcIEqqqqKC8vZ8eOHaSmplqr7P4KpJWVlbFt2zYKCwsZMGDAkb/QBe667GsM/M+X/HnjeloNU6QTF7s1iTi6mPBzs5KpqGqitq4FJSRxZsIQnIrCr397EU6nI0Lapba2lkOHDrF//35kWUZRFGpra8nMzOyUUIYX5lkDkgHfziqyMxJp9apAqIP4pH3w9r+pqj5LmiKFSnsIRIiQk4hGVxDWrIpIyTXIJNnpxe/3s27dOjweD5MmTepgEebnpSIB/kNtpB3wkbxAf0zy8lKQGoK0NPtR3EbQw0xjtutvGRFvIYEkg2T4v2RLxVlDUvVgSXKZhOoQtGfrFmFNc3PYarPJwoRMCXvDMlFDZiaY/mFI1UCBUEAFr+HOctguSmSZSBjmkBQZNMGE7GzuvvRrFOT07gR6tETSGRITE0lMTGTIkCERDenWrVuHLMtW2nFmZma3rf5QKMR1113Hrl27WLVqFVlZh5fDjyOMmCSTztxcDQ0NrFu3jpycnA6BdjvMjC0zg8vr9TJ06FCGDh1qtdatqqpi165dJCUlkZuba7lvehtmxpDpnsvMPHI3uSPhiq/P5ILTJ3L3U2/yUUsVsjGBOJ2OsFaVueqVOn+gzFoTf1AlryKBtEyvtQ87FEVBkiTq6+sZPXo0ycnJVFVVsX37doLBoPXw2iudR4zRi9qqK5oQElQcqCfHnUlbihOdTOyTcFSqrJ1owroqAATdgqySII35Ev4svR85GPGEcBcv/TMrZgHOEHy54UvS0tK6vI8K8nSXRlOzj/YmPzWfVTB2fCZelxMpaGzvjFr12sYakmykLgnMpmeKcU+rahAFt26BqKAIiZQSgcgRNLb7rafSbpmECFdHSpJANSyTQFAFt0TArysFhIIaeOWOUszRLGIStnE9h6WmcuNX53L61JEdrkdPw8z6Ox4iiYbZkC4/Px9N02hoaLAC+H6/P8IdZo/r2aGqKjfddBMbN25k1apVhxWEjaMjYpJMotGdQDtE1o9Ax0C7vbWuqcxbWVnJ3r178Xq9lsWSnJzc4+a9GehtaGiIyHjqCSQneHjoe99g8+5D/O6599mqtVry3oA1AXfm5gK9Ch5g1IQ8NlTXWH04omH22x4/fjy5uTpJZGRkMGbMGJqbm6mqqrIqnTMyMsjJydHdDnmpVFc04kr30Fbno+1APVKeHueyk4lpXciKKSFiy1ZT7CtxPWAd8kgk1mq0DZGM4Lde0GdqnFkdGy1WhY3r1pOXl8fo0aO7/I3zDTKpqW0BCWprWkn+MkDC6QNwGIq7VmGgca+Fq9yFbo6AFSyXjL+11LbAAC+apKFAOBvPUP11t8gk1AsSp6ewgwYckqQr+tpjR0aXxZAxgI7SaWZKL9YYIq6zvcZFE4xOz+CKudNYOOvIOlk9AZNIZsyY0aPPgB2yLJORkUFGRgajR4+mra2N6upqysvL2b59O0lJSZY7zHzWVVXlBz/4AZ999hmrVq0iPz//yAeKIwIxTSb2QPvUqVMPa3Iebf2IXZk3FApZcYE1a9bgdDrJyckhNze3R1IRA4EAGzZsQNM0Zs2a1WtxmwkjB/DMzy5nzaYSnnp9NWubG0GRELKeneXsyjLJScHhkCkLGBIhUR0foy2q6BoYSZJISUkhJSWFkSNH0tbWZrkWt2/fTnqOi+oKSEjz0ljnIyM/jf01zZDpjlxBWzEHIx5gJxrTZWPjQ3+qTGKlQFI1cJgJCIJfzF7EA598TrPbTzsaTlkPkkuaxKBBgxg2bNhhf9PkZA9JiW5aWv1kZSRQX9tGgtOBtqcJLU+fAEPGNK6KSP+RpGJ1ljTHG2pTweG0ZWZpCMnMMAMtpOldGRWJllo/7jYHeCEBXUJeEZJFFpKmd1lUg5FWXFfpKuFaFzPXVyKxFb4yeCjXLJzNqEFdJ6/0NPbs2cPBgwd7lUiiIUmS5Q4bOnSotYisqalh//79PPTQQ6SkpNDU1MSuXbv48MMPGTRoUJ+M7WRDzJKJmXLa0tLSrUD78UijOBwOK2NEVVXq6uqoqqpi/fr1SJJkWSzp6elHnVbc1tZGcXExiYmJTJw4sU/URWdMHMqMiUPZuaeC/332PXbW1xNQBR618yknLzuZEZPzWXewEsBqPwu6RbV9+3Zqamq6bVElJCRYrkW/38/+LUF2bqzG1Ib3BYP4CADucCEf4VoS8xJ7hMxsZyZpCR4IqdS1+ajxKuwOBHB53QRkmcRKlUGyl32Sri0mIRiXk887l1/Nwys/5i9lm4xYkUDRZIYPH96ta5iXl8ruPVWkpSVSX9tGSnoiuzaVMyRHd4cGzIZUWpSYo51MDMskZKYoG/elO8lNwKdX8asOYUjCgBrQs68Cpn/LqE53qGGFXyv92UwDi05H7qQPDYAiZM5y5nPRuRM4fVLHVsu9CXMxcvDgQaZPn95nRNIZ7ItITdNobm7m5z//Obt378blcvHDH/6QJUuWUFRUdNgs0WPFRx99xO9//3vWrl1LeXk5L7/8MkuXLj3sdz744ANuvfVWtmzZwqBBg/jZz37GVVdd1eNjO17EJJn4fD6+/PLLowq091Tqr6IolgmsaRr19fWW1pSmaZYUSXeCeg0NDaxfv56CggJGjRrV52nJo0fk8cTdlx1xu/y8VByJTrwuB+2BkOXmsqfOzpo1q0tf8+HgdruZOms0bzy3Hq/TSyNNNDe0o+Ubx2gPAobcilkJ79PAKTMiI4NHvv3NDvtsafXx6sq1fLRmN+XUkycnWGSCBCkuL5IkcfPXz2TSunR+//FqtKBGvrv7cbH83BR276nCk6Dfe063Awlwma2Gha2/OoRrSSIqyI1e7WYPFbf+uKlCQ/UoOHygukEJSahugezTSE9yU2YUSoaCelBdBEVYi99wc5lxIdPYdDgkXSbFqSsuuxNdBFBx+vTrOjw9nYe/WdTt8+8pmMoIhw4d6nci6QxffvklTU1NbNmyhWAwyGuvvcZTTz1FVlbWESf5Y0FrayuTJ0/mmmuu4Rvf+MYRt9+3bx/nnnsuN9xwA//85z957733+M53vkN+fj6LFvVOEemxIibJxEw5HTt2bLcD7b1RQyLLMpmZmWRmZlJYWEhjYyNVVVXs3LmTQCBAVlYWOTk5ZGVldSieqqioYMuWLYwePTrmzebMtEQevPFcVE2jtKqRQDBkFVPKstxlDUl3MXyMntFVVdaI4lSoq25DGmyUeNssE82exkrX2WdJiR4uW3oaF583h0u++Ti12+pgsv43SYJkp05OpaWl0FDN3y/7xlFn5RTkp+n7M1vXGp9LqkCSw4WWliEQJS4phfR+IEgCIRv3hhFvCYQ0VCPubEnNGxlgefmp7BO6hRjy63UyIqjplY5CICMjyViWiVkIr6m64qTW7gevm4Bm9ugFXODtB3XbWCYSIQS/+tWv+Oc//8mqVasYM2YMABMmTODOO+/steOec845nHPOOd3e/oknnmDYsGE8+OCDAIwdO5ZPPvmE//u//4s5MomdUnAbJkyYcMSMLXuPdr2fRO+u+s2K8dGjR3Paaacxc+ZMEhIS2Lt3Lx9++CHFxcUcOnQIv9/Pvn372Lp1K5MmTYp5IrFDkWWG5aUzKDORL7/8Eo/Hw7Rp045bZjstI5HMnGRUVSN/cAZCEzjN6n1bzMTsy2FO0FpAJRAI0BUcDoVRo3Jpa/CRmazrn5lxlj179li9MI4lvdMMwgeMVOTWVkOWuE0lMyMxLAdjpQYbQ7f1UgGd3DRDeSBglOYLRbdIQOA1AumFA3XCdbkdkTEX274s68fU5lKFJTePIduvGH3dHVFinKrPT1lZ2WGvZ0/C1Jo7dOhQn8ZIugMhBL/73e948sknWblyJePGjevvIXWJ1atXs3DhwojPFi1axOrVq/tpRF0jJi0TRVG6rIDvD6HGaEiSRHJyMsnJyYwcOZLW1laqqqo4cOAAW7duRZIkhgwZckLKLzQ1NVFcXHzEjKejxYjCPGqrmknOSIQ91dbk55AVAhqgalY/DhOhQICPPvrI6oHRWW1Q4dh8tmw+RKri5BA6mezYsYOqqqrjypozyaTJ6PNSW6dLnLRWt5CcnYBQjCp1y80VaZnI6NpYQhKoskBCsrS70jUn5+eOYk2gjn0V9SS4HRwy9Msa23xo5m1jSeNEHkoXlZT0rofGJQsZFo5qkouI/FKyx23dn6mpqZYrtzdS4k0iKSsrY8aMGTGlZyWE4OGHH+YPf/gDK1euZNKkSf09pMOioqLCypw0kZubS1NTE+3t7TElOhmTZNIV+rIHydEgMTGRgQMHUldXR2JiIrm5udTV1bF//35SUlKsAP7hmgHFAmpqati4cSPDhw9n6NChPbrv4aPz+OKjXajG7BYy3DqKokDIUvsAwrGTrPQMTj/99A61QSaxJCUlMcYoihStIb3/iiZZyQLH86Dl5+pkUlvbggBaWvykJLmpKm1gyOBUSwYFCT3+HoqcxBVZj2HoRYb6xkl+ie+MmchVN8xDkiQeWP4xe8rrGJCbyp7SWvIykjhY1YgYYNs3tnoTWy2NQEIJCl1GRhOoRsaepXMWjCxazEvPYPbs2fh8Pitzcffu3T0uomgSSXl5eUwSyR//+Ed+//vf88477zB9+vT+HtJJhROGTHo60N6TaG9vp7i4GK/Xy6xZs3A4HIwYMQK/329NhLt37yYpKalTjatYgFmVP27cuF7JsTcr4Rvrje6FZhaUMVEqwhIVtuBUlIjaoGAwSHV1tdW5z+124/HosZfGyhbI0FNn7Tpbx4qMjEScToVAUCUzPYGG+jYycpI5sLcGj0MOB8QlUzJFf+uQw50uzcp4Z7vGN3NG8OPvnBURW5s4NJeXV28lwQjyp6d5qK5rQXLr35Xtza3AMlGEIfolhTRwG42tjDRjI2OYoBYpC5BiJE94PB4GDhzIwIEDI3qKmJmLZhwwIyPjqDMPzVT+iooKpk+fHnNE8pe//IVf/vKXvPnmm8yaNau/h9Qt5OXlUVlZGfFZZWUlKSkpMWWVQIySiX2S7YtA+/GgsbGR9evXk5uby+jRoyPiPG6323pwTbkHU+PK4/FYxHI8OkLHCyEEJSUllJSUdKuPyrFihEEmlWUNuL1Oq4OiGtD0FbihbAxYKbR2lWPQq5yjpV2qq6tJSXVR79c1uxRJ6RElWVmWyMtN4cDBetIydDJJSDKy2WxxHl1AMtz/3eGUseflyqrEW1ddTnZ6R5fnxKH6NWkN6Im/re16LxUzKO90OfCh4nY5CBDukGlpfUl6cadDSHrVvSYsyX7NJocvEKR2koln7ylirxrfsWMHfr+fzMxMy2o5kpp1rBPJ008/zd13381rr73Gaaed1t9D6jbmzp3Lm2++GfHZypUrmTt3bj+NqGvEJJmYiK5o74tA+9GgsrKSLVu2MGLECAYPHnzYsdnlHlRVtYhl3bp1OBwOsrOzyc3NJS0trc/OUQjB9u3brc52vRnjSc9MIj0rifqaFnIHZ1Ki6HaIFtLACSKggsvQsFJMOfWuV8Zmr/HU1FQGDlpHidagn5MKH374IZmZmVam3bEmEBTkpXHgYD1ew3KQjXhE0B8C81JZ+lumJLyu2mv2UklSXJ0SCegKwZnJCeyv1sfuM0giZGjDmO4+xWFIClueNEMeR9GbfzmFXpTp0CSr2F9zGQnehhsu4wir2Oiq8dbWVqqrqzl48CDbtm07bJxFCMHOnTuprKxkxowZMeXOFULw7LPP8pOf/IRXXnmF+fPn9+t4Wlpa2L17t/V+3759rF+/noyMDAYPHsydd97JoUOHeOaZZwC44YYbePTRR/nxj3/MNddcw/vvv88LL7zAG2+80V+n0CVilkzs8RFJkmKqB4kQwupTPWHChKPW8FEUJWJFaBZJmu1LTYslIyOj185bVVU2bdpEW1vbcccXuosRY/JYU7ObxFQvQtY7LVp5FraCSlONxHmY9sCgF4SuW7eOESOz+HhPAwAexc3MmTM7SLuYE+HR1MqYQXizIj8Q1H1ZzS3tYEsQk2zV7GYVv9+vgkPCIbo+B0mSmDYkm5Wb9zMwK4mKmhYSExwISc+4CplSLVENvsy3ctSrouoyL4oqrA6VQta/l+npvqUgSRJJSUkkJSUxbNgwK85SXV3Nnj178Hq9Eeq8u3btoqqqKiaJ5KWXXuKWW27hpZde4qyzzurvIbFmzRq+8pWvWO9vvfVWAK688kqWLVtGeXm5ntJuYNiwYbzxxhvccsstPPzwwwwcOJC//OUvMZcWDDFKJqWlpSQmJuLxeGLOraVpmpUtNH369OPuc2Cqm2ZlZVFYWEhDQwNVVVVs3boVVVXJysoiNzf3qJRPjwSzhkSS9PjC8ab+dhfDx+Sy5r+7CWnC0KUKN46KkFUx/uuWux5Xc3Mz69atIy8vj9yvjOSpEn21p6BYmXYjRoywdJkqKirYsWMHKSkpVgD/SK6Y/Dw9HhMI6ev9xiY9g6uuthWG2u5JSVhmhNrqA1f4sXJKXT9iFRUVJNY0Mk5KJCkzhYqaFnLzU9lHNQBBVQWnpKcnO3XilQi7udSgBh5J79/uUBB+FbwKUkADp4Kk6a4xIWtke4/d7XS4OIuqqkiSxOjRo2OmvYOJV199lZtuuonnnnuOs88+u7+HA8CCBQsO26tp2bJlnX6nuLi4F0fVM4hJMrn33ntZsWIFX//611m6dCmLFi2KiTx1e1dBsytfT8LuahgzZgxNTU1WkaTf748okjxWAjBl/JOSkpgwYUKfyLuYGF6oB/Zrq5sR+YZ0ijBTasMPmKqpgNKlZVJfX8/69estyRZV1ZCMfvfeKAJKSEhgyJAhDBkyhEAgYCVEmOKeJrF0FrfKMyyTZiM9uKamBUmWaGxpBxJ0KRhJ0t1cAT1N19/ig/QkixC70kMzRTPnz5/Ch798h0KcTM/OptW2sNcUPTMrpBrJCsZOzXrEgD8EyU7UgAqJil7c6FXAJBO/CooDZMjpoefHjLPk5OSwfft2qqqqyMrKoqSkhB07dhxVnKU38frrr3Pdddfx97//nSVLlvTbOE4lxCSZ/O1vf+N73/seL730Evfddx/f/e53WbhwIUuXLuWcc87pl65nPp+P4uJiXC7XcVeEdweSJJGamkpqaqpVy1JZWdlBlTcnJ6fbD625ms/NzWXMmDF9bvGNKMxj1NxhNFc1g6zHAJwuJ+3owWYzm0s1Jk1PJ4H06upqNm3axOjRoxk4cCCgFy8mp3lpwI8n1DU5ulwuBgwYwIABA6wVthm3MmV07BpsYfXgVgR6T5XcnGRKVaOtrt+I80gCvy8ICU4recA6ZidxnwMHDrBr1y6mTJlCSkoqbvd7VFW30FjcSNrkdMuFFlkYaRdtjMzykjqVcgE5qBnBfEGau+cWPkIIduzYQU1NjbWoEkIcVZylN/HOO+9w9dVX89e//rVbkiVx9AxikkxkWWbmzJnMnDmT3/zmN2zcuJHly5fz4IMPcuONN3LWWWdRVFTEueeeS3p6eq9PimYhX3Z2NoWFhX0ev7H7sE3XTVVVFWVlZWzfvp20tDSLWLqKCdTW1rJx40ZrNd8frsPM7GSq2/1UtPnI2AxausTEeXl8UlqN06HQbm5oWCQuJfL2LC8vZ+vWrUyYMKFDIdfbN1/NgeoG2gNBuoPoTKZoDbasrCwyMjKRJYlAIERGWgKNDW2kpiUgGnQycUq6DpYkgWrM/CYBmGm9bjnyHEpKSti3bx/Tpk0jLS0NgDGj89i46SCZGYlU1zYDitExMXKfJoQW9dtZpGKQSSj8KgAHPecqNonETNowrfMjxVnM7MWeqmfpCqtWreLyyy/n8ccf5+KLL+6VY8TROWKSTOyQZZkpU6YwZcoUfvGLX7Bt2zZeeuklHn/8cb7//e8zf/58li5dynnnnUdWVlaP36TmSnj48OGH7aXSl7Cr8tobfu3cuZPk5OSIWhYIT8Jjx46loKCgX8c+cfwAKiqbkAR4gwq3futr/FpJ5C8vfcTfdu9Ac8pWsZ3HRialpaXs3r27y6ZikiQx+Bi7A0ZrsJnuxZKSfSQlOWhqDpKY7KSxAVxeJ6JFvwcUJF3NVxZoRk2HKeaY4FAIoOI23Iimcq7ZFColJcU6/rixBWzcdJCcglQONlboew6E3X6KR7asNX1f5kmbHxivVl/3SFKRtZ5Z/JjZfzU1NRFE0hm6U89ytF0Qj4SPP/6YSy65hIcffpjLL788Jp7VUwkxTyZ2SJLEuHHjuOeee7j77rvZvXs3L730EsuWLePmm2/mtNNOo6ioiPPPP5+8vLzjvpnMCczeDCrWEN3wyySWPXv2kJCQgNvtprGxkcmTJ8dEC9IJ4waw8v1tgC4175RlXC4nN116FhM/H8BP31pFq8dIfXU4IiZh+2q+t2B3L44aNYp/v13Opi3lSIo+Uze1NBuNuIwUYadDD8AbXSkdhjZWqMUP6Q48stOqwTCrwqPjf+PG6bEkxeNA00tNkEMCzXg6Q5LpvjLcXcJ0e0Xe3+Y7xWzTLOmpwk7p+MnEJJLa2tojEkk0uqpnMWOBPRFnWb16NRdddBH3338/11xzTZxI+gGxk297lJAkiVGjRnHnnXfyxRdfsHPnTs477zxefPFFxowZw6JFi3j00Uc5cODAYbMnOoP54Ozdu5dp06bFLJFEw4wJTJ06lfnz5+PxeGhoaLDOZ+fOndb7/sKEcWHLSFYkHLYA9RmzC1l21QVMD3pwNwfxSjI7duywxAJ7m0g6w8ACvYgzNU2Pn6iqjOaIjFkgQDWsKX9Ij/wEfHp6r0dxsn37diorK7vUCisck4csSzQ2t6MZoTjJJgdgFnjKfj0DboArmYFtHrxG1pjDsIZcbv3LLo8+Ibtc+nv3Yep1ugMhBNu2baO2tpbp06cfV+KJmWQyZswYTjvtNGbPnk1qaioHDx7ko48+4ssvv6SkpITW1tZu73PNmjVceOGF3Hfffdx4441xIuknnFCWSVeQJIlhw4Zx++23c9ttt3Hw4EFWrFjBihUruOuuu5g2bRpLly6lqKjoiPGCUCjEpk2baG9vZ9asWTGVN99dqKrK1q1baW9vZ968ebhcLivYXFxcbBX85eTkkJaW1qcxoLzcFLIyk6ipbUFSpA5V7sOH5vHnu69EVVU2bNhIbW3f1cF0Ol4jCB800oObmgMIw5umGO2Fha2tbri+w+h70tp6xNV8QoKboUMy2V9ahzTMcJeFBCpEtgEGkOCrhaO5/htn6ZN8SQVfbC9lb2UtQXeIoKqRkeGhqqGZtqQAxaFmkg6TnnwkmERSV1fHjBkzjqmnTVeIjrOY8kNHE2dZv349RUVF/PSnP+UHP/hBnEj6EScFmdghSXpr1h/+8If84Ac/oKKigpdffpkVK1Zw7733MmHCBItYohtW+Xw+1q9fj8Ph6NP6i55EMBhk/fr1CCGYOXOm5TYwycMebN60aRNCCCuL6Vj0mI4WkiQxYVwBH3y8E1npPHVWJ5INBAKBiHPoD+Rb6cG6BH1zsw8lX78vFMVKt7K21xwyaMLqg+IIqN3SChs3roC9+2pIyPICARxGcF8OiojWvLIsSHEZcvuSxLhh+Ywb1rWW2hP/XMWX5RVHedbG8XqRSDqDXX7ocHEWsw3v5s2bWbJkCbfffju33357nEj6GSesm6s7kCSJ/Px8brrpJlauXEl5eTnf+973+Oyzz5g9ezZz5szh17/+NVu3buWLL77ga1/7GrIs90gPj/5Ae3u71aFy+vTpnU7CZrB57NixnHnmmUyePBmHw8H27dv58MMP2bhxI5WVlYRC0bKLPYcJ43RZXEmWcURZJsFgkLVr16Kqapfn0JcoMMiktq7F8mq5ko0xyeHuh3OCqfxy/Bw+uP4K3vvWhfz2K5P5fnoWs7IS2L59O+Xl5QSDXWeajS3U3X9ygn49XEZadEQFvSEqmerqfprtDZd9hYdvvKDb25sQQrB169Y+I5JomHGWCRMmcOaZZzJx4kQcDgeffPIJAwcO5IwzzuCss87i6quv5q677uoTInnssccYOnQoHo+H2bNn88UXX3S57bJlyyz5J/NfX1/DvsZJZ5l0BXNlc+2113LNNdfQ0NDAv//9b5YvX87vfvc7QqEQ06dPPyFJBPQaEjN9ecyYMd1yXUmSRHp6Ounp6YwePZrm5mYreL9582ZL3yo7O7tHr8uE8cbEKUsoNheOWcvj9XqZOHFinxZUdgXTzeXzh0hP9dLU2I7sNvS3DGXgVNnNkz/8FqBbVevX7yA5KYErLpmH3++PkHZJT0+3rql9chlvBOF9RkqWqe3lNDPGBEiy3gY44yjIBPTOlEcDk0gaGhr6hUiiYS/mHTVqFADf/e53SU1N5aGHHmL16tUUFRVxww03RGTJ9SSef/55br31Vp544glmz57NQw89xKJFi9ixY0eXckopKSns2LHDen+yW06nDJnYYU6iV155JX6/n/fff5/rrruOiooKvv71r5OXl8f555/PBRdcwLRp02JKF6wz1NXVsWHDBoYMGcKwYcOO6aaVJImUlBRSUlIYOXIkLS0tVFVVUVpaytatW61JMCcn57hlMwYNSCc1xYtEeJymzlZaWtphu2z2NRK8LivGk5aRgCxBrdsIthv6W6arLhQKUVxcrGtuTZuGw+HA5XJZ0i7t7e1UVVVZ0i5mGnd2djZZWcnk5CSzNahX26ghocvLG0ryillLIouj0tk6WtiJZPr06f1OJNEoKSnhjjvu4Lvf/S4PPPAAlZWVvPbaa7z55pt873vf67Xj/u///i/XXXcdV199NaC3033jjTd46qmnuOOOOzr9jiRJ5OXl9dqYYg2nJJmYWLVqFXfddRdvv/02p59+OqCrer711lssX76c8847j/T0dM4//3yWLl3KrFmzYmK1bIfZa76na0jMwOjw4cM7TIKpqakWsRxLYNyMm+w8pPvy7TpbPdndsadwel4KX+wsJyc7kbL3N9I8aBQM8BiRdwknCsFgkHXr1uF0Opk8eXKn94nX6+1S2sXj8TBwQBLrpVZA0qVSEhVCAQ2cMnJQLyORJEGmp3fUnYUQbNmyhcbGxpgkkv3793PuueeydOlSHnjgAV2lID+f66+/nuuvv77XjhsIBFi7dm1Eb3hZllm4cOFh2+e2tLQwZMgQNE1j2rRp/PrXv2b8+PG9Ns7+xilNJgsWLGDTpk0RzaCSkpK46KKLuOiii2hvb+edd95hxYoVfPOb3yQhIYElS5awdOlS5s2b1yN9M44H+/fvZ8+ePb1eQ2KfBE23jb3zoUksR6OfNmH8AHaXVXXQ2Yo1IgE475oz+c8/V4MviKzIBIKR8SSHJLNmzRoSEhKYOHFit6yqzqRdtm1vRrTqjZDM9G0toEKiDL4QeJxIEqS5ez7D0E4kM2bMiDnRxkOHDrF48WLOPvtsHnnkkT61XGtqalBVtdP2udu3b+/0O2PGjOGpp55i0qRJNDY28sADDzBv3jy2bNliyQCdbIgNX0I/wQzQdwWv18vSpUt55plnKC8v589//jPBYJBvf/vbjBw5ku9///u89957hw2s9gZMSYuSkhKmT5/ep8WIbrebQYMGMX36dObPn8/gwYNpamri888/59NPP2X37t00NTUdsZZl4rgChKpRXFzMqFGjjtk91xcoGJbNjIXjqK9qYvT0YXqVPuEyE9UXICkpqdtEEg0z2LzwrBlWoaIJS3fL4C9Z9HxPH5NImpqaYpJIKioqWLx4MQsWLOCPf/xjzLhAD4e5c+dyxRVXMGXKFObPn8+KFSvIzs7mT3/6U38PrdcQ+79KjMDj8XDuuefy17/+lfLycp599lmcTifXXXcdw4cP58Ybb+Ttt9/G7/f36jg0TWPTpk1UV1czc+bMfhG9NGF2PjQfGFM3bM2aNXzyySfs2LGD+vr6TonF7QoiSyrjx48/IVZq539nAQAtzX6EoVBsTmoeh5MJEyYc9yQ3eHBmON04CqZ4I6rEwYMHe+w+E0KwefNmmpqamD59eswRSVVVFeeeey6zZs3iySef7Bc3c1ZWFoqidNo+t7sxEafTydSpUyMaY51siJPJMcDpdLJw4UKeeOIJDh48yPLly0lOTuYHP/gBw4YN49prr+W1116jvb39yDs7Cph++VgsqDRX15MmTWL+/PkUFhYSCoXYsGEDH330EVu3bqW2thZN0ygtLWXHju1MnzzshFEXGDtzGCMnDaJsXzVyop7ZZhgopCYk94i1IMsS/zz3QjJanUgOs4ZFfzH1thQUysrK+Pjjj61q8ba2tmM6nqZpbN68mebm5pgkkpqaGpYsWcKECRNYtmxZv7mVXS4X06dP57333rM+0zSN9957r9vtc81mdIfzhJzokER/amucZFBVlc8++4yXXnqJV155hZqaGhYtWmT1ZDkeGW4zbdbj8TBp0qSYSwToCqYWkxlnCQaDCCEYOXIkVXUas6YN7+8hdhv/fX09//v9v1Py/0YSdMskNai0JSucnpvHo98q6rHjBIIh7nzhLf7TeoCkeomWFImEihD+dCfpHgerbrjWEvisrq6mrq6OxMREKzMsOfnI5KZpGlu2bIlZIqmvr+e8885j8ODBvPjii/1eb/T8889z5ZVX8qc//YlZs2bx0EMP8cILL7B9+3Zyc3O54oorGDBgAL/5zW8A+MUvfsGcOXMYOXIkDQ0N/P73v+eVV15h7dq1jBs3rl/PpbdwSgfgexqKonDaaadx2mmn8eCDD7JmzRpeeuklfv7zn3foyXI0+fAtLS2sW7fO6sZ4IviMTZg1Aunp6WiaRlVVFdnZ2Rw8eJDmljY2bGi2JsH+Tmg4EuacPZHM/FR2G5c/0B6AZC9epWfH7XI6ePCyJew4WMlvXv2AdWodbrcDP5BgSKPYBT6DwaAl975//36cTqd1TTuTyzEtkpaWFmbMmNHvE3U0GhsbKSoqIj8/nxdeeCEmxnfxxRdTXV3NPffcQ0VFBVOmTOHtt9+2LOvS0tKI61xfX2+VG6SnpzN9+nQ+/fTTk5ZIIG6Z9Ak0TWPDhg0sX76cFStWsHfv3oieLGlpaV2uJM1sp8GDBzN8+PCYDVIfDnZ3yrRp06xmSmYtS1VVFa2trRFFkrEwgUSjvr6ev/1uOcvyQyBJuKp8hDI9LBk8nPu+8bVeO+6O0kr+/PZnfFRXxuDkZJb/v293ua2qqtTV1Vlpx4ClyJuZmYkkSWzevJnW1taYUBiIRnNzM0uXLiUpKYnXXnst5tKT4+gacTLpY5hFYS+99BIrVqxg27ZtLFiwgKKiog49WXbt2sWBAwciugqeaLDrbE2bNq3Lyau1tdUilubm5m41/OpL1NbWsmHDBgYMGMJT72+kvKWZ/Y1NNGY5uXjYaO4s+kqvjyEQCLFlXxlTxwzu1vZCCEvuvaqqCr/fbykZTJ8+vU+7H3YHra2tXHjhhciyzBtvvBFz44vj8IiTST/C7HNhEsuGDRs4/fTTKSoqYt++ffzrX/+ytIhORASDQYqLi60GZ911Y/l8PotYGhoaSElJsYilP5IOzAZphYWFEYWhqqry2POrGDI0m6J5k/t8XEcDXeZlPS0tLbhcLlpbW0lPT7dEPvubsNvb2/nmN79JMBjkrbfeIjm5dwoz4+g9xMkkRiCEYN++fbz44os8/PDDlJeXM378eK688kqKiooYMGDACeXi6imdrUAgYBGLPdBsFkn29jWprKxk8+bNnbYKPlFgppO3tbVZrq329nbLYmloaCA5OdkilsTExD6913w+H5dccglNTU288847/ZruHsexI04mMYRAIMA111zDp59+ylNPPcX69et5+eWX+e9//8v06dMt6fxYaR/cFdra2li7di0ZGRmMHTu2xxIGzEBzVVUVNTU1uN1ucnNzycnJISUlpcevSVlZGdu3b2fixIlkZ2f36L77CiaRtLe3d+lmDAQC1nWtra3F4/FYxNKb/doB/H4/3/72t6msrGTlypWkpx9b6+U4+h9xMokhfPjhh/z4xz/m3//+t7UKFkJQXl5u9WT56KOPmDhxokUsI0eOjCliMXW28vPzO/SL6Umoqmo1/Kquru7xhl8HDhxg165dTJ48udOe8ycCNE1j48aN+Hy+w8ar7Ii+rrIsR/S76clMwmAwyBVXXEFJSQnvv//+CXud49ARJ5MYg6qqXbqEhBDU1NTwyiuvsHz5ct5//30KCwspKiqiqKiIsWPH9iux9JfOlqZp1NXVWROg2fArNzf3mCbA/fv3s3fvXqZOndovrYJ7AnYiOdbWCtE1QqqqWhl3WVlZx5XKHQqFuPbaa9m2bRvvv/9+lzLucZw4iJPJCQohBPX19VZPlpUrVzJs2DBLOr8n5D2OBmaQur8zz8wMJnMCDIVCZGVlWRPg4WI3ZtyqtLSUadOm9VpvjN5GTxBJNIQQNDU1WXGWtrY2MjIyrFTuoyl6VFWVG264gXXr1rFq1apTSqb9ZEacTE4SNDY28vrrr7N8+XLeeecd8vPzLWKZOnVqrxJLWVkZ27Zti7kgtTkBmsTi8/nIzMwkNzeXrKysiElWCMHu3bspKytj2rRpJ2w2kVnTZKZi91azt9bWVotYmpqaup1xp6oqP/jBD/jkk0/44IMPGDBgQK+ML46+R5xMTkK0tLTw5ptvsnz5ct566y0yMjJYsmQJF1xwATNnzuxRKZbS0lJ2794d87EFIURELUtLS4u1ss7KyqKkpISqqqqYrL/oLvqKSKLh9/stYjEz7sw4i13aRdM0br31Vt59911WrVrFkCFD+mR8cfQN4mRykqOtrc3qyfL666+TkJBgNfuaO3fuMfu9hRDs2bOHgwcPMnXq1BMunbOtrc0ilsbGRmRZZsiQIQwYMOCYGn71N1RVZePGjX1OJNEIhUIRGXeyLPPcc8+xePFiPvzwQ9544w0++OADhg/vG022xx57jN///vdUVFQwefJk/vCHPzBr1qwut3/xxRe5++67KSkpYdSoUdx///0sXry4T8Z6oiNOJqcQfD4f7777LitWrODVV1/F4XBYzb7OOOOMbk9AQgi2b99OdXU106ZNO6qmWLEEU+alqamJgoIC6uvrqa+vt9rpmjUXsQ5TZSAYDPYrkURD0zT27dvHvffey5tvvkkgEGDp0qVcccUVfP3rX+/1AtTnn3+eK664IqJv+4svvthl3/ZPP/2UM888k9/85jecd955PPvss9x///2sW7eOCRMm9OpYTwbEyeQURTAY5IMPPrAUjkOhEEuWLKGoqIgFCxZ0GVDtTGfrRIQZpG5vb4/QqDJrLiorK6mrq8Pr9ZKTk0Nubm6fFEkeLUwiCYVCTJ06NWaIxIQQgvvuu4+//e1vPPjgg2zcuJGXX36ZQ4cO8dlnnzFp0qReO/bs2bOZOXMmjz76KKD/5oMGDeL73/9+p33bL774YlpbW3n99detz+bMmcOUKVN44oknem2cJwviZBIHoVCITz75hBdffJFXXnmF1tZWFi9ezNKlSznrrLMswmhqamLjxo04HI5u1y3EIrq7ko922bhcLsti6e1ivu7ATiTTpk2LOdVlIQT3338/jz/+OO+//z4TJ060Pt+6dSujR4/uNfILBAIkJCTw0ksvsXTpUuvzK6+8koaGBl599dUO3xk8eDC33norN998s/XZvffeyyuvvMKGDRt6ZZwnE2Lr7oujX+BwOFiwYAELFizgkUceYfXq1bz00kv8+Mc/pq6ujkWLFrFgwQIeffRRpk2bxuOPPx5zE1d3EQqFKC4uBnSxw8Odh8PhIC8vj7y8PEuNt6qqytIbM4klPT29z9sCnAhE8tBDD/Hoo4/y7rvvWkQCervs8ePH9+rxj6Vve0VFRafbV1RU9No4TyacOI0xuolf/epXzJs3j4SEhG4XnAkhuOeee8jPz8fr9bJw4UJ27drVuwONUSiKwumnn85DDz3E3r17WblyJVlZWdxyyy3s3LmTxsZGVqxYQVNTU38P9ahhdqqUZfmoJ2BFUcjOzmb8+PHMnz/f8qFv3ryZjz76iC1btlBdXY2qqr01fAumaGMsE8ljjz3GAw88wNtvv820adP6e0hx9AFOOjIJBAJcdNFF3Hjjjd3+zu9+9zseeeQRnnjiCT7//HMSExNZtGgRPp+vF0ca+5BlmczMTN5++20uu+wyVq9ezeTJk7n//vsZOnQo//M//8M///lPGhoaOu3zHksIBAKsXbsWp9PJlClTjis92rwuY8eO5cwzz2TKlCk4nU62b9/Ohx9+yMaNG6moqCAUCvXgGegwiUTTtJglkieffJJf/epXvPHGG4fNnOpNHEvf9ry8vOPq836q46SNmSxbtoybb76ZhoaGw24nhKCgoIDbbruN22+/HdALAHNzc1m2bBmXXHJJH4w2dnHzzTfjcrm4//77rRiBEIItW7ZY0vnbt2/nK1/5itWTxWzCFCvw+XysW7eOpKSkXlUGMBt+VVZWUlVVRXt7OxkZGVaR5PHGmOxEMnXq1Jgkkqeffpo77riD119/nTPPPLNfxzN79mxmzZrFH/7wB0APwA8ePJjvfe97XQbg29raeO2116zP5s2bx6RJk+IB+G7glCeTvXv3MmLECIqLi5kyZYr1+fz585kyZQoPP/xw7w40xnE4rTDQJ5CdO3daXSQ3bNjAGWecQVFREUuWLCE3N7dfiaW9vZ21a9eSnp7OuHHj+nQs0Q2/0tPTrTjL0fZcV1WV4uJihBAxSyTPPvsst956K6+++ipf/epX+3tIR923/dNPP2X+/Pn89re/5dxzz+W5557j17/+dTw1uJuIrTuyH2AG1+KBt85xJHeQJEmMGTOGu+66izvvvJO9e/eyfPlynnvuOW677Tbmzp1rCVEWFBT0+WS+bt06srKyKCws7HNSS0xMZNiwYQwbNszqH1JRUcGOHTuOquHXiUAkL774IrfccgsvvfRSTBAJHH3f9nnz5vHss8/ys5/9jLvuuotRo0bxyiuvxImkmzghLJM77riD+++//7DbbNu2jcLCQut9dy2TTz/9lNNOO42ysjLy8/Otz//nf/4HSZJ4/vnnj2vspyqEEBw4cIDly5fz8ssv8+mnnzJjxgyLWHq7J0tLSwtr167tdSn8Y0G0/EhSUlJEkaR9rCaRAEydOrVHpXB6Cq+88grXX389zz33HOedd15/DyeOfsIJQSbV1dXU1tYedpvhw4dH+KTjbq7YgRCCsrIyqyfLxx9/zKRJk6yeLCNGjOjRyb6pqYl169YxaNAghg8fHlNEEo3ohl8ejyfCYlm/fj2SJMUskbz++utcffXV/OMf/+CCCy7o7+HE0Y84IcjkWHC0Afjbb7+d2267DdAno5ycnHgAvhcghKC6utrqybJq1SoKCwstYjled1RDQwPFxcUMGzaMoUOH9tzA+wCqqlrEUl1djaZpuFwuxo0bF3NJDQDvvPMOl19+OX/961+5+OKL+3s4cfQzTjoyKS0tpa6ujn//+9/8/ve/5+OPPwZg5MiRloZUYWEhv/nNb6yV1P33389vf/tbnn76aYYNG8bdd9/Nxo0b2bp1Kx6Pp9/O5WSH2ZPl1VdfZfny5bz77rsMHz7cks4fP378UWVe1dXVsX79ekaNGsWgQYN6ceS9i1AoxLp161BVleTkZGpqapAkqdc6Hh4L3n//fS655BKeeOIJLrvsspgjujj6HicdmVx11VU8/fTTHT5ftWoVCxYsAPSg8d/+9jeuuuoqQJ/U7r33Xv785z/T0NDA6aefzh//+EdGjx7dhyOPo7Gxkddee83qyVJQUEBRUREXXHABU6ZMOewEWlNTw8aNGyksLKSgoKAPR92zMCv0ZVm26mE663hoEktmZmafu78++ugjLrroIh5++GGuvvrqOJHEAZyEZBLHyYHm5uaIniyZmZmWdH50T5aDBw+yY8cOxo8ff0IXmJkWiaIoXRZW2ht+VVZW4vf7IzpJ9rbQ4+rVq7ngggu4//77ueGGG+JEEoeFOJnEEfNoa2vj7bfftnqyJCUlcf7551NUVMSmTZv405/+xNtvvx2RjXeiwSQSh8PB5MmTu2VtmA2/zCLJ1tZWq+FXTk5OjwtxfvnllxQVFfGLX/yC73//+3EisaGkpIRhw4Z1+Hz+/Pl88MEHfT+gfsBJJ6cSa6irq+Oyyy4jJSWFtLQ0rr32WlpaWg77nQULFiBJUsS/G264oY9GHHtISEjgG9/4Bv/4xz+oqKjg8ccfp729nW984xv86Ec/YsiQIWzfvp1gMNjfQz0mmJphR0MkoLtrk5KSGDFiBHPnzmXevHlkZGRQVlbGRx99xJo1aygtLe0RWaDi4mKWLl3Kz372sziRdIJBgwZRXl5u/SsuLiYzM7PfVQD6EnHLpJdxzjnnUF5ezp/+9CeCwSBXX301M2fO5Nlnn+3yOwsWLGD06NH84he/sD5LSEggJSWlL4Z8QuDhhx/mnnvu4Z577mHHjh28+uqrqKrKeeedx9KlS1mwYMEJIZEfDAYpLi4+aiI5Enw+nxVjaWhoOK6GX5s2bWLx4sXcdttt3HnnnXEiOQJ8Ph8LFiwgOzubV199td+TJfoKcTLpRWzbto1x48bx5ZdfMmPGDADefvttFi9ezMGDB7sMFC9YsIApU6bw0EMP9eFoTxx88sknnH/++bz99tuWkGAoFOLjjz/mxRdf5NVXX6WtrY3FixdTVFTEwoULYzIrz7RIXC4XkyZN6rVAeiAQsIoka2trSUxMtIjlSA2/tm7dyuLFi7npppu4995740TSDVx66aVs2LCBzz77jOTk5P4eTp8hTia9iKeeeorbbruN+vp667NQKITH4+HFF1/ssshrwYIFbNmyBSEEeXl5LFmyhLvvvrvX25yeKBBCUF5e3iUZq6rKp59+anWRrK+v5+yzz2bp0qV87Wtfi4lWvHYimTx5cp+tXs2GX5WVldTU1OB2u7ts+LVz507OOeccrrrqKn7961/HiaQb+OUvf8n//d//8cUXXzBixIj+Hk6f4tSwv/oJFRUVHXpNOxwOMjIyDqv7demll/KPf/yDVatWceedd/L3v/+db3/727093BMGkiQdNv1XURTOOOMMHn74Yfbt28d//vMfBg8ezD333MPQoUO57LLLeOGFF2hubu7DUYfRX0QC4YZfkydPttypgUCA4uJiPv74Y5588klee+01tm3bxnnnncell17Kr371q34jkhMp5rh8+XJ+8Ytf8MILL5xyRAJxocdjQne1wo4V119/vfX/iRMnkp+fz1lnncWePXtOyZv0eCDLMnPmzGHOnDn87ne/o7i4mOXLl/Pb3/6WG2+8kYULF3L++edz7rnn9kkr3mAwyNq1a3G73X1OJNFQFMWySjRNo76+ntdee4177rmH5uZmCgsLWbBgAcFg8KhVjnsKl112GeXl5axcudKKOV5//fWHjTkCXHfddR1ijr2JzZs3c8UVV/CTn/yE8ePHW4tFl8tFRkZGrx47VhB3cx0DuqsV9o9//OOY3FzRaG1tJSkpibfffptFixYd19jj0CGEYPPmzVZPlp07d0b0ZMnIyOhxYjGJxOPxMGnSpJgMzB46dIivfe1rTJgwgVGjRvHyyy9TV1fHj3/8Y372s5/16VhOpJjjsmXLuPrqqzt8fiqlBsfJpBdhPgxr1qxh+vTpAPznP//h7LPPPuzDEI3//ve/nH766WzYsIFJkyb15pBPSQgh2LFjh9WTZePGjZxxxhksXbqUJUuWkJOTc9zEciIQSXl5OWeffTZnnHEGTz75JIqiIIRg3bp1+Hw+TjvttD4dTzzmeGIhTia9jHPOOYfKykqeeOIJy0yfMWOGZaYfOnSIs846i2eeeYZZs2axZ88enn32WRYvXkxmZiYbN27klltuYeDAgXz44Yf9fDYnP4QQ7N27l5deeomXX36ZNWvWMG/ePIqKijj//POPqSdLIBBg3bp1MU0klZWVLF68mOnTp/P000/HhELxr3/9a55++ml27NgR8XlOTg4///nPu2zN/ec//5khQ4ZQUFDAxo0b+clPfsKsWbNYsWJFXwz7lEXs3dUnGf75z39SWFjIWWedxeLFizn99NP585//bP09GAyyY8cO2traAN3H+u677/L1r3+dwsJCbrvtNi688MKIVqJx9B4kSWLEiBH85Cc/YfXq1ezZs4elS5fyyiuvMHbsWBYuXMgjjzzC/v37u9X33uw97/V6Y5ZIampqWLJkCRMnTmTZsmW9TiR33HFHhwB59L/t27cf8/6vv/56Fi1axMSJE7nssst45plnePnll9mzZ08PnkUc0YhbJnHE0Q2YPVlWrFjBihUr+OSTT5g8ebLV7KuzniwmkSQkJDBx4sSYJJK6ujrOO+88hg4dygsvvNAnhZ7xmOPJiTiZxBHHUUIIQVVVldWT5YMPPmDs2LEUFRWxdOlSxowZQ3l5OQ8++CCXX355zFokjY2NLFmyhNzcXFasWNFvGVtdIR5zPLEQe3d4HD2Oxx57jKFDh+LxeJg9ezZffPHFYbd/8cUXKSwsxOPxMHHiRN58880+GumJAUmSyM3N5bvf/S7vvPMO5eXl/PCHP2Tt2rXMmzePqVOnMnPmTIqLixk7dmxMEklzczMXXHABGRkZLF++POaIBGDs2LGcffbZXHfddXzxxRf897//5Xvf+x6XXHKJRSSHDh2isLDQuqf37NnDfffdx9q1aykpKeHf//43V1xxBWeeeWacSHoZsXeXx9GjeP7557n11lu59957WbduHZMnT2bRokVUVVV1uv2nn37Kt771La699lpL3G/p0qVs3ry5j0d+YkCSJDIzM7nmmmt4/fXX2bRpE+3t7SQkJLBhwwZmzZrFvffeS3FxMZqm9fdwAd3t881vfhOv18vLL78ck1IzJuIxxxMHcTfXSY7Zs2czc+ZMHn30UQA0TWPQoEF8//vf54477uiw/cUXX0xrayuvv/669dmcOXOYMmUKTzzxRJ+N+0REVVUVX/3qV5k4cSJ///vfaW9v54033mDFihW89dZbZGVlRfRk6Q+Lpb29nW9+85uEQiHeeustq/toHHEcL+KWyUkMMwC8cOFC6zNZllm4cCGrV6/u9DurV6+O2B5g0aJFXW4fRxiyLLN06VL+/ve/43A4SE5O5pJLLuGFF16goqKCBx54gJqaGi644ALGjh3Lj370Iz755BNUVe2T8fl8Pr71rW/h8/msvjBxxNFTiJPJSYyamhpUVSU3Nzfi89zc3C61wSoqKo5q+zjCyMrK4pe//CUOR0eVosTERC688EL++c9/Ul5ezmOPPUZrayuXXHIJo0eP5oc//CEffPBBr/Vk8fv9XH755dTV1fHmm2+SmpraK8eJ49RFnEziiKOP4fV6Of/881m2bBkVFRUsW7YMgKuuuoqRI0dy0003sXLlSgKBQI8cLxgMctVVV3Ho0CHeeecd0tPTe2S/ccRhR5xMTmJkZWWhKAqVlZURn1dWVnbZKz0vL++oto/j+OByuVi0aBFPPvkkZWVlPP/883i9Xm688UaGDRvG9ddfz5tvvnnM3RJDoRDXXnste/bsYeXKlWRmZvbwGcQRh444mZzEcLlcTJ8+nffee8/6TNM03nvvPebOndvpd+bOnRuxPcDKlSu73D6OnoPD4eCrX/0qjz/+OAcOHODVV18lIyODW2+9lWHDhnH11Vdbjb+6A1VVueGGG9iyZQvvvvsu2dnZvXwGcZzSEHGc1HjuueeE2+0Wy5YtE1u3bhXXX3+9SEtLExUVFUIIIS6//HJxxx13WNv/97//FQ6HQzzwwANi27Zt4t577xVOp1Ns2rSpv07hlIeqquLTTz8Vt956qxg+fLhITEwUF1xwgVi2bJmoqKgQra2tHf41NTWJK6+8UowcOVIcPHiwv08hjlMAcTI5BfCHP/xBDB48WLhcLjFr1izx2WefWX+bP3++uPLKKyO2f+GFF8To0aOFy+US48ePF2+88UYfjziOrqCqqvjyyy/FHXfcIUaPHi08Ho8477zzxJNPPikOHTokWlpaRHNzs/jOd74jhg0bJkpKSvp7yHGcIojXmcQRxwkKYfRkefHFF1mxYgW7du1iwYIFhEIhdu7cyYcffsjw4cP7e5hxnCKIk0kccZwEEEKwfft2/v73v/Poo4/y0UcfMWXKlP4eVhynEOJkEkccJxk0TYtJPbA4Tm7E77g4+gVHIz65bNmyDv0uYllPqr8RJ5I4+gPxuy6OPsfRik8CpKSkUF5ebv3bv39/H444ju7iV7/6FfPmzSMhIYG0tLRufUcIwT333EN+fj5er5eFCxeya9eu3h1oHD2OOJnE0ef43//9X6677jquvvpqxo0bxxNPPEFCQgJPPfVUl9+RJIm8vDzrX7TkSxyxgUAgwEUXXdRlS93O8Lvf/Y5HHnmEJ554gs8//5zExEQWLVp0zIWacfQP4mQSR5/iWMQnAVpaWhgyZAiDBg2iqKiILVu29MVw4zhK/PznP+eWW25h4sSJ3dpeCMFDDz3Ez372M4qKipg0aRLPPPMMZWVlvPLKK7072Dh6FHEyiaNPcSzik2PGjOGpp57i1Vdf5R//+AeapjFv3jwOHjzYF0OOoxexb98+KioqIhYXqampzJ49O65UfYKho7xpHHHEGObOnRsh5zJv3jzGjh3Ln/70J+67775+HFkcxwtzARFXqj7xEbdM4uhTHIv4ZDScTidTp05l9+7dvTHEOKJwxx13dMimi/63ffv2/h5mHP2MuGUSR5/CLj65dOlSICw++b3vfa9b+1BVlU2bNrF48eJeHGkcJm677Tauuuqqw25zrJX25gKisrKS/Px86/PKysp40eUJhjiZxNHnuPXWW7nyyiuZMWMGs2bN4qGHHqK1tZWrr74agCuuuIIBAwbwm9/8BoBf/OIXzJkzh5EjR9LQ0MDvf/979u/fz3e+853+PI1TBtnZ2b2mODxs2DDy8vJ47733LPJoamri888/P6qMsDj6H3E310mAZ555hszMTPx+f8TnS5cu5fLLL++nUXWNiy++mAceeIB77rmHKVOmsH79et5++23Lb15aWkp5ebm1fX19Pddddx1jx45l8eLFNDU18emnnzJu3Lj+OoU4ukBpaSnr16+ntLQUVVVZv34969evp6WlxdqmsLCQl19+GdBTvm+++WZ++ctf8u9//5tNmzZxxRVXUFBQYFmucZwg6C+FyTh6Dm1tbSI1NVW88MIL1meVlZXC4XCI999/vx9HFsephiuvvFIAHf6tWrXK2gYQf/vb36z3mqaJu+++W+Tm5gq32y3OOusssWPHjr4ffBzHhbg210mCm266iZKSEt58801ALwx87LHH2L17N5Ik9fPo4ogjjpMdcTfXSYLrrruO//znPxw6dAjQ9ayuuuqqOJEcBT766COWLFlCQUEBkiR1q2jugw8+YNq0abjdbkaOHGn1c48jjlMNcTI5STB16lQmT57MM888w9q1a9myZcsRM3DiiERrayuTJ0/mscce69b2+/bt49xzz+UrX/kK69ev5+abb+Y73/kO77zzTi+PNI44Yg9xN9dJhMcff5yHHnqIr33ta+zatSs+qR0HJEni5ZdfPmwQ+Cc/+QlvvPEGmzdvtj675JJLaGho4O233+6DUcYRR+wgbpmcRLj00ks5ePAgTz75JNdcc01/D+ekx+rVqyNkQAAWLVoUlwGJ45REnExOIqSmpnLhhReSlJQUT6vsA1RUVHQqA9LU1ER7e3s/jSqOOPoHcTI5yXDo0CEuu+wy3G53fw8ljjjiOIUQr4A/SVBfX88HH3zABx98wB//+Mf+Hs4pgby8vE41xlJSUvB6vf00qjji6B/EyeQkwdSpU6mvr+f+++9nzJgx/T2cUwJz58616npMrFy5MkLhOI44ThXEyeQkQUlJSX8P4YRHS0tLhBLxvn37WL9+PRkZGQwePJg777yTQ4cO8cwzzwBwww038Oijj/LjH/+Ya665hvfff58XXniBN954o79OIY44+g3x1OA44jDwwQcf8JWvfKXD51deeaVVBFpSUsIHH3wQ8Z1bbrmFrVu3MnDgQO6+++54fU8cpyTiZBJHHHHEEcdxI57NFUccccQRx3EjTiZxxBFHHHEcN+JkEkccccQRx3EjTiZxxBFHHHEcN+JkEkccccQRx3EjTiZxxBFHHHEcN+JkEkccccQRx3EjTiZxxBFHHHEcN+JkEkccccQRx3EjTiZxxBFHHHEcN+JkEkccccQRx3EjTiZxxBFHHHEcN/5/w4OMn4wlYjIAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGhCAYAAACzjMkOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgdV33n/Tmnqu5+e+/WvsuLvFu2MLYxmIRAnMQJyQTGMBCWMIQhJGSYTHhJJhNIMgRIgCxDAiTBmUCAEHbCjuN9t2XZliVZ+9aSeu++e23nvH/UcuuqW1LLUtuyXd/nsXW71nNOVZ3v+e1Ca61JkSJFihQpFgDyuW5AihQpUqR44SIlmRQpUqRIsWBISSZFihQpUiwYUpJJkSJFihQLhpRkUqRIkSLFgiElmRQpUqRIsWBISSZFihQpUiwYUpJJkSJFihQLhpRkUqRIkSLFgiElmRQpUqRIsWBISSZFihQpUiwYUpJ5keGDH/wgQojnuhnPCP/0T/+EEIL9+/fP+fdC4/k8dgAPP/ww1113HcViESEEW7ZsmXMMn+1xnQsf+9jHuPDCC1FKPSf3//SnP83KlSuxbfs5uf8LCS9Kkok+okceeeS5bkqKs4z77ruPD37wg0xPTz/XTTmn4Lour3vd65icnOSTn/wkn//851m1atVz0pbt27djmiZCCCYnJ2ftr1QqfPSjH+X9738/Uj43U9Rb3/pWHMfhM5/5zHNy/xcSXpQkk+KFgTe/+c00m82OyfK+++7jQx/6UEoyx2HPnj0cOHCA3/3d3+Wd73wnb3rTm+jt7Z1zDBcaH/jAB1ixYgUAW7dunbX/c5/7HJ7n8YY3vOFZa9PxyOVyvOUtb+ETn/gEaaL6M0NKMs8h6vX6c92E5zUMwyCXyz2vVVjPFKf77oyOjgLQ09PTsf3ZHsP77ruP7373u9x6663A3CRz66238ou/+IvkcrlnpU0nwutf/3oOHDjA7bff/py24/mOlGROguHhYd7+9rezaNEistksF198MZ/73Oc6jjlw4ADvfve7ueCCC8jn8/T39/O6171ulj470udv27aNN77xjfT29vKyl72sY9/u3bt561vfSk9PD93d3bztbW+j0Wg8o3YB3HPPPWzatIlcLse6detOS/Q/3X7t3LmTN73pTXR3dzM4OMgf/uEforXm0KFD/NIv/RJdXV0sXryYj3/843Oev2PHDl7/+tfT1dVFf38/733ve2m1Widt4/G2gw9+8IP8z//5PwFYs2YNQoh4/1vf+lZWr1496xonsrPMd+zm+yzmwnz7frJ3B+Cxxx7jpptuoquri1KpxE//9E/zwAMPxPvf+ta38opXvAKA173udQghuPHGG+ccw5PhTPoa4f3vfz9vfetbufHGG+nu7p5FMvv27eOJJ57gVa961axzf+7nfm7OZ6i1ZuPGjdxwww3zasPOnTvjd+P4/5IkfNVVV9HX18e3vvWt0+pjik6Yz3UDzlWMjIzw0pe+FCEE73nPexgcHOT73/8+v/7rv06lUuF3fud3gMCYet9993HLLbewfPly9u/fz9/93d9x4403sm3bNgqFQsd1X/e613Heeefx4Q9/eJYY/vrXv541a9bwZ3/2Z2zevJl/+Id/YGhoiI9+9KOn3a4nn3ySV7/61QwODvLBD34Qz/P4oz/6IxYtWjSv/p9uv/7zf/7PbNiwgY985CN897vf5U//9E/p6+vjM5/5DD/1Uz/FRz/6Uf7lX/6F3/3d32XTpk28/OUvn9X31atX82d/9mc88MAD/PVf/zVTU1P88z//87zaC/Arv/Ir7Ny5ky996Ut88pOfZGBgAIDBwcF5XwPmP3bzfRanwnz7Pte789RTT3HDDTfQ1dXF7/3e72FZFp/5zGe48cYbufPOO7nmmmv4jd/4DZYtW8aHP/xhfvu3f5tNmzbN+z04m3399re/zSOPPMKXvvQlADZs2MCTTz7Zccx9990HwMaNG2edv2nTJr7//e8zNTVFb29vvP3LX/4yjz32GPfcc8+8+tLV1cXnP//5jm07duzg//yf/8OrX/3qju0bN27k3nvvndd1U5wA+kWIW2+9VQP64YcfPuExv/7rv66XLFmix8fHO7bfcssturu7WzcaDa21jv9N4v7779eA/ud//ud42x/90R9pQL/hDW+YdXy07+1vf3vH9l/+5V/W/f39z6hdr33ta3Uul9MHDhyIj9m2bZs2DEPP57Gfbr/e+c53xts8z9PLly/XQgj9kY98JN4+NTWl8/m8fstb3jLr/F/8xV/suNe73/1uDejHH3883hY9t3379s35t9Za//mf//msbVpr/Za3vEWvWrVqVp+i+ycx37Gb77M4Eebb95O9O6997Wt1JpPRe/bsibcdOXJEl8tl/fKXvzzedvvtt2tA/9u//VvH+XON4VzbzrSvnufpiy++WL/vfe+Lt73tbW/Tvb29Hcf9r//1vzSgq9XqrGt8+9vf1oC+7bbb4m2O4+h169bpm2+++aT3Pxn27Nmjly5dql/2spfper3ese+d73ynzufzz/jaKbRO1WVzQGvN1772NW6++Wa01oyPj8f/veY1r2FmZobNmzcDkM/n4/Nc12ViYoL169fT09MTH5PEu971rhPe9/h9N9xwAxMTE1QqldNql+/7/PCHP+S1r30tK1eujK+3YcMGXvOa18xrDE63X+94xzvi34ZhcPXVV6O15td//dfj7T09PVxwwQXs3bt31vm/+Zu/2fH3b/3WbwHwve99b17tPVuY79idzjtyKsy378e/H77v86Mf/YjXvva1rF27Nt6+ZMkS3vjGN3LPPffE786Z4Gz09f/9v//HwYMH+cAHPhBv27BhA1NTUwwPD8fbJiYmME2TUqk06xqbNm0C6LjXZz/7Wfbt28eHP/zhZ9S3Q4cO8VM/9VMsW7aM7373u7Mk9N7eXprN5pxq6xTzQ6oumwNjY2NMT0/z2c9+ls9+9rNzHhMZUpvNJn/2Z3/GrbfeyvDwcIcKbGZmZtZ5a9asOeF9k5MaEKsEpqam6Orqmne7xsbGaDabnHfeebP2X3DBBfOauE+3X8e3vbu7m1wuF6usktsnJiZmnX98W9etW4eU8lmP1Zjv2J3OO3IqzLfvx787Y2NjNBoNLrjgglnX3LBhA0opDh06xMUXXzyvdpwIZ9rXVqvFH/3RH3HLLbcwPT0de/51dXUBgXpy2bJlp2zH4sWLWbZsGY899hgQOD/8yZ/8CW9605u45JJLTrNXcOzYMX76p3+a7u5ufvCDH8TtSSJ671+MziVnCynJzIEoAOxNb3oTb3nLW+Y85rLLLgOCVeett97K7/zO73DttdfS3d2NEIJbbrllzkCypIRwPAzDmHN79KLPt11nI4DtdPs1V9tP1Z+T4Wx/1Ce6nu/7z+h6p/OOnC5O1NaTvTsLiTPt61/91V9x+PBh/v7v/56///u/n7V/69at/OzP/iwA/f39eJ5HtVqlXC7POnbTpk0xyXziE59gamqKP/7jPz7tPk1MTPCqV70KwzD48Y9/TF9f35zHTU1NUSgUnrOxfyEgJZk5MDg4SLlcxvf9Ob1ckvjqV7/KW97ylg6vqVartSBxGvNtl+/75PN5du3aNWvf008/Pa97PZv9Ati1a1fHSn337t0opeb0JjoZTjRB9/b2ztn2AwcOdPw9ODg4r7E7nXfkVHimfR8cHKRQKMz5THfs2IGUMo5HOROcSV+npqb4yEc+wjvf+U5+5md+Ztb+t7zlLR0eZhdeeCEQeJnNRVybNm3i29/+NgcPHuQv/uIv+G//7b+ddozPzMwMr371q2k2m9x1110MDQ2d8Nh9+/axYcOG07p+ik6kNpk5YBgG/+k//Se+9rWvzenHPzY21nHs8Svzv/mbv3nGK+Sz0S7DMHjNa17DN7/5TQ4ePBjv3759Oz/84Q/nfa9nq18An/rUp2bdC+Cmm246resUi0WAWYSybt06ZmZmeOKJJ+JtR48e5Rvf+EbHcfMdu9N5R06FZ9p3wzB49atfzbe+9a0O1drIyAhf/OIXednLXjanCuh0cSZ9/fCHP4zv+3z0ox/lV3/1V2f9t3bt2g4Ps2uvvRbghNk4rr76apRSvPGNb0RrzR/8wR+cVl9qtRo33XQTo6Oj3HbbbadU023evJnrrrvutO6RohMvaknmc5/7HD/4wQ9mbX/ve9/LRz7yEW6//XauueYa/ut//a9cdNFFTE5OsnnzZn7yk5/E6TB+4Rd+gc9//vN0d3dz0UUXcf/99/OTn/yE/v7+BWnzfNv1oQ99iB/84AfccMMNvPvd78bzPP7mb/6Giy++uGOiPRGe7X7t27ePX/zFX+Rnf/Znuf/++/nCF77AG9/4Ri6//PLTus5VV10FwB/8wR9wyy23YFkWN998M7fccgvvf//7+eVf/mV++7d/m0ajwd/93d9x/vnnzzJaz3fs5vssFrLvf/qnf8qPf/xjXvayl/Hud78b0zT5zGc+g23bfOxjHzuNkTs5nklfDx06xP/9v/+X97znPbOCQCOsW7eOH/3oRyilkFKydu1aLrnkEn7yk5/w9re/fdbxV199NQD33nsvH/zgB0/oni6E4BWveAV33HFHx/Y3v/nN3H///fzhH/4h99xzT4fb8yWXXMIVV1wR//3oo48yOTnJL/3SL51idFKcFM+6P9s5gMhF80T/HTp0SGut9cjIiP7N3/xNvWLFCm1Zll68eLH+6Z/+af3Zz342vtbU1JR+29vepgcGBnSpVNKvec1r9I4dO/SqVavmdNUdGxub1Z4T7ZvLlXS+7dJa6zvvvFNfddVVOpPJ6LVr1+pPf/rTc7rszoUz7ddb3vIWXSwWZ133Fa94hb744otnnb9t2zb9q7/6q7pcLuve3l79nve8RzebzZOOx4nG50/+5E/0smXLtJSyY/+PfvQjfckll+hMJqMvuOAC/YUvfOGE4zHfsZvvs5gL8+37yd4drbXevHmzfs1rXqNLpZIuFAr6la98pb7vvvs6jjlTF+Zn0te3vvWtOpPJ6OHh4ROOwfve9z4N6J07d8bbPvGJT+hSqXRCt+jVq1frwcHBOd2ctda6Wq1qQN9yyy0d25VSulQqnfC7/9SnPtVx/Pvf/369cuVKrZQ6YftTnBovSpJJce7gVBPoCxkv5r6fDNPT07qvr0//wz/8w6x9e/bs0YZh6L/6q7864fnf/e53tRBCP/HEE8+4Da1WSy9evFj/5V/+5TO+RooAqU0mRYoU5xS6u7v5vd/7Pf78z/98lifjBz7wAVavXn3SeLPbb7+dW265hUsvvfQZt+HWW2/FsqyT3ifF/PCitsmkSJHi3MT73/9+3v/+9wOBE8f3v/997rjjDv7t3/6N73//+2QymROe++d//udnfP93vetdKcGcJaQkkyJFinMat912G2984xtZvnw5n/nMZ+adtSLFuQGhdVosIUWKFClSLAxSm0yKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpEiRIkWKBUNKMilSpEiRYsGQkkyKFClSpFgwpCSTIkWKFCkWDCnJpHjWobVGa/1cNyNFihTPAsznugEpXlzQWuO6Ls1mE8MwME0TwzAwDAMp0zVPihQvNAidLilTPEtQSuE4DkopbNvu2CeEwDTNmHRM00QI8Ry1NEWKFGcLKcmkWHBorfF9H9d10VojhMBxnFhy0VqjlIrVaEKIDtKJiCclnRQpnn9ISSbFgiJSj/m+DwQSS7TtRKQxF+lIKTEMA8uyYvVaSjopUpz7SEkmxYIgIoqk9BKRQqQ2S26bz7WOJ52klJOSTooU5yZSkklx1qG1xvM8PM8DmEUmp0syx187ukZKOilSnPtISSbFWUUkvSilAOb0GDsTkjkeKemkSHFuIyWZFGcFSfWYUgop5Qkn9bNJMnO1I7qHUgohBJ7nUalUWLx4cUo6KVI8y0jjZFKcMY437p+MYBYa0X0jItFa02g02L59O729vTiOE7cxciIwTfM5bXOKFC9kpCST4owQSS++75+TE3WkOgOwLCtWqWmtabVaHcdYlhVLOudiX1KkeD4iJZkUzwjHx76czqT8XE7eSRVdJOnMRTqRhJOSTooUZ4aUZFKcNs6GeuzZnLBPdq8TkY5SKiWdFCnOAlKSSXFa8DwP27ZjFdMLbaI9GenYtk2r1UJKOct77YU4FilSnA2kJJNiXohiX44ePcquXbu4/vrrn1eT6jN1ojzeAy4iHd/38X2/g3BT0kmRYjZSkklxShzvmhzForwYEZFOMu9aRDqe58X7j1evLYS7dooUzwekJJPihJgr9iUimRQBTkQ6nufF+dlS0knxYkZKMinmxImM+1GCy+cTnm0ng1ORTqVSIZ/P09XVldbSSfGCR0oyKWbhZLEvQog4ZUyKU2Mu0jl48CD9/f1xzZzja+mkpJPihYSUZFLESNoWTpQa5vmqLjtX2pz0XEsGh7qu25GNICWdFC8UpCSTAph/7MvzUV12riE5fnNJOpEkmczvlpJOiucrUpJJEUfunyqxJTw/Seb5ZGCPnAQiJEnHdd34mLRUdYrnC1KSeREjWfdlvqlhzhbJPB/J6mzidFLwnIh0IkknrRqa4lxGSjIvUiil8DzvtFPDnA1y8H2fI0eOkM/n6e7uflZUP+cSoZ1JW+ZLOmktnRTnClKSeZHhZGWR54MzJZl6vc6WLVs6VHTd3d309vbS29tLuVx+UUyIZ6uPSdJJ1tJxHOeE2QhS0knxbCIlmRcRTlUWeT6IvMueSdT/kSNHeOqpp1ixYgWrV68GoNFoMDU1xdTUFPv370cIERNOb28vhULhjCfEc21CXSipKum5lrxPSjopnkukJPMiQTL2JenNdLqIJqPTIRnf99m+fTsjIyNcfvnlDA4OxpJUqVSiVCqxYsUKlFJUq1WmpqYYGxtj9+7dmKbZQTr5fP4ZtfvFiJORjm3bscu04zhYlkWxWExJJ8VZR0oyL3DMJ/bldJAkmfmgVquxZcsWTNPkuuuuI5/Pn/BcKSXd3d10d3ezevVqfN+nUqkwPjnG5pFHKD5dJpvNxoTT19dHJpOZd9vPpZxrz0U75qoaqrVm//79ZDKZWLpMq4amOJtISeYFjIUoi3w6JDM8PMy2bdtYuXIl55133mlLT4Zh0Nvby27xGKLL4oZLb2BmZobJyUkOHjzItm3bKBaLMen09PRgWdYJ23yu4FxxQji+rEGSeNKqoSnOFlKSeYFCKcX4+DiFQuGsxlHMh2Q8z2P79u2Mjo5yxRVXMDg4+Izv5ymHO6d+zLLcFZimSX9/P/39/QC4rhvbc/bs2UOj0aBcLneQTtIT61zCuTRJJx1A5lM1NCWdFKeDlGReYEiWRb7//vu54YYb5lzdP1MkI9PnQrVa5fHHH8eyLK6//npyuVzHfk81OVD9FMcah9nY82EM4+Sv4ObKt9nfalA2q7P2WZbF0NAQQ0NDANi2HZPOjt13Y/X/Ozmjm7z3LiCwDZnmc//KnyuSTIQoRup4pKWqU5wNPPdfXIqzhrnUY2cb0eRxfJJMrTXDw8Ns376dVatWsX79+ln391WLh0Z+AZNjNP0evjf2AW5e/Ocn7Mvhxic5UD8ACCpe5dRtM8ZxS5+H7A/oWdQiIwJiciZXApdyzz330NPTc064S59Lk/B8bVXzKVWdVg1NcTxSknkB4ESxL1LKs54xeS51med5bNu2jfHxca688koGBgbmPHfH1B/g6BlMAXlRxZf38qORP2epcSPdVi/LymuQ0qDmbmN39b/j6kkO2G8EDlDxZksyAEo1GW9+kgnnx3h6EoUkKzwEoLRECkWm73Nkxn+Lyza8npmZmQ536Z6eHvr6+s6au/SZQGsXIc6e1Dn/+z4zh4gTkU5aNTRFEinJPM9xstiXhUrLnwzIrFarbNmyhWw2y3XXXTdLPRah4e5jzL4d0PhaYkmfmpND8h9MGV9n3Jbcf6yPolliqHsPCIWrVuITXK/qV2dNhnXn+4zVfw9Ha1xtIASgNQiQAjQDwCjgMbDmH8gVfo6urhWxu3StVmNycvJZd5eeS13mqREc9yEK2ZsX5J6nas/ZmPRPVjU0STqRei2Zdy0lnRcuUpJ5HiNZtRJmq8cWKi1/RF6HDh1ix44drF69mvXr1590onhy4neBoC0uRQyqOMqkP1Oh2spRzrXI5xp0ZSZABP3ZXN2AHzbf0x5N1aRgFACw3QeZaPx/2NqiqRUCjQCk0CidRQobgYNGIlAYVpVjjfezovzP8UTY1dVFV1cXq1evRikVSzlHjx7l6aef7nCX7u3tJZvNntUxTKLl3IandlDg2ScZpdSCTPJp1dAUkJLM8xJzlUU+UVr+hSowtmPHDiqVChs3boy9vU6EbdN/x4x3iEzIgT6Bx5dB0LaRWhflXIueYoNjU4tY1XuYhpvltgmTK3va16l4VQpGAdd7mqnG26krg5YuIaiiAaU1UoBPFomNpkLOuBTHfxyAup+j7o9SMhfNaqOUMiYTCFSAEekcOnRo3u7S88FcxG979+Krfc/oemeKZyt+6HRIJ5nsMy1r8PxGSjLPM5xO7MtCSDKVSiUmuOuvv/6Uq/vR1sMcrH0eVxtkcMNONKirDGWjFR7Vbv/i3hF2jC6jqfP4COwESVa8CgOWYqL+erT2mFRlJC3yIrhG0FON0nZ8SV830IBWJk870+RzO+YkmeNxSnfp1hj5/hEG8zc+I3fp5DPTWuP6m1F6El9NYsi+eV/nbOC5ClI9Gels3ryZ1atX093dnZLO8xwpyTyPcLKyyHPhbBr+tdYcOnSIp59+GsMw2LBhwykJxvVtdky+l4pvoSEmFSHgmN3Fmtw4k36ZwVIlMKWE3VnRP843D1wDAlrK5aL8YVZlJqk338ERd4aMaOEjUQgUMp4kfQQGGincWGXmqD1kxXrGahYNq8mEs5PV+Vecdv+Pd5d+cvK/0PSP4oy/lKeffhrbtunq6oolndPJLt1y70bpSQAcbzP5zKtOu31ngnMlE0KSdFqtVvx3JOlAWjX0+YiUZJ4HSMa+zLfuC5w9dZnrujz11FNMTU1x1VVX8fjjj8/rvPvG/5QMVWb85UgUi6y2G7KUCiHA9sqUstPMNPvoKUzG+yacAm9Y+SBrc5MsygTnNZXJjN/DgNHkmLcUaEBojRGA0MQSjJSLQB8M71bgsAjydE04T5/xeBxtfB5X70AKQW7Z17j2wv9Nq9ViamqKyclJhoeH8X3/hO7Sx0uXDffr8W/Hf4Q8L06SSUIpFRPI8ZJOWjX0+YWUZM5xnElqmLOhLpuZmWHLli0UCgWuu+46stnsvNL9j7Z20HJ+BEYZFxPQHdLKgFWn4VsoFdg16naJnsIkAo2lNO+74HuUTRutoaFMCtIjLz1gnN12Px4uZqidUshQrgGlBTLJNsC0303LOALApLsHX7sYz9BVuOEe4lD9U5gycDKYdr+H7b+dfH4F+XyepUuXorWmXq/H6rUDBw4AxKRzPPG7/rb4t+M9/IzadSY4V0nm+DbNpV5Lq4ae+0hJ5hzG6ZRFngtnoi7TWnPw4EF27tzJ2rVrWbt2bYdr9KlI5uHxD9FvNpjyF4dbBB4SKzT2S6EZcboohhJGKVOhJFoYKDIZha8DG4sQoJRE6cAtGaCuMriiSA+B5KNFHqgjBGiyQAtXHSYretA0+c5UifNkLzo3gcJl2t1Hf+b80x4TpVwenfktBO0Px9WK/dWbKZibKFk3UrJeScZY2pFdWmsdZ5ceHx+n1Wrx1FNP0d/fT7l3HPIVzLBvrr8dpetIUTzt9j1TnKskcyqJZD4F3JKkk/ReS/HsIZUrz0EkVQKnox47Hs9UXea6Llu2bGHv3r1cffXVrFu3ruP+pyKZzePvw9SBp5St/PZ1dTA1CzxESDZ91hi9ssbq0jBZ4YeOyGAITc0LMixnpceI2wUEkkpdZ2j47UnY0+2Jxidql8Yy1jKlXsao6+GE5wOMu89MZfbYzHtoqUk83f5sTAFok4b3AKPNj7Cv9tezzlPKp6uri1WrVnHllVeSy+VYs2YN+XyeafFRZpqFxNE+9eazK82ciyRzolQ3J0PSHTpyFIDgfW40GlSrVSqVCrVaDdu247LjKRYWqSRzjuH42JcziRl4Juqy6elpHn/8cUqlEtdff/2cqfRPJiHtmPzvzNgP0m3WqfsZDNEEAkKwlUlBOvRJm27DZZFRp65NQKC1ADQGKlar6US/u80GDWUy7g5iSI3T5i48nLako71YU+Yql29PGIBP1c8S+WxNODujJs0b+2qfYdLdBgh8LMAGQKCwzItx/ceQ2qfiPMJY9U1odQCXDIYexqVMU7yEVaUPkjWCZKGlUolMcQ+V6hEyYknnvQ58i8ZMLs5EcCbu0vPBuUYyke3lTG0r85F00gJuC4+UZM4RzDf25XRwOpKM1poDBw6wa9cu1q1fx4qV/fh6Algy69gTSTK7pv+ACfs2ZrwS+QzUVJas9OL9TZVhtZzA1iZKuTQTEogCDAKiaPomBdOjIF1cLbGEwhKKcbfIhJ9BSB9T1DtsPB6STOBrhtYGQvjsrF1IxQ9UahOamGTGnR3zGpMIk/YDHG5+PrT8gEKjFERzoKt8tNbkhKY/cxDXP4olXNACjSYnZqh49zFdfQVS9jGwZAOK93Ck8ceAwNHH0AwhGAVgybIxGFj3rGWXPhsT+tlEcoF1NpEknbRq6LOHlGTOASxE3ZfoOvORZBzHYevWrVQqFa686kIm+SQPjf6ErLGMjLGWtV2/Q8k6Lz4+Ii/bH6flHcZVY1SdxxltfoeGv4Ju4ygQBFuatEWOhsrQJR3G/CI1baGQ8WQdGO0Dkom6LgQ0lYUlAqmhobN4gAVY0mHSLdCfaQDgI4HAYy1rrMNVdf5qRz8XLAtIZky4XEgWH5uafxRbVcjKtgrtRGh5k+yq/i62BpMsKpRgbEzyBATa8HdSFiYq/NvERSMwhKauTPLCo89o0NJ5CnqU3r5RXH03TT9LpLH25VpMFZCMq55gyUB3XCIhmV36TN2l58K5JsmcKIPF2UQy5xqkpLOQSEnmOcbpxr6cDuYjyUxNTfH4449TLpe59tpr2F//H9he4A1l+8PYfpNHx95I1rySrswFZGQv9UX/wT5VYMdIZDuQ5Iwl5MyX8tmjJZRex2v6bZZaDyFpk9xluaO0VPDK2doAAY42yeEhBPhaINFYwo8JJys8fC1QCI55XbSURb+sAzDpFmOSURgQTvKG6OKHI5sYs30uJJAmEIKcXEo9jKqfcHZSlhYz7p3kjYvoz83tNrx55r/jY6JRoQ4v2O5oIyYZ8LGEhwR8DYYAlxIWVSwRnGAKTcXPUpANtIZhZ4CcWUGF17OVk/gYbVx/KxlzIwDZbJbFixezeHHgRNFsNmPSOXLkCJ7nnVF26XONZKIJ/9mUruYinei/qFR1o9HAdV0GBwdT0jkNpCTzHCGKfTl8+DCjo6NcdtllZ/1lPZkkE5Xd3b17N+eddx6rVq1iuPa3zNh3AkaofHIomMuZcZ9C0OJg/Sv0ZC7Dz+2iojMUZT+engAULX+Yir8WrU18NCP++VT9Q1ycP4KJICOaLDErDIcG+yC2RWPJtqQTOCEHqWFsZZA3fAyhqXhFxvwiShi0VNs2ETkSADgqT9EIpIyaZ/C5vTlAkJM5mqoJgK974uOPNv6JY/pBCrLFtM7RZV2NZbT3A+ypfpYJ7zDF0HvN0068L0qNA2DhY4iAcJrKpGR4KO2CgIzwGffy9JlN+swpjjh99BsV8kYFA4UbXqfh76YgCwgRkKbtPRKTzPHI5/Pzdpfu7e2lWCye9N0610hmodRlp4O5MkxPTU0xMzNDV1dXh6STFnA7OVKSeQ6QVI/5vh9HN59tnMhA7zgOTz75JNVqlU2bNtHT08NU64fUnPvDI3zyxkrq/u44nsSUmbDtASloHCzzAjx3Ir7uozN9FAyo+DP4CnY6i1lqTdEjG6zPDNNQJpF6SIXR+YZox88kRyCQTIJ7+Vow6Rc6DwDyRnvSN2WLqpelbNr85MBVQLAvK/Mxycz4FlkJeWGDeiBW5Jmixe7qe9nQ8/+CeyuHY81/YVfjy4CkpW0sQSDNxO1rNyYXpcsBvHB7hlYs1chEuzOyxZ2VtVzfswdftyUjjYc2LkSozQDUnGOU505o3QEhxAndpScmJtizZ09cxjpyJMjlcrPS2pzp+1d3bqOY+ekzukaEKEbmXJqsIztklOImrRo6f6Qk8yzj+NgX0zQXLInlXOqySD3W3d3N9ddfj2VZNN1d7J/5fQQZCKUJy+gCHzw1BYDrHwOg5u0FLUEoppwn6THX0PL3YYp+7p50OK+rG/xpusQuLi8/xYrMFAV5DFsZ7HQGGLQCVZcimGCNcJ4VgETjaYEpNBnhxSqznc4iFIHKKWd4MSl1WTYtL0fODD7yY60uRlWBH+8vQjYgGUu0U98Mt1qcV/BYYk4hhA4UbDqLKWxQmzna+BwN9zZa/lPUVF9CGSaxtAnCwyCDjxNSSQ+CSVRiEpEiWoVDS5kUhUef0WTGz1GULb47cwk7q0Ns6tofBI5SQlEDwNGZsLCB5Fu7L+ddcwsyp3zmUXbpVatWoZSiUqkwOTl5wuzSZ5qFuWZ/nYnWP59VkjmXHBEiRFkIIK0aejpISeZZQrLuSzL2ZSEKi0VIXltrzb59+9izZw/nn38+K1euRAiB7Y+xf+aPUboBNCiYG2h4T0OoGmr6B5AiS8sfJisWYespDHcFfuYQAD55tIYal6LQXJLfxhX9j+JpyaBZwwxtEnvsAbKmT1OZYeS+wFUmhtH2PhMCPBWQjCE0tjZp+FnG/TJ5YVOWNhnp01QWBSOQHibsbpaFJNPwM/xgxzXYnoKQWwzaLtjj7gzXmo1Q1RXc19ElTGEjBIy3Po2khcbkwfog63JjsUVJigwKDyHMeGwMuQrUOK5uS10GGk9LTKE67FEeWe6pLeOg08eMX+A/pi/k/MIIvZn1CL0FgLq/n6yQVNzreHLs7JQVkFLS09NDT09P8Lx8n+np6Y7s0gD79+9ncHCQ3t7e03KXVspnvPlXuHoarR2EmO3yfro417zdIkR207lwItJJq4amJPOsQCmF53lzeo8tNMn4vo/jODzxxBPU63Ve8pKX0N3dDYDtj7Jl/L9SMNpZf00ZBAY6/tFwi0/RWEXV20nJWortTCF0ewKservpy1zKnplJ/mDV4/SbdbKhnaXmZ3C0SUnaiHDbhFtkeXYGAEOGq/5Em5t+hqwMPkpPS7Y0Vwbt0SZRbErNz8Uk49DWKU22ijw12k/edOI4GKmjCVPzqt5tCKHxEiSjdCuWjCzRZMrLs99ZERr7c0RqN1e7GAKUbtuQtK4CMuE/F1ynoSVdQpETPp62MIWLrw3uqq2Lj7tz5jyayuLi8iKGwq/Q1xW0cQG3br0cVyWvOj843mGOND6KKZextPBepJxddE0IMSu79N13340Qgn379rF169YOd+nu7m5M88TTxETz/+DqcQBsfw85c8Npt/t4nMuSzMnGIomTkY5t27RarRcN6aQks4A4UVnkJBaSZIQQNJtN7r33Xnp7e7nuuuviVWrdPcaTE79BSx1ECitO/WB7ewFw1SiW6MfV05gymLFlaJNQZtsOY+Ajva28vCsgjrrKYGofQ0DJcFDaYWtzKUUrIIik4T6il8CzLFCdmULF6rNJr0RLByvjZJS9n5BOZMJx4N6DF4R9aG+r1lqQg+vLO8lJlyCYUsbEIoVLQ2fi9DYNleGYFxBXzeulaI4E4wFIDb6ww1YrULsJtX6BBCZ12L52v+qqSFbX+PdjF6GNZB8M7q+uI2NYDCU8qcftNfxwX56Ni07vnTha/wcmWn+NFOBpQcX5Gh4rKFrnkZcD2P5uHHUEYb6e80tvjs+LJs21a9eSy+VOy13a9kY7knva/razRjLn4kTr+/6cwcnzwfHf/slKVUfZCl4oVUNTklkgnKwschILRTJa61gtsmHDBlasWBHfv+Lu456x36UrnPPq3l66ZBeaCp6eomBeSMPbSc5YiutNo3RgM2h6+wGNMqawdD8FeZBu2Yq9wbLSpygdxt0Si6zgnAmvRFVnKYZSiClVoo1ta3/kCJA3XWpeBiGhrpMftIiJwUgMY8Gs4PiSitvLrpGl8bUyQuJphZQ5XlreTb9VRyFCMhV4YZAngKMMiuFYPFJbg2UE8TYjjsVas31/ITLoULLpki10nP8ZbAzMyIU6oSYT2uX+1irGWvlYukr6+z1S8bi+q61u2zsTuCm7p/FOuP4UR1p/T5Yc0AoDUm0MdmN7TRo6SA7qy+sZb23pIJnI+zB6N+bjLt3d3U1vby9u1x+ghYglUdvfPu82nwznsiRztoJgT1RLx/d9PM+L90dkMzw8zMDAQKz2fD7h3HuSLwBEAV3JGhgnKyx2tknGtm0eeeQRqtUq/f39sf0FYNzewZ2jv0XTH8OQQ+EZGstsB1uasgSAIYIVfcvbD0g8PUPJXEEWhyFzL2Vpx55TOiQBCDIsj3ollBYMe10UDJeoi11mE0+1V/pRnIhIKM0qXo4RrytME6PjY5thjE1G2vH1pFAcbfVw38FLQCc8vozg2HVdW1mbGaWlLRyVcHlOrK8s4eMryYRX5JATqJEywiVLpcMFvOX2IICCaKGJAkADuB35zBR2+PcxL88xvwtPhUGXvuggmbrSSLEm/vuJkeXB9U5DXXag9vsofJzQHVqKIA5JCEAPUzI3Yoo17GweYNLdiadb8bnHk0zduYuG+1i8P3KVvvjii7n++uvZtGkTg4ODTLfuIS8fZdzP4btBEbiGs/Ws5AJ7PtpkzhTJwM9Ikolq6TSbTd785jfzrW99a0HuvdBIJZmziORKZL6pYc42yUxMTPDEE0/Q19fH6tWrqVar8b7h5mbuGv84lq4EKiraqqukOsr29xKk5g+kEUWLormOureXvD5EWdZjKSAycmeEz4yfoyc0wncbTXY5QwQaIsWMn6dXNjGFZswtsyQb1IjRoTdbcurdVlnMqp6ZWX2r+1kKhochfKa9PH2ZwDV53C5xx85VbTc1ICdNNi1+nGWF7dhhdoHk/OclCEIKmPEL7Gn187q+R+gxmiy1qjSVSc3PIIQmL11sYxyHQFbwMUPloR+Og9GR5qalDSSSx+2l4VES0Lju7E+u4i+jJHcjGWLnZB5o4PrzeydqzkNMh+UB/EQONzPhGt70NjPJa9BsBXwmnB0syl4RjP9xJDPV/BNsNcOq7h9jyu6OewkhKBaLWNl9ePV/QmrNtJ+nWyzCYATbe5p77rmL3t7+WL2Wz+dPW91zLksyz1a7jpd0Go0GxeKzl5n7bOLce5LPU0SxL6dbWCwyzp+N++/atYvNmzezfv16Lrvssg736AP1B/jRyB/R8CfIyF4Amn67iFjN24cOicZTk+TN82n5B4mUO4Z26JFNcmKKZLf8RP6xrPRQoTRRU1lGvbaxoe63DfSVxO+WHxCdITQTdoGHx1fz8GjbQO4npBMnEXxZS1xjuNqL45sdksxF3Qf41ZWP4mDSiIz/UboaFBkcLO1i4VEUNsutaW4o7+Oi3ChDZo1G6AVXMgJ35Zz06baaoNsqMpWQ3oQAO2FvUhp2NpaGTgbEbs6eN1vdcqAVTOYzrQ344fXmI8l4qsre2p8klXOoUCdnCoUQgYSh5LVMeG1njTFna/w7STI1+yt4+jCaGoerb5hTKrHde5is/xcy+hAzKh/YtzJlAKThsOGSborFIiMjIzz44IPcf//9bN++nWPHjmHb9in7BOe2TeZs5oybL6KA21Kp9Kzf+2wglWTOAiL12DNJbBmtVM5kldRqtXjiiSewbZuXvvSllMvBRx/FyWyr/Jinqj9AhUGDGWMQ15ui6h2hTwbxH76ukbHOx/WD5JGWLNP06mTFUtCHyeidgbQTuhdH8SzZRBLLbCjNlA2b/U5fp9tY4rcQ7clr2s1TNAM7x+FGL//w2Cvp7W6Tn+Mb5GUUANq+SDK9/1PDgYopmm1XdY9y08q7aKgg7ic6TyNYJCosMpuBu3S46nc1WAIcHaz+TaGpKZMCQaE0AYy7RZrKoMdqoJQI7x9V5QxufNTpYU1+DAgIaNtMD4TzghJBAlDPl7OWdpurcHEBnhhdjgondu8U0u2M/SOONv6UMc+nLDOI0HEhsA0FkMIFPch9tTpls034JyKZqeZfBL8BVx1g7/TPsqr7y5jRosT5DjPN/4mny5iiFQTIAlNehcXh48gUD7Om9wrWrFkzp7t0oVDoiNFJukv7qsp066MoXoU8Too6F/BcSli1Wi3+rp9vSEnmDPBMyyIncaYkMz4+zhNPPMHAwAAbN27scLGUUjKceYiD4z+gyxyKtwsRzHwaD8tchevvCXf0xsfY/v4gwlkcwRReGJHfJocoBQyAnzCiF6XNTnsQJQws3Fh9U5BOO4jSTLgNJxwBbj90EVW7gG6079P0LPJWQDKWULEXVyYknim7wNGJ/qhn9GZnePdLfoIWMo7Dl2FTu2WTPrOFT/DiB44AkY5NkxGKip+hy3DoMVoMO10sy1TISY+Ddp5PD1/LH6z5AZbwacY5x6w480AlIS3UdQZbmW0nACMcKzX7GR+yfQwxxPf3lLli8CleuepJvrnj5lnHBeNxjOH6x7H9HzHjD6GwcbRJNiQZrYP+Be7Wk0zqm2jp/Uh/JnZumHB2xNVBI5KZbn0UT1cTz1ng6mH2z9zEvubL6ZaC5bl/D6uOVvG0wbQKpMlpf4wlRglNDdvbDplfCLpsGLPcpSPSGR6+m5nKN2m2bqRY6ibX/W2U2IwlXETue2Ryvw9cOecYPFc4m4b/00Wj0UglmRcbzlbm5CTJnA6UUuzevZsDBw6wYcMGli1bNstFcov374yaQYGumjdJVgiE0KiE/UWIfiAgmaY/HhRK1hrXb5CTfrjiDzKZmUK3U6Wg8XWQaTgrPGxlkpUek36Rcb9EyXDDLMQZyoZDzvCo+1lKpk3BcJlwCwxkGvRmmtQ9iycmV/DIcKAmazhZbN8ga/hU3RzLCzNclBtmnzPAjF+gTzYoWzaeEmwdWR7WooGLBg/yy5c/jA7LTBpofCIqVKyzJjsCPqNgSRNNS0lyUpERKibGATMoEW1rk3+bvJJpv8y2+hIuKR4hMgD5CY1SX6aK1sGeus7gCQMj9DgTJyEZgGOtazlW8/nlG75D3rK5Zuk+dk3fgRYtbOWg9DiuaqIRNJTAVT1o2QIER1pZ1hSi5wlNnaEkHIS4gH2hKq6hpinLHIoWPg6T7k4GMxejtabY8zAzzr8gyQJ2LC9qBKaY4bzCdzjSWsJItYgWeb5nr+V8q0U+Oxa9RRhyFZ566qQeZpZlMTg4SE/XbbTsP6WuJGUewtUSJXTgBCJAiDq9i/+ElrOKXGbTCa/3bGMhDf8nQ6QuS20yLyJEfu2+78fGuTMpLAanRzKtVouHH36YkZERXvrSl7J8+fKO+/va44ejn+Up97a4UqTCi4Mu7TCXV3Bs+xVo+ofQdIXxKvV4e1JNFdlghICan41/N1WWmsqwzxlAJVRZSTtFdDwEQZkR9tUH+H+PvpJIi6Z9QcULAgnX547x8tLTLLKqXJE/yCprDFBIoZn2Smw9sBK04Fcvup+3v+QOPNOI7STR/K+QrDCmyIRSU1QMzSCwnQgBdmjvyUkvVgNlpc+kX+Cfx6+mobOA5sHK2iC+Jry2lG2WKZgONWXR0JnAlSEcNt+XSCtqy9zvyd0TK3nfS75HPownylsOTf9RPH8rQu0EHLKyRU426TJaTKjumFx7s3VGW+1VbhSnc3f1PJqqfb+ssSj+HanMWu4BBld/HtDoRNJPrTudMZbmjtJdrPHY9DoaKsu2Zj9JuEQBvttPmpS11Xgvjv1HODpLU7u4CBDBsxaAUgPhuLaYrL2drds/z/79+6lUKgsWTzZfPFeSTLPZRCmVqsteDJhv7MvpICKo+X5AY2NjPPHEEwwNDXHVVVfNikB2VIuvHvkrmn4Qhe2LdtqWrNFLU01Q9yfIhc1uqOkwA0tgU5E4GOFs72mBiQ4kAh3Fp7QnEEt6sbIpJ22eshejhUQkJpkOgkqsaZI2lR/uvYyanYdMaHtRghk3z8rsBNf37I0lDgFcmB9lxs/RUgYzlPhPFz5I3nRY2TvOsBoAAS3PIm95ASEKRVE4dBltFV00eQYu1IHKrCjbqr2idEIJRXB/bQ2jXk/c1u31xRxo9dGfqWFrCxmuwCNX7qqfQ4TEI63gX9tpE+2JHHwXmfu4dChI1RNJQ0GKGjNQV+oaNZ2hIF0OOP34KKa8PH1WsGAYc3oZygXegAYaW7+MzbUW6/J58uErYtC2c4w5W9H69Qw7v0MGHajXaGEkxsUQmik3T294Dyk1R51uyDbxRKdjQkV5dANKV/DUESxjWcd+29vBTOP3KBJK1qqJj8DQGmjEz8M0VqJU8O5KwyHT/zDVkSs4ePAgWusOe86pskufbTxXkky9Hiz4UnXZCxzHl0U+my/bfNyYlVLs2rWLgwcPctFFF7Fs2bJZx9S8Gb48/DGOtPayKr8eAFc04/WpIYIVektVKJllPF2l5h0lb1jkRZWsVLF3GARSS2SP8ZSBIXwyUuHpoLZ9Vvo4OkgZud1ZTEtnMYTGFApfgSEhk6iMmaySGRn7H5tYwZajYZxINANrgdQ+S60ZDKFxtSAjNFkZ5D7rNlpIsvRmR1mzbIxpL88TzRXxZDjtF8hbgZt2zbG4oDiCEUbCW0KHv4M+RL01wwJjRREY+0fdIo81V7C3PtjhtKCR3Dezll8ceCLcIhizyyzKBa7iTWVhSIWvBGZoS3L9TEfQqTyOarLC5uqBu2P1Y5ABQYRuyO2Em2XhMOIOhVIVTHvFmGQKZjsjtRDwYH0VMMK402SFGd27TXbjzjaO1N5PVY/TTRaDFoHbeuSGHdipRpxyPK62Z3LMK9NFEyV0XA4CYMIdpTu8vO1vj0nGV1Um6r9PVv2IYjgGk14JR7TCNgWLF18HkqXtP4FUAxjGOEIMMiIfZdNF/x9ZeQm1Wo3JyclZ2aXPxF16voiydzwXkky9XkdKSS43j7Tc5yBSkjkFopfLcZxnbNw/FU5FMs1mk8cffxzP87j22mvnXNGM2If4wuGP0/KClC8ifLSObJDTgS1GJySJjFyE51fpElW6ZD12FZZCYytJVqogxUs06XR0OWn0F+x2B5lRRQx8DIJJ0sEij0tW+rSUSU56FAyXhh8kt+zLNJh08nz+0Ze3LxvOvcvLE1zTvT8hURlk4lxjQR/Khk3Vz6J82NxcHQY7hituoz2JLzOn4ySdDhIrjmsJJnETjRfbmdo40Oplh70Y1zPguHyRD1fWsr2+hN9Yfhc5w2PGK7KIgGSONbpZ1jXNjF2IyzN7vtX+0uZYm7xx6GGk9DqkvuiXJRSuLmGJGp6W7HNL5EKyTkqDvdkqo80SQ/kavl7KhNMFjDDjN1krcri6hZvIu5bVk8y4u1HkcIVLNvFUT/R2750a6ogvMkURJ0wW6mgbQ67EVwex/W2UeBXTzc9h25/AFA5NbeH6kj7TYcTL0m2F+enCTA/tu/t4/hCGMY4jzgN2MOHcybL8GyiXy5TL5Y7s0lNTU4yMjLBz504ymUxHSYNs9tRJRn1VRakqlrn0pMc9G9U6T4TIHnMuunXPB6lN5iSIjPs7duxg69atC5a87mQkMzo6yn333UepVDohweyuPcnfH/gQ0+44JTPwEFNE9gdFwQi2ebpd90SKAkuMKQbNGlLoDrdiR0WxKyrW7xtoXBUlZSE2eE/6RQ670T3bY+MmDNxJW8yk07bFfGP3VUzVyx0SzPreo3zwZd/okIAiYzwEXmpOeO2StHmoshZbZ/Bo22IywsdXkMOhy2rHZiRjbqK2CkHo6gx56VH1LQ653dw9GUiCnh/aoI6TPmp+np31wMaRJIet4ysAqDrtVaeXyDRw/Bf3svJ2BrIBQXnIuJ+Rm3jwu4Wn4ZC7HF+3+5lNZLAGONroAeDRmcvjmCcQ5GVgi2uoQJ2mtWJdZoJq2G9bJ1fnmbCZwU0WZSrx/fbVBkm+pZFkHEETjEfTuY9jMzfQsD9B5ONnCZeCYXPMK6KFnTgnaKcUEkKZW5hP43lLGXYOAjBu38nxiLJLr1mzho0bN/Lyl7+cDRs2kM1mOXToEPfeey8PPPAATz/9NKOjo3H2jSSa7o+Zrt1ArfGrKNUOWtZaM978B5Ruj2/0fT4XkkytVqNUKqUk80JDJL14nheTwEI95LlIRinFjh07ePzxx9mwYQOXXHLJrBdca82dE9/hOyOfx1bByjBrBJO4o9ofci6s+Nj0g0kmT5NBcXuYwLJNItEEZyX07a5qG/qnvCjdjKbi5ZnwijxlL48n7GRqmeTE6yYmsSig8mizmwcOtFPZAFw6dJD3bfo+llQYAloqSpOiY8O8EO1rbGst4ZjfHW4Xsc1HCKipDH0hgcYBk8kxT5BqUn015Rd4tLUidnDw/eCappgdHLkvNH4XzWCsG57FY0dWAVB328Tqq8RzM9rP+dLCIV7avT9BfiKulAntLAwSj3GvzFEvG3v7AYFk6LUn+nzGZaJV5suHSh0OHaYIDMYVbwKtBWutSXwt4wWEi5HwkgtIxgjf9ZLpcNQOYmwOuj0d3nRCdGZ5dnSTPB5abQFGkcLFEV10QjLtt9scXU7gY8kLw+sq6u5KXN0I2/0EjprkZDAMg76+PtatW8emTZu44YYbWLduXZxd+u677+ahhx5i165djI+PM9P4GlP138GggWCcWv1mVBgA6zhf4XDzC1TcB+Lrz1eSUWqGauv/xmrOs4Hnc7Q/pOqyWZgrNYxhGAvq2XI8yTSbTbZs2YJSiuuuu27OF6zlN/jx2Nd4YPrHZBMp3aMiXY2QUADMcDKo+xOsMKdZas1ghnEtcRR86Norw8JgHVmRdWeeMYBRu5tD9AICpSUGChA42iAr/FjVFbQpoaYJV99ff3JTQn0nuH7lDv7L5fd0TP62NsmF6q2kJFGQDsecMg/U1pFJODZEKW4AFpvTbXUbAiuswhnZipJ2mbwMCqF5SJ5ylqCQ8cD4WiJQc5LMwZBk+jI1Wr7Bk1PLGa0Hk6qtrJi8gusplG8ipMDE5ZahhxmyqtjCYqRVZlV+KnhGXoZsaAOJ1XzaYGtzOQUzVJMhsUKZour3UDCDyXioUOW24StQyA6pTceuHR5DpmSJOYOtLWoqQ1RswcEMCCK0sRjCp+ZlKBge016BpVQ4KruQyZeALKBYbszQJ5sYHEKKUMWsLaRwkbpCSwfu4QAzqtCR501A7DgR1aLROsMh5ZKJ7UOaCeduluR+adYzOBEid+nBwcFgDB0nTvS57+D3GVr9EUg8U6WP0Gi8gVzuf1B1f4Cra0zYP6Qn8zKgbfQ/2UKz6fyAmeaHyZiXIcTZW7/X63UKhcLzVpJJSSaBE8W+nK3ULydCkmRGRkbYunUrixcv5sILL5xTPB9u7ePLw5+ibPYAgUtylgwuDiJcCde86cCwLQBMBIrzrL0MhZUpk/EusdeVSNpaJIZQWFLFXmaD2RpTTp5Rt4vt7mKKphuQz3FSSxYfUyhayiAnfQqGE2cF6DabPDG9jF1HlmPkAxXGq1Y/wS9f+GhQihni9iQJLpO4nqcN7q6cRxhUEd/bUwZIj15Zo0u2JTlXSSwjXKUiycdZx4J+BUZ/g621xTSjiS70EFM6HFGdtEQFqKg8E3aB/myDkWYXW0ZWY3sZ6k4GF4NsaEeKJCztC67r2s1Lu/ZSkC1G/TJ5/A6pAxG2N7SJ+TrH5sYSpvwSBXM6fDYmUT0c322xpDiNhc+MyvFUbVk4Fu1LtkKVX5dssNI8QEXl6TWa4AcZHCAgsrzwELixA8KUW6RgzJCRLmPNfmzDIqMiTz/FKuNp8uaxINt16JEGOvhNFkn7/fA1tLSFL+p0mRZKEdusfLJIbFx/J2Ay07qYmhxjkVyBpwOPuwn7ztMimeORyWRYtGgR/YMGwzN/jRQ+WoOvBIaMsixsYXL6UwyLfQBMO3fg6xaGyJ00WFrrGrXmJ7D9x1B6hKz5imfczrkQqcuer0jVZSGi2JcozXZy1fJsSDKe57F9+3aefPJJLrroIi6++OJZBKO04u6J7/LNo7cy6Y7iqrZHUdHqCY6Jar7gk5fBqtrUk1yT30uv2Y6PidRZUpCwu7RtH53xHO3fOxqL2eMPkTUVcznkJtVkTT8T36MS1mhRCG471K45csvl9/CLFz4Wx5QI2uo1Q0AjEWcTqcnumLqAWhht7nXE+VgURZPF5kyHJJXsSvL4ZB+rKseB+kD8d+Q8EMWiON5c6zHBnnqQSaHq53hseDUAU80SSd7Imw1e2bWdtyy5k1f2PE3JsDnq9ZILsxYMZWs0wxxuWcNnf60dgzLm9bHfGcJPSCdSRG3RXNW9j6zwkALK0uamwc0ANOy2DaLqOWzK7eMVhV1khYOrDEa8cpDvLR7bpJpOxOMJsDQ7w77q4vCOPhtzB3lL72O4/jguGi3a8UbxqOt6rIq1hGJcFRj3C4AgKz2mVLuPIsw0oaljGZdzUAdphaRcEh8z7T6Cp9rS+TOB1ppD1TfjUg/vC43jpsCG18ALHUgUTfYc/Qa1Wi1Wm3deUOG5d1Ovv466+9U43idnvZyziedz3jJIJZlZsS9zicSGYSyoJBMlt7Qsi2uvvXZO9dikM8rXjvw9+1tPsyof2DJaqhHvz0UVLRPEk5Nl+sV+VpnbyMpg5ZaM6YjvH/4rBNQ9i5LpkhV+QtoJiGtnfYhHGqtZXw482GzfJGf6IERclC2p7kpmFoiCMjcfW81krQvQ/Nrld3Ll4gMIEeUXm208sZVFMayCmRMeh51unmitpM+sgQhUUdGquECLFdZE/PyivuoTqBkidZatDUZVEVuZ5ENDdUwy4anunCQDD02uptooUnEtGqGxf7JZROY0/UaVldYEmfweJCosOw2jbhktJBNukYFMHVMqDjd6WF8c6xgrX0vunFka2cPxtIEhPKK14XmZkQ63cAG8cmgbl3YfYG99FXXDZ9CqsSYzySKrwoRX4OuTG1lZCFRzRkVxwVBYawYDpU2k8IA8UI/H0ZKK3c1Bri3v4Zd6d9BvNvGR7HK7iMIodawaDLzFpNB4lMmEXncF4TKpM2TD96OuSvQTFb9rj21V9ePKUQCavh1bqDQuk+59DGVfPedzmA+OVH8DWx3GIEvkiejpzndjOrMY9P7474q6jaOPLg3eUa2Dui49RynIL6L1QZreboQ8H/Bx/V2Y8gIMuYiziedztD+8yEnm+NiXZ7uwGMCxY8eoVqv09vZy1VVXzSm9PDT9E348+q/o8HFFpbfqiSzKlgz07k0VRepr1mW2Mmge7qjU6KlgIjETQYTJ9ZlOHFt3c3RZQVGyzTPLuadxfkccTdXNkTPrtLNdtb2iTKE7jetC4yiDHz1+OVZXi//vp77JUFfbo0dpgQrbklSZZQ0vbqdC8IOJi4PjExVoPCUZMitcVTiYINBO5Va7rxpXCSypw7orgkNeF5q244DrGRhGJ+G5am6vouFmL0/sWI+M8qtJmyWFKVZ1TSDRcSlqgJYymfFyNMiEGRNyDISr6iSxLi9P0vRMjnlLmHYLdBuB6s/VMrSu+PSKKj1Go+NEQTBovZkGN+SexNEGnpJ0h44JjzdXdLggN93OKo8tihSYiaW3ggwWLDNuhpsXb2Ztfjo+9ohboCibOFqSEe1vI/I8NASgG8F7IeCYV6KhsmRlsDAyRbumjadHMckiZC9bmjr2GK94B+gzcujw2An7zpOSTLTQmQszzS/Q8O8jUPS1YdCO6QLJ1uYkG3JFVPRc8lu59vrLODpc4cjhHQxYv0uP3ont+Uw5g0iriasEprwQx99KLnPLCdv3TJGSzPMQybLI88mcvBCSTOQ9duTIEcrlMosWLZpFMCOtA9w7+R0eqwReLr1WH7bbjFVitmphiSyutpHh5FHzZjC0x8vKu+gxgmzDsiMCvw1fB5KHIdp5yPJGUs2Spctq8VR1Md+ZuILuvA1S4/gGGcPv8BpLTnauNjGFS1Z68QdcNGweOrIWE8V/u/I/GCoGH7HjW2TNQN2jE1dyVJC7zBCalrYoCJe7ps+nFQYierpt/O43qlxd2DdLQku2zdGSnAgqXja0RXdo4J70C+0KnOH823KtdndCsvF84wQBJMHGtV3H+C8XPsC6nlGkVLHRvu63JTFT+Bzzu+NJP1kldHFuJkgGarpYUnH3yHlsdZdiSE13WFXUUQYY0CUrrM+OxUEtgf2sLQtGaquM8MkYPttri8hLl52tRSAiGhf4xxmnG8qnYEBG1ql5GQYyNQytWGa1MESj49iWhqzUTLpFFmeqsSQqRGADKho+pvCxtURog0ZY0ydCwagksgn4GMb5HPSWMOkdY0hkEIaDwsMy1uOoIAXOlPMAnu9iGscFLgG+GqNSu4Vy4W8wzYs69jneHsZaf4Ekj08LjdcR+NqkQIkGSpxPXTsYsg8VL9YcqvbfMVCucuHlP0YKjas9muoSpPUIWhs0vKdx7GVkC9CsXRo8Q2t2G58pUnXZ8wzPJLHl2ZZkGo0GW7ZsAeC6667j6aef7ri+7Td4cPp73Dn+DcpmX7w9F3qRJW0xJaOLKW8MP5xwc2Kan+raSVZ6sbeYFG3PK1N4CUN/u00qVMWYCUlkKFvlnom13HroOoaKtXCyE1TcLANGg1wiTiMopdwO0IRAemmqLCVp42mDPUf7+cCrv4Eh21KUq9oG8qTKTCXbhmTULXFfZT0DmUD6cXwTy3BYlx3h6uL+UGoSYVuiFW37eq4yYg+nyLvJU5JJ1fbMM8yQvD0rDsCMUsS4vgGWjvVnBj6r8+MsLs7wsgv20pOtozSYMuh/tJovGi4NZZETLvvsQbQwYkmqy2jR8E0KRjDuBxp9XNA1gtKCe6bW42VNus325G5rkww2G3MHwmcqZjkjBJmzoeFnKIbZodcXx7hz6vzYmy96/vo44azu5BnIB3aPbbXFvLR7P6VQ4gOYUhbdwg3aIYN3oZkokR09U0MmW2Qx7BVACCz8uEw3wBGnJ84m4LCIxxsjgEB7gwhjOHiXSMbiLKHm+fQcRzJKNZip3YzFFM3Gr1Ms3YEMJXvPP8pw7TfQdMbJKAoYsRTZCzSYVEuACUTodj0oXVaYCu1/Gc/oQmmNRuGJ9TgisH1J4wIM9pCVR9CqyP69JZ6q302pVIozEfT09MxK/3Q6qNVqcSbr5yNeVCQTSS/zcUdM4mxKMseOHWPr1q0sW7aMCy64ACllTGJaK7ZW7uLOiS/QYy1Ho6j700QrTyvMsthhizEK4IGrbFZY41xZOEgmcs3sIBEBIjT0hyk8jA7Psnb/vDCdzJ1j5/Mvw5vQwuiILq97WQZoUAozIZtSo5AYzL6voy3AZtrJ8cYrHsQMJQPXk2QthWX4cRs8ZWCGNobkk5EovjF2OUAc8+Jpg0tyB7m0OBwcoWVMNNFjTU51HYXWwmDOeybWMhTWrlEaMlZwbycR5R/ZZjwlMPH4zeV3sjhXwQs9wJQO7iMFNL0MpgxyvzlaInUgORWkyyGnhzphOWudwcJGCJhwyxSMwEYSEdo9I+sZdcr0ZZs0vXZQZ1a4XF/YFwbOtjuUfI6+lpho3OMM2rtbi+I++UpiGhppdi6cspkWU60SD1aW8vODO8nLwOuuHHrmlaRLxbeY9AtYRqDCMsL3Roj2s4lirqQIVLtVZWHJ4Jhxr8yyzHT4UNpP6In6CiDMt+eX4tZXvVHy4YJo99RFnF86Pp7MZ7T2Zgp6KhySSZqNN1Es/RuOexdTjf9OTVnkBCHRhGWwsWK1nNYTaHLstSOHboN1RoN+Q2IIGV63Emb0zlJVoxA72BQw5QU4+gnymddwzTXXdbhL79q1i1arRblcjjMRdHV1nVZQZ7PZTNVl5zqeSVnkJM6GC7Pv++zYsYOjR49y6aWXsmhR2zhoGAYTai+PHvk7ap5D3Z+hywz2+9qjKHuoq2qHSixCZItZIh9hfX5fGKzXTmwZry47YgKCPGTHHxupENDw1UNX8q97XkKhK0j97iVEi2RgZNXO0ptrxVUiheicZJQGoT3WFCY6Yl1i7zYZSBSWEWRWVgTTgBSBeigjfUbcLqb9TnXBq3qf4sL8Udywlv1cOcFAoHUQRCsSq+u8dKl6GT6//aX8j5f+CAiCJ42YUAwEGqUE0mwbtN+7/A6WZGdACKT0cbXAFNDyDAzTp2gF2QgyYcmASFU25pU45PVRCAnU7fDkav9emp9m2snxg7GL2l5toe2pLOu8rucxLKFoKCN8pjqwTSUmeB3yT1ClNBjHKTfPMa/MIiuQUgKS8bGyx7/TiqbK8gtDT5MN3xdTqLioWzR2067BYNjsHqOZcCYJ5Kro2eWEzwF3gJYGK1T5Jfs7lKniKRNHvIS7p0zWh3GbLu1MPk01Tpe1FE8f5au7ennNsk6SGa29AaW2YoscOcJ8aOoJGs2/xHU+HXjR4ZIlSK0U5VvzcBJXcfDlS9jnTLLcmOECuQ1TQFMrSgmVotYwKS5G6vvj96ulDiBE4DaeC12XI3fp6BtvNpsx6Rw5cgTP8+ju7o4lnXK5fNIgz1qtlpLMuYyzUffFMAy01ic1LJ4M9XqdLVu2IKXkuuuuo1BoqwDq3hj7sl9nv/EI2NBvBfpkJyGtFM0ydaeKr6NJyiEr8ti6iURzQ2k7/UY9sVpv68d9FdldErEx4vjJPjh2wi7Tn6nylf1X8+2DVxCHzQjw/bknxoaXpZegrokXxsIIAS2VoWC0WJ0dQwEKE01bpZIxPaLVuB2qvjpcYIGmMpFCs6OxGFMobILJ/lf7HmJZboqARIJJOLDphHUqdafkEo1JwzMpmB6mVPzLvpdwcGaIlmeSM70gDYwV9S/IceYmSiX/2or7WJKrQMJDL+KtrOHH23wl0aItwUx5OXbai1BCorUX9rHduLLZiu1WptR8b3gDFb+AhRe3uyxsbu5+Mg40jQqttd0tgjYZCRWoIQJ7yYBV56n6ks4MDL5B1vIxTI3tZshaDjlc+o0G2VIg2VU9i27TDWKIfItuI4h5GfGKHWObkT5jbolFmVqQ7DLcrhBUVYZJJToCQ8tGK5Z+LamoqtV8eWQFh+1WTDItWetQkkmxDPx+9lVER8XQY7X/D6UeBwIX7FyiXZ7zd1SUgR3Zn8hgYsfBpmg3tl8BVJXJy/MHWWtFbtJBfJStNdnwoDE/wzh9LAn5QMi1aP8IvtoBCLIncF3O5/Pk83mWLl2K1ppGoxGTTpRduqenJ5Z0js9T9ny3ybyg42ROFvtyOohWGc9Emjly5Aj33Xcf/f39XHPNNTHB+Mpme+VrfHX4HYya9yNCO4Elg8+04bellZwMVCaObnvklMwuLFwusr7FUqtCRvhxjEtHnq3khxfewxAqTg9iJHxtJp0if/LYL/DtPVcRTffRlZK5yLRoSzZJUvASHlhaK5YYU2Sll/ADa5cqTqag6bANJV5J1zd5eHoV22tL8H1JVjj810X3cGFhND7XEp35u9po3yfCcL037stPDgZkfqzeDQRkGbchnBS9MKXMhtxh1hVH48bKdnfi9kcTad704pgTF4M9ziKUCEo1R+6ykiDzAASZrI/Z3XG7Hhpf29HuPrPGr/Q+QkG6cc42K/bmEnG55lbo9pyU5qKcbLubi45z+EgsEpwcg6LGIqMeqNnC55qR7XekaLhUlYnSUFeSgnRpJvKxTYe1fwIbW2izEop9Tn/YynZqH0sqJsNUQAAHWmvY3VS0lCYXlnl2zRpCtyfVlnZ5cuy8sO3BhcYan2Da/UEiZVC9o3YOQjKh2nFPdpzmpZ3VOkrhYwL94jHWWEFl0MhmJwW0EqR20MuzvZl4x0U/hnEBmhaWsQFDDnIqCCEoFossX76cSy+9lBtuuIGNGzfS29vL5OQkjz76KPfccw9bt27lvvvuY+vWrWeNZO666y5uvvlmli4NXLK/+c1vnvT4r3/96/zMz/wMg4ODdHV1ce211/LDH/7wtO/7giSZSHpxHOcZqceOR6Q/PR3jv+/7bN26le3bt3P55Zdz4YUXIqUMfO0bd/KjY2/mSOPHeNoGocnr6MML7tFUVcww6M6Uwb/NRKqYXmlzc/cW8iLYFqi+oiDGILMwtPX10PmwVeJDanoZDjd7+PTWG9k6vjK8XqR/Cf7xEiQjhKDiBBNLJuGiGwU3FkWLdbkxhAzSzMxdqEu0g/VCuwxAzc7FE+LOycX8cOoSRp0urJbid5f9mF4zMNYWZRjPkpg+kwXVkveJUHUDsr53fD0zYaLOoyHJtBKBie1iYwZ52eKVPU939CGKoDdFe1JOeraZQuEowdbmMloJw7hHu30zifxdUYG2R8ZXUQ1/a6DbrPPflt7ZJpXwHhIShcE6Gc9ExfsGrBoTTp7huB5OsL1pB20akBUuLQ9TDKUUIQKHAQhIpppIbJoRPqNeLo7Sn/E685ZF2NsMJvZRrwsn9ASUAuzEAsTV4aJJGdw7dkHiHm0nF0u0syJXvSP8287geXlaMd38BhP2rYCPT7uNzYTEdNTLU0k4dbgYaC3j0RqSgnWmwVLDpFdCRjTjb8YUKibvnNRUw2c87PSzpV6B0LZm+0cgzGydNZ9ZAKYQgnK5zMqVK7n88su54YYbuOyyyygWi3zzm9/k5S9/OZs3b+Zzn/sc//zP/8zw8PAzug8EEtHll1/Opz71qXkdf9ddd/EzP/MzfO973+PRRx/lla98JTfffDOPPfbYad33BacuU0rhed4Zl0VO4nQlmVqtxpYtWzBNk+uuu458Po/WminnQfZVPkVLZ2n4x9AJKSKj8zSYwtPtqPyy2cuUOxZP9FVvBgEsMia5Kv9A7HocQJCcUJNqMFcFaqxkmpZk1uV7x9fw/558eWikD68W6vl1mCqkI/UJUPOy9NGglLET6ilNvzFDv6zTIIvQGlebtL28BBoZSzNSBPnOhBCMVsss6qpSytqMVct055rcVrkAXwhe0rOPNy16mIz049W1hNhNSimNFMfnSQ7ga4nGxxCQtQJi+tbuK+P9R2s9QCDlZSPHhSjdiRL8p77HAjuVSKZ70bHKZ099iAvLIxhCM+Nk6c7YSDTbWkup6gLodrxQsmhbXWXoC4t1RV56tx+9MH7WZaPJ7yy/LbCthMGmxnHlr3VshxJkQzfp4HkbZITClIrHaivQwiB8PCDAcwTX5vZRlA1MGWyMbGF5w4lVfznZGaM0qXPkQltNsmxEn9XocDw42OzlkO4hjwUirEWDFeehy8kmWsM9o+cFi5WQf1RCetG0f0u1kinHBBSu/xBHvI/EpO7G0WMBwbZUlpy02esuwtM2+biZAhcTC4elUtBnCFyt8GhLwlE8mRTQVCKuf+NqzZhv4agBXDSuWEeGGXxVwVcjQZ+sV3A2IKWku7ub7u5uPvaxj/GHf/iHbNy4kcWLF/O3f/u3vP3tb+f1r389X/ziF0/72jfddBM33XTTvI//y7/8y46/P/zhD/Otb32L73znO1x55ZVznzQHXjAkk4x9iWwnZyuh3OnkLxseHmbbtm2sXLmSteuXUfceYaxyF1XnISbcUZRuUbSuBqDpj2KIHnztYIQfbTOhJssbRabcMbywZodGcXFumotzO2P9tyE0TWWSkQpLtCeFJCVEhCIEgWFaqCAoUQtuG76Yf9pxPb5nIaRqq4AI57tw0lPa6MgW0ArVJZahqDg5+rJVzsuNxUZ4R5uQOF6g0BiBy3I4qR6cHGBVfxD1Pd0qsSgMzpxqlHhkfA11keMNgw/xst7dscQkCVQmQgiy0sfWZjzRtiNAgjQ2XaaNFJpj9W6WlWZYlK/w5OQS9k4uxsgGk/LRWiDJ6ISBN/Iou7FvG31G2zY26pRYlqtgSsX+Ri+rC1MszlXiu1acAt0Zm932EJOqHPJ+2/lAJ4g6+XsgW+fx0eUcafRiSJ+CbPH7F/wgdPUVsVNDuGyA0FEjsmpp6AiuTaoID7barq+rrDEuz4+wtH8qeNZ0VvUkvE7dtyiH8TozXpZe02bULwSSckgyRaPtWVg2baa8An1Wg/5MnW3NJWQzPh5m20aTkDIy0uFQq4fv7L2c8/uJSabh5eIX19Z+3K6RygpMIVicH8fV/4DGRWiJEAovsVATAqoqqGU07lsUjktqur85yCvLIwxIgynVxCMsmIaBgY8Vj2GnvasoPR5tdYMuAQ0m/MUsNotsbb2CjKiwPns3lnE5C4FSqYTWmt/+7d/m2muvZWZmhpGRkQW516mglKJardLX13fqgxN4QZDMQpRFPh6nyl8W5R4bHR3l0svPo2Z9hi2j3ydrLMNVewHotq5kytmO0lPxeT3mIBPucByH3PCnkGRRKDJhskY7dAK4LHeADbljwUSuoym1nV8rmUnZ6Ijob6/xR50yy3MzzHh5vrJrEz/ZfxlGJoxTUaJtuQ0RSTIQqMwyYar6ZA6womiyPDNFXrpUVJB+Urdj94PjfRPD0EgJdceimHFjl2EAIxGYqIRgi7uED6z6LuuLQYr3umdSNAPDec3NUTJbyHCSDOreyHBcAg85S7Rdoyt2gWWlGfKWy7/tvjq8SzBmkSQjEyn4paG4KHuY9fmxjtgdO5lHLfzdl2mwt9rH6tIUK0pTPDS5mimrjCW8sBhXYiwTvzPH1YK5d2QdAFnp8GcXfQszsd9DYkbZqMMFQzt/NaiQdL3QdyqCrQyebiziN5Y+xLrcGHUl6LZaQRCkbAJBPI8USVpqe6oF7fGpK5OqDrIUNJVJXnqYQjHmlVmSCRwFJtwifVaDLbUV+IYkSxMPP36dAjtUOxnlE1MrmG6VaNSbEDwCjtVdhsIy9lU1QVfo9vzw4S7Kls2HNn0rjnfR+KGFr9PRIyts9jpBPrko112EG0oTDBomSiucdkUhopQ4gVpPkhearAwkGEsEgbyHvCJKZ4EG++08vs7zQK2fR6c93rvy3SwRC1dnJpnqP5Jyngv8xV/8BbVajde//vWndd7z3iajlGJsbIw9e/YAZ0c9NhdOJslUq1UeeOABGo0G119/PdXMP9Lyj6Bxafn7scJEf1a4Wm55B4myJRdk8PKoMHWGRsXZlWXYj7o/zStK27k4dzT+IEzahtms9No6+g4jelv8nwhtKH1Wg4cnV/I/7n4D26eWE96U+GR93MSY+NNPGv+lQGnFMnOMdaVxQOBqiUaGKjJAiNjAnXQcGA/tIAOlKnbowTVQqraLY9X7+LPzv83SXDttjo8R15fpsVrsbQ5iCs3RVg8Tbtu9c18jsAnkDY8xuxT2KrjwHYcu4PHxVVEPAKjaeap2FssMnq1SgnX5o1yYPxqofxCxPWFJbppmaI8ZzLZT4tihgf2RyZU80QzG1NNG/EySq/honZKTHvUwAWXLN9k5tRhTeHz08m+QN13shOrSThY9I/DWEgTegoF0GuzXcaBocN899UX86erbGcxMkDVa8UTcbTbjsYwEOEHbaF803Ng+YQmfYbdE9GLVVNsG0kqQro/gqN3Fg/U1HG1GNWTc+B0VAqa89nN65Gjg4FAudUG4LDnaTKTg0VUM3YtJiQcOav74JV+mKxuUiIaktCZwjpvGRvzAAO9hUMJjleFzuaVYEg5jxY9UfgFBG7TVsMmkM3a4bbdbxkPSCsd3axP+9oiBCN/zw87sUuhnC0qpc8K77Itf/CIf+tCH+MpXvsLQ0NBpnfu8JZlIenEch1qtxsjIyIKWRp1LktFac/jwYR544AGGhobYtGkTNX0Xo81voWh/MJYRTDyOFxChxqXHDIjHCHUCnmhPWgUzWM4p7SLxeWn+UZZbM2EgZdt47CYM/ZFtxkQnvMzaqHgFmr7Jv+7bxMce+XmqdiE+p6Psr+gkGZXw2Eka/3vNBhfmjtFl2ET2ICeOn0kY48NzWqptALdDI7sUmtFqMCEVsw5j1TKtusGb1j5Il2lTMDwONHsA6DJtDrbaYvrq3ASHGr0szlTpNRvY4X2iKHeAaTck1lyDfdMD3PrkKxKj0u7XgZkBLCt4tr2iwpXF4XhCNIWOvb9MoTnSCtrTazU50gye06riBNtmFvOktyJ2vkiOacvLhONCR+6wyOC/Y2YxSks+csU3WJytUtdWKJUSj2fy1Tva6gpUQ27gPNAIC6RFdjNT+JhK8dNdx7DC1EIA3UYLVwfecRNuMGlp3bnGiNp5rBU8lzG/SJNkjrN2v4qGEy8MykaLb09ejhZGXNwO2s4OQOyRNmX3c7QSjKPS8J6l9/C/V/6AGrWEJyK4Tg/Tk0N8+IZ/ZbAwE9gS49a225TMIN3QFi1tksXjZ/LDXJZRLDcVJekz6WuGXUGLZGVOAyEELdV2hIkWcpYIVLO7nWAsqmFRM0N009A6Jqb+zPGF2c4eGo0GWmvK5fKC3eNU+PKXv8w73vEOvvKVr/CqV73qtM9/XpJM5D0W2V9M01zQLMkwW5LxPI8nn3ySnTt3cuWVV3L++efj6kn2zPwxALZ/LD7W8QP3V19PUzbXAFAwo488zAZr1OOCY9nwX19N8bPlrfQnUosEObFCaSaRmDBy/Y1URhCQz0w4AU07eX73gdfz3b1Xxg89WgF36HGOz2auZ5PMFcUD/FTPtjj3U7sNEWm1VXlHw8mqJ9uk4Qb3y5jtcWwnafRZXxzjvO4JVELB12Xasevu+vw4x0Lp5DtHL+O9D/9n/nHP9eypDzERbh/I1treX6EKbqJZ4pOPvAZXWTEB6sTMum86WPkOySnW5Sdm2TWSSBrvZ0IJasIpcnv1fJCi47yIYJOSTHLSjUj58dFlfPQlX2VVYYJxr0g0kTuJoNfRRDBq2WoFasKwf9P1YtiTAFkEqyxoKANLtigZQbSIFDr2Covel8CoHyCp3jOl4lCri1G/0OFunpdO7OJbMuzYS+6pmeWMha7JDZ2J+5zMxB09j0eOrYtbe3nX41xTGmZdbpo/W/PvvDQ3Qj6MZSkVu9g0uJl1/aOIyAU5XKAo3fZI9BNjPu73sdwY41fKBxk07ZgwAMrSx9HgJJ9H5IUpom8KnHBhZQo47GVxwmc27QffqhWm9G+oQKU5YC2c+qrRCL7950qS+dKXvsTb3vY2vvSlL/HzP//zz+gazzuSUUrNin15NkgmKclUq1Xuv/9+Wq0W1113HQMDgYrmUO3zRBF9jhrFEIHR1fYPkZFB7fe8EaxIjFC3bPtj8T2iPGVSBLrlK7L/QclwMMMMxhAQixevWHU8AWeEP6fKbLjVw2d238BHn/hZRsI4kSiKMHLbTRLJ8T5a2m/vK8gGv9C3mfMLo/GEEUyqUTqOhArDj9Qx7fMnW8GH0leoxRNExvTI4jAg65SsQGWYMzx2ha6wvVaT/aHxOsgIIPnWkUv5xx03AII7Dl/Etw9eEY+PITQjYblgS/h8bPNN/MmDv8R4s7tzbHT73yONbpYaEyzNzFALXXh7zUaszlqUqcTjvDhbieNdylaTSafAF0evoRnWt0lmFjhWDe6Z/MiSXnqGUNQ9k1tWPspgtoYpNC3RVo1VnXZKmWZCEiyZDsN2N1kdJDopWsGknBUuXULQLxWTymAi1FVaQsX9ilSZ3YnaQhEhSAG1UOrqNps83RwMW98OqBQCKn67XdNekQmnwD/uvDbepoVkrDV74i0aDjU/w+27V4OGbqvKG5f/O1IEE7qnDdZkRnht+Wl+obiDDcaPEEaQ5dsJn4WU4TgI3fGmRu/TEqPJdfkRMgIsIagcZ0ZtapdJt91+EXqXJTNJR9YwX8MhL+iHrywaRA44QVsqbvC+LqQkU6/XMU2TbDZ76oNPgcjrNcqbuG/fPrZs2cLBgwcB+MAHPsCv/dqvxcd/8Ytf5Nd+7df4+Mc/zjXXXMOxY8c4duwYMzMzc13+hHjekEykHrNte1bsy0LXe4F2YbFDhw7xwAMPsHjxYjZt2kQuF7ywrprhaOOrZI2V8TkZc3n825RB0afI5dEL/22pCczQ1z8f2mcMPc4rSzvbOcjoXFl3TFpEAZY6liQMNHXP4u6J9Xx63yv4yeGLO1aUkfQR6fp1MogtOibyKgv3/fziJ3jL8odidVTyDDPO49TeOh3Wnu+y2gGkdjhR5C2XyUYRUGzoOUyXDFQ6I05bJbA8O8NUOBmsy48z6pTwteBHRy/iszte3tGCrRPLO1Lxt1SGMbvExx/+OZ48tqrj2Fm/tOKnl29lkVUNg++seIwmQ7WPJVWsJssbLsOhCq/HanLr8LU0ycZSnpWQ0qI6NlnLjVWYSZLJGw5Dss4l3cPUdJYJv4CLGU+Yx6bb6sGCYcfbbWXwgUdfy08OXcRYtYtF5Wl8XzBkanqkT85QwYo9mdY/jNeJ3qkuo8VMGICatPmMOUGfH66t6ojlSQbJJjM+CBT/sPsGmn6uw343FhJ94JjQ3r5tcil1J0vRbPHZa78cZxQH6DNtmipw4ChJlxllxN941nBBK0SiRICgHYfjIOkRglVWA5kIUi1KTS28RcU3yBot3DlmPSkEVS949lEG7UklmfYDqcXx2mNhh4vNSTeI2RrILJwkE6WUORt25kceeYQrr7wydj9+3/vex5VXXsn//t//G4CjR4/GhAPw2c9+Fs/z+M3f/E2WLFkS//fe9773tO77vPAuO1VqmGeDZIQQHDp0iGazycaNG2dlRR2ufxlfN44rkJXQG6tjaA2Of4CsXIbtHyUjF+OoOiXZz7Q6giktCjQ537o9lEyI82NlpRdnRzZROFpiCh0fl0wBs7/Zz78d3ci2yjKEjtRDEqJoiNhmEk207T9jdVK4b2lhmnesv5vFhcBmpDT4JL3b2lH8SgflzQzRlo7Klp1I55II3PSh32gEirFwzHwh4xQrWekx6pTosVphipQC//fpV/LI6BoMw8f3ifuhEeyYWsLa0jiGCIjxj+97LdOtUntQ4gfZ/pk3m/z2ph9zfvcIblgXpWg48RnJQNMkydf9DI4y+MyhlzPmlclZPirS6UtoOBaFjEsujMuZqwSBRrPamiSHy4wq4GDSVBYaQbWZp6vQpJhr2w4K0qWicnQbLZ6oLcMhy5eqG3lwehXvWnc3G/smgxouBDVybO1hJmyU0SPuNRsoHcQVzXgFuk2bnGynvu+1mmytLSKTcbFU28MtuYDIGe0SzYdqPTw6vjq+R3RUNDkHzhMyLnz39PhSLOnw2eu/wFC2gaMMfK0wogVjGAt0yCsyTZZe3ydrBHn2bM8K3d8D6UqTQWCTx2ex0X64hggi/PPCCO04QQnxyTDeqNtotWveENhdDCGY8AqUzRksAXUF076kFZKrnQhMrXkuRaPApO2RERZlM5kE5+zibOYtu/HGGxNBvLPxT//0Tx1/33HHHWflvue8JBOlhvF9/4SpYSKSOdkAngkqlQozMzO4rsv1118/i2A8VedwLQiOaoX2FwBPt8VK2x8mawaeTWUz8EbpNgPpJh+m8JdqgmsKBzrSrST7Gq2Co6A3iKL7o8yyBl8bu4JvzVzJuB+K8Mn59TijfofFN4qliRw7teKNa+/njzZ+hxWFaSKVWLKoWUwuiW318GO0EhUbp5zgI+zJNgBFv6xwYc8xohiQSP3UYzXZa7dTgazITbO9toivDV/J/3r0tTwyuua4fkQ2ILjj4AbG7DKOMvj89utDgunsf7LT67uO8L+u/xYX9IwEbtGhCihvuHGalAGz1laZZSuxh1xvpsGth6/jgD0Q212S+bkaTjAGpayNG6am8WPDssZVsMqcDJJLCsFht4f91YFYWphuBpNKb7kaqx0BpsM23j5xAWiNQPFfz3uQjX0TtJSgqgTTnsmoL5EC8qLt3ZUJ0+9YQjEZOjVI0U6xUg3VaZ6WHHR7AMFAtoEfS7ltLztTKCa8ErYy+PxT18ftS9qemtrADyWkyFnF9k0Ojw/wqRu/QF8msDVkpE8jId1lhGbUyzMdSl61RES/RgRBsX4g8bZ86BYeg1JhisBfM5JgDEScgiYrNGO+iQ4DQw2h42cshKAZedolFHBTSnbYz1p+25Nu0q3RFaq9F1JVBp3uy89XnLMkk0wNc6rgymQCy7PdhoMHD/Lggw+Sz+dZtmzZnLrRI41/xwvrktv+UczQFtP0DtDOJwumDFz/BEEqmFyYuj8nZsgKl9XG3eSlF5c+hmBSiCbhrPTj3znRdltuaZMdrcXcUb+QYbcPEB1SQ4xkcAWdtpiYZARc1n+Qv77uS7x8ya54FR5NksGHGKrHInJLxOxExuous+1uGsSXKFbkJ1hiTJOVfmxoBcGxOfT3ER6ZXMU/7rgh9qA6EcYb3eyrDvCFnddyeDq5CJj9Tvz8us289+rbGMzVY1VOsoBYUmU2FqrwstLncCuwaX135FKerC0L+x4RXXssW17bYD/TyofHRQsExWprkm7ZYI87xI7qElzMDnVUwwkmWENqRqqdYzPlFXiqvoSBbI2/v+grvKQ3cLXOG4qiDCTcZpw/TFMLST+o6RNsb4ZuyANWu/8+EkdJnrSXUFdRLjJN3W9L40m7UFOZ/ODQZUw12hNg5/skmHF6w7EJsHd6gI9d+6+sKk1RS0zaGRT1kEw9Ldjt9RK9pM2Em3TRdKj6OYZbBUCx0pqi32irf4UQMWEZQlBLeEM2NSQjkyYTJRSOOKFLfVjbpuJLWtroyIBh68j2maXqt8iG+QQXmmSiqpgLEZbxbOGcVJcdXxb5VK7JUW4xz/PIZDInPXa+cF2Xp556iqmpKTZu3MjRo0fnDMZs+WPsqv4jhs6ACA2wxgo8bwKNR85YR8vfCYDtDaM12N5ODFFG6Do9os5S80H6ZNu3xxAarUVMrlK0M0CrRNz3lN/FEa/MqNcVxlUILOFjYyQM821IqenQKiZ2GsLlV9Zt4RUrdpA3HUwZ5DxraSOh/goLoCkRq0FMVJBN18vSbTTpNzRdokHWDFLhW1LRX54hb3iho7OOvZU0OlxJtp/Z4myFYbuLZdkKNS/D9w5eHu5J6ANnEUfwAX5l50uYrHTD8RJb3EeP91zxQ1Z1TcYVQOthca+ybMVp+stmK75TsnyyryVfP3oFD0yvI2eGQYHh5JO8YzJQteVa8bkCxYWZozja5JjfTVXlOOZ0szY/TinXSqRmaa+gZ5w8K8LfZaPFg9NruLJ0mPdfdCdF02PaDaLzDSHwNMxoHa7Ag3Y3dYZu7CDlv5dnwGxgiii9i8cxu8zibJWidLi/uppMRmF4nYTbFbr8dmRyVgbf2L4RLdruHseP+qhdoi8XObYobujexWAuULsGC6bA4B+44weLuu32ADWVpRzWq0naEgGEtpDaY43phqpgGWeBMETw/ge5uAWZMBGsj8ClRd3PkDUj55K2q3skwRQNl2NunmZIR7Zu5z6Lji6bvUATKYLnupCeZRCoy57rGJkzxTlFMqdbFjnCM0lgeTLMzMzw+OOPk8/nue6668hms4yMjMx5/Z0zf4urZihZ62l624J+JKJ/peyOvnccdYyCuRbb30uXtZqKe4A+s4anBQNGi4YyqPkZitLGFMHqyUQFNUu0xNJBDrFDbi/DXhe2ztIKJYcgZb1PXrrYKtOxMo9x3OQbrTy7MnX+z/VfpT9bwxBBFlqfQJ/teiaG6YU2oeB5RGnlEwV/WW5OsyxTCaoyhuoHV0scDHKSUDKTYQVNQAgmnCIDmQYZ2Rn9Pu3lWZat8INjl9Dw2gQUEdQsG0fYrWm72PF3eBJo6M9N8+5N/8HqrokOQ3enqi9HRjbIS5eJME3+UKZKzctQMh121hbx4/GLw/MCwTCSBJITcFIqiSRAQ7tcnDlCVnrsthdRcbL0Z5txXjPTUNRaOcr5Vkf2gaSjgCUUBVx+f9V/kAtT35TNQCVWV5JaGFGvEhJ9UgXUClfmfWaD6LnVVRaoctDpZUoVGaROr9WuEWMk3pmscOOo/R/tuQyNAbrd1qS6DGDMzXIhgVpuvTlOIetS9zOUTQcpNBUvS58VEFhBeoz5WQ55ZRAyzteWMfyOEtZDxjTnd2kyQsSRaEIIHCXIi8CjzNNBjEtGQE1JplWgYk32pc+qU/MtSoZLT+hppzRssRexNnMMU6jY0w7AIVK9FYHmsxIjA21J5vmMc4ZkzqTuS2SridLKnEkbDh48yM6dO1m7di1r1649qQfbtPMUR5rfC9vQXm3Yfju3kOoojgTj7mUUZB95NAU9jhKSpgbbz9PQFm6YwqMgPAyhmPENbJ3BVgZjfhkPC4GghUnVy8RpXpq+Rc70KVk203YxkaZFEE2JUmg6BBktWF6a4E+v+xpF0wndgFWYaNDCkgorXPVKEdS5twyFpw0MFDnpUfUy9Bt11mRmcHTgVGChcEMpxw6JKaIjnXB0rnlZBjINBjL12KkBYFlumhG7xNf3bOx0rxbtjNIdz23WlqTUA9csfZpfu+R+Wr6JEIGLdEsZ5GRAyvGEmvB0CqSroEbPmFvm0Zk+vn7kCiwzcqQIn2/UvqSmKEESpqHICJsrS0dxtMXW1iAIQcvPAE2shKRUawYkk8u035lsJiobrCnj80sDu+KVv0FEBGArQRMDg7ZjSEYoitKJJaQo+qggXSbcPD1Wi4LhcMTuYtjviVVTGcNnyinQn22QMxP58ATUVZaqneOxw2vCdkkIs6jp40imJQx8rTk/M0o+zJqdlPKy0uswwG+3B4lSEDiY5EKJYtItUjSm6JGKkojSygoMIWInBj8h4arEs/fRuKEPZl66VPxsGEAMI16BkjFDj9mi5ls8VFvJCAVWaANTKOqhqttVkkjz1mwGbWqGc81CepbBC4NkzgmbjFIKx3HOqO7LmXqYua7Lli1b2Lt3L1dddRXr1q3raENUIjmCr1vsr7UzoTYTxNLyj8YxMk3vcMckePv4Gt771Pl840hv7IkWfLwZLKHxkDR0lmN+F/vcAcb9Lo75PUzpcrxajiaLomnHdV2iFW/JtEHrjkBNGcVuzJIABO+89HYKoerAFH6YByuR/sTwEi6owQ9L+vFqueGbrMlMh5NQuCqP1XvtAL9kfrV66CoaeW9lpM94wn3ZEJq7J9ZTdQuzSCb4EYsPx/Wn80+Jz7uv+DFvvuR+8qZLzkxk3NVtI3aUGaBstNqpa8xGfLnDzV6+dOglkAhKJFaThf2SbQI0E2WNVxbH2JA5xlGvh53uYqLsxRE5Zc127fkoMLWr2Iyv1Vuso7ViQLoUpR+3yRLgaImvYdzNUtUyNsyL8H2CYCKPfhdl21stcnTICI8d9hBCiESdmmABEKHDfRnJvz995Zxkf7wkI1CcnxkhK/04jilnuLFtyJSKVjiO036Wg27blpbMOzZktlhhaEpCxwuWCJFxPycUTth8M9yuNEz4nXalSsJLzEu0d0drgNuqQf44Vxu0lIkX3qnuJc8J2jtanQ7aOVFncnJywbxbz4WUMmeK51SSOdOyyEmcCcnMzMywZcsWisUi119//Zx2neT1tdZsm/4YNXdvvL/pH6VsLMKNUn8by6l7E3h6moJcgquOYsiVHGpZrMuP8lMDtzPhBSoZiCY9Fbhw0o4cDz7wQBKZckp0ZcKJULSD53oydrtqogjIwk/YsQypUMpo687Dj2swP8P5PW33XSmg4VsUDI+i6eCFKTdc3yBr+LjKxDJcstJn1CnRa7U4PzNONry3SVDHJniG4eQ7x3iPuWWK5iQDmVq8Eq35nYb93TOLOto618Xi+X4O4/vLlz7Ff7pwMz3ZFlNOHnDJGy522BcrGYMk2l57FbdALlOlYDiMu0UO1Pv54sFN7WtH5QV0+8/g3GCcMqaPYWharsna/AiLzAo73UV4oaqq7Z0XShWZtiTlhsGxlukz3czTW2hSNJssNlwy4eNs+AYF6Yep+BV1Jaiiw9iQpMty+3ddZSgZDiXDoaFMCtJDCk1LmdxZPw9XGSw1K3Rnmonqqe1x9rWM3y9HWWw7tiIu8xyNm9adJCPx+c8DD8Y2LUcZsStyzcvQE6rJBIEq9dFmO6YMglicAemwymwFcVgiGTQqYhtM1E8hYNrNMJRxEEJQ9Q1agBKqw/06n5Dsus2AzOsqy4+r64kc6VxtdKT/aSRshipjggdNU4GCgmexfft2XNeNSyr39fVRLpfPirH+hSDJPGckczbKIifxTEhGa82BAwfYtWsX69atY82aNSdsQzKtzKHGNxhufJfA0N6NG7oqZ4zlMcmQiNy2jIBkxp0L6JKHeMPq/8CUqqO8bztVTPDRJXX9UoMSQbGsLgJJouFZZA0/DgIsmgkVi/DxZFB/A2Sg4/dox5WE137ThvsCJwPiuTOeFEyhqXsGWUORlYE6pNtqMe3lQ9WaSQ6H5Zkqrg7034FTgMRK6L7btWN0mNCxPb6R4XkoW++QvACenlwctjVUg4i2F9Es6OB/68ojXNV3gBtX7qCUsWOJqZAYm6afIWs0yUifpm+SNzy6zLYNIqm+erq6iM/vv4ak30nb9SBqTMIYHpKMxOey/EFMw+dpdwkgkCgEIrin2fauk0LTaGYpFewOkqy0iqwozrDCbKB0+/kUjNBgrsFBMOJn4hblEqo/U8z9LUx7BQqZCmWjxX9ULsQmS8M3gQqWVEzZBQZyDXoyzfieHhIrtJEcdbrxfCN2f46esU6oy0w8fm3o3g5VpJkIUk16PhpCc8QrcczviWNpMvi8LDdJl9GMHm080lHG6aBwhMASQebkrFQdz0KjmFHBvQM7ZXBM0XAYc4sMZeqUDZtRt8A3p66monKhe7TExejI2ddMeMJNu00KMs+kCiTQl1x4JSUjP6ukMkBvb29MOvl8/hnNb/V6ncHBU1fcPJfxnJCM1hrHcfB9/6xlTT5dknEch61bt1KpVLj66qvp7e095fWVUlScpzhS/0a4VVOyVjPlPA6Ap9vqmGS8TLTaeqpq8auLvx5+ZIKCbE9+0eRm4mGTISs9qp6JITUzboFypkXJah9fc7NkjUZsxyiYLg3fxJKaguFR97JkDR/bl5hSY5PQJmmBITyuGtwf3DNMT5MRgadY0zPJGn5so5BA05dkDcWkU6BoOmSkywozStopElcPfpuhRGYJhUfwjMftEoPZOr1WOxdbw88C9Y7CVyN2maqTCHATwdQeEVasMNGCodwM77zwDtaVR8laPkqJWGcfaOL9IF29Z5EzvQ4nAw8T8LCEYsYPAh27jQYtZfBkZTlfPXQVGiOsBxM3Jri17vgTCDyueo0qLynup6LyHPN64gOiImMzToG8We2YaBtOQDJGwpazLDfNKrMRSBQCHBU4wwsRLESqSjCprFiqiuwzQa17n5z0sJVBVvrkZFslFyWT/NHUhdhmNlCNJlftfgZokDM8JkLCAUELC9c3mQyTgnYmVQ0ev1KCDA63DDxEISqiFtKyop2S3xA6LgAHsNMOXPsVknVmlatzFXyCAFFCG4wkWKBoHbqbhA4kQsDeeh8bSuP0Z1p4GiSCcSXD81SsPswSeJZV/SxDBBqEn1TOY3drMfnMNAAtz8LVRpx8FsJEtAIMTEbcKkOZIaDaEYhZLBbjsspaa6rVKpOTk4yNjbFr1y4ymUxMOL29vfNOE1Ov11mzZs2pDzyH8ZyQTGR3idxyzwZOh2Smp6fZsmUL5XKZ6667bl5uz1JKPFVj29SHEEnvId2e+KvePjLaBOHR8o+Ql714egpHTQIZru/5PlnpMe7m6bVadJuteCLICjcwqAtFww0i5CecAkO5Oi3foAz0WA1qfoaMbGdaLpptPXvLt7CkQ8GwwSuSNTxs30JG7syRWkkLfnn9Ix3uuTIhfbjaIItPwXBpagtTKo7W+lldnoyJ57zMKDkZkZCOV/iRRGIJhadkULFSEQc8DlKn22wx7ebosVpx0GbeCD26MnV2V4c6dP4idOmOuSUkm3WlET505bcwJKA1LhIpgzLLJdOJK05CoK7J4VEwXRxlkAnHPEKyHPX9E+v41/2byFuRm7KYFcg62ySheWl5DxeUjrHXGcAhe9xRkVE66ESybbYTrJQDI79mnTnFom47Fj6FgIyEw60ulmYrTHpZ6kJ3TPTtu7S3VVWWrGxQkC5136RoeFjC5z9mzueOmQu5uvcgGcMna3htAkjkXqt6eQbC6p22spjwynEMj9ahjizRhJyw+Y3Fd6KFRmsZBuxGEHGhPSGg4Vl0S5tpL8cRtxcpfd7ctZ9eo4GrBVqomFykIJ4rIjWdIUiozNpwNUz5Jr7QHeq7rGg7GfRadXwteLKxnIfqqxC+IHJWdnwTVxsdNiFPSxBQNnvQuORkDqie0LNMCEFXVxddXV2sXr0a3/eZmZlhcnKSQ4cOsW3bNorFYkw6PT09mObcU3EajHkGONuFxeaTJFNrzb59+3j44YdZtWoVGzduPCXBNLxRds58nWF1O/X+T9HyD9H0DzKQuRSAmrsHGUYlK90ib50Xn5s1VgFBUKbQXqh2gprf9r9vqHb+pWj11AgNjUY4YQfR0UGMSi3M5xWtFEuWEydvjKKz86YDWseFsaQ8boLUmuuW7ozPg0CaqYUxHUUzCICVAg5VwuSU4XFD2Ro5nCDDbXhZQ7Sz2Vro+NxoivESRt8IU2EG40GrFjsRVMJx2Tm1eE6Df/J1ESj+xyU/atsOhIjdnaMklRnh0wxVkoWEgT0a54z04yzVJRmkGvnh6EV898hlwR1iW09bcmlLgzJqCH1mlXcsuYfVhXF2u4tCCSk+kCQip42c4cWG50jlWco32GCOM2TYCBEY9z3aqtPluQr3V5YzQ9sWAaGa8rhaMtDp/hzVuz/U7OOrY1eG4xDmW5OKqbBsQE+mkShx3bnwaOkMTTv5vbQHpS9T5V0r7wrfcRmr05J5zpJ2DtMIvtUd9mKayuLm4iG6DAcHn8gHUor2uEdBr34iM3UlfN7rClNxqv66MqjSXvxE73gy00HBcNnaXMx3p64EBI7f7qfjG9ja7CgfEEl6eRkY4I0oRmae7suGYdDX18f69evZtGkTN9xwA2vWrEFrza5du7j77rt59NFH2bt3L9PT0x0ORmcjTuauu+7i5ptvZunSpQgh+OY3v3nKc+644w42btxINptl/fr1s1LOnA7OGRfmM8WpJBnHcXjyySepVqts2rSJnp6eWcc0vWG2jr+NhprAEEWUVpjM4JPDMFqMyX5KfpmyYdDydmOIPL5u0m1dzIz7FABCtL2ktDDRWpOXXkeISjGhvuicggLjvxVOklGm3KLpMOEUKVpO/LH1Zpo0lIkpoelaZLI2ZvgNB5UONZnwQ+a4gMFfWb+ZxfkqLd9ECjdWuUXHG0JzpNHF4kI1nmiWF6fwlKBstFhmBhmDXSVi+4uPwCLwKPNVkFctMhjXvSw9RrPD0B8hZ3iMOGUGM/V421PjyzpIRsZuq21Ptd+56Cf0Zpv4WiBDT7YgCNElL9sluOMklTKIt8gZXoe9IqhwaSOE5l8PbeLOkQspZZrhfaKjBIF9K6nzD/7/i0OP88renYyrEgecvtCJoK1Li+wVnjIwZGdmgaZnUbYcNAILjxu7DlOQClcTr7otARXfIiMUT9YH6ctNBwGgQuEoM/bQa/oWZdPBFIqmMshLn5zhxhKmpw12NQb52I6fYXF/Ney7STHMBj7lFOjLNMhIxZRTYCDboCfbtstM+8EE3bDbah4hgp4uLUzzp5d/E08Sx22pUJJJSlaOMskmEqwerPSwxVnBeqosy0zHyV5FIsOyTzBJRSaSrFSxXWbKz9NrBY4oO+r9dJs2M8IBEWQRECKQwDLHBZPOeDlur14QJiP1sRMZPF1lUFM5cuGC0E9I0IbIxX0D6H+GgZiWZTE0NBQX/2o2m7E958knn0QpxdNPP82xY8cYHR2lUDiz3Gj1ep3LL7+ct7/97fzKr/zKKY/ft28fP//zP8+73vUu/uVf/oXbbruNd7zjHSxZsoTXvOY1p33/FwXJTE1N8fjjj9PV1cX111+PZVmzjrG9CZ4Y+xUENTQmnq5i4dNQWYqyxc7WEFuaq2l4Q1S9Fq/uX8KlxT2MOVsQHTmO2qn7a/Yh8tIPXEMFVN0MRdNlwKrSUGYcpxEhmtAjcumybCbdAjnDp+GbFK22CkgKTdXN05ttxm6VSd17Bi+WZNx4whaYwuXnVgQ2pGA1HagtLanISMWMk8VVJk9NLGf7tKaJybb6IrJWsML8lcGtMSklHb+MhMrM1QZmXIG+rULLSY9jrTKD2Tp9VptU6n6WQer0mE2qXpYjlT4MU7Xn9OME3ou7DnP14L7gvkIH5YStZjw2llBUvFxoO0pUW/QCkslKn5YyyUmPomnT8E0+s/tGjtg9Qb9iu0tS2RMitD+tzo/y22vuomTYHHR6GdddsdUoslFEz9QH6naWrrzd4Vjg+CZYDv25GtfnDsfp5q1QMnR18DsnfO6tLmNlYQKA4VY3K/NTgZoyJIFkYlZbWeSlT1561JVFSbo0PIs/fOKXOgJRk9VKk6Wlm6FdpmC6TDl5XN/CMYL9TSchyQjN+V3H+L1LvhuqZM3Ydd3TEksoBO0y4C1lUpJOELMjNA+MryPT7fOfB3YAxMclF14yfKuiL0wIsH2DnKHot5ohhYsw51qGnqwTOEqEx+YSiWV7jAYzfo5vTFxJQ2dRIbl01PtRBq5ux+g0/VyscYm+s1ZYvGy+ksypkM/nyefzLF26FK019XqdQ4cOce+997Jjxw7e85738N3vfpdXvepVvOpVr2L16tWndf2bbrqJm266ad7Hf/rTn2bNmjV8/OMfB2DDhg3cc889fPKTn3x+kczZzsUzF8lE6rE9e/Zw3nnnsWrVqhPed8v4LUQ5xUwCY7UGDOEzqlaypRl4O/WYRapei73NEi1vERcWB6l5+4gM3v8/e38ebllylneiv4g17fHMJ0/OlVnzPKuqsqSShJEQYGjjBrcuCLAFiAYjX4PsNmAjCbsb4dvX6NLdyK1GIAx+sBGTAaMBUEklVKoqSTXPlfOcefLMe95riLh/RMRaa+9zsqpUVRof4nny2Tv3WUOsWGvFF9/7vd/79bIzNOQ8qb5AVZyjXM51OWlQ99esq1+jIttUZUI/C6l6MZ4VMZzw+6xnFaQw8YWK181hkKmgT6JNrMPBLC6IXPESBsrHl5qKlxQTmotlaPjRax4cYaJJNF0VcrI7zTk1zdnuJCt6kkHi58dvD0J8P+Xf7vskVa9QfQ6FzqVBPAH9zKfmFaBI3UvoK8l82GE9qxB5Ge20wnzUZTIYsJFUmAwGuXhj0x/y8MoeQJjyA57rfjHt+CLln13z2REoxwkZ1mVMKw2pemkOEYYio5uGVP10BK6L7USykVT5zcP3cLY/w2Rk4g85fby0inWfPgn/9JLPc1PzDIn2OJ1Os5I1QJrM9qLgmmX2WSMTZz4wHI0TaY9tss2dO84RSMO+GypBJDW+gG4acjRugjdkW2Uj9wKdofClkU3xYIRZVs5s76mIYRbwvz/1nfQzFycyE3dcMjh+iXRQjs9txDVeOL+Tq/Ya1mR3UHgyt8wd53+55VMMCIjtVBJrj0hkec6NsM/wZDig5icsx3Xmoy6pkhwazvPz0w+iRWLfns2RLtdMDAarSOFRQdH0Yk4PJthTabOc+UxY0U0pILWetdNfcwmYX2ztZ1U3UBpSjARN+ayZliOU52EJ2u7b+aWTmGPNfhUSMYUQNBoNfviHf5h3vOMd3HDDDbznPe9hfX2d3/3d3+XTn/40f/AHf/Can7fcHnzwwU0VMN/2trfxsz/7s6/oeN8QyZivRRs3MnEc88gjj3Dq1CnuuOMO9u3bd1EDc7TzGL1sPf+/78AQUWM9q3MhqePWVw2/qOT4Z4spZ4a3k+o2Df/yfP9hb4IGGVVvOFLJ0tRWMd/L2LmLy4SywOkLPL28r8HPW7aYlYvxNKzRcAFVMBCb57i3dtJoBn1et+0o63GVtaTKYtzkM+1r+NvuNbww3MnpeJalzpQZg6CUR6IE/2LPZ9kVtgxMVq5ZX3ohXfJaXSamdrotICYFLNs6JWW4aM3W6Ji3MNpQeTy2bOJYo4H/4vt7rv9rGkE8wv5peGXyg7k/FQuZQQG11G3QH0wS4iPre/l3T31PXgY5v94tqjqC5s2zL/Dvr/tzbp84iRSKc0mTlqrmsbNichbjzlcuLxNIlXsQV0dLHKiey58EA49pBsowxk7HDc6mEZGXGuqtTVh1TDxwXodlbNkxqYiifk2sfH7n+OtZG7jgcdG3cg2eqp/kFUWnwn6+/4Vuk1MrBYXWwWXftvtpfvbmvyaV0hIz9MgYaMhjO5koxtHVDHpqcSf/70sfYVvQYq10DS1LF160CbICStdq+lemyK9nFf52YxfT1RbHeoWCd9k7CaURnH16sIsjXZN/Fac+2Hy08r3K7CLBPQOxLoQ0N1LzDro6Ml9tSRkwUNpdd93F+9//fj7/+c/zX//rf/2qn/P8+fMsLCyM/LawsECr1aLf719kr4u3bym4LI7NZLu6usoTTzzB1NQUd99995bwWLk9u/H7hKVJXwpty70KzqVTQJ+qnKWvYiqe0+Uyq+I/Pqf5yb13EuTZ1Jp6dJKK7GPgKUU7Dan5KbNBj6W4zmzQY9rv5iuzsrfTTiOmbQ0VcGrGxpCsxDXqQWKhjSFTYY9US2p+wkZcoeJneZC9GQxJnCNj36KfvPo+fKFYTCboywgQJjArCkkV3zPJa76nUanJjfiebU+xN1rN++iLAqbxS3CIM3pCGGiq5qe59H9qV81lmMy93GtxjT88/DoeP7sPGTomnCSnpdl21+xhbp01OQiRl7GeVpny+1RlkrPVqjbA79tqkFULj7nVe6o9ktTjj07fxoNLpgxweeVvzu0C/gK0Yj7q8DP7P8sNzfOcy5qkSnBWTdHVJrfCl4pUj8YfJIoMmf/iAt1gYjE3N05wQ7SWExf6SuBbcsdGUuWZ/jT76itsK3k+ZjHSYSrosxw3mI86I5OpK0PsCZ2Ljn70+XvYUNWxbHznyZSKjwlYjpvsrq4TyozVYR1PKD77zPVUSl5OdxjxfZd9ke+/5mG0FihM7EVlAs+DofYJRGxhrYCal4x4RspiiQe2rVC3qsdJadw6WcCEl+TjIqwWmcniNz/WvIwLSZW5oE8785isrgGC7dVWLnIqBfn3QCie723nYLydQeKDD3HqIe3sV65masZJkOkIXwxIVAAY7301blOREauZ9WS+yuKYsDkZ85tRjfnryi57LZvneaRpypEjR3jkkUe47LLLuPnmm1/SwCiVgfoy5TrmAKEIyPSAQJhJcsZ3zBKz0UCZF6SvEn7z2A7WugZqawqYCVdGcg/kCHxhXv5AKNYSc8yGV1T7W7csHwchTYd9epYh1bby5C7GEUpF17LNXMKYY2J5Quf04Joc8HM3/BWXNNdo6RpBSfbExXFW2rZkcUl6RaWSPdEq3zf/FJHIcg/GMOGK7877Mqtwqz1ljUqtRFEGmAwGtPMSvz3+8uSN/MJ9/xOPnd9Hko3dqxKrbF9jiXdd8QX6WbEuKmdiO3n+hhySWNfFPWKhyOhayZYz/Une/9T/wEPLl23hgZimS9/eseshfu36P+bS+gotFaERnM8mSPBH4iu2w1BaMJRbFBTj+ob6MW4I10gUDJSZRCMBHeXzaHeWgUxzo1T3YhaH5jmZKJVMLiqPDhlmRenpfDy0z7/90j/gZGuOXhLmnpTrJTAClwEjqgsbcYU/efgOBklEZ2CeMa3hh676At9z+eMGlpOazJbnjq3OV1AqU5FXbS2NyY5wg1kpmYm6tO39q5Vyl1xsadoblKqJms9ayVCvpTUOD6YJwq5VdDALsZODzdI0PRXw3HAnIHLvzS3GzGKpGDdXLrxnx8I954nySHRG0y+IPa9VTOZiLcsyer3e11xWZvv27SwuLo78tri4yMTEBNVq9SJ7Xbx9y8BlWmtWV1c5c+YMd955J3v37n1ZhuzR9Y8Typ6dHooBDC2TZCGcAWDCty+gTbjspMWKPEsEf3jmMmpETMo1tNZmUrYvdk0muT7WXNDNoQX3EhoqrS2aZSf9csGpDWt4XJXLyaCYbNw53Eq1jPnPBh1+ZO8D/Mr1f87eiTXOx5MoTEEr9wbXHdRk9w/DYn9fZ/z4woMEQpn686VJqUwvLU9uTmTRQU27KhsoDQthCzd9r1kq6Z8du42PPX23oaW6uBFFc5N/w+/zSzf/JaGXsZIUL9ykV8A6Tn9NCPI6IMazMhuc703w0eMH+H+OvCnX7fLzuEEBc7mx3F9b4ndu+T3+wY6nTb6HgK69fqdmXM56z/uc885Gn71KkJBpzYHqCS4JN+gj6GhYU5oLqeBY4rOBtBOvYFvQyZ+TroVTt4Ud2kkBB7rmCnD5QjFQHrH2eLazk2PrCygl6MXhllpjZU9mvM9HlxZYXJ01RI7UJ04lt1WO8uZLnicoeTaJVRx3sKkU2LITpWdSJsRKUtGKqyo9hBgtQ9GQCT1rKKt2ceULzbIt/3wuMR5DIDUr9j1JEGyg8AQsx8Vk3/QL4xQKQ3w4ONiGsJCd66fL6NdjnqyDmNdt4bmhHTg3VjVbYDCSX92KmGC8GIBms/kSW7627cCBA9x7770jv/3N3/wNBw4ceEXH+5aAy1ZWVjh69ChSSu6+++6LJjZt1Y62/xtTdvOUCh5mAs/0GlV5CUJEnB5C1TMPX6LNpNzN+viiTqoVDT/ED44gaNHXgdF+Qtn4g6VbJjWmgr5ZmcaTzActJr0+Drpop1UmgwHbohZKGzl7pWW+2oYiLtMIYtaTiIqn8tV05Ln4zJBQxGwPWty+7QhtVWWgA/o6zKnRYIqeDQhp9ysQQBikpAh8X6H6ID343oUnCURhdJpekgf6jUqAIBQaT8DSsEolSHh+Y47PnL6OvzlxHfP1NnfvPsydC0e4buIcp4YTzIR9NII/PX4r9x6+AYQJkOcT/UgsxsCWv3D9J2haras91XXWkypTgYHJluImC1GbCX+Yy8S4uI8vFC+sLvDo2iXcu3QVWeCNXI8seUrFqTU/uffzfNv8CwSupo4y9zBVHp5n1BlS/HxKNvCaC/Sbb70kpBIUgpZCKO6JzrDgdRmiSe0xM+UhheZMf4a9tbXc46t6CV3lUxHZSMxpJWnQDFbZHm3QTX3qfjripbSzCotqisX+pH2OJd3YRyk54lHAZiNT8U1SZi8Neezo/vz3QCa8sfECFS826g3SMK18oQrJl9J9i7VHjYRIpvgotvmG+DAVpPhCs5qFzHgxlRKVfCOLqHk9prxh/oz1sgB8mCl5cMtJjQSPIUbayMChhcE10kc1ZqyqxLlkilZaMgbS3esStCkL+Fd4Jm9pZRiyu2bIAYIifuUJY+Rng69+PKbXM9fwaj2ZTqfD4cOH8/8fO3aMxx9/nJmZGfbu3csv/uIvcubMGX7v934PgJ/6qZ/iN37jN/hX/+pf8WM/9mN85jOf4Q//8A/5+Mc//orO/00Nl2mtOXz4MI8++ijbt2+nUql8RQZmrb9MVT6X/z8dY7fU/QUiYV5wJ4ExVIUkSs0+eAsNwT9ceIxIJmgEayqip01uQ9+umvdUVvPAqgvQ1r04j1k4jkskM5YtPOIgMEdpng77uecytH9r+kYwpun32eGvcmV0lssqy9RlDAj6OmApaQKC0MvyhE1XdGtoA7mVqGCcZYlk0uvyxqkjxssqqdDa5HrAeDDnBnVWs5DD3Tm6OuDBxcv5mxM3AJKl7gR/fvA23v/Q9/GRg/ewGjd4cn0Xf338Ov7bs68z120NX/E0lL4J+Nc3/yV76+uc7E/nv3dUWSG4hOfbflZFQpxJPnfuSj587I3c27qazDLQysHu3BOx17OvusTv3PK7fNfCc1YLy9GRzTn8TX0t+ln8ZrYZpoVHJ8j4jtoJ5oMuQzvRO2LHaUubDu2Euy1s5wmEjla8LezktU3cokIKOGf33RZ1yLSZ+E+n0wx1QGdonrtMSeIsoKj9UzSNHKExB1KxktR58PjlpBaWnArb/Ppbf4+aH49MzL1s1Fs0xtF66Pb5bsiEK4OUXR7MB4WqtfNyGzJh6IguJU9ozTK68rikF7OaOPhKcjY1YpvrNqF3R2WDTlpArRkSrWEpa9LXkZXKMc2zpRrcc6cx98+VydYo2klEJ4vopFG+AHH3yxWp+1oE/bvdLmEYviTk/1Lt4Ycf5pZbbuGWW24B4D3veQ+33HIL73vf+wA4d+5crrcGsH//fj7+8Y/zN3/zN9x000382q/9Gr/1W7/1iujL8E3syQyHQ5544gkGgwF33XUXg8GA9fX1r+gYnzj+PrxKRGSpj6mOR2aQVJ0F5dglzoNpg83wn6s1afVX+a65PxqZ7GLt0VMhXZVSFxmtJGIiGHKmP8Ml1RXmg1Ye9B+qgLoXMxt26KYB7bTKkfYcS4Mmq8MaU9U+VT8mziShp+hnPoGM81W4JxR1+uyrrSCFINaSnq6A0PSUqZaZaJ+qzaJOtIdHaqEMTaPSp02VajSkNYiQEnQm+c6pZ3PDipfSzgKaNiCbaMFSv0EYxhxtz3HlzCLNsM/vP3M3nzx5QzGAUoM2CZF/efBW/vrktcT9Kn5Q5NAIqU3dqzHxToAfvfx+bpw5AxgGmRuzHeEG3TSk7sfMBp08wOuSSY935vido3dxXkwRZz5CapvgZ3AvoRUamdfcuaSyxC9c/in21Vbyyd6wmoy30UqrTIZ9PKEMXdrKqRhobJSqnFkJkqKej+bvVU8z6Q1ZzRQ1O6efiyfZU1nPk/62hW3LyIPT8SR7KmuUhRouxA0a/io7og2TBCsLWRlfKk73p+iqCOWZV7pjFw+FlyNyeZ6ygvLQPk+unelO8cTzl0IAV8yc4xfu+XOsPw4UuSxx6oM/JJQZHauT18uM5l0oUwSaq8IMjWJZpVQldLOAKS8uxljARlJhW9CnVvJGBtZITZZilctpDYTgRFYhTutcUV2yMSpD6z7Xn+KKpslRa/pD2ipiNTOLtV4WIH1IM4kXmPviSWUNhoPPfCAmQ9FKKnTSaKTcgbuvwzxH5qsf9O90Oq9J6eU3v/nNOfS6Vdsqm//Nb34zjz322Ks6r2vflEZmeXmZJ598krm5OW699VZ83ydJkq+oaNkXTn+C7ZNf5PRgKv/NrpuAFgBxdhrPuwIPj1TZ3/SQkBoxGY2wwj+ZvJ/ZYI2VtGCA+Cgy4bOuqpxVEad7k0z5A3yhafUitBasJxXW4zoDFbKrsspHHvp79OMIMg8ZJah+YIpfpTauU+kx0+hw5Y6zTNb6TFV7HF/ZxpGj2/mlN/8ZqcWc/RwSESaGIhiB3LxSEbJ2r8JEtc9uVrm8ssTHurfTlRUuqS5zQ+1cvk8gFELC+UGdibBPjGQjiZgLExrBkLV+jQ89/lYOLu9ClNR2nQR8YX9dsHUrv8XdBPPLm3c9yz0Lh3PDMhP2ONqf5dLqCp7QrKZ16n6MLzTnh012VlooBL9z+i4e6+yjm4aIoJQFIcbOIeAdux/iDbNHkULhC6OSnGgvH6NhFozUoAlFRqqN7lmi/by2iaG8mnMM4oAoyvC9DEHGG2pn2eX3WFE6LwfsiYKJNx8YL6TipZwaTLFQaedJf1NBn7WkwkQwzAt7BVJxpjfDnuo626MWmRac6M7wX164i2/f9zzVujluO/dkCjfLGcLxMsrltrgxhdIe9+x5mh+78XPgwyCJCIitrFFII4hzTxhMHC7yMobKGJlIxFzuZ2iX0Kh9qsRFzSOZ5ImmbnE26Q0ZakkkdE7vn/Bi2qkpLx0rn4f68whPE5FxsL+NyysXODOYZKHS2cQQNPR45yV5SLTRXZNmTHxPkaYR2IWJkasxZQJWhzV6aWjo4XaolKU6d1JjkL8WcJkzMt/s7ZsqGVMpxZEjRzh+/DjXXHMNu3btyo/zlQhkdpMO5wb/gemagazKLfAvJ0kfzf9fkdPMh5Kl4QrGAAlmoibnh+tcVX2Sy2t29SQH+crXvSSmZomg6qdo3yMBTg5n8CSc6k/x2Moemv6Q22oe3aS6KZCsVcHhH2Qhpy9s42xrBt0LQCp8pfi//uFHCb0MoTWJ9m1QX4GQ9OKIMMpGWFBl2fp+P2Kh3uKO6mlSLfgnOx/k8+3LWKhvcD6pkygPZVV+n2zv4jMnruPf3fRnJMpjptpBaZittvmNh9/GkfXtttNluMupAIzBNCUZ9aJapw3EasHlk+f58Ws+T+hlHOps44qGUbTeGW3QswmfC2FBV42Vz18s38ijnUtY61VBlmIE7lSl61aZ4Nu2P8/ds0fz+I0RwTRwTIVCXidTsLuywXoWEpDl3oZTmRFao0UxcXf7FaKoSyAT3lQ7y16/zdkkwPNiBLASG5n5OUthD2XGqcEk26N2zpabDbq4WN1KXGciGLI92shjFQ6OqnkJX1i6jP/06JsZSo+bF06zu74OkMNlyq7Azf0wh3XXCowoAAD0+hE/evPn+HtXPMUwCQjJqPhJHrPIBT5lSqokfrl6qtSA5togxRdFRU03NlHO5oO1NGLWH+YiraYeTIWFoE+z5FmtZlUyJB/fuIwbJk/nv1f8lBd625FKAR12Vtfz5+HCsMlKVqfmj84Hg9SHEIapWSAMEy/3fnVJEHM9rtFJI8O+G7XBrCUG9fhqJGKONyeO+c1IWy63bxp22WAw4Mtf/jLnz5/nrrvuYvfu3SOD76T4X0776yMfpBEZz2Q66I1kGitGJbiXB/MEg5RMDImUi4NE7I8ucGv9b/Oqe6HMGNpJwsh9FCuy6aCXV7B0zWXdJ9pjtWcDew4fcRO1FkXfXMAyB7YFP/q6+5iKTLwmEApnYyMb3HY5cJ7QeY4BCLpW5DD0Ym6rnMEXRprfE5o7G8fYVumg0STCdKWtIw73t7E4nOTLZy5jqddESljv13no7OU8fO6y/Lp0+RaMzfSbShaPbKPt2Hb5X279RP7yX9G4wPGeYfhVZMpSMpGP94nBLPe3L+fezjU82tkHCFQ2+kiLfIIt7vFM0OVd++83Wen2Z8ecC6TKK0xWvJRjywu2z57RZRvTgctBMfuDoR5r7qotUhUJ57KAQSng3rIxukAqLlhWlGOPuQXPVNDP2Ygu8TCSGeeHZmKbj9qA5v4Ll/PRJ97MwMI6Zzoz+XnKMRnX8kTJ0viPejKKd+x7kDfuf84QTyyd1ysxC919EQILx0LDH+TP+2VeQkWmRnXb7WONUEMWVTEds3JSDnNx1cT+1vSMajRAJwv592fewNlks+dQD2MW4wlSJQik4vzQbPN4ew99XYoj2vcqdTFRmxIwSIprL69PW0mFXhrmAqKZMqUqfOGzkZr37WsVk/lW8GS+rkbm5VropaUlvvCFL1CtVjlw4MCWlD7nybwY9ghw7+kfYL75xyy3i2OUe9HLlke2/++HmwS2n03sStNv8/1zj9oM5TKNsQgW+0LbDHzjXbggvnvhnMRJqiSr3cZIR0au4KIlhwW37jyeT4gAgcsjsLkL1RKkUR6W5Y659tfPHR2hjGqtLePHiAvGqujzicEcQmr+7NnX0R6aCfBce4rfe+oNo/16GZUscTLxlHMtTY2b99/5FzT8mFO9YqW4LWrnasl7ojVODqb4cncfTw72cGi4nZH8lLzM8+i4CUn+bPzCtZ/As/fHBb7LE28nKQLFjhDh6M5KFRNPuXX7ZlKvhClXBqvsC9dJSZEiHimpEJVyQtwCJbLPxPZwI8/xWbVB7e2VjXwSdkSACX/AHxy9g//ny28ZUVo+suIMIrSt/MsoNKnzv7vmGGYBMd/ZfJpLppZzg1L14uJ9socpi4u699cXml4WstcfUJMpyp7HKRnXRWrqvAjoqNH3QAqTtW/GoRibtazKWlrh/z51B+fTiU0el2uHuts43jO5MRppve7dJNYziTMjTAqFIoWTS+onXum9cMKeRgVdC5lTsVP77tZk8a7PfQ0SMV8LBeZvhPYN7ck4NdLHH3+cq6++mhtvvPGi7DHPZuK/GGS2Mfwyde8FtBCcUHM8c2EnMArn9LMzSMwDpLIqT8dNZMVAQTXhEZBwW/Wv8klnwivoleUcFUcXdfLzjpdfs3RURzlOtWS5ayaULWm8YzL9bhLdObHKVNRDaEp5AcbI+p75rGwxSYCBWyZkn11hZyTb2q3WnVRJnscjUmLlIaXiyOp2Hj+3j9944G38f+77PgZq1PODkgEZ16IqeXObWGUa3n/gz9lRa+FLxfZKm6PdWTtmCX0VcW7Y5MvdfTzS28eqahK64LoQpVjU6HFH1jEa5sIWO6qt/Ce3Wo1K925xYyr/vmdilUQLm7+kcyORJ3K6Q9tr21td55pohTNJRNd2yUzC5rmdCzq5V+niCC6HyBeaVZsH5M4TyYxF68HMBKa20P/55Fv51OGbRkdYC06vT9ONQzrDCsrFv9hs0Mc9mRnZ5k2NFxAY7TVpGVjl8hNuj7KskCx5aE0UO/wBAk2cJ+oWx+naidoZxaaM8zwwZ4ymvEFuUNeSCu967Ps4ZanYFzMynazCEy1Tunku7HC4t42BDnID0S0xy1yip2O3xWmQsy2x+T791DLxNDkrzalVyFIfvhaezLdCLRn4BjYyDh5bWlriwIED7Nq160W3d8bnxYzMMxc+xPPLO/j9pQMcS+b5TPtKMl1BAOVCZENbqS/W19BSKefcKlXA/zD1OBNeK39BpoN+/iA7mAwKI+NWbFGe+Z6ilIGmKhZ7XhvaB8m9yXrzZJw3+1K89aonjMckVT4RONZPIBXDzLdVK21+T1Z4PFOVDpcFq4w7kg7eS+0q0Cth6LuiVYRn/v7fnrmTB05eaWMDmyGYos8WJnOXtdU2diL64au+wK7Gaq69FkjFvtoqh3tzHOrNczjexiP9fQxEVAqCG68LbLoNpQd6C5gMJfhHux7JqchArtIsBDmkuWNyLf8uhfEgAqHoZ0GeLOsUGTpdW98njKmScFm4zlISMil7I3D+sjUeoVScszDZjG/w/Zot2AYFfLUjauVU5sRObrHy+eUv/kMeOnnlFowJc9GHl7fRGlRzj6s8Bs4klQP/t9SP88bmQTIh6eZqFFnh7diHpDyM7vkIhale6aO4LOyVklbtyr/kmTgozMF/noB1S99374gnYCWrciGp8e+ffTMnujMliR8vVzYot24a8sTGHtbjCr0s5Atrl1P1kjwpuJsWRsY9v67FqZd7pO48PevF7q7M0o4d5GjOG8dWJRuP5VOLbGxsvGyI/pW0v4PLXoN2MbjMwWP1ep0DBw68LJfRHetiRiZOl/mLx+/kow99u1mtSeiriLODGUBT83bm26Z2dX4m3stApTy53mA+mOW6yQeZ9vu5sqtrbtVUrp8hUWitmQ07gGYy6BcGyL5osxWT0TscY/i8KORk35MbFgpeeyAUPVtwzCkS62xU0mOYFFz7W6ZOEdo+BBRVNiOpSLXIqaOVUuXIS6vLmw1euYN680/jEN94jRjXvmP/U7x117M0/JjISznUnudod5rHWrtZzpqc1VNoT+YTsPM6jHaauT4jeFhMpPnEWuqzRnPz5GlDPHYxlJJg56l14zlVw4QT64XYYkWYXJBeEuFpQwYY2LiWq55Zi4bcXjmH0hmBlbOvWaHQ8pBAId8yE/Ty/BcnGeQSL32pWHTGKOjx8Ool/Ov7/hGnW7OU2/gbdHB5uzEy5bHOPT7z4ejrP779ft48fTCnurtcIuPBWPjIGtvISwvPIyu2O7M6xSV+NjLOLu5SkYq+ncTd/W7KJPfkhvYcU94wvx/LaZX3PvUWLgzMO182iAO1OV+kl0bE2uc/HHwr/9fJb+fYYJ6Kl5Boj1SLkgIFSCun5GI0w8TPjbHrfTcNEQi+a+EGWjbr3y3UoqqBy6a9Bt1ulyeeeIL777+fp556itOnT9Pr9V4Srv9K2t/BZV+FVobHrrnmGq6//vocBnupJoR4UYbZQ6ee5OTaPHG/eFCFAsWQRDchK1GQ6+ZhfHDFxC6e3agy4VUJvUJKplZSTG5IkxAJELvgv4DVoWEG9dKQ0NYwAXI2zpQtjuXgiXy+LpME8onazRCCiUqbhVoB+QCEXkqiBLNhl0TJXGbF5brUwyFpJpiSPeZKciym9kcB36wmDab9PkPlWQaR+dtltaVNFTZNv8Y+N/8n73uZFGCMgOLq6VP8v654iE4WcrQ9y6Mbu+kSsaIm8CJBJcjo56tRO3l5aT55O+9LFMiZGVMHx5ViMW+cPUzdTwAxEgR380JvUCjuulUsGA2sT69cia80vqdY7TSZrPRJM0Gj2idTsE0OaGUeTa+bB8Q9oXP9rO1h4ZmEpbiM82Cc17jN5kuBKTSWKMl/P3ETH3zwO+mnlU3eZzEJm4s4sTLHUrc5amTGPJmm1+ef7foMV9fPk+GVoKjivjmDHpakebqWYNDvR/n2t02t4QtNKFWuWxeVWJJ9e/01UTD2NrJCvw8MBLeWVTgxnOAz3f2cbU+XFibFtQ63MDLdNAQtSHXxt9DWMmonlbwyp/HsbQzJUyhtvPss95Ts8ZKQO6cv4+17bqdv742bUZLM9Hd7bZbrr7+ee+65h5tvvplms8mFCxf44he/yIMPPsjzzz/PhQsXSJJikfZK2reKJ/MNkyfT7/d54oknyLLsZXsv4+1iJZi1VvzREycQYoJhv/BApDbZ9Kc6u9gXrkCkAUE3PcmMN8/9yybRrupHJErQEhXQ0PSGRDLlxGCG3ZV1K2I4wUzYIdGCiqWfumB/rHxqJCjtAZnVcgpoWpkY6W01KZtjuOqDRRN857WP0lc+PR3QUxHnh1MgNP0s4JrKIp6XMRH0WcmMkm6qPaTUdDoRd8ydshCQpFqq+eFa/lKqgEia3AdfJmyvtGnIARc2j64dYzFKF1bjWzhPRvNzt36SWxdOIIVmKCRaS1pJhcn6gJVOg6lKF6VhJa0TSE2cedSDZCTorLRECo2PYoirniksJVqMwmRmKPmeXU9u6r0QsN6vMlXt06wW8bVmpVB2uH/9Uv7o/K28oXKU79r1FP04NOPZrjLV7JENPRqNLjN+BynIEyzN3TItkIoTg2kuqayxELbJtLBGyIz3XIm2vBybukNp5vFLX/x+jq9tM1ZUl0dz05Xk4/LU2T0GBrIn99AkdoubJ4/zzy77LB42TiRM7G20ikohIBlIRScx9XgW16eYmF9kvtEiTgWXVQaEZcKECqjIoWWRGbq1M4IVmdFTHjWZ5fDulBXBlALOpk0+tXoZQajpDCK8amqvpzj+eFwmUdIUyBNZkThMsYhbjWu50oHbV2UenqcZJh4IkXsyQmhSJRimPv/i8rcSSI/L6ntI1DFS24W+Mn1y8RghBBMTE0xMTLBv3z6yLGN9fZ3V1VWOHTvG008/TbPZZGZmhpmZGSYnJ5Hy5a/re73eJsn9b8b2dTUyDuK6cOECTz31FNu3b+fqq69+2d7LeLuYJ/Pk+YN89mifm+cnUJlEpQHST/DJqHkxD7QuozYL+7zn6GWnAEVX31HU9vYDOkmfmVBwKpniMrFMJDOm/F5eSMpJq08F/bz6o6t06FauPo5ZlrKe6bzufG5kyvOH1KBE7sBEMuHvXfsEN2w/zv7pZdbSGkMRghBkSNq6RlcH/Mn6bi6PFnn9xGGS1CP0M/rK5MfcPHEm75MvCol+H81QSSKpcp0ox3gqv+SXhCsc5RJ781x/Cw+rKDI2Gn4vYDLB9voqd+44av4noJOGBJ6ik1SoBl12VNcZWv23dlxhptLPJ79yYqRrgcxAmRWyKnkoQuqCcKYFO6J15sN2vl+qvBwqW1yfZqraZ/vkGsPUI/Izdk2usz6sUAsS/ujsrWgh+Ez/KubOd5itGMXtfhIyRY+bJ04z7fdZz6pMeX3qMqGvfKoytat1Yzwck6siUxaHTXZGrTzTfcIfshjXmQmMttvHz9zA7z97gMRWohwf7k04WenZ6SVR8YMoFhE/cskD3D5zvFASz3wiryizFkiVG7+qH+eJo4sbU+ybXSay4+9JxXaRUpdOddvs74giUpiS0VNekj9HYIL/NZmVKoBq1tOIs1mTL3R34wcm+ag7jJisOCNTrt45Ol0Zz0qgtcDLF2oazwp4nh9MMFs1i4VYmZIWWRaC0AwTG8N1QplC00tDrqjvYFvFGJGf2P96fuv0l9A2FbObmnt1MYl/z/OYnZ1ldtZAmsPhkLW1NVZXV3nmmWdI05Spqanc6LxUDky32/2WgMu+rkZGKcVzzz3HmTNnuO6669ixY8erOt7FjMzvPXwIKIyaiitIP6ERDjk3nKTrL/CfTrb4leu2Q3YKkDy5sQMnJRNIj2G2Zr4LeLSzh1saZ5j0B5yPp5kPN5gN2rnBWU9qzEddG4+xrCAdUPeGpHbIhS5iC87IlGMWSM2b9j7N3fsOMhkM8CsJCEkkYmLtI6QgS00ND6E0SBefEBwZbsNvZVxZOYcnBRutGgvNVi4yCbbIlRJElsq7nlRZCLvM+H2W0ohZv0tbBXlQFuCyxhKfHR/cMlxmPYac85T/rbiu//nG+0xwOPGpB2nO0puNuqRKUPVSznam2FbtFvEAa6QrXkqsJH7pHC6B1ZcZCdLGH4zn5oyMUIIf2/sA5fJUKTKP57jVtic1pzam2Tdtyhyf7k1zPpmgnVWpkIAPf7N8HT9x6d+a5ygTbKPNjN83OTRl8oj2qGKMzKnBJDsrrVy0EUy+zE5aLISjz00/C/mdg3fz7Ll9uVoxGKOps7JtufjkVPzd3JBm0OV9N/8Z+yZXQWtSbfI+lHU5jTy/QAhBPw1oBCa7f6XXYFu9k6/2tzfXyZRmXzC0XrCgIjM6KqAhU+qlGJ6rj1oXaZ7d76DfCS/Okzuf7s/xbDpPL46QgSZOPDLllbzf4orGSxM49pfWIpfx8YVC2wSxk91ptjcMxJ0qDzxQKgAvzmN4eeCfjF4S8t4r3pof/7bpS/jtU/MIuW6EQ9UQEC+bWRZFEdu3b2f79u15WWVndI4dO4bneUxPT+dGJ4pGmZrfKkbm6xqTee6551hbW+PAgQOv2sDAxY3Mpw/bTGH7XiZ9mwcQJDzW2kMvG9DO4IXuTgQej639Ax5Z25bvLxHUPFO0qyaHPNvZyZ8t30E3Cy1DTNP0h5yxIo4OLpkK+rSTyAhhpiFVL8mDpr6VMgGN9FzWedFnITT/6NovceX0BRYarRy/TrWXS80L5VakQfny0EjuW7sCoaDOgOEwYrffoibTHDcHAzG5U5ZlObqqQiQzEnyaflGf5aqp8yMTnz2Z63H+Hz02/7nragY9rpkxcjWpMPegLmMGqU/NTzjXNStE9+LX/aHdr6go6iYa11/36coHbxWL2VNb5trGeWpenMdyAqnoxbaKaFRoZHVKsRgt4C8uGC22eGi2XUobnOrOoBRcPXmeXWGboYV/ZrwesV15V0rMqiKTv8ealaoPctZhxnLcIFGSB1cu5Z994Yd4YX2nHbctCCD5T25hMvLfkSal4sD2g/zHA/+FqyYs0GnVpM0uRSzOSdmUYcal9hQA25obgCb0E/Z4MU3PPGOuuWqWDS+lZ4/tqsuapEyXG1N4MGtphS/0dvHg2iWAYGDvRT8u4OzxMRjqcU/GpgdokSceB9IYzF4acGEwkedBZfnAWaZY4ogNrgSAYtbfwbUTBQEI4Pra1QB2fMwxXolumSurvGfPHm666SbuuecerrvuOiqVCmfOnOELX/gCX/ziFzl06BCHDh2i1Wq9pkbmQx/6EPv27aNSqXDnnXfypS996UW3//Vf/3WuuuoqqtUqe/bs4ed+7ucYDAYvus/F2tfVyFx55ZXceeedr1lw62JGJn8PLd0wsXEZ6WkO9+Zp2dowv3dc8ODy9/P7JzwSVU6g6zAZ9slUQCAynu9s50S8g8cHezmVzHJqOE0vDfPA5M7qej4xt+2kMrR5Eo61U5GJZUeVmDmlF+rymfPMVzv5LOImJUNnNduFFr5ohJaRlEMzZvI6Fc8yK3tMRB12BAYqCoXKg/6egIFloc0FPZZt3RoXuBXawE8rVhW6EQ7Zv1Bomo33mfHcl3zczS/vuuG+HLppegMSZWJO57ujK8P5yDDy5iMjvVL10tw4O6ZPKFO01gSeIssEgfUKvVKtE0f3/slL78cTpupkUip6ttiaAmDbxAaOiRqVILlOFtnKqCUyhhZ8tnUl1SzhisaKIXikLnivaSuTqFqRGX1XDdQvPBhHZTZxGfPbwe4C/+yJt/PnZ24h1f4IvOhaMflvHZPJCQC6+OXnb/4E/+LGvyKUCk8U9PqCTlwqsc1mqnstNOSRyWqf5U6dfX5M0zK0PFEqXFfqh7vmpixKQDsPryGN1EysJZ9e3c+xZGqTcXH/d2OQlZ6vwVhRu54lIigt8mcvkAqlJa24QqYly32X6Czsh2W2uecpryuT8Y92vHl8WPn++TeRKZGrL8Nro1smpWR6eprLLruM22+/nXvuuYf9+/eTZRm/8Ru/wb59+3j44Yf59Kc/zZe+9KWXLZm1VfvYxz7Ge97zHt7//vfz6KOPctNNN/G2t72NCxc2R1gB/st/+S/8wi/8Au9///t57rnn+O3f/m0+9rGP8a//9b9+Zdf6inv+GrQwDF9x/GWrdjEj41gl7baZaIVVZ421h0YyUAlVz6edaR5ZN6uUflq4/lPhebO9qtJOm/RUBYlgPa0xwOPZwS4+uvwG7tu4ml9/4S38yelbuW/xKpaGjdxIOO/G4d8um7omk0J2vMQqe8v+Z0xf3eTi8kCkzhlfvtSsd6tMhT2U0kip87iPrzXbog6Rl3L7TEF3lqK8qjMQkWtO8sTpalVtHk+ZOnr97uJYptPFVzE2NxaemWA63OC62TMj/WgnRUVDgL31VWIlmY56bMQVfKno2kz/cajE1NsxJ0pjjzCw7CWvMLQouKJ2nr3V1Xy/csZ9z1JUIz/lQsdMHNsaG/kl/fcLNxaXWUIAv3vHM+ypFkzDBb/DMC9QV+huuSqe82GX1dgYcAcPVr2Ew/15PnT2Hn7v3J2c6c1sCRHligUlz2C0jRsX2FVb5bfe/FHevOMQdSvBLwSonCpv9jESOqNU906/KNy3Y3LNxi5SbmluUJPFaYxxtZRev58bzJxsIHQuK+O8Gk9oziQN7u3t5rkNE9AeWCadi5E4Y+MMVDnfZ5zCbNIITGzRnT6QGUoLWnEFrQUXrJHJc4TseMbJKFwmCXnT/A2Mt5qMaAxnEaXIwldDgTkIArZt28bVV1/N//F//B984QtfoNFocOrUKd72trcxPz/Pv/k3/+YVHfuDH/wg73rXu3jnO9/Jtddey4c//GFqtRof/ehHt9z+gQce4PWvfz0/9EM/xL59+/iO7/gOfvAHf/AlvZ+LtW8oCvOrbVsZGZMsZR6sWs28QJmdXMqU3OnQTLDNwOUtFPGLicCs3uMs5Jwt7yqFZs2u/E11SUEsAx5ZvYRPnLmJ33/h9fyLv/4RPvLot/HY8t48X8ZN3FI4GC4eSV50L4GbkAObbxPI4jrKq812r2KOpZ0HYybRJPbZHm6gEDYQXcxOgS04BoYAcHrQ5L61y7mvfQW/cuw7+MjKAT63dgUNGTPIvJEqjNfMn3VdNW2LCXGrWMy/fN1fEfkpg1JOUGi9j0saq6wNq0Rexnmb4e2UEtI8Wc7sU1aUTl0NkEwQ+BlKmclUZ4LLKhf4qf2f4+f3/zV1mXJyMInWJhny/Jo5R1Aq57vRN95IIxqy2JrgyQu7ORzPF9emnVf0t3zP7POEUtO2RjmUGRtWXqguE9qZq15ZHN+pdO+IWrTTkM9sXMUfLd/KM71dRanuEehxbExfpgTTD17xEP/p236XvY0NwDxn7hAOEisLsTqxTafnNdds56t7T2rObkyxz1PUrYcnEIUBKJXd3rCQYDku49QU6tIIbJ6N6/zu6RtpqSgnQcS5kbEejc0/0g7mehF2WS8NkWArddq+eBkKp0ItuNBvEmdeLgyr7CKsiMmY/fZW9mw5nkopDsTXgHakjZCG/5WXIP5K29VXX00URfzKr/wKy8vLfPKTn+Qtb3nLV3ycOI555JFHRvaVUvKWt7yFBx98cMt97r77bh555JHcqBw9epRPfOITfPd3f/crupZvCHbZa9XGjYyrOeNe3jA0xiW1tTZ8T2EkKAUTQcTZfofIelbrcS8PTs5YTybV8EzbxY50ri9VlQlaaTxpJsFMe7n7vtSd5Le/8BYu236W77n+UabDHhuqiicMK7UexJTTqYXUzEUt5iJDGvClIskkQioT6BejiYwNG08IMIHvUKZ0FYhEM+N383lrI62wIbXJWFcegcw41WkyXe3x7598G51KhR0zG/SGEbVGzAu9HfhSMSF7bKsYQUYQ7GmsUgn79C0MuCkAU2725G/d+xSXTxm16m5WpWKrjzb8mNVBlZlKn7Vhnemon0M4Td9cl6sUGeRMveL+ZpkHgeL6+imIBIsbNb599iC37D7FrN9jXVVI8Hiwv5dB5vNQ9wqujhfxtYLpDWabBduszKJb7Tb489Wb7Opf58/pj+14iO+aPUiiTUXQaX/AUmKqMM56PRItCITOA881L+HUYIo9lXXqMqafBTzV28mReBY8P48jbRq2snfI1krW5TGu+33+1a1/xevmThP6Q6tDBz0l8aUmUR6+p6h4pixfTSak2pThdgan7sf0koAoyFhuNVmYaAGKN84vUpOCOE8khgtJlW1Bnxl/kL8jzqBUpKKrfOoyzZ/TQGge3NjB//LE93DXdsMsdAulYepiJKOwWSE8WoLLxj2ZNEKikfliQeMLhVKCDfuOd9OIlWEtZz5mJCPndey1b5+7fcvhzbKM/XKeQDSA1tdE4t81JyvjeR533nnnKzrG8vIyWZZtokIvLCzw/PPPb7nPD/3QD7G8vMwb3vAGtNakacpP/dRPfXPCZa91KxuZlZUVHnjgAaIowrcKee5xTQeWFipg0q5Kar6r2262GaqMhm+22xYZ0cxeKjltV9oKRSerWFYOBNoGcm0GeH4yu1I6cn4nf/joXfSzqMhBEBmNYDgSbBVC812XPzGycHUsK7dZWFqB75jcoJsEORznYI8d1Q17LYIUYVSa8eioiEPDWbo64HhnlhdWdnC2N7Mp+c0TisOtBf7k0O3UvCRXBV4d1tHld30ruMz9SQuqXp/vv6Jws6e8fp6sCHDe1vNZiIx+157qGv3UZ6HSop96zIRdtNZUbXJpKLMcmhEaBIo3zR7kbZPP8t7LPsk9k4dp+EO6KmBDRxyPZ2irKhpBS9f4bP8q8LRJTK31WO8ZD6QWFp7r8rDJYTU/cn3vvOQBvn36KFIIOsqnl3lIYWJcqTb9Wrfw0YQc5DG5bhaymtQ4FU/xQO8Shl6Qw7eFzL0eGcpylnuuN/YitvyfXv857tl+lKlwSCSMPI4TaXXnURaadc+ry89x8JiUmuWWebZbgyqguMIf0nCqyyPMOUuckVkuDVMtebt95SpjGpWAT65fym+duY2hCnIWmPNQ0jFj0xuMJt6WjUys/RFxz14Wmlwp20fPwoJD5SN0hNbmeV7sm6TqRJkaEEkq8xhUpiRp5vFtszdtObZKKaSUzIVG4fproVnm2teLXXbffffxgQ98gP/4H/8jjz76KH/6p3/Kxz/+cf7X//V/fUXH+5YzMmmacuTIER599FEuv/xybrzxxnwlmkvPpB6JlfmeDKx+krMupVlzIqwyFXSp+0MSJTnanckDgJoMjchplHUrB5JDMKU4i+Nwtfp1/vND9+QQUD3oGwZVOXFQam5aODFyXTU/YZB5eSUANTbjrA1q1CwTy22zs7qR//1MMkXTixGW4lwVZsIWEv7k2TvMDObUi+0+vlT04ognL+zj84tX5Nnef3n2JpSUm4zo6NgVE8TP3vbXDHWQCySCiUu4yWLWemzbKh3O9ybwpeLCoGnUeeMqkczoWoaeMy7OSFeDmEuDxdwjCKTKg9traRUQOQV7vWeD84HmM92rObFs2INLVpF6oblhgtKpx8eXrh+5pO/f9jjv2PssNZnSVoa1tZyFnInrTAcDllIzOU97/VxteCOt8XR3O2eTCZ5NtqEDSd9WWXXwo/MiykrU7pzumSl0x8Zb8bx++65DhEIzyKTRdbMHDIUmszL4AwtnjasnTERGsQBgYL0JrQRXB0MaUuSClYGAoVX3nvH7+WLEGauGTDdJyCgEH126iY+t3ERs73/gZcSpiYXGqYfSHpkSuWfTG2OXqZHnS4xk/XdTkxTrGIZOsLPfrrBHzpOmHmnq0bUQt3vvHFTmjh8PmxdFVZRSeJ7H/poRyf1a1JEB40ENBoNXbWTm5ubwPI/FxcWR3xcXF9m+ffuW+7z3ve/lR37kR/iJn/gJbrjhBv7hP/yHfOADH+BXf/VXX5FW27eUkQGje3b69GnuuOMO9uzZgxAiXzm6prRmaCmpNSus6V6MRBeB4YYfsae2BkArafDo2q7cvc7sdo6eOmkZRI7xVZ44ck9FwrmVGT71+M389y/fxm996q2kmTfqyUhY11XOxw1WhzWUhSP6aWgNmcaTmo1ugQvXvJiaJRJkic1psEamn/kcSeYRglzWv2kN0lLc4Inz+0xw1XkH9osvs7yE739+7B4GWcATy3s43FowMaQ8Ei42E57s/7997zPcMHeG+UqHWPu5XH8oMtZsIHyh2uZ0d5I481iNayOSOA4aS7Q0kIydiPLCWWHKrsAE6p3Rctnkk76hPTuVAOcdBEHKeljj2Q1DVXUxgUqQstye4E+P38YyxYt9z/RRfnTnk3SVZiUTuU1dT2sImfBwZ4Gu8jnYn+FMOsHReIbnh7McTyfpeSGNSpyrWrsha7i+SSdAOj6AIh/E8ZIF42P8A/sfY8LmtbgtqkITZ2bMWqmTp3fBfpsN37GCnX7GBUtVdoKjb91+mqpwrKsihuYSjusyZcXGoxolIkXHurhNmbCYVPh8f4ELNlalS+/DxqAGWtDuV9EauoMIkAwTPxejLMQ8R1s5LtNNI6RQeWzVkWr6x2t5uQEAP52j2w9zIzMsGZlMSbLh5tIh+d+zDCkl1zUuAb42FTHB6JYBW5Y1+UpaGIbcdttt3HvvvflvSinuvfdeDhw4sOU+vV5vkzKBI2i9Em22b5mYzPr6OidPnsTzPO6++26CoFjx5EbGfiitGQwCGo0BFevBuIBgLytgk4rns7vqjMwE54ZT7JJDKElYOCOzrdLhRHuOyFXaK12a9BQqLTKjl1qT9Fvm5Wv3qjYAbiRsJis9Mu3hefDC8g5iJZmb6nJJsIyUmrVhldBXrPfqTNZNbGNbtUUvrRD3AuNZSFioGG2zR7t72RBVMi2IREZPm8kkVh4PLZpiYzorOutW14Gn6AzNJDBIIj5+8GbObUzDpDZGpqx3I0zUoLzcngi7/ODVRWBxwh8wyHxaaWSl+0P+ZvES2qLCoc4cG9QZxD5rx6pMBz1unjrNPdsOk+nCG9Fj3lZAStMbAIJMCzPh2L+FMiNLZB7jqYQJpOD5Gj2E5yrzXLs8TyUoYJ7nl3fwt/FlVq1XcEV1kXfve4BIxCynAb5MSbSJiwn7XKVIIi9mWdWpioRY+2gEFS9jPQ0JPaPeXPPTvIZQKBVpJi8Kl5nfRn8Yd3Zc+58ufSz/XvUUa0nIdBATSmPU5sIufSVpyiGxFtRkTIYcgbda/So7JteZbWxwbRDTlDBQmkAIKlITa40vBHUv2ySH0/QSOsqnJlOrQg7n0grHkyqxlrngZ+7daMFG38KX9rPTr4KGbr+cjGjfy7G6PQ6qy7RgqHwa/hAhFNqWWM6UIHushtpTDF5FBiyemGF2/zqegLhUrCzNJGxREM0158ncNHkp8NVhlm3Vul3DXnwt4LL3vOc9/ON//I+5/fbbueOOO/j1X/91ut0u73znOwH40R/9UXbt2sWv/uqvAvC93/u9fPCDH+SWW27hzjvv5PDhw7z3ve/le7/3e18RG/gbRrvslTatNSdOnODQoUPMzc2RJMmIgQGKTG/tICxyT8a3z3CszEvXTouEI194uZE51TMYfaLkiJEZKp9MCUIvQypF6Eq+lglCnoa08G6yEjtsZaNBfSJG+hqVwq6JNdqDCtTBExmPre9nLuiyHtW4unKWTqfGzFRnpGiWLzXLG01UIqnWY0jrbItatNOIpwY72V3d4EhvjitqS2itUULwWGcPp3tGaVgpkY9NLjHiZXQGUW4tnzm3F60lM80NhKftStNekJXAcZf8P1/7GW7dcQwBPL6xE5DWwxNIT7ERNwDB6WyGajVFSAlKmBWpkKylDT558nruP3cF/+Olj7K3sUaMX0jG2M/Lwgslj9GuYlVAU5qJzdMKLQVKQRBkqCFID1Qq8CKP/7x4Fz++4wE0cHh5O3++fAs0JcLTSDJ+cf99zPhD2hn4lgkXZz5VL2UhbJs6M9Zw1L0hCkEoUgbKlPftpBEzXj+Hc5p+TCcNzUJEa0IvzUt2jzdhb8mmP+ni4/rpU+ystEf+POHHDDNJ5CnODBvMhx2GOqTpDViJ60wFA871asw127SHEbUwyft3c7NF01XDROR9y4kDMuNMUmN70GXSKxZjXRVQkymByHh62EBIxYw/QKbksbRckBTB+qCG1tAeGG+80zdqf91BJX+mnIkYB2eGFnYz7ENhKfhmHyk13W5EcD6gN+jnj2eIx8qzs8xe0gWZjMJlWtIMLs4Wc55M069SlZWvWUym2+1SqVRekxSPt7/97SwtLfG+972P8+fPc/PNN/OpT30qJwOcPHlyxHP5pV/6JYQQ/NIv/RJnzpxhfn6e7/3e7+VXfuVXXtH5v6mNTJqmPP3006ytrXH77bfT7/c5derUpu2K/A27OtKKoQv+Ww+mnxnjsh73csERgYkf/P6x13G4fRmQ5Eq6+bGBtbjJXKVFVSZ5UuDo+e0Llgc7i2OsrU2wbWYZ6StU6rGruZr//XxvEu1JlBIcGS4gVUbFAujlFThAlkkCMvwwIxwmNL0hD7b34QlDBrhv+QquvGSJOAuI/JQH1i/LExe1hVagmAwCL6U9rJRyN4wnppTYJPlfKhLNO665nzfuPkiMJMVHS8mOapuVpI4SHhnkmml5zR3P6I/JMdiwnVT5o8Ov46eu+xypkFYDTuQQ2Da/iDu5EZ0MBrSSiIYfUxEpAxGQDH2iaopKpFFXyIyb0Nchf7B0O7esnuKT6bUMdIQkRfian9r1JZrekOPDKg2/nx/feUahzFiOJ5gLOnSykKpMWUmqVPxC+8XlxDR9p1hgDE/k9QhlihK+9So3B7mFU2PI4TJGm4YfvuZB1lKfipcSCBM3kcBGFrA4bNLKIp4fzjPh9dkdZiRxAMGAldYEE9UBy+0J9s6uMFXrsstLmfc8+pki9CCQgr7ShEBVaoZKEJUm9LpMWUtDpv2YUChOxg3WlGSgPZrYMtL+gCsrizwiLiERjs0l2OjXiIKUVq9qynv3jXHpDqKR68vvbMnaOrjMxQilZdIZFohmcMoYDM/3cvnk3kYXMo/p3iW0Jg6PwGUAE8F44b2iOU8GTDzma+XJdDqdl9Q2+0rau9/9bt797ndv+bf77rtv5P++7/P+97+f97///a/Jub8h68m8nNZut3nggQdIkoTXv/71TE9Pv2QypmsOLgNQOA+mZ/+vmY4MlDXIUv7P57+Nh1f2j+hSjR4bFm2p4Em/P8L8ci1PtnRGJvXyaXm9VafqJbnA387mGpGXstxtcN/KlUzVeigLZz21vjdnQc00OyPnONaao2a1yWZEl420whe7lyIxQfYvre0DoGupx7vCtby+hlIi92Ck0Gbl7ynaveoI7ieERiuBkGPrS7vJ39v9FH//sscRAlYHJtA+bQU3nZiou34o6MlOQLSct+QMzlD5fPTpN9BOIismaXKGaqo3IoUzKGH1jura9IYkqSSzMro5LOi6rwQrfp2/2LiJTBQF2K5unOfG5ml6yhgIYVf14GRszPdY+ybL38YnnJqDix1NBX1AU/FSWnbcXY8nLEU7lOXU2C1iMWMr+6Jpbpw+S8NP8IUm1ZqjvTpPD6c4oZqc0pNsyAons2meTnbx+yt38KXlS9kYVPIneWALdF01uc4Ozzz7oZQFew8PrY1SwrLN81nwe7lRHGqfdhZwLg24oDzKQtyuzQVd/vGOB0qlFWCjbzyZ1sDAZd1BxcZmKmzVytfu7nNeKFAohLT3RQjiRw28JP3CA2hWTVzjqpX99DrNnMnm2mS49Xmh8GQAdlfmvmYxmW63S61We+kNvwna1z3w/0oMzenTp3nooYfYuXMnt99+O2FoHjjHLnupcyhVBP4TbV72bjYgtA+TY5wNVYobIq0dE2jzKv5kZwqA+ag9kuA3PmEUrDCRV+lTWpAlXl5TZmdzjcmox6G1Bc4nE0zVevmkOEhDDrUW6PQiKkHCaqeQ4znU30ac+YBmm9/hmf5OFB6e0AxTn8XhJOcHTS6rLTPIPPZXlnPNNFXyZDxPoTJJkgm6SWVEhUB66iKejPEI/6crv5xPMtsqHTpJyPZKi3YSGlkXO1G7XIipyBggBzFKUQoslm7Zar/JF05fgS9VPkFcES3lhtENtZscnfCoJzUrGxNIywrIa87oYh8zADbWY9+GH97xMFNeh1gLfGHKIjuygV9KwnX6ZK4fDQvT1Tzj8Va9hI3YrKxd9n/DwkcNPzbMLzH+vI5d/0XYZd++8zlqfopSsDSM2NA+URiTSWFZdtZLtMfv9SssNRv8l9N35guV0DNyrXt9Saw1McaAur5WpMb1bsIzMjG+0CxnNWIlaWnJ4TQkEUX9mUBkm4rwBUKV4k6C9VJMBm08GT3myWx+wkxz7DKXrCuFRqLxhEJnHvKEMRjlwH9gAZsbrr6KBXUb/eEonJ5stDh+/DitVmtTYLvsyVzb2Pc1ScSEgr78WucSfj3a193IfCUtyzKeeuopDh48yC233MLll18+chNetiejNAMLlw1UoSs1HVqZk8A9yAUklaktjmt5+Sc2psiUoBHERPmkIcBzRsadtxyocX8TxP0A4WmaUZ+KnzBT6/C5k1cz4Q3wPE1gV/qBn/F0uoNW15IG+uazF4csyyqn2zMkQ5/5sM3zPUNP9ITKNZ8eb+0mkIql/gSX1pfznAWtRF490ZMZWSro2YzpESMjnScztq4Wmndc/wWaYcxGauEKoVm21Q2HlsEV2WCz0yGrhzFJKqiUIMbxuItrR9e2ca43idKSgJSFqE0gCspy6Gcstc0qs+4Z0VIAkQk8t0AYq1JZGBv7RWoWwg32h8sM8fNKkeV9wNCTAWb9DkrDbGByeRo2HuJLxbLVe3PwTg6dBcN8Es9UObl0/LpHrz8n89nP7977NL1MsEpILCXKBuTzmvU5BGf/ayHYDWr8VedazrcmmG202Oubc8UkrGeaDR3TJyG2VFWBh9Iw6cWcjZt0lU9LeRxKQrSI85wnx5QTgpGqsQB9HeQwo9KGXaY1hl1WDvwPohEpoq3aIC+rbAySZ1XEPaHR3WLRlZUq5DnCaLMSIqWHHpv2dk3O0G63eeyxx7j//vt55plnOHfuHMPhMM+TAXjDzHVb9umr0b5VCpbBN5GR6Xa7PPjgg3S7Xe6++27m5uY2bXNRIzP2wGZak2UeWSboq17+98nArIIiz0wC7XhYOoh9aUtMIM+uvNtphfN9M8E15NDmo5B7Cq6pUixGlAxQ3A2QnmL3xCrrgxovLO7iXGsmr5w5YT8rUULPD7lgz+WM1rGVbeALXmjNkw48Qi/lXGIgPE+ofJJ/YmM3AFWZ0vSHzNn6KkoVNGvfy9BaGPKB6SH5BCgVWlsjU668SMa37XsWMMrJqb3sudAU4pq1n52+OWbVL0nCpyao7BQq5fgkWzI2f/3c9Qg0l4YX8sklKa2a13pmYveFyj2IhfoGkYXlnIC8y6eQjC4ChKf5rtmn6BNQkwlT/qAQE6UoU+28j0Aq2pnJ5XH03uGYIrbTMpsOitK8bhUeiszAZaKg7I7rv21ugv0T59k9ucxaZjyA0FO5IrHbzUGQ6y07UbnaOkrQj0L+YPEumsJn2oOu5clXpfMoE9aUZqgyMgRP9mZ5djDB2dTndKYIvR59S1d2EGYkivLMRry06PFABbkRSjKPJPPJlGSQhEaZYBCZwH+/pIA9YmM3w6IuP01KQ0KRQlG/sDvfruzJWE4PzUo0fmAALtu2gxtuuIF77rmHG264gWq1misjLy4usra2xsrKCk35tfFi4Fun9DJ8kxiZc+fO8cADDzA3N8cdd9xBpbI1hnoxI5NnTTvuvX3QnEjebGizvn0nI2+2b5WYZm6C0Tl8YSizqTYm6kxvCjA5KJsSMu0xspKRKURdBRsrTar+kF0Tq/TjkE8/fhMA05U+g9gnSX2S2MPzFToVHEtdLXozgR1pG+bb6cEUWSJZTWuF0RCKgV05P7K2h78+ew17q2vEmWRf1SgZ6EzmQpmBl4ESbPRKeLBLdhMapaSBlUrv6g9e+yC1oJB/OdQ2rJWFSpsLgybTYY9WXGGh3iJJJVOVXn4A52U44zI+8RdsKsHZ9RnObkyy02/l5z6zWtS8T0sGZ6VrXtDtExu5aKg3lpeSGxf7WfH7vGHyeD6ReUKXsH84NZg2xwzbeZJikifnmoO4Il3bKy2UNorSsZJEXkYrHX1u694w92SkHIVjt0JJBIqfvvZePnDPH5GMlE2G1HpdoVWeyD2HzKldjHpxHopbJ7q0Uo0QjmYMsRJ4QIpiWSnOq4RM9gj9DeaidXo2w9/FF2syoZeFCFF4GaFUDGx8aqA8Yu3l1Hj3LMb2M808tPWYywrZ5do/5aEY2PtRwGXKLDaGPvVBkVOSlYxJGls4sxJuEduChaoxxFJKpqamuPTSS3NlZBcXef755/n85z/PY489xsmTJ+l0Oq8oZ+Tltl6v9y0Tk/m6s8uEEBe9WUopnn/+ec6ePcuNN974kqVIPc8EKssuLmyGy1In+Z/4VCsJU2HEUtwlsvsMhsa4lHul7FJQ5elpAkFGqiRCaE73prmDE8yGXSI/Jc4ChD8a8NfaFNXSSpoiVPbYG8sN5nZdYPfEKsudJifPbYedMdOVHv1BxNKFCcKJlKmwi0hhuVLjhQsL7J9ZRmk4nk6bNBUN/Tjg6HAuXz14JSPTyyL+fw/+fX6n2uFHbruPyxoX8v5JOykFniJBjhiZvGCWoASXGQ/HFwnXbjs9Mr47qxs5jdapJ6eZhxdqWr0KsxM91vs1GlFMxUtRSKTWKGFJEuV1goBLmxf48Ss+j8oks7U2Hpqh8ohkSrXEsquWpGFUiSbu2RVCIDMyfDxpJHak1GQ4Yobif7/mL6jJFKW8vCqkUXu26tXa1b3POBtPsBC2c0HShjdEAzNhj/PDBs0w5lR/mvmoQyupMhd1TbmHYJgnw04G/TxmYspG27hQNv70we1zx/in132GSpCRZCbCHpbKEkwEQ3oqYDrosZg1zQIqKGAst4hwxuYfLBwmJUPIuExGR2vzbGaZZ6BTbTzSpaTGlD9goAIaxMwGPdpZSMVSl901uBYrj6pMWU/rJNrP++GMiyNHuARJt0BwcUt1kfl7sAW7TGjYWGywpwTtqhL5OR2a7xPVqMSDLNqO6tYJj0EQEAQBs7Oz7Nq1i16vx+rqKqurqxw9ehTf9/OCYzMzM3ls+LVo3yoFy+Ab2JPp9/t88YtfZH19nbvvvvtl1br2rScy7s1sFfiHIimrkeuWmd87wy7jLfeC7KfCrewDhNCc7U2iNExHXSIrXZ9rvJSgJaez5LwDrUBrjywJ2DW5ypOH9ufbTtV7ZJng6PEd9Lr2pVIAkr+4cBNLnQlOrc2yJqz+lICe8nimv6PwZKRJBjTnNFew3m/wsWcPcEljJYf2wFR69DyN0Jr1bsnIlFbXZWgNofnh1/0te5rrLKX1fGKYDAcc7RrZlksqqyRKMB+ZCpBuLHrD0eC/U1eWY+cEwRu3Heaa6bNcN3eGS2prtFSFw/15TnVm2Tm5SsvCLPPNVo6G7Jpcy9lsU0EfrSBw5YN9V+DMeg9S8a/23MsOvw8ImnKY1ypp+jFH+sZT3FNZyynsTllg2uvbsghJriy8FpuVca56bJ8Z57XU/Zhu4tvS187LGg/4m49Ixvz7u/6Q99388bxctzPcUpAX5QLoZ4ZgkSQerlRMmJMgCmMjULxx6iQD7ZQCiufTJYgG1kNYtomKiYXH5oKirIFj0zU9U9iuJpN8zCOZkmrBSlojVl5+f5OSBwOF1H6uqJ0vyMrvbNl4eMRKGg/TMt88DZ2TE4ikMCBlT6bfTwk8SSXwt0LLWKhdPPbhAv9CCOr1el507I1vfCPXXXcdURRx6tQp7r//fr785S9z5MgR1tbWXpH8Srn9nZH5KrcLFy7wwAMPMDExwZ133vmy3UbHAhk3MltRmMF4MkDuwbTa62b7ysVXJKLEgJIoNJalpnzuO3YNmRI2BlGwlcqrMm9cedeuvoIkJcs8Dp81Ks9VL6YSpPQGIe1Wg27XTKQutyRTHn+4eCvPre/AvYQCzbFkFoWH0KafntBFnEDkm7Lcm+DLS/vZv2A1jUQB50mh2SgFUUX+lIwG/ucnNrj7ElPaesbv0cki+jYHYU9tlX5mcjhW4wbNYMhSZ5KpyIyNm0Qa4ZA0FbnK8jhcpDXcPX8kn2ZW0wqns2kWe1N8sn8DHztxJ+c3DIxVC+O8IFc9HHK2ZUQNLwyaxH2fyE7SeRVN+/lP93+e62pLdLSkpQIUgil/wOmBiWvVLSOsIlPODqcAM7GCgSM7FgZzk7/TsZsNTCxq2n5OBQWNu2thp1zHLCdTFLDW23Y/ze/f85+5efY0UkBqJ+igRCHvpMWz2vCMxl67XWe61kUpTcVCqs7r8TzF3588iC8HeV2hspFxQfGhtoxNez+2BS1iJfGEpqdM36e8Xg4XOnVwRzKRFj5rpVUS7eE7iaDMeS6FQCUUxehcX8pGZtwu9LOQXhoW0F9cNaUBRoxMMUaDQUbDvtPjnoyHyGOwW7UyhbncykXHXve61/GGN7yBPXv2MBwOeeaZZ/j85z/PE088walTp+h2u18xtPatFPj/hoDLXFNKcejQIU6ePMl1113Hzp07X2TPrY8lpdzsydhPd58zu8pwNSx0Zj0PX8AQOtmLlxl1RAGTCBbaiVHwyMHLOX1unvndJtYhcvZW6SEdi9NoZb7PeF2+dPTyvLduhb+8NAVAr2PLE2DgLE8IeiLii61LIHLXr+mIKtOYmIcLdLugtNnIeBMC+IvnbueO3Uc4urjDgF82j0SiDb3UDl5Z9sQZGY3mn7zuswbu0oK+Cki15NmNHUipiAlYS6tEniLyEpreAJUJFiY3ODuYzicdMKtYX6pNCZkAOyob7G+ucLI3yXSla7wBZe9dABfERJ6TA9BPA0KbL7QxqHLvuWv4ZPsqfnDH41QaRlom8DPQRmLm+2cf557pk6TaTECJCmhrSSupEYmMRAl2VzY43ptib3U979+M32M9jWj6RqYl04L1YZWnV3ezNqzSVz5TlSGRH3Pl5AUWh00mwiGLwyYzYR+0WXw0giFCq7ystRvr//c19/I/7nzO6o9JEArPhrNDL6OfevietsKX5nn1peLY+izTYRfPU/TbEfVoyDo+YZAyIGBfdYk31k8ihaCV+kzaPJtzcYMdYQdfaHpKMukNWc18dgQt2sqnIjOWVZVZ2WVCDnI4MVUegVDUZExHhSPMraH2WBo2mBPd3Jh0bL5QblzsIsv9/8XKSbvWS0P6maklozQ0Fy8H1skGxTNVDvz3eynzdsIen+v9LQxIuZUpzC/WwjBk+/btbN++Ha013W6X1dVVlpeXOXLkCGEY5rDa9PT0JlWS8dbtdtm1a9dLnveboX3djYxrg8GAJ554giRJOHDgwCt2FbcK/jtPpljFCAM1xFb5tWsDySHQhfWkhyQoqv2Vmiit+zwEQns5/0p4msXlGVZlBBVyP7FMXS7K5JY+hWY26PLo81fk203XemRKcOa0CWw7TybwMvr4+AKTVy2LY0uhcwhIaqdDpumVM5wlOdOoO6xyRk3mV+b6mWQemfItNlfAY8JuI6VmstLlYHuBz/SvJhn4XFFf4orZRerNlCPtOSaqQ9bSJutJnWwo+NNTt/BtkweZn2jRHlTyktGmr9qIM25hZA7MHmOQ+Xzu/BV8377HTXndxCgwg5GLOdGd5Q51GClhsTPB5LSpXfP4+h4+1bsG4Rl6bHN6gB6CH6QQa65oLPIPZp7HE9BWRlm67sWspRE97TNQIUf6M9zQPEdqX5Xd4TqdLGCgQo72Z1lXNU70Z/jLQzcBmqRtjLNQGpTEC1KqIuaqnWe4bHYJpOLps3t45Oh+hp0K2+bXmNjXzj0Gt+b69m1HGGpBRWgiAUMNFS+lpw10M0hDGt4wF7x0bSIYMFvtcKI/y3AYUK93SXqCahgzKfv88OwzhWdfKincziJ20EEKuBA32VPZYCVpsruyRiutUwlbVq5HE8qMtazKhDc0he20RGAUyZ1Qa6J9fufE6zneneM7dz6d5xm5csit2OazqDGYzPbnxdb9q3EdbZ/L9lKdSetJpoMiRuXgMk8I+oOU5qyrUzN65EC+uAG5mCfzYk0IQaPRoNFosHfvXrIsY319ndXVVY4dO8YzzzxDs9lkZmaG2dlZms3mpnP8HVz2GjdX+6VarXLXXXe9qsF9MSMz/psr+VprGlegnRrvQUOe9b+pieJ4oQxRFImMLi8Gl1nu3mUli1iOHjMydr+NVoNeqfTt1FSHs8vTDKy+k4vJFImLLp5Q6pqni0laWAl0rfMyx+5311Qm6ckw/+5yYlyy5DiNVmtzLUJo5qfW+esL17CaNpAYD2fd9t9dY80vdKt6OuLj6zfw4NnLkFozWenlZaQrXpIrJYwbmbtnj/LZ01fx6ZNFjkK/G1GLLFwVZBwUc5xemxsZ19agwmc3rsz36dhqqCqRSAlemvLOhYcZasGJOCItTT6p9pkLOgQyYbba5mg6RYuAz7Yu5eH+Hj7XvpyD6QLn1BQPdq7gQjpFqr0c8imPs0DTHdR48sw+/uih1/Nnj93J55+6nmESobTH4vI0HiqHIIWA2bDNpB/jC1MoL/IUvaRCIFUe01izuTp1fziyOp+td3lucRcbnTrCLRqGATNBjx+beoqGp/KM/Uk/Zs0qY9e8gkAxtPEXN/3Wcn22mJbNg6qKBK3NU72aNnlw/TJW1QSnh9O00wr/9dTtnOjOobQxPs4Yuq46EkU3dmw1O2xs0cYsjkuGFVqw9OxcDkHG3VJem4XL6p6NrVWi/FDl6SB8CSPzcj2ZF2ue5zE7O8sVV1zBnXfeyd13382uXbvo9/s8+eSTfP7zn+epp57izJkzuTBmt9t91QrMAB/60IfYt28flUqFO++88yVLKK+vr/MzP/Mz7NixgyiKuPLKK/nEJz7xqvrwdTcyJ0+e5NFHH+WKK67ghhtuyIP3r7RtZWSEGF0lgUnMy1KPQASktr5KO+3h2W2nLiI1UQproG3wspDyt7BSuvl8LhbjsOhxI3NmaTTvZ7LZ46mn9+X/zzKPwSAgCi0byXNGpjiL8HSO7QthDFGc+UV5X3cBrv+2gBVY2ML2aZDX9BiPjwi7j2ZJ1HILF8iMipdwcNWQMxzbqBEM8mM4TPpvzl5LxTMBZ1MiFybCQZ6lX+7/dNBlb22NP/rSXawn9TyJ0dcZ1ShBZ7ZIlQ44tGGIBtvqbbSGT56+kZgCknBGRifmYn5g/kkG2gBNdS/Og/Zg4ixSwErcoOKlLA+bVPyMvoqs/I+57umwa7Tv3PiUabdjs+V4cmmRXClRmRxZHHz37mfyomNKm3LHTT8zsT272UzYy/vaL1GZlYY/PXcLPhm+Zb5FKuV/aBwjdGKwuiAOnLa07B1Bm4F9Nqt2vwUbW5zzu7QtESKne8uUU/E0D7UvZUU1Sa3R+Pzy5fznU3fxxMZeSzYQ9NIwfybGx8XFcHrJWBxUb/kVgHVbJkInATr1coMyaG82MjXPSgy5mMwYbS2SLz7fvBJP5qVaFEXs2LGD6667jje84Q3ccsstNJtNFhcXee9738s111zDo48+yqFDh2i32y99wIu0j33sY7znPe/h/e9/P48++ig33XQTb3vb27hw4cKW28dxzFvf+laOHz/OH//xH/PCCy/wkY985FXDdl93IzM9Pc2dd96Z1355tW1rI2M+y8E3T0q0FjS9SbpZoQM2Y7P+6/7FMVN3vDgTqFKA0SVYktphLV2OKxG7CXu22622C00kGaQstZp01kcDf71uRBSa5DfPVSz0ipmn7MkIK7cxLgaYezJjb67KZN4nx/wqB9/Np/nBEwm9ipdfXiBSVnt1jqwZFlbdUnRDqUAZQ+AkZQYq5MtL++jHPrGViJkIh7noZdmTOTB3jD8/dDNL6zMgyCeyHfV1s4E1GCKDF1JjZOrhkFMb03ymd8WIAW7bFTtK0JQ9bmmcom4D5a6CqGsNW7fHyeE7pQC3Gnf1bnyhmfXLTEQHnJYGePyRzv9ceLQqkwXTDc2B+eP55qHUrCcV6n5CooKcsDgV9knsMc6sFblCZ1oznE2mOdKZpx4MkCh+cvczzPuaoQ26N2XK0HmRrqKq0JyLzTPojEvTi1m1XsPAEgGmvR7LSZ0n+ns4lc7StlCVQPN8e4GH1/Zxoj8HooBZu2m4CdZzw+AWXcnQss7Sl/Ya1pyqhPUch/Z977csBCsKYLwqnZHZWgSz8iJBf2BTOsRr3YQQTExMsG/fPm699Vbe+9738su//MtkWcaf/MmfMDMzw5ve9CY+8pGPfMXH/uAHP8i73vUu3vnOd3Lttdfy4Q9/mFqtxkc/+tEtt//oRz/K6uoqf/Znf8brX/969u3bx5ve9CZuuummV3WNX3cjMzExwcTEayc6tyVcZt/0bq+QkPGtC1z3JuhlPQLhdMtc1n9ZGUvbCVePrMS0kiSqVHTMGpm0X1A2i36NegUjFSXHZFoas12eOb57ZIISQtDrVpCehkQgg2Jl6Dwn4StLRjBEBE8ok5tROrwYo1Vrbf6cZTK3P93h6AvpWGc6h1kGZKKQ3g+05tDyAidbs2RKMBX1cwjDjYNXWqk/tHQpi92J0flXAVqNZPzf0DzDnz1laq9P+92cDbWt0abfDxA2aCaU4FwwwX+/cB0Pnb2MT5y+kYEICvgSislQaa6rnEMDrSzEs8at6qWsWVgxEIrFwQR7K6skSrKzskGmYT7soLSm6Q9yqG8u7IwLwNhxdvfNwWajrbzISBNJOUH0isaKGRIF7dRjqCVHBk2qUlP34vzcraExAI7AAnCsPY8nNJ9avxahNX+vep6JvHKoYw/Cup2oL6ut0nW0Yl14MsvWuLhqnqbqp+CF4Xbu71zBhWSCUKo8ptJOK3z67FWUY3juGjtbGJkCDbDPrr2muFfAt8VYjY7e0BJZPOt9xqmi6vtkiX3W/GLf0MbSHLts/Ea8mJFxOXevhdz+y23T09O8/e1vZ25ujt/8zd/k4MGDvOMd7/iKF+BxHPPII4/wlre8Jf9NSslb3vIWHnzwwS33+Yu/+AsOHDjAz/zMz7CwsMD111/PBz7wgS0T3L+S9nU3Mq+1ANxWRsZ5MCorJn4phPVkjIGbCR3G7bK9N/cr/8VNoBLWerXidzepKd8WUioF5R3tNI/TlHJvxtCsjbhagqyK7Xo2+C9S8AJVuP7WcxKePY+Vw5WWvqxGXKqRS8g7VH6py/Iepq92G/uyu9iDmxh9nXFkZYFE+ZxuTxNIRT+22d8uDySn5mq0kDy5tCunFIPxFiQFXFb1Eo4vb6NvYa5La8ucspRksFI8bkiVBiH51MqN/N7GXTzQvtz8XjLerSRCKyOBc331PGuqyrQ/pJ8VBrWtiuvuZCYGsjxsUPUSVuM6FS+lm1VGsttng87Ifb6oHMwYXFaGS9Ohn1/3vtoyFZGwkQkuKJ9TSY0N6XEurfOFtX0cW96eM7RWN6xWW1SwIU8Np5FS0dJVdoQZewMPgcdQKTw06xb2qtlJ3xeaczYXZi4oFmGtzHr01pvbUFX+dO0WDsbb8YUqeciaYebxmcUrSq6v+TDMMU03iTYlbOajMdx6CtLDUmGxsfIa7vlzRqYXJzSi4n2RI0bGFlfLYzJjCzr/4ukKLtflq+nJbNW01vR6PZrNJvv37+cnf/In+Ymf+Imv6BjLy8tkWbYpv3BhYYHz589vuc/Ro0f54z/+Y7Is4xOf+ATvfe97+bVf+zX+t//tf3vF1wLfAEbmtW7jRmZxcZG+9WBqjQJ+8mxlx4Y1MlNWeTlyZUY3lUsqmspzVSQr3ahQAy7lLwht61yMrWyLJi46+uMrN9e6LiHT5ek4D6bUVSl0/gZL9IgEvu2YPYk1HDa5MrNxgSwtikmNY2rGEGV5LXjXy7V+zWRsSzi2YWJLLqcj1w0bq2d/aHU7dZe0imFOedKp9Squrp3nU4/fmnfh8tlFHj+zL0/aq4gE30nSlAzYyKV6xQJjPasxHPrsm1ilpwKmPDMxN/w497qm/WKSzWGkQtcmHy8okxsSarJEec9jSqOfxerCeZDFPU5iDyEgEAk/e+W9XCCgrXwQLjlS46PoVTxeSGfzRMaJiiGqLExs5EmZ52niSc32sM23za7QUwmrWcLR1ONo7PF8MkWqBVN+zMGugdkC4a5/wHLiEnvNb5HI+PO16/mb9tV0rOGJvDTXjPOl4qGV/fRUtRCCtc+9Rphk4JJ2mSOsZLncTX63GG3FvRyHfN3Ye/aau0k8Am9LvziW7yp4Ok9mzNa/VC0Z4Gvqybj29ZD6V0qxbds2fvM3f5PbbruNt7/97fybf/Nv+PCHP/yqjvsta2SUUrzwwgs8+eST1Krm5Sg/X9JmJtakYXC4hzSvlKnTsW1LLr49UpxJzrUjKvYdkCV4xryjIs9/2IqUKca8m5FWCvK65jwZdxpnbETJFZJS516K1JpBFo4ardyTch6MQHgG9hBCkyQ+w9yLGp0YlRLMNrpc6JsxExaaW9wo4M6jluXllAQcM8kfm3Rj7XO6NU0/cXGZgWFZCWOIls7P0h8WnsW+mQvcd/g6jq2a2Mv2xkaea+Ou3rG5R4LsmZvUJZ1+hb2NZT7bvpR1C5/5QrNma6U0vSErFibaFa2TaZPln2nYHm3YALzB/aNS+eL5sF0qBcFoG1vdF3kgRam3tO/zttln+E+v+11mq8Yzct5R3Y+NBItdUCQVj6WeGe8dE2sME4/Ay1jcmGStV6frR0ip+PdX3ctAp6RaMxSG2HAqmeJUWuG4Vcd2DK/dYSsP+q869phM+cTGVXzowp28MNiOg1+TTBJaoVSAdlzhqbWdpUvUaG2MixRWC0/I3Jt2Hlsy8MvDsvkVKAf+xxZdzsjIzEMKQXeYUCkZAumV3gd7XWV2WblNRS9eFdP0+Ws/Tb5adtnc3Bye57G4uDjy++LiItu3b99ynx07dnDllVeOGNVrrrmG8+fPE8fxlvu8nPZ1NzJfDbhsOBzy8MMPc+HCBQ4cOEAY2lVOOfAvBFpD3RqZyHOMMDNZ9LJiUF1MZ9zB6CeCDIG2MMtmI0OhX8boZGM6sdnwlLcZ/2uvZ6TQXZBcqM2rv/JwSjQ9FYy+pI4Bp4wnp5REes6TUQyGhb6T8wzK0JoWOp+chNCQwumNAsY6151iYKs1gkk2BF14MrlujOaZxV05hXUyGuQSK1JoTp/clh9zcqLFsY152oMah5aMIsJCc4NAO92vsVo/ZZuqigXCMBFUgyHrqsEj7d20rdjihBfncjGuOF3FS1kcTlD1EpYGTWpewuqwxlTQZ5iZ2vUOrZz2e/juXoqxz/zO2M8xgy9Q/OLNn+AHtj3ORDAsPKbSRfR6FSZqRmLI8zNOJtMM4gBPahZbhh3WGlY5urENEFzduMBNjTWqUnG8b2vDiITnh7N4Aj69tptzwzpX15fZSEMCoTgTT5pzqZA/XLme/+/ZN/D5zqXIUh6WL7Nce0xgmG9fWN4/UsrCExopjXySFJrQy/CEzrXJnIeUDce9AzHyUR698QRK503G3ZSqb4qlReWyDKVDu8obzerWsNjsixgZF/T/Wtd0SZKEOI5flZEJw5DbbruNe++9N/9NKcW9997LgQMHttzn9a9/PYcPHx6RxDl48CA7dux4VbpsX3cj81q3JEk4c+YMYRjmSZ1O0bUMgDnvpO6ZG+lW2qk2K9RW0s+3FbknMxq878SAgEHfYsRlr96eLK8+6byNkQk/P0Pxmy79f+zZ1krS74cENpCbxznGvAS3m0TTS4OcHWX+WFo7Cp0zm1RmJEPa7VpxgNx1K0E7oiBESKFJkoCslNOrgROdGSZCW/nRyyAr1xspDMHR5W0MLBTy3IXteUkCKTTKejhowWV7z/GZYyZP5tDyjvxcVVvm1ysxs0bOAWXXgYnKgNW0TiAUgcw4PpxkPalQ8xLOxVOAMRgusN4fUxx2n4kOjGKxLipgupo/F4VHt4DJhFB8+Lt/j5vmzuWwnrsGx6QDmAqNgsOw71P1E1aCOqfXjWEfpIUu3cm++e27th82JSh0Qowm1pKOCunZxdDR7hz/5Jnv418e/A7+cvUq/tva1XyutZ/3nf52/u8Ld/C3nf0kto6ML4uIUyTSPD7iyYxD7XlWkyaOVZdpSeBlCGGql0qpzP+lJh2fasaf7fEV1cgrMbqxi8mIzKdivZbeRkH1FV6xfVFLZuuYzFzlxT2Zr4cX0+kYtuurlZV5z3vew0c+8hF+93d/l+eee46f/umfptvt8s53vhOAH/3RH+UXf/EX8+1/+qd/mtXVVf75P//nHDx4kI9//ON84AMf4Gd+5mdeVT++YTL+X23TWnPy5EkWFxeZmJjgpptuyo1DnvFfepKFDfyHVAhEkC95+pmVJEl6CAK03X80QmMhn8QkYmZ24vB9M3GjhWGPeeS05qyUH2PQapEf50XTm8dar1MhjFIgtGQCL5/QSnwcc41oOnHFTMIuTFV+X4U2GfyeNqtkT9FuV+3+W2N4WWn2FEKTJqMvoRCa4+1Zrpq6QHsYEXgakeotjYzSHufbk1TDjPueuo5LLj8PnlvtFufvegHLFiI6vFS4+rNhl/NMFQrDzsiWFK6FsuMtDO335HAWX2TUvJizwyk+ePQt/Oy+z3FFdYmhkkRScbg3y+X1lVyzbGe0gQYWKhuk2strtTjD4UnNJRMrvLC6EyHHRm/83paMzK+++Y+5csqoE6TaJxAZgVDESCpeSqwMNDVZ7fPchZ2oVBLIBKUkJ/qzXM4idat8MFXtcrY9CR7c2liioxTn4oCZqEdLVXiqu4tApCilOdhdIEXySHsXy16VyM9QyhgU0z9Dhc9jH0KRKUEtUHRj+6zLjC8v7wVMDMaTikx5ph5RZj6TzBgdpcsyMi9z0i4bmXFPxhnsRDBZr7G8HjNZadDGTM6pKqDMuG/uVR6TGbsh85WXFsf8WjeXkPlqjczb3/52lpaWeN/73sf58+e5+eab+dSnPpWTAU6ePDliRPfs2cNf/dVf8XM/93PceOON7Nq1i3/+z/85P//zP/+q+vEtYWTSNOWZZ55hdXWV3bt3kyTJiIs7nu8B4NnZQCOYC2dJtTEuncwEfzVQ9UK6Ks09obz+iD1GknkgIFYKDzvJe9rg56mAoEiazLLSW+OkXRwUcZFAf3EBxddut8K25hpkLsHTA290Ai97950kysUnQY/4rkIaT0Z45tOTGe12bUvzAhAGCZ00Iori/DxZ7F7CYnCPtU1AeZj5BF6Cp0p5PWNzzJHlBZ4/tYc0C0hTiYz0qOcFnFYT+RgtdSdY69WYrvXY3VzlmXhXrmydO2ByayM5V2nzdHc3uyurdNKQ3z75BkKR8bnWZUg7Ke6trOdw4K5onYGSTAYDDg/mmAu7nBw0mAr6dLIwhy0BrplZ5IXVnRdll+XeUL5a0dw2f4Z+6lH1M6oiIx3r9XpcY1vF5nClRYXPLJUcVPM8dfrbyWKJXhc01JAVr8Kl0SoV2WdAyqnudq6bPsdA+RwdzrKt2ibTksXhZC7rM15bx3m6RifNGhSRmWc9KEgWx9qzVqlakylJ6GdkmBhMpoxxiYVnk4J17pml/XEiihuf8QErf906JtMfaBYmbdnnElxWqUaAeY/bLfN54vAh1PZtpGPM0+3Vi6uLfL08GRf0fy0M3Lvf/W7e/e53b/m3++67b9NvBw4c4KGHHnrV5y23r7uRebV4Z7fb5bHHHiMIAu6++27Onz/P8vLyyDabtcuwasqGKTYbznJuYAJk7aSHwFQcjDyPbpJumjfc/10yYaZtjRkti5yXvG68+b/SpQlEalCFL6NH3aQX9Wx6vYgoStBdnUvW449rjJmWZB4ZHlWvFLQrhwRKcFmWSXwvo9WqQaTH+mB2Skf0DqwnM57siZkc14eVfGKNRJpDfONxk/Mb00iLz2ephySlnKEkNCjplfojOLS8gzv2HmG+3iKKY3zfxsTc9XtbGBlpJs2+ColIONRbQCOR0nz/jrlnSQk4nMyTSvjvresQAh5Y2k8nq5L2BTuDFvunlrhj7iS9NKTmxwy1jxSCS5orQHGT81xLF8/LA//m/7cunKTiKQaZR6oEkTTffalp2+D6WruZG5n9cxdYWbYElgyCAPrSgwi6SUjPj0gGkh+YfZKzScBkkBgPRAte6C0ghcYXGd0kAoqSYHmszA6wtH31pM499EBkOavPk6Y+0SOre3P2mCoRTwKpSLAS/O6YQudqzWWqvB2grQ2zGNum1JQ28dRhXxHM2Ik4LqUnlNhlkV9D0GLntjmWl5fZ2GiNHGtb+OIxma+HJ9PpdKjX61/zWNBXq31DxGRe6WCeP3+eBx98kPn5eV73utcRRdGLapep0nJJCpFDV7PhTJ71r9BM2QfPKbQWxmkUlklSFwQ1rTfUpax/+6sb4S2C725Hqbe4DRcxNN1OhJQgEoHnEjJ9jVbFes9N0gav17ku2Mi5oYDLrEeTJj5p6iO2eOs1mnTMDZFluCz38owhOtGezXMjakFceBsl2RjGQMg08cqHGhmH8kr30PJ24tTjPzz1ncSpj29l7HMqs6/zHXPV5EqXcza4XSXm2baJ7XhSM1QB5+NJGn5MogS+hEEaIoWg7qdkeHRUlS+cvoo/OXgHf37kFjRGZLVnlQQaQczOxvpmdln+6JQCXULzlktMueqKl5FkgTFG9jlI8+JoBcOxEiY5VV1qQRgm+Tgqmyd1a+MkC+EKgRwQK49LGiuc7E3zxd4+pNS2LIGj7G72es3/zdMupf2uTT+c9xDKlEPteWLlkyqZky60hdk8qZCOWl661+Uy2Vu1cU9mJPBfeiJMP4RBIQR4Fg0oKzCX82QGg4xaFLDvkku45ZZbmJqaGjnP0196mEcffZQTJ07QbrdHIPWvdrb/xdq3UlVM+AbwZF5JcyUBTp06xfXXXz9CyXtR7bLSkyuFWbtprZkNZxmoARXZYKBSpoIKa/GgYJVd5IWMUwMhuJYpnTPGdGoxsS0KlxWlha3xU/By10t5QmYGXkWhY22uL5VIq2vmqMW9JECgiYISnFQKigthVpamEqJk0HcXs7nPxQFK/xWaLPG23OZ4a4bdzTUUHs3qAL9fsMu0tn0WWEOvEEiS2KOq9aZ8l3xGsT8/s7ibQ0/+fZ5LtjOXdAnCDFI9Av3obJRltG9ymcP9bSAhST1WYwOTuHjOyeGMoS1nkkBm+bPSCAYwHE0i/MzB61lsN/mB6x5mkPo0wpi1YZVhHDAu2zPuwbhxu3G+qCbqS0UvC8i0xCcjUx54CQuTG2RK5H2cr7RZpYHUCulr1BCkBzqTXNo4z/fNPYFGUJWKQ915Lm8s8fTKDoYYooIvslzDrRhiPdJXUQyzjcVIvKC49b5UPLW6HU8qVImckCqBZ2NfcszAS6FpdSoUpG1Kz9JFFpgXicm40gDu2XQLyLRfMjKlwP+gn45KypRe4kBIDhw4wMrKCqurqxw/fhzP83J15DiOv26B/7/zZL6OzdGTl5aWuOuuuzZxvrc0MvazLPMt7dukNMz6RnPL6ZY1glG6XjZW5c4db5iNm4aioFeaSANF5Aal5BHJ8Un05bd+P0RlAqnM+5KHW7ICLpNCozNBP40QMOrJjMNlSiI9A5d1uxeHDkaaLqDArJT5Xf48tjFHwx+itaYWxabYmi6MwEhf7FPYG1TwhBp9KK16QXmHI+sLPJeY+z6MfTzPXK8sj6uDK+2+O+obnB1MglZcGDTzfko0aMXZeJpMCyo2r8cVE5uweTFizHgcWtrJnz71OtOHzOPzp65CI7eYM8djMSCEYlfdwDZnenUe781yLqvwfGeeQeYjrVxO5Kec35jK97t0Zok4EznVW1kvctrr8r0zTzIdDlBW9HQtrvLR03dxb/tKUwlWGqPhiqWhBZIsN/YuPCgdhosR33RsMmmhtxOdGYZZaJ8pR2FRgCyqm5YIGABx5rGy1DTSMhfRztvUykam9LPzqMTYAijuldQjSq9lt5uUgv6jRwukR7VaZffu3dx4443cc889XHfddYRhyIkTJzh06BCdToejR4+ysbHxqqtdvtz2rSTzD98gnoxher30xLu2tsbjjz/OzMwMt95665aKzS9aT6bMLsOwyxSKaWnYFpNBxNlBO0/scuKXGRqfUmDZwgip8swk5SZ3QOXSMq7OTBkmYeSN8fAoABHbcqTnYhFkQa8X4aPIMHpjGvIYj+mHQmuD1aNEbmREHjPQeX9UJpAVA5d1OrVN5xppY/EGKTRZYifWkjEFSFTAme40gZ9SCTNIzYSu8kEQBQHC7jschDn8MjIeY+NGiUQRpz51YoQCmcNkwhoZd28EA3wQEl8rjrbnSwbOyNmk2udCPMH2cINz8STTQY82VSaCQX6tpjsOehU8c/oSEiURaHqyihDjIepxT8b05cb5kwRSs56EPHhhL41Gj6lKn1WqDHXIdNijmwUEnmKjX2fX9BoAZ9tTrKZ1Qi9jgMx1v/7JrgcYWmWHs3GDn3/0+9k5v0YUaXypUZkH2hQ9c5U0NVAJRp8+N8TOMPsiI7MLqcDLiJXHYyu7STNJLYyJM48sM8YloxTfcTp9UqM0bPSrVDqacDIplLFfapFeWsWXvcA8EdN+pk54tVXKa7O05kBI4kSNeDLlaWZc5t9Vu5yengaMzMrKygq9Xo8zZ86gtc4Lj83MzFCpbK3U/mrbt1JVTPgm8WS01hw/fpyHH36YSy+9lBtvvPGiJQF8378oXLYpJmOPPRtN0/Aa1OwxHaQ7SFxhLT32aVZnzpUO7EMd+X4BlymBUBDJkqs+FovxHUh2Mft6kRex160UwpPFLDbiyaAE3TQkU4LAczCafXcdVo6R95BW6LDVqo3056XsvpCaNB17hETxt2eXduSqur5WJf0y1+xYOeOFVSTe4sS6BJcZMU3z1dUEEsrBZPZgY55MV5lM+ECnPN3Zke8v0Dm8c244iRDQTirU/IRBavJSfNKcFee65oQhD57dwwtn9phxHKWWFP0eu+q37HueRAlamaCjIzr9Kt0kpO4PeWp5N4GXcWHDxI9yzTvgS4uXsjaoEdkYFEow6fW5pLZG0x+SKsmx3izLwyaeDX6Hfmo022zHe7rwZEJv0xKnNN6UWInGG17sN0m0YVSGXoZvB92NX6EMbvaRQrPRr6C0pN2qE4ps03ku4vjh4i6uL67lnkzmKNGmj/2SkXGzWt238bKyJ1OCi1+qloyUknq9zvXXX88b3vAGbr75Zur1OufOnePBBx/ki1/8IocOHWJ1dfVVi0iW27eakfmG8GRerKVpytNPP83a2hq33357vsq4WHu5gX+RxwM0U5UKM952lN1uOLTFy8ToErqgMGvi1CfwBQmGIJBiaNHCvbhKQga1SkTL+SsvIpKYn4PNNmcEMcJomDWme4A/8k661bZTPO4noZkM81V0scLUyvRHZV6+8mz3ImS5DzbX56LNxnTKcSkXyxfA8+d3ct3cWcAEjD0UCV7O7Ct7E65lqRwlHmzhyQiE6b9HnsAptIFusL+7vCAhNRUZs5I0iMKMofJRePbemkO7SXI1rhErL4fKDFSU0QiGeYDfGQ2ljQcjbCBfZQZ2HFOR2Uz4UILrZs/xxNo2VtMqnqf4wlPXsXL1cfZPLrNRCTm7PkPfKmHPNookw4dWL2WHt8Lu6RYbVJFasz9aZiOpsCNs004jzvanAIUnjTcb+ilKmYJ0gzSgWhIlHYFRS00KZQghQeEVRyLludUFIj9FJT6Bn+U6ee7TH2MQDvt+fn9U4r/8HJlNrezJ2ERMS6wZphm1ICDLiuRpF5OpyYAeY55M6VhV78VLIJcpzE6Sf2Jigv3795MkCWtra6ysrPDcc8+RJAnT09N5PKdarb7imMrfwWVfw9bpdHj88ccJw5C7776bKLq4mJ1rzsjkwWVeDC6zaI0QNJmnLVYB6A1MMlR6ERdDCIPDOyPjCUGKNWKlCVNqQdntD6wxci/NMEkpEjPHmh77Xtqk3a4yM98CIjypSGx1TreJy4DvZSFaQ2sY2WTIkpHBeTKlWEYe9S2tvrUqW9fRLmbu+sqdFfk5BlnAWq9Oox5T8+OixHDuRox6dlpj4LctBkOXVraAgcw8zdApULtDjcPm0jC/ltMGe6P1XBZlhARiD5xqn+da27lm4jxraY3AWqqmP2RpDC7L+22Pk2WiKGdA8fuI2IJlbmmZsh5PcDadpNet8MzBS+nUJNffdJZlD55c3sWldUPDn2l02ehViTOfo/05ov6A2vYhDA3RYX+0zNKwyXQ4YDWtcrw9RyVMEQLSTOJJMyiplnTSiHowzLs3Lr9fHg8n3eJJs28rbrI2qDFd75NkpgZPHuD3NDJTJTaZJh1KOs9OwJV2gZUKY7S/knnXPqRbBf5dJv8gTWmGIVAYGbcwqsgAGDJRkpQpzwHVF6kZBS9OYQ6CgG3btrFt2za01nS7XVZXV1leXubw4cNEUcTs7CwzMzNMT09/RcUY/87IfBXaVhb//PnzPPXUU+zdu5crrrjiZbM83ENRfkBG1WFNKwyPmZX8eJJOegSAoBZCnBCrlPJSPp/EgW7m4bkVs4spZOmIHllFh3SSIc5/b4YV1mJTLldg8muqvs8wLr/sW7yFYz+1NmqmQmZasKOEV8BlLsPfKTBvDKqEJeXcoqYMIwWzRuIquZ0Zs3BuO63IUoke985KTDwhNafWZ9gzv0azMjCGTtmV7shh82gAWeKNSPSPhJHKqGVmZvg4daWCtak3M2ZkhNT0VEjgGXptYo2YKnkYzjgkmceT3d3cNHWGVlJhwh8wJKThD/OxLe8npDb9kIZAEciCWlIkXxZLCCE0uyaWqVeGtFaqaE/w0BNXztdnKgAAv3JJREFUA3Di3AKDawOU1JxKZ7kuOJvfiAutSQ5tLACCtV4DT2rS2MRC9kfLtOMKqRZsqIiDGwtUAuuJWejQF+bZWI1reYwJbIY/m584E2NxUHBGqiXPry2AEER+xjApeyxmXAOyYi2iof/XMzAvgMLIZGV0fovH6mJtM4UZlL2MXhIzEURlE4OwLIYIHxjSuMjitPYyPJkgePFtwMxfjUaDRqPB3r17ybKMtbU1VldXOXLkCP1+n8nJydzLaTQaL+rl/B1c9lVuSikOHjzI6dOnufHGGzfVQ3ip5gxLlmWFkcmDtSUvAzMRKA0rKyucOdKGS60HoAZs2XI4ygSchUFTCul/rSjDvDN+jWNZC09UyLRme7XBWmc4siJvRiHDuKSTxkvHQrrdCp6n0Ik2Wf9q3MhokkQaurASbAwq1MN4k5HRLmJvnQRhDUrZrphjjJ5fY1hIWamKocjsZcliKyE1h1e3cXtynEY0zFlRm9hlJeOWDn28aqlkwhaECSCHw4ZjwotjXAKQmgxJoFM8qelZw+sKoGlEHt9KlMcLnQWGmY9EMxUOOD2MmAgGBQxWEiV1ngnY2FYZ5cv7W8gICam5ZfsJLvSaLGcNBt2As0vzZsj6Hl86diU79i3heZovr+/nVo4xP9kmyXweWrkUgNWeKz0sWahu4KPYWd1gOWniScXp3jTbpwxzzU3IgcwIyDg9mOSSqXVAo4XIPd7ieiydPgBlxzeSKe0kYj2p4gmF7ykTi8E8G742HoyPMleqoffQFPJ0BeaH+X0VSqLzpICvrG0Vk8kG5sfOMGFbpT5qZCxc5lQAyuKY5ahZM3hx0cdXmifjeR5zc3PMzRlF8n6/n9OkT5w4kdOk3b9x8clut5vv+63QvqEC/8PhkC9/+cssLy9z4MCBr9jAQCHLXY7LOK8lG+WRArC8vMSjjz7K7rk9VKwiays1goQXk3uRmMC/g8bccbUWI57MQjgFkLvrvnOlSsetj6ubvoSBAUAJ2p2KSch0wdZAFQFYqYiVn8NiiU2cyy+95MmMnLrsyeQ/jgRDLMHAMstibzRQSwlZE2YS7qcVnjtrEh8jmY5ss5mKJYwEvJvIS3DaCFymybfppyFQqDyXIvqmSTPNOwPs1IBd4N4YTJNXNMx8FJK/OnsdC1ELML81/QFOvc4Y5jEZH2k9whGvbszjsT9dPXeWk50Z/CDj4aeuRmiQQUriSb509ApU4hEFKSeiaZY7toSC1Dw7NJTtOAtp9SLI4NL6EktpA0/A+aRp40aCaIw1VvETIplybjCFEMboKM0ovIc1h7kem0Jps+3x1jSVIMljOM7zlVLnasu+ZzyZ9rEJeKIxMgQuSJ8zIUeHZ+z/W0COW8RkSCS+lAyzjGgsSdgRD1x55mZUhsuK7cZTFcZbeaH6atpWNOkoijh58iT3338/X/7ylzl69CiLi4vEcfyawWUf+tCH2LdvH5VKhTvvvJMvfelLL2u/P/iDP0AIwfd93/e96j7AN4gnI4RgdXWVJ554gpmZGW677bavCMMcP9Z48H/LwL82D9zyygr/453fTXWjxWc6jwAtUp0xGVTouQTCsZCEEMbIVOxkk2qb2yGwhse4AtJOhPUgYI0hvb5db5WMTCX4yq9TIGi1a8iqxq8oSDRCWpkaawSGqT8CS/WTMF+5Ouw8X5XnaNVmI7ilF4GjL5dfwLGNRJEc+dDhK4gCI0pJWkzOm5oWpP0APZFs/pMurYM1iMxEdjpphFS6uDZcnM3GnYS5LBcHyrQEbapzCuvzeNIkgHbTCATce+I6PJ1xzdw5pNZEXkZYil9IqVGKElRoklnL1zVqm01fLp26wM7mCg+uXs6gU+Hc4hxojWpmaBWw3mtwoT3B7HQHrRt8eX0fXzh8KaezacrZQ2vdOkLB/tpKrh5+dDjHpDCxRMcac3ex4ieEMmEtqXGqPU3VS+irIPdcXX/LCI4nFZmWxNrnZGuandPtXN2hKCVu1Zbtve6s1ODhyU2TSk4qezkLqC3aVp4MMYRIEhTBmGKGg8s8a9ya1XIyZvF1+kUkZeCrk/FfpklfdtllDIdDVldXWV1d5aMf/Si//du/TaVSoVarcfr0aXbv3v2KzvOxj32M97znPXz4wx/mzjvv5Nd//dd529vexgsvvMC2bdsuut/x48f5l//yX3LPPfe80kvc1L4hPJkzZ87wyCOPvCQ9+eW2cSNTCGQWT2u32wEt2Ld/P1NTU+yenCAe1Kh7ZnUzFWzBgXfHyTxAkOWrW4dt23oudlRzMdjMfGlO2PoQqnjfwq1WSmMvoyy9/Q762+hUkcqeLxm9ToBB5tvsetuF0ovo2GR53IAxKzrmvIw04fpkc2T02IZlT6ZEKPj809ew2qnb/7rfN886xpPZ4uTjXmWuKi0YxoEVC92cCOgO47y8RBV99vPkQTOFd5Mw98A+fvA2nlnZRd0zkE85llEEuItxy8qxLYqxLfflhm2nOLi+gyhIeeLZS+2GkDVVfs2tXpVKFAOaRTHJ+XASLyqRNtCsdRt4QrEQttgebLCc1FnOarRjW4jNK64rzQS+NCKWGZKDG9uo+jF54mhOgXcJmdqOTYbSgrP9CSLfFCDzvNFFV+HBaPqtKusvzEJn8z0VTlJmiziM3vRl8x/LY+n01HQiETZpdZwkl0v929/LFObyHDDzIrVk4LXzZF6sRVHEjh07uO666/jlX/5lPvaxj1GpVPjSl77Evn37uOGGG/gP/+E/fMXH/eAHP8i73vUu3vnOd3Lttdfy4Q9/mFqtxkc/+tGL7pNlGe94xzv4t//233LppZe+mssaad8QRmZqaorXve51XHLJJa+JlMLFPJms9ID5vo8GPN88RDubTVbWAmZCg3lv5UrntT5sgpoajzK77Vym88BkRUeB2744Ut3l5Hijt2Crd01uMSatTq0QIMzj9oUki2NRld9ql7AstvJkyqfY4rK0i8DndmPUkynmgQIaGoWPJMu2guZWxcVci+OykbmIMdIUCZlSMxx6m0oJlBEUgbaGQZMoL5+0HLtKSo1E0U3DEWjtb09cRc2LURomgn5+bYUBK1b0ysZkypNmWY5IoNndXOGp1i463QoXLszmsZqsWUSRqjLG8xQqEfh+oVyd5w5pwWq/xvaoRVeFBFJzdDhLhZQlW7HU6cT5nkJlgiQVtJMqCsGFfsMoKts+llmJ5WsLpCLLBOf7TSLrGTlFcXeVEiuJs1qhe8SoZohyAcUcLit5oLxEexFjA0XBMh1L0qEdn3R8VWa3tYuviREKc9Hmqy8eXP9aa5f5vs8b3/hG5ubm+MAHPsDS0hLvf//72bFjx0vvXGpxHPPII4/wlre8Jf9NSslb3vIWHnzwwYvu9+/+3b9j27Zt/PiP//grvoat2jcEXNZoNF4WPfnltosZmbLMd71ag95avrIJPY/1jYidCwH0ofoiKxhnZLLREHPeamFAN81otbs0Jnwma3VY6zEsnb8RRfTSdLMB0WOftv/Z2NvX6UWFIKR98WSpwNQwdfGSwoJkqQdC5XDCJkXcrcQ8x1tpFZuM65aV/i5KcJkzEtph85ve29Kq3yPPMi//WY9PUG7iEiZXphYZKC73MkpKzE5PyxeKdlI8Z84weZZ91UkiRFj0L85Cvnz2UvZvWzJVK+1Y5ja41KFMiRFPZuSPQnPF7DlOdmeoBTH3PXJj8bcwI6vYag0CLrQmuZqz6FTgBxkuCSkQiqG9QSuDBnvqq7SziD9euoyT2TT7gyWe71wycl2BlxpPSUlaw0ouLrk+rBIGGQgnCVPIIZk6MoZ5tjSs4HuUSimMPhdCaLrLTTZemMLmPSK3WnflJbA3q9K9aLtITEZrIBWoxMjZ6PjFjUzjIrIyCy9SSwa+PirMWmt6vR71ep3p6Wl+4Ad+4Cs+xvLyMlmWbYppLyws8Pzzz2+5z/33389v//Zv8/jjj7+Sbr9o+/+z999xklzl2T/8PRU6TE+OG2ZzznlXu5LQAgIZS2KFMQgbA8IgG2EMGPBjBD/Aj3HExobHJthgDPjFNkaSwRgMxkIggSTEane1OecwaWcn9nSoqvP+UXVOVXX3zM7mkdD9+Ui9011ddaq66lznTtc1ITyZq22lIKOAxHEjvoQApIjxmSVFhqTwQw52bFkafCd4LZQ2lZWstFuCUFsik6YhUYUZrIZybpiQTY9aGlkeU1BAFMOjoqG73X2wiUsvjzhKQz0SagjUL8OVuJ+wKNVQj3bUl5qmhBfgFiJ9D4beIBhrhOhShxlFMM7RPRlpSlxHVPg88ock9HYMSSFoDoRwtS3M6G/tA56JR9ZJ6HPTipqGn7vKuXZw+aU+zE8PLiTnWNTYeaxAWqGMbUcERKMl5d7RhP/KthM82zuD7s4GhoIKMQQ41fGFyomeFmzhgAt2wkEN1ow0AJ3PZ2hJDvD182vZkZsOQlBj5jnU78faFdAmDFfnHnuLGe0FeNLQDM+l077qkZESOgLPyCyRCRf47QADp2rIHfe1g2QQuq3Y8xX8npWq4bWNUVKpnbhImFlapu5J8HLxeJlaJBQD+v+aUTyZSVVjJ9dvpJ7M9eyTGRwc5E1vehNf+MIXrklV24TwZK62maaJ4/gP0dDQEL3nzwMgDJUWBvV4RUsa2+tq8dxgWyHL5lmf+t/VDYDBbmIFVgnHZpJpcxzwhEGVSOhql2wxTGin7VCL5mJWKYQoioKRYoIkeV9DXa3agzLSvJMgYceXlbrLvYTuX0+sem4XUOqllU6sBOGyROXPtTBJ5DPXNbGkjB8f4jkgw+/6L9tnKeAHiX9MGCnaWJaHlEFJt/Q9IqkKIgx/he64PomM2q1p+L01AknRMTUgR8kwi47N/o7JrJtxAtNwcLDKquNUtoRA50SPUd1DecHIUBLLkew5OCO+tLMAN5yc+3MZXMfw6YIM8Ip+570tghlWwrCToNetouD59MhKuTLvJUGxw0mwTInnSgwpuVBMhx33htqq3BS56oV8GjW/6lNS5+sJLhxuI9udJBGslVxXYo4S6paxYrfIPRG9VqjlVeSDEk/Gb9QNFn9mCGfFbAk9TpCTKeZcEqYZK66J/j5jCZbBjVXGvJI+mebmZkzTpLOzM/Z+Z2dnGaEwwJEjRzh+/Dh33323fk+RgVqWxYEDB5gzZ85lj2dCeDJXm9LaNE08z6Ozs5Onn36adKDjHasuA9+TibzXXlvLyLD/1LiyVKcQ/RDlo+XAsdlPckuqnTlBRUjWKZLGRgbANljI6y0TQU7GKVMso/QZo9LlMYXBSN4fq2F4Md6yEceq/CUkeCISW8efcDwjmPijMbqLgZ8EL1LCrF+lrnDTBVnBZ8Wi6eeRgjBeqCkj9DWSArwK8gEK8qWCCZ2TgVyEv8ywwnOTjvKc/JBYmaaJ1PBA0TFDXqySS7f39DRAkrFVhUXla1O6XlD7mV3Xzc92LiTfl4IIPX6AS2U5sGw+qfNtMgBcM1LdNr++iyf75qD4eQwkuYD40jbd2Phtw0UgGZLJkCafsBCidPyKxLSvkC4Pa0oYHkrR+ewknH7fG/OkhwwWNqOCTCQnU75YubhpvjjFBlFSrT58IVtxp7kRtyRUFt7hBuKiHf83wpNR7AE1NTWXvY9EIsGaNWt49NFH9Xue5/Hoo4+ycePGsu0XLlzIrl272LFjh/7v1a9+NS996UvZsWMH06ZNu+yxwAQBmatthmHQ0dHBzp07WbZsGXV1fsK5FGQk8WqTaXW1dPUoIAkBIZzAA0U+CbEVWXBT25j88UtfQ0MgODRULGC5Bk7wVIw4jhZZUoJoeWd0kkLLUN5JhXMUgmwuAZ6/eo9uM5xPjl4mTIkngwypZSriUuVZQRcNRMBF/R1W9sa/K6XPGq25y6A8zGbIEGREJAxYVl0W/q34sZBgWlL/plE6eL/SKn67u46JkJ6mYNE5nFizqu/NnOlvpDnjC9uFc2kIUv75qZshAMwgTFQYTOBZBheGM7HvSXX+0Uo0CUO5ZCjtHLzYkWRHY3qYwzk/0W7gIfAYCCrL0lb8fkoYLiNOIhhzeP6qsi6XDydaKcEw/Ao8V0QqByUUHYP+E7UM7p6KjCwCvIjka2k+RhOfOiVvjNO0Q6m6/IPjqnsvkfQXF4MX8rHvFYp+9UF2xCmh+QfVWWyNAzxuhCdTKBRwHOeKQAbgfe97H1/4whf4yle+wr59+3jggQcYHh7mrW99KwBvfvObefDBBwFIpVIsXbo09l99fT01NTUsXbq0rFn0Uu0FFy4rFAr09fXheR4bN26kuroaQ+wGfMbWqA+CjEdh2mtrOXB2hHVTpjLoDumb2xImXkCb4Sq+Ls+Pk0UXbze3zKHKTlAfUIAP5gtQrKKYDB/82kSSC7mczrOMVAAZBYCGMGLFBaWia8O5FJ4jMG0vkiuRDORSJZVd8Z3Hw2VoTRkvEgZUcgYyLyDhe5uxAKIuf44MWu1frzTj4TKBz7KMQZi/UN8L2BOkAC8/xoOtto+E4fNB/smQwfTuEoShwh/HFFIXbITKpiZVgaCbX40Xr1CTkUl237FpNE/uDd+IDUadbugJSRmAjAm9HfUkp2Up9laXr+qExI+EhRx2w4UUtuWQx9ITrSpLRsKQmQibJoVf0HA+lwFk2IgZfDFlFenLp8rIKVU5siMNkkqfJtjncNFGWP6xCgWToY4M7rkG8nlJMhHkQVQ+xM+9gwRjlPWSAtsYKar+sPJ3AIQDMhlu4hYDMlZFfhrEBb28F4uGFBwfdIaHC7TUJ+nt7aW+vh7DMDTOXYyBWUp5Q5Qxh4f9XqcrpZW599576e7u5qMf/SgdHR2sXLmS733ve7oY4OTJk9ft3CYEyFytcNnAwADbt2/HMAza2tp08kzzlEWPqf8f9WTqyBaLiPMtDNR0AhlAYIqwokg9rIYUeEISbWB8/7LNANQHzV+O5yEcyHvh05exE1zI5fSEnS1Gaz4jFoQfXMBTHB+R4QoEomCQK9ik0g6iEPyUUjKUT8byBeHC288/lIGMa2CYknJxG8pWn+GqveSN4IGP8mUKr2QbgtCJHfFmDOlPGupVgKvORZTsP2oRAMkp8AhmMeEK/86OOGdmRIBLmeOZvpgaPm+ZEKC7NwnPQ0rB8dNtTJraHYyl/H7y3xDxPIMkIP20KdRKOK+2i5xTabhMwnAxSX0qyxDhUMxIiHPEDlkRLOFiCo+u4VoQkLBDKWpPSlKWw7Cb0El/ZaqIwTQ93YhZcE0KrsH5jjqcgkWxN0lhOImQglTCJHqDeJ7UwCjVJcvHr4i+V8b0ZEqQp6RhOvo9rxCATABauVwBYZtl80dNXQ0JYxDXhSrbYu/evbiuS0NDA4WCH/JMXgRkVE7iensyQ0NDCCGuivzyu971Lt71rndV/OxHP/rRmN/98pe/fMXHV/aCCZedPXuWn/3sZ7S3t9PW1jaqCJppxG/I6GYNqRRVts1gv0VboilGkQLgeK4GGRWKMYQfYrhn6gpm1jYAaE/G/5Ig64ZAkk6oqi/fBvOFktlKRICE2LbxpDJQFAwXkhimjLSUCIbyKQ0kpfgda5IM9u65peW3lM+gZSvQCmE0PQb/1Ys0PuqcitZ5KfFyIhVvbrHkN/IiJxK9KMFXckUbkBHaNBG+qlCnIX0qoOixRHjdCq6paVZKBcqk5/uJF4ar9ffiY4l7mtEchJBgZIpkE2bFVbs0CGl0gu8MF5KkEsXYdVI9M5bpIg1D34eWcEkIhzOD9UgpSFhh1Zh0BZ4UDDrpWDMuMlK+bfhhRL+YUtDZUc/goSaGT9biDKYiQBv3YNxImEzvdiRe5WUHwkzeGDmZMS2O9ZqhW9H82xkbs1h+UaWA6qCpelJTIzfffDNr1qyhrq6Ogiq+cVytBVNJ8VK9dyM8mUwmc0Oq2q6VTZgzuVxvxvM89u3bx759+1i5ciVz5swpEy6L9qKYZXmOyL+EYFptLY70cDobQ4bjYBNXRuRoI9+uNtL84cpX6v1EQUY6MOSEIKM6/IvBTZx3XWyz8rmX3+glK8WCwWCg2W6o8IUUFNywAioe4ioHGVE0wsR/FDjypdcpcsIQkmZWGLqeg1VcX0RAxg1DSvGNg/1KwnHE9l26ShY6bOJKm2LRDPuGSgs8CDwZpUUSIRL1y3Ulec/WQKtzMhHBMSEkF7LVlLGFRkcYeDIRthk/n1HrBeHVSher5NQ8wflsNZlkDpAa+MyI5wER8kvTw8LlzHAjEkioUu6garDoGPQ5qZgnI6TECvRmTEOGACSh82BJCWsEHyD0YKKf6dcSp1yV7ssorcwlhMtCgAuOXQiePZXrcl0st8I1NaAqAJmadALFkjxjxgzSgYdQk0jhOA779u3j8ccf57nnnuP06dOMBNRPav64USBztYuhbqRNiHDZ5Vo+n2fHjh0Ui0U2btyoXczRmjFL/w3l93x7XS3Pnj3HwKkRxIL4EyZl2HFsCp83SRjwidWvjt0UdTGQMRgq5hEkkAjsAGQKkZ6ZKttmaKQ8bGaaBkUn0oZZMiEJT1AsWuQKoXiZz1lW4cT0LoIpInjgRd7AqzL8lXJsIlIl3vpM4q+eL10dJpAIY+XBlo4b+VqwnXT9zEOpJ6OE2aQXFS0LVstB/iu2c/BDZpYfkyoUrUC62QyrsiOjj1WXqcWDIXFdH5xGHDumh6IGFWVQLjgWlfpAZHQyjFxcFS6TNj5Tdkn4x78QUjfTqrc6++uxDcfPt5k+7b4V5I4U2IQCdR4jRVufrR0BGcODnGPhYMZBBt+TcV2DhOVqqpahgRROLuGfof55lJdW7sFoMT11Om4cRUz1bzcEsVGtgmZReBcE4bJcAFoBw49jCtJutC0h/GJS+MmbKDlmdBC1qSoWLVqkq7nOnz9PV1cXhw4dIp1OU1tbixDiuif/h4eHr0qobCLZ8xZk+vr62L59e0VCzdG4y0CtrkbXb2mvreXRo8eYWlfDWc9f1aiGTb8ENFyJtyZq+dTae1jaEKd9qE9HwmVSYBmCZDLJQL6gyzyjCf+UZTFUugxEraLcWFWc3q16y4HBXJJUoHjoU997EU8h/j0hwM1bGhsk/mreML1YnqMst10aGhmjUiiVtIFCfH8KZAK1ybJwWWmyXX9Pjj45qeZOfBlmLYoW6frTnozhhVIHwZuG4SGkpFCw8URIcGmU9REJMBQAVvgtgqonzzXKHBM9FE9EPohAYOkc6YHrWAznUlDwqWUKGJh2GN4CYueaLST0tVMFAmaQqxkuJH16mRLSU9PwKEakGqSE3mP10U3CoRLPwZSdf4A7perK+h7UktiU3Udjhs9KPBmZ9+9tyzMpAtIWOOcLlAZkpAFJTfMfZxJRYFkdlC9HtWBmzJiB4zhcuHCBjo4OpJQ88cQTNDQ0aAGyaw0AQ0NDL3oy18qEEKPmUUrt1KlT7N+/n3nz5lXkOxsrXFa6rSiZLKfV1QHQUlvF2eA9z/NX7NE+g0VWC19+xZsrji9tWSRMk4LrYlomDXYVRtJmIF/QD95wpDEzUUoIWnIZKoGMHr8jGBpJUVXng1TRNUOWZVl6vn63faEvoedOIfyKr1EbJEebFFwR9lEE21olq1EZVJLF34uHy7RaZLBJJfAa9fR1H44k51gkg9W+WkaIwFNASgwR0vwran9f0VEyPGL7ao8l8sHg59uk6+9HuiLepKtjSP6YXdfAQEaHpWWuK7EoaC/Ai/xOUiBdwVAuhXBDahm/gtDT4bKQ6iUs4ZbSFzLzw2BgeR59TpV/DpFjG4ZPeKkL3yUMDKUo9FWYQIOqADeq+DcKkiaEDwKxtyPXR0ij/CLoS1nqexIBmSB64FhIWcDJeghHIpNCV7Qpn1ONz1IgkyoBmeC1JlGZxsqyLFpaWkgkEvT397Ny5cqYl5NKpWhqaqKpqYn6+vqr7uW80FQxYQKBzHjM8zz27t1LV1cXq1evpqmpqeJ2ZeGySi58YKVzWnut31PjRiZdGYRlfJp4gfAED0xZOuo4hRDUp1J0DQ8jDKi1krjJ0oR/WNs/atQ32NitkAfQvSBFQcGx9CSec61Yx3p8YP5mxfOpgL9MakoUw1CTvb9aNVRFnSG0eqh/bv5rabUSgGWZOP4a0z+8A8IOAnSjgMxYFs5l4caxBbnq+heQL9pkkj5wG8GkF/Jx+TN8URVtCHS/jikk+XyCXNGmOpkLL5I6hiEDkPHPOVrIHbJYB1jhGRh4oZ+sTrukFyb677JmTM+/RoOFJMKT2AkXCv4RLCsEGdtUEuMehaARUyllK0CxTZeBYgpMYlIBytvRFeZC0nWwCf1myY+jPRjljYoIgOCHjiWQEGFPmD8eGSwE/P1ZWkU24mmKEmCpdF+o5yBgeJY5SEhBDhBFiS2hxoBeddsbEiv4rcv6ZAKrs8fmSlQMzJW8nPPnz7N//36KxSINDQ1a8fJqeDkvhstuoOVyObZv3w7Axo0bSadHp+k2DKMkXCZinwFlKQZl04LGzTP9/eD3u+FIv3LJcQU2JrdWzyB5kZqJ+lSSruFhPAFVJCja/vZuNOFvCBxPks+NlO9AoqczT1YIU6g/gySo5wk8z6f0155M2U4FTsGEggnJcD86XKZmdd+lID7blgzPLZlpUFTx4YGj1WUx74aItzAW2Ciqm9Fy7Qqw8CvMLNP1KVrUAiEgDDWEREhJ1rH99FEkYmoYHoO5NFJAMW9hp4NQng6TBdfS8D0ZQ0To5pW0cnDdSjVl9LUY5Rx0CbfqZJfSz4W5gmEn5fevGAKvYGAkJLbp6pLjhO364TE8n3MNvyjAXzT447NNl/5CGjvlxbDD1tz4/huFvM3IuWq/H6r8R2DsZApUYTGMg1PCIeZ5MhYy9XJBvEyqCxM9zOg3gpQqF2MCRcgLZM6FlInhwuYNcziy/zS9A3k9ZEODTBxMVFSgfhxaMqVeivJyWlpaNJHl+fPn6enp4fDhw1fFy3nRk7mGNlYMsre3lx07dtDa2sqiRYsu+uOVhsuiu75YsUhbVRUC6C3kwgdO+A/L6qrZHM/38s6ZaxjovTDmflTy38HD9iy/uQ0oeOG4MpZNf6FAOp2CgXKhrrHCZOozoRvdBLmijWEypifjDlSi2biEEFUk8V+Oe2pl70/u0hVlIONpqpdSkBF6H7HYf9kcp8IqkQlMQLaQ0CDjV4mZWjfHEL4XKqMLg2CfpvDI5hOQIGhG9XWkRUAcGpUOkJ6BYYU8cdEEvpSBR0jgTaihS3xxMy/cXp2yztfo8wuun2Mw5CSpTgzhYurck2X7IOMzPoPrCEykBplkSbe/BIqYge5Q+GNZulzdP3DvydqKYO97oKN7MHq7rAs2eAUXI3KNPcfTiyB/fxXus4hXE7s44fD0ZbalDeR8qp2i/xsnpcH9v/USPvnH/8nRAGSkQLf0jObJXKlgmRCCTCZDJpNh+vTp2svp7e3lwIEDFAoF6uvrNeiM1zt5EWSus0kpOXHiBIcOHWLhwoXj5tC5lOqyaOhiZGSEHdu3U2/bXIjQyiCgRdTxxZe+nifOHiNNgr4KtfVRUyBT8DxSRTBTARNzJOFvB0/RaCJt0Y7z8s9UDMH/3DAk+bzt98yM1u0vQWaDY/nPaPmxAqu0IIcIYHuiLM6ngMGTPilj3JPx/+G6FoZq2iw519IpSDtGsiK3L8INJvOA5cC2/NCSoZQbg2thIHGU9IHS1FHX3vRBRiSl9lqcvBnmXiKI4HkCIeIMDNFxua7AsMILZ3jB4QSxCrKYFy1AlNxKngfD2FiGC5h6wrRMF9OSWqJBSPBctAsZ65GRkmHHV0P1Run2N4QkV7AYPnOJk1rJj1HMOlBnxvt9ALfo6W5//3QjAdAAiUsghlg3bwR8pQfFgYCZwBOYQY5o3dJpVFUlmTK1AY773a5SSE3zX56T8b93MS2ZS+UtG4+Xo8JqDQ0Noy6UX4ggM2H6ZErNdV127tzJsWPHWLdu3SWRtI0NMvFwmbqPe3t7eeqpp6irq2NOS3P8zhdwU9MMTMNgc/ucsnBcJVMVZjmniDMitQc1Ekn4N9T4N5NbignKWVD/qDDDqjyskAJRFL6+S2dNEMIZxZNB6p4FBVLhJiWeSQUvKLaniCejcl66QgwZNF2Ksv1IKfyxR7b1T6h8NetP8jK+DxF5jXgywwVf3146kTJfK/RkCmpiLtmNISQjhaDSSN8aItawqb7gJ/5H9/J84TJZfh3VvFmyaBASfDXo+MWVnsGwYZMIKgZ1d7/hBeGy4Hp7kHUSpBMOQni68EHgd/wPFn3gdUsmfyXZbCDpOdYAmLEx+0Mu91RHNUvo84mdB5IqEXKjicgPGy5aKrpQ+jyUeUWDYj5YVdg2wpPgSe57zU0AzJgZ9vcUi64Soy0jyFQ2aRyCZZeb1FdezvTp01m1ahW33nor8+bNA+DgwYM88cQT7Nixg1OnTjE8PExcsffKGJiVfeYzn2HmzJmkUik2bNjAM888M+q2X/jCF7j11lu1LPTtt98+5vaXahPSk8lms2zfvh3Lsti0adMlC5opFmY/MSpi+QwjOoEF/zhx4gQHDx5kwYIFTJ8+nfZzHWztPqM/Nwy4d96qsv2PZfXBCmq4WMT0DKxmfwbrGwkZY5OBpoxXscGvpKKnxKKraCNoUpPnM+Q9idmSr/wlAdIJroaiwhptIikhbSyJ6ICnQkkCwxCx6lRPegjH8HFLliT+1XcvyvJMhYOWWISJ2fMEwyMJhCcwLDdAbr9XxTRkUK4bgp5aXTmOoT26aAmzLnBQXeYByMQII4KKSLUq93Myfu+UnkhlcDCnZBbX+5Dlk7MrcIUVskIHk5BluJimixeongrhMZhPYlsOhpDakzGDWuKsa2Oa4BXiqKfCZa5r0Hew1s/PjV74FYKkdi39l6RhUnQ9RNJAOLIMMCzTwBhWiwhZ8nOGi4wyP1UlkCLjcfMhOaa0/M+aR0xmtfvgMndhSGFfLDpQ8Et8yliYg2s5+TpqyViWRXNzM83NzRW9nGQyieu6nD17lr6+vktWwiy1r3/967zvfe/j85//PBs2bOBTn/oUd9xxBwcOHKC1tbVs+x/96Ef82q/9Gps2bSKVSvEXf/EXvPKVr2TPnj1MnTr1isYCEwhk1A3a3d3Nzp07mTJlCgsWLLisH1qtQFzXxbKsMUuYOzo7OOJlWbt2LQ0NDQBMCyrMAJBgOzZLm8ObeFyejCLJLBQwXRMrEFDKeZ5eKdrBuRWjYmqEYQU/4T+ahU+9KBrkR2zfS+hIQdLBrHYrI0jpsEtX2ert6N+VPImYJ1O6T+kns0UkrBedY10jyJdEdhxpfAwnszAfUGYici6GPykNDafACMuORYArlRiYMfyQUr5gRyh4pN61+rdXDHtfpGcErAKVfxXXM7CF9KuqRDCBekEiI9onE3WSRjk/6UHRVaJ0/iam4WEYkVCfkAwXEgjHL1tPRoTbpCd0J79XQiljBt3+F87WItXzpcZhlJ+bPuOScRrDHiSgKCRmeUoRWwhGBgN6HEeWtQv4H4zuyUQvjlsww9/c8O+L26aH0Y1pM1vA9cA0fOqYvE0mmSgLj6shtNwgVczSXI7ruly4cIHvf//7/NEf/REdHR3MnTuXhoYGXvWqV7FgwYJL7pn567/+a+6//37NuPz5z3+e73znO3zpS1/igx/8YNn2X/va12J/f/GLX+Thhx/m0Ucf5c1vrtymcSk2YcJlUkqOHDnCjh07WLRoEYsWLbrslUQUZCB+H6ubTn2Wz+XZtGmTBhjwu/4155UQzEvFZUzH58n4IJMtFhkYGGEw8GA8oNr2V1eKdiNaDBCdv7yKs2uJSfwy5sFEUAwgcE/WUNxbT76jPLmpH3Qdr1B/+g/uqPezfj/Qi/FMfY0qPQRG3i+rNipMyCrsBGr16+lJObadusQVekyAUDs+uE2GRlI69yHccIIyCCds5RUo2pXsSDL0ZJR3FQXAyMToqT6ZSgAs/HCZKbz4NVQunoyHi/SrQSiboE/M9ziHiwmkowoZwtJj1e1vmQ4jxQS9w1WYwtO9M5bhkXMtDFMtVuK7Nw2Pomtw4UhDGCmrAHYXY+Z3ip7voZiCpCifkHPZAl7QY2xE2R8k5TdapWNFPZmC6YvuKUkfBPf90rrwnEwTK3gmC8UiuZxLTbo8VKZ0by42cV8vLRnTNGlubuaNb3wj+/btY8OGDSxfvpzvf//7rFy5MiYkNh4rFAo8++yz3H777fo9wzC4/fbbeeqpp8a1j2w2S7FYpLGx8ZKOPZpNGE/m5MmTnD59mg0bNlAb9SQuwwzDQAgRAZlIuCxYqQ0ODAAwffoMUlFCS8JeGfAnyVdOXVC2/4t5MnWRrn9bmoikDfilytWJhN+MGQyrTFOmgmcxlokC5C+kkCXAJ/IlD0lkoiurDYhNAMQeeoOAQgZ06kb1DkGE5VqDDoi8pb8baZVAIPAcEVZhyciHpeYJMMtzFnqYanIOwGFwJEVTesg/nhf4hIEno8gx9TiCEuVsLhGvIJNBuEwdSOGC9MEgmneKhXmCcJkhpD85B16B4VHWCxPlNqtUsSWF7+0NFNJUF3OaWsbU3fz+F5KWy3AuSc9QHUmrGKiD+oqYQwVb/1alnoxlSC50VvvhRkNgInCQY5IrRK9FyjApeB5GykA6EtcEJ1uk9HcUoEOaScskF5HIHN0fpOI4nLzpk4kG5KlTqqqY3Fof26bKNBjAD5flh4tMypTPIxKJXQEQS+1GaMmoeeuuu+7ivvvuI5vNcvr06UvaR09PD67rakp/ZW1tbezfv39c+/iDP/gDpkyZEgOqK7EJ48lMmzaNjRs3XjHAKIsm/6Mus3ovGQBLpRVNe22kpFMKXjdvRdm+L+bJJCPL3frqTOypqbJVh7b/5kixshBHWSXyaE9lXlDsTZSXPOdK6DZGW5pGHmpdEBDz/sL9+PjjC52Fn4f7AX8CN3Lm6BOWbsgsjdFV2k6ODroqzxHxZAwtWBZ+wTSkDpepUJMwJAJJNpfUoTNh+AULhiCOBAS5APUZGh1j5rmGD5wKmILwjiwlH71ITkYIiXQEQ04SURSagdnUHoyfb7StIgMjaYYLSRxpaMoZgGKEDLR0qAYe5w836qo23aB8sYWN+nzIH08RiVIgEE75lzPVSd18W8w6keZPKqxyxja3aPiyykG68SWLZ5VtU1vley7FosNwtkhtBU8GwL4IzT/cGFVMiFeXVVVVMX/+/Ot6/D//8z/n3/7t3/iP//iPssX35dqEARnTNK9Yga10f46jtDXCB7xY8P33hComqDDxNldVkbD8G3FasoFMybgu5sl0d3dzPLJqSKfsWDxaaY47QRyjcBGvSFulMI0E4RkIjLKwiPCMuDxA9PMSDZPS8BmG0DQxZtSzEQFtixMuwRXgRqvhhAa4EMFCJuYwmR4bWOlPMRaOR70Dw994KJfUoaTouRrCo+CpZHnwnuFP7tlcImCgDjwr3UJSMhhXBBV18TBa5LL4pdaS8KkSoCueteaYjIcQRfmxfE9GMOj5Xf9WIvDIzTBM5rkG0hX0jfj9FwXXCqroTF/DRhN+EeMtM5AMDaVxR2wNMsZ4QUaND3wyTFOQMBQzcvl2w0N50kEBjF8NFtnBGNnGsrAiQbjMNCDnf3bXzUvKvtfU4F8LN+fgeeXly+CX1yfH4aHcCMEyVRRwJSXMzc3NmKZJZ2dn7P3Ozk4mTZo0yrd8+6u/+iv+/M//nP/5n/9h+fLllz2GUpswIHO1LepteJGcR1VVkKcY44ESQtBUlUZKeP/y2yruW8pQ5leZlJJjx46xY8cOVi1epN9PJKwgSe1vnzBVLmZ06eXxWyXKxoiVgskY+yl97pUGuojeJjqWESKPCFyZMDwpcYcDgDLCMFU53f8o4KLGGdCQKAr9shFLETs/TwiKAVlldJemkFo9U4OMkLiO4YeSRCT0pbr5SzVtXKFOovKY1XaKqwzwdy0qAom2CiTCANIxKBgGeMKnliHsf0qaLp4nyBUTyCChJIOKLAnkHBuhQkJRXjT8fE3foQb/FJQXMrZTrs85I/1r6NkCEei4FLNBb84o66SRIT+Jkk7GF1rlv3n4A1dKl7gFE88SiBykhz1mTG0u22ZyWx0AzpA/ptHKl9OmXfH92PECWpnrbUNDQ1cEMolEgjVr1vDoo4/q9zzP49FHH2Xjxo2jfu8Tn/gEH//4x/ne977H2rVrL/v4lWzCgMzVZh1V4bL+/n7OROKalhl5KP0jV/x+UyZNg8jw0vbZZZ+pFU7Um3Fdl127dnH8+HHWr1/P/BkzwmNaBoYrSAdhMiuYePNOhSdzjHzMqNGuMcAjmlSOblflxeP0lfaRDppEywqO4ot5zAA01YbSE8iC2jTqUvgvXhDm0mHMqDsQtUi3+agW4UKTAnKq5yXyJUGE5j/CXlwoWj4QGOFF95UsjXL2+JKCiZJomr6A0ZCk5oOMel2xqJmM4VYYbvRBzbAluaKFYUpNFeN5YFn+AidbDCfLRMDSLPDpc3QDZslNUyiYZE8FCy1dWFHu/cVPPvjuUAGkxDUi3kDw3apE+cQtRehF5fpHxvwdzUhIVt8XUU+maCJtA5GFmYnK3fPTZvjA4wbiaZU8GSmhyro4yNwITwauTjPm+973Pr7whS/wla98hX379vHAAw8wPDysq83e/OY38+CDD+rt/+Iv/oKPfOQjfOlLX2LmzJl0dHTQ0dHB0NDQFY1D2YRJ/F9tM02T7u5uzp49S319PZzzpXNDfQyC18p3fmM6zSsmzRl13xCGiUp51VQssyaRYLBQwDAFsiCpTSUYKTp6pZZ1KtR9BnbRJOx4zRFgB5OIJ3T7gVGMZqKJUagoS5lq9S9iQFBWDRWYCpfJggG6P0mWZXmVJxOKYY7i0ajDjuLJAL63Ywe5BwH5fIIEhRgwegFVv38u/o4MQ1IoBBOlGa7mpScoXEiFqy8Fcmp/qnoteJsysIlcKyM4NSPyY0bPUTmDla6nE4DMsEUqkE2QptDd/oZEU/wDJO2w29+RRiTsF79wrmuGeZTgI8+RvqzxKJYUJkU8jKSJ50hkQuDlXbCNUB7aK1fvTiQtKNoUXLAMg2I0XBaLM4JtmThBYYBhlK8snLyBtATGsMGa2ZNxXRchRAwIZs/ze0BEcE9UopSRQpIZB8jcCE9GadtcKcjce++9dHd389GPfpSOjg5WrlzJ9773PV0McPLkydh1+9znPkehUOBXf/VXY/v52Mc+xh/+4R9e0VjgBQoyUkpyuRwDAwOsWrWKo0dP6M9E2bK88oT58mlz+NX5lZmWo55Mf38/27Zto6mpiSVLlsRuzPp0isFCAWmAMyKpqlUJf//zoUK5hswlA0u0K7PSl51IPEaCyPsU6YWcg/75ZZC0NuOCH0kjrBBTFu94D0AleNVNpXkRLqBjbJT+UKTSMXFHARd1rGhsvsSTUFWCwgt5kaXhezI1KOZlRUpqhL19hn9/GAKKBdsn0RRhiEZIcM4loaUYgkClXJgnwRAxDJKgGZsBpBl+qKlx9GmUNy/qQ8gwb5VzE0DWv25qf/jhvuFiuFJPJIIpXgoGBtKk02oBEz+GkJEwmSp5dyoJvURsoAgZkyI+43ERkI5/fZXS7Eh/HrtkOrEtg4GBIiRM7KTFiAy9rdIOsKjHa5kGedeLXXdvRPie8iDccdPCWOWoqsqau3Bq4Ir636nsyUhqLsLADDfGk8nlcnied1VoZd71rnfxrne9q+JnP/rRj2J/Hz9+/IqPN5a94MJlhUKBrVu3UiwWmTlzJi0tLXFameD1Yto1r1uwbNQxqRu7o6ODZ555hpkzZ7Js2bKylY/iL3OR5EZcnfBXK/7BCiBz1a0Y8dw8A8OK5x6Uea7w2Ztj8fuS81eApi+d2rcCm8DyhgbzWLhMHdoNvmPE3y/ZjKTl9+JEcTTMqQT/iOZ3TBjOKYoY7ar65cuRMJkaaSFnl8WIvBETclb4dmkorwTswoopdS1ELCcTQ6D4VYp4R5SZ4vwacdVCQMRCqbbhMpwPV+RKETOXs+nYOZmeQw10HG2kry/eKyVdEVbelYT6Sk33lCH9BYElsJTXFYw5HVRwVcrrjFwYwlMLFSHiytVjPO4q/Bpz+gKi8kzRZtG8dhKJRKwfznEcTAsMx9X3RGVyTHFRmn+4MSXMw8PDAC9yl01kGxwc5KmnntINTuomKV2JQ8j9dTkxKTWpHj58mJUrVzJr1qyKgKQaMovSIztUJGn743Ei5c/VlSrqrmBsZRalFPHCijbbNmL79zwDw5R6ZQphqaeE+BPvifB9oKgKK9TMnBMIM8ghyGioSE2+hh9yK6WWKfHIdJhOhtRAZnDLqmHq5svA6xjJJfA8NEmmiUehaOt9+7v0ZRGKroHQdQn+9m63XTKG+NjKiERVSbQaejRcJgKQNSgPielQWYnHFlwmFVLMq6q4YPWvquds02VwJMxNKPr+4QBUsl219J+uI5ctmVAjzANlZLEllgxkjj3b0OFVNxt08Ae38NBgLvZ37FCe1IwCjuuW5bUkYfl2rPxexu8vADPrH2BGXR2GYehq1FQqRTKZ9Jk9DINUcE0B0rafl422G0gkdYmLl+beiBLmoaEhDMMYU8bk+WgTCmSuxJvp6Ojg6aefZsqUKaxatQrbtis2Y4YrzsubwR3HYfv27UgpWbJkCS0tLaNuq/jL8q6Lm5c4imXADaPX1WUa5KGVLqIrdc+PBURJ0wgbMiUxKhjLiq/SfOEyL0ziA1aQjC1lHijLyegZH38Wzpthkr/Cyl0g4no0Jd6EmnQddZ1k+J6aGNWr7vrXTZImQ+erypiGg+ROsH/pC72ZaKATApycCV2J6FBDcIkCoIymkQIwVauWEgkEEf1eiUlDjlqmLR3/AuYx8Vz/PCTRXhmXoXwIILbl68sMnKsmilllVC6R4yUS8fBW6aaO4/q/pyUwVB9MEOKsrg6OHYwnYVfIczhokCnknXLPSUpMsxxQ9G+r3nSBvP/HitnlvF6GYWDbNslk0vdegvuzOpnQXk6hUMBx/F6dxuTFJ/Eb5cm80KSXYYKBzOWYlJJDhw6xa9culi1bxrx58xBCjNqMWQoyY2nVl1o2m+Xpp5/GdV29ghrLFBPziFNEFAW5INEfpfvP2PboQFHyvlGBV2osS/Z7UIj0yrjoXzw3Uojt33UFwpTa24JIuKS08TSio+K/hrkVgYCsoT2ZSuEygQAnynRcsnu1uU/UFQBkCBAQ/o4xTyYYy0B3NYZiYjYkuWLonRiGf7yCY/mJee1NSYpn0+F+S07VPxNJ6WBFyRMUar2VnFtlDtRYCEybF3oyCIORbEJLDPi8Y5KCZxJ9fC3To+CY5AcilVexMF1gTujJKK+19BFIq/0mTb9U2RC62VIEv4MsBrT7wfUq5svL8VWZs39KEio0bCpqpeiir/QuF0WBERz3tjVjNyc21qX1HhprMiQSCe3lSOn/hnVmgmKxWOblRO1GeDIvgswENMdx2LZtG+fOneOmm26KNRtFhctiIBO8Xqojc/78eZ566imamppYs2ZNmZxAJVM5maFCATwoBiXLwxG6/2SZlszoA7tYeENZTaCQ5uQdhGdo7i+frLF85QhBuMzwMKxIKWnwmvfcknBZfKhaqkCBTN6Ib19yMOlKvIJZFopKyQDg9AIguhCIr27V5CC8OCggYGgwreWhTeGRK1jxlbKU5IsW0pQhyBQMZGeElr4sJxPJiURyRGXnFoTLwu+LytsF+xYVKsuEF+ZkDMujb6QqDP8ZHp4nGCrEFziW4dHfV6G0t3R9EDlecRSmCWfEf98REltdd/Ujq8tVCMJmgeKrkAbLJjVhFyPPRJR52jAwowwO+J65uizRcFnpfS6KAuGBUXBZtqi94piVtbbUaiXNuqo0pmlqL0c1e7cFDMylXk4UcG6kJ/NCswkFMpeC4ENDQzz11FN4nsfGjRupqamJfR4Fgehu1THGUp0stZMnT7Jt2zbmz5+viTsvhSTTT/AL3bAWrSpLWBWCYJVWt4wCMhXyyLLP378K4YhosjY6sUcmUhnQ7+cjwFmWf1Ahqfh8E3orQmIEOjKKxyy2So6GnkbMMs2W2uoSgSkZfCbRSWP14KsVsK6bjZZBC8FQlz+RGEIykouHcgRQcEw/H6OEyjoSCEJwDPnYSrwxP9ESzzlFzy1I0GuWCDUudVmj24/SiIkrQlYE26NfJPS18qljJAP5eF7BMl3On6wv2VF5OE5E6IAcVVMcvGWrohDbp+7HEBHC0bgn6QbM4cIS4EnqTYtP/NFruW3J9Nh56JFYArModCrKH7Ohr1/sVisBZlH0j1FT4KITf/u0BqQw/O1T5UwdAO019SQSCV08oLwcBTiFQuGiz/a1sBc9mQlk3d3dPP3007S2trJ27VrsCvHgKPVLJV3F8eRkPM9jz549HD58mLVr18aE0y6F7t/xPKqSFl7woOZcBzvIfZgl8ZZS0sXoa2XJgvA9pb7rlfLLFIPtIl3s0fx0dD/5SudUevnc+LFDkIFE3vYn5rGeEwFy2NBNkApmh0v6hsIJSJSphKoJw6Bk0hESaUB/d1ih47oWIEJGGClwPdMvXzYk3oiBfS64h3SuJ3KKUTDWnkz8GuucdgAyCcskFl0rvSASLcssShM3MuLJJD2GXVuHpRTTcv9w6LUIJPmCRW4wVb6fskRLOUBKxdiQCz0Y5V97eaVyFx4NQtqaAh5VRfir/+812LbJ77zrFRjKm4l4Mp5pIIpeAHoKMI34c6g9nPi1FcF9Ozl18VzKrNltIAyWeEmSdnmHhiEEUzK1seIB5eVYloVpmly4cEH/JpW8nGtlL0RVTHiegUxUDmDx4sVjai2MGi7Tk0F8VV5qhUKBn//85/T19bFx48aYFACUq29WsvoIwVx1OokbiVGrqrLxrFrCFEj5trGmwwDEVA6lKhN4Bk6gghIZrp2skAuSAkfNolQAq9IBqT8jpcj2cNCoWiFcFjvVIVMr7fpFbNIPI8qQ4sVTk7QXd8Cipr009bsagAH5Ef/8XM8oE0hzIsSa0hNYR1JlXqIX0fgpBXshRfm10Ytv/x9J0/QnVCP+3XjcjoqNmMITIfWOARQNcq4FSCWlwoWhcMK1LZcLvdWVykLK9+8YJFL+5Kt+N0uFvJKmH/sMmof9sWhk9l/UeQZej7QN3rV8JbNm+QUwNTVpVrU3+RtF7jdpGXjR5D9BWXP0vPVrebgMYF5rU6UzjNn8JVOxPcFfvOdXKn5uGyYZu7zYRhUP9Pf3s2/fPpYsWUIymUQIged5sbDaWLmcK7GhoaEXw2XX2saacB3H0ZKlGzZsYMqUKWPu62KJ/7HCZaoUOpFIsGHDhoolheMKl0Xo/tMpm2Kkyz6jmJgjj9loqU+10o9ysCmzop5QSd+Jo1aUeT/kZET11mOlxfF9KooQrcxZOsOXTYzSBwcBVl9QkTZaFz+AEMiigecKUpi4SJIBu0AmRk8iYzl0Pe6oRT0O8MNfKiYjfOVLLUoW7MhxI8UNpywMx8C2ox6RjGvYxEKMIppWCPFWL17871mmEYqS+RekbFdRLykmHSDR1WUAwhHkXB80DQOKronjhNfJMl16z9SUAZktzArhssjvGqxQVNWjQ5iDUUn6hK5CLAFzU4ArWWPW8ut33qT3Pzw8zM03NWJ4EqmobTwJth/CkpFrYggRfw5FyT90uAwwYMX8sfMxAC1tdfzWretobamr+PlYvGXd3d3s2rWLpUuXMnny5Iol0lJKncu5WPHApdqLOZkbaKqqq1AosGnTpnHJAYyWk1GmVqKl4YTOzk6efvpppk6dysqVK7HKEvO+jUtTJtJxnExaFApholXxJ7mVwK7kLVUFVAmERT7cWJULW8GE6QWFBmYgIaxWpxBOLPqAEj0BpIJzHs5miVnwdb241YNA55FEr4Hwysuey05LCBLDFq01fthHgUt1dJUZjCe+so2HlkqVq7VXZfriYfmhiF6MOnclVy3B6vWvleWq0JzU3lPFJsnIuKI7tVTpdxArTBhmPCRWCW2FrExOKf1j61vDg7xrai8p55oxb3KkYOPlEmWLlFROxKrDpQSKBgXFTq6KPGxDezBeXhVUBCCjGiO1pxgseBIGqd4Cb7lpFkeOHGFgYICBgQG2bt3KoiWzWdpWr4sMrCgRpyRSVq3Crb6pxVRYwhz8bkWfQWLjqso0T6X2xtffOupno/GWKUXeJUuWlGmxREuko7kcGLt44FLtxXDZDTJV1dXY2Mi6devGLQcwuifjv5beCioUt3PnTpYtW8bcuXPH9KwuJfEPYCdM8vlwYlcrxGJksi8LBZU8dJVKKr1oNY8qSQ2eWscJRK5yfuOlESHFjIllCRGjP08GY8sVtAxh7FWU5GS0FQTeiBs4AiUgE1mxq2/OSTRr0lClsaM8mkrfBRBBzYTev/LO1FDMwCsIBNUKOTvMxRj+tfGUJ+OE5+2o8FjgAUWihpGDB+/FKAj8F+UJlXkyZcn9yCpdUOYVRoFC52Wkf9+qirmCU9LfIo2KIUXDLd8/RRHmYIIL41aoIssEnfzZoNlSH0sVABqC+TuzzJkzk+HhYbZu3crPfvYzkskkdXV1vO1NN+sFXMiVJkEK0la8SbrUgVGPndK5EUVByjBH9U4uxaorhMq6urrYuXMnS5cuLQOYUhurETRaPHA5Xs4L1ZOZUNxl0UldSsmJEyc4dOgQixYtor394q5y1GKeTIWVsNTLcaEZlPv6+satzDkeT6bKtrEMA8fzsEwDWfSpWhxPYhuKm+ridP+lq2BDhnNHxXBDMBEkkiY5wBuQwQoyuq0IJhT/S1UJm3wwKbjBStdKJKCYi37FN0molInUE6kxZAQFBUEYRM//QnsIKixUl0pSJzMUTX//6SBJm7DKE/nRyd7LeYFaZvB3Kf9ZAAQKZIquGVRquf4oIl6IKIYrfR9kzDDUFmjDlOKM9ISOmoFPgeJKGHGcAH/8cJqpSp6jGweXS//TiPwd2UT3crkCbIlhSL/TP9gm51R4bCO3YgqTAp6/SPDixxYYWtHUs/z+F2kLvKwHVUakD8aDVDg+BUzSNhCupPHnvUzN1DNlyhTS6TQ9PT20t7djGAaHDh0im81ijASLHFdSNERwD0JtJsXgSE7nEw2hqOBE4NkLfW3BRRQFTVdJQKuUt6yrq0v32LW2tl7y/gzD0Is/z/Ni/0XnB7XdWL03w8PDZbnfF4JNSE9GTfrHjh1j3bp1lwwwMEYJc/CqyBzzhQI/+9nPyOfzl6TMOR5PRggRejOGH1tPKaqbYFC5UullZdHJUL2lkq9uOFPpcIuU2pNRk5QbhMvEkAxW1/6xMyPwiqap/N4tob5EOuJBKCGqvBsBkqh55beNIQRmv4GRUCwBaoBQbURWj8HJtNXXIIcMHY5J6mq7Sj9W+J6i5EnIMORFCdYLASKgvi96Zog/wmdk1n/njbCyOPoaSDNHiua0SdfwH5rgzZqguELih5YUyFhm0J8UhMtKTXgylpOpZCovIwKQUSCZK5jlG0dzSMHkLg0RO7YGZhM/P2KAravp/A+rAw8mN5yPj0UtakxBsjNP7c4+5q+cwfnz59m+fbsu71+wYAE333wzmzZtoir4khc0aipZ6oZaP0SqG19LGmDV3WVbBqIoEVLQ3ji+5/JiVhfxZK4UYErNMAwsy9IhtdJG0It5OS/UcNmE8mQARkZG2L59O0KIGG3+pZoCGZ9xt3ziUr/vyRMnuXnRYhYvXnxJHb6GYVAYB8FlfTpFTzbrs40UQ7VJNY5oY+ZowTn1EJp9Tmx1CZCwLUYI50VQPQwmbjBxWIZFoSBZKlNsWbqQV9y8nHQ6zfePHtH7sSPUMDWZDAyNkHcc/4kvHVhRlL1nAGafgbACtyZ6yYc8qAn2E5AyJxImxQGpQcUq7X+JWLSQS0+U3UWoCsJvwYo/vF5RT0ag1XYdEXMqxIgRVNOJMJej92HoWVHjfRCyEpbEMASuJPi+b0nTIuf5miuGoEwV0z+ByIuQ5eGsqEUaMg0hMfCbSPv64j1hSImBoSNzyhvwwSS6nR8HlKbAKHh4CYGbc6Ha1B6Ml3chEYkoKA9GVZMZ0PJohx/uXDWZ5557joULF5YV4mQyGepsmy5AOOEgTAeGh4eCYStWZt90LiZ4I5GwEXn/GZs//cpBAKA+6c8nnZ2d7N69+6oBTKmpuSQqC6Lmo9G8nGw2+4IMl00oT6avr4+nnnqK2tpaNmzYcEUa01H1ynh5qv9vJc2sKPovlUJiPJ4MRHpl8KAYeiMqzDVYKIQJ3kg4Kmp2gGXFQR+QovQyqoIsylGlSpgFgmlZm9+77SbWTZ7KH/76y2hvtPnpT3/KU089RX93d7ifXF4fV/GXjQQd4Xo4QvqJdq8cZAQCa8BAViAwyGdDb80IyrgNU4A0SAbrHCvo3aioxFBBUdENJq7kED7ICEIEEj5BpnQFLiEDs3SMsCwaMEaEfgJk2UIk9GSi5yo9X3enNigDHimGC42kZfoccEL6YKlofEpCVnqX0XBZqUkZ5mQSHkJIDMNjcCCNWylcBr7MAOCqc7JEebgs+CkU+akR3MKZoHExl40vnKyEGe7LlTT9vA97IKBHsi6wZMmSUSs9G4J7X/XaSAOqhU11MJHq50cl+PU3/X+lUpbOwa1eMrPiMS7VGhJVGmCWL19+TQCmkqnigaiXoxpBVYn0gQMHGBgYuC7juZ42oTwZy7KYO3cu06ZNu+KuV7WCcBynZF9BQrhYBAvq6xsu61jjyclAnCRTIHR4S4GM43kkDQM5RtzEcyWYvghUHpCuB0FlkJpYcD2IUKRPu2Dwx297DcsX+KHGEzuHmDZtGtOmTaNYLHL+/HnORjyZpG3r6iVVzVZwXUxEfLFdFGGOBSIiaP7KXxpCyyb7A/ST4vmgNd8ehmJNAJSWwMzHZZHLWnMEFSni1fXzil55uExKhOnhjJh+17paPwyavlcSuH0iGwEZI7YDPE9WyMn4wCWQ2OkkjOQoShmkcQTCdXx6HvxybsMh4skEA49UVslSLyd+KB0uM2wP/3JJersrhVNEEP7yPRWCLnxMoUEFfIA0HIlrC7/xstoMaXoKDiSNMtAzksFK3BSkOvPU7OwFIJGyWLlq5ZgEsc01GSAX/qiGoC1TrSs2k4kEFB0MYYD0NIuAE3j3qVQC0QupYYdVy2eOepxLMTNXYPcpH2DGGvu1tEpezmc/+1lOnDjBzJkzb8iYrqVNKE+mpqaG6dOnXxVahegPGPVkhgZ9V920lIDYGEHxi+x/PCCj+MsUOabqli9EvKBkabIbiK7rlEyz4j6LMiXrRHlwGlVn8rypcQ7f+vjbNcAArGqeqv9t2zatra2xPIxthh3q2eGwdLkqUsItABGU/5Z6MqlBMwjZST0c2/TFpKKyAoYqFTZ8787LxoavQyixKxENl5V9SFjtpiZM/E5+JxdcG9WM2W/CYHA+RYEpjUgpk4jsENwKapxVmD6ICChEepaUTHXS8r0BwxMMDAwgXP96RHL28X2Wemkl56w8mTBX4ZHtqinfWKIbbU2pcizB35GeIGR4v6gcTFXAxFwYLlFpDa5HLpjwpSFo+VGnHkvrtMaLTtKTGmr1cdU+50xqKQuPqdeEHV9w5IsjpLPwV/e+BHcMFdnxWmdnJ/2nz91QgCk1KSVf+tKX+JM/+RMeffRR3va2t93oIV11m1CezNU0JSzmOE58PozPR2PlXce08YTLpJTUBUzNijJFOh5Y8YS/bZjkouK1Mpb3D1btgoRtkYOgMs73JooFB5IJag2bLS0zuWfLUmbOC4lCld3UHFLiFItFnnvuOWQ+TO5WZzIw6P87KgNgSuJNnvl4TkldwdQ5cJx46bLpSrAJK/ki23tICq6D7AUyYbWaU3pNRaSpDxCG31IZiqKJULgsqF2Thl+R5WgvyU+YG10+SIhaB0bC1b4/2JJwmSByc/jXe357C8+d6kSIOMdb0rTIOS7pVAKGh7GETTqdQngjlJYpi+iNZ8iKBJngg75mYlbedyGBXzpYPuEanvTr5woeJA0M1/dYRD5yPT3hk1/aJqYQvsJl0YO0KFtsJaoSfmWiITA8mHLCwe4LQ2nzV86oOO6oTZvUCF1d+pxrhUVLpppzQ/H+K6Mk8Z+0E5Afoa6ulldsmoUgx09+8hMymQwtLS00NzdTV1d3SYvRjo4O9u7dy4bFSycUwHz1q1/lwx/+MN/+9re5+eabb/SQrolNKJC52sRwytsYGhzU79VUV0P3oM5blLMgj88uFi5TncG1QV+PIsV0HQkWZCMrM6tCPii6ejcM4RcqqVBRpPRYCMFiWc3fvvMeGutGTxpWJ3ywy2azbN++nUwmw6a1a2H/Xn8/oPsaUhGmgpRlg1RgJBG5UmYpQILR6yKEn0j3VLlyXkIK8gUHMytxa9TsDY70GCwU8HokxiKBi6oGi4OMCPavDxVcAzthUcCLVW/5gSyQJgjTo+gkAs0YYMSkigSDg44vhZw3YiATczBUg0vw5vymJg6dv+CfV1CdlnWK+KxrwvdE85E8hxTYCdv3JkZJ/IcXPX4pRfQjVV0WRMGG+9KVi0Ok393vIjFcP3qYtCyyeODXIfj3jodO8KdsixySfLYAtclwvyrnFQCrZwlqcrDCSbAvcsjlt4xNuQ8we9EUjBO79W82s6GO2kQyzIkF2+lIQ8mrZVosmzGLdZPn6BBvd3c3O3bsAKC5uZnm5maampoq8hcqUwCzfPlyahvqLzru62FSSv71X/+V3//93+db3/oWmzdvvtFDumY2oUDmapthGJw+fZoTJ06Eb5bQylRs/huHjeXJRGvlFbVMtuhQZQgKBRdSMBxJGFfUiYm8ZRQ9SBjkR4pQbccA6HWrFvOBLS8b15j7+vrYsWMHkydPZv78+ZXZBoj33lQnk5DzQ4xCgMgZ5RVnjoC0BTnPZ1IQgAFG1oFaE2lA1VmPwQWmL9QF5KXLhewIw10ui1a3aHXNQilwl0zECl4NVcWGHy6TkU+l6Sf+naKphclElw1SIqThk3Pm/PyY9E+4zJMxCpKltY3spJdMVQLOh16WkCIoWTYpuh6J4B5SlXIi6FgUXpDzGa1PRqD7bkpNShA6XCaRUjBwrprEKBFuN+dAwtRhMC/vgBX2vfhvCizDoADg+KVvuixeOXRBDibvOICNtAzuXzifo12HYsdb+9JFFccRtTlL2zEfCT301fPaqbHDBUzporK0+VgCrWk/B2XbNpMmTWLSpElIKenv76e7u5tjx46xe/du6uvraW5upqWlhaqqKr3vc+fOsW/fPpYvX05zc/NFx3y97OGHH+a9730v3/jGN3j5y19+o4dzTe0FCzKu6+K6Lh0dHcybOxdOdcQ+V7QyqavoyahqNs00YBgx/rKaqiQ9QRIipPsXFSn8o4VHlmVSiJQGmGbY37HlJcvHNV61mps7dy7Tp/t07JYQpEyLnOvgSan16aP5hoQZVmcBiLyAUBfKf3UErmrw8yReyn/fZyMwEYYgE4CMahTNOy4jRYeMbdE2UMXxBr+qpgxkIAw3SRlyz2kpgWi4TF0gv1jAVVdRgOixKeQcX4ir38CIUK4ID93Jrrb/m7vv4KzMsfPnP44VaQQHBfwFStEt6MZaVX5tYvh5IZWjUl9DYsZWDxV+qGBMridDkBF+yX2+P4W8kIfSuVKij1GVTjCAi1fwIGOQTiUoyqx/cVxIWgZZID9SgJpIY6LyHpIBeablh8kWuymmN5pk1izkue8dAk+SSFmkqy9e+ZmuSZMoSJygIOGOm5eyi54yMBE6NxMMJUzQ0ZoqL3QQQlBfX099fT3z5s1jZGSEnp4eenp6OHLkCMlkUsuvnzx5khUrVkwogPnWt77FAw88wL/+67/yqle96kYP55rbhAKZqxUuy+fzbNu2Dc/zWLRoEftz5f0sjg6XXZ4wUakno8BFrQxVBUldpAy7Kp1ABEl1CdQkkgwVChVXssINQaZQ8CdH/VCa4fK+VCqg1KSUHD9+nGPHjrFs2bKyeHRVwiY34uB60u8BMWSwivXNis6EEkTRgHRJlMcVeLaPBVL61WP6JIGaXrCUXnywOxUurKtLI0+6FOt8cIk1pwbRtUpJc8f1Qo+qFJcEeHnDBw4pEUMGhhvKBYgu0xfbCn4+UwjNQC+ED7QzW5voO9/ln17wRR3KC/aTMk2GQMs26AS2sHxgCvpkoiw08XGGAFTW7+rJUFMGieeYQACM0YRdsBs1MeeHC1Bn6v3lhyJNla4IFOaEZkrQuwl+F3+BYeLZBukRjzffPIN169Zx0D6Lcisb2+ornU1Fy2DQJyTVwy4zpjVzomNQn6x63MNFVjzfZwgxLqnkdDqtKydd16W3t5cTJ05w4cIFDMPgzJkz5PN5mpubL6pme63tO9/5Dm9/+9v56le/yqtf/eobOpbrZRMKZK6G9ff3s337dhoaGnTyv5KncKXhsqgnoxqsPM/DMIwYWEb5y9JJCyJl8BnbjgmY6dJgqcgt4wCYSPmNl0XX88tUqdy8qM/R89i/fz89PT2sXbu2IptBtW3TOzKCIz2/x8OQ5Jxw1jaNyCzviIqzpZACTwg8W+KmQq9ATXxVx/J4wWlK29+BakKtyiSwXJMpspqTZBlxnMhq35/U9PWMhJ2Krgd2MB7lyUTG5hVMXVVmdph6bwB21qBYZ2BbAhcZJMFlmLwQvhSDqhpzpcoXBb934FmpSi31G+gmQsOk6Dlhg2ypXLW+cMT6m0pNRjyZwkhA5GkF3awlVlOd5DyOX1iCSaYq4eesFCjhXyflweiSApXjqrLJo4DURFqCe1pauPUWvyF6+vxWfYIzFpYXloxmdYkEfcU8Kxob/XHaych1iHugIZdZkBs07IsuokrNNE0cx2FgYIBVq1aRTCbp7u7mzJkz7Nu3j5qaGp3Lqa2tva4CYf/zP//Dfffdxxe/+EVe+9rXXrfj3mibcCAjRHmly3jt3Llz7N69mzlz5jBr1iy2bduGG/SnKFNBJ3WIK/VklAdTCWAg7JMBSNhmrG+hKmHDMCE1TM71GXEJk9jBH/5LhZI4a5SHpFgssnPnTgqFAuvXrx+1sVXp2hRdF88VWLZLPsKnFqV5EXkR047xx+RfUUd6CBOcNIiihwzoZcy8h300i9Por0i94I4bKhZIAYm0hTPkYZ4GEhLX80NKmvpe4PdRUKFRE3+SjKo9KvOKBtj+tbLOmji14XWzbZMiYCP9Cqq8A1Vm2BcjoMpOaNJOBS55vajw95MIyuStEjofUwoGhob8KkEjwrRcOkxjDC9HRkuYJW7WDo5RYUcShvpGoCXUCMoO5iFlk0rZ5Bnx33SEZoHQujCaQCzou7L8yrRpWcF73nu3JqRtaKpBmAbSdVly09xKI65oTVVpjg8VuOclKwCoTaTKSpj1M1PClp02Rk/mj2Znz55l//79rFixgqYmX3+mpqaG2bNnUygUdFjt5MmTGIah8ziNjY2jMq5fDXvsscf4jd/4DT73uc/xhje84ZodZyLahAOZyzEpJYcOHdLxV9XFq6rLYp5MZII2hbiinIzq1JVSVgQYgNqIe27aJsKFKX1J6turqbESzLhQx5mufmgtnziUWUkTB8gN5aCmRHbXKAdJRc2TSqVYt27dmA+PmkhzjouUBsJw/OIEdZ4RSWIKlIGM7r3MS4q1IuBok8iE3y1uHRhGFDwMxZ6cQHdxpxImRa/ISNal+2A/9S9PMTBSHtoUhOEoXSIdvVxuKQqD4wpIgH3B1G0ydsKkANiKdqXgQMJCFnyQiV7zpGlp7ZGCBpkAfAPvQOVijJLVdjGXx66z0PQ6MkxkR61iM2a0MCCiKVO44N9HxUKFnFUEqDLVSd+DCcwIcm0CCa5AhKV4QJjoD8NkglTe4zPvfEMZ47mdtCgUimx45ZLyMYxibfU1JAb6uW2TXyhQG/FktL9aGjYLXtLm+BjXlSmAWblyJY2B5xS1RCLBlClTmDJlCp7n0dfXR09PD4cPHyabzdLQ0KBLpKuqqioc4fLsiSee4A1veAOf+tSneNOb3vSCk1e+mD3vQcZxHHbu3MnQ0BA33XRTjGBOhbSEETnNyO9rGsZllTBLKTUlxI4dO2htbaWlpaVivNc2TaoTCYYKBQzTn7RnGLWc/+wxmhe0cfjJw+RubQESRGcYyzBQLP6eI/3QkD4vPVXECSXxw4VqTAsWLLgoXY6iPg8nUBEvI5bhqETBiE/uweSWOO97E4W6IIHrSDzASlik9w8hXAvDBeH6jL9Gwd9nOmGTLeQ435tF5j2WDdXyJD3xAUYidAaCMgmBSPRI6FSVxHFNRA7sPgPLxAeXogNY4LqAhVt0g7+DFXRwrgYCIYQGYFWMoPNFAchYJbmYQhACNC3bZzoOcifSDdJLZeEyqQFIlCIQRPpkoNAf0LuoeubS3QT/Vh5MOgh/6fFCwN0WAF7gwRhBM6YjJMKTfjXZ4qVMmVQ+SaerkgjHpXlyQ/lgR7H2SQ3MvzCgJ9ZaO4kOk5X0x+jzCd7JjCEwVmoXA5hSMwyDxsZGGhsbmT9/Ptlslp6eHrq7uzl48CBVVVU6rFZfX3/JtFPKnnrqKV73utfx53/+57ztbW/7hQMYmIAgcynhsmw2y7Zt20gmk9x0001lKy8lwWxEbtbono3L8GRUeEwIwYYNG+ju7tY3eF1dHS0tLbS2tsZWQnUpP8GvZpm8Dc3tdRw60MniTXN5MtsNJAgX6cJnUBYBNY4XTIaB2Ybhc6ERUsCAzyqrwoXjZU5QYmFZ1dkNFGW4WpaReI6RC8NlMpjZRF6S7oJc5Lk2PYFiVMkcHYGMfy2MPLhVkAlAtyaTIiETFJxhmmoSOPuGqJ9rMlwCJKI0NwPxuH40HBXEu6QhqDolwBSYxTyQDBs4VZmv8gpKVNiU56MErlSYLO+6Qd5A+CBTkosZGhoKxmFS9PIlYwpzDj5wilBrpmKeKwyXea7wCckEo6CRL7Wdj0CwWyhCxiafixCwOqGWjAhyel4g3+lZBpYHs5wkb91SuSkwXZMilbq08PKs9hZqqsPkfdK0dIg3zLwFgKff91/nNYyvIuzMmTMcOHBg3ABTyaqqqpg+fTrTp0/HcRx6e3u1UqbneTQ1NWnQGa+m1datW3nta1/Lxz/+cd75znf+QgIMTECQGa+dP39e93wsXLiw4kpjPOGyqFjXxaw0/1JdXU11dTWzZs0il8vR3d1Nd3c3hw8f1t3Jra2t1KdSnBkY1MAwkM/TNL2entP9HDrWQ3phiv7Sg3kyzPuX3Jyy6IaJf+HTiJ88eZIjR46wdOnSSyL9U3rn2WJRr9AdT+oJIAr4IgcyWuwjIdMhyNf51WXKbGGQB+yc53s1SjytIHGrBNVJv+AhmbAYHvLDY1VVJgUHqs+ZDFc7sYnXc/2ZuMSJCgZFSHMfLbV2IeEICmZY6afLg4t+D4gCF1ECMioZrxL/Uc2ftG1TlP7fmuMtKN6oymQgm8OTMhRBM6SOMfogJ0OVSREBngr5Nlx/weUVAxllExIpG98vi1+MbDYPVTZV1QkKSMzAC3NdL9xnMVwkmCkVCvQIOP9J5uBvf+dXGM1q6quorr60ENbKpTNJV8U9/GSw6CvNyYSejT/ghY1NF93/1QCYUrMsi9bWVlpbW5FSMjAwQE9PD6dOnWLv3r3U1tbqsFp1dXVF8NixYwdbtmzhwx/+MO9+97t/YQEGnqcgc/LkSQ4cOMDChQuZNm3aqNuZpkmhUIiLoUU/F2Lc4bKLJfhTqVSMgFK53lu3bsUb8cuWc0ED5vnsCLljfcyb38qZg12QHFsNUsfPg6IAJ+9AOnhQERw4cIDOzk7WrFlDXV3duM5HmUr8u1KSNE08in7FFYFH5QXI44KVN8kHDprwfHGsqqzL4BSBEZGBVtVhi2oaOAeIYMI1gsW9CkNZlklH1mdjSGcSnD45SM71oDpCIyNkKGHglecjpAjyDXF1AYQjAsJFIyj5Vqy/Jo7yYGQpuPivauJXnkzOdYLIl9/dXwwuiZokR4LfV5hhfiMtLIYIwFKVtQv0fmTQRxNWzpWcl79HhCco5ky/os2k8mQVRt00IBcKQWmDIUAG0QFH6KZTJ/BgXEtguH5p+Xs3rqO1aXTdlrrmDHMWVmZcHs0aGsr7XJIqj1iSi9F9S0JgCsG8+rFB5vTp0xw8eJBVq1ZdM7EvIQR1dXXU1dUxZ84c8vm8Lh44duwYtm1rD6e6upp0Os3u3bt59atfzfvf/34+8IEP/EIDDEwwgkwY5SEKzPM89uzZw+HDh1mzZs2YAAOhJxNfAYdPs2EY4wqXKf2H0QCm1GzbZvLkySxfvpzbbruNKQ3+CqsvOwxAwXFJV9s4tTYSGFYCUdGJJpoADg6XCOjYoxGTfbt309vby/r16y8ZYMAvo9b/TiRQPoy6Lo7nz97miIhp1kig7qDDTWtn+29ELomapO9Ys8j3woJwkxkswJNKqhiXwXwB0xSkMlU4jkdtvY9iSpTMDy2pirvI7apjLcHFKIq4J+MIzVStNnZVkqvUaygJz6pEfjoAGU+GSqZJy8JXzRQaXKpr/MYgVeqcd1xsLzKRKk9G5yIYt0kXCsM2CeVV5QtlgCSkIFVlq8EDYR+YVMiGf/3MQKLAVedtC0xPsryQ5LZVM8bk42uZUs/al1280/9ilgraBspyMZF+mVl1DWM+m9cDYCpZMplk6tSprFixgs2bN7N48WKEEGzdupVp06axadMmXvayl/HGN76RD3/4w7/wAAMTEGRGs0KhwNatW+nr62Pjxo3jco0rhssiZjB2uCwqMDRWBdnFxtBW70/+RqQwIJkxOH7mApPmN5BKV0hwRp51I5gsK04Anse6detIpy/etFbJMpH4ctoKmZjVA14MvBC7D83FJQRYUnBr9RTmzfR7JmKSLx4YLty+bjFVNWkI+m6Mgj/b2cE1zwag21BfRbbg5w5Ux7mbC89V0/pHwMCw4vkZkROxuzmaf1DsDsWiCnspD0aFy+JvK0/MEEIzVacCME5apv81GWoSGUpWIvh9cq6D4UTyL14856AtAhY6GFhaPCehMJRAadtJs/z+E67QDaMFpQGk8k8mOgzq/+1fJNf0fyOEoLZg8HuvXsfevXv50Y9+xHPPPcfZs2fLRPmW3TSXWUumcqWWNBRxaTxMFkX/sUJlNwpgSs0wDJqamli4cCF33HEH//iP/8jhw4dpaGjgM5/5DCtWrOBDH/pQmKv7BbXnRbhscHCQbdu2UVtby+rVq8ddz65ApjbSqxLNMdimoSe8Uos2WIL/IFzuqkSVMUcbLxva6miyiyQGc0GOIDHqElexMOdHilCbjE1Oa9asuezKF4h7MtHG1JRl0U+eouuCDYkLIuhbkSAk0wZSfOjBu/juof0Amh05GDCtBYt0KkHj5HqyA1nwJGbgsLlOkMOozkBnjuqaFN3dgZfnOmD7vScFAAF2FgomJA2DES/ijYQLX4y8wK2OdOS7Ybm1W9KpX5Y6LxHNMiKIWWXbjLiO7u63IvmdmpoaGBwJmzWVHorn6TJtacjoMGOvyiLORmgKc/ImTtEKJBD8JsnyWmifLRnwm0qJgJHpb6/qN4qKZcA2sIrg5Tw++9ZfYd7MNqSUDA0N0d3dXZZ/aGlpYe1LF16VlXm6pGpMt+qIEIwXNlZO+p86dYrDhw+zevVq6uvrr3gsV8uOHz/O7//+73P//ffzyU9+kv7+fv7nf/6HRx999LIXgC8Um3AgU3oTd3Z2snPnTmbOnMncuXMv6SZXIDOnsRHLMHC8eAHsaO54NP+iWAOuxFTX/2ChwLSaKmaJDNVn8+x/8rhfobWhQpirgtMiS/8lueKxVUc0zxOmGTYa2hGiRAusLHgBZ5lrerxh/mKSSTsE8MgwPMdjQVU9ANPnt3H6wFnwPMwRf+e5nM8xYwbls4m0Rf9wjoZMgt7hHKSUZk4QfhpyoM6i2FeA6kAnSB1MOQyFcAyiGJQ7C3+CdwIQlyX3TmmhlmUaOMhYl3mVZXOeEZ27KxYCfhyJrlZTHlYxkjNSxWXKk1G5GPXd2DhEKAKnLGGZ5D2XwoDfYOlZQRDSrtDx76qKQDNklVZ5KMvw+2QCb8ozgxLzhMB0Jf/fSzYxb2abHkdNTY1uXszn87qY5ejRo5oTrKWlhYaGhsu+91JmmE+MX4/w96kEMgpgVq1aNaEA5sSJE9x5551s2bKFT37ykxiGQUNDA/feey/33nvvjR7eDbcJBzLKpJQcPXqUo0ePsmzZMiZNGj+VhTIFMgnLZFZDPYfO98Y8mUogc7EE/+XY5EQVt1gtFHf30+hIDu08CMDCFdPYv+MU+bzfv6G658GveMr0FJD9eWRzkmxDIhZCARCXyYwQtapEuKr0vTrhew+Bh5cr+jQvUvfpSDJZg1995SoAagMC0CgmOo7H+um+YNqCVTN48tvbwfXInPQ4vxqqa6thIKer7ayAHaCpqZqu/AUg4BlTifIKyXEfQBTCSEReBqyiEuEY4HqIACw0EbGIvWhTU6Ul/Ak82nuk8jKqq98ygklbRtpPggNEyT2LOdW8QwWFTXUpRxkQYBRcsKB4IemfXwAarihX7DSkwA3qrj1VmqzCiUrtUuIzMdgGNpCXktfNnstdm1dUGpn/1WSS9vZ22tvbNSdYd3c3e/bswXVdmpqaaGlpoampadxlvUAolqdOv6zKDBaVgMxEBZgzZ85w55138spXvpK//du/veJF3wvRJiTIuK7Lrl276OvrY8OGDRU5t8ZjiscIYH5Lkw8ykc9LQeZaAAzAptnT+NqD/8357iH6EyaT2xs4d/oC+3eeYfGq6TzO+bLv1G3rpW5PFiHgMz/9AP/1vz/ju71nOEr4MG40r7xkM+rJRClqdN6k6GCPgGf7k6Vnwex8Del0QDdSFYQCBOBILf17xxo/QbzyJb7uiPAkiUFo7DEQzf6DqNRBVY48U5PU1bmaADPiMYQgG/bM+CAU5FWKwfZFoSnvgbjoGuV5fyvwqMzgnVJPBqAYCLzVVFfD8KDvXQTbOyrhHwWZrBeGFyvkWWJ/R0wduej4EtuFC0lEo38PC0f64bJS80AGlYee7fsHMuFz1nhGIGngiUDIzKe9eUWmlff+xu0VRlDZTNPUYTMpJYODg3R3d3PixAn27Nmje8RKqfYrmfJkdPiwpG+mIZmmIRWGmFR5/kQDmI6ODu68805uvfVWPv/5z78IMKPYhLsquVyOn/3sZ+RyOTZu3HjZAANxpuSFrf7KKBqWUH0Q0QT/1QYYgGTS5g1vvxXwaUGKrqeT/XufO019s1/mKSOyykYwX6XSCc6dO8fCmU18+YO/wbJiGjth0tDncM+yJnbu3ElHR4cG00u16ognYxiGDpeplXvBdUme95PonuXTxdzUGHqV9ak0uuDW8V+rrQSTmv0QYMvUuoB7xkNIaDlr62ZPxTKgwEaYIqxei+ig2EExgLpmlRRYhDQgZ/gpI4cYyJSGycrLmgIvIKg+syIbJILvqsS/1v6R4JUQZ0YZpC2VEDKISBXEXsrMcsJPwmb/kC3aHqXc2SgChkB4gcfjSv/vYpCI8fz/7AA8V1TV8+e/c88oo7i4CSGora1lzpw53HTTTdxyyy1MmjSJCxcu8PTTT/PTn/6UAwcO0NvbW7FYpSGZ0vuB8lzVtJowfKwAZqLlYLq6urjzzjtZu3Yt//iP/6jl3l+0cptwnszw8DC1tbUsXrz4ilcGKlwGsLAlAJnIA5o0rbIE/9UGGGUvfdVS/vPffs6pYz10dwwwf/FkDu456686vUrTjv9eMmNRLBZZv349tm3zlQ++iT/+p//mrb98EzVpU8fLd+/eTWNj45gUN5WsKuLJRB95NZlKJMluyLWBZxap7je5Z8sy/Z26RAphSH+l7Hi4GLQEHf7Dw8Ns27aNVCbJcPA7NAxZSBmwDASTsqL9zxaL5QAQKZvWuiOyJGUl/IWCyJlg+ToswvXKmlk12ASvdtLy6WYCAJEBzUxxpMBzzz1HJpMhN+D38WSqqmBgyE9SSwFS6mqyQoQRQF3BRKQXRIaRs+Cc4r93CpMsDjLv6p4pGbn1df+Og98r40lk5EKZDrgWiIKHTJoYRQ/PNDEciZtAezKmFNyWbOJv3vOrXE2L9oi5rqsVLFW3vOojaW5uxrZtlrW0xb5fyvTfXu2XhEcB5nLK86+V9fT0cPfdd7NkyRK+8pWvXFNizReCTbiro/S7r4YpkJFSVvRkklb4OVx5En3ssRi8+Z2b+ZPffwiAg3vPsXT1dIoXhnjy3AUo8dhU13lDW22sgkwIwUd+85f1dnV1dcydO5fh4eEYxU1tba3uWh6L7C/qyUj1PxGu0gXCj/nbIKVH03GXGXNCRgHbtLTCpPIelk5q1SqcU6dOpW1aE8c6BpFAW0MNA4F+nFIH7c/5oajewayeaEzLCCSAoRAwHORGilBt+LQwMSVL6XsLeQNheT4rcxS4dfmS2j44hu7XCc6/4INMpiqNaZocO3YMlQkrqspAESTxpcBRCf9ImCxlmuRdV/9+0bo1GSlykxH0dM4NQ1PS53ZTYzEDf02it3Nzjg9CUYyS+PkoC/195VH6TbCmn/R3Ja+aOp0Pve3aimSZplnWLd/d3c3x48fZs2ePVrCsSyQjHkw8JzOjrp4TJ05w9OjRCQcwFy5cYMuWLcyePZt/+Zd/GVP2+UXzbcKBzNX0IpQL67ouDek0bdWZ2NyTMMxrEh4bzdZsnM2SVdPYs/2Ur9s+nOPQ04dgczkNjOrdWLBi1rjAL5PJkMlkmDlzpq4K6urq4vDhw1RVVekHv6amJnauKucAvjegLk8xcqGkAYUaiTUsmOtkyo7tK0GGY146pZFt27Yxb948pk2bxvQFkzh2pg+A6ZPr+N5TR5i6uYazw4MkgAvZEVICevqzGA1RT8pHPKleNf1LSf0y/kpdFgxElau17PWErSUXg8lMEVsGr54qPc4VgCSGJ+ns7GTZsmXMPGqw9dh+XNf3tgYGBnQivVQCAPw8X951dcWZkD7eCSLl8xKfrTroG1LXTYf4PKnzUCqtE/3ckCLmyYlAQ0YRk6rtbMNn7zY8wdzaBj70+uurwhjtlp87d65WsOzu7maKMHX/iBdcRyH9kvqprsfREycmHMD09/dzzz33MGnSJP793//9koodfpFtwuVkrqZFQQb85H+0uixhGNcNYMB/6N78zs0ALF40iX1PHqKlvbE8ZwB6tTpnWfslH0dVBa1evZrbbruN2bNnk81m2bp1Kz/5yU/Yv3+/jpebhhGKc3khz1V0dV7MSLwqv6JqxcxyWhEV6xeuxHAlKbefpUuXakaGhWtmBpry0NJUS2t9DUvOVWEbJlXJBK6U1NX6id5kKsyTqetQdn1Ko4tqyV8QmIWgNDYKkiqVEexHJfqVOYUIuzJQzBdYsWIFkyZNojooP68JuvqTSpdHwkDQTBrNxSiNmWjjqIhiI4SkmCqMpgobFNg48ROUEfCBSHhJ7V/9VMF26uxsw2B2LsFL5s1kdltcEfVGmFKwXL16NZsXLCIdXMtCUFRRKORZXVfP6ePHL4si6Vra4OAgr33ta6mvr+eRRx654Qqbzyd7QYOM8gCieZnow5+0rOtO+zB/8RTufu0q9j7uNzE2T6kvK+UE9ISyaN2sKzqebdtMmjSJ5cuXs3nzZhYtWoTneezatYvHH3+c3bt3U6UpZEIPIdrzka/1/53odbh9y+qyYyQCTWXhQd0IrF+7JkbSueolCxBB/qKuoYqlC6dgDkk2uM1kAqLGmkBvXrEbRNMWmmFG5WRKEzcCv6xYCER/QMYZ2UY3JqpcvGJQCI7hBIwE6pB11dVaE155euqnsWwrUMaUiEDwLu+5Ogyr0kCyhHQTwAz43aRUOjP+++nqIBGuQMQtQdHg/VQyoLmJgpAMv6fOOWFZ1A5J3r56OQ995K00ZDLUJSqL1t0oW9k6GTvwBKoygXcsJQuDYh2lDzUyMnIDR+nb8PAwr3vd60gkEnzzm9/8hW+uvFSbcOGyq2lCiFheZn5zIz88fEx/frnSy1dqt9+1nO/8/WMAWqkQ/NRBaS3OpBnjozsfjyklwObmZqSU9Pf309XVhRUAwMDwkJ7ci4Vwda76ceqGBbMWlPcrWUWp5XBmVtWWUX20tTdiCX/hXtdYxbKaKezed5Yz/32eRb88k5+KEdKZIPSgCg4KDqTNGNhUVdkUcLHNIF8jQVcbq+R4ZxHZkg4aK4ntUwRlvip85ga6MjqMFgBJyo5S7VjR3Wv2BSEFxWjPlWmSdz1QlWZ51fIfjr8w4kDS8KNthsQIwozDw3lI2vrH93V3CEu1g+o0qXMs8euv+npsy6BuSPDra5bzprtv0qCcNC2qrYm18l7W0lpGP5dE8BsvuY10Mlmm7aLKo+vq6q7rwnBkZIR7770Xz/P4zne+QyZTHi5+0ca2CQcyV/sGsiwLx3FwXZd5TY3xcNkNKjucPn8S616+mJ8/upezJ87DCn9lZCJwInWuyZR9zR4oIQT19fV+Inb3Ljp7unEiq/+uC0OgpKmDSW1mqryc3HEcakY8ehI+GC2f1Fa2DSi9E2huqmFmfYpT5y5QW53EOppjpVNFdaPNrNZ6zuB31EdzZ1IVao0EHf+u55foovpkwmorOyspEBdzCzVUlPCXGrsb+1uZHRG5y1g+4Kj7pqgKIjxiMtUpyybv5qnJZOjI5ctLpohUjIkg0aKdRbVNZU/GFAJXQjEXlJdFc1ISahM2c7MWD9zzUm5aPZ9SSxkWDYmJtfquT6bIqB6koLrwJbNn0xQsUJS2S7FY5Pz58/T09LBjxw4ATbPf1NR0TSu7crkcv/7rv042m+X73/++Dpm+aJdmEw5kgEsSLruYGYaB4zh4nseM+roYtb99A5unXvuOzfz80b0M9WWxg8lbOi4E3e94UNNw9SRgxzIlXOb3ZgQTctFDBpOy8AApWTrZb8RTwFcoFNi+fTv3rZnHH+4/gGWZ3LJ4dsVjNE+q40LWpbm5mtq6NK3NNTRl0pw43ktxIEdd0aR/+ynyt9ZAfUSBU4pwPlX4W/TAjsslh0ARjD96+6j+oxIamFImALWPZKRfSYXLVKWbo3nQRCABYCAQJCwT8hFuswo9LWEJNUFpc8XkUhg2U99zIuXYxMOF1abJgy9fxNq1a0etIkyZNo2J63MvXYotbWnlqdNncIpFTCG4Y/6Csm1UuHfSpEl4nkd/f7/WbNq1axeNjY0adK5mGKtQKPDmN7+Znp4e/vd//3dC5YeebzYhQeZqmZSSRCLB4cOHmTx5Mq2trUyrq+XgKV/i1zZuXANVU3uGaQsbObW/l2TGD2W4hQjISGiaVH9dxqK6/keCBLZwJUR6Ow0EiV6HpsmSn/70p7S2tlJbW8uhQ4eor69ny7p1/M/hHvYZPaxdMqPiMWYsnMzRbaepqfVzA0sXTKGjs5/hbIEFc1s5fqwHO2EFJJNR8JchOAThIq/gQJUZCLv5ICSDuJkGG41IYbmzDpOpz0oKAtQb0ftChctK+ckM6ZcyJ02Tgutpr1iBjFdhkaTLktWhgsGmMjYFIjQ5JeEwRUtmGIK2rEnN9CZ2O73B+EzWr19PKjV6ziVtWjQmJx7I/HJjM09nqslbFu9/yTqWt1X2gpUpTrCGhgbmz5/P8PAwPT09dHZ2cuDAAS0U2NLSQm1t7WVHAYrFIvfddx+nTp3i0UcfvaFMzy8Ee8Em/lUHv1KKPHfuHE888QR2UBEEkYa562xnz55l+/btbLn/JUBZbx7gr8Snzr4+FUGK7n84UMdMjBC7M0zToG4QXv+mu/TDvWvXLgqFAqZpcv78eT7+pl+iPV2NOYp3uGjtLB8Pggd/2aIpnO3q98Ndtkk+7zBjfmso76y+GLk2TlDAId2SWViAkVVs2cHXgmo2It6CarxXrMyqIEDPRcGxo2FUJbCmqGNU46X6zZRnnAjOWzWxup5ECZOpccSwzAjHVYhIJEOkGk3/LVmUS/KpN97J9z7ydhZMC4sqaqqqxgQYgLSZoDVZLh52I+3o0aOcOXWK//fLd/LBW27hjjlzLnkfmUyGGTNmsHbtWm677TZmzpypJdkff/xx9uzZQ1dXly78GY85jsP999/PoUOH+MEPfqALQF60y7cJ6clcSbhMSqk5yMAvm5w5cyYzZ84kl8tx9uc7+N7RTgBOnzzBscYaWltbr0tCT5F+njx5UsvF/s8/P8tTI3loiE8UQkpmLb1y7Y7xmKL796QkZZmk+4oMp8NVoGkazDQzmKaJEIILFy4wf/58ampq6OrqYv/+/RSLRd62cS7nzp3Tnd1RW/WS+dhffEL/vXTBZC70j9A+pY4jx3tIpW2EbYYzfkn4C4goWhJ/FZLGnTm6b7G1V+IG2wpPauDS7C4lfTOy5LWK8nCZU9ITI/FLt1OGySAh15uiq/cUt37grUSr3QjeNoSBSxiK03d8yQp8U30bn3rnG/zzcl36LlzQn41HdK/KsmlJTZyE9ZEjRzh16hRr1qyhpqaGlqvgKSihwMmTJ+N5Hn19fbpwIJ/Px8Jqo4Gy67q8853vZOfOnTz22GOXJGP+oo1uExJkLtcUuIzWwZ9KpVg3bw48+RwArU1N9PX1cfToUdLp9KgNi1fDlKpnX18f69ato7raX1m+9h0v5YmHvqdOIHIyQX/JdbCocNnSmmZO9JzAmxmChDAMVk+bqvXUlyxZQlsQ2mhsbGTBggUMDg7S1dWlO7tLKW6a2uqorwtj5u2T66mvTdPYUk3H2X7mzWvjxOEuWFaS04h1HQYvkUZHCSAFVeclNYez5IP5Q/W+CFcig7tc98sY8Soz9WqYhq+FExNy86+D4leLJvvn2PUMSQ9G0B6cypfIAGQUG4IphAYT3/XyS8Z9HIoDq8rJGAXwUlCVcNm7dy+NjY2cOnUKI1IVkRpHhWRrMkPamhiNgwpg1q5dq5+Bq22GYdDY2EhjYyPz588nm83S3d3NuXPn2L9/P9XV1Tqspp5113V597vfzdNPP81jjz3G5MmTr8nYfhHtBQMyUQ6ysRosF01q4QMv38Rf//ApmhuaWLVsAY7j0NPTQ1dXF1u3bsW2bVpbW2lra7sqJZOFgs+F5Xke69evjzVyrdm8kKr/foxsyXcEglmLr68nA9B8zuPUgIu0QmkBIWBRex0HDx7UHlhsrAFhYm1tLXPnziWbzdLV1aUfakVxM31mY+w7Sxf6eRmAnOMyMlLESmYoIKHiJS9PpoMPNgaShp/20PHS4BgKsNWE7EqfIZowTKarvYLXZY2N/Pbdt7B6eVi8UKVBxvdgRiKNl+1ONUdsv2tdhwkVNkrpJ+t1+XF8AeEn/4McUNryU2DKC7Lii6NVKxYghGD37t1+njHivYynDH9G9egqk9fTjhw5wunTp68pwJSaECLGhlEoFOjp6aGnp4cTJ07wqU99itraWgYGBjh06BA//vGPLyrr/qJdmr0gcjLKg3Fdd1wd/L++dhl/9ZpXkgma2yzL0g2Lt912GwsXLsRxHHbs2MHjjz/Ovn37OH/+/Jj656NZNpvl5z//ObZts3bt2rJOYSEEd69cWPa9ZOLalS+XWpTu/9wPT2ENe6EeCWBIScLOsW7dunHJXldVVTFz5kzWrVvHrbfeypQpU7hw4QKZBocnn3ySw4cP09/fz4rpzZzu6MNOGBw73kNtfTosNzZLkzNEPBlinwkpsE0DM1skc7Av/pmq1IrWROvmzPD1JWYdf/+RN8cABkKQUR6M43mYwfeSA2GFolnyW0k10OCWMUvTAkJq1yrvxBk0RUkOoa2hjv7+fhobG1m/fj1VERr83OAQx48fZ3h4mNGs6QYn/aWUGmDWrFlz3QCmkiUSCaZMmaKbk9/2trdp2enu7m7e85738MUvfpHu7u5rcvzHH3+cu+++mylTpiCE4Jvf/OZFv/OjH/2I1atXk0wmmTt3Ll/+8pevydiulU1IT+ZSJlflvVwqB9nmeTMrvh/VzfA8jwsXLtDV1cXu3bvxPI+WlhZaW1tpamq6KL23IomcMmUK8+bNG3Vs73j9bXz9jw8SVVRXXeDXw1QJc1u6ipGOXmomp8EUyKLPoZUS4qIVTKNZVPhq7ux5DI/48r7btm2j80gn06tsnPoMJ49dYOrMJg6657XHUWqllWOanRhBMmFSdF1q9vTTf8vk0BHSnkykak2Hyfy/Nza28Df/5w0Vj6mqy6L8ZGnLYqhQBM/QbAcqFxPDPwHC8f/t5h1IWfpDGQp/hiXWngvYiEIcZM4cP8biljaWLVuGYRi0NjXC2SMA1Fdl6O3t1Rx1lZoWrzerRdQUwJw5c+aGA0wl+/nPf87AwAB79uyhWCzy7W9/my996Us0Nzdzzz33XPXjDQ8Ps2LFCn7zN3+TX/mVX7no9seOHePOO+/kHe94B1/72td49NFHefvb387kyZO54447rvr4roVNSJAZj5Um+K8FB5lhGDQ1NdHU1MTChQt1h/zBgwcpFAo0NzfT2tpKc3NzWVNYR0cHe/bsYf78+Rd1v23L5O4ZM/nWsaO6P6+m7vo1z2UCT6bdqGIQWDp7MgfowyhKZFIwtbb+sgCm1Grqqqmpq9Y9D9XGHr73pX9l0iv9yqLOnn68YA4Kc/qR33QUPRUBZNI2Q66HVfDI7DqP0+B7jJoPLMjfCE+G4TJTsDhv8zd/+GujjlnlZKL8ZEnLZKhQJG9J5uwyaZjRhofBjEwttXmTl2Qb2er2QhJkMaB8MYwyeQKFmkq0jRLvTcFWW329BhiARERUrbm2jtWrV+M4jqbY3759O4ZhaMBpbGy8IXonExlgpJT8yZ/8CV/72td47LHHWLDA79FZunQpDz744DU77qte9Spe9arxE5V+/vOfZ9asWXzyk58EYNGiRfzkJz/hb/7mb14EmWtppQl+IcQ1X61FO+TnzZvH0NAQnZ2dHD16NJbobm5u5uzZsxw7dozly5fT0jK+MuT3/PrLefRPT5IPZpiG5ssXa7tUU3T/1Rckg8BLX7mYb+75CcL157vJ12ByMAyDBctmgyexjg8zwymQO9iPMbcFD/D5hEuiuSU/sWkIXHxPprY2RWew4Kjbfp7zLw2IPDWvl+84GJFG+9lFk3/6+FvGvHcMIUhbFiOOgy1M3EhOZMgpMnJqgO4nLjBnTis9+zvoTHZRlbaQKyxkJFyWME2KyLBbXxC4OGEfj1AenBqO5/cI3bR8ZayIJdrHo8J5lmXR1tZGW1tbrLrqwIED5PN5mpqa9P15PdiDpZQcPnyYs2fPsnbt2glFxyKl5BOf+ARf+MIX+OEPf8jixYtv9JBGtaeeeorbb48rmN5xxx28973vvTEDugybkCAz1kM/3gT/tTQhBDU1NdTU1Ggtl66uLk6dOsXevXsRQjBjxoxLoqFIJW1eMXM63zl8jKkiyaKZ1698UiX+nSODzJjbgkz2UlWAfJCsnlp/bQCvpqGKdCZJX0cfg2d8CWpPxEFZVmBTVit9yzAo4CGkoL4xE4TEINHvYPcXKE4LK9FUOEuF2NqH4Csffeu4VvhVls2I45C2/TBZQjEhmAKrPsns+W0cOdDJtBmNnD7Ry5x5rewRA0ERmQ+E+ZEiVPtaMEINxAPDCZkVZEk1pCg4IG2qSkDBjow5Y5cDRml1Ven9GZVKvhaT/0QHmE9/+tP87d/+LT/4wQ9Yvnz5jR7SmNbR0aErOZW1tbUxMDDAyMjI84Ksc0KCzGimPJgbCTCVLJPJ0N7eTm9vL5lMhra2Nnp7ezlx4sS4xcMAfv+tv8Tv4+eZTh7svD6Dxy9htoTg/PZu1r9uLjNnzqThmSN0ej4D7sy2a9PxLISgbVojx/efw07ZFHMRZUw14cZKmOPNk7o4TAhaWqoDxn/J/A1Tedntq/hyx0ntyajSYuFKZhZM/uUP7yORiPfyjGZVls15RkiaFkMUsYOwlmkapJrTmJ1+Ni0V5NH27zkLt1UHIGP6nlOcZEBTywgnLLH2VBhPsU3nHUyvfIxJEYJM9UVEs4QQVFdXU11dzezZs8nlcrqScqw8zuWaAphz585NSID57Gc/y1/+5V/y/e9/nzVr1tzoIf1C2PMGZC43wX89bGRkhO3bt5NOp1m/fj2WZTFnzpwy8bDq6moNOJlMZtRzMAyDmQuvX51+tZ1gSqKK5qYcr3rNRqZMmUJzMk3XkF9YvXBmOfPy1TIFMg1tdXSd6AlzMUWJTIgYe6X6p2UZ5Am43mxf276luYqaxhSv/fBLueO1tyMR/P8+/g+YhkGRsMF+prT56v99K7Y1/hzF6vpJnBoa0B6M5iczBXlLcuJoF5maJIcOdDClvZ5zp/uCrn5wi4rrTPGRCa1AKhCB4JhvXmnVG2BXKACNejLVFTyZsSyVSulCjGgeZ8eOHQghdJ7xcvI4UkoOHTpER0cHa9asmXAA88UvfpE//uM/5rvf/S7r16+/0UMal02aNInOzviCs7Ozk9ra2ueFFwMTFGSik+/1SPBfifX397Njxw7a2tqYP39+LHYerawqFot6BXns2DFSqZQGnCvhWbpSk1LSffYsmb4iv/7btzFlip/LmFxTzb6e8xiuZPrka9dn0TbNL4mubsj4IKPSEg5aPkBbMPkq0TEFHNKVpKc7/OZn72bBggVYloVpmiyzqzlkDqoTZc6IyVf/8NIABmC9NYlvcTAEGU24CeeGhnEdjxmLJrF3+ylqGqp8kIFYCbOmivE8EEbo2UQEyWQpyAgwshESucCitDe1V6ATM548jvJyLpbHmegA85WvfIWPfOQjfPvb3+bmm2++0UMat23cuJHvfve7sfd+8IMfsHHjxhs0oku3CQkyym5Egv9SrLOzkz179jBnzhymT58+5tiitBeu62rA2bZtG5Zl0dLSQltbG/X19dftHKWU7N+/n+6uLpY2tHHrK1boz2Y0NcCR41Q51xbU29r9UFyyKhk2R0YsdmQVRlId+8VAdhhBQ2MDNTU1HDp0iL1799LU1MSvbFzIXz66FYDpVoovffQtlwwwAIsam1nQ3YhUFDHq+AJ6BrJMa0zRc2EYCRzc30FLWy1nCITJApBJJm2KEDZiloCMcDwIEvqeKjIzoEaWjzfKHl6fuDo6MZXyON3d3Zw+fZp9+/aNmceRUnLw4EE6OzvHZIO+ESal5F/+5V/4gz/4A775zW9y22233dDxDA0NcfjwYf33sWPH2LFjB42NjUyfPp0HH3yQM2fO8NWvfhWAd7zjHfzd3/0d/+f//B9+8zd/kx/+8If8+7//O9/5zndu1Clcsk1YkInmX4QQ49K5v14mpeTEiRMcPXpUE3BeipmmGVtB9vb20tXVxXPPBXQ3gYfT2Nh4zc7bdV127dpFNptlw/r1TJrRHwOTuZN9YsDaa3yLKE/GMI2QUyxiZiRcJEo64d1cEepMTCFYu3YthmEgpWRoaIiuri7qs1kyeZdaV/BHv3MHrlO8LJCZM7eVqY8n6ZwceNOqqz9wT5qmN3BixzlmzGzi1PHz1LRmgCEQYJkmBdcXFIslmGQ8V2S4MsJAEOZmGuxyEEmaYR6mLnn1+6mieZxZs2bpPE53dzdHjhwhnU7H2I4PHTpEV1fXhASYhx56iN/7vd/joYce4uUvf/mNHhJbt27lpS99qf77fe97HwBvectb+PKXv8y5c+c4efKk/nzWrFl85zvf4fd+7/f49Kc/TXt7O1/84hefN+XLMEFB5uTJk2QyGVKp1IQLj3mex4EDB+jq6roqOuRRtcqFCxfS19dHV1cXe/fuxXVdmpubaWtrG1fz53itUCjoGPy6deuwbZuFM+Px3YXT2xASGq/SSnk0UyDjujIGMuonrzFstACvkk0Okvle0Q8lJSxbg3G08m/OnDm8p1DFrPYaenq6OXLkMLW1tbqhdrwhHds2aTgn6J2sjuG/7wXuiFXvh5Iy9f41PHbqPDQlQYBT8LcZGsxBQyLs6g9yM5YpyAMWAsXFHJWLbqkun7STkfug4TrIKo+Vx3FdFyEE8+fPn3C699/61rd45zvfyb/927/xS7/0Szd6OABs3rx5TPLfSt38mzdvZvv27ddwVNfWJiTIfOxjH+ORRx7hla98Jffccw933HHHhGjkchyHnTt3ks/nWb9+/VVPvEVDFgsWLGBgYEA3f+bz+VjzZynL8XhtZGSEbdu2UV1dzdKlS0cFrva2BgwErdd4ZdoytQEhBCPZQkj3QpiKmVRbQ1cuyKsohmUlmxyYOQY70u23+SHAOXNmUygUdCGGIkVVgHOxvNjCuZMYOd3J2dqqcBzBKAelD3Z9/VmWLZ3MgeMd/jkYUofYwvMSsRCgauI1IyDjmYrA02ByQ3kZfMI0UHG3xtT19RxUHqe1tZX9+/fT1dVFc3Mzx48f58CBA5eUx7mW9l//9V/cf//9/PM//zN33333DRvHizZBQeaf/umfeNe73sVDDz3Exz/+cX77t3+b22+/nXvuuYdXvepVN0SlLpfLsX37dhKJBGvXrr3sSX68JoSgrq6Ouro63YvT2dlZxnLc2to67od5cHCQbdu20dbWxoIFC8acVIUQVBkWU2qvbVOonbBomlTLYF+2Yristb4G68wAji10rqKU8t9gfJ5uIpFg6tSpTJ06Va/IVV5M0Qm1trbS0NBQFqZcsmQqj3/2IE2d/bRuaWRDdSuZgk1jWwvWkEttSy3H93RQs6CNoWIAF8IPeQkJqeokRSQiwAepis5Us2iUP9MKpKVNmN5aXj6eCuShBTdGeE9KyYEDB+jp6dGLLSnlJeVxrqV9//vf561vfSv/+I//OC7qlhft2tqEBBnDMFi3bh3r1q3jz/7sz9i5cycPP/wwn/zkJ3nggQd4+ctfzpYtW7jzzjtpaGi45uG0gYEBtm/fTktLCwsXLrzu+aFojHzOnDma5fjs2bPs37+f+vp6DTij0b+cP3+enTt3am2d8VyzmoTNjAqT3NW2tmlN7N16zJdULrGEYTLZSXDKLmo9GM+LhxtKySnHY6WVVaUcdcprVDryCxZOoqOjn8nN1Zz4j+NYUnJ+OE9Law1d5/qZM99vmDt6oJNJa1o4jxOUMQtwIZcrgm3pvL8CyMJIEWrMUFzNk5ocVFqC2e3ljBGJgHnZuAFhZAUw3d3drF27VnvzF8vjqGrKq9WPM5o99thjvOlNb+Jzn/sc99577zU5xot2aTYhQSZqhmGwcuVKVq5cyR/90R+xb98+HnroIT73uc/xu7/7u9x2223cc8893HXXXTQ3N1/1m7e7u5tdu3Yxe/ZsZsyYMSHyQ4rlWAmxqRDQwYMHqampifXiAJw7d469e/eyaNEiXaI8HmtIp5k39dorA7ZNa2TPM0epnRSGRHVPjGGwatIkTvWfQorKCgCmuDLQL+WoU2HKw4cPs3v3bu01zp7dQjJhce5UH0uWTmXf9pM0NPsgc+RgJ4tXTmPfjlOc7uqHpoxfY62o/kuOqbjUtCJB0YO06RcAKLJN02DBrPIepaQVF0i7XqaqEXt6emIAU8nG04/T0tJyVXONTzzxBG94wxv49Kc/zZve9KYJ8ay+aM8DkImaEILFixfz0Y9+lI985CMcPnyYhx56iC9/+cu8973v5eabb2bLli28+tWvZtKkSVd8k508eZLDhw/HRLommqVSKaZNm8a0adNiOYcjR45QVVVFMpn0afVXrLhkKdnJtTUsrDDJXW1Tyf+qhjCkon450xAsnVrHty+cDH/PUg6zKwSZqEXDlPPmzdOULKdPn6a2zmX/vl6EITh6pIt0lc3BvWdpm1JP59k+Dh/soGVyLf12IRyn57+aVb5mjJWVuGlB2jAZLobQ4+QdwEYUPWQiYHaWUF9XHmZS4bKred4XMwUw58+fvyjAlNpo/Tgq13g18jhPPfUUr3vd6/iLv/gLfvM3f/NFgJlANnHqgi/RhBDMmzePBx98kGeeeYaDBw9y11138Y1vfIMFCxZwxx138Hd/93ecOnXqkqWc1QN19OhRVq9ePWEBptRUzmHVqlXcdtttpFIp+vr69PkcPHhQ/z0eWzO3nVTy2idv26b5ITm7urw6aXhgiOa0Q5UTnTTiE8hYif8rtUwmw6xZs9iwYQO3376WbNahrb2akZEiTVMySAnVdX6IspB3SKQTGiQgbCx21DUPXua0NfOnm26hNh2EN9XnEQaAlFd5okwFJczWdQrbSim1ptKaNWuuqOBFFbcsWLCAm2++mQ0bNlBXV8fp06d5/PHH+fnPf35RfZxS27p1K6997Wv5+Mc/zgMPPPAiwEwwe155MqOZEIJZs2bxgQ98gPe///2cPn2aRx55hEceeYQPfehDrF69mnvuuYctW7ZcNB/hOA67du1iZGTEF4iaQHX/4zXX9eV6R0ZG2LRpE4lEQie5t2/fjmmaOqRWX18/ao7p9g2Lrst4da9MJCejwmVOvsD69euZ9cwp9nrBxFPy89kVCgauha1YOQOAmrpaOhikuzuHnTA5cqCLusYk/b15Tp84T2ZjI0N4MTVtocTYgr+TlsWrbllKc22GB779fc0IEGUAqB4lqa9KmK8HyCiA6e3tZe3atVdF8kFZaR5H0TBdSh5nx44dbNmyhQ9/+MO8+93vfhFgJqC9IEAmakIIpk2bxnve8x7e/e5309HRwX/8x3/wyCOP8LGPfYylS5dqwCkVEsvlcuzYsQPLsnT/yPPNisUiO3bsQErJunXrdPhBgUo0yb1r1y6klLqqqpSvqq76+nAj6V6ZCg7WlMltpNNpVk2ZxN7TvlBXSVVwjDDyWlptbZpp0xs5crSLqqoE2WyBpUunsnf7SRqb6+jv7SJdZdE5koOqRHkiJmKp4DqvWz6L1z47k+/3HaYAiIBJWjgeDaMoWiruMvsag8y1BJhKFqVhGiuPo+SUd+/ezd13380HPvABPvCBD7wIMBPUnrfhsvGYEILJkyfzzne+kx/84AecO3eOd73rXTz99NNs2LCBm266iT/90z9l7969PPPMM7ziFa/AMAxWr179vASYkZERLfW8Zs2aivFtleRetGgRL3nJS1ixYgWWZbF//35+/OMfs3PnTjo7O3Gccs6sa2W1DRlSVQnykWMaSuLY8s/hVesXhiElNZcEr4lK6HSNbMmSKTiOx4x5PsvDiRPnsRMmxw73MH1OC42WSV4BRWRYqqdGvZW0w/XdB++7gynKY1Y0M66kJTOWFy1IXMPyZSkle/fuvW4AU2oqj7N06VJe8pKXsGzZMizL4ic/+Qnt7e3ceuutvPzlL+etb30rH/rQh64LwHzmM59h5syZpFIpNmzYwDPPPDPqtl/+8pc1DZb673pfw4liL2iQiZpaCb3tbW/ju9/9Lh0dHXzgAx9g586dbNq0iZe97GUYhvG8BBfwe2B+/vOf09DQwPLly8dVsSOEoKGhgQULFnDLLbdoWpAjR47w4x//mB07dnD27FmKqu/jGpmi/B8ezuv3FMioPpDF89ppGNJfUP8AIOHENCevqS1ZMhWAoaw/1vqGKlYsb2fmpBrqbYNzhzuRSnxMazHLsh4gOzIpCiF4y8vW+f+OhM2mNI7eoyTgmoGMApi+vr4bAjClFs3j3HPPPfzjP/4j+/fvp6amhk996lPccsstfOITn2BgYOCajeHrX/8673vf+/jYxz7Gtm3bWLFiBXfccQddXV2jfqe2tpZz587p/06cOHHNxjeR7RcGZKKmJte3vOUt3HXXXSQSCR544AGmT5/OK1/5SlasWMGHP/xhtm7diuddvwnscq23t5etW7fS3t5+2X08Qghqa2uZO3cumzZtYsOGDdTW1nLy5El+/OMf8+yzz3Lq1Cny+fzFd3YZ1jyljoHBbGRAAWVLhAXg5TOnB5/5L4ZtUDXo8OE3j1/O9kpt8ZIptLc3kE7ZrFw2hTO7znBgxyk6T5xn//ZTJKtspOJYU4BRAQT7enr42c9+xrFjxxgaGuKVL1lKzbCHCHqAhCcrNmJGLXkNJJWjALNmzZobDjCldvz4cT74wQ/y27/925w+fZpTp07xlre8hSeffLJMAv1q2l//9V9z//3389a3vpXFixfz+c9/nqqqKr70pS+N+h0hBJMmTdL/PV8KiK62veByMpdijz32GB/60If43ve+xy233AL4LKn//d//zcMPP8xdd91FQ0MDr371q7nnnntYv379DdFKH8s6OjrYs2fPJffAXMyiQlcjIyN0dXXR0dHBgQMHqKur0zmeq0GtMzg4iGflifVYBv9ORMgg3/6am3nk7/9V95GkbZtP/NqdNDWOX4H0Sq21tZalM5p59NvP0T6zCcMUDA3kWLRiKvt/fpzJcxo5ZsY9GVGUvv4zaICcPX067e3tmuImlUqxrr6On2ULFABcyZz20YlXhRAkr/KkKqVkz5499Pf3T0iAOXHiBHfeeSf33HMPf/VXf4VhGEyePJnf+q3f4rd+67eu2XELhQLPPvssDz74oH7PMAxuv/12nnrqqVG/NzQ0xIwZM/A8j9WrV/Onf/qnLFmy5JqNc6LaLzTIbN68mV27djF5cigQVl1dzete9zpe97rXMTIywve//30eeeQRfvVXf5Wqqiruvvtu7rnnHjZt2nRNV07jsRMnTnDkyJHL6oG5FEun08yYMYMZM2aQz+fp6uqiq6uLQ4cOxYTYLodf7sKFC+zYsYOZ86fyk0Nh6EGt/aOVY61Ndcz2UpwQeYTj8Y6XrmPV0plXeHaXbve9+2Vsf/oop4+fZ8mq6ezZeoIj+ztIpm0KeYFm5496MsF7qmihOp0so7h5tUiw9d+7ATCkpKk+oUX6Sk0AKfPq3X9RgFm7du2EI7s8c+YMv/zLv8wv/dIv8f/+3/+7rqwbPT09uK5bUQZ5//79Fb+zYMECvvSlL7F8+XL6+/v5q7/6KzZt2sSePXtob2+/HsOeMPYLGS5TpgoDRrN0Os0999zDV7/6Vc6dO8c//MM/UCwW+Y3f+A3mzp3L7/7u7/Loo49e85xFqSlqj+PHj7NmzZprCjCllkwmmTZtGmvWrOG2225j+vTpDAwM8LOf/Ywnn3ySw4cPMzAwMK5enO7ubrZv3868efNYsnJeLG+hvm+XTKR3L5+PEILfWbiE177qxqgbZqpTPPBBn9V3387TNLalKeRdZi9tp/P0BbADtuZge1UxFrWqSP+RSnLfsmkdc+rqAZ8E89QJPze2a9eusmIMgSB9lUBGAczAwMCEBJiOjg5++Zd/mc2bN/PZz352Qsl+jGYbN27kzW9+MytXruS2227jkUceoaWlhb//+7+/0UO77vYL7clciqVSKe68807uvPNOPv/5z/PjH/+Yhx56iPvvv59ischdd93Fli1beOlLX3pNH1LP89i9ezcDAwOsW7fuhvbx2LbNlClTmDJlil6Nd3Z2snXrVmzbjvXilFb/KKqbpUuX0tbWhlHsjomWedJn+UqUhCfvfdV6TA9+/Z5N1+EMR7c1m+Zy6x2LeOL7+5DCxLINDu/voKa+SoOl4ls2EWh4CK5DZpQm14/efxf3/t2/UZNKcuutt2qKmyNHjmiKm5aWFoSAtHXlRSpSSnbv3s3g4CBr1qyZcADT1dXFnXfeyfr16/nCF75wQ8LVzc3NmKZZUQZ50qTxMWLYts2qVatigmW/KDbxlwQT0Gzb5vbbb+fzn/88p0+f5uGHH6ampoZ3v/vdzJo1i7e97W18+9vfZmRk5OI7uwQrFots27ZtQjaKqtX48uXLue2221i4cCGO4/Dcc8/x+OOPs3fvXs6fP4/neZw8eZJ9+/axcuVKHYJomdoAZng7qrCSbcZv0YRt3XCAARgeHmbJTbXU1Ke40JNl/vJpFPIO7fPbQgnpwJmLNk2qz6oSlQFiWnsT7920hoxlaYqbefPmsWnTJm666Sbq6+s5e/Ys0pNkL/Rx/PhxstlsxX1dzNSCZaICTE9PD3fffTdLly7ly1/+8g0LTycSCdasWcOjjz6q3/M8j0cffXTcMshKJHCsyMkL1V70ZK7QLMti8+bNbN68mU9/+tM8/fTTPPTQQ3zwgx+kp6eHO+64Q2viXAnduZIaSKVSrFq1asIVIERN0ea3tLRorqquri727NlDsVhESsncuXOpr6/X37ETFpn6FD3qDdUncxXzDlfLlGTCrDnT+O0PTOK7X32S/sOnmLp5Do5lghzxaf6DkF+UY0wKkEiqU6PT9bz+1TcxdVJ5ZZmiuJk1axbmsWdprKmlt7eXw4cPk8lkdHd8TU3NRftGPM9jz549ExZgLly4wJYtW5g9ezZf+9rXbnhrwfve9z7e8pa3sHbtWtavX8+nPvUphoeHeetb3wrAm9/8ZqZOncqf/dmfAfBHf/RH3HTTTcydO5e+vj7+8i//khMnTvD2t7/9Rp7GDbGJ9wQ/j800TW6++WZuvvlmPvnJT7J161Yeeugh/u///b9lmji1l6DTMjQ0xLZt27R65vMhJq1M9Tg0NDTgeR5dXV20tLRw+vRpjhw5oin1W1paqG4MQFhKDTKlOZkbbf39/Wzfvp3p06cze/ZsWhsG+cvvbgWgcVE7h7vOk5hsUKgXyED2JvZrGYCAuosoWt68fsGYnxtCMLmhidXLV1MsFjWt/okTJ3SosqWlpSJtkPJghoaGWLt27Q0VF6tk/f39bNmyhcmTJ/Pv//7vE2J89957L93d3Xz0ox+lo6ODlStX8r3vfU974idPnoxd5wsXLnD//ffT0dFBQ0MDa9as4cknn2Tx4sU36hRumAl5qeyRL9olm+d5PPfcczz88MM88sgjHD16NKaJUylnoUxVX6lJ7flInRENy6xevVqLXA0NDelKteHhYb76gyPsbsbveg/O83OvexUbZk+/sScQmPotlOwD+N7Kb8x9H9mBEWa+5Tb2n+plaLJBvt5A1BQpOjb1/S6DqcDzLEqw4d9/9/XMami87LGs/cbf865l67lv4arY+67r0tvbq9m4Ae1VNjU1IYRg9+7dDA8Pj8oKcSNtcHCQe+65h+rqar797W9PuDLqF+3SbWItE1+gZhgGq1atYtWqVXz84x9n7969PPTQQ3zmM5/hXe96F5s3b2bLli1lmjiHDh3i1KlTzJ8//3lb9ui6Ls899xyFQiHGpSaEoKamhpqaGubMmcPw8DD/+WwnMITwpNa5l+71o7cZy86fP89zzz1X9lsIIZgyu5XDO06QCKrIVN6lJV3F2cEi0vEA0xckMwRSSOqSVzZ5GkJQbZcDRDRUuWjRojJafRV2mogAMzw8zOte9zqSySTf/OY3XwSYF4g9f+IuLxATQrBkyRI+9rGPsWPHDnbv3s3mzZv5p3/6J+bOnctdd93FP/zDP/Dggw/yile84nkNMMVikWeffRbP8y4alslkMrz5zpuB+E25b/dunnnmmStKcF+pdXd389xzz7Fw4cKKv8Xk2X7TpBwMCj0CkFk4tZWEA07BB0rd+S8kdVc4gQohqE2MnUdRzBbz589n48aN1NfXI6XEtm2eeuopnn32WU6ePEkul7uisVwNGxkZ4fWvfz2e5/Htb3/7uso1v2jX1l70ZG6gCSGYP38+H/rQh3jwwQc5duwY3/jGN/jEJz7BuXPnWLJkCd/61rfYsmULU6dOfV6FylShQjqdZtmyZeMqVFi7dCb135AMJcPz3LhuHdW4WqlSJbhV8+e1viadnZ3s3r1bl1pXMgUyI539UJXSpdiZZJL1VY1sdU4BPh+ZNAEJ5hXm1QwE9fb4kvUqXFkoFNi4cSOJRIKRkZEyRVXFxp3JZK7rvZbL5fi1X/s13fxcU3P9GBxetGtvL4LMBDEhBO3t7ezatYtUKsVjjz3Gjh07+I//+A8efPBB1qxZoyUKJooM9GiWzWZ59tlnaWxsZNGiRZdUqHBbezv/3X1a/12dStPeXE97e7tOcHd1dXH8+HGSySRtbW20trZSW1t71a/J2bNn2b9/P8uXL6elpWXU7abM8UGm73gXLJ6uaW9Stsl7Xnsbb//01ymCL0iWAKNUq+AyzBCCmnGE3DzP0/pI0RBZOp1m+vTpTJ8+nUKhoK/rsWPHSKVSGnBG03G5WpbP53nTm95Eb28vP/jBD6irq7tmx3rRboy9CDITyJ566ikOHTrEU089RVtbG5s3b+Y973kP586d05o4H/3oR1m2bJkGnLlz504owFHlvZMnTy7T6xmP3f/qm/mfL/47AEbBpToZlq7ats3kyZOZPHkyrutqIbZt27aNW4htvHbq1CkOHTrEihUraGpqGnNb5ckMdvSTXm3TZ/hhsXTCZs70VialqjiM43syXB2QMYWg4SIVap7nsXPnTnK5HKtXrx41XJlIJHRTbfS6bt++HcMwYnpDV7OysVgsct9993H69Gl++MMf0tAwNiHoi/b8tBdBZgLZbbfdxpNPPhkLLQkhmDJlCr/zO7/DO9/5Tnp6evjmN7/Jww8/zB//8R+zcOFCtmzZwpYtW1i0aNENBRzNQzZz5kUVSEezKW0NzBJp9hWH+fD6DdTXVI7NR0HF8zx6e3vLhNja2toua2I8ceKElt6O9vKMOuYAZATQXF/FOeFrEqSCjvw1s6Zw+OxJRMDobV4FkLEMg6b06M24UYBZs2bNuPtMSq+r6nHau3cvruvS1NREa2srzc3NV9Qc6TgOb3/72zly5Ag//OEPLwrkL9rz114EmQlmY+UuhBC0tLRw//338/a3v50LFy7wn//5nzz88MP85V/+JbNmzeLVr341r3nNa1i6dOl17afp7u5m165dV6VQ4VXL5vMqz+M1d6wZ1/aGYdDc3ExzczNSSj0x7tu3D8dxdC+OogcZzaSUHDt2jJMnT7JmzZpx9zJV12eoacww2DtMtW3qnEw66Oq/Y9MSvv7QSS1IZpbqR1+GpUxLa+2U2uUCTKmpHiel5TIwMEB3dzdHjx7VFDeqH+dSmjld1+WBBx5g9+7dPPbYY7S2js42/aI9/+1FkHmemhCCxsZG7rvvPu677z76+/v5r//6Lx5++GFe/vKXM3nyZA04q1atuqaAc/bsWfbt2zdmcvxS7I1333TZ31UVVaqqSnF/HT58mN27d9PU1ERbWxvNzc2xyVdKyeHDhzl79ixr1qy55OTz5NmtDPYeI+G4yGC+VdQxSxdNI1WUuIGWwdXQgRmNt0z1ZBUKhSsCmFJTFDd1dXXMnTuX4eFhuru7dd6qtrZWe0Bj0R25rsu73/1unnnmGX70ox+Nm/vrRXv+2osg8wKxuro63vjGN/LGN76RoaEhvvvd7/Lwww9z55130tjYyN13381rXvMa1q1bd1UpaU6ePMnhw4dZuXLlhAt5VJoYu7q6OHHiBHv27NEr8ebmZo4fP05XVxdr1669rPLZKbPbOLj1GO5AFgJ8UtQxQgjajSQnPL8EO3EVOgcq9chEAeZaS4hnMhkymQwzZ84kn8/rSjVVAajyOFGKG8/zeP/738+Pf/xjHnvsMaZOnXrNxveiTRx7sU/mBWjV1dW8/vWv5+tf/zodHR38zd/8DX19fbz2ta9l4cKFvP/97+eJJ56IUcdfqqmV/9GjR1mzZs2EA5hSE0JoEbabbrqJTZs20djYyNmzZ3niiSc4c+YMU6ZMuWyPT+Vlsuf6ND9ZJpJoX9zajAjINRLelZNslIJMtOn1WgNMqSWTSdrb21m9ejWbN29m1qxZZLNZtm7dyo9//GPe8Y538J//+Z/8/u//Pt/73vf43//9X82YcK3tM5/5DDNnziSVSrFhwwaeeeaZMbf/xje+wcKFC0mlUixbtozvfve712WcL2R7EWRe4FZVVcVrXvMa/vmf/5lz5879/9u796gY9zUO4N/pfqNUKu0dFVLoRqLcQk60SxPbtSOFOjj2oVrIWdR22+fksE/sbNE67eSyKF3cJ4m0KZduKil2JKoZ2pVqSDW95w97Xt13pbk0/T5rzVq8fjPzvNbMPO/7/t7f8+DYsWP4+PEjVqxYgdGjR+Mf//gHbt682aOeOBRFoaCgAGVlZbCysuqXt50qKSlh+PDhUFBQgKKiIgwMDPDu3TvcvXuXbovM5XK7/Xr8O8wqn7/5VHeNAai0WCw5x3oMZGU/nUFKfeR9cfyDW6yREWWCaUtGRgY6OjowMzODnZ0d9PT0UFdXBw8PDxw7dgxWVlbIyckRysLac+fOwdfXF4GBgcjMzIS5uTkcHBzocjttpaamYvny5VizZg2ysrLAZDLBZDKRl5cn8FglGUkyA4iCggKcnJwQHh4ONpuNU6dOQVpaGmvWrIGhoSE2bNiAhIQEfPz4sdPX4K+7qKysxKRJk3rVDVMc8CfHuVwurK2tYWhoiIkTJ2LGjBnQ09NDdXU17t27Rzdiq62t7bIRGz/JvK/5IzExgEEtJsNtrEZDXkoajMZmrJpp2dFL9MiQP9bI8BNMU1OTyBNMW1JSUjA0NISRkRFUVVURGRmJUaNGYcuWLdDU1EROTo5A3//HH3+El5cXPD09MXbsWISGhkJJSQnh4eEdjj906BDmzZuHLVu2wMTEBHv27MGECRMQEhIi0DglHZmTGaBkZWUxd+5czJ07F0eOHMGdO3cQHR2NjRs3gsvlwtHREUwmE3PmzIGioiIAoKamBjk5OZCRkWlVh6y/4f8wNzY2wsrKqtUPc8s1I01NTfQixYcPH0JOTo6e3G67SJG/IJPi979hAINanMkwGAxoKyjCfYIxnLt511xXhsgrtEswom4H3hZFUQgKCsL//vc/3Lx5E6ampgCAoKAg5Ofnw8jISGDv3dDQgIyMDGzfvp3eJiUlBXt7e6SlpXX4nLS0NPj6+rba5uDggPj4eIHFORCI16eSEImWPXEOHz6MtLQ0nD9/Hlu3bkVlZSUcHBxgZ2eHkJAQTJgwAUePHhW7H7TuampqQlZWFoBPRSK72g/+pR8dHR26unHLRYr8hDNkyBAoqihAbehg/P7+j/plUhRU29zWe8DvW2hpqfXJfgyRUxD7BBMcHIyQkBDcuHGDTjDA5/p9glRRUQEej9fubkdtbW0UFBR0+Bw2m93heDabLbA4BwKJu1y2b98+2NraQklJqVsL6YBPX4iAgAAMGzYMioqKsLe3x7NnzwQbqJiSlpbGtGnTEBwcjOfPnyMxMRGamprw8fHB06dP8e7dO8TGxqKmpkbUofYYv7OolJRUj3+Y+dWNx40bh5kzZ2L8+PEAgLy8PKSkpODx48cYOnwIKJk/vlLU58WYfH2VYHg8Ht6Vlot1gjly5AgOHDgAFouFCRMmiDokQoQkLsk0NDRg8eLFWL9+fbefs3//fhw+fBihoaG4f/8+lJWV4eDgIBbVaUVJSkoKGhoaYLFYcHNzQ1paGszNzREUFAR9fX0sWbIEp0+fRnV1dZfzFeKAf/lEVlYWFhYWX3QbN///xcTEBDNmzICFhQVkZWUhpyZDJxkp6lMy6Gs8Hg/Z2dlQk5IR2wQTFhaGffv24cqVK7C2thZJHPyFtxwOp9V2DofT6docHR2dHo0nukfiksyuXbvg4+PT6vS8K/zT+h07dsDFxQVmZmaIjIxEWVkZuRYLICQkBIsXL0Z4eDisra2xb98+5OfnIz09HVZWVvjpp5+gr6+PhQsXIiIiAhUVFWKXcOrr65Geng4lJSWYm5v36TohBoMBNTU1GBkZwdLGFJTMp3kaBsXA7du3kZWVhbKyMjQ0NHzxe/ETTHNzM+wmWollgjlx4gQCAgJw6dIl2NraiiwWOTk5TJw4EUlJSfS25uZmJCUlwcbGpsPn2NjYtBoPAImJiZ2OJ7pH4pJMT7148QJsNhv29vb0NlVVVUyePLnTCcKB5ODBg9i/f3+rSW4Gg4Hx48fj+++/x6NHj5Cbm4uZM2ciPDwcI0eOhLOzM8LCwsBms0WecD58+ID09HSoqqrC1NRUoJUPdA216DMZaYqBKVOmQE1NDa9evUJKSgoyMjLw6tWrLu/e6wyPx0NWVhaam5thaWkJdSXxuquPoiicOXMG27ZtQ3x8PGbMmCHqkODr64uwsDCcOHECT548wfr168HlcuHp6QkAcHd3b3VjwKZNm8BisXDw4EEUFBTg+++/R3p6OjZu3CiqXZAI4nUoJAL8ST0y4dexPzvqZzAYGDNmDN0T5/nz54iJicHZs2fh5+cHGxsbuoCnrq6uUAt4crlcZGZmQlNTE8bGxgJ/72EtkowsQwrKysowMDCAgYEB3b+FzWajsLCw22VYgM8JhqIoWFpaiuUZTHR0NHx8fHD+/HnMnj1b1CEBAJYuXYq3b98iICAAbDYbFhYWYLFY9He9pKSk1UGHra0tzpw5gx07duCf//wnRo8ejfj4eHr+jegdBiXqQ81u8Pf3R1BQUJdjnjx5AmNjY/rvERER2Lx5M6qrq7t8XmpqKqZOnYqysjIMGzaM3r5kyRIwGAycO3fui2IfqCiKwqtXrxATE4O4uDikpqbCysqKTjiC7olTV1eHjIyMXrcc6I2P7xvgMmsnKucbQlVGBok71nQ8rkUZlsrKSqioqNAJp23DMH6CAQBLS8s+vdTXV+Lj4+Ht7Y2zZ8/CyclJ1OEQYka8Dok64efnBw8Pjy7HGBoa9uq1+ZN6HA6nVZLhcDiwsLDo1WsSn85whg8fDh8fH2zevBllZWWteuKYmZnRPXFGjhzZp0mgpqYGmZmZ0NPTg6GhodDOnuSV5KA8dBAqAcg0dzHujzIsbRux8RuGtTzDyc7OBoPBENsEc/nyZXh5eeHUqVMkwRAd6hdJZujQoV12JvwSBgYG0NHRQVJSEp1UampqcP/+/R7doUZ0jsFg4KuvvsLGjRvx97//HW/fvqV74uzZswfGxsZ0wvnSy1rV1dXIysqCgYEB9PX1+24nummQ9qf2ANJNXWSZFto2YuMnnIyMDDQ3N0NOTg5jx44VatuG7kpISMDq1asRHh4OV1dXUYdDiCnx++R+oZKSEmRnZ6OkpIS+Gyc7Oxt1dXX0GGNjY8TFxQH49AO4efNm7N27FxcvXkRubi7c3d2hq6sLJpMpor2QXAwGA1paWvD29gaLxQKbzYaPjw8yMzMxdepUTJo0Cbt370Zubi6am7v3Q81XWVmJzMxMjBo1SiQJBgBUhg4Co6kZBgpdz7N0RFpaGtra2jAxMYGKigqUlZWhrq5Or8XJz89HRUVFj/9fBOHmzZtYuXIlQkNDsWTJElGHQ4ixfjEn0xMeHh44ceJEu+23bt2CnZ0dgE8/dL/88gt9CY6iKAQGBuL48eOorq7GtGnT8PPPPwu07AXR3rt373Dp0iXExMQgISEBurq6cHFxgaurKywsLLo8mq+oqEBOTg6MjY2hq6srxKhbS88qwtfD1KGj07tWwvyKBFJSUvR6npYdKt+8eQMej0eX0tfQ0BD6ZbSUlBQsXrwYhw4dgqenp1i1/ybEj8QlGUIy1NbW0j1xrl27Bg0NDSxYsABMJrNdT5zXr1+jsLAQ48aN69cL55qampCZmQlpaelOF4xSFEU3YuNwOPj48WOrzp+CLpCZlpYGV1dXBAUFYd26dSTBEH+KJBlC7L1//x4sFguxsbG4fPkyVFRUsGDBAri4uCA3NxfHjh0Di8VqdeNGf8NPMDIyMt1eMEpRFLhcLjgcDt68eQMul0s3YtPS0urzAqYPHz6Ei4sLdu/eje+++44kmBaKi4thYGDQbvvMmTORnJws/IDEiMTNyYibyspKuLm5YfDgwVBTU8OaNWtazQ91xM7ODgwGo9Vj3bp1QopY/CgpKWHhwoU4deoU2Gw2jh49ig8fPmDhwoXYsmULRowYgYKCgh71xBEn/JpqPUkwwOdGbCNHjoSNjU2rRmwpKSlIT09HSUlJn5RH4vdX2bFjB0kwHdDT00N5eTn9yMrKgoaGhlgsShU1ciYjYPPnz6ebhTU2NsLT0xOTJk3CmTNnOn2OnZ0djIyMsHv3bnqbkpISBg8eLIyQ+4VDhw4hICAAAQEBKCwsxIULF8Dj8eDk5AQmkwk7O7t+0YqgsbERWVlZPU4wf6a+vp6ew6mursagQYNarcXpidzcXDg6OsLPzw/bt28nCeZP1NfXw87ODkOHDsWFCxfE8s5AYSJJRoCePHmCsWPH4uHDh7CysgIAsFgsODo64vXr151OUNvZ2cHCwgLBwcFCjLb/uHPnDhYsWAAWi0UXYGxqasKvv/6K6OhoXLhwAe/fv4ejoyNcXFxgb28PBQUFEUfdHv8MRk5ODmZmZgKbwG9oaKAXf/7+++9QVlamE46KikqXSSM/Px+Ojo7YsGEDAgMDSYLphhUrVuDRo0e4d+8eBg0aJOpwRI4kGQEKDw+Hn58fqqqq6G1NTU1QUFBAdHR0p2sL7Ozs8PjxY1AUBR0dHTg7O2Pnzp1/Wn5koKAoCuXl5Z0maR6Ph9TUVJw/fx7x8fGoqqrCvHnzwGQyMXfu3B4fyQtCywRjbm4utKNdfiM2DoeDiooKyMvLd9qI7enTp5g/fz48PDzwww8/kATTDXv37sV///tfPHjwACNHjhR1OGJhYJ/HCRibzYaWllarbTIyMlBXV++yLtqKFStw6tQp3Lp1C9u3b8fJkyfx17/+VdDh9hsMBqPL25SlpaUxffp0HDp0CC9evMD169cxfPhwBAQEQF9fH25uboiKikJtba0Qo/5MVAkG+NyIzdzcnL4s29DQgKysLPz6668ICwvDpUuX8OTJEzg5OWHFihXYt2+fyBJMf5rTjImJwe7duxEVFUUSTAv9YsW/uOluLbXe8vb2pv9samqKYcOGYc6cOSgqKiIf3h6SkpLClClTMGXKFOzfvx9ZWVmIiYnBv//9b6xfvx729vZYsGABvvnmm3ZH8oLQ2NiIjIwMyMvLCz3BtCUtLU2fxTQ3N6OqqgqXLl1CQEAAamtrYWxsDDs7OzQ2NkK+TZdPYXFzc0N5eTkSExPpOU1vb+8u5zQBwMvLq92cpiDl5eXB3d0d27Ztw7hx4+iDSDk5Oairqwv0vcUduVzWC2/fvsXvv//e5RhDQ0OcOnWqV5fL2uJyuVBRUQGLxYKDg8MXxU58QlEU8vLycP78ecTGxuLp06eYNWsWXFxc4OTkBHV19T5POPwEo6CgADMzM7GcEC4tLcXcuXMxfvx4jB49GnFxcaisrMTWrVuxY8cOocbSn+Y0IyIi6BYCLZFbmEmSESj+lyQ9PR0TJ04EAFy/fh3z5s3r8kvS1t27dzFt2jQ8evQIZmZmggx5QKIoCoWFhYiJiUFsbCxycnIwffp0MJlMODs7Q0tL64sTTn9IMOXl5Zg3bx6mT5+OsLAwSEtLg6IoZGZmor6+HlOnThVqPGROUzKQJCNg8+fPB4fDQWhoKH26b2VlRZ/ul5aWYs6cOYiMjIS1tTWKiopw5swZODo6QkNDAzk5OfDx8cHXX3+N27dvi3hvJB9FUXj+/DnOnz+PuLg4pKenw9bWFi4uLliwYEGveuI0NDQgMzNTrBMMh8OBo6MjJk6ciBMnTohFxecffvgBJ06cQGFhYavtWlpa2LVrV6cFbI8fP44RI0ZAV1cXOTk52LZtG6ytrREbGyuMsIk2xO/TLmFOnz4NY2NjzJkzB46Ojpg2bRqOHz9O/3tjYyMKCwvx/v17AJ+u4d64cQN/+ctfYGxsDD8/PyxatAiXLl0S1S4MKAwGAyNHjsS2bduQlpaGoqIiMJlMxMfHw8TEBPb29jh8+DBevnzZra6fDQ0NyMjIgKKiotgmmIqKCjg7O8PU1BQRERECTzD+/v7tJubbPgoKCnr9+t7e3nBwcICpqSnc3NwQGRmJuLg4FBUV9eFeEN1FzmQIohsoikJZWRliY2MRGxuLO3fuwNzcnG7C1lFPHH6CUVJSEnjr596qrKyEk5MT9PX1ERUVJZQFrGROc2AhSYYgeoiiKLx584buiZOcnAwTExO4uLiAyWRizJgxKC8vx8GDB7Fy5UqxPYN59+4dnJ2doa2tjdjYWJHdQdYZMqcpGcTvk0/0uSNHjkBfXx8KCgqYPHkyHjx40OX46OhoGBsbQ0FBAaamprh69aqQIu0fGAwGtLW18be//Q0JCQkoLy/Hpk2bkJGRAVtbW1haWmLSpEnIysqCiYmJWCaY2tpauLq6Ql1dHTExMWKXYADAxMQE8+bNg5eXFx48eIC7d+9i48aNWLZsGZ1gSktLYWxsTH+mi4qKsGfPHmRkZKC4uBgXL16Eu7s7ZsyYQRKMiIjfp5/oU+fOnYOvry8CAwORmZkJc3NzODg44M2bNx2OT01NxfLly7FmzRq6KCKTyUReXp6QI+8fGAwGNDQ0sHr1aly+fBm5ubn48OEDlJSU8OjRI1hbWyMwMBBZWVli0WwM+HT56Ntvv4WioiLi4uLEsuQOH5nT7P/I5TIJN3nyZEyaNAkhISEAgObmZujp6eG7776Dv79/u/FLly4Fl8vF5cuX6W1TpkyBhYUFQkNDhRZ3f/TmzRvMnj0bpqamOHnyJD58+IArV64gNjYW165dg6amZqueOKI4w/nw4QO+/fZbNDU14dq1a1BRURF6DMTAQs5kJBh/4tne3p7eJiUlBXt7e6SlpXX4nLS0tFbjAcDBwaHT8cRnUlJSYDKZOHnyJGRkZDBo0CAsW7YMUVFRYLPZOHDgACoqKuDq6goTExNs2bIFd+7cAY/HE0p89fX1WL58Oerr6+m+PAQhaCTJSLCKigrweDxoa2u32q6trd1p7TQ2m92j8cRnmpqa2Lt3L2Rk2ldrUlZWxqJFi3D69GmUl5fjyJEj4HK5WLZsGYyMjLBp0yYkJycLrCfOx48fsXLlSlRWVuLq1atQVVUVyPsQRFskyRCEkCkqKmLBggWIiIgAm81GREQEAMDDwwOjRo3Chg0bkJiYiIaGhj55v8bGRnh4eKC0tBQJCQkYMmRIn7wuQXQHSTISTFNTE9LS0uBwOK22czgc6OjodPgcHR2dHo0nvoycnBwcHBwQFhaGsrIynDt3DoqKili/fj0MDAzg7e2Nq1ev9rq7ZVNTE9asWYOioiIkJiZCQ0Ojj/eAILpGkowEk5OTw8SJE5GUlERva25uRlJSEmxsbDp8jo2NTavxAJCYmNjpeKLvyMjIYPbs2Th69ChevXqFCxcuQF1dHb6+vjAwMICnpyfdkK07eDwe1q1bh8ePH+PGjRsYOnSogPeAIDpAERLt7NmzlLy8PBUREUHl5+dT3t7elJqaGsVmsymKoqiVK1dS/v7+9Pi7d+9SMjIy1IEDB6gnT55QgYGBlKysLJWbmyuqXRjweDwelZqaSvn6+lKGhoaUsrIy5erqSkVERFBsNpvicrntHjU1NdSqVauoUaNGUa9fvxb1LhADGEkyA8BPP/1EDR8+nJKTk6Osra2pe/fu0f82c+ZMatWqVa3GR0VFUUZGRpScnBw1btw46sqVK0KOmOgMj8ejHj58SPn7+1NGRkaUgoIC5eTkRIWFhVGlpaVUXV0dVVtbS61du5YyMDCgiouLRR0yMcCRdTIE0U9Rf/TEiY6ORmxsLJ49ewY7Ozs0NTXh6dOnuH37NgwNDUUdJjHAkSRDEBKAoigUFBTg5MmTCAkJQUpKCiwsLEQdFkGQJEMQkqa5uVks66URAxP5JBIi0ZOinREREe36jYhzvS1RIwmGECfk00gIXU+LdgLA4MGDUV5eTj9evnwpxIiJ7tq3bx9sbW2hpKQENTW1bj2HoigEBARg2LBhUFRUhL29PZ49eybYQAmhIUmGELoff/wRXl5e8PT0xNixYxEaGgolJSWEh4d3+hwGgwEdHR360bb0DSEeGhoasHjx4k5bI3dk//79OHz4MEJDQ3H//n0oKyvDwcGh1wtQCfFCkgwhVL0p2gkAdXV1GDFiBPT09ODi4oLHjx8LI1yih3bt2gUfHx+Ympp2azxFUQgODsaOHTvg4uICMzMzREZGoqysDPHx8YINlhAKkmQIoepN0c4xY8YgPDwcFy5cwKlTp9Dc3AxbW1u8fv1aGCETAvTixQuw2exWBx2qqqqYPHkyqfwtIdqXiyUIMWNjY9OqrI2trS1MTExw7Ngx7NmzR4SREV+Kf2BBKn9LLnImQwhVb4p2tiUrKwtLS0v89ttvggiRaMPf37/d3X1tHwUFBaIOkxBT5EyGEKqWRTuZTCaAz0U7N27c2K3X4PF4yM3NhaOjowAjJfj8/Pzg4eHR5ZjeVhbgH1hwOBwMGzaM3s7hcMhiUglBkgwhdL6+vli1ahWsrKxgbW2N4OBgcLlceHp6AgDc3d3x1Vdf4V//+hcAYPfu3ZgyZQpGjRqF6upq/Oc//8HLly+xdu1aUe7GgDF06FCBVXA2MDCAjo4OkpKS6KRSU1OD+/fv9+gONUJ8kctlEiAyMhIaGhr4+PFjq+1MJhMrV64UUVSdW7p0KQ4cOICAgABYWFggOzsbLBaLvi5fUlKC8vJyenxVVRW8vLxgYmICR0dH1NTUIDU1FWPHjhXVLhCdKCkpQXZ2NkpKSsDj8ZCdnY3s7GzU1dXRY4yNjREXFwfg063pmzdvxt69e3Hx4kXk5ubC3d0durq69Jku0c+JqjIn0Xfev39PqaqqUlFRUfQ2DodDycjIUDdv3hRhZMRAs2rVKgpAu8etW7foMQCoX375hf57c3MztXPnTkpbW5uSl5en5syZQxUWFgo/eEIgSO0yCbFhwwYUFxfj6tWrAD4teDxy5Ah+++03MBgMEUdHEMRARS6XSQgvLy9cv34dpaWlAD7V+/Lw8CAJpgdSUlLg7OwMXV1dMBiMbi0GTE5OxoQJEyAvL49Ro0YhIiJC4HESRH9CkoyEsLS0hLm5OSIjI5GRkYHHjx//6R1BRGtcLhfm5uY4cuRIt8a/ePEC33zzDWbNmoXs7Gxs3rwZa9euRUJCgoAjJYj+g1wukyBHjx5FcHAw5s6di2fPnpEfuy/AYDAQFxfX5eTztm3bcOXKFeTl5dHbli1bhurqarBYLCFESRDij5zJSJAVK1bg9evXCAsLw+rVq0UdjsRLS0trVQ4FABwcHEg5FIJogSQZCaKqqopFixZBRUWF3P4pBGw2u8NyKDU1Nfjw4YOIoiII8UKSjIQpLS2Fm5sb5OXlRR0KQRAEWfEvKaqqqpCcnIzk5GT8/PPPog5nQNDR0emwBtvgwYOhqKgooqgIQryQJCMhLC0tUVVVhaCgIIwZM0bU4QwINjY29LokvsTExFYVowlioCNJRkIUFxeLOoR+r66urlVl5xcvXiA7Oxvq6uoYPnw4tm/fjtLSUkRGRgIA1q1bh5CQEGzduhWrV6/GzZs3ERUVhStXrohqFwhC7JBbmAniD8nJyZg1a1a77atWraIXtxYXFyM5ObnVc3x8fJCfn4+vv/4aO3fuJOuTCKIFkmQIgiAIgSF3lxEEQRACQ5IMQRAEITAkyRAEQRACQ5IMQRAEITAkyRAEQRACQ5IMQRAEITAkyRAEQRACQ5IMQRAEITAkyRAEQRACQ5IMQRAEITAkyRAEQRACQ5IMQRAEITD/BzmsylRWd4AyAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ris1.phase_profile.show(0);\n",
+ "plt.title(r\"Learned phase profile $\\chi(y,z)$\");\n",
+ "ris1.amplitude_profile.show(0);\n",
+ "plt.title(r\"Learned amplitude profile $A(y,z)$\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ab26234",
+ "metadata": {},
+ "source": [
+ "Note that the learned phase and amplitude profiles might not necessarily be realizable by an RIS.\n",
+ "Other forms of regularization could be used to constrain the space of allowed values.\n",
+ "\n",
+ "For performance comparison, we also evaluate both RIS configured as focusing lenses towards both receivers:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "5979ce08",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Path gain with focusing lens: -71.74dB\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGhCAYAAAC+krlJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhcZ3nnjX/OVnv1vndLLbX23Vptgw0mMDCEwDCT4J9DWBKyQFgSZiGZmZA3hCQmhIRJQgjD8oYM5CVMEobAJJCwBIJtybZs7Uu3Wq3e9+7q2uusz/P741RVd2uzZLWktn0+16XrUtWpOuc551Q/33Pfz70oUkpJQEBAQEDAHUS92wMICAgICHjpEYhPQEBAQMAdJxCfgICAgIA7TiA+AQEBAQF3nEB8AgICAgLuOIH4BAQEBATccQLxCQgICAi44wTiExAQEBBwxwnEJyAgICDgjhOIT0BAQEDAHScQn4CAgICAO04gPi9BPvKRj6AoCnNzc3d7KKuWo0eP8rKXvYx4PI6iKJw4cYK//Mu/RFEUhoaGAK54faf5gz/4A7Zu3YoQ4q4c/3/+z//J2rVrsSzrrhw/4IVNID4vIiqTYeVfJBJh8+bNvP/972d6evpuD+8Fg+M4vOUtbyGVSvE//sf/4Mtf/jLd3d13e1jLyGazfPzjH+fXf/3XUdW782f8sz/7s9i2zWc/+9m7cvyAFzb63R5AwMrz0Y9+lPXr12OaJo8//jif+cxn+Na3vsWZM2eIxWJ3e3irnoGBAYaHh/n85z/PL/zCL1Tff/vb384jjzxCOBy+i6Pz+Yu/+Atc1+Wnf/qn79oYIpEI73znO/nkJz/JBz7wARRFuWtjCXjhEVg+L0Je//rX87a3vY1f+IVf4C//8i/54Ac/yODgIN/4xjfu9tDuCoVC4aY+PzMzA0BdXd2y9zVNIxKJrIpJ9otf/CJvetObiEQid3UcDz/8MMPDw/zgBz+4q+MIeOERiM9LgB/7sR8DYHBwcNn76XSan/3Zn6Wuro7a2lp+7ud+jmKxWN0+PDzMe9/7XrZs2UI0GqWxsZG3vOUtV6xx5HI5PvjBD7Ju3TrC4TAtLS38m3/zbzh27Niyz42Pj/Oud72L1tZWwuEwO3bs4C/+4i+ec/yVNare3l4efvhhampqaGxs5Fd/9VcxTfOqnz137hxvfetbqa+v54EHHqhuP378OK9//eupqakhkUjw6le/mieffLK6/Wd/9md55StfCcBb3vIWFEXhoYceAm58jef5nifAF77wBSKRCC9/+csZHh6uvi+l5FWvehVNTU089dRTnDp1ite85jVXfP/Hf/zHWbdu3RXvSynZt28fDz744A2N48KFC8tcuEv/LRXl/fv309DQ8JJ9sAl4/gRut5cAAwMDADQ2Ni57/+GHH2b9+vV87GMf49ixY3zhC1+gpaWFj3/844C/6H748GEeeeQRurq6GBoa4jOf+QwPPfQQ586dq7rw3vOe9/B3f/d3vP/972f79u3Mz8/z+OOPc/78efbt2wfA9PQ09913H4qi8P73v5/m5ma+/e1v8/M///Nks1k++MEPPud5PPzww6xbt46PfexjPPnkk/zpn/4pCwsLfOlLX7ris295y1vYtGkTjz76KJV+iWfPnuXBBx+kpqaGX/u1X8MwDD772c/y0EMP8a//+q/ce++9vPvd76azs5NHH32UX/mVX+HgwYO0trbe8LW+1fM8ePAgH/rQh3j00Uf5wz/8Qz71qU8B8OlPf5of/vCHfOUrX+HixYsA1Wt7+fe//e1vs7CwQH19ffX9r371qxw/fpzHH3/8hs6jpqaGL3/5y8ve6+3t5fd+7/d47Wtfu+z9ffv28cQTT9zQfgMCqsiAFw1f/OIXJSC/973vydnZWTk6Oiq/+tWvysbGRhmNRuXY2JiUUsrf+q3fkoB817vetez7//7f/3vZ2NhYfV0sFq84xpEjRyQgv/SlL1Xfq62tle973/uuO7af//mfl+3t7XJubm7Z+4888oisra296rEqVMb7pje9adn7733veyUgT548ecVnf/qnf/qK/bz5zW+WoVBIDgwMVN+bmJiQyWRSvuIVr6i+94Mf/EAC8m//9m+Xfb9yfQcHB6/6+lbPcymvfe1r5f333y+llHJgYEDG43H55je/WUop5Yc//GEJyFwud8X3vvnNb0pAfv/736++Z9u23LBhg3zjG994Q8e+GgMDA7Kjo0M+8MADslAoLNv2S7/0SzIajT7vfQe8NAncbi9CXvOa19Dc3MyaNWt45JFHSCQSfP3rX6ezs3PZ597znvcse/3ggw8yPz9PNpsFIBqNVrc5jsP8/DwbN26krq5umUutrq6Op556iomJiauOR0rJ1772Nd74xjcipWRubq7673Wvex2ZTOYKF93VeN/73rfs9Qc+8AEAvvWtb13x2cvPzfM8vvOd7/DmN7+Znp6e6vvt7e289a1v5fHHH6+e9/Nlpc4T4J577uHMmTMIIXjXu95FOBzmM5/5DADz8/Pouk4ikbjiewcPHgRYdpzPfe5zDA4O8uijjz6v8xodHeXHfuzH6Ozs5B//8R+vCFqpr6+nVCotc9kGBDwXgdvtRcinP/1pNm/ejK7rtLa2smXLlquG465du3bZ64qbZmFhgZqaGkqlEh/72Mf44he/yPj4eNV9BZDJZKr//4M/+APe+c53smbNGvbv38+P//iP8453vKM6yc/OzpJOp/nc5z7H5z73uauOubLIfz02bdq07PWGDRtQVfWqazDr169f9np2dpZisciWLVuu+Oy2bdsQQjA6OsqOHTuecxzXYqXOE2Dnzp3kcjk+9KEP8a//+q98+ctfpq2t7Tm/19bWRmdnJ8ePHwf8YIvf+Z3f4W1vexs7d+688ZMpMzU1xatf/Wpqa2v5p3/6J2pqaq74TOV3sRoCMQJeOATi8yLk0KFDHDhw4Dk/p2naVd+vTCYf+MAH+OIXv8gHP/hB7r//fmpra1EUhUceeWRZYuPDDz/Mgw8+yNe//nW+853v8IlPfIKPf/zj/J//8394/etfX/3s2972Nt75znde9Zi7d+++2dO87mS31Gq7U6zkeVaE4pOf/CQ/8RM/wdve9rbqtsbGRlzXJZfLkUwmr/juwYMHq+LzyU9+koWFBT760Y/e1LmAb2G95jWvQdM0vvvd79LQ0HDVzy0sLBCLxe7KNQ944RKIT8A1+bu/+zve+c538kd/9EfV90zTJJ1OX/HZ9vZ23vve9/Le976XmZkZ9u3bx+/93u/x+te/nubmZpLJJJ7nXTVC60bp7+9fZtFcvHgRIcRVo7sup7m5mVgsRl9f3xXbent7UVWVNWvWPO+xVY6xEucJVC20urq6K5I4t27dCvjRi1cTs4MHD/LNb36TkZER/vAP/5Bf/uVfvukk2Uwmw2tf+1pKpRI/+tGPaGlpueZnBwcH2bZt203tPyAgWPMJuCaapi1ztQF86lOfwvO86mvP85a54ABaWlro6Oioll3RNI2f/Mmf5Gtf+xpnzpy54jizs7M3NJ5Pf/rTV4wF/LymGzmX1772tXzjG99Y5qabnp7mK1/5Cg888MBVXUo3w0qdJ8DnP/95AN70pjfR0dGxbNv9998PwDPPPHPV7x44cAAhBG9961uRUvIbv/EbN3xcgHw+z+tf/3pmZmb4/ve/f8Va4eUcO3aMl73sZTd1jICAwPIJuCY/8RM/wZe//GVqa2vZvn07R44c4Xvf+96ykO1cLkdXVxc/9VM/xZ49e0gkEnzve9/j6NGjyyym3//93+cHP/gB9957L7/4i7/I9u3bSaVSHDt2jO9973ukUqnnHM/g4CBvetOb+Lf/9t9y5MgR/uqv/oq3vvWt7Nmz54bO53d/93f57ne/ywMPPMB73/tedF3ns5/9LJZl8Qd/8Ac3f4Guwkqc58DAAP/9v/93wLfKLqenp4edO3fyve99j3e9611XbK+4XJ944gk+8pGP0NzcfNXjKIrCK1/5Sn74wx8ue//tb387R44c4Td/8zd5/PHHl4Vn79y5k3vuuaf6+tlnnyWVSvHv/t2/e87zCghYxl2LswtYcSqhv0ePHr3u5yrhyLOzs1f9fiV0eGFhQf7cz/2cbGpqkolEQr7uda+Tvb29sru7W77zne+UUkppWZb80Ic+JPfs2SOTyaSMx+Nyz5498s///M+vOO709LR83/veJ9esWSMNw5BtbW3y1a9+tfzc5z53Q+M9d+6c/Kmf+imZTCZlfX29fP/73y9LpdINnVuFY8eOyde97nUykUjIWCwmX/WqV8nDhw8v+8ythFrfynlKKaUQQr7yla+U9fX18ud+7udkIpGQQogrPvfJT35SJhKJa4Zur1u3TjY3N181HFtKKXO5nATkI488csXxE4mEBK7679Of/vSyz//6r/+6XLt27VXHGBBwPQLxCVj1PJegvJj4sz/7s2oe1V//9V9LYFleUoV0Oi0bGhrkF77whSu2DQwMSE3T5J/8yZ9c8zj/+I//KBVFkadOnXreYzVNU7a1tck//uM/ft77CHjpEqz5BASsEoaGhviv//W/8sY3vpG3v/3t7Nq1C+CquUG1tbX82q/9Gp/4xCeuaKnw3/7bf2PdunVX5Dot5Qc/+AGPPPJI9RjPhy9+8YsYhnHd4wQEXAtFystWlAMCVhkf+chH+O3f/m1mZ2dpamq628O5LUgpec1rXsPx48c5e/Ys7e3tuK5LfX09HR0d/Of//J/5mZ/5GeLx+FW/n06n+fa3v80Pf/hDPv/5z/Ptb3+b173udXf4LAICbpzA8gkIWAV87nOf41/+5V/4kz/5E9rb2wHQdZ1PfepTFItFfuVXfoVQKHTN73//+9/nrW99K9/61rf47Gc/GwhPwKonsHwCAgICAu44geUTEBAQEHDHCcQnICAgIOCOE4hPQEBAQMAdJxCfgICAgIA7TiA+AQEBAQF3nEB8AgICAgLuOIH4BAQEBATccQLxCQgICAi44wTiExAQEBBwxwnEJyAgICDgjhOIT0BAQEDAHScQn4CAgICAO04gPgEBAQEBd5xAfAICAgIC7jiB+AQEBAQE3HEC8QkICAgIuOME4hMQEBAQcMcJxCcgICAg4I4TiE9AQEBAwB0nEJ+AgICAgDtOID4BAQEBAXecQHwCAgICAu44gfgEBAQEBNxxAvEJCAgICLjjBOITEBAQEHDHCcQnICAgIOCOE4hPQEBAQMAdJxCfgICAgIA7TiA+AQEBAQF3nEB8AgICAgLuOIH4BNxxpJRIKe/2MAICAu4i+t0eQMBLCykljuNQKpXQNA1d19E0DU3TUNXgWSgg4KWCIoNH0IA7hBAC27YRQmBZ1rJtiqKg63pVjHRdR1GUuzTSgICA200gPgG3HSklnufhOA5SShRFwbbtqqUjpUQIUXXHKYqyTIwqghSIUUDAi4dAfAJuKxU3m+d5gG/hVN67lphcTYxUVUXTNAzDqLrpAjEKCHjhEohPwG2hIiBLrZ2KWFTcb0vfu5F9XS5GS62iQIwCAl5YBOITsOJIKXFdF9d1Aa4QmZsVn8v3XdlHIEYBAS9cAvEJWFEq1o4QAuCqEWy3Ij6XE4hRQMALk0B8AlaEpW42IQSqql5zsl9J8bnaOCrHEEKgKAqu65LNZmlrawvEKCBglRDk+QTcMpcHFVxPeG43leNWBEZKSbFY5Pz589TX12PbdnWMleAFXdfv6pgDAl6KBOITcEtUrB3P81blBF5xwQEYhlF1zUkpMU1z2WcMw6haRqvxXAICXkwE4hPwvLg8d+dmJuu7OakvdfVVLKOriVHFIgrEKCDg9hCIT8BNsxJutjs5kV/vWNcSIyFEIEYBAbeRQHwCbgrXdbEsq+qqWrEJWM6ju0/iGm9Ymf09T64nRpZlYZomqqpeEU0XiFFAwM0RiE/ADVHJ3ZmcnKS/v5+Xv/zlKyg8C0RLv4wiLyGVOJ7+0Mrsd+khnmdQ5+UReRUx8jwPz/OWCXEgRgEBN04gPgHPyeUh1JVcmhVBpglZv4sqBwAIW7+BqXwBoW1bmf2vMBUxWlqXriJGrutWt1/uprsdYeUBAS9kAvEJuCZXy92piM/KHCBD2HoPihhH0I7KJAomYeuDmJEvIdXWlTnObeRaYuS6brV+XSBGAQFXEjRQCbgqlaAC27aXRbNVCoPe+gGyhKz/jir6UMgjFA9BEgBVzqHbf4iUhVs/Dnc+uKHigqvkEVUSXUulEvl8ntHRUWZnZzFNc1k1iICAlxKB5RNwBdfL3VEU5dYnS5EhbL0XRWaRxFAoosophLIRZAmhbMB2vgsij4x+CkV54f5Mr2YZjYyM0NjYWO1ZdHkvo6CxXsBLgeAXHlCl4i6ybfuaSaO37Hbz0qj596OJc6hyDKmsRZZ/hqq8iKPup+T1Ag54PwLr47dwRouslipSSyPpllpGjuNQLBbJ5XJks1ny+XxgGQW8qHnhPlIGrCg3mrtzS243kYb8zyPREBJUBVTZi6fuRRPH8ZRNWO6ToO5CEc/433G+glS7UUJve55ntvpYev2uZhlVLM+l9e8CyyjgxUYgPgHVSgXPVRAUnr/4SJGC7C+giPMAWGIPUe00AJo4jqO+DMs9ApggjiLVvSjihP9l6w9wlTXoxitv+riVMb9QqAQnVFgqRo7jVD8TtBwPeKETPD69hFkaVHAjwgPPT3ykSCFzP4tU49X3QupJ5rLrACjaXRScJxHKhiXfOY1UNwNgq7vIl34F1zt7U8ddzdxMKaLLI+WAqpsun89X3XSWZeG67qpxMQYEXI9AfF6iVJ6mKw3fbjQp8mbFR3izyNw7wbsA7lEW8uur2+qSw+Tde7DUMRSliOv1UTTbyltdhJjAUu6l5B0FShSK70aIyZs5zSqraUK+lbEsFaPKmlHlIaJQKFTXjAqFQiBGAauaQHxeYlQSIitBBTdbJudmxEeKKUTubUhi1fdq4iOIskUjlXU42kVUrRkATXUwwiUcrw6AuWwLGfM8nkiUxz5DvvhLSJm/0dNdtayUm+xqlpGUEtu2AzEKWNUE4vMSYmk0W6VKwc1OgpVot+eawIQ3hpd9K4hBPPc0ebMDAEVxQU7gKveQF4MgZxGYSOr9/StpVD2Jw0GMRB+6MY/rNuAJ390kRB8zc/+JdHr+hqPAVtt6yO2a/K+V0BqIUcBqJAg4eImwNHdnaXTVzVKZyK9XYkd4gzjZX0QKHV0BVXGJRfJIpRVFTiOVdvJiGkXqKAogZ0DdgBQFFGw8pRlTZpEoKEh0YwRduwfhnUDKekrKWWbnf4P5k49QV1dPfb3/L5FIrDqhuZssDeuG5V1eLcuqNtazbRvDMIjH40GX14A7RiA+L3KW1h270aCC67FUfK6G5/Ti5n4O5ByuG0fRGtHUeSCNVBJIdpJzzwImqJtBlFAUFykGUNTduCJEwX0aAEPbj+s9iwK43gl07WXkxRjo4yQa/5WW5nuwMm9gYWGBwcFBFEWpClF9fT2xWOyKoqCrZVK9G+O4WpdXKSVDQ0OEQiHWrVsHBF1eA+4Mgfi8iLkd7a2vJz7COYmd+0+4tkvIAEMvgNqAlHEUCkglSVE6SBwUQIoLKNpepHccRVHwCGGyuF/HexZDO4DnPYNCDTlvElVpAcYBKIo/pbm1hzVrXosQgnw+TyqVYnZ2losXL6LrOvX19SSTyVs655Vmtbi5Lm8fsVSQgi6vAbebQHxepAghmJubIxaLrWgeyLXEx7Wfws7+IopSRCptSHzBQYwite1IdHLOacBB1/fjub5FI7zjqNpBBJB1jwIQUvfjiWcBcLxn0NX9FEUaWwwDk4S1rTiiF5DMFX8NTWknYuyipqaGmpoa1q1bhxCCTCbDwsIC09PTABw5cmSZZRQOh1fkmjwfVtPkvXT970a6vAZiFLASBAEHLzIqQQWWZXHkyJFqlvxKsTQTv4Jjfo/Cwn/FE76FZehToHVXy+YIdApSReKvMbjus6jawer3XQlF4VRf2+IkqroDAIU4JVFEVJ+TXGxvHE3pAkDXdjCY/xVsb+yKcdbX19PT08Pu3bsB2LRpE4ZhMDo6yhNPPMFTTz3FhQsXmJ2drSZw3glWi+VToVI49nIqQlMpBVRxwVXEqJJjlMvlKBaL1QjK1XZ+AauTwPJ5EXE1N9tKUxGySqRZIfM3KM6HCekCqWwFeQEQSO8sqn4AIVxy7nHAw9APIcrWjecdRVP34BEi5x4FdAxtC57oAzxcMYyubsYSYIp+VKUeTWnBkzNI8ggZR1cPknJOAZKh3PvoqfkSulp7zbE3NjbS3OyHdTuOQzqdZmFhgYGBAYrFIslksmoV1dXVLas0cLuu42rgRtfCbqTleNDlNeBGCcTnRcDSEixLXSiqqq54Ucqlbrf5mU/hWl8jEQUFUGQvin4A6fp12QSSEgrgi6HjPk1IvwfPPQmALcNYcqG8ZxfXm0RTOxFyHJCYsgZHjPj7kgvoaheKTCDJo6rN5L0iyBAoFpYYYiT/n1iX/AyqErrqmJdiGAbNzc1VMbIsi4WFBRYWFujr68OyLGpqaqpiVFtb+6Ktp/Z8AzGuJUZBl9eAGyEQnxc4FTdbpVLB0glhRdofXP2ozE39DvU1/5twDFR9P9J91g+Mdp9B1Q/hSUHeeRJQ0PU9uBXBcc+jqxvwaCDnHkVV6tCUNoScQpJFyDgKrTjUUfJOYqjrQRQBE1eMEdK2IqRGyhlE4hLTd2C6Z1AUScF9hrHC77Am/tGbntzC4TBtbW20tfkVFkqlUlWMJiYmcF2X2tpa6uvraWhoIJlMPu8JdLW5pVYqCvB6XV6XilElim5pXbpAjF56BOLzAmZpl1G40s22ol1HyxQKOXq6/xpdn0KWM3E891k0/RCUXWqOlFiyWP6GxHX70LQNeN4AYOEqLRScS/45yDSK2gUyAeSRMo2n7aPklgMOxCBhbSeOdwYFiZRgyhoELgpQdM+S0PdT8p4BaTDvDiOKn2dd/JeuGPvNXItoNEo0GqWjowMpJcVisSpGIyO+NVZXV1e1jOLx+E1NoKtpshVC3JbxBF1eA65HID4vQK7W3vpa7Q9W0vKZmhrGzP8n2lqOA6Dq9yLLOTme+zSadg8uOnnnCBDB0DYgxABgIkQaRWlFqmvJOU+iqWtAxIECnhjDULcixDiO0knRPUpU243lnUABLO8MUW0fQmSZd6cQDJPQ91MsC1TePUZM3U9JleTdXvJuPxGtnbbIG1fkvBVFIR6PE4/H6erqQkpJLpdjYWGB+fl5BgYG0DRtWSRdNBq95gT6YrV8noubEaNKnlHQPuLFSyA+LzBuJndnpSwfz/Po63uGmvj/Q21tYvF99yk0bS/SOwFoWGjYYr681cQTC6hKC1LOIOUCUn85efuE/10xiqFuwxF9gMAVo0j1IAX3CRQFSt4pYtpBLM+3plyZxaIVgR/VlnePk9D2UPROIqVCER0hverYLuY/TlhtpT50aMUnVkVRqmHd3d3dCCHIZrPVsO4LFy4QCoWqQtTQ0HBFWPdqerK/W8m31xOjY8eOsW7dOmprawMxepESiM8LiOu1t74aKxFwUCgUOHPm+6xf84dEwv7En8tvIJkYAMDzzqBp27ClRtF5GlVpQFVaEXIaIVMoyjqgFk/rIWcfJqzvwHHPoSBwxHlC2j5srw+HLkruYWL6AUzPD1goes8S0/YhZIZ5L4WQEyS0HZTKrRUK3nnC6iYc6llwz6ASJqqtwxRDSDzO5/4bu2s+S5juW7oGz4WqqtTV1VFXV8f69evxPK+aYzQ+Ps758+eJxWJVMXqpWj7PxVIxMk2z+rpiGQFXBC8EYvTCJRCfFwCVRdtKNNvNtD+4FfGZmJjg0sA/s3XzpwmHe5DlXJpEfBDJZhQuAGFMaWB7UwC+4Khrq2s4npgE/T6y9mEUBSz3LFF9P5b7DArgeBeR6kFK7mEAiu6zxPQ9mJ4foODKAiVRj5ATABS8AaLqeiwxiJAujtJCsXJsLGyRwVCaceQsutLOs5mPsi+5Mq24bxRN02hoaKChocE/B9clnU6TSqUYHBykWCzS19dHc3NzNaxb1+/en+JqEZ+lCCGqwnK5ZRR0eX1xEIjPKudWSuQ8X7eb53mcP3+efO5HbN/65yhKAdddQNd3Ir0zKIpAMoGibqMkCjjucTS1C2QSyOGJEQx9B547iqN2UbSfIGocwHSO+i4191ki2kFc0Y8pGym5R4hpu7G8UwAU3XNEtE1IBPPuPFKmCGtd2GIMiYUt02g0I/Ue5p2ThNVmdGpwyeLIDJrSQUTZzIKbwpUFjud+E6n+5F2zOHRdp6mpiaamJsCvtNDS0oLjOPT392Oa5rIco4qr6U6xWsXn8jFdr+V40OX1hUcgPquYm2lvfTWej9stn89z4sQJGuqPsGXT59G0HXjeCUDgugPoWjdSDAMJilLFE36ejifGMLTtOF45SdQbQ+r7KNqPA1ByniFmHMIsByjYYgiXXZSE/7rk9RFRN2CLAcBFEibveXiyBIArYujU47KAI9KE9QfJOJWW3LPEtG48z0Ri4yFxqcEtW0t57xJq19cQ8lWslp98ZS0IwDTNaiTd+fPncRynmmNUCeu+nU/zq1V8nuucr9dy/GqW0dJouoC7z+r4SwxYxuW5O883Ke9m3W7j4+OcO3eWLZuPkYx/FgDPO4eqbUJ4/UARTxQpFNYjonNIJjG0LQiviIKD453D0PfjeiNYMoZlP07UOETJ8QWm6BwlauzBFZPkvSi2OEVE68EWl5DY2HIeTWlFU5LMuRNoSi0aNXhkceQcEa0bvCKGdg8z9rMk9I2U3AFQBEVvmKS+FcudpyAULHGeen07GfeMX0MueYnz+U+xu+6/rIrJZ+kYIpEI7e3ttLe3I6VclmM0NjaGEGJZWPdKt45YjeJzrZI/1+NGxGhpuaCgfcTdJRCfVcbluTu3kvNwo24313U5d+4c8/NT7L3nmyjKP6Fq2xHeOcBGijk/TFpOg9pCgQxhaaIo4Hh9hPS9uO4xf5IX07jqNizHX8MpOU8T0fdglpNMXZHFEt1Y4jQAtkhXy+Z4MkNI28+CO40nTTxpEtV68LwS4FByh4kZDzFtP40C5N2L1Bk7yTqnyxFyc+jaJkz7GIoCC+45Go09pJ2TSAmz7hRn83/DzuT/73ldz5XievdEURRisRixWIzOzk6klOTz+aoY3UjriOczntU0AVfWdm7V2rtRMbp8zWg1XYsXM4H4rBJuNHfnZrgRyyeXy3HixAmiUYe9e7+N5/4jAJ4YQVXXIMUoUi6gqmuRyiHSzjOEIgKF7Uh5DkUB2z1OWL8XKefJuGlceYSYvhfL9fOBLLeXkLYRiUPWKyHlWDUowJNpNKUThQQhrZNp5xJRrQvHWwA8St4lEvoO8s4ZwvohJu2nqdd3kXFPogBp5wz1xl4K3iCmiFF0j9MU2s2C468fzTunqdd2MJs2ycT6mHH6iGstrI+96pau7Z1CURSSySTJZJK1a9cihKjmGF3eOmJpjtHNsBIT/Uqy9MFrJVkqRksb69m2fc1SQIEY3T4C8VkF3I6+O5X9XOspW0rJ2NgYvb299PQYNNT/Lp47gaptRHgXkTKPVBJAHZBGKG2URL76fcE5IsYh7EqSqSxgyhZcOQxAyT1LRNuM7V1AYqEoMfKujSP8yLSQ2oUi40gK2GKcuH4/M04vAouCN0CNvpO8ewoFyDlnSRg/xqT9JAAL7mka9HvIuCcAyDqDhLVtLAhf7ObsMzQYW8m4vQCYMoKtFKpjfyr9J0S1BtrCe275Gj9fbsWara2tpba2lnXr1uF5XjXHaHJykr6+PsLhMA0NDVUxCoVC193narN8rlWxYyVZWpMOAjG6GwTic5e52dydm+Falo/rupw9e5b5+Xn27pXo+v/EcwcBkCKFUk4MFWIKTduKKzeRL6/bhI0DWI6fh2M6TxMxDiLwmLd7kUBU24rt9SJxsMUMmtqOptYz64xiqI2oJBDkscUYEW0LpneRiLaVaec0SX0bWdd3x2XdM9Tq+8g5xwjrB5m0n6TO2EXa8ben3FPU6dspumM4SiMZ5wy1+gay7gAgSTuDJPRuUBoYt/pQwgZJtYOCmEDg8ljq93hN4x9QH1q3Ytf7RlnJqLullRXAv7eZTIZUKsXw8DBnz54lHo8vq9ZtGMYV41lNE2rl+txJa+xqYlT5V2k5XiwWcRyH5ubmQIxWgEB87hKV3J2xsTFmZmbYvXv3iv+Ir2b5ZLPZspstysGDE5Ss38bxwmjqWqQYQcoUqtqNlHEALKni4Va/bznPYJe2Eor6VoUrNUrCRZY/Y4lJDLULV4z5azj6dlL2EEKaWN44MX0LpnsB8DC9PuL6K5iynwFFkHVPU6PfQ7Zs0aSdE9QYr2KqbPGknbPU6JvJuhcAKHgz6OpW0mXBynvTxLQOit4EAhtoZsGZ9a+36mDJEhGlHlMuoClx/mXhz/i3Tf+duNawotf9RrhdE5au6zQ2NtLY2Aj4rSMq60XXah2x2sTndrndboarVexeWFggk8lQU1OzzDIKGus9PwLxuQssdbN5nlfN5l5ploZaSykZHR2lr6+Pnp5uWlr/Btv5EeAgpYNQEijUAwsIMYymH6TozmG75wAIG4ewytZPKNoLYjtaqIaU8yyqEiekdWN7wwiZQyhxVGox9I1MWieJ6Rtx3SzgUXT7SBj3UHCOEdXuYdx+ljrjHnLuMQCy7gmS+i6yzmki2kEmrWep0TeR8/oBQcEdIa6toeSlcGQDeW+YiNqMKWZxZRFXRggpdYTUtYxavcS1JkIksMljyQwhrZ2YjJAXCgUxxLfnHuVNzR8lpMZW/PpfizuZb2QYBi0tLbS0tABXbx0hpWR8fJy2tjZqamru+vpPJcdnNU3iiqIgpaxGygVdXm+d1bPK+BKhUlredd1qDsLtaXuw6HZzHIeTJ08yMDDA3r2baWz6PUrmFxBiBkVpB0CIKdAakRio2gYy7gBSbaIyTVrO04T0/QBIqWHJEAUvAygIWUTIIpriWxCOmEI39jNj9wOSottPzNhV3VfeOUFUexVTTh++i+wECX1Xddw55zxx/QHmnDNIPPLeBFG1w79+mHjSQ1U2kvPGsWUeiYaBX3POFCmi2mambb8nUMGbJaw2IIVa3p5HVTspehkA5p0hvjv/h3hy0bq7E9ytCanSOmLbtm3cf//93HfffSiKgmVZnDlzhh/96EecOHGC4eFhstnsXUnMvZEcn7tBpeoCBF1eV4LVd4dfpCwtC7I0mu12NHyroKoqpVKJw4cP47ou993Xgaq9F88bLY8pjaLoUJ64Pa8fRX85KWccVyxgus8Q1g9V92e7JzG0PeSsdZSU8zhiAV3xn6hdMYuu1gERwvq9zFhHiBvbqt/NOSdJGgcA0OQ9TDhPIwqLNdeyTh9RdQNSgqHtZcbpI6L6wujJEq60CSl1qMQpiQSWzKPhR3UVvRlCWjOK1Ilr2xmyekkYnVR+3hlvFMNsQZMxJE2MW+doDm2iMg+MWaf419T/vG33YbWiKEo1Mm7Tpk28/OUv58CBAzQ2NpLJZDhx4gSPPfYYp06dYnR0lHw+f0cmz9UWfVehsi57Na4lRpUur/l8nlwuF4jREgK32x1ACIHruleNZrtd4rO07P+mTZvo6Bwjl/85pMyhKE0oSjNSziLEKLq2HdfrQ9UPkLZ/SMS4F7PsYiu5zxDR9+C4J9HUBorSw1NMvz+pXEBT11Sj1ixvmJDxELOmX5k675yiJrSfrO23Psg4z4J1iLRxBlBQ4lMYohtHHUbikrOmEPZuMhHf1acrMQylFkdmsESKhLYRW+pkvSEA6vQesu4gIMi6wzQbhxg0zyEVwbxzidbQVmbtcyiAHZ6nQd/LmO2HYE/ZF+gI72DK9ouUzjkLHM78PQ/U/4cVvxdXuzeriaXdbxOJBIlEgjVr1txy64jny2q2fG60Bt+1urwKIbAsC9M0X/ItxwPxuY1cq731Um6H+DiOw+nTp8lkMjQ1NdLa9k/k8p9BURqQMoeUc2jqejyZB0q4Xj/oryJt/wsKih/Fpu/HdJ8FJJbbT1g/RNodxRH9oDT4ddyUHLY3SlTfhu0NI9WNzJiHqQ3tI+/4gpO1nyVp3EPOOYlT2owZOkdc3UBBDCBx8bQUYaUN05tF0TZjhuZQvBhSK2KKOQy3FbQiqhImKxR0JQRSBUWQdi/RZGxj3jlHUt/CJbOXltBWZpwzAEzbvbSFdjJn9WFbzQxzmo7QNqZtvyzPhHWe9vA2HKkzWOpnyOynRm9kd/KVK3o/rsZqmWAqQnitflA30jpiaVj35a0jng+3q7ndreJ53nOGrV+Ly//2r9dyvFJ94cXe5TUQn9vE9dpbL2WlxSedTnPixIlyUmIzRvjzFIr/WB5DDGgAUnhiEF3bjeuNYSnNlOwfEDPuxXKeAsB0T2Jo23C88+j6JlLuLIos+7v1FKroRigm4GB7k6j6IeYtPyotYx+nNrS/KkB55zyFzA5E0m/DYMkpImo7ppjElQV0ajDUfcy5Z0GBpN5NyRtHKg6OPo1uriMjTLzwOAB1yiaysg9FgTnnPC2h+xgqnUfgMmWfoy20nRnHt56mrQs0hfYxLP0KCxN2H22hjczaF/2xeBqmXLz+/zz/RRJaPT2x3St2T1Yz1xOfy7lW64hUKsXo6Cjnzp1b1jqivr7+irDuG2E1Wz4rVfD1Wr2MPM+rrgcv7fI6Pj5OU1MTdXV1K3L81cDqu8MvAiqJakt7kFyv4dtKiI+UksHBQY4ePUp3dze799STqP2PhKM/QFW7yuOaRtMaAf/pTcgctraDkudPxEXnaUL6PeU9un6xUP1BZu0L2GIS1DhKeZ1FqMPEjO3oSjslWcu89SS1of3V8WTsE8T0HSDD5ArteIkJopo/DlcWkLjo1KLIMDYNWDKPgj9R5bxhksYGpFTQlFqsiEptvLMasJCW/ejFNQCEvLUMls7TaPRUjz1l99FobAKpEtc3M2yeI2w2Va4Us/YI9fpa6vUtDJlDzNoT1Ovt5a2Cb8x+iklz8JbvybVYTW63mxGfy6m0jti4cSMHDx7kwQcfZMOGDSiKwuDgII899hhPP/00/f39zM3NVR/EbmRMq1F8rrfmc6ssTWitWD6VXkalUom3v/3tfOMb37gtx75bBJbPCrL0yeVGS+SshPjYts3p06fJ5/McPHiQSPQZMrnPoGr+BOrJOhRqgQye14+u34MnFBbcC0hGiBgHMR2/Y6jpniekbcT1LoG2nbQ7Ui7umcHyhonp2zGdcyiKxBMFPHVTdX0oYz9L0thFzjkNSHKlKUpWD27Ur3rgCBNDqceRC34lanUTpgiTdn3xqzO2knb8/KEFp48mYy+zboq8N0WOKVpDO5mzfZeaHRun1tvDlLyEVFxm7AvE3FaKxjQgSdnjNBj7GLH8z1tGjhq1jayYwsMBEqTdIhKJK22KXp6E1kDeS6EpEf5+9q94pO091BvNt3RvrsVqcaXcivhcjmEYNDc309zsXzPbtqth3TfTOmI1Wz53alyXW0bFYpF4PH5Hjn2nWH13+AVKJZrtZhu+qapaDUR4PiwsLHD48GFUVeX+++9FM/5fFrK/gOv1I4UfiSbEBIrahpS+ZeERpiTDSPz8BNN5lrC+0z8PbDxpIrT7SNkncMQUht4CZauk6J5DOluR3iZmnVkWnKMkQ3ur48k7fYSV9UinjpIMo8azhFXf6rDEPJpag0oYTaklK0AqOhL/OqWdXhoNP+Q6pDQx7cwR05qq+562z1NvbAEgqW9iWhmjzuj0NyoSS08TduuRArxiC2OlQaKyzr8GqoMlLaJqHbX6eoatCRzpEVH8SD+/dJBGXG1EyCST9ghfnvxTit5iSaGV4sVi+TwXoVCI1tZWtm7dWg3r7uzsxLIszp07x2OPPcbx48cZGhoik8lUH8JW85rPneyzVEFKSaFQIJFIPPeHX0AEls8KUHGzPZ+CoJUnm5t9qpJScunSJS5dusTmzZvp6kqQyf0yrpgob88CUYQXR9UKuF4fhn4IS9gUbL88zmJQgcB2B9C1dSAtSiKMUKarpXBMt5+4sYeC46+bCFRsL4HQ/c6mGfs0SX0rBbcXiU2xaCNCzbjKKAiIaV1oRPEoUXBHqAvtJWWnKQh/DafJ2EVqSSHQRmM/084UJTFH0Z6n0djEvOPnDC04QzQa+xi1+vFwyHpzJLRm8t4snmIRMqI0qPcwIn0LSvV0VCWE0GxKIkM9G5l3srjSIeulaDTacR0LF4eim6MxtIUR07fE5pwp/r+pP+Nn2/8Thvr8FpqvxWqZXO9kKZtoNEo0Gq22jigWi1XLaHR0tNo6QtM0hBCrsvLC3bLI8vk8yWTyrhz7dhFYPrdAJajAsqxbavgG3JTrzbIsnnnmGcbHxzl06BDt7QvMpX8Cy/kBQkyhlhNHFXUa120EdFR1DXlvGk9ZrHhsuicJaX4ujqSEqjRSFHFMMYbtjRHWuwD/Sa/gnCRuHCBsHCKvX8LWe0kaO8t78ih6YyhuM8LsohguInQPHf+PpeiNETfWACohtZMpa46w1lLNs5lzztBg+Av8EbWTSXuSqNpYucqknWFqyutFCW09U/YUEbUWAFsWcaUgpCTLOUJrSIs0Bn7UlaXlSIZaQaiE3WbG7BlESQfp36d5Z5L6UBcaBlGti4FSH62hNdXto+YAfzfzBVxxZ5NQ7xS30/K5HoqiEI/H6erqYteuXTzwwAPs27eP+vp6CoUCuVyOxx9/nNOnTzM2NkahULjrFuNKBhzcLMVi8UVn+QTi8zxZ6maD51+J+mbFZ35+nsOHD2MYBvfffz+68XekMm9FUWrK48qgKBqUJ/5QeATDeAVZL40txjDdp4no+8p7c3HFKIa6hpB+kFmrF4GOQgSAkttL3PArP6tEKAkPSy7+ZArOBWKav9DvyQKe24wVBg+LkjdFWG9DKRvXWecC9aF7WXBdTJFi1j5Dg7FY1WDOOUu9foAF16Yk0iw4I1XB8bCxRIYmfTeT9jhFkUaiEi67zAoiRUitpVbfzah1kbQ7Ta3RjlL+eafccULFDrKKwFUdCuEFmtS1VfGbNEeImuuYsHxLbswaYm1kY3V72jH5xuzXV2zyu9uT6FJWy1gqrSPWrl1LR0cHTU1N7N69m2QyyezsLEePHuXw4cOcO3eOycnJakmbO8ntDDi4HhW3W7DmE1CNy/c8r7ooeCsl8uG5xUdKycWLFzl27BgbNmxg1671FM3fJVv4HSTFZRaPJ8bQtTVIaZAvbiNl/5BI1UoB0z1FSPPXToQsIdX1zNsjSDxMb4iwvglZfvIvOMdIGPdjK92knD4y9lk0z69MILAx3VmkXYPm7iQbGsTQkqhlqyPrDpAMbferXevbGTH7qA8tRqXNOWep07cCENN6GHcmiKh+dWYPm5LIVS2giNbFnJtFV/x95705ImoDqtTLItHoh0yXxz3jDNMa2ogEEmoLKaNIg95RjZibESOsjWxBSoVGfSMT+hhNXmd1bEPmRdrUblr0jVwoDvJ4+kf8S+r7N3pbn5PV4k66Vv7Z3aTiRai0jdi7dy8PPvgg27ZtIxwOMz4+zpEjRzhy5Ai9vb1MT09j2/YdGdfdsHxKpRJCiBed2y1Y87kJbjR352aoCNf1xMeyLE6ePIlpmtx7771EopeYT78VT0yja1txvV6kzKCqST/5kxyeGMeShxCRJ1FQyh1F78F0T+BbPFMY2mZMGSZtPU1E34DnlgCbgnOWZOgARecoYa2HWWeEsNYF3igSD0edQ3NbkPoMHnlCoYOkxSVAIe8OU2dsI+34iZwL9hkaQ69kuHQciceMdYrG0HbmbT8PZ8EZpME4wEh5DUeqkpjaSFHMY4kshtZKnbabEesiEkmjvhbHHUPiseCO0WJsxBIhRix/naYrvIUJqxdFgQm7n7XhXQxb0ziaxZhzie7IFkbNPgCGShdYH93L+YJf5WBWm6Q7vIFRy89Hylk2luNQ1lL+Ye4bxJU49zXcf0v3fLVYG7D62inA1ddWKmHdDQ1+/UDXdUmn0ywsLNxw64hb5W5ZPoWC34vqxeZ2C8TnBrm8vfVK/givF249NzfHqVOnaGpqYu/ee7CcL5HLfwdP+C4iT0ygqp0IMV62eLYjpCAvMjg8hVPaQjjmT7ame5aQtgnb60dV6ymJGEV3vLxtgLixm0J54T9nP0sy/CqmrOMIaWOLAnFtAwVvAKmUcKWB6jSghTuZdc5SY2wk71z0Kw8452kI7SFl++tEl0rP0hLaUQ2TXrAvUKuvJ+MOktA3M+mME1FrKIh5LJHD0FowiONQwFBbyHsWvpHuMe+O0BbaxIx9AaSCKSJU1qUAxqwLrAlvY8I+T1xrYsSaoUFvpeDlABg2++kKb2DcHKAtvJ2zhfN0hdcxYQ0BMGoO0xZeiycVhrw5ZEjSqrUx4/lN8P5m5q+ZHpxmR+3O6iT3fJ6GV8uEvxojy24kz0fXdZqammhq8qMhbduuitG1WkfcitVSqVZyNyyfQqGAqqpEIpE7fuzbSSA+z0HlR2fb9k2FUN8MVxMfIQQDAwMMDQ2xbds22tojZPPvxrJ/AOjo2jZc7zxSZlGVJP4aTw6pJDClgiN8S8CIXiBcbWnt4IoZQvrLmLPOIpgiqm+m5BYBj4JzimToADn7GaLGISbNoyT0reTcc0hsLDGLThMuc6BIQuHNzNu+sGWdizSEdrJgn0JRYN46SUP4VQyV/IoJs/Z56o1NpJ1+BC5Fb4Y6fT+j9jlAEteaCRHHpkDem6Fe7yYuE4xY/QC0hTYxZfv/n7L76TC2URJa1UpZE97CeHkso1Yfa8I7mbBnyXsZCl6OhNlAPpICYMIcZW1kL+eL58r7m6DZaGfWmUQgcKWGKRQ86YfAp0SaJqOZOWeWiBbn6fg56uxGpnt9d09tbW21xEwymVyVOSrX4oVi+TwXoVDoqq0jUqkUvb291ftUEaObbR1xJ7qrXovKes9qu0+3SiA+16ESVNDf30+xWGTXrl23ve8OgGmanDx5Etu2ue+++wiFTzGf/o9oaqUKtF99QFW7EGIMT4yja7uxZZiM7ffFiRoHKVUSR51zhLTNOGIARdtGxp3Cr3JgUXIvkDDuIe+cACBvnyYaejUz1hMAFLxLxPRuiu4wrswi7XpUZQ1FLHL2aepC20iXa6Wl7DM0hfeRsk4RMXYzVHqaxtAW5u0+JIKsO05C7yTnjBM1tjBrTxNW4lgyT8GbpV5fi+taeNJFUeqwpIeUoChlwQn5Fg1SpSBUlCUWz6jVT0d4A1P2ADG1gQl7gZhaQ97LIJEUQxkatBZS3gyt4U0MlAap15tYcOdwpEPWy1GjN6BiMG5m0BSdWq2WjJfBEhYFz6BBb8YWBtPeHP9X/z6/fuADxL1odZIbGRkBoK6uripGsVjsit9M4Ha7PithjVVaR7S1tSGlpFQqVcO6x8bG8DyPurq6qhglk8nrHrPy93k3LJ98Pk8ikVh19+lWCcTnGlze3vp2uieWis/s7CynTp2ipaWFfft2Ydn/i1Tm4+UxzaNrO3C9s+Xq1EmgFk2tJ+el0bS26j5LzlF0ZSeuPIPERmAh1YPMWycAiOpbKLkXAY+8c4KkcQDTG8JRGpi1niSpbyHn9iGkieNlwa0BPUs80kraUnGUFAqQts/TGNrDvO3nAC1Y/SRCL2Pc9HOJ0s4gNfpasu4Irixhiyh1oUOMmL4Lrk7vxPEsBA4L7ghN+iYcEWGkvC7TGd7OZHl9aMI+T5uxlaJQGLcuoaDQFlrPlD0ISKYt3yU37WTJeSlMpUid1kzam0WoHiVRoCu0k96i3wnVUELE1SQFkaMoCtTpTSw4LiXh9/ppMBqIKlFKsoTpWdRrXcyV3ZRZN8efjnyeX1//ATo7O+ns7KxWgU6lUszOznLx4kUMw6C+vr4qRpXCm6tlIlmt4rOS6zWKohCLxYjFYtX7VCgUqmI0POxX4FgqRpdbGnfT8nkxVjeAQHyu4GolcipJb7cLVVVxXZe+vj5GRkbYvn07ra0mC7mHcd0zhPRD2O7TgIcnhtDUbjwxjBATaMarWLCOISmAmCBqHKJULnfjygs4ZgexeJysl0dVZquJo6VyR9GKxeOILJ66hVy5GGjRGyWqdVHyxnDkAqrSQkzbzJh9HlSIOOuwjUsowLx9ksbQHnLuOBZJJszj1Bs9LDiX8KSNJdJE1SZML4OmriHjpdAJ42KRdsdpMjYw75QLfcoYKItPl+NWLx3hbUzZ51GkTl4stgaXSOacMRr1dubdSSJaDSnXRi1/35ImhgwRV2soiCxJtZNJK0VUiVGSRXJeliajGUfahJUok1aRmBrDwMDBIeWkaA+34doe9UYXfcVBOsNt2PY0Hh7T9iyfGv4C/3H9LxNRQ8uqQK9bt+6qhTcrk0gqlaKlpeWGS/TfLlaj+Nzu2m430jpC1/VlFuzzzeNbCQqFwlUt6Bc6gfgsYWl7a1iMRLvVEjg3Ql9fH4qicN9996Hq3yCT/wdct1zHzD2Kru/GdU8hZQGpJFCVTly1jYz1GBF9L6Z7HKAc1VZ5bWM7NXiuhSP99Y6YvoXiUosndABPwqTVC0yRNDZTcC/gySK2E0Z6MRTdIhxeS154+Av/AtMYoim0lwXbP27Ry6Kq68nbpwHIu1PEtXYK3iSWyFKjd6MonUxZvtXRFNrAnH0JkMw5A7QZ28kLGCuv8XSGtzJl+1UKJq0LtBibyAuVcWsIQwnRoLeTcidxpUNB5GjSu5l3S+S8aWq0eqJqnJIokPeyNBgtRHNxLoZ8t1hbqB3bsfFwmXNmWRvewIxVIOsukCXH2kgX4+YYUpFMmtNsiu3gdO4CKDBuTbE+uobh0ggoEgjz58Nf5VfX/Qyastwlc3mEluM4pFIpzp49y9DQEH19fdTU1FQnuLvRwno1is+dDoK4WuuITCbDwsICk5OT9PX1VVtnT01NrVjriBul4nZ7sRGITxnP86rRbJc/4dxOy2dmZoZisUhDQwN79qwhX/ovWPl/BiBk3IvtPAVIXLcfTevB8y6hKDWY1FF0/BBh0z2+zOKx3DOEtR1YwsCLn0dXO1E93+Ipun0kjL3kneMo6FhCwZIqEgEIiu4UYbUdS0ziqQvE9M04xJi0/HWdxtAu5ssCM2efpCm0G1t4TNkTwAJJfS05dwRHFtGJEVZqkIpGVujoioOChsRjzh6gxdjKjNOLRpiMEBjKYjTPhNVPa2gDs84AKhFyno4j/VwOR9rkRYGEVk/eW0AnQkmEcEUWgKy3QLPRhiNsXBzCSgNpFlBQkEim7EnWRroZM4eIaDGm7RI1Ri1z7gIKMGKOsSG6noHSJbojGzmZu8Dm2Dr6i4MoCgyWRtkUW48jJGfzvsvmL8e+ybu63nzdSbNSeBNg//79CCGq60VjY2PV8jIVMboTi8yrVXzuZtCGqqpV9xv4c8P4+DiXLl1a0dYRN8qLsa4bBOJzRe7O1UxrTdNW3PIRQnDhwgXGxsZ8X3RXP5ncu9G0NdXP2M5TGPpeHPc4UEKKHIr2ACnnKDC4JG+nbPEYezGd4+haB0UBlvCtHcsbv8ziOU4ydD9ZN82MfRYFg4S+kbx7EVfmcU0NTY8T0evICIuwtpjcNm+fJiG3kld6kRJsEaIkbDxp+ePwckTVJkpijpI3R0NoF3N2nqw3CUBbeAszVi8KMOP4zd5SbokZexhQaAv5QQO+S22cRn09WQ8m7RFiaqIqOCWRJ6Q30aB3MefY5L0xWpZYNLPOFB3hbhBhLhSHIARrQ2sZtYfLAjNMT3QzU1aOOSfFnJNiU2wDA0U/eu5icZAdid0cy/rW14XiEFviPfQXLwFgegKFxaffH6SepsGo4d+3vfqG7n+lhXU0GqWjowMpJfl8/grXz9L1otsRahuIz3OjaRrJZJJwOMzBgwdxHKca1j04OMiZM2dIJBLLwrpX0p36YqxuAC9x8bk8d+dONXwrFoucPHkSKSX33beDqZmPoOmPI2UB100RNg5hla0Yxz2Dpm1GihSO0oojp1CUEFKWMN0Tl0W1nSZsvJJ56ziCKQylA+FGUHVzmcUT0bcwbQ8RLQudxMH0ptFlE64yB0aGZOhepq0hbDlH0ZtbFlSQV3ox7G7CsUbGrXMYSoyk3k7OncQSGQy9DZ0YEb2dMWuSOr2TrDcNwJTVR2dkJ1PmGcJKPVN2lrhWW74ykll7mEa9k3l3HF2JUhQGlvArSxdFnlq1ibASw5JFkBoeSUreKAAz9mQ5Z2cQFImUERy0asTciD3ChuhGBksXCSkRZuwidUYds44v0v3FS2yK9jBQusT66GaeyfaxObaOi8UhAPoKg2yKraPo2fQXZnGlx9Z4NxdLvvXztenvUW/U8FDjwZv+TVTKy1RKzCx1/YyPj9Pb20s0Gl3WNXQlJrjV2DtntYkPLE8wvbx1hGVZpNNpUqkUFy5cwLIsampqloV130qUXCA+LyKWtre+kYXElbR8pqamOHPmDB0dHazvmaVQ/A/U1EwivE0o2gAgcN2nCRkHsZ2jgIOi1FFEwfZ811dE30XJOQtISs5Rovp+TPcsqr6LlH0WTW1EiAkcOYFw2lH1GSoWT9x4NRPWU0gEjiiS0DeQdwdwZQ5cDc1IEDO2MGqeoj60HbscaeYHFexm3j6FIiOUhI4QRQDfxSajRNQ6TJEm707REjnEcPECLiYzdj8d4e1MWP6+xs2zdIb3MmZOUhCz5LwUTcZa5pwRPFwKIk2Tvo6UazLnjVKrNxJRYpiySMadoyXURUI0MOsUKIkhusLrGCsniY5ZQ6yLbMQWKn1FXxQ2xnzBARgoDbAxsok5p8SkPcO0PUtPtJtLZQG5WBpiW2wnx3L+2lR/cYR10S6GS35Sb8610GQUt5wDdKEwzvpYJ8PmOEktyV+N/YiYluRQ3dar3v8bDbNe6vrp6elZ9rQ9MDBAqVQimUxWxai2tvZ5Tdir0fJZjWO6XoJpOBymtbWV1tZWgGVh3RMTE7iuuyzH6GZzwQK324uEawUVXI+VsHyEEPT29jIxMcHOneuJJb5AofgDhPDXMVStH0M/gOP6IcqeewxD24OjhFhwnkFX16CQQJLHck8TCx2kWG6N4MoFpLqPBduPVNOUeLkBXBY9Oklc30PRvYCmb2PcOkKtsZOMcwaJQ8mdBqcOjDSqYRIzDjBplcOm7XM0hfYwV7Z45u3TNIT2MlOao2SM43kJ4loLBW+GkjdPjd6FLUrUhrYzUDxFW3grU5bvtpqwztER2cGEeZY6Yz3D5hg1WhMFkUHgkXbnqNGbybqzGEqSgjSwy2s4GXeeZqMT27EQeLgCNKWWophFYVFwhsqtEGyp4S4pgHqxOECj00g6NE+IEHOOTUhddGENlUZZE+lg1JxgbaSHkzk/qm3cmkIiGTNnaA+3YAuPaauII7J0hJuZsGYRCEZLc6yNdJJyXOacBf5w4G/56JZ3sjWx9pq/h5udXC9/2jZNs7peVJnglq4X3WheyGqd6Fez5fNcXO5OXdo6YmRkBCnlsrDu57pX+XyexsbGa25/ofKSEp/Lc3du9I/uVi2fQqHAyZMnURSFQ/dKPO//wTSfKO97I66bQ1EcHPcZDP0Qjvs0qtZDwSvikQUUXDFGWN+G5V4APEznKFHjIEIqzNnnUZQ0Ia0L2xvDFlNE9U3lygUujkih6fcxZ/vVBrJOX9Xi8cija02EtHUUpcqE9SwNoR2kbD+YYc4+WQ0yiOkbmbJn0cqN5WyRx9BihJQEtsyTdSZoitzPYPE4KDBl9VYFB2DCPEtn+CAXS7140sGVDnV6G2l3CluWMGSYJn0j404KS4zRbLTjODYeDrPOOB3hHmzPY9xO4chZeiKbGDb96Lgh8yLrIhtxpEZf0e/gui6yjiFzCICUvkCXtoYiCuPWFIai0x5qY9KeQiCYsebYHN3CydyQv95kZ2gy6plzFnCkgycVFBml4JWDGtw8jUYt806mvPYVxi0/SNjS5ff6v8KjW3+eNdHlnVBXKsE0EonQ3t5e7Y1TyVtJpVIMDg5WLaeKGEWj0avuJxCfG+P5ltaptI6otI9YurZXWTNaauVW7tXSe1IqlV6UbrfVdYdvE5WgAtu2b1p44Na6jU5OTnLkyBHq63W27/g/mNYv4npnUCoVqL2LuM766ucd9zjoryblDGKJS4CFSh0AlnueiH6PPyalBksIisJD4iBkASkdNMWP0Cm5/cT1HZj5dcy5Oebsp6gttzCQOBTsSbD9/UbCzZiynrwzC0DKPktTeE91TPP2WRpCL2PSmqLopbAooLl+C4eCN0NMb8IgSdjYxkDxOG2RbdV2BBPmWdrDfs+gxtBu+ov91Ot+MqwrLWxRJFbuzRNRGsgL8IR/rWedSZrDa6qdTh0BKMlq1Nsl8yLdkU3VcdpCx/QWJ/dRc5SOcAcAilApCh1H+hasI10WnCwNun+9mkOdXCrOU6v7wRUlYWILjxotTkJLkHUEWc8kqcUAyHslAGq1OM2hdi4UxvEk1e05r8RvX/gSc1bmqr+LlZzwK3kra9asYc+ePTz44IPs2rWLeDzO5OQkTz75ZLUC9MzMTLUNCKxO8VmN61ArVVR0aeuIyr3avXs38Xic6elpnn766WrriFOnTnHx4kXy+fzzEp/f//3fR1EUPvjBD1bfm5qa4u1vfzttbW3E43H27dvH1772tSu++4//+I/ce++9RKNR6uvrefOb37xs+8jICG94wxuIxWK0tLTwoQ99qBq0daO86C2f5+NmuxxN05BS3tQfqud59Pb2MjU1xe7dKXT9wwivpTymDKpag5QJII8RuoBj7yIcyVKUBpZ9BEPrwfEGcMU0IW0jtlcEbEz3WSLGq0jZF7DFWVQiRLR1fnUCMU1E24DnFVBQcAhREhEU/Mk665wnpvZQFJeQapFwpAZDPcRYudpAY2g7C/ZZFAXmrLLFY50jZuxlxOwlqbeRdcexyWNQj04MlyIlr0AstIORkl+UdMI8T2dkJ5OWv98ps5+2yH30FfztGTdNjd5E1p2jKLLU6a0k1A6GrGEEgvZQN5P2CCCZsIZYG96M5XkMliYQCHqimxgqWzyD5gBrQuuQSpTewiCaotEe6mDSnsDDY96Zp9VoI226jMpJklqcOr2WtJuhKEqE1BDrwhs4n5/AQ9AcqiemRigKk7SbY024HUsojDgzAHSEm7CFgyUd5uwM2+NbOJPz84fmnSydkcbq9kajiQ/3fpVP7HgHSf3qlsftQFVV6urqqKurY/369csqQFeisypFN1dTqZ8Kq9XyuR1jqrSOqK2tZf369dXE5IWFBf7mb/6GP/7jP8YwDNLpNN3d3Tz00EPV+nXX4+jRo3z2s59l9+7dy95/xzveQTqd5pvf/CZNTU185Stf4eGHH+aZZ55h7969AHzta1/jF3/xF3n00Uf5sR/7MVzX5cyZM9V9eJ7HG97wBtra2jh8+DCTk5O84x3vwDAMHn300Rs/9xv+5AuQSt8d13Vvqe9O5Ud3o9ZPPp/nySefpFAY5sD+f0VTfx0pphHeRTTVt3KEGEXX1gIaUqq4EkqyDdMbRGIhxAKa4rtsbO8iEX07oKPr9zFlPomh+b1nBCauzKErfnVf0xsgYezDZo0fRp0YIan5vXwkLkVnAk00oSlxpNJCThSrDd/m7XM0hu+pnkfWGSVu3MeEdQ5XmtiiQLTcb8fRF4gbHSS1jWQ9lZHSKToj26vfHTfP0RragiJ1ksZ2LhX7qhaPKQq4HoSkbyXoShM54S02d7OHWRPeUN2XLVUEEQS+1XKpdJGucPk6SolHnIzjNxfzpEfKSdOgN5a3g0INJdUX4JxXQEEnqvpiEFdrSTkOejlBdNZeoM6oQ0cjpITIuwAaavlPZcKaoy3SjCIVeqIbeCYzSGekGbVsnY2b87RHmtgcXcfJ7ChDpVl+u+9vsIRvbdyNyb5SAXrTpk3ce++9vPzlL2fNmjXYts3k5CTpdJrjx48zNDRENpu964K0Gitte553R+q6VRKTN2zYwEc+8hEuXbrEmjVriMfjPProo7S3t/MTP/ET191HPp/nZ37mZ/j85z9fzVWqcPjwYT7wgQ9w6NAhenp6+PCHP0xdXR3PPuuvF7uuy6/+6q/yiU98gve85z1s3ryZ7du38/DDD1f38Z3vfIdz587xV3/1V9xzzz28/vWv53d+53f49Kc/fVN9lV6U4lOxdmzbXpGyGJUf3Y0EHUxMTHDkyBN0dj7Nxg3/Fdf9Mrp+oLy1hCLzqGWhcL1z6Pr95N01WMY5St7xaltrT6ZQ1RgKvrntijnQXsGcdQKQFJ1eItrG8rZ5NDWOQoSYsZ8JuxdDb62OKe+dx/DKi9+aSTzcgcsaZuyLZJxLNIQ2Vz87a52kIbSLqLaWgkwyY/eS1H3XlSnSGGoUrZrfEkMotZjCb1cwbp6jY4kALTiz1If2MmpexJEWtixVw6pzIgVOBDXfxUDpElP2KM3amqoAjVoXWRveRHtoKxeLgwyaF1kbWXRPTlhjtBoddIS20lu4RMrJ0KD7lQRKwsSRgnq9kZjSxsXiCJrQCRMCYN5ZoE6vY02om4HiHGPmDK3hZtRyI7oxc5o1kU5qtWbGrTmGSlP0xDqrYxssTbIzuZ3TOT/Ee6A4xaZ4V3W7SghbKNXXZ3KjfLz/7/Hk4u/nbk6ulaKb27dvZ/369dTV1dHc3Ew2m+XEiRM89thjnD59mvHxcYrF4h0Xo5eS5fNcNDQ0EIlE+KVf+iVOnDjB9PQ0H/nIR677nfe973284Q1v4DWvec0V2172spfxv//3/yaVSiGE4Ktf/SqmafLQQw8BcOzYMcbHx1FVlb1799Le3s7rX//6ZZbPkSNH2LVrVzW6D+B1r3sd2WyWs2fP3vC5ra47vAJUggqulzR6s9yI5eN5HqdPn2Zw8Hvsv+fPaah7HCn9Sdl1T6Bq/qQs5RyaWotCHFW/l7R9FCErTydeta01gOMNE9LWo6sHSTk50vZhEobfAlti44pZQqpvTThilrBxPxNWL0LapO3j1Bn3lD/r4SgzhJV2ksZexsxhpKKhlAMH5u1zy9Z4bKHhyAaK3jyOLOHKEhG1DoCsO0FcaUMprmfEvMiEdZ7OyI7qdyfNXlpCG4lrTdgywYQ1SK3ui23By6C4GorQQapEo21Ek4shpJPeCDVma/k6QdFWsZZc8nFzhPaQL4Su8NCoY97xAwBKooQrBXHVF2vTM4mpLczafg5PTitSr9ejVX7y0sCVRjVkeqg0yfqY31pbRyfvQkSLVgXkQmGMbYl1SAkboz0cXrjIzmR3dWy9+TF2JtexLtLB+dw05/Lj7Ewutuo+vNDH/zv8g9taI/D5ous6XV1d7N69mwceeIB77rmHZDLJ9PQ0Tz31FEeOHOH8+fN3rGPoalzzuVu9fCrBJJUupk1NTRw4cOCan//qV7/KsWPH+NjHPnbV7X/zN3+D4zg0NjYSDod597vfzde//nU2bvQfZC9d8pOoP/KRj/DhD3+Yf/iHf6C+vp6HHnqIVMr/W5qamlomPED19dTU1A2f24tmzWdp7s5KtwZ+rvpuuVyOU6eeorX5n+ja8j0gg+eCod+L4z4FuEgxgqquQYhRkB6etpeCfRgAVT+Fa29GCfUjZB5VSaBSh6LolKSGwEDgVxDIOyeJ6Vspur24MkNYTRDRtpPxCqSsp6gL3UPaPgFA2jmFLHagxCZQVYmudzNtDSNwyDqDNIS2kyrn8cxZJ2kwduIQYcw6i6FESeod5NwJSt4CNXonjigBCraMIlichMbNs7RHtjJp9vr5QxKgmYzrR52F1ShRJU5JFsgrKVqM9VgYjFj+9u4lUWvpyAxtYg15R+GSOowiFRpoYkGdw8NjwU3RqDdjKPX0FS9Rp9eSUOPkRYG0m6E11IyKjqok6CsMsjbSwZg5iUAy4cywIboWy3MZKs3jSJct8W76Cn6OT39xhG2x9WQ9j4GiX5FhR2Id5wtDAJzLD7M3sY3Dab8KwuncCDsTazmX99d8FuwiCS1ZtXBO50bZlVzL2fwIzaFa/u/UaVSh0cPqrWqtquoVxVEv7xhayeZvaGi45SZtV2M1Wj6e5xEKhe7KsW80z2d0dJRf/dVf5bvf/e41q2H85m/+Jul0mu9973s0NTXx93//9zz88MM89thj7Nq1q/pw9Bu/8Rv85E/+JABf/OIX6erq4m//9m9597vfvWLntbru8PNkaTTb7epJf7X6blJKxsZGOX/us2zZ+Bs0NnwNTeuk0lnTc59C1/aWP5sv7+h+Uu44BecwEWMxE14zBglpfuSWK6YwjN1kPIOs00feOUbSqDzteJjeqN/WGgVV7aQgQ5TEPABp+wR1oXvKnxUokTmibMdVOhk3TxHR6lDLFk9qicVjKLUUJJjCXzvxLR5zicUzTmNoC4rSwZw3RCE8sczimTIv0BzqoTG0nVFzmrQ7T0KrL393HuwQitSIqrVkpYemLNbCGjb7q1FrGgauEcWI+n88UpFklRxxz4+us1wbYSWYMv3IvLSbIa7HCZXPKecWqDc6mbLmABgxJ1gfW8y3MYWHrsZxpG8Z9xWG2Rr33XmqVMm6EkNZnGTO5ofZEvctnJ5oN4cXBtka76puP5MfZUu8i5ZQA9NmiZPZUbYt2X46N8quxDpKrkLONfmriSd5Rp1htfBcQTSaptHY2MjGjRs5dOgQDzzwAN3d3XieR19fHz/60Y84duwYg4ODZDKZW7bsKg+Rq0WcK9wtywduvKXCs88+y8zMDPv27UPXdXRd51//9V/50z/9U3RdZ2BggD/7sz/jL/7iL3j1q1/Nnj17+K3f+i0OHDjApz/9aQDa2/0o3O3bF93n4XCYnp6ear+qtrY2pqenlx278rqtrY0b5QUvPkIIZmdnGRjwn0ZvV9nzyy0f13U5f+47COf9bNnwFYyyDel559D0vYvj886gaVtQtc2UBJhiHqV82U3nKJGyqCiKgxSzGOpGVG0fc9aTRPUuwPfb5JxniJdDpYUsoCoxVG0/k9YZcu4Fao2d1WOmrZMoJX/ClVYnaVHAFr7llHWHqQttrH52zjpJU/heSjLOnD1Azp2orvGUvBRhNYFGmBpjEyPWBBGtjsoKwLh5lrbw1vKYBJJaFuwSnnQpejlUDAzpi0jJWKArug1TRJizpxkxL9IdXgyTHjb7WRvaRFzrZNgcYdqeosXwo3ocHDAU6rQGYkonI3LSr8Yg/Os4bc/QbDSRVJMoSg3nCgP0xLqr4xwoDtPmNNCmtzNUTHEuP8SW+OL6UW9hkM2xbjoia+kvTnA+P8LG2KKA9OVH2RnfxNnsFAJJX2GSnujiH9mcXSCp1pbbfUNfYZINMX97RA0xZZZoMBafXL+lDfGj+T5WAzcbah0KhWhtbWXr1q287GUv47777qO1tbWay/bYY49x6tQpRkdHKRQKN71eVPn8arR87saYhBA3bPm8+tWv5vTp05w4caL678CBA/zMz/wMJ06coFj0K5Jcfh5LH6z3799POBymr2/x9+k4DkNDQ3R3+w9h999/P6dPn2ZmZvEh6rvf/S41NTXLROu5WF13+CZYau3k83mmp6dv649j6Q3KZme4dPFDNNT+MXU1p1GUNKoaA8V/OvHcZ9D0Q+VvhvCoJ+/mscUojneBiL6DiqiYzjEQW8rHWIcpI+ScIQCK7klqQov+3aJzgYjWQ8y4h5Q7h0MBtbyInnFOkVR9cUKRaLE0CeMBMqFpSnIWXY2j4QtByj5PU3g3UkJNOYw6Vo4Ou3yNJ+2M0RTex7g5iSUKjFvnadG3VMc0Y/XTHNpAbWgnA8VeHGkS18rfdWfR7DiK1GgK9XCxOEZDqKW6DjJs9bO2HNUWU2uZc21kedHfkTZ5r0Ct7u/LES4RtZWFctWDnJanJdyGUo4ymystoBWTzFiVOm3DbI71VMdZQqDKaNXiOZ8fYmOsXMRVKpQ8Dbd8fyVwqThFd8T3Y6+JtHM6O01XxL9GnhSMmSk6w00k9RiWq3GxMENXpGFxeylFd7SZJqORkVKKoeI83dFylroCH7vwLU6kx67yS7uz3GqeTzQapbOzk507d/Lggw+yb98+amtrmZub4+jRozzxxBOcO3eOyclJLMu6ofHA6hOfu2X5VAI+Kms+1yOZTLJz585l/+LxOI2NjezcuZOtW7eyceNG3v3ud/P0008zMDDAH/3RH/Hd7363msdTU1PDe97zHn7rt36L73znO/T19fHLv/zLALzlLW8B4LWvfS3bt2/n7W9/OydPnuSf//mf+fCHP8z73ve+m2o1sbru8A1SiWarrO/oun7b++34Dd8cJif+Giv/etqav0EsOoyi+pOnFMMY2nooT4ae+zSK9hAFIuScJ0FRUfB/QLZ7nJhxb3nPApQFMvk9zNpnKXoXCOtdVFx3BecoScO3pBRFR6otLDhzuLJI0R2kJrQYkpwTp4mIzUS1tTjUM+9cRHP9Y+bdMWqMtdXxpawLNEZewbjViydtMs4YNbofvl3yFgipcUIkSYb2cKF4grbIYkTclHuBiOk/2YfUJAXPIOf4wRV5L01ICaEK3xQshlJ0x/YyVJzCEiaDxX7Wxxbrno1ag6wNb6XkhZm2p0m5C9Qb/iRdFAVUVBr0FhSllv7SIM2hxmrY87gzybroOmq1ejw9wZg+z1q1vbrvvuIgnUob7VoHk5Tot8bYsMSiGShOsjbczprIOs7nxxg15+kMlyMRpce0lWFrbD0D+TQFz2LeLtAS8qP1TOFgCY9GrYkZO0tJOGQckybDv96W5xJREuTKIeCWcJm3i7SGapAS1kXa+c8nv86F3N11wa1kkmklgbK7u5u9e/fy4IMPsn37dsLhMGNjYzzxxBM89dRTXLhwgbm5uasmJd7NjqHX425ZPhVrZSVquxmGwbe+9S2am5t54xvfyO7du/nSl77E//pf/4sf//Efr37uE5/4BI888ghvf/vbOXjwIMPDw/zLv/xLNWxb0zT+4R/+AU3TuP/++3nb297GO97xDj760Y/e1HgUebeD+m8SIcQVIdTz8/OcPXuWV7ziFbftuMee/Ws6W/4/4rHzeNyDgt9ETVEakWgg/UlE1Q/guiPYSgsl9wKatgbX82uOGfo2nHJ5HP/1fjwgZQ/juhqGoeGWm77FjX0UnGPlo2tE9ftJOcNYcp6I1onjpfEo+Futzdgh/xg1xn7ynkPG9RfwNbcBTzPx8DPym0K7yLspShgU3FkaQxuZs/0imlG1HgmYYoGw2kRU62HYPEPFSuuMbGfc9AMUFKnSEd7BmDVNwcuS0OoR0qNYtkxqRSsZZZa2yHYuFvtZH9vMYLl9NcDaaA9j5gCN+lpSjklYjTBbTuSs1WsRwqEgCtRqjYTVRkbNUdzydVsf7WawXAi00WiiRm3mbGGguu/NsW4uloYAaBEtFB2PGc0fl45GW6iOCXsOpEJPrId5O8ektQBAUosS1QzmnAxd4VbyrsASDgtOoXy8JB4upmdTrzdScv2E0qzrX9+WUA2WsGgPt3AqO0FLOIkjHDLl7Q1GnHhR4yL+pNIQivH5/T9NZ7TuRn6GK87AwACu67Jly5bn/vAt4jhOtaxMKpXCNM1q9eeGhgZqampwHIcnnniChx56aFUJ0NNPP01PTw9NTU139LiXLl3iwIEDWJa1qq7HSvCCOZuKm82yrCtyd25Hv53qccUc+dSH6Gr+PLGoXyRT4ySatqc8rnkUJQbEAANPqpjKOoru6XKyaApVKa9duOcJV8vjNGFJSV64eORR9Ew5BNt3jRWcYySMAyiECRkHmHF6UcuJkaY3Xl4PKoeAhy9QZ+wlrO9i3DpH0ZsgpvmWiaeniCnNKKh+DTI0NK2LvDuNRJB2hqnVfWugJBYIqVHq9K1kPBg2T9MZXrRSxs1ztIf9SUovtTFmzaCrvpmd9xbQRQhF+BZbXk2xNraPi8VyJYLiBdZHNy/Z1wjd4Z2MWvNkvSwlUaRG84MKMm6GqJ6g1VjDgusxUBqmM9IJZZfcYGmYjbEeWow25i2bs4UBNsfWVffdXxxhXaSL7kg3IyJDWi9S75XzpfCYsTIkvSjNsoUzuRGKnkV9eU0m55UQEnoinYyX8kxZacKqQbx8nvNOjhotTrvRxnBxnhk7S40eJVIOoJi2smyIdVUtmhkrR0KPElX97S16PfPSJaH57tKUXeRXT3yNebtwYz/IFeZOltcxDIOWlha2bNnC/fffz3333Ud7ezulUonTp0/z2GOPVfNE7kZ+0fW4WxF4ldI6qy0AYyV4QYjPUjcbXBlUcDvER0oTu/hZcnMPo8mvk4yPIERlUV8ivQuoVZfbEIp+gLxsIeM8he09TUj3y1oImUJVI4A/uVnusxjGvyEtXLLOWVxvHA3fVWR5g0T1xWAAV2RRtEPMWKfxZBFPWhjl2m15tw9Z8Ncs4vp2Zp2paiVnRxaQCAzFdwEVGaYptIO4sZdxs48p6xTNIV9UXGlhiRxRtREpQVNbMaWOVW6XMG6dX1a5YMYapFXfx0IoRcHLIKVHVPXPLcsczaFOomotYa2Tc/nTrI8uPlEPlfrpivi5Mm3hTQyUxqtrOnkvj64aRMrdTFUiCBmh6Pluq8HSKBti66vrRQXXIqzUUixH5/UXh1kf6arcHSBMznERCGzpUlRtGnRf3Gw8GiJtzJfPMeMWkbZHpBwxZyghTKEiyiHTU1aa5nANBhoaKgphbCR6+c9ntJSiM9qAhsLOZDdHUkN0xfzX/vYF2iMNbI11cSIzRQqblnCSULmqwlgpzR/2/gt597nXRFaau1nbrVL5eceOHTzwwAPs37+f2lrfrfnMM8/wxBNPcPbsWSYmJjBN866MscKdqnBwOc+3rtsLgVUvPpUSOZ7nXbNETkV8VuJJSUqBZ30bc+Hf4JU+gecWkeUqAyHtDHo1kMAEmUFRtuCqu8naP0TX2/BdVBLP68fQ/AVv1xshpHejqetx1O3MWj8iUl60FzKHhotw/VIzRfcMCeMAYf1eppwxFpzTxDVf5Gwxi6HWgvQnSTU+SdL4McatIUyRJueOkNB9QSp5M0S0RpAaumxn1s2hLAlvnrcHqDP86BVTZAipSZLGHoZKvUzbA3REFkXDt3g2YygxYloPY9YQIdu/Jlk3hWLrKNL/w7QVl1pjPTO2nyczWOpjXdQXVIlkxppifeweLhQuURJ+ZFy8LF4pZ576UANdoR4GizNcMkfoiS4mcvYXB9kU20BnqJvBYprewjDro2uq+x6zpugMt9AT7eFMbpSUk6fJqAPAUhykFNRqcboj3ZwrjpMMxYmqvgWSVkrUqjHqvQQThTwXC9M0azXVqgdDpVl6Yq2si3TSl59moDDDxsTi+tLFwjT7ajdwbMEPIujPz7Al2V4VSykUXKFWPJgMFObpiTehAutjTfxwZoj/cuIfsMXNFWe8VVZLYdFKcdTW1lZ0XecVr3gFO3bsIBqNVovzPvnkk/T19TE7O7usOOqd4G5ZPjcaZv1CZNWKz9ISOc+Vu7O08Oet4NmHcTL/ASf/nygU/ck0Ep5D1dYiy1aFdJ8pu9zCSLWHonQpuf5ahuMcJWL44iQp+QVElRYUwngksWij4PprMyXnLJFyXo/HDIpbg4JBRNtE2pnDLgccSGwsMUtY9SOvit4Qqt1BWOnGoYtR8ykaQr5F5kkTR+QJq37UVdYZQjW3My8K5NxppqzTtIR8K0bgUPJSxLVmEvoaUq6LLZ1qGPiE2UvXEoun6JVIaJuYtIawZBGpSsKUBVNP0xbppsXYxLSV5WLx/DKLZ6R0iY5wN7oSIa6vYaA4WrV4Mm6GmBbDwChXF0iUa7n5VsdAaYhNS6LWLA88YeBKF4lkuDRFZ9i/No50iaq1TJmV4IcSnpTVStMZt0hbuJOhgu8Sm7BStIYXLRR0ncZ4C3b52CPOAq0i6QuIhKIlQapVQTmXn2BnzRoksDXexeNzQ+ypXSwRdDY7wZ7aLtaEG7iUy3A6M8nOJYJ0PjfNvtq1TBQK2MLjaGqUD5/+52VleG43q0V8KlRyfCptBnp6eti/fz8PPvggGzduRFEULl26xGOPPcYzzzzDwMAACwsLtz3g6G4FHFS6mK6me7RSrErxqQQV3GiJnIo5fLMlvStI9xxe7ueRpT9DemdRcIlHMiiKn+8ivfOYdmUylUjFoMRmss6TuKIfQ9tAJYrMcY4S1iv5OPMY+iZMZS0LzjGK3rMkQgfLe3FwxAxGuTyOFponZjzIrDNKSUyRtY9To/t13lyZRQiJ9CIgVWLxZlylg3y5NXXavkCN7k/QlljAUGOElSbC+h5SoQFqWcxpmbX7aDD8z5pejpi2jgXHIe/NM2sP0r4k92asvMbTHNrGjJVhxh6l1vCLnTp6EdUJoaEjJQjieEoUu1xAc7DUR3fZ4hEISl6JBn0Dw6VRCl4B0Igo/hrWrDNDa6iVrtBmegtDDJZGlglOf/ESG6LrWB/ZxPnCGIPmBGsj7eVr4zLvZGnU61gf2ciJ7PAywZl3siS0OCGh06J3cCwzRHu0qVoIdLA4zYZYJ21GA/OWw+ncGNuTi3XaxtUcWyLtdKmtXDDnOJOfoEepq47tVHaMQ3UbOZOZRgInMmPcU7umun26lKNOr8UsWzSnc1P0lN2hDUaM/lyazcnFnj/fn+7n4+d/cMfWO1ZbQue1LIxKcdTNmzdXi6N2dnZiWRZnz57lscce48SJEwwPD5PL5Vb0+lUSX++W2+3F2MUUVpn4SCnxPK/ad6fyBPRc3Ezhz2XH84YQhd/Ey/4M0nkMvGfIFfzJV1Xy5T9Kf50gGj5PwdpHSdlIxn4KIUcWAwm804SqFQgkntuPoe1GavuZtZ9GVRNUxKnoHCVWThb1ZAZQMdhJ1qljyjpMbWhfdT8lb4CY5ieLOswQUzehqNsYs84z75yiMVReV8Kh5M0Q08p10YihaOuZsX0rK00/reFKZWuPnDtFrb6WpLGbi6UzRLVa1HKlpQmrb3GNR6q4IkLBFTjSxhJFPOFiCF80SkaatvB6Go3t9BcuMljsp2dpGHVpkPbwWhqMTlKOZNqZoVb3ffopJ0VSr0NHR8fAEhFcFq2K/uKlqgBJCZ40KHhO+bp5zNgpWkK+hVdwTeqNVoaLflWDiuCEq0EAaRqcRi6ZvsUzUJxiU6KrmoSacUrU6o3kXH9d4UxujN01a6vHlmqYaCRWPa9LMsMGzT92ixfnyOwIG8pjAV+AdiY7aTASFGyFo6kxdtd2LPl+nn21XYSIMGcVOLYwzr66xe3/NNnHFwee5U6w2iyfG63rFg6HaW9vZ/v27bz85S/n4MGDNDY2kslkOHbsGI8//jhnzpxhfHycUql0S2O6m+HfFcvnxciqEZ/L3Ww3U6mgIlI3bPl4k8jiJ5GZN4D1twjWVpMbaxODKOUioIgJVK0DlHZy9lY84xlkeUFcyBSaslh12naOEjIOAjqKvpucl6bgTgIKJfcsMWNf9fCW20dE34Cm1IDaQRGJ0Pxop4x9jNpyeRwhTSx7Htwa4uo9zMlhNDVGZeFg3j5DneFbZI7Mg1RI6ocYt8aZss7SEl4aKHCOppAvrCG1EVMmSDm+5TTvjNAaXrQ0xs1zdIV3Edc3MFjqI+POUKf7Qpv3FggTRREqcbWBOcdBURZLBA4UL7AmUrF4PFQlhikMcl6OnJvDWBJUMGVP0RnpJqa0c6k0xsXiEJtii3lLF4uDrI90syaykXP5YSbMWTrC5TbSwsISNnVakvXRHk5kB4nrUSLl0jjj1hxt4WYiSojmUBsD6gIbI4trNOfzY+xIdNMWamDedjiRHWZ3crEMz6nsKNsTXWxLrONUdpxT2TG2JxcFYsBdYF9yPbN4uEguWCk65eIkMZxP0aY3MleOYjudnmJb0n840KRCynKoNRZ7/BxbmGB3bTs6Gq1GHX/ad4S/HjzJ7Wa1ic/zWVupdAtds2YNu3fvvqJB25NPPsnhw4erzfRutjhqRXzuhuUTiM9tZqmb7fn23bmhiDdvFgq/B5nXgfW/oWy56PTheL5loOChihEUdQ0Qw1OSmEobGGdQFIHnnUMvtzLwxNCyxFIhSrjqfaTsYzhiAkONoeJPMEXnWWJGxeVmoSpN2HQyb5+hJAag1ElFVDL2acJsLI8nRDS8lVlnBCEdFuwztCyp3ZZzh0joawirHZgkKIoMWnm9aMY6S9ItWw8IFuwRmkOHmLLTzNiDRLQkWrlCwqR1ga5yrbZ6Yx1j5ixKeT+WKGG5Jrrni0ZeTREtdZBxVWbtaQZLfh5PhbHSMG2hLjoj2zmfH6LklUhqvqtpzp6jKdyEikqd1sC4mSemL/5xXSgO0hNdX74vBiVPo1iOArOlQ9Yt0GD41mjOLdEcamewOFM+h3naIw1Vl9qkOU9PtIeBgi+y/eYkO5cIzLxdoFZvqFo8p3IjbE/4ibZSghAGJW/xgeZCfopNcf830xVp5Fx2ns5offn6woxqsTZcTxgd1TE4nZmkrRweL5BczM/TE22gRcbpz83Tl51lc3Ixb+RsepoDdWvoz/l1+j5+7kd8e3wxN+p2sBrFZyWq0Feas+3bt48HH3yQLVu2oGkaQ0NDPP744zz99NNcvHiR+fn555w37rblE7jdbgO32t56KdcVHzGLUvx91OzrULzzgIMiszi2i+P6k0NEP4uiVQp9Wkh1DXnqyDtHcLyjuG6lI6ANch5N8Z9iXe8MIf3lCPUeFpzzmO4Jwpo/edreEFF9UZyKzjNE9UOg7mHKOomHjVq2nLT4CLVV68gvHmqI/WQUjxn7NAljDZXbNW8fp6kcZOAKC01pxxQGGWeMtDNMU6iHak04/RJJsQ5diRPVNzFlDREt59MsOOM0hRerHoyWzrImch9jpRnyXpqUPUl9uS9QiSyJUC0aIdrCO5kKzdMcWrQkBosX6I5WrBYFlDpmyi2kM26GqBYlrPi5MmPmGJti20g7HgtOphzFtrgudak4yvrIemJqCxeL48zZWZqNcoi5VywLV5Jmo4OTuUFawnXVVgmDJb+3TkyJkNAaOJq5tKz1wZncCDsSa+kINTFjWhzPjLC1LDhQqcvWyrZEN8czY1wqzLEuWql6IBgrLbAz0cVUySTtlJgoZemM1Pn3W3hkPZsN8Q6mRQkHSVZxadb835jleVCSFMttwh0pGClk6Y7VIyXsrOng6NwkGxKLLrzfPPldnpgZ5naxGsVnpSd5XddpbGxk06ZN1eKoa9euxXEcent7q8VRr9VM71bnplshsHxuA5eXyFmJhm9XiI+Y8UUn/wEU6ysoWCjeSVx8V1XYmMMIraXSWULxTuBpD5CngbzzIzQ1DOXcD10/hWVuKY99AVUNoypNqPp9pOxnEUoUUJCYSJGpdiE13TMkjL0oaET0Q6ScS9jSN/svTxbNOcfQrB6k04iirSWvTqOXxSnjXKhGtQGk7bPU67sI6zsYM0+hKBp62cqas3tpDy9+1pEeUXUTU9ZFSiJLSNExyov909ZFOiNb0YlQZ2ynN3+StvA6AGxpUbBzhMprPDlvgbbIbi4UBkCBYfMiPUstHnOYtZENxPQOLhQu4kqXhOY/tc3YM7SEW1BQ6I5s4lRukM4lbrD+4iA9Ud8qqdFrmLMtRFlAi8LEFh41mn8t/KTQNsZK/hrPcGmaDbFFl9iEmWJdrJtR07cgTudG6BJ11e0ZxySuJimUC4FeyE/RE/MtGlcIIkqUlO2vE9jCY8bK0x6uLY8txnTJJF5OGi16NgXXodGIo6FSr9cyUkzTFPLXiAqeg6cpNBhRdiU76HOymFJQU/7NlTyHlFnkQO0anp2fxBIuU6U8XVH/AcGVgv918QQnUjfeJ+VmeCmIz+WEQiHa2trYtm0bL3vZy7j33ntpaWkhl8sta6Y3NjZGsVi8a5FuEFg+K46U8pbdbJezTHzEJGrhUdTcL6FaX0bxToPmL/IrCDQxjOP5k5UqLqBouxDKFoq0U3SeRJZdUZ7XT0hfnMRD4QE0rRz1pjZjq+tZsI8jcSg5zxApJ5Z6cr7scvMnICGLqNrLmbVP4MocnlggpPriVHD7SJYDEKRU8QijhLrIijEsMU9ET6CWLYaUfYrG0B6khJixizl3AbucKJlzJ6gJdVC5pTPWadqM7YTdLczJOVLuKEndP2bWnabBaK3WSMu7BRpCOxk3LyGRzNlj1Kn+ZGyrRRLhWur0DjS1nfP5s6yPLibCXipeoDvqu/bqjVZmnRJOObKrEkYdKq/DjJRG2ZrYw/n8CJ70rrB4hkvjbI5uJOsIJq158m6x6mJbcHNEtChNRgPIJKdzw6yJtqKU1+ouFMfYnuimTksiZYRnM5fYmVh0sY2QoSfcyppwK2OFPOdzk/TE/OvhSsF4KUNHuJ5tiW6eSY+Rtku0hMp18TwLU3hsiLaStQSjpTQShVrdF+WUU8RQdLbGO+nNzTBvFwlrRrWKwbxdZEO8hYG8X8Inj0ssHCVZ3t4kw/TNz5Aor53lXV/QmsNxdtd2cGRmjPcd+QcuZuev/OHfIqtNfO50IzlFUYjFYnR1dbFr1y4efPDBajO92dlZnnrqKU6cOIEQgqmpqTvSTG8pgfisMBXBWUlTtiI+ivMkeubH0ey/RpUZJL4LQ/FOkCmWS8NoNmHDA6UBqW3ClDlMNYojBvBbXedQy5aL554gpN9bHrcLxLCV/aTsE5TcY8SMPVQSSy33AqFyYqnjDRHVt6OoB5m2L5F2niZRFjJXLqCrBlq5CnbOOYmT2YLlrSFrDFEU48Q03yrIuyPUGt1UXGNZZ5ja8CsYNy9Q9OZwpV2tQJ2yB2gJ++HZUa2FtHD9Ks6KxBIFpBRElMrayyDt4Y006TuYNOe5VDxDZzlQwJE2eSdDrBzppylJFKWeedu3NAZLF6m3FsODx0rDbIzuZsxcYNaew5HOMounNdyKQYjOyGaeTZ9na2JpUMEQ6yN+aHJHuJNLpXniWsXS8l1s8fK6iScgqtQzZ2fK351gc2KxW+islaMl1Mas7ddxO5MfYWu87FJTwBEKiBAl4eBIj0kzQ0fEd+cVPZsGo57RYsVVWEJCVWBUNDyh4ZRdZtNWjlojQlTVQUKtkWTBsQiXqxaMlzK0RBKEFI3dyU4Oz47RFE5Ut0+aORrCcXYkW7lkF0lLlxojQrS8PWWXqHM1BhdS5ftu8e7D/5eJYpaVZLWJz90O/VYUpdpIb+/evbziFa9g7dq1qKrK6Ogojz/+OE899RT9/f3XLI66kgRJpreBlW74VqlsLfV7kaHX+ceQc6hqHVL6lkNtrA+h+taJVJLYag859wKOdw7hPo2uVxq/zaEqCSi7sTz3aYQ4RLa0gbRzAk/OoJYrVJvus8SqiaUmnkijqx2EjPuYcS4iqlUFJEW3n2h5PcjyxohpHSCi2IWNmIlhwuVqzq4sIKSLofiunozTS2NoB3FtJ3lpMGkeo75cnaDkzRNWFwMHps2ztEVezpzjMGePkFdmiAl/zSLvzRPT69AwMJQ4eU9HKCFEuWDnlDlEwiuvb2gWIT1CW2gPA8UxhkuXqhYOwEJ4lq7QehSp0hbZTG9xqBpGnXEzxLV41eJJOWnWRrfRn/fXLnrzA2wq99ORSEbNSbbGtnGhMEXWzWMJm1rdF685J01dKMnacCczlsX5wiibljRrO58fYUdyHe2hZuYtlxPZ4WXN3i4Wp1gfbaXVq2WwmGbcTNFRXqMpejZF16bBiLM9sZajCyPoikpS8wMrZqwcST1CZ7gey4He3AytkcWyOMPFBToj9exMdHEqPcVgIcW6+GIO0aVCiv11aziV8gMeLuVTrI3Vo5TFUkXF8xarHkxYebridYQUle5oHYNWiaiiES5bdzNmgZ//0dcZT6cu//k/b1aj+KymApqaphGPxwmHwxw8eJAHH3yQ9evX43ke/f39PPbYYzz77LMr1kzvcoI8nxcAVbebouDFPorQ/cV7RQyRLbRVQ6nBpKQeJOeew3YPo2vbqVgV0juLpvlrGEIMYugbUWhCaAcpcBJHeoCCK8YJae1U1opM92mi+p7yODpw6GDOuoiQJnnnGLXGfn+fWDgiTajs0srlLUxzA1Z0DBQoeIvJoqaYJazVo2CgK3UUhIZQo9gih8DFFLMkNH8/GXeUutA6DGqIG7vpKxynOeRP7kJxcJQi8XJeSsoZpS2yC1PUMG5eYqR0njXldgkeLqaao0ZrJKIm8agj6xVRy1FvQ6XlazwpZ4410Z30FQYwhblsjWfanqYt3EaL0YHpRjiZ7WNrYtFdd7EwRHe5WGhHeD3n8xM0Gr54pd08ETVcDZvWieLJMKbnuzz6CqPsSCwGEeQcm6haQ75cB+5CYZIN5WZvrvQIqxGKQuBIj4JnU/IcGgz/aTJlF1gTbqM/71t1U1aWxnCccNkFVnIdarQkC7bv3hwozLMh0YSCHxEXVSO4UlYFpDc3w44av4rBlngrh2cm2FHXVt1+IT/PWjVOV6SWyXyRM+kZttW1Vrf35+bZXddO1vRbNkw6JbprGjDKAmHZDu/9wTf5weEnrtua4EYJxOe5WZpgWimOunXr1mXFUQuFAv9/9v48uLI8q/MEP/fde9++P0lPu+SS3F3uLt89I8JjSbImGZhmMWMYq2yKLKjqooukjc4Ekmqsu4elpqYosqCgCkhmDKjOMajOIpNuhilqSCCTSsiIyPCI8JBccrlcLsm1S2/f97vPH/fqPXnsEekR4cnECZNZPP/dd99df+d3zvme7/f27dvfspjeq63Van3ofB51e6DmI7hpSf+atmpPzrHgPqb8NB3XLC19GcO4gyDYk5NpLB3ja9PAyuEShgA/Bn4U1zQ17SagIck5JJedItKMNfzSeY5mDYMKLuk7KKgb1PVl/MeABA1tnpDcS7lZRpRm7SR1dw7Ne5+424m40FGMDD6Hkbqu7RD1PE7d8JBX18gpd0g4hKCq2UAQDNxC0NmvC797lrRis0hnlQ36ZNsBaUILSZBxEyDhvshq4x5xd7J77Q469/ErtnPSBYWgNIBJgsPOPhnlgNFj/GpbrXUmfTN4tQgdy8NWe4d+t52Ce3WNx0RGdkWp6jbdzWpjk5OBI+i3RUEtM+U9xd3GLk2jjW5ZBB1mgqxaJOlJMOWZYqWeZq15wOljKbaVxi5ngxNM+8bYbJa4Wz/gZMBOVfbE3uKc8o+zWEnRwiDm7LusNfG4ZIIuD2eC47xU3qXfHUJ2IpqdVpHJQIJ+OYRuSCxWUsy+ihbnfHiIC8ERFsoplqsZLseGuw7kdjXNk/ETbFTKGJbJUjnDlfhId7xsagy6ozQ025kul7Ncig9jWRCRvezVG4wFI91rvl4rcjrcT5/bhyXIbOpt/pdmGsXQWV9f57nnnntTtNab2aPmfN7vms/bsTcDHByRo87NzfH0009z5coVotEoxWLxXYnpvdo+RLu9B/awH/jjzqdQKPDNG3fZLP4PGK7zdFwzKOp/wXRSU1gVREHmiGna1F9GlByYtdUG8SQNK0pVfQlFfwmfk1ZziR0sNFzYdQJFX8AvP4koPkFRzdPQVnE7dDktfZWwfIGjGaetreMXZ0A9S8lI4wm5uzxqJfUWLkf2WrcauNDxixPI0gV2WgtE3ZPOWVpUtC3Cku0MWkaesJwkLF3mQNnhoHO7y05gYlDTM/ixU3mqqRNyn2G7dR8Li732GuPeWWevJqqnQVwaZNBznrXmLi5cSA7Sb6+99UDEo1sihuGlZtTomB0UUyHsMEYf1XjG3bPcqx+y1th6oMaz0dhlwjdGWAzjIsJWO0NcPmI9cKhwBJvnzYUf5dg8etdJsR2ZZgropohumZhY7LbzjHnttGHH1IhKMVLtBhbQQEN0SQREOwWb7lQ4GRzjbs1OiW23ikwH+rsAhoLSZMjTT7bTAOBOLc2lqE27Y3O9ySD0mg5vlVNcidn1pUlfnFcKac7HelLbC6UUV+MjRCQPGC5eKhxwNdFD6N0qpbmWGCEqBsi0GyyWsg+Mb9ZLnAz0k2/bEdhiJc/vl3Z57IknePzxx0kmk1201lF3/9thg37UJvtHPfJ5MzsS0xsfH+fSpUtdclSPx8Ph4SHf/OY3efHFF1lfXyefz79lxGpZFs1m822pmH472gcmJmcYxkMt1q2traHrOrIss7u7y5kzZxgdHcXUXkKr/TeABrhAnMU0bM0QQTyDbqxhi7t5MMXHaRgr6GYeWZxF0e8DOiDgEs6hWfb3ZHEGzUghS+cpaZu4xRkamt2N7hZH0I0qJvakFZSvUdMW8LhOU2yqGGIHS7KL2hH5AiX1NiCAJeITRmlZewTkq7RNjbK2h4lNKTPgmSOn3LF/wxVCEjyIrjglrUVQ6iOr9JoRB9ynyTgRkJcwghKnJNdQzTaj3pMcdDa624a1JDU5i9cVIiSPk+sUqBt2UXvMO8l+Z6e77QnfKTqWyEZzE9ESickxCrqdrup391PTaphAXBrHJUhsNLe73z0ZONH9POodwTBlNluHAPTJEdqmStOw4c3TvlF0U2K1aY+fC06w0uj1upwJjGIhs1g9QBJEJnxxttt2o2lI9OJ1yfS5E9yqHpD0hGnpKnUnJXfC30e2XWbUN8ydapozoUHW6hkspxBzITJCql1B0yXySpMrsRFuHZO7vhIdwTRdvFJK2Z9jw9yqHHbHH4+Pc7uUp6HbUc2l2BCLZZvhOyDKzPr6uVlJd7e/HB/iVjmNiIuZQB9+SWah1Bu/mhhisZhhJtDHvUqBq/1DzOfTR5li/i8nzvBLV78Dl3DU6GxSr9cplUqUSiVqtRo+n494PE48HicajSJJPUaKmzdvMjk5SX9/D0DyQdrGxgaWZXHq1Km33vh9sr29ParVKufPn/+W9qNpGpVKhVKpRLlcpt1uEwqFiMfjxGIxIpHIA47XsixmZmb4z//5P/P444+/yZ6/Pe3RWmJ8C2ZZFtlsllwux/Xr1xkdtYvOLvlxpOAvO1uZYOwguCbt7xiriOJlLPEyTSI09JfBgUdrxj288sWjvWNa99E6dqpKEIIgXiGvLmJYddr6Mn7JfllU4xCPNMKRDLZi7OGyniSr76F7sng9AUQn4qpqt0l4nMZSwcCwRNziR0gpq5S1+yTcvQJ/Tlkh4bbRerqp4RanySoVmkaJrLLOsOdcd9uiukVCHkMSfAjWIE1BxbTsqPCgs8GI3CMPbbqLjHnnaJsetlv38YpuPA79zX5nhxM+e9uQGKegdbqU/4Zg0DbbXZBBXs0z6p3AQz+brX02mtsPRDybzV0mfaNM+k6w3SyRUyvEHcnpglYlKgWRkQi4fNR0E4Teo7nS2O3WeARLQLdkGs7CRbcM0kqNIY8djdb0Dkn3AFtNG5acVWrE3QEkZ7bea5U4EzrBStWe4FfrGeYiI92UWrpdY9QzQF6xaXEWyodcivQADIbpQjN767WFcoq5iB3hDHvD3C2XmAjEuuO3yxnORQbwCCID7givlLNMiD2euKVShvORAc6Gk9yrFlgoprkY66VEXymkeap/nHsV28nP59Nc7R/qXot7hSL/ZuFGN9V2vLv/iA16enoay7K6BfLjKboPGl32anvUIjF4eNGYLMv09/dz+vRpnnjiCa5fv87IyAjtdpuVlRWeffZZlpaW2NvbY29vD8Mw3nXa7XOf+xyCIPDTP/3T3X/LZDL8yI/8CIODgwQCAa5cucKf/MmfPPC9ycnJLhjs6O9zn/vcA9vcvn2bZ555Bq/Xy9jYGL/6q7/6rq7H34m0Wy6XY39/v6sp/uoCnej5PyP6ftL51EKwWkAflniZhnGAYonoZhrLaiLQwiXY9Q9Vn8crH604Ohi6D4SPUFTvUtdeJtQlE9XRzAM8Ljvt0tbXCMoX8YgfoaApVIwlvByh01L4pSGOnFNFXSAmX0Rrz5I38zTNHG4HDl1U75H0HK22LCraNgn5Mgr97LSXCUmJLgVOSllhyEm5GWi4BD9u1wQ5c4+mWGLAM3y0WOZQ22BAmADLRb9nlt1OCtnRtSlquS79DcB2e4NTgYtUdIO0kiHVSTHksSe/ptlEdsn4XD5GPCdYa2QJyb1rf6+xyamgXXcyLBNJ8FNVFTRLp643UTsaHkeb6FDJM+0fQ7AC7LbzrDb2mTsGKlhp7DIbGGPcN8py7YD9dpExr51SbBkKLUOjTw4x45/gZmWPkOTH6zSC7raLJAngRWTcO8iN4g7nIz1Wg9vVQy5HRxlwh+loAi+X9rkU7Y3fqhwyFx7iYniM+VKK5UqGs+GB7vhqNc/lyAgNxaSstlmr5jkZso/NxGK7UeZCeJj7tRImFgd6hxln3LAs3MioxxqkV8p5zkTtSORabIRnD/e5EO85pPl8msvxQS7Hh7hbKvAf1pb5/ZVbvJ5JktSd8I4K5MdTdM1mk93dXVKp1LdMwPkw7FFMu71XQnJer5ehoSHOnTvHU089xbVr14jH45TLZX70R3+UEydO0Gq1+PM//3N2d98+y8XNmzf53d/9XS5cuPDAv//oj/4oa2tr/Nmf/RnLy8v84A/+IJ/4xCe4devBZ+df/It/QTqd7v59+tOf7o7VajW+67u+i4mJCebn5/m1X/s1/vk//+f83u/93js+/0frLr9DM02Te/fusbS0xODgIMFg8A0fEtH3U7jc3w+IWOIoimuYqnYb3TxE01/C7cCsTTOHfEzOWtVfwi3b9DlG4ACVEi7B0bHRbhJyKHFMq4EgqIhCFL98kZKWpdjoYAkauAxMoYjX0eSp6xtE3Xak4pPmKOhVNEHDwqRl5PFJcVxOvSWv3GbAPYeID790jozaS8kUtV2Snh6CLN1ZZUA+Tdx9ia32Lm2z3tXcySjbxM1RujUoV5Nh30XuNzdoGU2wLPwue4WVVvaY8E8iWC5GvWe5VbvHoMde3WuWZgMLDL9zfAXGvKfYbOTomAobzZ1X1Xh2mPJPMOab4nZtm5rRJORA2Btih5gUspkB9DAr1TQ+vZcSutPY5azTKBoUfdQ0A82BsiqmRkVvMeC2a01NXaFfHmC7aUcI++0So8d43vJWmxnPKPdqdnrudvXBiCbdbjgko3ZNZalyyFy4V7MRLakLEDjiaZsJ2g4kJvtIN1tEZK9zjUwOmjXGA1EES2DSm2C5nGM8YEeJOhapVp3xQIRr8RFeKaTZq1eZDEbtcctkq1bi6cQ4r+TSWMDdUoHZSOLY8bjQjR6s97dv3+TLGyu8lfl8PkZGRjh//jxPP/00Ho+nK9j24osvdmsS70cPy+vZoxaJwfvjEI/E9MbGxrh48SJ/+Zd/yW//9m8D8Kd/+qfMzMxw8uRJ/uN//I9vup9Go8EnP/lJfv/3f59YLPbA2AsvvMCnP/1pHnvsMaampvj5n/95otEo8/MPMqiHQiEGBwe7f8cjry9+8YuoqsoXvvAFzp07xw/90A/xmc98ht/4jd94x+f8bet82u02L730EsVikevXrxOPx9+UIFAQBKTgr6DI30FNexnVWMAj9+j/dX0F2YFZ68YWHukkojCIIH6EinoLDQ0Q0Mw9vNIER5eupd3CL9mOxCX4EaUzZNUtFKuI5d0g6rAX6FYdl2AhOVFNU08Tkv8eaWWLlpHFkkp4sYvlVW2XmLs3gauWiV86R6pzz1YdFURk4ciprDHsEIKGpTHKukFNs+tNNb2IzxVGcITwyuI+Y57TJD2nKekaO61N+tz2BFvRSwSlSBdkUFDzTAYucq/pABQ6e4x47WigZbRAgLAQJemeYaG6xuSx3pp7jU1OO308ESlMTTNoOuSgdb2FC4GAy2G2NkqcDZ4ii4IiGOxaRSboTbKrjT1OuUcQLB9brTwZpdJtDK07jaBJT4SEnGChukfSE0F27s1GM8dscJig6MWrB3ilnuJStKe1s1g94GJkhBFvlKqq80r5gHOOw7GAtXqOk8E+LoZHeaWUYrdZYdJv/7ZqGqQ7dc6E+rEMkYNWjZLSZsjnSJcbGjWlw9XoKMvlHE1do64q9Ll9zv3XSHrCHDTq3e3LSpthvx05ng71s5TPMR7s0ezs1mtMhWJcig0yn82wWiowG+1dq1+++Tx/vbvF27WjJu+hoaE3TNEd72F5P8rDj2Lk80Fo+Xi93m6d5xvf+AbFYpF/+2//LWfOnHnT7/3kT/4k3/u938t3fud3vmbsySef5Mtf/jKlUgnTNPnSl75Ep9PhYx/72APbfe5znyORSHD58mV+7dd+7YFFyI0bN/joRz+K2+3u/tt3f/d3s7a2Rrlcfkfn+G2Zdstms7zwwguEw2GeeOKJbsTzVuy0guAhGPwVRKfmo+tLeOQjmLWKaWZxCUO4hDg6PnRhkpp2CwsV00xjKPbE09HvEnRfwp6iTEyzglv6KFktQ1G9hdXq9XU09DuEJLtu0jEy+MVB/OJHKGsKh50b9DkRkOnqIKDhEezJpqjeo99zBZ90kf3ONjn1PlHJnvxrepaYPNDtv0m31xj2XuegU6SgpWgZdUJOX0/FzNgwagskvHQsCc0UUcwOqqXQNpqEHFXRnJpi0DvKgHyCqi6yXF9h2pE4MCyDolqkT7YdpGDKuEmw37I5x+43dx+IeNabO5wLnqamWey1s1TUOkHTRppVaRF3R5CRmPZN8VJlk1PBnvPapcis3/7cR5TNZhWrY99bm0tNIe6k93TTJCJGybRtEMdWK89MsJeiSrWrTPtGyVl2SulW5YALx1JuFbVNRAxR1TpdhzMTsM9Rs0yCop98x46G2oZOUW0x5LUdjEeQUDUBw4nGqloHwzSJu31YFkz44+w2qsTctqMtqx3b8SJyKTrEy9kUWHTHq6qCZphcjg5yN1+grqk0VY2kL9D9/ZDoodLudM99t15lOmw/lxfiSX7u2a/z3MEeb9eOQ61fL0U3ODhIo9FgaWmpy3n2MDRy3ux4HjXn80GqmLrdbmRZJhwO833f931cvnz5Dbf/0pe+xMLCAr/yK7/yuuN//Md/jKZpJBIJPB4Pn/rUp7pR1ZF95jOf4Utf+hJ/8zd/w6c+9Sn+1b/6V/zcz/1cdzyTyZBMJh/Y79HnTOad8Q8+Wnf5Lcw0TVZXV1leXubs2bOcO3euuyJ5W5IKgMsVJxL5fyE4apS6/jIe+YjNWkBwnaRhytTUedr6TQJOXce0argEE5dDOdPS5gnKj+ORn6BoNKhp9xEMO60i+PeJeo56dwwU8wCfOIJPmqOkK6gYmNgpnLJ6l6hsT9qqUMYvRRDxEHVf5KCzg8thSNAthY7ZwO84laK6zaBnhpA4iiSOstFcZMg7CUDbrCMKIrKTOmx6C5zwX8IgxnZ7k8PODkMeOwJoGnVkQcYjeBEsEQM/CAE7ugG2WluMO4SfHbODZmmc8M1SMDV21ENG/T1y0HuNTU4Hp7AsmPJPs1w7JOqACppmG7fs7lLn5JQyM/4Z7tRsJNndxt4DNZ711iGXQidJ6woNVFqSSZ/TwFrVW5iqziBh2hos1w4Z9ye6KbbVRprz4VH65TC6IfFSaZdpV7i776VKirOhIU74+jhstVipZTh5zOGkOjXGfFEuhsd4uXBITVNJeuzfrmkKmmky6YshmW7WakVkl0RYsh1rrtPEL8pci42yUMiQaTcIu70ERNk57xZjop/Nir1KzLSbhGQvQckeD4oeah0Nr4NIKyltXAhE3V4mAxHul0o0VI1+R9yurevkWk2u9Q1xN19AN00++7dfYz7bS8++mb1Zn8/xFN0R51kwGCSTyfDiiy9y48YN1tbW3hZs+O3ah5FPzxqNxtuW0N7f3+enfuqn+OIXv4jX633dbX7hF36BSqXCX//1X/PKK6/w2c9+lk984hMsLy93t/nsZz/Lxz72MS5cuMBP/MRP8Ou//uv89m//9rvqUXore7Tu8ptYq9XixRdfpFwuc/36dYaGhh4YF0Xxbb8AkniCSPj3oEsguolL/jhVQ6eivYAk9tFlL9Dm8TmcbJK7jCwkcOHDI3+EvLZH2zQwLQXNKiFZHkSnnlFRbxGRLwHgEiJYwihFtUjLyFFS79LnsZF0FgYt/RC3YadPNMsg5L7MfmcN1Wo5onD2yqRjVpEEN7LgR7AkNMuL5OqnrGWwsCiq+yRk+7pU9DyyFsBlufF2xrjTuEfCaQY1MChpBRKOJHZJyzPonSAoTbDW2OR+6z4zgRnn+CwynQxJTxIJmaA4RF5pInRlqPc5Feyh8rYa+8yF5liu7dIxFQqdCkHTfhlKRp24O0y/HMfnivNKdYvZ4FgXaXbHARVYFpz0n+BWJcWQQ4XTNBRMQSAi2ZNu0B3Asjw0nHTeejPL1DE10bLaZtDdE3PbNGvMOkSiFqAZtoZsy9AecDhgE3sOuCPsNqrdfYFA9KimY5gEXH5qqh2BpNp1Ep4AXpctKT7gDlNRFNwOYm+3UWEkEEYWXMz4Y2x0Wgz5Q8jO+F6jypAvzIQ/SqnVYbNWJukL4HXZE16m1WDMH0LXLFq6TrHTRnK5iHrs44nIHnL1FnFvT7rh0//lL1ktFl73+T9ub7fJ9Ijz7DiK7uTJkwiCwObm5kOjmXkUaz4fVORz5Hzejs3Pz5PL5bhy5QqSJCFJEt/4xjf4rd/6LSRJYnNzk89//vN84Qtf4OMf/zgXL17kl37pl7h27Rq/8zu/84b7ffzxx9F1nZ2dHQAGBwfJZrMPbHP0eXBw8NVff1P7tki7ZTIZXnjhBaLRKE888cTr3pC3G/kcmVt+jFDwV0F6nIqhUFNfQnaYBWyl0SOUmYmmb3Q1eiCAIF4h21lGMys01HuYDgTblLIE5fFu82hDu09Q/hgFrUlevY1fCiM63f8FZYk+z1E9qAWYSPocGbXCfmeRwS502qKs7RCVj1JuGRKe07hcY2y319jvrDLqdSDYlopi1HDr9gQteWUS4mkKcg4Li932OuOOUJtittEsjYAYYth7mvVmBrfTgAlwv3mfE862qqXiQiYhn2CtsUNGyRMj3HVA604jaUSKEJT6WaxuMuqx0WAdVDweT5e5wDRdBKUEqY7NT3a3sf+A3s5mM82l0CyL1QM6pkZZa3ZBBUWtQUD0MusfY6fdZEevMBMc7DaG3leLTFohBowAB40Gr1T2OR/qvRAbrQKnggPMBgdZqxXZaVYYd8TgmoZKQ1focwe4FBnlxcIBkuAiItvXJNNpEJZ9DHlDeAQPS+UMQ/5w18FsNcpMBGNcjdoAgo1aiZORHs/beq3ItcQwB40GOhZr1SKnIn1dnreS0qZPDlBXbWe6WStzIhxDFATCsodSs4NfknE7k2C62SAiexgJhFBVk/16DRcQcxxSQ9P4lzeeZ6daee3Df8zeLcOBJEn09fVx6tQpnnjiiQdoZpaWlnj++effVYruw8inZ0ekom/n/nz84x9neXmZxcXF7t+1a9f45Cc/yeLiIq2Wncl49bUVRfFNFwqLi4u4XC4GBuz3+fr16zz77LNomtbd5mtf+xqnT59+DcDhrezRusuvMsMwuHv3Lnfu3GFubo6zZ8++4YP5Vhfx9czn/QFE+Wlbg4c2llVDFJwOef1Wl9nAooMo9FFtnqJgbFDRXukJvwkaHm8Tj4Nka2irRKTz+MSrtKwgOWWRoGRHI3V9j5jckxAoKCtEpZOE5DnqlkyHGi4n4sooK11NHsNSUc0qYXGQuPsSG817+KUQR4Wlw84Gg44Mdtuq45XcDLkvkNXqbGvrxNSkcx4WGWWPQY8DCTfaJNxTbDXTKKbCdmubk4FeD9ARyGDcO8NBu0rdqHcZpvNCmXG5F302dYWYnOSwk0ezdHKdEjGH+qeoVYnIQU75p9lslrlT2+XsqwTeZgNj+FxuBtyD3KrudWHUdb2DhUVYsusoESlMQzcxLfterzYynAv3+nQ8gRBRXwzF6Wu6U88w5rKPw8DCK7hpagaaZdqgAE1hwG2Pl9Q2J3z93K/ZjjHdqRN3+/G67HtSUxWScpRc2wZ0bNSLnIz0dSHsfpcH1ejxvK1U8lyI285vIhBlKZ9nJhjtjt8p57iYGCQsufFaMvP5NBcSPZ631UqBC/EkfbKfVLPBRqXETCSO6PxirtVkxBuiqtgRWKbZJCS7CcoyCY+PdK3Bp/7iK6QbDd7IHha9znGameOyBEcy1m83Rfdhzadn76THJxQKMTc398BfIBAgkUgwNzfH7OwsMzMzfOpTn+Lll19mc3OTX//1X+drX/saP/ADPwDYYIJ/9+/+HUtLS2xtbfHFL36Rn/mZn+Ef/sN/2HUsP/zDP4zb7ebHfuzHWFlZ4ctf/jK/+Zu/yWc/+9l3fH4f6F1+s4e+2Wzy4osvUq1WefLJJ98ypDuKfN4pIifu/+8Je38QsHV4JDHQhVK3tZfxyh/FcM2RVZcRxHZXFruhzyMqTjGeOi5BQCSEVzpHxahjChKqWcWwFHSzhtdlp4TK2j0GPDYnnFccQMFP3VBQhRptIUefe6wbUaSVFQbcNgLPKw5iCDHSnT3AItVZZ8Jn9/VYmOQ7+3i1CD6hD0OK0zBbWM4EXXZnmfQ5SD5Lp66XGPeeAqKsNu4x5B3ortA3mhvM+B0Jb8uFRJii2kIxVQpqiYQngnTE6qylOO2fYtp/kvVGjrXGLsOi7bxVQUeQXISlAC5ceF1hGrqB6dyflfruA5LWBbXBmGeM+80ciqlTPQajzqt1IpKfs8EJFiqHNoot1HN8t2uHXIyMcS4wzu1KjtuNzAOotYzVJomPCTPEfDlNtlWjz5FKKGttBMFFRPJyITTKjfwBcXeg63C2m2UmgzH63X48lpv5YoozkYFjDibHxfggl8M288DtcpYriaHu+GIpw5P9Y5SaHZq6xnK1yClPb0K5VylwITrIoYN6WyxkudpvA1ZEXHRUg4jb293f3VKBuUQ/IjAZiHIzk2YmFudoXb5XrzEaCBN3+yi222SaTT71l1+h+AbRx3vB7XZcluBIxvrtpug+jHx69jAZrWVZ5itf+Qr9/f18//d/PxcuXOAP//AP+YM/+AO+53u+BwCPx8OXvvQlvuM7voNz587xy7/8y/zMz/zMAz08kUiEr371q2xvb3P16lV+9md/ll/8xV/kx3/8x9/xMX1g9DoAqqq+rrNIpVKsrKwwNjbGqVOn3tbDqKoqX//61/nO7/zOB+hD3o5ZlspB5b+hrb0IgEeaQ9M1dMFLXb+PRzpFS18DwKVPoop7CIIFiPik0zS0e7hdk+AaI68uYWGv7KLyHCX1LgABcYSmUcGgjQsvEfcT7LYXMNHxuqLouoUq2LQ2Sc85UspdQMDrihMUT7LZtouC/e5xiuphVwZhyH2KQ3UDy4RBzwXyWpmyQ3kz7pthr30fAAGBEe8kh+09hryz5NUyHUOhZdo1kSn/NBvNTWdLgZP+U6SVBlmlQFQKY2JS0xvOthPcb+7ixkOfZwRZkFht7AAgWyIxd5icZhfUJ30j6KabtYZDlRMaZ6XeQ2OdCY7R0nUO23U0y2DAHekqkPa7wyiGhmJqDHmTGKbFZjPfVTi9GB5lqXaAZcH50Di6aXG7atPeSIKLqUCCjWYey4IZIUZFMMho9vnGXB5UU6eJARZcDgxzp16g4+j1zIb72KgXMLBIuH1M+/p5sdCj2bkcH+JWyaa5uRIdBktgvniMFqdvmPliiiFvkLZqMBWKMV84Pj7EcinLCX+c9UqJqwODNm1Od3wQXYelvN2X9MC4BR8bHucb+/tdmp0L/QPczudwITAbTWBZsFEuYTjv12wiwb//nu8jdAwiC/A3f/M3PP744/j9ft4v63Q6XfqfUsmOMmOxGPF4nN3dXU6fPk0ikXiLvbx/9uKLL3Lq1Cni8fhbb/wQ7Xd/93f5+te/zle+8pX39XffL3uklhiGYXDnzh1WV1e5ePEis7Ozb3sVdORw3knd58gEwc1w5P+BW5xGFk+imCK6K0ZNv4eFgWbsd9kLTGmHgHAWeylqoJt1PNIz5PQ8OXWeqEOBA1DT1ghLdpqtaRwSloYJiBdok2C7fZO408vTMStIgozLcjR5lBWG3OdIuM9TNyCjbhKW7Jcxr+4x6O1BmtPKBlFjgoA8xWZnHdEFHkcie699n3FPDzjQNjokPWdZa25S0kqE5RCSk+bbam1yKnASy4Jx30nWm9nuWEWv4RN9eJx61VZrl3FzBNPwcb95wL3GLkkrCoAmGCiWRkwOM+RJkmq30S2zG1mt1Pc4H57sHr9pugCZhqF0I55+R0E0r9YY9Ebpc/dxr55lo5nj7LGIZ6l2wMXwKGcDoyyUD7lTTXM2ZKcYdcvkoF1hzBvlQmiMe1oN1TRIOPLWZVMh4Q8RFGSmpBivVLMkLLn7QtyrFTgXSdLn9uMyZV4sHHAl3vvtW6U0VxPDXIkOM5/PMF9IczXRG58vpHi8bxRNsygrHeYLaS739aL3xUKWxxNjrDvaPPO5TG/cAssUEI9RDM3nMlwdsPd/rX+IZ/f3uTZ4LPrL57jUn+RCvJ/VQpF7xSJnE72U4EapxL969jna2oMprw+C1drr9b5hiq7T6bC6utpN0R2vLXxQ9l4xHLyV/V1mtIZHKO3WaDS4ceMGjUaDJ598slvgeqf7ejfOB0B0RRiOfIGaUaeur9LUFwi7bZi1YTVQ1TqmU8hXuENYfgJZuk5Rq1HTN/E40O2yukLCfQkAEw3FzOETk/jESeqmhCHItI0SNpBgm6jDUN0RCvjMBAIuguIIVUNFs0AxW3TMBqIAHicdmOqs088UlikQFk5SdDW6NZCylqfP04fo3No95T7hTj8jnrMcdhqklBQx2c7fZpQMw75ez8tB+4DZ4CVW67u0jDYVvUbC2Tar5Bn02qzPJ3wnWTeL9Dm8bhYWRaHOqPdIX6jBsGeYfEelrDXYbKY5Heo1dy7XdjgXnOCU/wRLtRQ7rXy3xlPT2wgIhEQvQ544B60WoiB2H9Q79RQXHWYCr0uirhqYzhRrYnG/WWAqYO+rYxjE5TAHjvpnSe/gc/XkrTPtOmfDI2wrdsrr0Opwyt9b3e5WSgwYPjItO+JbcBzOkVkmmMcet/lCmksODU7C7WO3UmPI30ubLBWyzIZsMbm5yAAvpA+Yi/cfG89xPj7Atb5hFrJZFnIZLvb13oP5bIaPDU+w4PRTzGfSXB3oOTQJVzclCrCcz3NxwK4hnY/385f3t/hnX/0amvOOHOeD+6Ds1Sk6t9vN+Ph4N0X3/PPP88orr7C1tfWeiLW9HfugUoF/l4Xk4BGJfA4PD7lx4wb9/f089thj+Hy+d7wPQRDeMeLt1eaWRpmJ/j+71DpN7SYebBYEQaogWWEEM4QsP0FW3US3DEw0VLOEW/R3YdZFdZG421FMRUZyTVLSOpS1XfLKCkMOys2wVNpmiYBoT0AdV4EB7xOktRIFbY+cskm/266L1PQ8EXcc0RE5q6hl+qULHBj7tM0mbbNJSIwCkFH2GPOdACwCrihNU6Bt6miWRtOwYdJ+l+3I9tq7TPtnGJBH0a0QS9U1Jn325N40WlhYBBykWrqT53TQhlGbmGxpaZL6EWWMQUVvkHTHmfLN8HJ5i5g7iORUI1aPRTxB0SYP7Tj3SjH1B6hycmqNqcAQJUWlpDVZb2Q5G+o5yaXqAVci40TFKPfqOe7WMpwO2pO0ahrklAaT/jhTvgFeKR0iCgJ+5zgO2lUGvSGikpcRd4IX8vvMhns1nHutElfiwwx6goDMcrvCaXeP0n6+mOJ8uJ/LTsSzWMpw/hgR6HIpx5XYILIlk241uFsqMhu162AmFpuNKnPuCLcLOUzLYq1c5LTDUmBaFm5EGora3d9KMc+ZuP39i4kBvrl3wFxfz2EtZDNc7k9yKZFkIZVhIZPhavJYhJXN8rHRcW6n7fTdC/sH/M//5W8wTLPrfB4laLNlWcRisS6K7vr16wwPD9NqtR4Qazs4OKDVar0vrAvfDoCDb0f7QJ2Pruvcvn2be/fucenSJU6fPv0t3eQjKe1vxQLuC0xFf42jZLpmrSMzAZYbxYyjmNPkldvoVpO6do+QZKfAWvo+YXm0C7OuqhtE5Y9SMSxSyhIBOeJoCEFOuU3SbdNkKGYdLAG/eZqmEeJ+a+GYJo9O3cgRkezJpqju4Vf68CoTVMQ2u9oaI55JwG4WlVzyAym3k/5rVDSTmrtKppPq8rOVtBIROYKEhGC50E0Z2RWmotUwMUkrOQYdqHRJqxCRQwy5hxGI8EpljTPBY4g9qc6k02gqIeMVo+y08gDstLLMBHupoeXaDlciJxEsHxuNDDvtPBM+e2K1qXIsQqKXs8EJXi7tk/RGjkU8h1wM29HTsCfGZq3abew0LJPdVpkJJ2oREfAK3i4zdbpTJyy68ThRQV5pMuNPcr9u15aWK1kuxXticbl2k1FfjJJmo8jW1AYXo70JvVVvUyzbPUAWsFrJMxuxzyMseSi1FIKSHV3plslurcpUKAYWnPEn2Gg1mQzbTlszTfbrVSZDES7FkyxksuzVakyFo873LbaqZa4PjLCaL2JYFveKJWbjvZqIqhtYxjGm7UyGy07X+aW+JM9u73N1uHcf/nprm3/xjWe778qj5Hxe3edzPEX39NNPc/nyZcLhMLlcjpdeeokbN25w7949crnce5KisyzrA4da/121D9T5LC8v0263eeqppx6Knsi3GvkcmZenMUr/wP4ggOQewRBnactbdFz3iLuPGkQ1VDOLT7Rf7Jq2Rlw+R1C8TMeKkVaWu1FNVdsl4e5N2kX1Hgl5ioA4giHE6KCiC/Zkd9hZYdh7pFjawkLHIwSQO0mqok4gFMFy/surB/Q7/GxlLU/M3UfIlSAqnWSxdocRrx3FaJZGU68Rlew0WlpJM+mfJiyNcLexyXrzPicDkwAopkrTaBGTI1gWeF1hXIKPsmpPuKuNbYaMKAAGJtlOiTPBaaqayWp9n5g7gNuJ0O41DpgL26nFk4EJFsqH9HvCzrnpFNUGSbcjJqc2mfKPcLeaxQI74gkfi3hq+zwenSbX7pBXG9yr5zjlRDwdU6OstjjtH0DGy51qFp94LMVmtBn1hkl6QrgtLy8WDrgYe20NZ9Ifo9RWeCl/yOV4z+HcLuc4Fx3gSnSE+2qblKEy6dDsHBGBTntCeC2ZnXqVTKvR5WVrGzr5Vosn+8ZYLhdRLJNyu9PlcWvpOnHZR7FpI9Lauk6x3WI0aO9/xB9is1RmONCjFNqp1JiKxpgMR9kpVlktFDl9rEi/lMny1PAoKxl7ITCfynD5GGL0sNLg371w85FTMn2zFNerU3Qf/ehHOX36NKIosr29/UCKrlKpPJQU3dE+PqjI58O023tkZ8+e5SMf+cgb0kG8U3sYzqdYLPLCCy/gM36APv9P0haGySkLmNRxmT32giMHZBOG6khCiIB0jrLRwBRkOmYZ3eqgmw18riNKnHsMOSSgkuDDEsIolpuCukvNShPSkxzlfzKdDfodPZ+O1sGo91OWWrSos9teY8LXayxtG3UiUsxR/wzgkwbZ79iIsp32FhElCkDTaCIJAj7Bx4T3FHfrBwSl3sO909phwqkB1fUGfleACd8Md2o7bDT3mPH1WLHTYoVR0a4BjfrG2G6WcTsSBvvtPBOB/i5kfKW6x7XIOZarKTqmxkYjw1TAdhoNo4OByZAnxqBngJfKuw9Q5dypHXIpYkc8Z4Oj3Mjvc8Kp6eiWyX673GUmiMoB2gYohl1UP2hXSfpC3UbQhqYx7ImRbjuw5nKaq/FeDafaUYhJAeoOe/VSKcs5R9rAdHqEaqo9plkmOU1hwmGq9ooSumGjLu3fUql1OvR77GfmdLiPjXKJhMfht1Ntmp6Ex8dsJMGdXB5FN+hzWApqqkpH0zkTTVBqdii029QUlUG/vRLuGDqWYeG1RNq6bvO8VapMR+3FxVgozEq6wKlEr4Z1K53lUjLJXF8/iwcZvnT7Ll/Llx8Z52NZ1jvq8xFFkUQiwcmTJ3n88ccf0MdZXl5+KCm6I+fzQQEOPnQ+75F5vd6HuqL4VpyPZVlsbm6ysLDAqVOnOH/+POOh/46wQ/zZMdLIxMA60uFZJCLbqTOBMB7pLDl1n4aeoqAu0e+k1TpmGdnlQXLqQbnOCkPeJ2lYbg46d9GtFn6Hd6wppxhznJOJQUVN4e/MUNElyr4MQ96xLnppr73OiIN6axl1/GKYAfcs680ttlob3WZRC4u6XGdAttMwiqmT9E6x3jhAszTWm5ucChz1K5nk1RxJTx+j3lFySpumoXTrNvc7+8y4e5FI1WxxKniKpeouJa2OR5QJuOzJ9X4zxdnwGEGXl1HfKM8X1zkXOorCDLKdKkOeKACyIOFzBUg55KDrzSxnw8eikso+T0ROcquUQbNM1mo5ZgK2U2gbGnVd4WJ4lMNGk81GiZDkxe84ws1GkZlQP0P4qao6N4uHXDnmcOZLKa7Eh5kNDbBbqzFfSHE+OuDcA8tmKgjFuRYb4ZVcmlSz3o1oWrpGTVWZDsaJiH52200EWSbusAxUNRVD1ZgVA8xn0xQ6bSTBRcB55vPtFhPBCOVmB800ybdbeESJsAOHFgDBFLqOuKJ0MCyLuNdLxO2ho+jkmi0GndRMR9fJNpucSSRotXVqisJmqcLMMYhwvaMim66jEhdfy1f4o6W3lmJ4P+xbBUAc18d5+umnuXLlCpFIhHw+/65TdEfzyYeRz8O3Rwbt9jDs3TofVVWZn5/n8PCQxx9/vKuCKggic9FfJiTbNRhdPMBjjGOv/i10s4NfeoqsekBOWSR2THm0oq0TddgMGnqKsDRESJxFcI2z2VogJtkTYMso45X8iA7PXKqzwqj3DCHXCEonStVVwus0RKaULSZ8p8BJuWWVPZLuUYY859hpFeiYCqLjKDZb691mUdNlUNfrnPCdoarBSn2DcX/Piaw3N5nxT9rXwtSJiH0UlDZVvcF+O0NSiHUL8lvaIWeCEwwICRq6wEYjzYA7CkCmU2LAG0U6qntpbSb842w0bHTWvUaKk0E79dM0FDqmxtnAOKl2m7v1DKO+WLd7/04txaXIGG5B4qR/hGfz293GUc0yOWxXGXOocca8CdKtFm6nMXS3VWHE3zsO0wSf5aah2xPOQin1QMSj6iZuJBTTwALuVQucDts1HMUwiEp+cm27ftTUNeqaStJrT/iWZeFD7mr9FDot/JJMSLbv54loP03Bhc+ZvLKdNkGXhEdwMeYPsVEsEXS78Tor68NGnYTXz4DPjweJe8UiYY+HgNNKkG+1iLq9DHkDZBpNyp0OpuOQACzTRNAEZOf3VMMgVaszGYkw4PdTrndYyRWY7e+l6P7tN1/m/7vak1b/oOxhprgEQSAUCjExMcHly5dfk6J77rnn3laK7igN+EFEhx86n28jezfOp1Kp8MILL3RVUMPh8APjosvHxfi/wyvak5UubxLzPIFHukpOS1HVN/C57FV4WV1lwG0j2Uw0OkaGoDiIXxylZfkwBT81PYsNs94lLtvppIqWIirakFi3EKTaMqnVBVpSBcXVwid6cQt2RLHXWeOE364HhaQ+FMtHTi2jWRpp5ZBRX481YLu9wYRvAslwE5QGSSvlrkLpVmu3G/HY2+5z0n+SoDjEYm0T2SXhc6KYQ6vA6UBPxtqwZHRDomkpNIw2JmaX8HO7lWUqMMQp3yQ7jRrzlW3Oh+1jMiyTg3aJUZ/dBDnk7iejtLpO4tXMBbvNEnOBCVaOakD1XJd9umVo1DWFq5FJFkoZDts1Eh5fl5lgvV5gNpxkLjjEarnIulbnfLBXV5wvpbgUG+JiZJg7xTx3yjnOOKABzTTZb1aZDES4Ghvm5VyKuqp1HU5Z6eASBMYDEYIuL3dKeUKSu8tMfdCs0+8L8JHEEAvZDAetBqOhaJeXLaurTPkCVBstGprGVrXCsD+A5Exw2WaDyUCUXNN2eHu1KkOhEB6XC1EQ8CCi6SY+xyHlmrbDi3u9jAUi3CsUMS2LhM92SC1No6PpDHoDVDoddNNku1RhKmanDEfDIX7t6y/w1bXN13tF3jc7cgDvxUT/6hTdU0899bZSdB8U0g0+RLt9W9k7cT6WZbG7u8vNmzeZmJjg0qVLyLL8utt6xASX4r+FaIyjdc5w2L7N0aVTzSqSy4Us2A9JQV1y6HNs/SBRHKWiG+TVLTLKKsPeHl9bxygTFO0VaNnYw9uapqyKpM1dOp4KfU6Kq6xl6Hcnu47jsL3NtP8ah50KB509BEwCjgrpbnubKb+dcrOpbNy4tAg7nQOKWomYJ4zkgAHWm5ucDszY2jPeKbZbhW6/UFYp4dfc3ZTPWmuXudBJ+t2jLFZ3yZk1Bpx0YUGtEZL9eAQZtyBjWh4sQUJ39nWntsds0HbebUNFMw3mglMsVA9IdSokvT0BuJV6iovhUcY8cRTNxY3SLnORYxFPp8qYL4qEyJDH1ss5Qr1tN8tMBuzoybKw0XyI3S7/5UaeK7FexOOyXKi6iYmFbpnsNCqcCNrRVEvT6HeHOHR40UpKG0GwpQ3A6SGS/JQ7Nkhgr1FjyB/qOpio5KWhaIjORLpRKXEymkAA4qKbnKozEUt006hb9RrDshsZ6Be93EynOR3vjd8vl5mOxZiL9rFWKLJdqTAeDncjnINandloH/sVu6cp32zhFSXCHg+iIBCRPKRrDfoDTq+abpCuNxlxu1EUg6aq8Qt/+bc8u/n25Zoftr2ffUcej+cNU3Qvv/wyL7zwAqurqxSLxQ8k6rEsi2azSSgUeuuNv03t/y/Tbrqud8nzrl27xokTJ97yWALyCfqtn6Aj7QMmZfUOMdnmS2sZGYLSQJcUtKzcJ+F+iqJuctC5g08KdGHWqc4dBj09mLUkuIhLp8EaI+89JKTbq28DnaZeJSzZ+fqMssOYd4p+aQqLKKv1FQY99kRa0cs2W4HzG1utDU76ZxnwnOJuY5em2CLm9AClOmnGfcPdSS2t5DgTPM+d+i41vYlqKYScZtaiWGc6YEdnE74JVmo5PE40pKLTtBT6nN6cg3aBk8ExImIfy9UDblf3uBixIx4L2GrlOOHvZ9ATQzVEDpUKIdHrHG+emVCvV0YxLMJiiLJmT+z3ajlOOlFLy9CwLIvTgUFuVzKkO7acgceRH7hXz3MukuRieJhXCikbxXYsxbZQSnE+muRyZJRX8hnu10rMhOxr3DZ0SkqLMX+YC9FBXs6lAKsr9pZuNYjIXsb8YbyWxGIhw0iwJ42wUS1xMpLgcizJQjbDarnIuUQv2lop5rkY6cPULUqdDneKThOoY4eaytV4kr2GHfGsFArMBIJHWV68ggTHntP1YolT8TiCZdPvvLh3yNgxh5SqN4h7PFzsG2CjUKLYsrWBYk6KzjBMREvALdrbG6bF//jnX+fmXooPwo5g1u/3ZP/qFN0zzzzD7OwskiSRSqXQNI2bN2+yublJuVx+3xpdP4RafxvZ23E+9XqdGzduoGkaTz755DuiAY+Kc0QrP+R8Mmnq24Qke3Ku6VvE3acJSVdpWH72O8uEJXtiqWgH9LnHu+ivrLJGn3sKn9iHJQxQ1zRqhk2zUnUfMuazI5e22UDAhdcVwC9GaRoighCgplcwMKho+a4mT1ZNM+IdRrAExrynWG9muvLZqkt7oFl0p73LycAJxjyT1DRYqt1nwufoAGl1RMPqUunsNFNcCJ9npZairrdZbx4wHXDqNpaCS3ARFH2cDEywXMkSknsNwkvVvS7IQDV1AmIAwfKQ7lTJdGrEPYFu781qPc2F0AjnAuMslbMsVA45H7GPSbdMDtsVxnxRBj1hOjrklOaxiKfEiaDN9uwWXGg63X4rsFNsJ51GUcESEE2JplNwVkyDTLvJmN9OQbV0jaQn1JW3zrSbhN2erhhcS9fol4PknRrQeqXE6WMRjEeQME2hWyO7Xchxpd++Xn1eH6lGk0FPjyh0MZflanIQATgX7eflbI6rgz0l3I1Gg1PBIFOyh8V0luVsjnPHEGx38wU+OjbOrUNbU2W9WOJkIt49+z6vn0ZH7TqYbKNJwC0TcruZiUQ5aCkomkEyaE9yqmHwf/urb3D78EHNlvfDHhVS0eMpulOnTuHz+RgdHaXT6XDnzh2ee+45lpaW2N/fp9lsvmeNrh/WfL6N7K2cz+HhIS+++CKDg4Ncu3YNj8fzhtu+nrlcLjzNS5yJ/FOALmO1T+gnJF8mq1UwBBHVbGJYKopRIuj0+eTVDYa8s4CFCzcWETQrymFnk7KZos81xFGXY7qzyaDHrrHUtDJJzyxVTWS3vcN2e50TjnNSzA6GpRAU7Ym1otWY8l/iXsOmx9nv7DHqdaIjo0pYCiEj4Xf5aekiLsFLy+hgWAZZpUTUctQ6xRbDvgTDniR+McGLpXucD59wztkk1S7R7/xmSWkwFZjgXjVHx9RYqR1wMdKTS7jXSHEqOMTZ0AleKR9Q1zvEZNsJ7raKTAb6cAE+l0xTA8vqrXrv1rJd5oKWoRGV/Ui4yXQar414ankuRYcZdse4U8m9BlRwX60z649xJpxkoZhht1HhRDAK2OJxLUNj1B/hhD/BzXzaBg04NZzdRpWRYJgxfxhLF1jIZ5iN9aDkd0p5LvYluRwbZCGTZSmfs3nYnDlpIZ/hieQwbkui0Omw3mxw7RgLwXwmw3cMjXMnZ/fkLGQytgNyLOQPEgv3FkkrxRJTTj3nTDjC81v7XB7uSTHczRWYSw5weWCAWwcZNotlpuOxbgrwoFrnwkA/u06jbKnVBgviPi+SSyAouvnp//2vWM8WX/MOvJf2KArJmaaJLMuvSdFFo1EKhQI3b97spuiy2exDa3Q1DINOp/Oh8/l2sTdyPkeEpUdMCkf07u9m/6Zpcir0o0wEvh/LEnCL45iuYTKdfVpGiayyzKADl1bMOqJg4XbqQZnOKqPe6yhWiJ32Kk2ljGzYkUKJfcKKI0qHQUXLMOI9hywOstK4w4BnoLu63mnfZ9RrT/B1vUrQ5WfMc5a8onG7fpdTjgqpbhmU1RJBw6HHUbKcDM6iGD7Wm3usNrY45QAJOqaCJuhEpBCWBbIQwC2ESCt2RLZS3+aME8W0TZW2pTFoRYnICV4ubTIV7B3fUnWXC07KLSB60U2JomKLWRXUBkHJi99lR1ZrjSyXIxP4CXG3luVW5ZALEdtpHGcuuBAe4XY5h2LohCV74t1ulpgKJhARGPSE2K3Xibp7kZcNKrAncR8iii6gOM9H29ApqW2GffbLrRoGfXKAtMPjtt+skfSHus6trWkkPUGKbfs87hTzXOrrTfii6UK0XN3P87kMV5N25Bb3+DioNLpNomDztF0ZsCOcq32DPLu732UlgB5LwaW+JLcOs9zKZB9oEt1qd/hIfz8bRbvGs5jKMhvt1QcMw+yK7AHcyxU5M2ATjV4ZSnJj+5ChULArxZBrNPFJEhcHkmwVyjQUlU//b3/BTrHC+2XfDlo+b5Sik2WZ3d1dnnvuuYeSoms4tcYPaz7vkb0fNZ9Wq8VLL71EvV7nySef/JaYFFwuF4ZhIAgCF2M/S5/v+zjobFBQ14jIA7g4om+5S5/bdgANPUdIjBGTZhFdo6y3Fog40ZDqahL0hHALDpecL8O49xR+MU5QmiSt5NBMeyW139nihH+GHsw6Tb97kIQ8TMN00zQVDMturlxv3mfab0cqbbONJZjEXVHGvCd5pbLOsLePo1nyfnOfuG4/4E06xOQIY94pFqu73G3sMneMgXqzmWLKP4hlQcIVpW0JVFV7Ml5rpJiLjHX3u1zd41pkGs2QuFtLU9XaDHjs39lvl7pQ6JP+QZZKeZLeHsrwTjXNGacGpBg6CTnEYbOBYVlOxNNDta3WcjwWH6fW0ch2Gsy/KuJZrmS5GhvGh4fNVpVUq854wP6tqqqgWxZTwRghl5dbhQx9Xl9Xvvp+rcR0JM5UIEa9rTGfy9gOx7Fb+SxXB4a4Gh9mIZNlPpfhWvIYs3U2w2PJYQK4STUaLGSznIn0IpjFTIbvGB7nVjrrfM5yvr9HJGroFhx7nG+ls1xM2uMnYzGWs2UuDPWOZ61S52QwwKAscz9TZDGV5fxAX3d8JZPnqfFRbu/bv7dVqjLk83QjoqFAkFKjTcBtR3zlVoef/PJXOHRADO+1PSppt+P2VtQ6Rym6mZkZHnvsMZ566ilGR0dRFIWVlZV3naJrOkjHDyOfbxMTRfEBlcRsNssLL7xALBbj8ccff1eEpa/ef7cXQZB4IvHprixCWdtiwHMS2zmY1PQ9otIoYWmSDl4MQaKq2+SOBW2LiGVPGlU9S1x2kGyGiGZK+FyD7HW2aRhVvKKnC7Peaa8z7T/lHI2AV+yjqltklRz77QOmApMcTf7brV3GvKNYFnjMIIIVYqdp68GsNbc5G7R7kkxMmrLCoDvBlP8EO60KqqV16fzv1HaYC00CdiRV1RtcCJ9mrVMkazbo94SRnbrNndoel6KTWBZOmi1FwlEJrWgtmx7F6Vlar+e4Gj7B3UqBpqFyq3LApeiwc0wWW80ip4MDTAeSvFw8AAGi8lHE00O1nQ8P8WLukFPh3iQ7X0px0Yl4Rn0R9hvNLstBU9do6D3YtCS48AlyVw10q1ZhMtTrN1J1g7jsp6rY8ta3Clmu9vccjGAIcGxxO59Nc7nfvrdRt5dMtUn82HO3VqlwwhcAC670D/HC3gFn+uxjt4C7+TxnEgnOxvu4ly2yks9zpq/Xk7OcLfD40AiZShPVMFhKZzk/2HNYbVyMRGNoRwi/XIGpoH3dxoIB5nfSXBjp1ZQOWgqzA31cHBzg1l6GvVKVwVAQr+QspOot/u3XXiRXa/Je26PofN4p1PoIRXf27Fmeeuoprl69SiwWo1gsviZFd8SG8XrWbDbxer0fCLPC+2WP1p3+Fu3IOZimyb1797h9+zZzc3OcOXPmoTzUr46sZJef7xz4l13+trxyl2EHZu1xJRBcCaqGRl7dI6Osk7DsFJclmGhSlYhkTxpZZYdx7xUUPchW5z5pdacrdV3UsvR7Bo7156wx47+IbgVZbazjEsDvSFtvtbY47TAbmJg0jTbT/nMcUGNfyzLk6+9Cp+81txg2HSJOQSQgxUm1q7QMhZ1WhlPBYY5mqDv1HU4Hxxj1JtEMD/cbWSIuxxG0ckwHB3uQ4Eaaj8ROM1/ep2NqpDtVRp1m0GynRtwdIC4HOOEe5NnCLpPCMcmBSqrbSBqX/XR0qGmK810baebrRjx5nkxMsljMolvmayKeO5Us1/vGyTY7ZNoNSrrKoMdOP5aUNi5B4Gy4j3pb404pz1CgB5O+VylwLj7A2XAfB5U68zlHuuAopZZPc7V/kGuJIeYzGRZyGS4dQ63dzue41p8kJLo5qNe5W8gz6/CumcB+u83Tw2MspDMYlsVmucyMA3wxLAtMsAybw80wrQdYCgb8fnYKFUacfjQLuJvNc2agj4TPi6rqLKZyDzikrUaHC31xyo0OimGweJBhNtGLNFVNx3UMJLFVKDMeiyC7XFwZGeT59T0+/R+/Qqn5+mqoD8se1ZrPu3UAgiAQDAYZHx/n0qVLPPPMM5w5c6abonv++effMEXXaDQIBAKP3PV4mPZ3Lu12BIssFApcv379LeW334m5XK7X5HD9UoLvTP5LZAeeXNHSJD1PklXLHHbuIQsu3M5Y2bXNkCOLrZgtQKVfnsEvTXOneQefZk8IhqXT0MvEZHvCSit7jPtOEBH7ickz3GlsEJbtbUtakZi717uz0drgZGCKSd9JiqrGfieD33Iip9YhJxyiUYCcWGYuNItmeliu7SC7ZPwOlHqtse9IIFgIloALD5blIafUKGtN3C4ZrwMtv1c/ZC48zpinHyw/LxS2uqJvTUOhZagk3HakoZkGCUKsN+3i+pbVYNZjT6wWcK+W5bx3gEJbZbNRRDMN4k4dZ7dVYTwQwydIzIWG+dvM7muoco4inrnwIIuFXFdPp20ZKKZBv+OAorIXTbePB3ow6aMXwjIs/C5Pt0Zki7n1xN4wbGjykd3O55hzYNUR2UOx0SHosBwYlsV2pdLlXZv2Blg4zDAZsRF2qmGQbjQYj4SZikTZK9U4qNYYj4S746lanbN9CdDtHp79cpWpWLS7/0ytwWQ4QqHZth1SJs9ZJ+UW9ngoNFWmB3oR1L1ijamgj5gskSrUWDrIcn64v4eyy5V4bHyY5T07RbdbrPKZ//gXVNsd3iv7dqj5fCsmiiLxeLybonv66acZGxvrpuieffZZlpaW+PznP8/i4uK7ytR87nOfQxAEfvqnf7r7b5lMhh/5kR9hcHCQQCDAlStX+JM/+ZPX/b6iKFy6dAlBEFhcXHxg7Pbt2zzzzDN4vV7Gxsb41V/91Xd8fMftA7/TD9MBNZtNGo0GPp+P69evP/R86VHk8+q8bcx9gr/X/4tE3Vcp6S122gsMOAzWNT2HrHi7sOestsaQZwa/qw/RNUzd1Cmptux1zZdn1Enjtc0mYBBwBZHxoFse/NIge50DdEunqBZJdJ1Tr3cnJiWoayaKadI2O1T1Oh5B6kKnNzv7nJCG8bo8jHqnWKruEXTYCbJKiX5vrMvltlLf4VL4JIPeYW5Vdkl3Soz6bEeR1+tEBR8SIpYFliUSlMMUlIYj6pZnyuFfK6lNvKLM+dA4h40GK60850I9EtV7SokLkWEsC056+rnXrBA07ecirzTxCGIX6pxtNzgfGeF22abseTWqbbmc4+m+SW4VczR1jVynyYjfrjWVNQVZFLkSG2a9VGK9WmQiFOkyC6yU81xIDHIpNsjdQpH5XJprA8dqOLkMl/uSXE0MsZDNPuBwTMtivVziYqIfv0tmt1Zjr1rlhONgFMMg22pyJZpgvdagreuU2h2GnWe0qWkERBmXIdDWdJqqRr2jMOhAoEVBwNQsJJd9rG1dJ9doMRqxI7Y+t4972SInjjmk+4USZwcS9Hl8ZGoNVlJ5zg320pMFxSDpdtPWbQe7nMozFfaBBeOREK9sppgd6qmh3s+V+Jk/+isanTdOF30r9iim3d5LOQW3283g4GA3RXft2jWCwSD/6T/9J/7ZP/tnZDIZ/sk/+Sf80R/9Efl8/i33d/PmTX73d3+XCxcuPPDvP/qjP8ra2hp/9md/xvLyMj/4gz/IJz7xCW7duvWaffzcz/0cw8PDr/n3Wq3Gd33XdzExMcH8/Dy/9mu/xj//5/+c3/u933vX5/9o3el3aUekoPfv30eSJM6fP/+ePDBHL8brFQ2H/VeYDX0XJgYWJhV9n6Dg0P27iwx5pwELWfCjW34sIcFee5OCmmbAM9hNhx2qWwx7bMdV1cokPVNAgrXmJvdb65wMHElvd9AtnZADed5r73MmeIlMp8lO+5DDdpoRj1NXEhpELB8uB/1kyhKj3hPcre+hmBp1vUXCkTXYbWWYCg6DBScDJ7hdzXRpdlqGQtvokHB6ZjJWnTPhUab8o8yX91ms7HIx2uvrySs1hr0RJEQirhDpSsVhXYCVRpYrsV4UttnI80RsijvNIm3LQHeL9Dk9Q2mlQdgUGRJ8mBrcyO8/IGl9hGoTcTEXHuSlXIrpkB1l1DUVxTSIuGSb0scTotLpIAlHKbYiZ2M9EIpkuZAsV/c4X8mlu306ggWCLqAZdvR7JAZ3KmY75JDbTa2j4XaePVsaoedgTkfibFXrxB3i0JqioBom/T4fI8EQmWqTuqLS53fY0zsKpmExEgox4PGzni+haAZ9DktBQ1VpKxoXBgbYLJZpazrFZotRJ2LSDRPZFLvOw7Qs1rMlZgcSuEUXUdnNernF+eFjKbpam7mBGKVqC80wWTnMczIR7qH6EPi5P/oqHfVBOe6HYY9q2u39cIhHKbrp6Wm+9rWv8Tu/8ztMTU0xMDDAr/7qrzI4OMjS0tIbfr/RaPDJT36S3//9339N7+ILL7zApz/9aR577DGmpqb4+Z//eaLRKPPz8w9s9xd/8Rd89atf5d/8m3/zmv1/8YtfRFVVvvCFL3Du3Dl+6Id+iM985jP8xm/8xrs+529753OcFHRuzqauea8e4COH9ka9RLOhv8cTsX8IgG4pKEYVnyOvnVd2GPNep2542WqvU9MLRGV7FZpWdhj32c7J1ug5ZNRzmpA4xXJ9jZAU7E4g261NJh3+tqpexSf6GHFP4hGSvFK5y0lH6E21NGp6jYRs/35BqDDjH2fCO81qPc2d2hanAnZdqaY3EREIig6BabvApcg5lioHtAyF9cZht7G0rDXxiiJ+wc0gEe7Xy3hcPVqileoBZ5y6TV1X8Isext39LFZSpMwmp8PJ7rkcgQwGPWFCYohXSodMBeyJvKy2kUWpC6uO+sMEpQBl3a4BLZTSnPFGu7+706hwLTbKYimLYhoPRDyFTgu34OJSIMEruTSbtTInwj1Qwe1SjsuJJFdjQ8xnM8znMw+AChbyGS4mBrgQS3Irl2W1WGA2ZkedmmlyUK9xPt6PbInsVKuUOz2HU1MUVN3g8YFhFlIZqk6R+YhloNBqMeAPIJsuqh2FfKuFWxQJH0kvdDoMeQMUW3a9pdhqIwkCUa8HLBgNhdkv1Uj47f3VFZWWopIMBLiQTLKcypGvtxhzYNi6abJbrHBlaIiDig3nXUnlOTtkO+CAW6bS1Dl5LEJaL9Q4EfGR9MisHeRZ3M3wc3/0V6j6t66dddwexcjng+J2U1WV4eFh/vW//tfcunWLdDrdnd9ez37yJ3+S7/3e7+U7v/M7XzP25JNP8uUvf5lSqYRpmnzpS1+i0+nwsY99rLtNNpvln/7Tf8p/+A//Ab/f/5p93Lhxg49+9KO4nYUTwHd/93eztrZGuVx+V+f4aN3pd2hHpKAul4vr168TiUQeipjcG9nRQ/hmv3HO8330tWytH0Ns4xE99MvnUa04q41Fhjw2I0LHSav5XfYktddeJ6YM4hVCxOVpDjoFWoYNY97v7DLt7zmnjJJiyDOI3xXELcRQLZGiaj8A9xo9huqm0UJVOrgNiUFhiO1OGZfgAixMLHbbGcZ99qo3p1aIuUPM+MdRDTc3SutcjNj70S2TVKfEiNd2DLlOjSnPEId6i4rWYqm6z6Wo7RBNLHaaeaYCfZwJjrBdq5Fv1vA5NamVWqYbHYHNMdYvhzloVVFMnbzSZNhnr9zTnToJt4+r4VHuVArca5W4fEwAbrVTYUYKEkNGUAReyac5EYgCvYinz+PDLbgIWm7KqtaFUa9WCswl7HN3IYDhepAVIZ/uwqrdLhemDppz33XTVic94aiNhmUPTUXvQpariq3V0+fk7CeCEQ4qNSKOQympKkG3m6Ask/QHyFVbCAgEZPsapeoNYj4vYbfMTCTOrcMMca8XvzOeqTcJut1cGx60nUuzhVuSCHvt/ZfbHU5EIxyW7CbShqJS72gMhm2U3WxfH3f2s4xG7GfPtCzWMgXODPYxGgyRqtRZ2stycbQHomgYAiOxGLqjmPrKdpr//vf+d1bX1igWiw/lvXsUaz4fpIrpcScwMDDwhsfxpS99iYWFBX7lV37ldcf/+I//GE3TSCQSeDwePvWpT/Gnf/qnzMzY7SCWZfGP//E/5id+4ie4du3a6+4jk8mQPNaHBnQ/ZzKZd3x+8Ag4n3cTpbyaFPTy5cvIsowoil3Z2/fCjqjV32j/hUKBGzduMCf8fSa8V4nL56gZMg1ToW06zYvtNUa9Nsy5ppcIyiEkwY2IjGaJBIQhNlubNIw6kkvA10Wy3eekA7PWTJ2gGMMtxFhv7rDbPmAmeCT1YDNUDzlIOsslkCDJvlamrrdYbWwz57AVaJZORauRdEfxuTx4hCCKKVDTbad3u7bDOUe6um2oNA2Faf8QcbmP+cYhQ0KoG8UsVva4ELGdim6ahMUgqXqNtqlRRGEsGO+yVy9WDrgSHeVCeJzlSoHlapbTIXvlXdeVLsjA65LwCl7qutaNUm6V01yN9+QgJJ+PsUAfRUNFs0wyzRp9TiRW6LSIu31M+/rY6jTZbTWYCse7+1oqZrnWN8SZUD+L+Szzx1JsALeLOS4lkkz6Y9wp5Nmq9kADdkqtzVy8D02zAQWa0XM4+ZatzfP4wBC3UhnSjQYxjxevQ3OzX6sxHYvjtkSKrTa7FZu5+ghxt1+pMtefZKtgN/nulquMHBtP+gNUmgoeZ0JK12yH5ZclrgwmubmdwnvMIVXaHXTd5PGxIW7vZ2lrOpVWhz6vA4owLLyID6SUl/eznB8ZwCdLeBFZ3MtxaaJ3fe7k6nzx5Q3urq7y3HPPsbi4+C1RznwY+fTs7VLr7O/v81M/9VN88YtffENRzl/4hV+gUqnw13/917zyyit89rOf5ROf+ATLy8sA/PZv/zb1ep3/6X/6nx7qObyVPVp3+m3Ym5GCSg7F/Hsd/bx6/5ZlsbW1xa1btzh9+jTnz13gu5M/R8cUqOoFcuoeI94THDFE5pVdBhzG6rySYsJ3DoiTk/McaLuMee0owkayRbpIts3WOqf9ZwlJwyzX76NZSjdVdr+5w5mgIwpnGeSVElPyFHVTZNPKkZRiXTqYu/VtZoO2U2kYbfo8cYJinOXaPuuNFOfCPVmGe/V9TgbtxtJhzwB13aTksBXsWzUuOCqjACu1Qy5HJuiTErxc3EfVdaJO2my9nmPWYacOS15qqsGRD9ctk71WhUknaskrTYa9EYbcUe5UsqxW88zFequu+dIhl+NDXIoMs1Yuc7dW5GTYIQe1TEyXSEzykBDcZMsNqs0GR4nBu+UCc3GbmSAku6k0VXxiL224kM9wIZF0jtNNo6N1HaxiGGSbTUZDdmQW83hodfTuS3TkcI7E4IZ8AQrNVlf6YLdaZcgXQBKg3+cjW20Scru7EdP9YpnpeBwRON8/wIs7B0z3xXEwBvZ4IsblwSS39jNsFctMxKJdEMJuucqFoST30jaAJVVtEPN6uk2jI+EQ+4U6UYeap6nqKIZJMhzgysggS3tZDkp1TvTZ98EC1lIFLg4nOSw76q+7GS6N2/cxGQrwym6JZ7MGV69dI5FIPNDPciTcdrz37s3sUa35PMoqpvPz8+RyOa5cuYIkSUiSxDe+8Q1+67d+C0mS2Nzc5POf/zxf+MIX+PjHP87Fixf5pV/6Ja5du8bv/M7vAPD1r3+dGzdu4PF4kCSpGxFdu3aNf/SP/hEAg4ODZLMP8v0dfX63iOJvK+fzVqSgb1WTeRh2vNEUbGe4uLjI3t4ejz32WFeIziP6+K9Hfo6IZK/oDzsbTPpsNmvd0mjqJUY9swTEce7UV+hz26wDFiZ5Nc2A2wlplRSjvhGCrhDD3lPcrm/idQAARa1MVA4hO85prbnJiNVP0AgScg+wr5XxivZEeKAXOB3sca5ttg455R9lxj/NQmUPMPE6EcOd2h4XHGYDE4uq2uJieIaFyj57rSIDvmCXyXmpus9lJ+V2OjDKarWI0rbrMlVUwm4fAecY7lRTPBmfAsPNajXPYjnFubAdobUNjYraIekJMhscYLNaQUDo/U4504VVC5adJtMNC8OyUE3jAeaCktZhKhRHFr1UTJ1DrcOQ7O3R/xSzXI4OELI8bFbLdsTT13uB7pZyXO0bJOBys1kpc1CvMxm2ARkNTaWlaVxI9FNqKmxXq7hFsZtSO6zbYnAfGRhiIZVhu1JlLNJjmt6p15kOhHBbErlGk3uFHu0NwGquwFOjYyynct3P55I9QIDHJWLoZnf79XyRU/02RHy2L8H8dorxRM8h7ZVrDIaCzCX7uLufJ1NrEPS4CToRT0PVmQhHOHBSdB1NJ1drMha3QQbnhvq5tZXm9FAPpr24m+HyxCASAo2Oyl/c2uB3v77E6Ohot59ldnb2AeG2+fl5tre3qdVqbxgVfRj59Oztavl8/OMfZ3l5mcXFxe7ftWvX+OQnP8ni4iKtlr1QfPU5HJ/Hfuu3foulpaXu97/yla8A8OUvf5lf/uVfBuD69es8++yzD3DXfe1rX+P06dPviJz5uH3gd/rtrnTeDimoIAivG5k8TDu+/0ajwY0bN9B1nSeffJKIA6s9sqAU5R+M/o94Ha2dvc4qE77TROVhvOIIObVMU7fTcTvtDQZ0u56hWipts0lEiuBCwrK8RN1jbDR3MDHJqFmGPPaElFIyjPnsJk/RFNFNkYh/gEMlT1Vv4HVJeJx1/73GDudCdspvzDtCTlUpqvbvH3SKjPkTuJz7cbu2w1x4gpOBMcqqyVojy4Ajn7DdzDPpjSMcQaVraR6PnuZWOU1V69AQNIa99rXYa5UZ8UcRcXEpMsEL+X1OhHp9Pev1AjNBR9NI7TDpT5BuNmnoKhv1IqcjvYl5oZTiI4kRTgUHmC9kuFspMOsIwB1nLrgYHWQxl8cnyd0az57WYdYhEh1x+7lfLBPQe4uIW/kM5+P2QmHIHyJTa+KTekzWFaXDkDMZ9Ht91DtaFzGXajSIeb12hGNBwuOj0Va7EO71YolTCZv5OuZ2U2qq9Pv9CM4cfCeb5+KQHY1dGUzy/PY+l4Z7kd5yJsel4STnBvq4c5jnTjrPheNEopkCj42PsJuvYJgW69kip5J9vZ4l025cPXrVDso1En4fXsnFeNDP4nYaSXD1IiJFo9pSeGxymNu7WXTTZCdfYSZpTzIuAdotjb5Qrybx/3l5lc//xUtYlvUa4bbr168zNDREo9FgcXGR559/npWVFdLpNIrDHAGPpvP5ICOft+N8QqEQc3NzD/wFAgESiQRzc3PMzs4yMzPDpz71KV5++WU2Nzf59V//db72ta/xAz/wAwCMj48/8P1Tp+z0/vT0dHcx/cM//MO43W5+7Md+jJWVFb785S/zm7/5m3z2s5991+f4aN3p17F3Sgr6bqW0364d7T+TyXDjxg2SySTXrl17AAVy3PrcI3xi5H9AFGSCYh8tQ8AlhDno7FLVS4TkYFeHpyilGRHtm93Q6/S5RwiII9xtbLPWvN8lDFVNlZbZJCrbE/x2a4/BzgCWGWCXAnvtFOM+e/LKKiXirgCic6t3Wxkuhs6xUsuQ7pRpGUoXOr3ZTHMmNAJY+FweVF1AMwTqeoeq1kYQ6NLj3O/kmRAijHsTeIUQz+e3GMGejJqWhk6vOfSwVeWx+AleKR44bAT7XHHqNpplkm7XmQnEORsc5IXcPmHZ02UyuFPJccmBVQ97Q+zXm3hEe0y3THYbFSYdp1LstJkOJNipVtEtk61XodpWGxU+OjhOqaPSMA3uq23OOVxrFnC3mGcuEKHcaJNqNh5IsVUUBcOyuNo/yE6pxk61SuSYvPVOtcpoKMS1gUEWDjOsFUuc7uvrpjpX8nmuDQ8hGy5Kitp1KF1phVSW75gcZ9GRMlhMZbk80ovGFE3H45K6EPClwyyXR23WhbFIiLv7eWaTfT2HlM5zbniAoVCAUq3N3VSBk8leE+1uscp0LEK5YZ9Xttok6JG7EdFYNMxWpsxA2JFa0A0OS3Um+yJcGEmynipyZy/HudFeVPYXCxv84dcXX/MOeL1ehoeHOX/+PE8//TQXLlzA5/NxeHjIN7/5TV5++WXu379Pu91+5NJuj3rN561MlmW+8pWv0N/fz/d///dz4cIF/vAP/5A/+IM/4Hu+53ve9n4ikQhf/epX2d7e5urVq/zsz/4sv/iLv8iP//iPv+tjE6z3SozibZqu62/oLFqtFouLiwiCwKVLl95Wx+/f/u3fcvHixXcdCr6VffOb38Tn81EqlTh//vxrECBvZPfqC/yHg89jYCAJEnF5kIxyCMCod5L99h4W4MLFmO80RVXloJNixDtMqpPDcBgmp/0n2GxtA9Anx9EU6CgiebHO2dAUd+tbAAREHz6XLbENMCL04fYE2WmXaekdpoMjrDXs3x/0xGjobRqG3b1+LXKalWqWktrE7ZIY8sbYbtl1hAl/H5l2BcXUGTPjhMJRFsr7ALgFkVF/jK2mve2YP4ZPkMl3FHKdBlfioyyUDgAbYXYmnORONcuoN4JX8FBS2uQVm0PsdLiP+7UihjObPt0/ySv5DC3dVgedjfSxUrYb7yJuD2HZQ1T0c7uYYzIUJdtq0DbsWsPFxABLxRznAnHWqhUu9Q8yn7N57gRgLjHAcjHHbDjGYa1ByCWSVu0VeUR24xZF8p02lxJJKq0OJaVD3YFMn4zF2a1WUA2TqwODqLrB3VzhyAdwcXCApUyWfr8PyRSJu2VWS5Xuc3FlZJD5wwxXhwa5dZDhyojtvI6PNzoquwX7Ny6P2tsd2ePjw2xkSlRa9r27PDbIrf0MCBDzezkZj3NzO8VR+Dg3MsCdwxz9QT9aWyfilUjV2l211/FEBJ8ssZOtoOoG/WE/pmVRbNhQ7yvjgxSrbfaKdprO5RI4PdzHerrAiViUrUyZ//a7r/Kj/4fLb/FG2KaqKuVymWKxSC6Xw7IsEokE8XiceDz+urDf99O++c1vMjc395qsxnttf//v/32+53u+h8985jPv6+++n/aBRz5vtNJ5t6Sg72XkoygK7XabarXK9evX37bjAZgNXeG/StpCdLqlU9NLxJw+n4PODif807hNPyFrgvVmCs1hqD7spJj0jxzr87EJQyVkaPtQVJGyZOd179a3mA1OAtA02pjohKUAYSFAy3QhCDINvWXDrJsZJv32qjWjlOnzhAmLfk76T/Bcfosxn50KU02dolpnyHvUhFpgNjTMqDTIhlFnobzPlCOnrVoGeaXBsC9iM1/LIUxT7AIUFkoHXI3bkZ2JxUYjzxPRcTLNNmu1ArLL1RWIW6sVOBsdsFNR0VGeS+93U2yGZdkKpI7GjctyERP97Dds9uWdeuUB5oKlQo6rvhh3K2UMy2I+l+ayg2qzgHvlAk8nx9goV2noOk2srvxBVVPRNY1Tbh+3Mzn2ajX6fT68Tipmo1ziZDzOlb4kt1JZVnIFLhzjVVvK5Hh8ZBiX4SLbaLJaqnA60qPJXzjI8B2TY12HsnCYeSDlVm11CMtuVKex9dZBhksj9njc72U3V2UyHu1uf2s/w+WxQYJumaDLzc3tlA0QOErxHea4Mj6I23JR66jsV1qcHuql6DqajtxteYZ8rYUsikR8Hs4M9bG0laHSbDMct8/BNC02UgUeOzHCVsZe6Pz7v5rny88u83bM7XaTTCY5e/YsAwMDDA0NdeWsX3rpJW7cuMHa2hqFQuFtAxcepn2Qkc8H7Xjfa/vAnc+rzTRN1tbWuH37NufOnXvHpKDvlfM53lM0NTX1ruRtn45/F0/H/08AdMwWFjoBVxC34EU13XiMAfaNNIqp0DaaRKWjtNquw2xgYVgmLsuNpxNjxypQEGucCAx1b+R6Y49pvz3BV7QGE74x6prAoVHmTn2HC5GjJlSdkloj6YkCIOJm2DPMcsWOTJaqe5wLH6UAOximQUzycS40zkql4EB+HWi3WWMubKfG6noHj0viYniMm4VDVms5zkSOI9UOuBwbQRJEZgNDLJVz9HvtlyzVtov1nq6kQZFn+k/wSiGNBdwqprkQsyf2IwXSS7FBBNPFUjFHSHYTdOo0R8wFHsHFxWiShVqF85GeAuhiPsOFPtu5XYzbstcTDllnTVVRTYN+n001Mx3royNI+JzncLtSZUB2I2JHcJLp4hjNG0uZHFeGbOc2GAiwnbdBB0e2Vq13xd+uDA3y3P19Lg71HNZiKsuFoQFOxCJky00W9jNcOD5+mOXq6CB+QSZXb7K4n+HiSG98JZXjwmCSg7Kj9bOX4bKDUHOLLqp1hWS4l9K5e5jn7MgAIY8b0RS4e5BnIhFBdmDhmUqD8XiUYrmFZUG9rdLuaCQj9jtwfiTJ4kaamcHe9f2dP3+J//cLK7wTsywLr9f7gFbOUZp9Y2OD5557joWFBXZ3d6nX6++Zguhx+6DqUK1W6++0lg88Ys6n0+lw8+ZN8vl8t0j5Tu1hOx/Lstjb2+PmzZucOHGCcDj81l96E/uegf+aC6HHAGjqDZLeaTQzwr3mJmlXihGXfc4No4Esit0+n/vN+5wLniXuGmG1eUBL7hCTj2o1+8yGJrGbR03221nOBGYIiP28VN4kJgW6a9nl2jZnQw7MWm/jFkTOBqZZqWZZrO5yIdqDWa/VU8wEHF0dU2PSP8xatUDLULnXyjHlMFJbwHojx0ywn9PBJPm2Ql5pEXRQbsuVNFfivcbSTLvB5cg4C8U0DV2lbehdws/tRpmpUJwxX4SYFOIbmT2uJoa7v3McZDAViJFptLrntteoPcBOvVuv8ljfCLcLNnJsuVrq9vFYwFqpyDNDY8xnMj0qHCfiKbTbuF0ijw0Ms5DOctBoMBKJ9Ppw2m2m/AHGRDfL2Ty3sznmjslbL6QzPDEyjKGaFJotFg4zXB7q1XBuHdo1nqOI53Yqx9xgj+an2laISh5aDrrobjrPOWfcL0tU6h1ivh7o5vZBjrmhflwCTMfivHj/gAvHHNKtvQwXR5PMxONs58os7mU4k4z27nW6wNzwANmyDUDZyJSYGbBh3vGAl1S+ht8j43fbNa5K0+4bujIxyPJ2BlU3OCjUOHG0Twu+dvM+f/7SGm/XXt1kKkkSfX19nDp1iuvXr/PEE08wMDBAtVplYWGBb37zm9y9e5dMJvOm8gTv1o56Bj8IwMERq/XfZfvAnc9R2q1YLPLCCy98y6SgD9P5GIbB8vIy9+/f5+rVq0xOTiJJ0rfUxOoSXPz94X/KhdAzmMRYrt8j5g53J9CMlWLCZzuHolok4Y4QlaKMeU+xUN1Eb9kvWdPq4HZJ+B1pg3uNbc6FpgmIfka842w0813W5QO9xKirNzGuNw+YCQxyKjBBQdEoqA18Dsz6dnWPy1Ebkm0zG5S5FD6Bprt5qbhLv+jvPjQ7NLr8bIZpERYDVFWdstpmr1VhKBDpQqXtlNsYc5FhSm2VheIhM2E7tVdUWrhdEiEn5eayXPS5Qxy07JX7fDHF5cRQ95h2GxWeTIyxlM+TbjVsOhrZ/u4RO/WYP4wPmedTB7aktWO38hnOJwbwiiIzoTjzmUyXqaCmKqimSZ/XhygI9Lkf7NO5Xy4zE4/bst+ShCh6iUeivZTWMXnrQZ+PtUyRsWhvsXIrleF0NNKNeJ7f2udc0nYoFrCaLTDbn2A0HKZa73A3W+BUv33fDMtiI1fkXLKPkUCI7UKFtWyJU8lE9/v3MgWuj42y5vT53DnIMTfsODQL0O3I58hWsxVO9YcRLDjVn+Cl9QMuTvZSdPdSBc6NDhCS3JQbbfbyVZLREF7ZnoyDHjeFUouYoxekaDrZcpOJ/iiXJgdZ3cvzb/635/jq/AZvx94qyvD5fIyOjnLhwgWeeeYZzp07h8fjYW9vrytPsLW1RaVSeSiN5l3trvc58rEs68PI5/2wI1LQhYUFTp48+S2Tgj4s53OkgNpqtXjyySeJO3oqDwPKLbvc/MDQPyAg2g52v7PHdMBuQrWwyKppBj0DSMi4XWGCYj9rzW0sLIruGpM+OxLIqyX6PREkQQRLQDNh0D3CSn3PZikQzC46bc8sOhIJEBQDYPmoqApVrcVBu8iYP95tdlys7nIhMoZfdDPuG2K9XkR2UmG7aoXTwV4abbGyz2OxCZKeOC8V92kZGv0ee8W2Uc8zG7W53CRBRDfAZYo0dZv6JtuuM+q3J+fDdo2kN8CV6AjLpQLzxTRXEz2nsVTMMBcdICDKnPAluFMsMOzIJRw26/Qdq8OYpsWgJ0C2ZYMX5nNpTjs8bxaQbTW4GEtyt1iwI55O+1jE0yLi9jAX7Wc5l2OnWmUsHO7Wj+4WClwaHGTIE2S9WHogxQa2vPXlvj4aLZVqR2ExlWUm0ltIbZSrXIpFuXWQsYk+nT4dsB14R9WJuT3UOgqaYbJXrjGViHJ08C4DrKPmXIenbbo/BhacTw7wynaKk8ljEhVpmzbnyuggy3tZlvdyzB1DqK3najx1cozVAxu8sbST4ZLjgFwC6B2DiK/XI7WdLTMaj5AMB2g2VQ6LNdyiRNThlmsrGjGfh1LVrvNZFnzuj57lbxa3XudNeNDeSZOpy+UiFosxPT39gIJou91meXmZ559/nuXlZQ4PD+l03p0MxJHz+aCg1h/WfN5jy+fzHBwc8PjjjzM2NvYtQy0fhvPJ5/PcuHGDaDTKY4899gBtxaubTN+t+cUAPzn5aSJSFICt1iZjgsMIbWgExRhReZi79W3ut3YYtfo5Sqtl1TxDHjv1tN/JcCY4Q1we5HZtj9XGLjMB2zkV1CpROYDbURpdru5yLXKGqmpxp3ZAVW/T78Cs7zcznAn1BOQUw+SEf4SlyiFlrYWpafidZtbVRpYLIVsC4UJknKVKFp8Dfy4qNkIu6EQxy5U0j/dNkJSjzBdSLJbSnI8dEY+qtA2Nfo+fqOxFsCRautF9KI87IBOLuqoyGxhgpZR3JLBN4h773mzVKkwEI1yNDbJeLPHKcf0dYK1VZzYUZSwQxtIFlgt5piL2tT8e8cQ9XkwdGqrWdWbrpRKzfXa/UcLnI1dtdXtiwE6xHTmg6WiU+8UqJ/t7TZlbtQYTAS9YMOX3c7dQZTpu1/M007S1eeJRRsJBag2F7UKFiZg93tF1svUmE/EIJ+Nx7qYK5OoNxmK201Z0g3S1wfXJEZb2smiGyX6x1mUpMEwLvyTTbNsRswWsHuQ5M2w/P6f7wrxwb5/z48cWFDsZLkwkOT+cZP2wyMpejvMTPVj4fqHKWCxCvWlP6plyA79XJuRzM9kfZXU3T7WpMOwI1pmWxf/9f/06N1b2eDP7VuorRwqi586d4+mnn+bSpUuEQqFuS8SLL77IxsbGO+KhO9rugwIcfBj5vMeWTCZ5+umnv+VaypG9Wkr7ndhRFLa4uMjs7Cxnz559zYP3MJtYY+44Pzn5abxO6uzQOmDMmiAsjXCnvkVTa+I2HbJJIc9Zhz5HMVXaZpsRd5IJ3zQ3K5tE3UGOnNNhJ8eo1063HHTyDMlREoRIeoZ4vnifE47OTlVr4RJchJzo6G79gCvRSU4HxlmuZlippZhwVEhLVofBQLjryPbaFWbMCK8UD2nqKvstW9oa4LBdZdAbwo2Li5FR5nNZBnwOiSUWa9V8V/a6qLYZC8QIunysVYvcreS5ED8GUCimuRQf5Fx4gFyzxd1qnomQPTHn2i0CspuQJCMiEHB50E2r2wtjC8D1oifDNEnIPgrtFm1dp9BuPRDxDAdCxEQvu9Uq25UKE9FoN+K5k8/z2NAwLl3gsFbnVjr7QMSzkMrw9Ogo6XKDpqqxnMl3U2qmBam2wpOjw2zVWuiWxUG5RtJj18Taug4WhEU3lXaHlqpRbnUYdkABbVUj4fFRdeDUTUWj3lYYciKq2f4EqwcFhh3m6uMsBReGB1jcTnNQqnGiv6eWej9T4sJgnI2sndq8s5/l3FgvIhIt4RjmDZZ3slycHESwYKovxsJGipnhRJf6J1WsMxIPoyo6mm5Sbyk02yqDMfsYz08k+aV//zVefBMH9LCIRQVBIBwOMzk5ydWrV3nmmWeYnp7GMAzW1ta6PHR7e3tvykN35Azf794jTdNQVfVD5/N+2MMMa99t5KNpGgsLC90obGRk5HW3e1iRz5GN+Eb58Yn/jkHPKGFrmPtmGp9oO6OyUSXuDnfpc+41NjkVmERCot89hGKJ7DXtYvrd+jbnHcJQxdSoGw363BG8goyED9n0stuyt91opJgOHjWhVom7A3gEiZOBUe7VSoiOg1FNnXy7Sr8jNrfdLDId6uNccJi2DqtWg0sx+zq1DI2a1ibptSebVLvKRxInuFVI0zY0bhYOuJIYcfZrkGrVGPOFuRwZYSGXRXaJXTaCxVK2l3KzQDRdWKbNNNDSNWpqh0Gfndrbb9SYCEWZDfVxK5fhdiH3ADnofC7Npf4kp30htqoN7pWLzDjkoMdRbScjMXZLVRCEbsSzVix2I54T4Qj3sqWuuijYEc/lIfs6nuvrY2Evw0zC3nc3pdaXsFNi/QMspXIMB/3ONbBomRZJv5e4LJMv1Tgs10g4IIJaR6GjGwwE/cwNDLC4l0E1DPqc71fbCppm8NjYEIs7GWodhbamMxCyr0tT0Uj4fJTrdn9OR9PJ1xqMJWzHPd0f4366ymjU3p9lwephnjMjfZwfTbK0lWFpJ8P5yWPy4DsZnjo9ztq+XVO6t1/g9Gg/AuCVRVpNFY8k4nNACdVmB0U1uDCZZOV+Ft0w+aX/5a+5uXrwuu/Ce4UskySJ/v5+ZmdnuX79Oh/5yEdIJBKUy+UuD93q6iq5XO4B+pgPCmbdaNigjw8BB99m9m6cwxFnnGVZXL9+/U2jsPcCyn06OMv/se+/ImMWsLA4bB8QNexJPGcUGffb9DmWBaYpMOY9wXJth4NOjn5vGFk4Uh7d5mzIRqvVtBZD3n5CUoLVdoY9q/yARMJxVdKK2uJseIo71QxltcWtyh4n3XbaqC0YIAnE3H5CkhfBcoMgUXd0dW6XU5yLHGn9tBEFgblQEj9+ns3scOmYyuit4iEXnJSbSxBIyCF26zVMLDbrNsrteMrtscQIZ0L9vJJPc79a4mTkSOunAy6IebxMBCLk6w5/lfPdhXymq0AqWCCZNg+ciYViGGSOMRcU2m2mwjGqTYW6qr5uxPPUyBiZapOaorCQznL1OGotneWZsVHWM0U6us69XJHZ/p7Wz36lypNjIywe2kzSVUVlwEnZNVSNqM9Pwh+kqZs0NB3DNAk5Bf1yo82wz89ByY5Oio02okvopvxGImEOC3ViTr2l3GxjYREPeJnpj7G6n6et6vQ7NDhNRaPW6nBxLMlupkJHN8jXFSadFJ1pWlgm6Frv+V7eyTI3bkdEFycGeWFlj4tTvfNf3ctzdryfE31RDvJVdrMVhuJBPM45uCUX1XKLWMiOrjXd4Bf+/VdZWD/k1fZ+EIsKgkAgEGBsbIyLFy/yzDPPcObMGSRJYnt7m+eff77LQ1ev1z+wlBt86Hy+7eydpt1SqRQvvvgiQ0NDXL169Q1pco7sveKOeyJ+jY+7nwZAx0B3ayTc9ip6u7XPXGiWPnmEO/V9tlqHjHjttNVeO/uqPp99zoWmGPWOc7O0i4CA25HFXq7tcDFiO6e2odLU21wInaCpC9wobjEXOaYsqpY46bfTRgWlwXQgiRc/S+UUi+VDrkTtKMbE4n49z3SwDxeCzZagmdQ0O0V0q5TiI332fi1gtZrn8cQYoiGzUEzjdgmEJPua363mOe+wV58IRG3STodmRzEN0s0G40HbaWRaDc6E+2i0VXLtFndLBS709VbprzgS2Gej/cxnM+y1W0w6KbYjctB+n59r/UPcPEgTdLu7qLbjEc/FvgFe3DvkbH8PBj2fznBp0P6tK8kkL+2kOO04HN002S5VmI5HcQGnYnFWUvmuumhT0+kYdkQzEg5RqLRodlRijkOpKBpBn4+QR+ZULMLtwwIuQ8cnOTLstSZBr5tLI0nu7uXIVBsE3D1anHy9xUg0TKOlohkmpUYbEIgF7P0H3TKVapuI81nRDQr1FqOJMOOJCPuZCtuZMtODPYaQu/t5njg1wvKWDQtf2spw8UTPAUm4kEWxWxPaTpcZ6wsTDXgRDTjI13AJQtcBqZrB//qVBZY30hy3D0LPRxRF4vH4a3joms0mGxsbqKrKnTt3XsND917aEdjggwA6vJ/2gTufh73SebuRiWmarK6ucvfuXS5evPiWnHHH9/9e6AUVCgWSqRhnFJu/rWW2AZ1h9xAjnmleKm8Slu3JUzFVmnqLhEP0eb+5z5nQBG5BZto/xd1aDsWhltlrFxjxxLvZ+zu1Xc6GRki6o4SkKIedapd/bLl6wLTLTsuYWOwrFU4FkpwJTPBCbh+/5OlCp29VDjlBwDkeA9OC88ExbuYP2ayXmAz2ONVeKR5wrW8ELLgQGWa5mCco25Nlqt2g3+d/IOX2TN84e9UauXaT5VKWc47MdUNXaWg2eei12DA3Uof0+fzdY1osZLsgg6QvQL7eQnImM92yyHbaXXbqSqfDTCjGlkN182pU251cno+OjnM7bUPWj4MKAJbSWT46NsbigU28eb9Y4lSfPWErukGx2eYjQ0Msp3LUFZWmqjIQtK9XTdXoD/iRTIFKu0O23rQdiFMDSlcbnBsYIOUgxkqKTtzvw+0UWARFoVCqIYuO9Hq5Tl/Ah0+WGI4G2c9V8UgiQY8Nn8/XmngliYlEGE0xOCjWsEyLiNceb3RUJMGFV3DRVnWbx61YZ3IgCsBYIsKd+zlOj/TUTZe2M1w4keTCRJLlzQx3trOcnxo85oBKnBqMU6zaq/hCpYlHEokGvUwMRLi3mef/+jt/xcpmj6b/USAWPeKhm5ub4+zZs/h8Pvx+/2t46I5UQd8LO+rxedR47h62feDOBx6uA3o7zkdRFG7evEmpVOLJJ59kYGDgTbc/bg878rEsi+3tbW7dusXw0DDfITzOR6KXCYgBIlIS1XKx07Jf0JVj9Dk1vYnkSF9bFmimwLR/isXqHi1Doao3GHA7DAlKnlHs/xcRceHG5wpyv5Ej3anS7+0h4rasKpeidp/RCf8ANdUk07a1XDbq+QdksHdocj48yKXIGPv1OnutCn1Os6itwdObrHcbZZ7qO8HN3CENTaWmKgw6IIStuk0AGhAlLkWHeDa9z0VHU8ewLLt3x6HS0QyDcV+UTUe6d71S4nQ80T2m+VyGp4fG6CgGe/UaK4U8Z+JOCtEwqCgdJkIRzkT6eOkwRfgYOegRqs0FXBkY5Nnt/QdBBUcRjwWXk0lu7Bxwxol4VMNkv1rnRCyCW3Qx5A+ykS8z6NRgyq2ODSpwywz6vRwW6lgWXYdzWKnTH/Dhk0QuDSV5eeuQZCSIR7Lvy2G1yXgixrlkH9m6RqrWJuFz4/gfdgtVpvoiWJpFra2wX6zRFw7gddRPG22ViNtHR7UXJYWa7ZhDXpmw143W1inVOgw4rAUdVSdXaXJ2tI9qtU1L0dhKlTg10kPxKYqOcIzaYXkrw4Vp2wHNjSeZXz1kajiB6DjNbKlBf9gPmp1+aysa//Pn/4J7O3Yt8lFwPsfNsixkWWZqaopr167xzDPPMDExgaZp3L17l2effZalpSUODg5otVoPjXHh1Sqmf1ft0bnTD8neyvmUy2VeeOEFvF4vTzzxxDu+yQ8z8jEMg9u3b7Ozs9MtglqmxX87/g8Z8U5zt77DQSfLmC/R7cFZa+wyHbDTWHm1woRvmGHPGEvVQxaqW8w5QnA1vQ2CScRBsu1T5SPRU/jFKPPlffbbJUYdJNtOs8CA5ek1j7aKPBE7xVIpy16rDIJFzGGovlNNc8lpLA1YIpou0NA0OoYtge2VpG4abamc5mpihHPhJG3F4kZun7MRO4opq3YhPOb+/7H3p1GS7Wd5J/qLeZ7niMzIec7KrMqqM1RptkBSg6FpbKsxarHclo3axiAQ+IJpQHJz3WAw+DLdxbTEhbvElXALlvG96jYCNJ5TVedUVc7znDHP8zzs+2HviMg681Clc4T1rlUfsiJix44dO/7P/33f530esfxTaja4YvWxlhZLO/fTca5JHjvNbodYtcxVmxs9au4lY1i0WvQSvXsrk+KqRDK45vByNxJlwmoVr7EgcFLIMyRJ+ChlcswKNQmpqXtReNhBdD+T4R3+IKtREfBfmPFsJ1O8a3iYtUiCTlfgOJtnQiIZ1FptKs02iy4X+8mM6B7aFXBIPZlkuYJPr6PT7FKsNwjniziNenQSQJylC6z4fexFxZmbk1SOkUvePHIBZF1Zf5GLlupMeOwoZGBWK4klCig77T4gnaXyDNnNmHVqnHo9W+eJhwApW2lgVqvwm0zEc2Vy5RpCV8AulccUMhmNagejRIJodbqcx/NM+OwMOcxEYnm2ThIsjA42bxvHcW7NBdk6FK/fwUWaqSEnMhmolHLa9Q7dbhejXrxHqvUW/+Y3/08Oz1NvOzO5FxIOVCoVHo+Hubk53vGOd3Djxg1sNtuLdOhSqdSb0qH7dubzLRovBz496+179+4xPj7O0tLSG6qpPqrMp1arcffuXer1Ordu3cJqtSKXy+l2u2gUaj4x/j8xrBMXvbNahGnjML0h1FAtwaR+mFHdBPdyFyhkij4tdq90wYyxN4RaxKLW41SacbdtfD190hcIrXaaVNoNLBLNOyqrsGjxM28IUG/C7fQpM5LRW6JewqLWopccPx9kw7zLOU6jLWerkOSinGfMIJIBwtUCXr0JtUyBRq6g25GhQkWxJc7lnFRyTEh+PvFaGYtay3W7n2Slzu1EmOuuy4OlCa7YxXOYMjuJS8rKIErnBEymfplsI5XgPb4R1hJiGWwtmWDRKQJdo9Mh22owb7IgtGA7lUavUmGU+ns95QKLWsOowco3zkOs+Ab9owexOFd9HlEVwWzj7nmkTypodjrES2VGrBbMGg16uZKLbBG3xEpLV6poJDvrCbuVULaCRqEYAE4mz5DVjEouY9nn4fZRmHHXwL20580z7bITShbYiaSY8Q08jg7iWRaHPZg1OgqNNtFSgxH7wN78JJll1GwknBJVqM+TeQJ2M2qlHDmgkSmoN9voNeL5pItV1HIFLosel0HPaTz3EGW62e5QrTWxatTUpCxq7yzF/Ij4Pc0MOXl+M8Ty5ACw985TzAy7mPbauYjniaaKWA1aDFLZz6TX8G9/+6+IZ2pvq8znlaR1ZDIZRqORYDDItWvXePe738309DQymYzj4+O+Dt3Z2dnr1qF7VHYKb/d4W3zTj7vs1pPJ6Vlvj4yMvOH3fBSZT09KyGKx8MQTT/SN8XrgA2BQ6vjZ6X+OQ/LsOaycsWgeRyNTM6IbIVyrkK6LLKjDcoR50xDinI/AeS3BqN6FHDlmhRmj3EgYsXS2Xrhg0SySBXKtKvIuGBUa3GoLpaaAXKai1BaBIlTNMiLN7pxXsgwbrNhVehbMfr4cP8MrOapWOy1yrSpenTiXcFhKc90RwKE0cS8VFeVxJE+eeqdNulHBrzehlSuxKvWUm206XfE7u5+OccMtgmdXEDgp5HiXO8haIkGiWkEhl2OTBksPCzlm7U6sKg3jRhtfC12w4hZBQwD2shlmpJKbX60jXWn0HUXDpRJuvR6NtLhkqzVmrQ6OsmI574WstvNsgRWXh/1URiQV5PJMSMoDlWYLmQyCRhMXuQLZquhL02OlRYtlph128qU69XaHaKlGwDpwNz1KZnliOMBWWMwW9mJp5nyuPoDUWy0MSjWNtniNdiIpUaVAAKNGRa5Qw2EaqL6fpkssDLmRAxM2C1vhLD6zun+843iWEaeFMauB81SJUKqAxzKQzUnly4zaLKSLYs+pUKnTaHVwWQxo1UrUgpyzWJ6g29L/nvYvUlyf9BOO5OkKAhtHUglOCq1CweXJoXCygN2ix2nR0210SGUr/OmXQlzECrxd4vVQrRUKRV+H7umnn+bpp5/G4/FQLBZ58OAB3/jGN16zDt1rNZL7Vo+3Bfg8ylAqlQ+BT7Va5c6dO9RqNW7evPmmfX7eTObTy74ePHjA9PQ0CwsLD93cl8EHwKG28rMzP4xBoUMmyGl1ZYzqx1gvnJNtlejIulikGZyd0gXLknxOs9tGr9Axqh3iQe6Cg2qCIUEcQgXYL0fxy8Sbu0CTeVOQfL3DfjHJg1yIazax51Prze5ojAgCqGUqgnonmzmxNHYuVFm0iDvefLOOIAjY1Tqu24a5m4hIatWS+Vk23meyFVoNHBo9I3o7q+k4e/k087ZB6eZeKsqKy4dba8CrMbGaTPQHS2OVMhaNFr3Up6m0WsxanRzlJdBIJlh2isdqd7ucF/K8wxvgpFgh3Wggl8uxSooVJ/k8Y1YrUzY7tXqH5yKx/twOiKy2az4PXoMBrUzB85FYP+NptDvESxWCVjMBk5FKtUmyXMWhF0EgUaqIdtUaNfNuJ5uhBHaDrp+pHSWzTLrsKGUyrnjd3D4KM++/pEwdSXEl4GHcYSGRKbN+EWf5kgrBZijJyogXl05POFNk8yLJ0sjg8e2LJO+YGOY4Li7m4UKDGb+k7ydAq1Kj2Wo/JJsTcFhQymUsDrt5cBDFph9kJ7lSDRkw43EQThWoNVpkCjWGXCLpxaLTEIkVGL4kVropAdB80MXmfozdkwTz4wOlhEgiz4jTQrkisshqjS6f+q2/5jya4+0Qb0ZUVKfTEQgE+jp0i4uLaDQaQqFQX4fu+Pj4JXXovg0+36JxOfNJJpM8++yz2O12nnjiiYdkct7M8d9I5tNzZO1lX8PDwy96zgvBB2BY5+X/NvlPMSu9rBcu2CieMGsUey6ZZhGTSodOLqlHF8+4Zp5gTDvCWi5KulnCphLBKSwrPSQYmpPVWTIP41TZ+XrqlCGDtV/qWcuFuGIRs498q4ZJreWaJchaNs79bJgVx4A6fVBKMSOpFcgEGWN6J9uZJG2hy2o2JrLc6CkbpJky27luC7CbyVBpN/v9oY1sghXnoOTWancIaq2cFPJUWi1KzQY+ScvtrJhn2GRhxe4lmi9zNxblunfw2s1MigWHC41czpTJznYijVMqscXLZSxqdZ9koJYpMMhVFCUa7WoswXX/YMdeqNUZNphIlCp0usKLMh6TWo1OriJTqZGuVFErFZi1YkYYzhdZdLsIpQq0Ol2OUzmGLIb+j24/nubp4BBbIbHhvhVJsjQ0AJByrYldq6PWEMtb6xcJro6I56ZVKiiWG1gNuv5ivnGeYHlEbPgvD3t4djckUqL7QqFZlkY8LAfdXGTrRPINhu2DnudxLMvSkJNdiQAQThVwmfXi0Kgg4DUZSGbLfSHRSr1Jodwg6LZi1mhI5SqcRrJMDg1ICYVird9PA9g5TrA4KZESRr2s7UTxOExo1OIiXyjX+dU/+FtCbwMAelRDppd16J544gne+c53Mjw8TL1eZ3Nzk69//etsbGxwenrK3t7eGy67/fIv/zIymYwf//Ef7/9fPB7nox/9KF6vF4PBwMrKCl/4whceet33fu/3EgwG0Wq1+Hw+PvrRjxKNRh96zsbGBu9617vQarUMDw/zK7/yK2/oWlyOv7Pgc3h4yPr6OvPz86/bE+iV4o1kPvV6neeee45yufyK2ddLgQ/AnHmc/3nkQ8iRISBwUo0yrhcXoUg9jV9vxyDXMmucYDUf6ZcU080SRpW2r1i9nj9ntGtCL1czbhjitFzoU7J3i3GWpNkdQfp72uRmyTxMpFQl3az1ra0fZMPckGZ3WkKXcDXPTccI2VqD51MRhg0DI7f7mQg3JFDRKZQYZBpStao4gFku4jUY+/49D9Ixbjh9PGEPsJVMs5FJMGsTF7Jso46AOFiqkMkwyTW0Ol1avXJdPMYNj6QDJwjk6jWuOnxsp9KikkGng0Mqb54Xi3iNRq67vGzGUqzHk/25HYD7UTHjWXA4iWfLrEcTfVbb5Yxn1ungNJmn1Gj0SQWxYhmbTotepeSqz8PzJxECVlOfNHCWLzNuF3tV824Xzx6GWBoeZAMb4QRXh71ixpMt8eA03gccgLXzOCsjXoJWCyeJHOtncVGJWor1szjvnB5m81Qs4W2cxrl6aSZH1hU3Cb33u8hWWZT6NdNuC2tHSTymQYmuNzR6bczH9kmCZK6MTq3CrBevZbnawKbT0pQGU9udLhfxPBMBOzaTjnKxzuZBnIWJS1nZUZybi0G298Q5n/NIDr/TjFIOWrWCSqnBz/z7/y/heJ63Mh6XnYJarcbr9fZ16FZWVjCbzdy9e5ebN2/yG7/xG2xsbPDFL36xP3D6avH888/ze7/3eywtLT30/z/0Qz/E/v4+f/mXf8nm5ibf//3fz4c//GFWV1f7z3nf+97Hn/3Zn7G/v88XvvAFjo+P+Yf/8B/2Hy8Wi3zgAx9gZGSE+/fv86u/+qt8+tOf5vd///ff1HV4W4DPo+z59BbvaDTK008/jd/vf5VXvL54vZlPj11nMpl46qmnXjH7eqVj33Is8C/GvxeAttAh0czi1zqQCTLUMi3D+gBr+XOa3TbH5RgTBnFBCdey+LRW5AIggM5gZkIfYC0XJtusoJTLMCvFc1rPR7huFzMyu9qAQlCRqdcptRuclbOMGO392Z37mTDjcgN2lZ5hrZPdfBqLSjzOfjHNnHVQQrqfifIu9wiKrpK1TIJSq4lHksc5LGSZtIjKBi6NnkKtRa832+p2uSgV+5YH8WoZv8HEnMnJ/XiMrXSKq5fEQ+8lYlx1e5m2OqjV2mwlk/ik613sdNCo1Vg0GpQyGQa52DDv/QDW4omHSAayDqiR02h36HQFTjL5vnROpdnCrdNTqTWot9ukyiKpwCTRps9zBa75vexHRTvtg2SWKbej/16nuRJPBQPsRERW20YowdXgAICKtTp2nb7f0F87j4tupIBKLqdSbWGQZnhABJxlCaCuBb08uxNi6TIgnYpK1YtDbjZPEmycJkSVgp4VxHmSWzPDHEfyAETzDSZ81v7ru/U6mUwBpUSji2VKmPQajFoVS6Metg7jNJsdXDbxO222OqRzFUacZvIlcdh4+yjBwrh4fcf9du6vX7A47aX3ZZ9FcthNKsZ8duKpEtl8lZ/5pf9CNPHW9YC+GfI6MpkMk8nE6OgoP/ADP8Dx8TE3btxAoVDwr/7Vv8Jut/Pd3/3dr0hYKJfLfOQjH+EP/uAPXrSxffbZZ/nRH/1RnnzyScbHx/m5n/s5rFYr9+/f7z/nJ37iJ3j66acZGRnh1q1b/MzP/Ax37tzpSw199rOfpdls8pnPfIaFhQV+4Ad+gB/7sR/j13/919/UZ39bgM+jimKxyL179wC4cePGYxHmUygUfZOpV4qeCd29e/eYnJx8UX/npeLlMp9efLf3aX5g6H0AVNsNbCoTo/oga/kw64Vzli0jgEBL6JBo5PtU6tNaimDXjE/tZqMUZ70QZsYkLgTxehGnVo9WympWs2He5ZwiU2uymY9TbNfwSnpte8UkC9LsTk/qx6eysJNPkm3UkMtlWCUA2swlWHH4USFnxTrE7VgEr1Q2yzVEmZgezXo7l+KdnhGajS5H+ayoxyapFVTbLbKS5cGs1UkkX6LV7fZLOavJODe8Ax04pSBDh4JCo0Gt3abYauGXShjRUomAycyMxcFmIsVuOsOiZwCSD2IJrnpcrDjdrIcTbMdTzHvEkmKz0yFeLBO0mLnu8/LgIk6z3e1nPNFiGbtenNO57vNy+yjMqMPap8jvxtMs+N2o5TKCBiO3j8J9QAGxpHYt6GXSaSOeLvPgNNYHFBABaHnYw4TTxmEsw/p5gqVLPaD1szjvnBpmXVIh2HiBLlu93kJ1SSh0/STOhFu8LpNeG/d3w1y5RBA4iuZZGPEwHXAQTtWIZKq4zdqBkGiqyLTfzkkoC0C+VEPoCDgtemQI+CwmDk/TjPguKSWcJLg27SeVLNHpCGwdxFmc9vUBSKeQ0260UUlqDpl8lZ/+5f9CLFnkrYi3Yu7Ibrfj9/v5nu/5Ho6Pj9na2uKf/tN/+oob9B/5kR/hu7/7u/mO7/iOFz1269YtPv/5z/eHYj/3uc9Rr9d573vf+5LHymazfPazn+XWrVuoVOIG5/bt27z73e9+SP3lgx/8IPv7++Ryb7w8+ncGfCKRCHfv3u0Lgj6um6Z33FcCiW63y/b2dt+ELhgMvqbsTi6XIwjCK+5yPjr8nfz33ncQ1A2zmg9TaFUwSUKkG8VzlqW+TrXToNqu4xR0BGVODqhg1YgEgI7Q5aKWYVSiR59VMowZ7YzpHPi1Dr6cOGFGIhLkmjVkMvqgspGL8ZQjyKzBy3Grxm4pzbRkCherlbBqdQN7hXqNJxxB7qditIUux8UcEyZxMYpVy1i1WiwqNTfsEka26QAA+zxJREFUAb4eDjFlG/QKtrIp5u3iwl9oNBg1WMmWaxQaDQ5yWabtg0zinlRyW3H6eBCNs5fJEJBKbJVOh1a3i1OnY8QsMrjagtBnmm0kBn48arkcodVfC8UB11SWKUm5oNJo4dUbiOdF5mAv4+n1eC6yBa75fGxHxJ7JfiLD7CVa9HE6y5zdwrnkFnrZ3hqgUmtiUWuot6Qez3m8DzBKuYxmo4P6Uhlo85IS9fKwlzs74YeUqXu6bJMeG2fRHBsniYcA6ThZ5uqIi1iyRKvTZeM4zvIlACpXG+iVqv71iGZrTAREJetRp4H1vTh6NaiVkiFkoYoMGSuTfg7PUtQbbdKZMkGvFQCdRkUqUer/DbB1EGNx2sfUsJ1wvMbJRYYRnw2lBEDFUp3f+L0vk0h98wGo0+m8ZV4+RqMRmUzG1NQU/+Af/IOXfe7nPvc5Hjx4wC/90i+95ON/9md/RqvVwuFwoNFo+PjHP85f/MVfMDk5+dDzfvqnfxqDwYDD4eDi4oL//J//c/+xeDyOx+N56Pm9v+Px+Bv9mG8P8HkzZbdut8vOzg57e3tcvXqVycnJxyL+2Yvezfhyx+/1d4rFIjdv3uyb0L2WeC3AJpPJ+Gdj/11fWifeyOPSmlBLytcbhXMWzEPIBTn6uhq5QkesK1Jm1wshVmziEGq90yLfquLVmtEp1KhlWvRKPWcVcSe7U4gzK835xOslbBodOrmSq9Yh1tNJ9JI8TqvbJVItEjSIbLSzco5Rk43r1gDhYolnEhf92Z1Gp02yXmHIIJ57q9Nh1uxiPSkNlkp6bEAfrBZtThasbm5HImiVyr4sz1Y6xZJEq3ZqdRQqjf4i3+p2ybbbjEqDpqlqlUmrnXq9Q6pS5SCdZcY5UEV4EIvzVMDPiMHCVjzFZmxgad3qdgkXSozbLSy6nNy7iNHqdPustmhB7PGYNWoW3S7unDw8p7MdFVlrZo0at9bAZizPrMvS/z5XL8SS2ozHQShVYO08LvaApNi8SLA45GLK5WA/kmYnlGJuSATlnhL10xNDbJ6I5nS74RSzQwMdukq9hV6potUW76ntswQLUo/HplNyFs4z5R/co+vHIkPNazOSy1fZOIo/lBEdhjKsTAdIpMWZq3ShidOi65fkjEo4D2WwGCUafr1FNldl2GNlyGYmlixycJpidnwAkvlCFa1C3i8DHp+nGfPbUChkTAYcbO3G+De/+JckUyW+mfFWKS68VhfTUCjEJz7xCT772c++bDn/53/+58nn8/z1X/819+7d45Of/CQf/vCH2dzcfOh5//pf/2tWV1f5q7/6KxQKBT/0Qz/0yBQbXi7eFuDzRqO30OdyOW7evIlLEn98nODTA8qXOn4+n+f27dvo9XqeeuopdDrdi57zSvFawAdAIVPwC3MflmZ74KyaZMLoEgkJApSrNbwdMyeUCbcKuLUmlIJ43qv5C5at4uvyzRoBnR2bwsL9bFjs+TjEYda20OW8mmPMKC5M1XaLJesQ6+k4lXaTe+kwk0pJvr/dotxq4tYa8GlNNJsCzW6XtmS5eT8d7cvllFpNau0WTzkDpMs1nktEmXOIE/AgCoL2LBGCBjPlRrvPRAuVingMhr7lwVoywbsDQdqNLse5HOvxOEEp46l1OuRqNfxGIzc8fu5eRDGoVX3x0K1kimWpxzNsMnOWymORJvkFENWp3U7pesswKNSiRA6QrtRQK+T9jCdZqjDrcHCYyACinfW8bwAA4VyBBbeLi4zYv9hLFR4quTWabfRKJU1pjmcrJAIOgFIhp9sS+kDZFQQOo1lmfGKWuOh3sXoUZdrvkO4dgaNohmm/gyG7iXSmwu5FiplLgLV3nuLauBdaAqVak82TBIuXMqJQIs+wXRQnBdg8jrMkDY167UYOjpJMDA3AO5quEPRamQ06CcXK5IoNZEIXnUa8nyvVBg69hppkaNftChydpZgZc2ExaqmVGuwcJAn6Bsy7o7M0N+YCHB2LWWQyXebf/N//kmT6mwdAb2Xm81qUV+7fv08ymWRlZQWlUolSqeSrX/0qv/mbv4lSqeT4+Jjf/u3f5jOf+Qzvf//7WV5e5lOf+hQ3btzgd37ndx46Vm9G6Tu/8zv53Oc+xxe/+EXu3LkDgNfrJZFIPPT83t9er5c3Gt+y4JPNZnn22WfR6/Uvksl53ODzUsSAcDjM888/z9jY2Bu2An+t4AOgVaj5d4sfYVgnLir75SjXLGO4BRuHjTwxRY0xg/jYaTWNB13/y94qhLluDTKm93M7FUJAuKReEOKGfTDnk2/WeMo2QqbW5NnkxUPzOKedCpNaMYvJNGq4u2qa9Q5HxSwb2QTXL1Gnt3NJ5qxOTCo1fq2ZcLGERirPbWaSXHN56W1911IJ3uMd4TRb4LxYoNZu4daLQHeczzFutSEHbrj9PHMRZtIhAmQXiLVazDh6zLQ2AYOZc0k89DSXJ2gdMPHWYgneHRwmU6yQqlR5EImzHBAXYVGdOseS141FpWUrlqLR6eCSlAtipQpWnQaf0YBbo+feWYwxx4CuvhVNsTzkwWPUo+zKuXsSeajEtnYh9nAWfS6Oohk2zhN9e2sB2Iummfc7mXDY2IukOY5nmfKJn7Pd6XKazPPUeIDtsyStdpezZJ5x7+DxWr2NVaOlUm+KhIlYlkkpwzFoVGQyFUzaAWlhR8qIDFoVRqWaB3tRrlxiqG0cxbk27UNodKjUmuyeJEUCgbQ5bjc7yNqgkO7hfLmF2aBDr1Uy5jGyuRcnV6jgsIkbsk5H4CKSY8JvJ18Qs6hQrMqVGfGemRpxcv/BBePBS9pwqRK/8Ev/P5Lpb04J7q3KfMrl8mvKfN7//vezubnJ2tpa/9+NGzf4yEc+wtraGtWqZDXygs/waqSp3mM9Fe+bN2/yta997SGvoy996UvMzMy8qbnJtwX4vJ6ymyAInJ2dcf/+fSYnJ19yoX+c4AMP0617Zb/9/X1WVlYYHR19w2XEV8qqXiosKgP//soPMab3MKULcid7jlbWsyBok2uW8EpyOlF5lQWzH51MyYJphPVsmo6UmZxXcwzprSgldej7uRDXbH5G9XZMcgPHpTwGCZw2cnGuOSQFAgRCrTLXbD6m9A42qwVUMugRde+nY1yTwKotdFHJ5IzqbGymk0QqJZHoIH13D1Ixbnj8WFQa5sxObkfCTFrFxTJTr6GUy7D2qNKFAu/yj3A/GqMrCNyPx5mQNh+tbpdQocCyy41bY+ReOCb2ZaTX7qfFjEYG3PD6ePYkzMIl0sFGLMmCVHLzm0xkSrU+TTpTqYnWAJJyQbPdwWswkiiKPZz9RJZZj7O/IGfLVYIWC2nJb2j1Is60c+AV1e0IyJHR6QoivT2SYlayt5bLZMg6IEjCna1Ol4tUgXFJaXra42D3LMmIy9o/l1i2yIjListsoFppchLLMSINfbY6XUKpAjNDTux6LZFUkXi+zqhHvD8EAU6iWeYDbqJSf2XrKMGixFDTaZRkUhV8rsH5b0szOw6TjnKhwcFpirGAfQAWmQrTQRfZvLho1eod6rUWFqNKnBuyatnaizIxcqnXtxdjZSFANJxHEODwJMX4iAO5XAaCgFmr5uc+9ZekvgkZ0OOiWr9SCIJAtVp9TUOmJpOJxcXFh/71+jaLi4vMzs4yOTnJxz/+cZ577jmOj4/5tV/7Nb70pS/xfd/3fQDcvXuX3/7t32ZtbY3z83P+9m//ln/8j/8xExMT3Lx5E4Af/MEfRK1W87GPfYzt7W0+//nP8xu/8Rt88pOffFOf9W0BPq812u026+vrnJ6e8sQTT7xsI/9xg09v59BTx87n89y6dQuHw/HqL36FkMlkr8p4e2F4tVb+pe87OSwmEIDjbravSl1s1xHoYFPpEQTodGTMmka4l4lQ7TRJ1EoM68TF56CUYs4iLjRauRK6CnQyLaflHIl6GZNa0weg1WyU644AggCLFh/npRJNCchirTpjFns/u1jNJZlU6JhVW9lIpTgv5QkYxF3dSVFUs+4xwsqNJvMWFzuZtAgipSJjFgk8K2VskuOoWanlaxcXXLvUBD2uVbkiqZOPmK2kSzU60sIdKZZw6HX9kttuMs27h4M8CEngFYlxTRos7QoC+6kMN4MBotkS0UKJYr2B1ywuBj3lghmXnXq1zXo4wbjL3v8MO7E0S0NuJuxWcoU6989iLF/q4Ryki8y4LFwd8rB9kWQnLLqHgkhwOE5kmfU5GLNZ2QunCaWLfcBptDvECxWeGPOzf56iUm+RzlcYlgCt1hTN6Jx60cG03myTzlcYcvYARkDeoW+h0ekKRNNlxvxij2rUYWXjIMbU8MA6YeckwcKYm2GbmUiywOZhnCtTgwzuLJxh3GunIFGqj87TTAadyOUw7LFwcJDEatKi14n3TqXWBhQsTXu5iIist7NQBq9TBHSdVkkklGdidHAOh8cpJkecLEx72duPE08U+V8//Z9JZ8ov86t4NPFWOZk+Km03lUrFF7/4RVwuF9/zPd/D0tISf/Inf8If//Ef813f9V0A6PV6/vzP/5z3v//9zMzM8LGPfYylpSW++tWv9mW/LBYLf/VXf8Xp6SnXr1/nJ3/yJ/mFX/gFfviHf/hNnZ9MeNxdpdcQ3W73oZTupaJSqbC6uopKpeLq1av9C/NS8dxzz+H3+xkaGnrZ57yZ+NrXvsbIyAinp6fYbDYWFxcf2Q7pr//6r3nqqadeM0384uKC/f19ukErvxT7K5rdDjJgzhRguyhOKS+Zg0TSecKCWN5YsQ1xPys6STrUBmQySDUqCAK8yzXBViZFulFFI1cybLBwVBJ7GVMmB6elHC2hi09rYlzv5OuJCwDsGh0qFCTq4oKwZPewkUkwbrRRb3QwyhQcVMSeh1WhQiaTk2uJaf1VhweVoOB+PI4AXHV5WEuJNWWLRoNBqSJaLrPi8tJsdTnIZmhJAD1nNrNbFHfqSpmMW/4hnjkNIwBOvQ4ZMlJS+WHG6SBTqeJQ6zhMZ1kJeHkQGbB1ln2i1fV1v5f9WAav2chJRqSSuox6ul2BTLXGgsdFt9XlPCO6gQIs+t1sR5MIwILXhVahZPUsRq8xsjTkZiMs9i9mHRaUShU7EdGOWimXM+6xcRDLoFUpGbVaaHU6nCbyAOg1KuwmPaFMgYWAi1iqhEGrIpoRd/9mvQa9VkWj2UaNJBSqVRHPit+FSa/BatCgVyo5DGUwaNXYTFrCUoajVSu5MiJaIIDYZxrxWzkOZ0EQWBzx0BUE9k6T/Wu1OOll7zTBiNPGaTjL4rSXrYPBtbwy7SMayZGTSmrDfiupXIVavcXsmJtUsohSKSeVrUjvKcNhU0MbkikRyKYmHByeiPfeeNCBRqHg4CjRZ995vWb+93/7fTgdj0eE85lnnmFxcRGLxfLqT35EIQgCwWCQv/mbv+H69evftPd9K+Jtkfm8WpkqmUxy+/ZtnE7nQ0KcLxePy/CtF91ul/39fUZGRt6wOvbLxWtVUOiV+w4PD7l+/TofnHmCT89/v2i3DRyUYyyah5g1jPBcOkoXoW+69iAXZtkmls4yzQoauZJRvZ05o5+vxM4YlejQjW6bRL3MkE7cWR+WMsxZXaxY/KQqdb6ROGfJLu7qe3M+/dmdbIr3ecc4yxeIVsuc1ErM2cTdbL7TQikDnUyGTa4iXajQaLXpfWOb6SQLkiJ1odFAIZfzlDvAaizBdjrFhMXavw67xSIrXi96pZJ5m4t74TjjdvH809UaKoUci3S/1Fttxs1WjtIio+9BJM71wKAvtZtI867RYVYv4lRbLVLlCkNW8bOnylU0KiVPBHzsR9LsJzIEL9kdbEVFaZwln5v9cJrVsxgrI4Njb4STTNqNTJj1HCQK7EUzfdJAu9vlLJVn1ufAbzRyEM2QyFcYljKWaqNFoVLnxpiXg4s0hUqdar2F2yqZ01UbqBUK3EY9yXyFYrVBo9npP16pNXDqdRTL4qJeqTcpVhrYDEoQYMbvZPc0yZBUgmt3uoTiBcZ8NpbGvewcJzg4SzE9MiBRbB/FuDE9xGlYvJbizI6YEek0SrKZMh7nQF07FM3jthmZCNo5O0uTK9RotwUc0mBquyOgV6ow6gflpsPjDAGvDrNRRSKaZ/8gwdSEu09OiccK/MHvf410+vFkQG9F5iMIApVK5bHMKL7d4m0BPi8XgiBwcHDA+vo6CwsLzM7Ovqab4XGV3Xrup41Gg9HRUcbGxh6558ZrKbs1m03u3bvXZ/n16Nzvdc/xUzPfhUamYtY4wkmxSK4h7jxj1Jg0OpBJDYntQoxZsxuVTI5bY0GJisOiuBO/lwmzIvV1Sq0G9W4bp0bPqN5GvtqiK8hodjtinyKfZNYigkqsVsKi0TJhtDGss/K34XNWJIXqdrfLWSnPhGQKl2o2WHEHELoKwrUqG9k0U1qpGS0IHGYzTNnsjJgsdFsC0XIJkzTktpfLMn+p0Zmu1Fh2eNhKpKi32yQqlb5tdbQkUqGvud0k82XuhWMs+S9J6UglN6NaxbjVxvNnUaZd4vUsNZpUm008RgMI4DMYSZeqfT+cg0SGGa9oPicOuMpRIqcrbc0fnMf6rDaZAEK7i05SdugKAifJHJMe8b00CgXtRpduR3xttdEiX6njs4mL0IjDwkWsgNMk9rbylTqdThenSY9Zp6HT6JAr1rCbxWuYK9fodgUcZh0LARcbR3HabXEIFETAarYFro672TyKU623yJdq+F3i+zVbHaw6LaWSmJ12uwInoQxTQScIAlfGvDy3fsH8JVJCD4CGnBZiiSJ7x0lmJy9p1VUbqGWKPnjkClWEroDDpmcqaOf8okQkmmcsOChfp7NNgh4LtZo4+3RwmCTgMyGTwfy0l7t3Tvj5n/uLxwJAb0XPp9ls0m63vw0+b2X0Fth4PM7TTz+Nz+d79RdJoVAo3pSZ0yudTyaTwWw2PzanwVcDn3K5zJ07d1CpVDz11FMvOo//IXCD/yn4bu5lwuRaVVGhQCPeyHvlpGQEJ9DudtHIVUwbfTyfDrNfTDFpHpjWrWYjfRXqcqvJhMFFptrgrJznQWYgGNrqdrko5xk1WpEjw6k2oJYpCZXEEtvzySgr0uxOrd0mVa8ybXGwZPPwTCSCz2zqv+dho8a8VQSVZqeLvNZEaHSIlsuESyWsKhUqaeHayeW47vVx1ekhVaxwLxJjQaJGl5tNqi3RtlomgFOjp9Zo05V6QOvRBCuBQd8iWa6w6HJxkMzQ7HQIFYqMSeKh2WodpULODb+P1fMY55kCfosJtUL86WxHUywE3Fzze1g9i4mDo5cynrXzOGMWHWMWA6fZKvuxNLN+aYao0yWcLbLgd2JRazhJ5MhWavjt4vdVqjWoNVtcH/Gyd54iU6rRFQZmb5lSDZNejdeoJ5YpkS5UUcvlWAxi9pkuVBh32foEgmyxihwZNpP4uMugJhwr9gGpXG1SrjbxOoxcGfWwsRslnSkz7B1kRGeRHE8uBNnaF0tsu8dx5iYkwoYgILS66LTK/uffPUowN+VBp1WiVSg4OErid1tQS0Ki2XwVr8NENi2W35rNDtFYnrGgHQSBUZ+N3d0kC3ODaxqOlBgbNnEgacPFYgX+15/9AqlHOAfUUzH5Zmc+PS23b6taf5PihdlDoVDg2WefRaFQcPPmzde9C3jUmU+xWOTZZ59FrVbz9NNPo1arH1tZ75XAJ5lMcufOHXw+H1evXkWpVL7k8/7p+C3+wfA1QFSlRi5Dj/jctXyYpx2jzBh9PMjEOK/k8EtltZ1Cgis2kfIsAHuFJDcdQfQyLc8mQji0erSSCOi9dITrTjGrqXZa6BRKrpg9PJ+IspNLM2d39Xe491MxliW5nCG9mU5bIFYSF4rdbFoyfetlZDmue7ws2lwclCvkmw1s0ucMVSsMm8woZDJRoaANyp7+miBwmMkxLdGus7U6RrWKa24PD8IxDtJZplwDVYQHkTjXh3zMuZwUy3XuX8SYl1hutVabdKXKkMWMWaNBJ1OSLFUwaSXzuVRWGiSVoVbIEdpCv4kPsHoe6wOQSgZ05RikTUKnK5IKprzi7t6kVVOttvsU5XK9SbUxKKkNWU2EU0WsBrF0mC5WUSkVWPQaTDoNrXqHSr2FSRL6TOTKGDVKjDoVyyNeHuxF0GlU/cdTedFt9uqEl1CiRq5UR4YMm5QxFSsNPBYjGamZX623yOVqBNziPTI15GBrO8r4sHj+ggD7x0lmx9wsTfnYPYiztRdjcWYA7vtHCRYnvMQle4ezUJaAx4JapcDtMHJ+mkHoChgNIimh2ewQixW5sTzM0aHYZ9rZibIwJx7TZtWTidcZHxvcY4lEiZ/6yT/lmWfuEYvFXtUz59Wi9xv8Zmc+5XIZmUz2bRvttyLC4TDPPfdc3yGwpy/0euJRgk80GuXu3bsEg0GWl5dRKpWPzM30peKlwEcQBE5OTvrlx6mpqVcs98lkMn5m/gP8Pc8MAIl6EZNchV2p46olyJ1UBK3EXCu06nToYpdsstdzUa7bAzhUOqYMHlbT8b6qwHEpy5hlwOy6nxZN4m7YhzjI5IhVy9ilSevNbEKywRZB5aiQ5d2eEXZSaY7zOdRKJWa1uCCupxNc9/gAgRmrnUihTG+sstRug0yGUVoETkpFxjUaXDI1q7H4QzbXzU6HcLHEqNXKqMVCrdoiU6thVIufdSeR4kpPPFQAOgJ6uZJKsyVJ6WSYltSrS40mRo0av8HISSpHOPew5fVePM1ywMOI2cJOOPWijGf1PMa4RYvXYOA8W2Evcjnj6RDKFFge9iA0Bc5TeQrVQYktX6nT7QrcGPOzc5YiVaiiUoiAAyLAOM16PAYd0XSRWLaE5ZIzaFQykzuJiM36WKaExTh43G7Sk83W0EppZDpfQa1QYDFqmQzY2TtK0Gp3cVrFBbBSa1IqNVie9HF0nKTRbBONFxgNSPNVgoASaDUG1YatvVhfOHR+zM391QvmZy4JiV5kGR92oBJkVKtN8oU6CrkMq0W8D8eG7exsRBkZHpTgdnZiLM55MaoVlEp1jg6TTE0OekBel5X/1++usbN9/KqeOa8Wvee/FZmPwWB4Wzm6Pq5423zCnh7a/v4+165dY3x8/E25jb5ZcOh2u+zt7bGzs8PVq1cfOp/HSWh44bF7LqwXFxc8+eSTr7n8qJDJ+XdL38t1WxA5MgyocSjNrGajdIQua7kwSzbxWMl6GZNKg1GhRoEcJF+erVyCqjRo6tWJjKLdfIpFiWQwaXKQqdWpNlu0hS6JWgWjUtP36HkguZJOmx2YZFqei0eZsIhltUi5hFM3mPNZTcb5e4ExjtI5EpUKx/ksE1ax3JNrtbDpDZhUKpadbmL1Nna9jh6wrcbiTJnFhbvaauHS6ZC1IVGuEMoX8ZiNfcfS9ZhYcrvqdbMairN6abC01ekSyhcYs1uZdTmJpAsUanVsknjoaTrPkE10IPWYDCRzZQyXyC+r5wOSgUmloNqSYTOJGUynK3Acz/Z7PB6zgVS20geEYrVBo9XGJVG6h61mIqkiNqmElshXMOo0GHVqzDoNjWqLVrsreu0geu84LQY0KgXLY17u7YRxWY1oJHfScLKA02pgfsTFwWmKSLKAXqvs22cns2WCLgvlfI12u0u2UAWZDJsEBjaTjkS80CcINJptEqkiI34bk8MO9g8THJ+lmB4bkBK29mM8tRxkZ08s0e3sxZmfEYVEFXIZrWoLvVbV13ErFBuolHKmxpycHqVoNNrE4wWCwz0TPIFOvYPFPFAOOdhPMDXpZjRo52Q/RSZd5Qt/eszszNWHPHO+8Y1vsLW19Zqzot768VaBz6PuJb8d420BPp1Oh7t371IoFLh16xZOp/PVX/QK8WbBp9lscv/+fdLp9EOyPb34ZmU+PfmgarXKzZs3XzflU6NQ8usr/4Cn7JMctMrsVtIsWCVVamCvmGDGLH62i2qeK1YvPrWN51MxnstEuOYQF9J8sw4I2CX76oNCmvd6xjjK5TgvFTgq5Zi0iAvERbnQ9+hRy+XQlmFWaIhXy9R72m5GsYRzUsgxZrExbDAxbrDzlfNzViS5jkanQ6RYwidJFMUrZZZdHg6SGartttjz8fv6n+WkVCao0zCh0XL/IkapXu8rTh9ncow5xXkiu05LsdxAJb8k0BkdDJbWWm2cOj21WpNKs0WiVMGgUfdLbofJLCtBH+16h1i+zEYo/pBUzoPzGNNWHUqZkmSxxm4kxVxgkPGEM0Wuj/rI5KrE82WK1QY+qwjs2XINAYEnxgKsH8dJ5Mrotep+ySySLjJkN+My6IhmJPtruwmNUvws5/E8y6Ne9iUzuPN4Dr/LjFpa3NUKBa16B5XUr8qWWjisojW232Hi/CKLSqnEoBM/azpXQaVQMBGwk89VSWUronWCXQSgeqONUi5H1hbodgU6HYHT8wxT0ozO3Jibe/fOxYxHip29GPMzXqaDDs7OM5ycphkZsqOQtOFazQ7dRhu9XgTlRqNNMlFieNjO4qyfg704u9sx5ucHm7BUoohJNyiFx2MFfvHn/hKlwtD3zFleXkav1xOJRF5TVtTr93yzQeC1Suv8XYi3BfgoFArGx8ffkB7ayx3vjYJDqVTi9u3bKBQKnn766Zds/D3OzKcHPoVCgdu3b2MwGHjyySdflV7+cmFSafn00odwyiVV6nyMFbtkBNftEKrmWDB5mDf6eCYRxqRW9yVi1rNxFiVfnkS9jEmlZtnmxSDT8pXoOTdcYs+n0WmTqJX7gqGHhSzXnX68ShP3EzHuJ2OSfA6Umk1qnRYunR4E0CtUuLVGTvIiZfd+PN5nstWFLnUEFuwOAloTz56HGbcPhlLvx2J911GHTodObQCleJ2y9QbdVhu9lPHsJdM8MexH3oGTTI77oRgrQwPzuYNUhhm3gxWfl/tnUSrNFh4pawnnByW3RZ+b9dM4Aftg0n/tIt7PeHx6NbFSm6DTCogZz1E8w7TU4xl32TiL5bEbxfu8UG3Q7HRwmsXrMWyzEE0X+2ZtkUwRm1GLXqPCZtBSKtaRCbJ+RnMWzzHsESnfV8e83NuJEHQPKOCnUfHxSb+dUCTHcTjDkNuCUgKgUKLAxJCDTqNDpdokmixiN+v7pIFWq43yUkcrX6zR6YgUaafNQDZZJpEqEbhMSghluTrv5/g4hSBIGc/0AIAUggylXNFXgjg5TeP3mNCo5Zg1Ks5OM2jUSiwW8Z6t10X/onKx3j9GD4CUSjlGrZrtjQiT055BDyhe5A9/5yukEkVkMhkWi4Xx8XFu3LjxIifRy1lRT1LmrRowLZfL3858vtnh8/keWXNPqVS+IfCJx+PcuXOHQCDAtWvXXrah/7gzn1wux3PPPcfo6ChXrlx50z8Cl9bIJ61LWKSF+UEuzHXHEGqZghmDl3itSqousmy28wmu2sVeTReBw1KGKbMDl0aPWaGj2mpTbIqLwL10tK9YXWo1qXfbDBlM3LAHuBOJ4NANdnAb6QSLDjEDyNRr2DQ6bji9rMbirCbiXPMO+kN7uRwzVhsIMGqyUqq3KDfFRWE3lWbBPchE78divCs4RL3W5jCdJVWtEpRmc3KtNja9FrVMxrhWy73TCE7NwJPkQTjG1UDPllqJSpBTqIrvk63UQMZDJbeVYR9HkTTNdoetcJLlF2Q883YDmUqbSqPFdijJ/NCA1XaRKfDU+BCH4TS5co1SbZDxZEqibM+NMT/rR7EX9XAukgXGPTbMKjWxTImTWJag29rPYI7CGZ6cGWb7WBzMPYpkmQg4+5uIdruDWianLQ3EHoczjPqsyBCwGjUkE0VMBm3fRycUz+O2mXBY9egUSg7P0hj1GowSIGYLVQxaFRatmmK5TqXapFCs4/eI191hNRA6yRIcuuTlsx9nbtrL7ISH7a0o27sxFuZ9fQAKhwtMBKx9UkIqWUKrVmI2a/F6TFycpEkmigwHBwrcu1tRri0NEwmJg8CHe3Emp8Qe0MiInfvPHPMLP/mfSCYe1oJ7oZPo1atX+1nRM888w3PPPUcoFEImkz3WecGXikelbvCtEG8b8HmU8Xozn9480dbWFsvLy0xOTr7izuNxZT6CIFAul0kkEly9evWRzhH51Eb+t7H3oleI/izNVpcl8xD3MlGS9YpoUS0NiK5mH6ZS21R6zAo9m9kkh4UM01ZHf2FbTcf6itVOtR6rQs9xPocArPWJBOLszkEuy7TVzpLdQ7JcIdNooJcAfjURZ84s7p67QLJe4x3+IdaicULFInq1uk8c2EgkuebziuKiHh93TiOM2a0AlJstio0mXqOYtSQrNZ4cGiJabdIV4CBXZMI0AMX1SJwbAQ9GuYqdaIpUqcKQTVxEE8UKBrUaq07DNb+X2wchJrwO5NJ3si7ZISDApEXPfrLCvCQO2hUEDmIZpn2i1tuc18nueRK/lDFdznjkgNdkJJ4p9TOeUKqAy2JEq1biMutJZcpo1Mo+4ByGM0z4RWXpq+M+7mxcMB0csL/2L1LMjLgZ9VhJpyrsnaWYGhk8fhTKELBr0cuVZHJVTkIZRvz2vjVCPF0k6LSQzYvqELFkEYtJi0GnQqNWQFugXGlilbKTcqVBqdxgfMRBp9YmX6gRDj88s1OrNLi8ndveGQDQRNDK/l6a0VFnvwSXTJawW/WoFXLq9Rb1eotUstQHoIV5P/fvnDK3MHArPtxPMDfvo5Au0+0KJGNFPvXJ/0Qy/tKOqDKZDLPZ/FBWFAwGaTQatFqtl8yKHmd8u+z2LR6vJzNptVrcv3+/P0/kdrtf9TWPY4i13W7z4MED6vU6Q0NDL+ozvdmQyWRMaK38P67/D8wYvKxlEzyXCbMkOZOK+m3avn7b/UyEd7qDBDRW7iYjZJs1PBLpYCuXZNkxoGRflAu8xz3KfibLdjaFTavtg8r9pCgYCuIgpVmppVhvUGg0OCvkGTJb+soLu6UC19weZqx2lB05a7EEoxLpIFQs4jYOiAOhQoF3BoI8CMfpCAK7qTSzLklBoVanIwhM2q0MGUw8expi4pL+2nGpylW/pANn1LMbSqHuit9nudGk0mjikRr/+VqNaYeDg5g4gLsbTYkZTa80eR5n2W3hJFNFADYv4ixKhm7tTpfzVI5bksNoud6kcGlwNFOqoVYouBr0snWaINrLeCSL7LNEjpmAE5UgI5WvcBTJMOYfCHfunae4ORdk80Ccd9k9SzJ3yRqhUmlg02mpN0Tpqv2zFHNj4uMalYxWHSxGbb+kdnSRZmzIgUalIOi0sLETZchr7WdEkXgBp83ImNdGOJonlSmjVimxmEUAarU6KDsylFIPqtXqEIsVGB2243IYySbL7O3FmJ0enOP2Townro9weixmL8dHKcZGXSgUMuRyGbKuQKvRxmwelOBSyRLLywF2t0T5qN2taB+AlEo5pUwFt9ssipECyXiRn/+J/0Q8ln/hz+JF0cuKhoeHMRgMXL16FYPB8FBW9EYZdK8lvp35vAXxKGucr7XsVi6XuX37NjKZjJs3b77mL/1Rl92q1Sp37tyh2+3i9Xofy2xBr5f0hH2I/3niel+GZ7cwUCi4qOQJGM14NAaWLAG+HgvjkFQHsg3R0bSfHWVirDi9XLF6kLdlPJ+MMC7J3pwW8wybB9YF95JR3u0PohGU3I/HKDYaeKVe2n4ug1+rQQYokKFAjkGhIl2tUm21yNcb+KQs5jiXY8xuY9HpolXv8o2zECuSPE672+Usn2fCIZZ6XHoD8q6cbFVUeNhNPOyxsxZJ8p6xIBe5KrVOl0StyZCUEeWqdRrNFmNWM2aFhnunUYbs5v5g6VY4yWLAhVIGYxYjm7ECV0cH9uI9koFCLmPG7WTjJM6IZCBXrDaoN9u4LQa0KgUmlZpkrtInFYRSBdxWI1qVgoDdRCiaw6zX9jOSg1Ca6WHXQxnP/PhgMd85FZWoh5xmCrkqGwcxFia8/fLWzkmCEZcOh1ZLOlfn4DTN3Lhn4LZ6nmZpwsPphUjTPr3IEJSM3WQIGFRKGvU22h5LLl1Gq1Fhs+gYclk4OhFZam6X+FtqNNuUy3XcNj2VSgNBgIODeB+AxoJ21p4/Z2zM2v8MR0dJRkedzEy5OT9Nk4gX0elUfQAyGjVETjIMDQ/Kej0Amhp3ETnPcrQXZ2LK3Qcgk0nDv/3EnxGP5F/q5/Gi6KkbmM1mxsbGHsqKXtgrikajjywr+jb4fIvHa8lMEokEt2/fxufzsbKy8rrmiR5l2S2TyXD79m0cDgfXr19HqVQ+lh2VTCajWq3Sbrf5UGCG//XK+wDR6iBUKTBmtKJAjkmhw6uxsp4R6bEbuQSLki1CvFbGotGiVyhxaw00mgJauZJso06t3SZTr/YVq/dzGeYcLswqNSt2L9+4CDEkDQvnGnUEAWwSe+6sXuMpX4Cg3sL9aIz1ZJJFqa+Tr4tZjEOnQymTYZCrkAtyyhJd9kEkxlWJdFBvt0lVKtwaCrAXS3GUzuI06Ptq1puxJFeHvOiUChbdLr5+cMGSRLNudrpkGy1G7CJI2DQaGrUGhbLYCztMZBl1Dvx6ThMZFtx2ziTxzrWzOEtSD6jTFYhki9wI+tk6T1BttMiWawQcUi+qXEOvUjHutHMYyRDNlrBeynhOEznmg24a1Rb5cp2DcJrJSz2c3bMkt+ZG2DwUM57tk8RDbqP5Ug2P2dA3g9s+irM0JZa3lHLothS4HAPm5O5xgoVJLzIB5sfcPNiMMD3u7gPSyXmGUb+NhXEP+4dJLsI5vC6zWH4DEskio34byaQ4OFwo1kRWnMOASinHKJEIhiXKtCDA4UGC5cUAqViRTqfL6WmeiYlBP0enUtJpdPvg0QMgp8uIsgvZTIV0vEhwZPAaWafbv0YAR3txxifdOF1GUpE8qXiRX/ixzxGTekSvFC9FOHipXpHBYCAajT6yrOjb4PMtHq8EPoIgcHh4yMbGBleuXHnVgc2XikeV+VxcXPDgwQNmZmaYm5tDLpcjl8sfqX1tTybEZrORSCT4xje+webmJu/WuvlfJp8ERCdSq0rPjNHN88koq9kYV6WyWkcQOCxmmJKo1KFykRuOAPV6h+1sSpTPkZhshWaDptDGJWVLdGHe6mI1Ido9bKdTzDnELCtRraDodDAqFNxw+VmNJPrW1F1BYD+TYcYp9guSlSoBo4lpi4MHkTibiSRLPk9vM896NM4VrxubVovPYGIvmekz1U6zg9kcgFSpwjWfj51oChAFQRekjKjabJGr1ng6GCCUKRMvN3BaTOikMtJBIsuQSYtDo0AtU7IZzXJtbED53QzFWRh2Yzdosam1bJ4lGPOIu/NSrUml3sRjNeA06Wk2OhTK9Yd6PG6bmPFMeGzsn6ZwWg2DEttFirkRMUO5OublzsY5i+ODjKbnNjrkNFPK11nbj3Jl6tK5HcYIurQErCaiyTJbB3GuTF8y+zuIcWs5yK4km7N/nGR2apBR6dUqWs0OvfX4PJTF77agUsm5Mu1jfT2MyajBoBcJHfmCaGkxO+EiFMpRr7dIp0oMSSQEvUFNPJzr/w1wfJxlYcHPxJiT3c0IRwcJJsbdl8pnBfwuE/WamGXU6y1SEgCNjjk42IywuxFh7kqgf8zz4yQBn4V6TSw9ZlNlPvWJzxO5yPJK8Wq6br1e0aPOinpzPv8txN9Z8Ol2uy9axHt9lVgsxtNPP/2GLWDfbObTG6g9Ojrixo0bD1k/PMqSniAIdDodOp0Ofr+fd7/73aysrKDX6zk/P2c6UuFDej/jahv3U3FS9Qp2jQgAq5kYNyT5nEa3Q7Ra4rrdj19t5muREEGztb8zXsskuOIQs6NUrYpdq+OGw8tWMsXdWJTrXqk0Jgic5vME9dLOTqFg0eFlJ56k2elwPxbnujRE2+p2CRULjFotrLi9HCazNNqdfhazFktwPeBFQFx/250uo2YLB8kMuVqdLmCXmGqHKVFa54rbRb5Y485puE+N7goCB8kM0x5R127CZuMonsUhUaFD2SJ+uxm1tBB12gIOrY6CZAm9ehZjzjfY0ZeqdUbtVkLpAvVWm0S+3Fenzlfq2Aw6rBoN8WzpRay203iOpVEfqXSJWqPVL7H1dvPbpwluzQXZPBQBYus4ztLkgDGWzdfwWIyUJcbe5mGMJQlg5DJQosZuNvZVBjYPYqJzqCCwNOXjzr0zFmd9/cd3DxMsTHtZnPSwsxfn6DTN5CVJm7NQluUZHwcSYMXiBSxmrQhAgoDfaSIWLuCQ5oJq9RaZTJnREQd2k45UssTRYYLpSz2gbKaMQavq2yZcBqCFOT9bqyG0WhXmSzTsdrONSkZfu293IywCkCAwMelm8945o+NOlCppvild5g9/7UuET9Mv88t5/VTrV8qKnn322decFX0783kL4lH2fHo7lsuLeK+/IwjCG9KLuxxvBiB6AqX5fJ6bN2++yIb29ZrJvVz0Mp5ut9s3qevNO0xOTvL000/zzne+k381/TROmbj4JeoV1Mj6pIN76Sg3nD5sKi1TBhcn+ULfR2crk+Sqc2DAtpdPM2t1cM3hI1qskK03+uoF9xMxbkgAVO+0SdYqPOH0Uq93eC4SZewFszu9QVOFTI5DrSdVqtJodzjN5Rm2WvozLPejcVb8Xq77fOzH0uwm0/2eT7JcQatWYdZqkAM6uRIFcmotUQLmwUWMq8Pi+7Q6XYrVOtf9PtYvEmQlx1Kr5Fh6nMzhM+sYM2hIlBocZcpcHRlsXHbjWYIWDQGjlnS2wvZFkkm/mLX17BD8dhOTHjvReJFKvYVVUi64zGpbGHaxuhfG77L0M57d8yRzIx7kwNKIhzsbF1yZHLz35lGM5SmfmPEUqqztRfqAA7BxEGPYpWXMbeU8UmBjP8rS7IAdtrkf49bVUbZ2xeb91l6MK7P+PgDREZB16f99cJxiZlLMwOYmPDx4EGJoyNZXKYjGCljNWhZnfexsx8jmqghdsNvEflq91sSgVvYdWrtdgaPDBIGAEaNBRbPcZGs9zPzi4ByPDhKsLAfZ2xT9hpLxYh+A1GoFtDqETzMExwbD6bsbYW7cHONAes3JfoLgqAOlSo7TbeJ4K8Kn/+WfEjpJ8VLxZhStXy4rajQa/axoc3PzJbOib2c+3+LxQvDpCXK63W6uX7/+hvTiXnj8NwIQvQHWniL1Sw3UPgrwuZzxvNKUtk6nYyQY5Hc/8D9y0yVmX/FmFbNMjhKQCTIatRZjOjurqTjZhjT7IvVqVtNxrkuK1Q6NHqWgpFBrUGo2OSnkGbHaBqSDRIxpgxGLQsmY2cFJvohJGpzdTT88u/MgHuedQ0NoukpWo3HqnTYug7h4HaQzzLpEGwO7Tku13qQriKy7RrtDolQmKFGlI4USAauJeaeL1YsYG5FEH3AA1sJxlgIexh022o0ue7E0w5do1katGqNGjRxQtDvo9Mb+mrx2Hufa6GCRtxjNmLVa6q0OrU6X80QWv6SNVqw18JiN1GstyvUmiVwZg0aNUVISOEvkuDrm5SSUodMVHiIVAOydJ7k5O5jj2TySMh4pcoUqXsugx7NxEOuX3OQyAa1Ch1HKAgE29qJckYY+l6a83Ll3KgKOFJt7Ua7M+pkZdbK/F2d7L8bCJUDaO0xwfXmYQykDOz3LMBp09CnSJr2aYqaCVhpUzWYronipTc/CtI/d7Ri5TIVAwAqIAJRKVhj2WchJ5nI7m5E+AI2M2Fl//ozxSfdDDDaNRsnEhIt4JE+j3iIeyREcFwFodNzJ6jeOmV8eVBVOD5KMjjvRqhTUKk0KuSqf+pd/yvnhwCSvF49yyFSlUuH1epmfn+9nRUaj8aGs6Ktf/Sr/9b/+1/6Q6euJX/7lX0Ymk/HjP/7j/f+Lx+N89KMfxev1YjAYWFlZ4Qtf+EL/8bOzMz72sY8xNjaGTqdjYmKCT33qUy+SHtrY2OBd73oXWq2W4eFhfuVXfuVNXYvL8XcSfHoLbrvd5vj4uC/IOTMz80gyrDeS+fQAMBAIvKIi9ZsFn263S6fTeV3yIGq5gt+89ff7FgqxToMVmx+vwsBGPsODTIxxrfiDiFXLmCR3UYC1VJz3+cbIlhpspVNkajX8BrFssJdNM+eUyjSCCGbjVid7mQzZek3UDpOESDeS4uyOSibjhtvHc+ex/qxOplpDoZBjlZ67lUhxKziM0BQ4SGVZj8S5IlGny80WxVoDr8nAlMNOIlum2en0mWproTgrw4OFW4EMg0JJtlKj3GhSajTxWiRlg1wRu0bJsFHHWa7GXizDYnBQIlo9i7Ec9LAy7GP7PMVRssBcb7C0K5CrNnAa1YyYtWwcxag1mtiM4meIZIrYjTp0aiXXRr08txVixGt7KOOZH/OgUsiZ9jm5sxniyiXA2ZAynhGPlVymwupuVCQVSLF5GGPYrWXS6+D4IsvmvlRi6z2+H+PmcpCtHTHj2dyLsngJgGrVJjqVsu9NtL0rPS4IjA7Z2VoLMzPpHdC0T1KMj7qYHndxvJ8kEsnjchj7AJTJVBj2WomGxWZ/tdokn6sSCIjDri6rlsPdJFOXSnA7mxGWrg6RjZfotLsc7SUeAiC3w0QmVsRiFTdxzUabeDjHzIKPTKxAtyuwsxYaAJAgoBBApZChksgSpXyNT//In3K6n+ByPC4vn5fLijY2Nvhn/+yf8ZWvfIU//uM/5jOf+QzRaPRVj/f888/ze7/3eywtLT30/z/0Qz/E/v4+f/mXf8nm5ibf//3fz4c//GFWV1cB2Nvbo9vt8nu/93tsb2/zH//jf+R3f/d3+dmf/dn+MYrFIh/4wAcYGRnh/v37/Oqv/iqf/vSn+f3f//1Hci3eNuDzOEzZdnZ2CIfDr9sP6NXi9WQ+giD0AfDKlSuvOsD6RsGnV2brdDoIgvC6dakMSjW/+47v5YYjwBWzj7upOG6TmAUIQKhZZVhSvj4vFXCqNUwZbPjUJr58ccaipMdXaDZodbt90sFGOsmURs+YxsBBqcx2OsWsQyxJxStljBoNRikTzVXrPOEL8CASp93tcpzNMSVZJMRLZcw6DRaNhuteL8+ehJhw2vrntxNPMe+RGHK1BmMWK6VynVy1zmEqy7jb3h8OfRCKsTLk5arPy9p5nP1EhimPeE75ap12V8Bh1OHUqSnXWqg12j54bV4kWJZKbkq5DKEt9EtIna7AUSzDlFRyqzU7jLpdtAQFApCrNOh22+jV4rEuEnmujnjZk7TYDkJppoYGrLbjcJobkwEOzsXS0OZR7CGAKZYbOIw6qnWxmb5xEGNRKsnJZaBTGtBqBln+5n6s7za6OOnluftnLFwCpK29KIuzPsYCdsKhHBvbURbnBoC0tRtlZWmYVKxAs9Vhdy8mCYWKj9drTVSX7rlwOIfbZUKrUTI14WJ7PYRCIe/L5lSl7OPq0jCxsDgUenw4ACCdVkXyIsfI2GBQ9WgvwfiEm5kZLzurIVLxImqVCqtU1hMEgVqhhsM9KKv3AGh20c/hZoTzwyT+YRtqCRgNRg3//sc/x/HOYLH/Zsnr9LKiH/3RH+Xs7IyxsTEmJib4wz/8Q4LBIP/iX/yLl31tuVzmIx/5CH/wB3/wovL9s88+y4/+6I/y5JNPMj4+zs/93M9htVq5f/8+AB/60If4oz/6Iz7wgQ8wPj7O937v9/JTP/VT/Pmf/3n/GJ/97GdpNpt85jOfYWFhgR/4gR/gx37sx/j1X//1R/LZ3zbg8yijUqnQ7XZptVpvur/zUvFaM59Op8PGxgahUIinnnrqNREc3khJ73KZDUQgfyNgbtPo+PdPfIBUTSx9rGXiXJecSFtCl6zQYtRkwaJUo+nKaVTrRMoivXYtFZd8eUTSgVqpxKRUManScVFt4JDUC1rdLufFAuNWKwAXxQI+s4knPH7C2SK3LyL92Z1Gp0O0VGJEGjTtdrpM2+zsxMTFuOfJA6KCwlEmy6LXybzTyd3TCEqFArNWKu3F08xLlgYOvY5CuYFMWjRbnS4XuQJjLsl+u1TFppBBG/K1FseJHOOeAXitn8e5MeZnxGJh6zzJ+lmcxRF3/1ihVIFJr4MrQx4eHERotLq4pGyqUGtjNuowahQErTru7oRwmjT9PpbIanNj0qnxW8w8t/WCjOdQzHgmA3bi8QJre9GHWGtbh3FG3HqmfA6OztJsHcRZmBrcd1sHcZ5eDrKzF0MQYHs/9pDuWqFQw6zX0myKvbGt3QEAuexGTg6STIy5BnNDezEW5ny4nUZKmSp7u3EmL9kchC6yzEy5SUbzCAJk0mVUqoFuW3DIxtFODJtd/J66XYGToxRTM158HhPJWIGd9TALSwMGW63SQOh0+2W+VKKIUqnAYtUxNuokdJImep5hdHIwMF4p1ZELQr90eHGUwuu3YrUZEJptsskS/9v/8lkONsPSeXzzjeR6G8Z/8k/+Cc8++yyJRIKf+ImfeNnn/8iP/Ajf/d3fzXd8x3e86LFbt27x+c9/nmw2S7fb5XOf+xz1ep33vve9L3u8QqHQd0UGuH37Nu9+97tRqweSVB/84AfZ398nl3t1uvqrxd858EmlUty5cweFQsH09PRDF+5RhUKhQBCEV6RE1+t17t69S61W4+bNm5jN5pd97uV4vZlPD3heSCx4o+EzmPjD9/73WKVh0vupKE9IAFRtt/HpTDjVRg7KJS5adRbsYsbTBXYzSUakPla31cGLkmi9RaPb5X481me91dptUrUqQyYzQZOZdqNLpdnqn8P96GB2p9Jska/VeDrgJ12ocj8cY8xxiaAQjvVdSUesFgrlBrWWeKxooYRNr0UvyfJsRpO8Y3yYdqPLSSrHWijOlSFxl11vtUmWKvgtRsZNOk4yVQw6LUYpc9iLppkLiH2YgM1MKFHAYhj07HYuUswPi+CmVMjQyOSUKmIzOVcWB117DqT5SoPZgIdMSTzPSLaK1zpQGggl8kx77ZzHxB/4CzOeWq2FUa2mIQHE5kGMBcmuWi4DrVKHSjUo6+4cxZmXHl+Y8PBgNcTcJXvr3cM481Ne/G4z+XSVze2ImNFIsbUb5dpiANpdisU6W9tRFi9J2kQjeYZdFkqS8OfBQYKpKVHk0+02cXKQxG43oJEGU9OpEmq1koV5HwfbMaqVJrVKC69P/I102h2UCH2DPaAPQGaLlmqhxuF2jNFJdx+A0okSI2NOUpKMTqvZIXKWZmzKjc1hIBvJsbsaYu7acB+AQkdJRsbtlAri91OrNPh3P/Kn7K1e0Ol0vulGciBmMz22m8PhYHp6+iWf97nPfY4HDx7wS7/0Sy/5+J/92Z/RarVwOBxoNBo+/vGP8xd/8RdMTk6+5POPjo74rd/6LT7+8Y/3/y8ej+PxeB56Xu/veDz+uj/bC+NtAz5vtuzWM1xbW1tjbm4OnU73WJWngZfNfvL5PLdv38ZkMr1uRerXAz6XgedRyr+Pm238/nu+B73U13k+FeVd3iAjOit3ohHKrWZf+WArlx7otwHZVpMFjYFUpcZxvY7PoOuTDu7HY5KAKFSaTYaNJrotgbN8QRQM9VxSIIgNZneGDGZOU3nMkijoXjLddx0FWIvEec9okNNEjki+RK5ax28Vs93z7MD2+nrAx53DMBOeS4KXkWQ/I2q122g6bcpNaXHKFkUmmqQgvR1OcnMySD5fJVWosHYaY3lswPg7iGa4OurFotKye5EiV67ilwZLU4UKaqWCIYcZj0HPg4MIPocZtTRDFM7WmAk6cZl0KDuwdhAn6BqAWy/jmRtxcXaReYhUALB9lGDUa2DS5+DwLM3uUbwPMIIAe8dJnrwS5GA/QafT5eAoyezE4PFcvorTbKAiAebufow5KSMyGTTEo0U87sFg6tZ2lMV5P3qdGoNKydpaiPkFfz8jOjhIsLAQQGh1qFQanJ9l8PosfQDSqJUUMpWBdUK9Q7lYxx+wMD/vY38zyulhkomZQfZysBNlcsJFPiNm5sf7CRGAlHImp91s3j0VDemcYpbZanVIRPMMBax9RezLADR/dZiN2yc43Cb0RvE3Wqs0+aNf+a+cbiXeElXr10K1DoVCfOITn+Czn/0sWq32JZ/z8z//8+Tzef76r/+ae/fu8clPfpIPf/jDbG5uvui5kUiED33oQ/yjf/SP+Of//J8/ks/xWuJtAz5vJtrtNuvr633DNb/fj0KhoN1uv/qL30D0dkQvBRLRaJTnn3+esbExFhcXX/cN/FrB540QC15PXHF4+K13fhc+nZFrVh/PhMNYJefRZK2CXqXqO5zeT8Z4wuNnzupA01VwXq/35XNOy2UCl8B3LR7nKa+fUYOVu6EIAgI2idK8kUhyzT/wG5IJMGqysJtIk6qIpbxeGW0zluSq34tdp2XKZueZo1AfkIr1Bo12G5ckl5MolrkR8LNxHqcrCKxeskDoCAKHiQwLHhsm5Jzl6whyOU7ptafJHMMO0aJgJejl7t4F04EBpXf9NM6VEXERH7ZbiCVL6KVsqVRrUmuIg6W9sGg05EriTvsklmXEa+1L51RrLYJOG4WKyDi6SNWYDAwW/EK+CK027Y54f2wexpgfFxdnpUKGWqbtg5kgwP5Jklnp8dkxNxsbYSbHxWvUFQQOT5LMjLtx2Q00yk129mLMSKUqQYC9gziLs15sBi2JRJGd3SjzcwPAOzhIMD/lIRYTs42d7SgLiyIAabUq8okSTrupX4I7P8vg81vxeS2UMhWioRwKBf2ZnUq5gdWip5gVxUy7XYHTw5QIQILA6IiDtTunzC0P9bOX4/0Ec1f8JMLi0GgmWUKBDJtDnGcaCljZWw0xPnuJGr8aYuXmBDv3zwCInKax2PUYTFoMJg35RJ7P/YdnOFqP8c0MQRBeE/jcv3+fZDLJysoKSqUSpVLJV7/6VX7zN38TpVLJ8fExv/3bv81nPvMZ3v/+97O8vMynPvUpbty4we/8zu88dKxoNMr73vc+bt269SIigdfrJZF4mIjR+/uNzkhejm958KlWq9y9e5dms8mtW7f6hmuPQ/yzFy+V+QiCwP7+ft/5dHR09A0BwquBz5slFryeuOUd5qevvouNdFJUKMimmZfKbKFyEY/BgFahwK7RUW+06FQbZFtNqt0ODaGDS1LnPW/UWXQ4kANTGj1r4RiCROmMlcuYNOo+6WA1FudGwMc1l4fNSJLdVLpPLIgWS9h0WgzSc9vtDpM2OwfJrDhrlEgz4xHPLyPN6ix4nOhQcuc4zKx/QF9+cBHjmiSHM2I2EkoUMUpltHSpKjbGJVA8TWZ5amyIjZMEgiACztVLygZbFwluTQ8TTRZJFSpEM0VG3FYAcuU6na7AQtBNrdRk9zwp+uVIGcBhOMNEwMl0wEE2U2XtIMriJamco0iB5SkfiyMuLqJl9s+zDLkGu92dkyQTfjOjThvH52n2j5PMTUjK2l2Bw/M0Ty4Oc3iQoNXucHKWZkpyG+12BfL5Kj67mXyhJs7cnKaZkl6vUimolpoYDIPNw85ujLlZH3K5jBG/jQf3zllYGPRjtreiLF4J4HMYiUby7O/GmJn29QEonSzhsOqoSUO6xUITrU6NxapjeNjO8U6UQq6Cb8jaP8fTwxQrT41xvCuWevbWw8wtiUOkBqOG2Ekap9vSHyLNpEqAwNL1IIcbEdqtDucHCSYk4LS7TOw9OGN2eVCCi51nMVm0BIas5FIl2s0Ov//zX+TB1w5e/MN4TFGv1+l2u68KPu9///vZ3NxkbW2t/+/GjRt85CMfYW1tjWpVBO8Xbnxf2E+ORCK8973v5fr16/zRH/3Ri55/8+ZNvva1r9FqDUriX/rSl5iZmXkRweGNxNsGfN7IAppOp7l9+zZ2u50bN2481N95nODT6630jt9TTkgkEi/pfPp64pXAp1dm62V0b5RY8HrigyMTfOqp9wCiDtxJMd+3wj4p5HnSHaDd7LCVSXNYq7DkEheuTK2GUiHDKmU99U6Xp31DHJartASBeKOOXyoZXBQK2LUq1HI5c3YHF+lCv97faHeIl8r9+ZvzXIFhq4UVr5ftaIrnL6JcD14SF83kRLASYMhsplpvUZcGS7cjSa4MD2rY66E4V702TpJFyq0OmXKdYalMFs+XMerUBGwmghYLt/dCzF2avVk7jYkAJMDVYR/39iJM+MTrUmu2yZSqfS03j8VAsVjr06gvEnl89kHJTYkMrVzZV5/eOo4PBkkFATriwG0vwqk6k9LirFbKqBTqdDviYt4VBA5P00yPSRnPiIvN7QjjIyIotztdTkMZJkac2Cx6hFaXvYM4E9KAZqfT5fQszeyUm6DHytlZhsOjJNOXpHb292PcWBrm+Ehk6W1vR1iQekAyBNrVFkbjACD3d2PMzPhQqxU4LDp2NiLY7Jo+3TkZL+J0meg227SaHSrlBsVctQ9A0zNeNm6fMHXJvXRvI8L88hB2q45sqszZQYJA0IFSKpHabHoiRykcHrH82ml3OduLM73oR62UUS032Fu9YPbqAIBsNj35VAmTNJ/VbnX41U/8f7j/lT2+GVGpiOXEVwMfk8nE4uLiQ/8MBgMOh4PFxUVmZ2eZnJzk4x//eF9Z4dd+7df40pe+xPd93/cBA+AJBoP8h//wH0ilUsTj8Yd6OT/4gz+IWq3mYx/7GNvb23z+85/nN37jN/jkJz/5SD7v2wZ8Xk8IgsDp6Smrq6sP6aJdjscJPr3jd7tdKpXKQ8oJb3Y6+eXA51ETC15P/KOpeT557WlgoFCw4vQR1Fn4eiiE45Il9XYmxbzEeouVy7gNep5w+ThJ57gdCvetrxudLsVuty82Gq9UmdRqOUxmSFeqkmCouOCVmy2KdXF2Z8xqpVRtUG+1B6SDUIxrQ5L9drtDpdHk6eEAq2cxzjMFXGY9Wmmh3wgluBr0YtKoGTLo2QznmPOLC2+lIc4I9Uze1AoFVq2ORE4UD92+SPZLbOLfCd45M8z6cYx2p8txNMtUQKQFl2tNSrUGT0wE2D1JEkkV0esGltgnsSwjHivLY172T5JsnyQeUqfePIpzZcLL0riXzf0om4fxh3o8R+E8MyM2fBYzqVyDUKxMwC0ump1Ol5OzFNfn/OwfxGk2O5xHskyMiOfWbncplesEXGbSmQrtdpdQOMf4qPi4IAjI2kKf3dftChyfpJieFMtfc5Me7j9/yuylUtb2dpT5BT/zMz4O9uJsb0ZYuKSxdrAbY2k+QOhMVMtOxasEhmyo1Ar0ejXlbIV2q4NZmtnpAdCV5SGOtiN0Ol2O92JM94gOggCtDmaLrg8e54cpAkE7viErsZM02aSYwTi9AyID7S4my6CXtrcWYubqMBNzXnafPyUZzqHVqtCZxY2syaLld3/uz7n9f724V/Koo1wuI5fL37Sbs0ql4otf/CIul4vv+Z7vYWlpiT/5kz/hj//4j/mu7/ouQMxgjo6O+Ju/+RuGhobw+Xz9f72wWCz81V/9Faenp1y/fp2f/Mmf5Bd+4Rf44R/+4Td1fr2QCY9SxfJNRrPZfFVRzU6nw9bWFtlslpWVlX6Z7YWxtbWFWq1+WbbIm40vf/nLjI2NcXx8TCAQYHp6+pE0KHsyQN/5nd/Z/7/HRSx4PSEIAv/hwW3+8/E+I3oLoVIROl0ykjzINY+X1YS4a9IoFASNZnQKFbFCGbtOx3kuT1MC1RWv6GAKYNNqGTVbiRXKJMsV5hx2dtNi/V4GjJkMnBQryAR4ejjAaTpPsiTuEK/43WxGB9Ppy34PtXqLXKlGp9tFrxbfH2DKbecslafV7TLusKJpd9hPizRxpVwuinlGxYXRYdQx7rSyfpqg3eky6bVzkczTknoty6NezhI5HDo9Z4kcV0Y9bJ6JtXCNSknAYeIsnuNK0EMkVUQug3RBLIUE3VbShQrVeotr4z4ajTaHF+n+MOfihJet4zhyGcwHPSjlMjYOBr2H6RE7B+dZTHo1Vo0Wi0nDrpSBKBVyRodsHJ1nGPUaicbLOCwaEhmx2a5WKwh4LeRyVTQyBcVSHa/XzJkksqlWKxnyW9DI5BwcJFCpFAwN2Tk5EzXQ5HIZN5aHuXf3VPx+ZDA962N/T/wuF+d80BXY2RrMyyxcCbC9EWZu1sfeZoTAiJlIaOAsOj7lgXab0wPxM7i9FhqNFoV8DZfbhKzdQaVREZXOUSaXMTXvRymXsXv/HID5lSDbDy5AJkNv0DA6Zud4J0azIWa8ZpsetU6Fy21i9965eIwrgb70jstnwek0sPvgvE+YMNq0qLUq9Fo14aMkMrmMH/nlf8i7v/fay/5G3mxsbW3xwQ9+kHw+/5aQHb7Z8S31CWu1Gnfv3qVerz/U33mpeJyZT6/vcnBwwMzMDLOzs4/sZnlh5vN2AB4QS3w/tXKTDwTGWUsmyNRqdDsdLFKpczUR7+u3mdUaTAoNpVqTTK3GYTbLpNPRz1QexOMseT3olUrGzTZihTJt6bvazWT7GY8AnJerTJn0+FQq7p5FELodTBLrbTOa7NtgywElcrSSWkGh1qDV6eI0itnAYTLLpMfOstfFRSLPfrrU12drd7ucpvJMekSjtmGrhXCqiEkrvs9RPMuYd2DilivXmfE6OUuIVOit8wQL0pxPo9WmUK5zfdzP5nGcbLGKTCbDZpJKjMk8XoeJ5VEPGwcx9s9TzIwMynk9sdBpv5Odo7jIars0x3NwnmVh3IVBoSKaKLB/kmJ6fGBedxbJ8eSVYS7CJdptgVyxhc8tZnLNZod8roLbrCOVLtNotEnEi4xIvjitZguDSkWjLi7arVaHSDjLmJQRLUx7Wbt/zuQlUsLhfpyZGQ+Lcz521sOiLM4lGvb2ZoQnnhzr67JFzovMzg+yFxUgtLlUgiug0ajw+qzQ6pCKF8lnyvgl91KhKyC0O3SbAzLRzoML5q8FkckEvF4Tuw8u8A7b+0OkxVwVu8NANl7sH+NwI8z00hAanQpZu83uvTOmrgwhk77jcq6Ox2+hWqr3X/M7P/1/8Lf/xz0eV/R03d6q3/g3O75lwCeTyfDss89isVh44oknXpW+/FoN5V5v9BSp2+02k5OTDylSP4roWSr0AKfdbj92YsFrDZlMxk8/eYsnrOJCkOu0sep0A7JAPM7fGxqlUm2xlkhQaA6M4HZSKRY9A9pstyMwb3exGomTLFfQq1V9UFmLJcRBUwGWvR7SjQ4GSbInVa2jlQlopEViLRLnyWEf41Yrq+cx9uJppr3iYpkuV1Eq5Fh1WgxqFbS6FIolupf02ZYl0kGz3aHaanF1yMvGWZxEoYJOo8KkE++z/Wia6SEXC0MukukS9w4jXJ0QQUEQYC+UYnbYicOkR69UcnCRJuCUaNb5ChqVCrNeg06jRNWVU6u3+w6hu2fJfslNr1VRKdXRqgdzOpsHMaaGrQC4rXqS8TJOm3hdu12Bk/M0U6NiqXNuzM3GVqRvX91sdcgV6gQDNqwmDYqujItIHrtNvNb1RptkssRwwMrCpJednSiJZJGgBEjNVodoJM+Nq0Nsb4Rpt7ucnaWZmBiQFhTIaDcugcHWQJdtbtbLvWeOCY4PNop7W1Fm5/3Mz/s52IpydpQkMOToA1AmXcJu09GSAKZabpDPlAmM2PEP2QgdJDjYijBzafB0d/WCG7cmON0Vs8SLwwTegA2NToXLaya0H6dSrOIN2vrf2cF6iNklP0lJ8udwPcTEvB+5Qo53xMTunVM6rTYun0V6jcCf/+7f8l//38/wOOK/JVFReJuBz0stroIgcH5+zoMHD5ienmZhYeE1ZRmPI/NpNps8//zzFAoFjEbjY/Fav8yke7OKBY86Go0Gaw8e8M8DozzpFReX82IBn8nEnM2JX2/my2fnzElSOwMjOHHXv55I8KTfz7LDzXYsxVYixZRTBLJwofSQ8dtZLse7R4OsheIUag1ipTKjNisAqUYLv9WESi5jzKBj8zyOskf+6HY5y+QZl9QK4oUy404bdpWW/XiWi2KdpUt9m41QnCvDHqY9DqqVJoexDEMSUSCaLWEzikOqMkArU6BATrMtvtfaSYzl8YGBXLvVJWAxEEkVKdUalGtNPDYRNOPZEj67iWGLmaNQmuNwhtFLltjbJwmuzfixa7WchrNsHMQeUqc+DOW5Nu2jWWmTzVfZP0kyM3Ep4wlnefLKMNs7MZrNDtFYgZFhEYDqjTatVge/00I2V6PZ7FKvC3g94rnVay0UnQapVF78u94ila4wLHntTI052V2PMnKpZ3RxkWV8wsX0pJuD7ShHBwmmL/WAdjYjrKwM9zOei5MCC5dEPuVAtz0osV8GoMkJN7trIdQaJVa7+Burlhu0m20MehWNeguhK3CwEe4D0OyVAPe+vM/ctWD/mBdHSfxBO1q1nFqlQblQo5Sr4JcM6OaWh1j/6gEz14b7rznaDDN7bYhMWKSPF9JlGrUmnp4cT6vNH/7Cn/Nf/uArPOr4dubzNopef+fk5IQbN24wPDz86i+S4lFbXfcUqTUaDU899dRjy6x6N14+n3/bZDwg9qKee+459Ho9N594gt/+zv+ORacbh1aHQa5GjoxYSeyhrCbiXHGLC2OyWkWnUmFSq1lxe9lPZPreOI1Oh3CxxKhN3FmeZvMMWc1c87hp1Tt84/iiTySotlpk6zX8FpGgkCzXeHI4QLhQp9EROMiWmJTmaRrtDtF8kSGrkZUhL5uncVrNOhpJn23jIjGwve6CSiZHI5NTrDYo15uUL83mXKQKBJ0WFv1u1o9jbJ0lWBobLLLrp3GujHlYHHYTiuU5DGcZk1hvhUpdLP1Z9Aw7LWQyFVqd7oBmfZFmKuhEJgO/w0QolMNxaSZo4yDGREAEwjGflaPjNMN+KyBZEZylmR5ziSSAMTcbm4OMp9Fsk0gUCQZsOKx6OrUOoVCOgPT6aq1FqdzE77OwMOMlFKpQqbSw2aRhy1qTVLrE0oKfva0o9XqLZLxIUCp/tVodsYza6dLtCuL5HCSYmpHo6yN2Np87Y2R0kPFsr4dZWB5iasbD7mqI/a0IM5dICWdHSZauDnN6IPaQUvEiSpUIQCq1ApVMRuQ0zZDEzBMEONgIc+3pMQ7WLwAxA5rtA5CArNtF6Ar9IdJKsU4+U+bKU6PsPS/2rvYfXDB3fQQAvUFD9CiBxaVDKWVixWyFcr7KzJUACcle/E/+9//CF37rSzzK+G/JywfexuBTr9d57rnnKJfLL+l782rxKMEhkUj0FamXl5dRKpWPJbPqkS18Ph8bGxs888wz7O7ukk6nH5taw2uJTCbD888/j9/v7w/OGlRqfvcD341Pa2Q9kWAnnWZBAhwB2MmkmZUyIKErMGd3sZ/IUGo0uR+Ncz0wAJVMrY7fbMKu06IWFLQ6Ql8iZzUcZ0nqARXrDRqdNss+Dwa5itu92R0Jm4/yFa4ExHNQyEDZbHMeS9MRBJLVFsNOK6qeurWkz7bgc7F2EuMglmFaEgTNV8TZHKdJT8Bmplis02p1+vprG6fxfsYjKiXLkAnQandotNrEs2WC0pxPtlhl2Gmh2+ySK9a4iOfxOsxoJErw3lmKG7NDlIt1soXqQwZwAMeRIk/OB4hFilRrTfaOksxJygSdTpeTiwxPXRlhaydKs9UhligwKtlV1xstum0Bt8VIOlOmUm1SKNTwe0VAqJQbuCyGvo1Brdam1QKPRE922TQc7cawWiW6fL1FKllieNhGcNhO+DjNxWmWUcnGQNRlS3JlyU/8PEOnI3BxkmfukjdPpVgTmYfSvb6/OQCg+St+HnzjCP+wHXVPiidRRKlWMjXjJXKWoVZpkk4UGZbe0+E2c7B2wfSVQVbVo1DPLgU42Y4QPklhdRgxSH03g0lLeC9GYGIwErF774y5GyM4vUbyyRLpixL+MWe/bzQ06uBo9fyh13zu1/+vR1qCeyN2Ct/K8bYCn94OP5fL8eyzz2IymXjqqadeVkLileJRgENPkbpnuX1ZkfrNupm+1Hv1BkcXFhZ4z3vew8LCAjKZjN3dXb7yla+wvr5OLBZ7aOjrcUckEmFtbY2ZmRkmJiYeysJsWi2/+cEPEZDo0hvJBCu+QRM/XCryzsAwyWKN58NRhqwDO+v70XhfzaBYbzBkNmFSqNlJpNiOp1i4ZJO9FUuy4HWhlMsYNVtJFyt0pGu/HU2yNHSJ/hxN8fTYEGpUnBfrtAQBq+QUepTI4jfpkMtg1GEhlMyjkTTQWp0u56k8Ex5x4U6Xqoy6rHSbHRK5MofRDJOBgeL0+kmcaxM+FgJuNo5i7F4kmR0RF6Zao0W2VCXgNHN1zMeW5PRploY1T6NZhjxWlAo58yNuNnaijPgGm6uNgxhjPnEHvDDqZnUj0icVdAWB/VNRmUCGwOyom/WtMOMjgxJbIlViOGDD7TBSKzUIR3MEfFYAypUGpXIDr9vM4rSPzY0wlVITj0fMsMrlBtVqi+VFP7FQmXq9Q6Mh4HCK9N96rUWr2YBWm0ajTbPZJhrKMyplI3abntO9OB7/QMx3bzPC3KIff8BKMpRje/WChUsaa/ubEVaeGmV/PQTA+VES35CtD0Aep4lUOIfVKZUJq01SsQLjcz5k3S6VYn0wsyOF0OkitAe/z+hZGrNNj9NjRtZuk0sWSUdyjFyycGjXG7Q6jYH46F4cb9DB2IKPwwdnVEt10pE8Q9LMk8lm4Op7Zx/ZOvDtns9bGIIgcHFxwb1795icnHzN/Z2XijcLPp1Oh/X19ZdVpH5UZb3LigWXGW1yuRyHw8Hs7CzvfOc7eeKJJzAajZyfn/PVr36Ve/fucX5+Tq1We9Pn8HLndXR0xMHBAdeuXcPv97/k8zwGI3/wXX8fhzSb8CAe54bPx7zdiUmmZj2WwG8SF42DjGhn3VvA1yQ1gzm7g+fPozS73YHUTizBtSHRJrsrCNSbba56vKxexIgVyhgkozeA9XCCa0Evchlc9XtYPY5ilqbdS80Oao0aq2Smdp6rMO8wEUkWSBWrrJ3FWJQEQRutDrFciVGXlWtBLw8OoiiVCgwS620vlGIuKIKAy2wgnS6jUvaklgSOIhmmh8VFuFpr4rUYSWVKdAWBeKaESa/pG8gdh9I8MRPg6DRFq91h+zjB4iX16dNoiVuLQfYOEnS7AtsHMealRa/bFTgNZXhiQVSnbrY6RGKDjKdWb4lOrAYtuXyVSqVJoVTDJwFMqVTD6zCSSZWlv+vUqy3cLhEwvC4T4bMcTunvarVJo97F67PgchkpZxukEiWskhJ1s9kmGskzOe2iXqpSLbeIhUpMXuoBpeMFnDY9dcnwbmc11Aeg4RE728+dMTU/uMd6ALSwFGDn/jnpeFGUzZEAqNloI+900OsHg+V7qxfMXQsyPO7keP2C/dULppeG+5lx7DyDN2ClLunX1atN4ucZRma9jM66OXxwQewgy/yT430AyiWKKLoCGul7a1SbJC8yjM37+ZFf+x+xeUy0222azSbtdvtNAdG3y25vYRweHnJ0dMT169cJBoNvqtfxZsCnp0jdaDReVpH6UWQ+r1UqRyaTYTKZmJiY6Ntfezwe0uk0zzzzDLdv3+bo6IhCofCqc1KvJTqdDpubm8TjcZ588smHZNZfKoIWC7//XX8fs1qNS6en2eyglyuJlyuUmy1KzWbfGG47mWLR60Eug+teL/uxdH+YMV4qi+6hkgr1aiTO9WEvN/w+LpJ5dqIpxiWpnXCuiMs0GB5NFCvcDA6xdhan1ekSLdWYkEgHiWIFvVaNx2xgwediJ15ibmjAvNsOpxiRhhuVchlGpZpUXpzLiWSKOCx6dBL7bPs8ydMzwzSqTSLpIhvHMZakEly70+UsnmNm2MmU38nqfpR6u4NLYqZFUkXsFj16rZLlcR931y+YlHo+INkhePQgCCyN+7j74JzFS+rSvZKbWqVg1GNjbSvM5KgIdo1mm3iyxEjAJs7ypMrE4gX8ElOrXG5QqTbxuE0sTnnZWA9Tb7RwucTFrlCo0Wy0uTLv5/woRS5boVFv4ZZ8ccrlBmqVArNOQ7XSotHo0GwIeLzi43K6ZGM59AaVdA91OT1KMjnjxWjWIusIbD24YPYSQ21nNcTVJ0bJxQs0G232NyLMLAb610OlkFPJVdHoxGNmkkVkgM1pZHrOy9FmhPhFlpGpwXcZD2WwmLW0W+Jv/2DtgqlFkUI9f3WYrWcP0epUWBxSf7Deol6uUZX6lQA7z50w/+Q4MjnYHHoOV8+xOk0YLCL5oVlr8eQHl3jyO5bQaDQolco+S7UHRK1Wq7+hfK3x7cznLQy/38/NmzdfdbF7LfFGwSefz/Pss89iNptfkdL9ZjOfy3Tq3vFeK9j2LG2vX7/Oe97zHsbGxqjVajx48ICvf/3rb6pP1Gw2uX//PvV6nSeffPI1/xhmHA7+nx/6LjrNLluJJA/ica75xJ16rl6ni9DPjor1Ojf9Q9wPxak0Wxxncn3WWyhfxG02olUqGLFayBRqosKMIFBvi7YHPamd00yeYbuFawEP2XyV28dhxiVTsXZXIFYoM+IUF1+tUoHLYOAsKc3mhJID0gEQKtaZ91ig0WHnIkmxXMUp9QjOk3lJgVrO1REv97ZDjPsG9+jGSZzFMfGzWg06mvUOzaZ4b+SKNbqAXZqqj6dLLAQ9HEgGcnunSebGBqWfcKrKrcURtvdFyvDWJQO4riAQjuVZmvRxdJoSWWeRXF86p95ooVIp0CkVIthUmuIg6aWMx+cwkU6LGU+hUKPV6uKUsgmHzUAyUsAiycsUCjWazQ5OlxGbVU81XyOTKuGRFAOqlSblcpPhERt6jZx8pkEh28DpET9rp90lEsowOmInnRBnbPY2In0AMpm1hI+SjFyyd9jfiDA1H2B41EFoP875YRKP34JWUr/OJksMj9hJRcTvsVFvETvLMDrtRaNVoVHI2LpzzPyN0f4xD9ZDXLs5zv59kWCQDOdQqRRYnSa0ejWVfJlMqMzEpb7RznMnXH/3NOfbIlsvepLEaNFithtYed8c/+gTHwDE361KpUKj0aBWq1GpVH3h4Z4U1mvNir6d+byFYTKZ3rS0RC/eCPhEIhGef/55JiYmXrXk92Yyn5eSynmj0XNCvHLlypvuE1UqFZ577jm0Wi3Xr19/3V5IV71efuk7349S+jxr8ThLXon1Vqli1Wp5yuvjIlXg2fMw1yU762anQ6RQ6lOpz7N5bgT8pHJlLrIFHoRiLA+LC3C50aRUb+I1G7DptCgFOc1Wtz+kepKvsixZXVebLXLlGk+PBbhI5NkOJx/SVFs7i3N1VJonGvZwlqzgl7KlcqNNs9XGpBGfe5HKsRz0sHMiKmNvnMRZnhhkJTtnSZ6cCdCotjiP5UjnKwxJFgTpfAWlUsGw24LPauT+dpiAx9qf89k5STDk0qJVyxlz2bm7ev6Q5XXPEM5q0mLWaljfjjAlqVOLJbc8I8MOxocdRC9yJBKlQY+n3KBabeJ1m5mbEDOeZrPTB5x8vkq3K7Aw7yN8liGVKiF0BRyOweM6rQqHRUc2XaZYqFGvNnFLANRstGhVK6ikWa9ms0Op0GZoxI5CKcNsULK7GsIzNFhU9zYizF8dwmTUkEmW2Fm9YP4S3TkTL2I2avtzPhdHKVxeEYCmFnxsPHNIt9PF4emdQ5voaYrZKyLRAWDn+dM+AA2NO9n8xiGjc34UUjk2Hc0DHWxuNeVMjU6rw9l2hKllkSk3vTzE8//nBrNPjPXPK3GewT/u4hO/+dGX/M3K5XKUSiVqtbr/7/VkRd8Gn78j0QOf11KGEgSBvb099vb2uHbtGiMjI6+ahbzRzOcyseBR06jfTJ8ol8vx/PPP4/F4uHLlyhs20npHcJhf/s73I5fJRCXsVJI5p4Mll5tCpU6qUkMnNfnvh2OsSE6k1VaLXK3GstdDQG/i2eMQE277oMEfjnMlIIJKvlYnYLFgVmnYi6XZiaYImAaklI1QgivDHuwGLT6TicNopm+RcJzIMuq29ZlrR7E075wKsn4cp95qc5bMMSFlNcV6G71OS8Cmx65Wc+8ghseq7X9n68cxEYAEuDLqYWM/TsAlLoiVepNCuY5fGjRVKeQYVCpyRclOIfTwnE+52mVp1M9pSFw8N/djDwFQJldhzGcnliiIJa2LTF8MtNFso1crkXUE6o22yGor1vB5eySCOm6bgWxGzHjy+SqdTrcPMDaLjmyihMksXsNstoKAgN1hwGTS0qq0yGUrOCTAKhZqNKpN3G4jNrOSZKRKtdzsC4E26i0yqRJXFodIRkp0uwLpaIXAiAjGMjnk4jl0+kuGd6sh5q8NYzCqUQhddu6fM7UYoKenGjpOMTnrI3EmutjmUiU6rTZOqaw4Oe9l++4J45fUFXaeP+XK02MU00VazTbHm2FGZnx98VGdSU4l08DpF4/RaXc53gixdGuSkzVRumfvuRNmVkaQyUClUfKxX/yHmGyvXg2Qy+UoFIqHsqIeSxZeOiuqVqv/TZXd3lbabj3r60cRjUaDL3/5y3zgAx94xcyi1Wqxvr5OrVZjZWXlNX/5JycnlEollpeXX/M5dbvd/r9v9vxOvV4nlUqRSqXIZrMYDAZcLhcul4tKpcLu7i4zMzOPTLHhz3d2+fSXv4rPYMSl1dNodjjMiPpcU04755mB1ts1v4fdeJoFt4twrgiCqE4AsOT3sBERddMUMhmLPhdCB7bCSbwWI5V6g1JdvGeWhz2sXySQAYt+NypkrJ+Lr3Wa9AgIZCQvnfkhF416i3K5SbpYZXnUy/qZyErTqZW4LUbOk3lm/S46LZHxVpZsAMbcRs4SYo9ADqyMe3kgMdpUCjmjfjuHIVEPzWrUMuaxcXCSpN5sM+SxkCtUqdTEc/bZNchkShqVDvlijcUZH1v7Ay23xRkfxUKNQrZKpdpkesLN3pH4mdQqBUN+K1qlgoP9BBqNEofdSDiaB8Bs0mIyajBq1BweJLBa9SiV8n7ZzW434POYOdqN0WqJ2VCnK5DLidd+eNiOVi7j+FAsEdodRpBBNl1GJgOfT0ejKpBNiVRtg0mD2aInFs4xO+fj/DCBy2chdCJeC4VSztiUB6Hd5mRHvF7eUROxc/F8lCo5S9eGWf3GEb3Gz9SVAEfbERxuE/ViDYvDSC5VpFoSSQMWu4GRGS8bXz+Q3kPB6JyX480IKrUCt9eMxWFk57mT/jGHpty0OnXi+yLQWxxGNAYtqVAWvVmLTi3H4bexf++0/z1MrYzygY++g/f/wM1Xu/VfNbrd7kOb0F4GdOvWLT784Q/zi7/4i2/6Pb4V4u905gO8oqFcpVLhzp07ADz99NOva9fxejKf3o32zfDgebno9YlWVlYe6hPdu3eP7e1t7HY7Wq32kdFGv39+jp9/97vIFmtsxVNESoOy2mE6y6TL3td6q7c6XPV6WA3FSZWrohtlj/UWTXBVKrnNup3/f/beM06Su7z2/3bOOfdMT85hJ+xqVxKykEwQIKQVF2PgGiNscMABRLgYYxtfnDAG+8pkbMAy939JCkiAhISEAihr4+zknKd7pmc651D/F1XdM6u82llpVuz5fPbFdqiurq6pU8/vOc85BLdS5KVmcjCWRC0DgyQGOLkUYn+9jz6/h9HFdUZXNmj1SVY7iTRqhULM6BFAI1dgUmsIJ8QL7cn57VC4TL7IVjLNxS21TC5sMLO6hd2kq4bEza0n6W70YtapqbEaODYZJOAQ97dQKrOwFqG5xi4GoLmtrASjGCU36+VQDKfNWJ3z0Wl0OM1GYhIpDk+s0duxXfHksgVsRi2JVE5MS51dp01yNsgXShh1anLpAuWyQCZTIBJJUSNVA5lsHptBR0wST1SW2BxSs91u1RPZSGCUBjDD4SQKhRyrVYfRoKGcLRCLZbBKfbStzSQywGLT4nVrWVtIUioKuCRRQiqRIx5N07+/jomhZbKZAhtrsepMTqlQQq2SI2P73A/OJ2jqFGXjDoea4w9P09DpqqrNpk6t0NEfQCEIJGMZVmY3xOa/FNlgd5tYGF3BUytWq6ViifmxNVr21dLQ5mFlZr0qIKhsMxlPoJYpq0KG2GaSTCKDr9GJ22MivBJh4qlZOg42Vfezqad2V4gHtqsitVqNRqNBo9HwrW99i4WFBRoaGnblM84HvGorH0EQuOeee7jiiiuedU4oHA5z8uRJampqaG9vP2MyWFpaIhgMctFFF73gfuxc/tsrbrXlcpnR0VG2trZobm4mkUiwsbFRzX2vVEWVtfyXiq8+9hT/8cQxACxaDQaVmtW4WDUM1ngp58sMra6jkMtodzkZDYrLKrVWM7F0lmQuj1GtYtDv4+FJcYpdq1Li0KlZiYsX1UanlbVIAr/FTCZToMZm4vi8WD1olApq7GZmJRPQVp8DnUzB8IJ4N7+vwcvQXBAZIJfJ6Ay4WNqI4TMbWY8k0alVBLfEO/NGn43VcJxcoUSD24rLqOfYxEr1u7b4rUyvRMXPVclp9VgYmxOrPafNQKlcJhITScZl1eAym5icER2tu1o8jE2Hqq7Kve1+ysUSE5LUuqvdy6hUXSkVchrqHOjVSoaHV9FqlHjcJhYk52ejQYPDYUBRkjE/H8Zq1aFSKdiQpNUOh1jxTI6sUiyWcbpMFAtFolFx3wL1drQyebXicblNFPIlotG0KI2uM5KIFIhFxNdb7QaUKjnhUILu3hoWp9cxmXWsSZ5pWp0Kl8+C2ahl9OgCCoWcxnYv06OS+7UgsP83mjn6wHZwW02LlZXpKHKlHI/HgM6gZX4iSLkkDWI3OFCrlYTmN8im8hiteowWHUHpGHTvryOfzTN1Ymn79+mvZWkqhFouI76ZItDuJbwWJZMUq6jeQ01srkZYndl2Su+6uIViscTf3/phVJqz+1t4NgiCwLe+9S3+5m/+hrvuuovXvOY1u/4ZexV740p4DlBp5D+98hEEgfn5eY4fP05HRwcdHR0vqQp5MYKDSkm9G8KC3UShUODYsWMkk0kOHTpETU3NM/pEi4uLp/WJKumIZ4oPXnyAd/f3ABCTHApcBj0DXi/Twa1tL7uywHR4izaX5PUWjeM06enzutEICh6eWqxGX2cLRTZTWWpt4h33wmaM/fV+gptxQrEkx+bXqkq2XLFEMJakzmmlzeNgaytFMpOv9p2G5oP0N/mq80S5fJEWl42p5U1iqRz5YgmXRYoEX4sQcFvpa/AQDMY4NrHCvpbtKmV2LUZXoxuTXoPPZGB2JYbDJF6wwpEUCpkMg04JgoDbYiafLyOXIrRHp0N0tYpzTQgCMkFAIZNRllxQxyaDdEqqt1KphF6lJCPFbWdzRdY3kgRqKqaZAlq5gmxWfD4azVAsbvd4nDYD4WAck9QnC28kUKmVWCxaDHo1QrZEIpEVs3KAjfUEKo0Co0mNv0bP8mwcpVKJTaqgolspioUyfYN1jB5bJBnPkohn8EnecNlMAbNJS1KqwEqlMnMTQVq6xWPX1R/g6AOTdA5u+7KtTEdp66uhps7M2vwWsyOruGpN1eOVimZQyUEpiUeS0TSJSBpfg5O2fbWMPDbN9Mkl2nd4vc2cWqG5y0tcWnZcmghid1vQG7W099dz6lcTRNfj1LZtzyetzoT4+H+8/5wRz3e+8x3+6q/+ijvuuOPXinhgj1U+giCQl+KVdwO/+MUvOHDgQDV6oXK3X8k/t1qtL3nbwWCQ2dlZLr300md9fq9EITwd6XSa48ePYzAYXlBY8Hx9IrPZ/KK/U1kQ+PTPH+SnY5PUWczYNTqWtmJEMqJd/WCtj2NLYqWiUynxmoxspTLUmy3kCkUWw1HyUpZOs9XIjBTuZtFpqLWaSacLLISjdPidTK5uVrNx+uq9DC0Ekctk7K/zEdpKsrwpSn6bvXYWN07P6FGU4dRsCIVMRoPXxtSK2BNwWQyUSmViqSw9ATf5XJGZlU1KEjH0tfo4OSXuf73bit2gY2hCvKs36jUYtCpCUvXkMKkwq1UsrIl9ktYGF7OL4eq2etq8yIpCtcrp6fAxLDk1y2Uy2lpcyIoyJiaDUs/HxuyC2FPR69X4PSYy8TxrazEsFh0ajZL1dbHStNsN1PotjJ5cplwWpIpmu+Kpq3egRsbsdCVbx0wmXSARz4AgUF9vJBLOk4iJv5vDbaJULBPdStHZ7Se4uIlSqSAsfZ7RrMVk1mE2a5k8sYRGp8JTY2NxRqxuFQo5fYcaOPbQdsXTOVjH2LFF0a+uvxYEGDs6X33e12QjvBbHaFASWUvh9FvIZQskpCqsqctPMZtjUTp+MpmMxl4/M0MrNHV5mT2xRMdFTYzv6Od0HmxkbTpEdF08N7QGDZ46B8tTQT5zy4fpurjl+U/wlwBBEPje977HDTfcwB133MHrXve6Xf+MvY5XNfk8+OCD7Nu3D7vdTj6f5/jx45RKJQYHB1+SZc9ObGxsMDExwWWXXfaM515JYcHzIRqNcuLECXw+H21tbWe0X4VCgc3NTTY2NgiHw8jlclwuF263G5vN9oLquGK5zL8++Bg/PD5CWRAIWM1EpWU1gP21Po4urYEAB2p9JNI5pkLiEkqnz8nkWrgahdBb42Z4aZ2BgI/gVoJSucyG1LvprnUzurxeWd7nokY/m9E0C+tRbAYtaqWCUFS88LfXOJle20SvVlFrtaBTKTk5Iy3XqRTUOC3Mron70FbjQFmGCelC39ngZnxh+3P2tfgoFkrMLYhE0uS3M7UovtZi1CKXlSkUyli0WsqlMtFEhlxeJL56v5mltTgqlYJGjw2NWsnw+Omig+HxNbQaJXUeK3KZnElJdKDRKPF5zcwvbOG0GzCoVBSLZdbWogCnLbl1tXvZXI9TLJSqogK320wul6dUErDoNZTLAulUXiQcwOOzkIilsNtUrMwlTgt7A3C6Tfh8VoYlk06rw3AaAXX0+ElspliVJNAanQpvrY2F6Q1au3zMjazQ2OFlakcAXedgHTKhzOiT4jY799dXg+NkMui7uIlTj01TKojHz+TQUiqCSqWglM5TKpZw+G0sS8cIYN9rmjj5wET1/+0HGpk8No/JboBiEZ1BQyaZIy753Km1Kj7wj+/g9b9zbqqRW265hT/5kz/h5ptv5s1vfvM5+Yy9jlc1+fzqV7+io6MDjUbDsWPHsFqtZyUj3onNzU2Gh4d57WtfW31MEIRqxQN7JwoBxEptdHSUlpYW6urqXvgNz4NyuUwkEqlWRS+2T5Qvlvjwj+7m8YVlAJrsVtZiCbJSRMGhuhpiiSyToU1sei1qhYJQXLwY1Ju0LMbFO+4aq4k6s4UnpsXteCwGMbcmLT6/L+BhaEGMy55e2aTRbWV0Sbzbdpr1oppO6hcdaq1lbnmr+v++Ri9Ds5LqTaPCZdGjVSoJbSQwGzTEEllSkuqtu9HDyFwIGQL7Gn0IZYHhafG9apWCgMfKrCSdDjj1KGVqFqThyDq/jfXNBFkpB6fOoyOTLLIVlbbd7qsOmgL0ddawtZFkZTWKQiGnqcHBlFRBaDVKmhtdrC1uEY1mMBo1GI0aglJ4ms2mpz5gZ0i6gD+9x9PQ4EBRhjlpe16/hVQyRyKeFSueRhNba1mSUrCa22chmy0Qj2Zo6/ASXU9QKBSJboq/VYWADEYNa7MbaLQqsR+zJH53jVZF+74aRp+co1goIVfIaO6uYUqKX2jv8SOXCWIFJKFjfz3jR+bpHKhj7Kk5Grv8LE+HKEjDvO6AFZlQJDQrfoZaq8TmMxNaiNDQ6WV+aJmOg42MPTFb3Wb7gQbS0RSLYyLxuQJ2CvkSsY0Er3v3JfzJv/3OOfn7veOOO/jABz7A9773Pa699tpd3/75gj1FPiBKpHcLjz76KHa7naWlJZqammhqatq1kykajXL8+HGuvPJKYO8KCyo9rrm5OXp7e3G5XC/8pjPcfjKZZH19nY2NDZLJJFartUpET888yuQLfPCWOzm5Kt6VtrkcLG1G6fa4GVlZp9Pj5OSy+JzLqKdYLBHJiOdEX40bhSBnbGmDsiDQ4rEzvipWFzU2E/FsnkQmh0Wnocfv4bFx8eKlVMhp8diZWBFf67UayeWLNDhtnJoN0lXnZnhhR7O/wcOwRCqDTX42IimW18V8lzqPlc1IinROFMb0t/jIpPLVKqenxVslII1KgdWgQqdUEAxlMJu0CGWBLSlSu6FWnNtx2gzkUwUcNj1Tc+HqsWqoNTG/nMBtNyArgtNpZEyKrFYqRdHB9OwG9bU20rEser2GpSWxUjOZtOj1akKhOL2dPtaWI8hkMjalWZ/Kklu5LGCQ+l/pdF4kHEQCikaSOO0aVubieP1WkoltAvL4LdgdRqZOLlMqlXF6zBSLpSoBtXb6SMfSrC6I+2MwaTHbdKwtRqips5PYSmJzmViYFH/rCgEVc0UWx1YoFct0XdTI6I4ltwOXt3HkvpGqZLq+w8fa/AbFQom6JheJrRTlUomIVHUp1XLcjVbWp7coSCTfdaiZ0SdmEASBjoE6SoUSs8NLlCQTUoffSkN3gE986w9Qa3e/z3PnnXfyvve9j+985zu8/e1v3/Xtn0941ZKPIAg89NBD5PN5+vr68Hg8L/ymM0A8HufJJ5/k9a9//WkebXtpma1cLjM+Pk44HKa/v/9ZPep2G0/vE+n1etxu92l9okQ2xx/88CdMrG/S6rBj02g5vrBGWRCQAd1+N8MrYt/BplZSRIZFq0Mjk2PRaTmxIKrT1EoFdQ4L00HxAlfvtGDRalhcjxFP5+hv8HFiTqweKq+dCW7hMOqot1uZXt2szu70Nno5NVvpE4g9oGy6wNRSGLNBi16jPE31trYRx2UxUMiV8DpMnJJ6PjIZdDZ5GZ0JggBtfgv5PCxJszduh5F8oUhUusgf6K5lenqdhKS46mrzMirl2QC01ltYXoyTy5WRyaClycnUjEhQKpWC3g4fo6dWyeeL6PVqbDY9K5LizmzW0lLv4IRUQTgcRsqCUI1QaGpyQaHEfLXisZJM5kSCEQQam8xsrKRJSfvmrbGSjIsE1NzqJpPIkkpkiVeW4CQC0mpVJDdTqNQKcQlOstYxmLTUNNhZndkgGcug1ijxNThYmBAJqLbRgdGoZvzodsXTdVEDo0cXaOupYfLoHB37Gxg/vv18oM2DyaBmVKpo7B4zZaFMdD2JyaZHpQCNScPq1Eb1PU19fpRyBRNPzADQ3FfHwvgqxXwJm8fCF+79JHav9YVP9jPEz3/+c37nd36Hb37zm7z73e/e9e2fb9hz5JPP58/aHLNYLDI8PMz6+joNDQ20tbXt0t5tI5VK8cgjj/CGN7xhTwoLCoUCQ0ND5PN5BgYGzrrH9VJQLBYJh8PP6BO5XC7Q6viX+x7l/nFxXb93B+Eo5DIaLCZmtuLIgYsbahlfDhOVltUG631VKbVOrcRjNrIeS9HqspPK5lnZjJOTlvJ2EpBWraS3xs3kQphkNk+d20o4tl3F9DV5OTkTpMVrJx7P4LIYGF8QL1o2kw6lQs6G1C861BFgfDpUJa99rV6GJreFATVOLcqyksW1BAadGqtZy0pQrJ68LhOpdJ5Gn52x8TUa6x0sLG1SlGTElSW39kY3C7NhWpvdjIxvk5vXrWMtlKG1wc7qYgyP18L8vEhIBoMGi0XH6kqEng4fq8sRUQYtyaydTiPFUhmFTIa8VEapVIgVjyQB9/qtRKNJXA4ty7MxfLU24rEMKani8dVYMVu0zI0FKeRLePxWMulclYCa27zkUllW5sXlRqvDgFKlJByMYXMY0KkVIJNVe0AqjZLaBieJWJpsPE0qnqVtX4CJE9sEM3h5K0O/nKiahbYP1jN5cglBgK7BOuKbCcKrUbKS+k9v0WA061HKYGU6hFKtoL6rlpkhUXbta7IBJVbHNqpVVENPLRsrET79vT+jbf+2pc5u4YEHHuCd73wnX/3qV/nd3/3dPXOdeCXxqiOfTCbD8ePHq9YWNpuNxsbdP5kymQwPPfQQr3vd6/ZU4ihsHwOtVsu+fftQKpUv/KZzjHK5TDQarS7PFQoFZHoj//LkOOsp8cLVX+vlxJJY1ShlMnq9TjYTOZa34jS6bKxF4mSlC9BAnY8TC+IFeV+th2K+xLi0rNbqczAX2qIoKRT6G7yMLW3Q6XUxu7aFzaBlOSzejTd6baxuirM7MgQu66jnsVMLCILoVtDoszMpuRU4rQbkgN9q5tTUGq11TmaXt1Vv+1p9DE2uYtEp0SvV2MwGJuZE8jIZNBj1atbW48hlMNhZy+R0iJR0wWxtcjE7L6neBIFLBht54oltRVZ3p4+RquoNOlscjI2I21ap5LhdRlZWxe9kNmtprndy8pjY47HZ9CiU2wTU0uKmkM6zJBGEx2chndru8TS2WNlYTlUrHl+tjXhUrIAaml2UcwW2wqkqIVUISKlQIOSLKBRySoJAVJI0W+wGLDY9mWiajdUoepMGq9NUJSC724THa2bsyDwg9krb+gNMHF/EE7ARX4/T1OVn5Mntfk3bQD0ymcC4VL3UtnjYDMYkAhLo2t/AxvIW61LPTaFS0NgTIBFJEl3ZIpvK0XZRI5NH5qoEdN0nruDKd16K0+l8xnLx2eBXv/oVv/Vbv8X/+T//h/e///175jrxSuNVRT6RSITjx4/jdrvp6upieHgYvV5PS8vuSiUFQaBQKPDggw9is9mqy0rP5YD9ciIWi3HixAncbjft7e17pve0E5U+0cbGBsPzS/zbsSkSEqm02owsRJJ0ut3MrEfwmAzMh6Picx47CxvbsuvBeh9CUWBoPohVr0WrUhKMihe8jhoXk6viAGeTy4bLoOfIpNjQNus1GDRq1rbE3kCr30E0mcGm0zK9vEl/y7Z0Wi0Zgs6siC4HtQ4zK2sxoknxwtvR4GZih+qtxaMnGMqRyRVRKuQ01tqZkhRyFpMWq1GLWi5nZj5Mrc9KNCra5gC0NbuZmVunq8nHyOgqPV1+hke3VWBdnT7GxlbpafMxPhakqcnJlDQIqlLJMZmUxGJ5atxGoltZDEYNoYrowG5ALpOhVinIxDJotarTVGsen4VYNInbpWdpJnoa4QD4Azb0ejVLkyHyuSK+gI14LFsloMZWN6VMgSVpCc/hMVMuC0Q2k+j0avw1FuJbIvkA6E0abC4zWxsJLCY1m2sxals9zEnfVyaT0X2wkeWJVaIb4u/UdbBJtMkB6tu9qDUKpk8sVAdPrV4j+VSJhjYPo49NYbIbMFj0BKWq0OIwUtvsYfjh8e1jekkLo49P85Y/vJKr/vhSNjY2iEQi6PV6nE4nTqcTq9X6kv+OHnvsMd72trfx2c9+lj/5kz+5QDw7sOfIp1AovCSLl+XlZcbGxmhra6tmAY2OjqJQKGhvb9+1/dspLEin09X+Rjwex2KxVOXHu3nn9GKxvr7O8PAwzc3NZ52H9HJidHmND/7gZyRzBQJ6NQaFikmpL2HUqLHrtSxtiRfRDp9TjLz22NmKZfDZTKJYAHCY9MjYVrL11rlRIWdoNoSAQHfAw4j0WptRh1IuZyOWot3vRKtQMDIX2p4RavYxNL29XNdV52Z6YZNkOofPaSaVzpGQQsm6Gj2MzYWos2tZDmXoad32Z1MpFdT5rcwsbuJxGDFr1MQSWcJS/6jObyO8mSCTLaJRK9jXXsOxYwtVMttJQCqlnIHuWo48NQ9IooMGB9PT0tKgTY/HrmNyXCQknU6JVqcisiUSTEe7l1Q0zYqkOnN7zWQzBeIxcY6nqcXK+nKalESs/oCNWEQkoPpGJ7JiiXAovl0RSQSkkMvQKkXbnGwmR1yauXF4zMhVMnRKBYtT61jsBtQ6FRuVnpRdT12Dg2GpX6NUKahr9zI7soreqMFsUmN1mRnfITroOtjExmqEZDhOOpGlpa+O2eGlKgH1X9bK9LH56kCrwaLH4jIRWtzEX+dgeWKVtgNNjD85U93mG6//Df7w8/8ThRSxXiwW2draqi4Xl8tlHA5HlYxerNv7kSNHuPbaa/nMZz7Dhz70ofPm7/HlwnlPPuVymYmJCVZXV+nv78fhcFSfm5iYoFQq0dXVtSv79nyDo881kOl2uzGZTOf0xKskwM7MzNDT04Pb7X7hN+0hZLNZfvTgw/x4OsS0dFFuc5iYDEvDimolepWajWQao0ZFf62XxybENX+5TEZXjYuRJfGCW5Fd61Qq1HIFFp2GU/OSMalcRrvfyZgku/bajNRazVWLnK56N2ML69X47n1NXkZmguxr9DG7tInVrGM5JPZtat0WonHRIFSjUlBn1TCzkqp+p95WL8OT27LrnhYvk1Mh0pk8DpsBENiMbKveMpkCamSsrMXobPMyPhncVt91+ZmdC+OxGVhY2KS93ce41ANSKuXU19nZ3ExhUCuIRjM4HAaWJYIxGNUoFAJqpZzkZg69UQ3IiG5Jcz4eM4lEGpdDx9Js9Bk9Hn/AjkGvYmlqnVy2gL/OTmxre0musc2DkCuyIFVgbr+1SkAKpZz2Lj9ri5tEpOrFbNOj1asJB2M0trhYnQvj8FlYlgZbFUoFjd1+8vE0i9Lx67yosbokZ7EbqGt1M/SriepymavBwtZygvp2H3MnF3AHHGQSmerMjs6kpa2vjhMPjFZ/n45DLYw/MU1Nq5fP/fyTGMzPHuUiCALxeJxwOEw4HCaRSGA2m3G5XDidToxG47P+bZ84cYKrr76aT33qU3z84x+/QDzPgvOafF7IkXp6eppMJkNvb+9Z79eZOBYUCoXTGu0qlapKRGdTwj8byuUyk5OThEIh+vv7q24O5wuSySTHjx/HbreT1Vv58PfuJidZIlVcqgFMKgVujZJwqkQyX6Sn1sWwRCIKuYxWr4OJlTAy4GBTLbOrW2xKg6d9DV5Ozm37ojV7bSRTeZSCjGKpTCZbIJYSL7aV2R0Au1FHm9/JU8Nio9qk12AyaFjdEKuwOq+Vcq4gKr5SRXpavQxPbSvVelq8jEyusa/Nx+xcGJfdUJ3zcdmNFEolorEMAa8Vs1bDzNxG1TS1q93L6LjY/3LYDDTU2jguqcBkMmhv8zIuTfHX+CzYTFpGR8QKSW9QY7XpWV2Oit+py89mKMb6mrjfRpMKQYBUsoBMJtDYZCO8lq6KDk7r8TS5oFhiIxgjXVmCkwhIJpNh0muQyRBfLyn43H4rhXwBu8PAzPAqdrcZENha3yaghhYXQ49OA6A1qHH5bSxNhZDJZbR0esUY95PbvmydFzUyN7qK1apjbW6DzkPNjD05UyWgnkuaWRhaIhERCcdVa6eQKxDdSNB1sImZ43O4613VmR6Agd/s4g8+9258TS/+Zi2Xy1WJaHNzE5VKVa2IjEYjOp2O4eFh3vKWt3DDDTfwV3/1VxeI5zmw58inWCy+KLfoVCrFsWPH0Ov19PX1PWtTfW5ujlgsRn9//1nt09k4FpRKpWoJv74uGTVKii+Hw3FWA6/FYpFTp06RyWQYGBjYtSC+lwuRSIQTJ04QCARobm5GJpPx2PQSH/3+3RTLZTEaodbD6mYcr9FAOJ4mXygQlyIUmu0GZqS5EpVCQVeNi3Qyz2xwi4DTwlYiTaoyj9Po48Ss6KAw0Oglly0ysSiSV43TTCyZ3ZZdN3nJ5QpsbCRJpvO017sYmxN/O4tRi06jJLiZpMljIpfKsRUvkJem7XvbfJySVG8atYLBthqePDYPgF6nwm41sCy5D3icJtw2A1OT6+QLJZoanCwub1GUZk66O3wkYmkS0QzxeJbuLj8jkhOAXC6jtcVNJp0nGk6SzxXx11iZn9tWvZktOqwmLVMjq5gtOpSqbecBq11HoVDAqFOyvpLC7tKTy5ROExmYTGrmx0IU8kVq6h1ENpNVAmpsc0NBYF4iQG/ATjKWIRnPIJNBz0CAhckQcam6s7tNyGRiUFxHXy3L0yEMFh0hyQhUo1PhCdjRa5WMH50X4xe6a5k+KRKuQiVn36Fmjt2/Xb342uysTW1hcZkgV8DqMbM2u0FeOj8cfiveegfDD41Jn6HG1+JhfngFhVLO/771Bnoue+lL8juHrefm5vjd3/1d2tramJ6e5v3vfz833njjBeJ5Huy9bvSLQDgc5rHHHsPtdjM4OPicaq6XGqVdwc75nZeqaFMoFLhcLrq6unjta19LX18fKpWKycnJatLo6urqGbt5Z7NZnnrqKcrlMhdddNF5RzyhUIjjx4/T2tpKS0tL9bhe0hLgH9/+OjFuQQA1MmotZsZWwmwk0hj1Okw6Udgxs5WixWkEAQJGDXPLmxRLYtW0FI7hthrRStEFJ+bWONDip8Pn5ORUkPlQlEavaGK6Eo5jN+sxaFXIZTIUggy9UkVMijGYWNygo0Eczo0ls5RKZTr8FhaW4gS3cgR8tmoq6anJNXrbfNjNOrxmI0dOLNIhxUSnMwUisTR+rwUEAY/dyFY4hVojnr+z82Ea6hwoJPPMYqGEzaQnLlUUI6OrdPeIYWnlsoBQFjDqVCQTWfL5ImurUeobxGXnVCqHy2EkHhFjFKKRtGgu6hLNRROxDB6nkVxKJLqtjTRKNWh04vFSKgQy8Sxqtfj/lYVNbA4jeqMGg1FDPpEnl81jkMxJg0tbGC1ajBYdbV1eTj0+g0arxGIXVyO21hOUSgJ9hxoYPzJHMpomFU3jrRP3N5fOYzJpyUh9tFKxzOzwMm0DdQiCQFOHj2P3j9J1qLl6Dq1NbtF1sAmdWk50I8788DLeegcavdiT0Ru1hGZCOCTD1Vwmz8pkkOa+AH/0hd85K+KB08Mbr7rqKr71rW8xPT2NzWbjK1/5Cn19fXzqU58imUye1ee8WnFeVT6CILCwsMDU1BTd3d34/f5nfV0FKysrrKyscPDgwTPej52O1LD7VjnP5gxgs9mqy3PPN5eTSCQ4fvw4DoeDzs7OPaloez4sLS0xNTX1vP2pu09NcdMDx5nbiKCUy2ly25lcE+/q650WwvE06XwBr8VIo93KExOi1Y5GIcesURBOSdWRZCDa6nWysh6jyWvj5Ix4t67XqHCa9SytRwHobfCSy+SZXhbvxvsk1ZsMcbmuyW8nEkujLJbI5IqolCq2JA+01nonc9KsTkvAIcZdj4q9JLlcRkuDk0nJqt9u1dPgs3HipLjPfp+FWDxTlV23NLnQqxSMjqwiCOKy2chpqjc/slKZidE1ZDIZTc0upqQKRKNV4vaYsRi0jJ5cxmSWnA7WxF6V1a5HoIhepSK4HMflNZPPFquZPx6/Bb1OztJkmFJJwObWk0kWyKbF49nY5kFWEF2pAXz1duJbabFHJAj0HaxnZmS12vB3+a1iHMNmiq6BAGuz6yiUCsJS9Wcw6zA7jNjsekYfn0atVeFvcjEvycqRwf7L2zly73D1+/s7HKyOb6JQygk0OVFr1Uwena2KNALtPlHavxohGUlhcZnRGtSsL4qy68N/+gbe9/e//bzn6JlidnaWN73pTbzjHe/gX//1X4nFYvz85z/nF7/4BV/72td2xdLr1YY9Rz6VeNmno1wuMzIyQjgcZmBg4EU5UgeDQebm5rjkkjMLgdrZ33m5ohAymUx1aS4ajWI0GnG73bjdbgwGQ5X4NjY2OHXqFI2NjTQ0NJxXZb0gCExPT7OyskJ/f/8L/oa3PTnK537yK0DM5am1W5iRzEZbPHYsajUjixsUiqXT+jpGrQq9UsFGIotGIaPFaWZiJVY1Jt23w7/NpFNj0qlxmvTMLm7id5pZDEUpSEtffS0+hiTZdVe9i1QsyXJIurDajRSK224FbQ1OtAolY+NByoJAb4efU+MiaSgVchoDdjYjKQwqFYlEFq1WVXWcrvVbiUTTZDJ5ulu8FAslpqZD1QtqlYAEgd5OP+VimbFRcb8UCjmNTU6mJ0PIZeJr45EMS9IczU4C0mgUeD1GkrE8W9IcjttrIZfNE4tmaO3wkolniG5uz/E4PAaxHyTIsBg1KJQKEtFMNU3UV2cnHklR1+Bg7Og8nlob6VS26jTt9FnwBeycemQKAKvTiEqjrKreui9qIBqKsiLJtFUaJbWtXuZGVkRT0cemaTvQwIQkOgDoPNREMZMT53SAtv2NTB2fRygL6C06As1ulkZXSEk3Bya7EaNNT6DDz19850+qyrbdwMLCAm9605t461vfype+9KXz7mbwlcJ5QT65XI7jx49TLpfPyJH6+Zynnwt7IQohn88TDodZX19nc3MTrVaLy+VCEASWl5fp7u7G6/W+8Ib2ECpxFpFI5Iziyv/fIyf54t1i2qxercJl0oMgQ1YS0KqUzIci27EI9dtR2FaDlnqHheVQjEgyS8CuY3krU1WQddW5GF3YwKBV0eZ1EAonqrEHrQEnc6vbjgN9LV6EgsDIVBCVUk6ty8K8JBzwOE1ksgUKhSINHhsyYHJme+6np8NXdahuqXegkSkYk1RcVosOlVLBhkQCLY0ulIJQnd1pb/MwObVNQD3dfkrZIhNjkgqsy1clIKVSTmOjE3lJYGo8KAa4uUwsVQLmTBo0WiAPWxsp7C5xuXInAblcRsaOLyKUBVFGHc2cNsdTzOZZnpGcC1w6MqkCuXQRBIH+ixuZOrlUvdi7a21kUznikTQd/QHCyxHR+01SvVVk11aHgeljC+gMGmxeMyuS6k2pUrDv0haO7qh4fO0O1iYlp/P99SAIjD42tR25PdDAwvgK3hobC6Mr+JrcJKMpEpLqrevSVv7mhx9GZ9w9t4+VlRWuuuoqXve61/GNb3zjAvGcAfY8+cTjcY4dO4bNZqOnp+eMytetrS2Ghoa44oorXtTr9wLxPB2lUolwOMz09DTpdBqlUonH48HtdmO328+Lk71YLHLy5EkKhQIDAwNnPIz7n/cf4ZsPHEWjVNBb4yEcTbEYFpeROmpcTK2Eq/M5vXUeptc2aXM7WN1MnDb30xlwMr64bdzZ5jYQjuSJpfLYzTrkMjnhStxCvYupxTBOix6dXIFcKLAoVTw6jQqPzcjCqkhAPc0e0skc81Jy59NTSXvavchKMD4RRCGXUeO3MleZ7rfqkctlKGQyZGVx2+uhWNXtuqPdy8RkEJ1WjddhxGjQMHxqOz21QkB6vRqfy4QMmJXIS6dX43AaWV7cwmRWYdSqKZdgXVqCc7hMYtN8U8zjiazHyaS2rXIqBCSTiYO5MpmM2GayKkpw+k3EI2kcLg1r01GcfjOZRL5KWO4aGy6vpWrk6fBaxM+Tqr3OgTqi6zHWpCFQnVGDw2dleSpEc08Ni6Mr1LV7T1e9HWqCksDoo2I8QtclrVUCEgSBwSs6GHpojKLkdu2pd5JN5VCoFPzLfZ/CWWM/o3Pv+RAMBnnTm97EJZdcwre//e0LS2tniD135dp5wQ8GgzzxxBMEAgH27dt3xj/ui0kbhdOFBXuJeCpYWxPvbi+55BL27duHXC5ndHSUBx98kKGhIYLB4LMuVe4F5HI5jhw5gkwm48CBAy/JBeIDV+7nD67cj0Wt4djMKvFMDp9NbJyPr2zQEXBVbn4pFEt0+VycmguxGU8jl8uwSne6Y0theho9KOUy+us9zK2lsBjE5vRWPEOxWMBiFPdvYmGDQ521pONZlkMxFtfT9LSK1WYmV2A9lqLGa6Wn2cP07AbFkoBeJ7og70wlVSpkUBQtc0qlMvlCidW1GPUBsdG+FU3jdZtRyeSsrydYWNrC47NWG/3jE0H29dRi0amZnw0zfGqFnt6a6rEZH1tj374aLDo1c1PrLM1v0tgi9tEy6TybGwl8tXqEbIngcoxsJo/LK8rxNzcSyOVy9g0EGD++SGglik6vwSQlmK4tRXD7LDjtBtYWt1hd2MTsMGCQjlF4JU5Xb4B4SCSb8GocpUaGVi8KKAwmNeGVLcx2ceB6MxhDhgyH10xdq5vpkwskY2k8kuggk8wRXonQe0kzC8PL5LMFZodXcDdbq9+3mCsglLd7wqOPTdF5cQsIAl0HGzn28yEC7T5UkiN1aCGMyWHkU9/7810lnvX1da6++moOHDjAt771rQvE8xKw5yqfcrlMPp9nenqa+fl5+vr6XvLQZDKZ5LHHHuMNb3jDc77mXAsLzga5XI4TJ04gl8vp7+8/LSenMvxW6ROl02nsdvuesvqpyOFtNhtdXV1nVaUJgsDn73iYHz0hSm0dRh0ymaxa1fQ3iEtjw3Mhce7H72Bc8mTz200ks3ni6Ry1TjO1VhNPjYrNfqVCTrPfzmQl+E2vQiiXcRl0zK8lqHFqWQlnq/vR3exhZDqESimnp97DxmaSNSkBs85vYyOcICNVLQOdNUQ2kyxJvY2uNi+j0hKcVqvC5TBiMWoZH13DYTdQKJaqGTuNDQ5WlyP4PGaiGylqA3bGdogOuntrGDm1gt9nIZfI4faamZCW4FRqBbUBB3Mz6zhdGoppAaNRy4oUt2Cx6VGrlWwEY/TsqyW4tEWpVK7GIXj8VtKpHAq5DI1cjkIpFwdPpd6Wr95ObDNFQ5OT0SNz+Ooc0pyP1OPxW9AblSyNrSOUBSwuA+ViudoDat1XSzKSZG1W7PEYLXqMVj3BhTD+BgfJcAKr28yCdKzkChktfXXkM3kWR5cpFUqiLc5j09XjceD13Tx11/Hq/+u7awnOhylkC3zqe3/Ogav2neEZ99wIh8NcffXVtLe3873vfe8586su4Pmx58gnn89z7Ngx4vE4g4ODmEyml7ytivnnVVdd9ayEslczeGB7+PLFXrhTqVSViOLxOGazuSpYeCWsfiqpqTU1NadJqc8G5bLAP9zyID87LsYuu80G8sUStVYzaxtx6lxWhiTRgUohp8GzHYUdcFlwG/UMzwQplsr0Nfs4Ob1tgVPvsTKzvEm924pWIWc1GCWdE++w6z0GFkLihVkuk9HX6iO8nmQ1FMNs1KLTqghJbgwNtXZWQzHqPFbC6wnqa+3Vno9MBh0tHsak5bfuVh/RSJplqX/kdpnI5QvEpJjqA30BxodXyEhKs84u/2kEtP9APWPHl8hmCuLcT4d3m4BUCnx+LWtzCYrFMgajBotNz6rkfGC16alvcDIkWds43GZKpe08nuZ2L4V0jiXJuscbsJOISwRU6fGcWKwusXnrpDmfWIbmLh+ZeIZENE1CmvMxOXQUCyW0WiXZSAa1VoVKqyIseb0ZLDr8TS5Wx1dJRlKoNEosPiPhRZHYa5pcmK1aRh/ftsXpvrSVkUenaOmvY/qpGdouamLyqZlqj6yus4Y3f+A3efMHrnwJZ9uzIxKJ8Na3vpW6ujpuvvnmF221cwHPxJ4jn62tLUZHR+nr6zvrHzafz3P//ffz+te//hmzQHuxv1PB5uYmQ0ND1NXVvaQAvFwuVyWinZk6L4fVD2x7zLW2thIIBHZ128VSmb/9wS+4/9QsdoOWRqeN2dUt4tJ8SCUWAaQobIeFTLaATqFAEAQ2IslqZdK3w0BUq1bS3+jj6MgS5bKA3aQimxOqr230GZlbS1Ln0BPeyhLwWJiWgtKsZh1qpZz1rRQIAgd76xgeXiEn9R12ig7kMhldbV6S0QyLi1sY9GqsVj0r0kXY4zaTzuRpqLExMrRMc7OLhblNSpKooqvbz+jIKl0dXqZG1mjv8jF6aoeku93L5Ngafr+OzbUM/lpbNa/HYNRgtukJrkRob/MSWo6Ig6dS3o7TY6ZQKKFWKihlC6g0yqpoACQCimWoa7QzdmT+GRWPN2DHYtczc3KJYqGEO2Anm8oSl6x8Gjq9ZCJJQtJx01s0qPVqoqEkVpcJrUqOXE5VdKDSKAm0+4ltJsjH0yS2UrQfbGL8qW1364Hf7GLo/lPVHk/bgSamjs0hlAWu+/M38b5/2D1JdSwW49prr8XpdHL77bfvidWF8xl7jnwEQSCXy+3KBbJUKnHvvfdy5ZVXnnai7Kx49tIyG4gGqRMTE3R2dr7gHNOLQaFQYHNzk/X19XNu9QPi/k9OTp5Tj7lCscT/+cmj3HtkinSuQK3DTDSZJZUV52T6m3ycmFlDDgw0+Ygnssysihe8Jp+d1Y0YOcnGpq/Fx+p6DItGSzCcwGpUsRYW7/7rvFbCWyJZadQKBlr9PCkFmcll4LFrCUpLcnaLHp1OhUmtZnJmneYGJ4tL224FPZ1+hsdWqfPbSMcyOB0mJqdEGx+jQYPZrGV1LYZapaCr1cPs9AZJyeCzpcXN/OwGpZLYO7roYCNHHpmhctZ29dZUCUgmh4Z6E/MTUpy0Romv1saCREAWm576OjunJHNSq91wGgG1dvrIxDLVPB6330o2LRGQVPFMn1omWcn/2VHxNHZ4yCdzxCIpktLyobvGRi6bR6lUUExnUSgVgMCW5Latt2jRW9RkY2kSG2k0ehV6m5bIilhJ2jxmfHUORh6ZrP7+nRe3MPbkDO46O/FglMbeACOPTlb/jlsGG/E1ufnIf/7Brp3fiUSCt73tbRgMBn784x+fd0PdexF7knzy+fyubeuee+7h8ssvR6/XIwjCaT2evVTxVGZglpeX6evrw27fveZoBeVyma2trepgqyAIOJ1O3G73WVv9CILAzMwMS0tL9Pf3Y7PZdnHPn4lcocgnvn03R6bEi2692ypWNXmxUjnYWsvGVpKFYASDVo3dpGNJisJuqXGwuBahUCzT2+hBJVNwckJcztKo5DgselYlSXCD346sLJBLFwmFE/S2+06b3fE59SwHkzjMKrQKFelskVhcrMJaGl3M78joOTTYyPEj82KYm0JOU4OTKeku32TS4nYayafyrCxH8PutxGIZUlJF19rqYWlhk4Y6B5OjayLhDC2fRkBjIyv4PDpCyyma2z1MSUtwGo0Sb62N9dUoHpeJcCiO2apjrbIE5zCgVCrQaFXEgnF0BjWFQomYtARXMQv111gZP7aAJ2AnlchWB0k9ATsWm565oSUK+aJU8WxXTI2dPkqZHIvSYKrNY0Yml7G1FkNv1OCusZKKpViXZOEqjQKr10R8I43FqiO8EqGxJ8D08fnq77/v8nYWhheJSAF9XZe2MfqYSEBdl7bxv3/0sV2LwU6lUrz97W9HLpdz5513vugxgQt4fryqyQfg3nvv5eKLL8ZoNO5ZYUGpVGJkZIR4PM7AwMDLcnILgkAsFmN9fZ319XVyuRwOhwO3231GtvEgktrY2BhbW1sMDAxgNBrP4Z5vI5Mr8NFv3lXt8zR5bYQ2E7T7XYzMheiqdzM0I16ATXoNRp2GNSlErrfRg1AQGJsVL/4tfgszK7Edr1WzthGnv8VHNl1gfmWrOni6k4BUSjkDHX5OnFyhVCpjNqkoFEpksuJrWxqcLK9EaKlzMjq2Rk+Xn5GRbfKqRCLU19oo5UsUCyXWpSrEXyPm/aRTovVMS4OLU8cXKUvTst29NYxIBKTRKPD5dSxMit9BoZDT1OpmSnIKcLpNeD1mRo6KAXMGk/Y0AurorSERTrIqLYk5vWaKxTLRcBKZDHr31zE/tlollJ2DpI3tXvKpLPFIqtrjcdfYyGYLyGSgFARkMsTtSeIMq8uE3qhFLpRYmgyiN2tRG5RE18S5I71Fi6vWxPxxyctOIaOht5bZE0voTVqMZg0On42RR3dURJe0koql+aeffRKTfXfOwUwmwzve8Q7y+Tw/+9nPzqoHfQGnY8+RD4g9i93CAw88QH9/PyaTaU8KC/L5PCdOnACgv7//FWlgCoJAKpWqElEymcRqtVaVc8+3xFAsFhkaGiKXy70icd2pbJ4Pf+OnjC1tUO+y4jDoGJkNVQdP9zV6OCW5GViNWtQqBU6DgbVQDL/LzMT8RrVB3dXgYkxKHq11W3AZdQyNVQZEncwvbw+e9rb5mJ5fp9FrZ35xE5/bzLykJnM7jaTSOVLpAkadAo9Vy/xi4rSMnioBSRk9J48vUiyWsVh0aNSKqvNBTa0NpVxOOpphM5ykrcPL1ERwe597a1icDaGWQ3QzS+e+WsaGRCWfQiGnsdVNbCuFkC+SjGfx+C0sSktwRrMWk0WHXq9haSKIwaQTI7elJTGnVwyEczj0TJ1cwuW3ks8WiElDm+5aGzankdkTizsqnu0eT327F4pFFqRj6PBZxIC5UByVWkFjp4+tYJQN6bjpTFrsbgvBhQ3qWj0sja9R0+phflj8PjKZDG+7nWKqQGhGVCd2X9bOyMPizI/Na+Vz9/0Vnnrn2Z5WgOif+O53v5tYLMY999xz3jnG73XsSfI52yjtnXjooYfo6urCYrHsqWU2EMv548ePYzab6e7u3jOzAhWrn0qq43NZ/eTzeY4fP45SqWTfvn2vmOQ0ns7yb7c+zP3HRKVTe62T6ZXteOveBjfDcyFMWjUtPicrwSibMekC6TaysJ4EQVSjdTV6KBfKrK3FUCrkqBQKNioZQ40uZhbEZbQ6nxW3Rc9x6UKv1ShxO00sSoOmPo8Zm0nH0vwmqXSeulozi8vx6j63t7iYngnT1eJhaiJEbcDG3Kx4QbVa9SgVcsLhBC3NboRiieBylExGVL3tJCCnU4dRJ2dxJlbddmdvDWNSD6iuwYFRr2LshOR9p1WdRkDd/QGi6wlWpR6P1SH1gIJxFEo5HT0+VufC1Twel98qRhVspmju9JGOiYKDSnaOu8ZGNpMHQUCrEufsCoUSMen9do8ZhUqJ0aBi9tQSBqsOhVpGfF0KfzPraN5Xw8n7RSdqlUZJoMPP7MlFZHIZde1uBMrMn9wetG25qJ7lsSD//PNP0dhbd1bnUgX5fJ73vOc9rK2tcd99953zZeRfR7yqyUcQBB5/XLRm8fl8uN3uPaNQ2dra4uTJk9TW1u6aFPlc4OlWPxqNBrfbjdlsZmpqCqvVSnd39yteTUYSGf78yz9mIRQFoLPOxcTiBmWJVA611TI5t0EsmcVlNVAqlYhIcytdjW5G59bRqBS0+52UimXGJRNQh1WPTIBNqb/R3uhCo5AzNhmiVCrT0+5jRFKy6XUqHDYjyytb9Lb5iWyliO7o23S0b2fw6LUKfHYN83MisalUCmprbczNVQhIR0OdjVNHxdC8QJ2djfUE2R0ElEokCC8nKBTKdPcFGNnpBNBbQz5bYGVmnWKxTEOrhxmpAtFoVbj9FkwGDWNHFjCatRitOoKL2z0grV6NTi1nbmxtOxJbIhCnz4Lba2Hi6DylYglXjY18Nl/tEdW1eVCUy9VIbIfPSrlUJrIeR66Q0d5fx/pimLAkMTdaxTmftbkNOgbrmT+1eFr2jkKloLGnFjkC40+Isz2dl7Qy9tiU9Lycw5/+TdoONVXjSsxm80v+myoUClx//fXMzc3xi1/8AqdzdyqpCzgdr1ryqfR3MplMdTmpEnVduYt/pRQrq6urjI2N0dHRQU1NzQu/YY+gVCqxubnJysoK4XAYuVyOz+erZhO90gQUjqX4sy/9mBWpr9Nd72Z5PUad3cL4wjptASfj8+Idv9WgolgUSGUlgUJXLQvzW4QjKRQKGS0BJxPSEpzLbqBULFMqCXitRpRKORPToeo52t3mY1SKzfa4TPgcZoakiqjGbyUaSZFKi33MznYf6WSWZCRDNJqmqcnO7IzUaFfJcbmMhEIJ2pvdrK/FkMlkbEr+a3X1DkLBGLlskfp6M6V8kdXFBJU1uK6+AKMSAXV2+ZAJAmOSc7ZCKaexxcP0+BoIAj39dcQ3kyztWIKrEJBOryZQb2NrPVF1n7Z7zCCIgXCtPX5i63HyuWLVq010ry5SKpbRaRWUi0+reLwW5HJRXTd1bB6jTY9MCYkNkdT1Zh2tfQFO3HcKkLJ3mj3Mj6wgCAJdh5ooZAtMHtmWWXe9po2xR6f4+E1/zKFrBqoBjpubm8jlcpxO5xnnZhWLRT7wgQ8wMjLCAw88cN6lAp9P2JPkc6ZR2jtRUbRVYhl2CgsqUdfr6+vV5aSKT9rL1eSfnZ1lcXGRffv2nRb5fb6g4qrd3NyMyWSqKucKhUL1j93pdL5iS3ChSII//eKPCW0l6Kn3oJbLOTG5HYvQ4LUxvSwuMfmcJvK5IgGnheHJNXpafJya2H5tY42dqQWxEulv97MVTrIiqas6Wz2MTW1HXXe3esmmC0Q2U5SKZcwmLavSawO1NsLhBJl0np4OP7KyUE0dBejq8jE6IpKXxazGbFCwsiASjs2uRyaTsSVVFfWNDmSlPIvTUQDau/xMjq5WibBzXw2yUpmx4yIJdeyrZXxoBwG1elDJZIwfX0SjU+H2W6sEZDBrcXnN5JIZ1uY3sTgMqDUqNqQZJLvbhL/OzsjjMwhlyautVK5WRHVtbhTA3LC4JObwWUUvt1BcXNI80MDa3AabkieeyW4QM3cWN+k60MDcqUVsXgsrkvGqSqMi0O5Hq1cx/MtRcZD2ohYmntweNP3zr/w+r3/vb5x2DpTLZaLRaHXpOJfLYbfbq+fmc/UlS6USH/zgBzly5AgPPPAAPp/vuU+0CzhrvKrI50wcCyrLSaFQiK2tLXQ63TkdxKxEQkSj0ZdVEbabWFlZYWJigu7ubjweT/VxQRBIJBJVIkqlUq+o1c9KOMb/+f6veGpMvOj2Nnk5NSNGUivkMvx2A0sbSercVixaNYsrkWqK6b5WH0MSAamUChr8NvRKJcPja3hdZlKZPAlp/qar1cvo5BoyBHrb/JQLZcbGpagGoxaDQU1QUq41NTgxqBSMSkmkXV1+Rne4FXR2+kjGs6SiGbKZAnaHjtVlkbyMJhUymZx8rojDoqZULBOL5MlLA7Dt3X4mRlaQy2S0tXtRyGWMSvNIsE1AKrWCxkYn5VKZGYnsNDoVnhobi9Pr2JxGjAYlxXyJNcn41GI3oNaKBNTRVytm4shkbEnEWjELLZfKaBRyaXBbFBWAWDHJ5DIcLiMTT81itOtBISMZlpwPbAaaevycuE90r9aZtDhr7CxJasKui5vJJDLMSDJrmUxG+6FWxp+Y5rf/4lp+56/f9rzngiAIpNPpKhHFYjGMRmN1ea7yt14qlfjQhz7Er371Kx544IFdH46+gGfiVUM+O81Bz1RYUCwWq32NyiCm2+3G4/FgsVjOmojy+TwnT56kXC7T39+/Z/pOLxY7K7YXM4OUTqerRBSLxapWPy6X62WbkVgIRvjwjT8mkhCHHbsaXIzObSBDDJHrbfRwbHiZclkg4LWyGUmRluKX97X5GBpfo9ZtQYXoOF1Rsvk9FmLJ7eC3/k4/iWiGuflN8eLf7GZCGh41m7RotSqEsoBGJkelUhBai5KTSGMnAXW1+5CVBcakikinU+FwGVmWpM81tSYK6RzhoPh9auqsbIQS5CULoK7eWrKJDHOT4md39QdOI6DugQCJcJKl6Q0USjkNbV5mpM/W6FQ0tXtZmwkR3UxiMGmxOIysSm7TZpuBxnY3J38pypptLhNyhZxNiYDqWj0oZGXmJGK1e8R+S+X5nkONrE6HqhWP2WFAa9CxvrRJ54EGFkaWsDhNrE6L+67Rq/E2uNDq1Yw9OoFSpaBxXz1TR7eX3N7xF4f5nb9+2xn/bVZuOiv/brzxRsxmM/F4nKmpKR566CEaGhrOaJsX8NLwqiCf3bTKKZVKpw1iymSyakVks9nOuK+RTqc5fvw4BoOB3t7ePaNoe7Eol8uMj48TDocZHBw844qtYvVTWYuvWP2cbVP4xWB2dYsbbvwxsZRYqXQE7KQzJYRCma1YGq/DVI1FqPfbCG7EyeVLyBC4pKeBoycWKZbKaDVKvE4TC5KSrdYnBr/VuM0E12LU19oZkZr5crmM1iYXk1Kswb4uP9HNFMvSPE1Dg4PVlQgFyQ6mu8cP+TJjw6vIZNDe4WNc2pZOr8bhMKCQw8ZSBLVWAYKMeFQKeXNriW7lMBo1aBRy7E4TEzviFioEZHcaUcvl2BwGxk+Iy3E7Cai20U5qK4XZqmdBIs4qAc1t0DVYz9JUEL1BQ0giYavLhFKpoFQsId8xtL0p9YhsHjNyhRyny8j4kzMY7Xpkiu0ej9lupKHbz8lfiBWP3qzD7rWwLC25tV/USC6ZZfakOJckV8hpGWxg8qlZXvM/DvKx//rgWQfClctlfvKTn/CZz3yG6elp1Go1b3jDG7jmmms4fPgwLpfrrLb/bPjlL3/J5z//eY4ePcra2ho/+tGPuO666573PQ8++CAf/ehHGRkZIRAI8Nd//de8733v2/V9e7mxdwZeduBMLki7HYWgUChwuVx0d3dz+eWX09PTA8Dw8DAPPfQQw8PDrK+vP2fU905Eo1GefPJJXC4XfX195x3xlEolTp48SSwW4+DBgy9pqVCj0VBbW8vAwABXXHEFTU1NZDIZjh07xq9+9SvGx8fZ3Nx8yT2+50OT384n33UIrUqOUiFDq9LgNOpZ3YiTzRdZjyQJeK0ALKxG8Lst+J0mmjx2njg2T2eruLSYzRUJbSYJ1IivDa7H6GrysLocIZnMMTIuDo+CaH46PRemrdVNb7uP4aFlkqkcTqd47ObnN6mptaNSybGYtaSiGWRyGQKibmByIkh7p9hryKRyWExaUtEk2UyReCSHRqPGYhWFMpvrWZrbnJRzeTbW4kycWqG+ZbuPOHpiiYFDjZSyBUIrEcaHlukYEKXIpWKZ+ckgfYca2FjYJLKRILi0RV2b+J1TiSzRcIL+S1sYfXKWRCRNOpmrxh9ENxIYTBqsNh2ba1EioTilYglnjShJjoTi+GqthCVbo+RWGllZhlt6v7/JyezxOXxNYkM/Hc8QXo0Q6PDT1Btg6slplsZXaOpvEI9rqcz00Tne+L7X8pFv/tGuJZE+9dRTxONxRkZGePLJJ7n44ov59re/zSOPPLIr2386UqkUfX19fOUrX3lRr5+bm+Pqq6/myiuv5MSJE9xwww184AMf4J577jkn+/dyYk9WPsVi8QUv7s8nLDgXeLojQD6fr1rTOJ3OZxiXBoNBRkZGaGtrOy/XjyvDr3K5nL6+vl0XEDzd6qdcLlfX4Z1O564Q9eLiItPT02jtNfzn7SeqVc6+Vh9Dk+ISkUGnxmbUsRKK0tvso5gvMbcQfpqbQUVKrabRbyUezbIaFCue0I7gt55OP8OjqzjtBsxaNSqlgmlJsm2z6ZEjZ3NTFBL076thZWGrqmTr7qlhZGgFGVL11O5GVoKJ4VW0OiUOh7HqSO3ymslnC3i9FmbH1qhtcLCysFmtpnx1RtYWk/gDZjZX4jR3+qoCBICOPjG/p723hvnRVQLNLqaHt+eAfPV25idCdOyrZXFiDZvbzEol/sCqx2jWUiqWyCcyCGUBrUHDeiWuwWlErVVhcxiYeHIGg02HQikjLlU8JruBxq4ahh4YQRAEDBY9VreJFaniau6ro1woMnNiHgClWklDb4Dpo3N0XNzCZ+74BFrD2S9bC4LAP/zDP/Dtb3+bBx54gK6urrPe5plCJpO9YOXzF3/xF9x5550MD28nur7rXe8iGo1y9913vwx7ee5wXpLP04UFL7dVjiAIJJNJQqEQ6+vrZDKZaoPd6XSyurrK3Nwcvb2956R0P9eoLBWaTCZ6enrOuYS6QuwVJWI2m8XhcFTJ6ExdH3b2qAYGBrBarZyaWuMvvnhnlSj2tXgZkhytAx4LLqOBk6PiklVrg4v5xXDVzaCnzcfw+Cq9bT5WV6PotGrWpH5GQ8DO6lqUvHThPzRQz8jQMplMAaVSTn2dgxnpwm23GxBKAjVeC+PDKzQ2Sd5vEtFVCMhs0mI3aykUsqwtiyo3g1GD1aoTCUgQ6D9Qz9z4GnEpI6eh1X0aAfUdCDD8+ByVgrKuzc6iFEGNIHDgN1o48otxQFLBdXiZPiUSkM6gpn1fLSekHo/OoMHhNbMsqeIaO0TngjmpP7VTtSaq2urZWNwktCiKFow2PQazjtDCJu2D9axOrWGw6FmTrI10Ji1Ovw1BEAjNhhCEMjWtPuaGFqX9U3DomkH+9Iu/h9F29j1DQRD4l3/5F77yla9w//33s2/f7mX9nAleDPlcfvnlDA4OcuONN1Yf+6//+i9uuOEGYrHYc77vfMCeJJ+nR2nvxNkIC84VKtY0oVCIRCKBTCajvr6eQCDwstvNnC3i8TjHjx/H6/XS1tb2sh/fitVPhYgSiQRWq7XqxP1Cs1mCIDAxMcH6+vozelTHx1f4yy/dRV5ytO5t8UJJYG5+E7VSgVajrObytDW6mJkPUy4LWE1a2uvdPHVc7D+YjBqMek1VydYozd801ToYHV2jt9vPsCQ3VqkUBAJ2Zmc30GqVtDe6WV7YJCJ5oDW3uE8joMHBemZH14hHM8jlMprbPExJCjqDUYPDYUCnVjI1sorbZyGbzhOXBmArBNTa7mXs6AIdfbWMS3M+ALUtVpanI9Q2WFie2KStr5bJHXNATZ1eFiaD1ATsLM+sU9vkYk7qP2kNapw+K5QFtpY3kclk1Z4QiBWR2WbAYFQxeWQOvUWLSqskFkpWn2/uqWXowRHK5WdWPA1dNcjlAtPH5sXjplFS11nDzIkF/C0ePnvPX2H1nL29jSAI/Pu//ztf+MIXuPfee9m/f/9Zb/Ol4sWQT1tbG7/3e7/HX/7lX1Yfu+uuu7j66qtJp9Pntbv2nuz5PBcqFc9eIh4Ag8FAbW0tKpUKg8FAY2Mj0WiUhx9+mCeffJL5+XnS6fQrvZsviHA4zJEjR6ivr6e9vf0VOb4ymQyj0UhjYyOHDh3isssuw+PxEA6HeeSRR3j88ceZmZkhkUg8YxC5XC4zPDxMOBzmoosuekaPaqCjhr//kzehUspxWvTkUgVkZchkC8SSWXKFEm7JkHJyboPWRhedjS7K+TJPnVigq12M0U4kc6QyeTwu0WQym8nTWu9iUlKanRpZpbtbHB4uFEosL23R2+3HotVw6uQyCpUSq00M+JuZXqex0YVCIaOrw8fwkXlMVoX0fQRmJkO0doqfq1YrUMlkJKX8nPW1GFq9GrNV3NbK/CY9+wLVCmb85DIdfbXV7782H2fgUCPLE2JFMnlymZoWKyD2gILLETr2BZgbXaWQK7I8u0Gj1MvKpvJotUrUChnpRJZUPEM0nKCmWerZJDJYbDoSkhVROpalmC3haxIrf3+ji+njc/iapJ5SLM1WMEag3Yev0UVoLsTS2CoNveISdSFXZGFkmcE39PJ3P/mLXSOer371q3z+85/n7rvvfkWJ5wLOo8qn4liw16IQQPRCO378ODqdjt7e3mr/5+mhbs/lkbYXUHFd6Orq2rPDdYVCoaqcC4fDaDSaakVkMpkYGhoin88zMDDwvHL2J4cX+Kev/oJkWrS96W7xMjolVhd2ix65DNLZPE1eO0JZEN0MqCSRehmTFFkWs5amGjtjI2sUCiWaK8toleW6Lj8jw8t0d/pZnAvjdJpYkOxzXC4ThXyBaDSDQilnsC/A8SfnKEvv7d5Xy8iJbYPQ3v5a5kbXSMQyoiO1RceapL7z+C3IZTKUwPJcmIY2DytzG9UluI6+WpZmNnA4DCxOhug6UM/okYXq8ahrdxJei6EQyiQjWeo7PMyPSoOeaiW1LW7kMoHF4RXkCjneejsLUjWmN2lx1thQygRmTiygNajRWTREVsUK0mDW0dIXYOgBseLRm7TY/TaWJUeI2jYvWq2y6lyg0qpEL7cTC9g8Fj7787/C17w9U/ZSIQgC3/zmN/n0pz/NXXfdxWte85qz3ubZ4sKy2x4kH9GMUJy5eLmFBWeKWCzGiRMn8Hg8tLW1PWd/pFAonDZLpNVqq0R0riXHzwdBEJifn2d+fv6c5QidC1SsfirkXiqVUKlUtLe343K5XlCw8MjROf7uqz+nVCojk0Fnk4cxac6kr81HIpZhQWqii24G4nOVWZ6V1Sh+h4lwOIlSLicsCQlaml3MzYkEpNUo6euu4anHxQurRqPE57WwUAlqc5vQqJXIimWWF7fw+PSsB9MI5dMJqLPbz9z4GnUNTqalZTCjWYvJLBKQr9aKXq0kHIpt94B2EJDDZaKmzsbQY7PbVjw7CMgbsOJ0GRmW9lMml+GuMxOaFy9u7X21FLMFZoZE0YJGp8Lb4GRhbA2VRklDm5tMIsOS5FunNWpw+m0sTwZpH6xnaXwFm8dSJRytUYOr1kEulSMVTZBP5/G1eJg/JW5fqVbSeUkrf/j591DXtV25vVQIgsB///d/88lPfpKf/OQnvPa1rz3rbe4GXqzg4K677uLUqVPVx/7n//yfbG1tXRAcnAtUyOeVFha8EEKhECMjIzQ3N1NXV/ei961UKp1GREqlEpfLhcfjwWq1vmzfURAExsfH2djYYGBg4LzMKsnlchw9ehSlUonJZCIcDlMoFE7LJnoupd5DT87wj1+7l7IgiPHWzW7kJRiZWMPlMFIslIhKiZ1dbV5GpYqnrcGFTqnglNRwt9v0yGXbSrbWFjfZdIF8Ks/GRoLubj8jUg9Io1Xi9VhYnN+kuclJOVdiM5wgmZBC49q9zEwGKZcFFAoZ+/c38NSvRDPNSkbPTgJqbHEzdWKJXLaAu6aSOrpNQEKpzNZalEQ0TXtfgIkTS9sEtL+eZCzFxsImmVSOzgMNjB2ZB5AcpF2UCnmWR9ZRKOX4mp0sT4giAbVWRaDNSyGVYWFsFbVOhcmhY3NJJCytQUPHgQZO3DeMIIiKOHedo2oW6m/xYDCpmXhCtMrZWfEYrHr+4c5P0tRXf9bnhyAIfPe73+WjH/0ot99+O6973evOeptng2QyyfS0+HsODAzwb//2b1x55ZXY7Xbq6ur4y7/8S1ZWVvjOd74DiFLrnp4e/vRP/5Tf//3f5/777+dDH/oQd955J1ddddUr+VXOGnuWfPL5fHV+RyaTveKmlTshCAILCwvMzs6edVz0Tsnx+rr4h12piOx2+zn73qVSiVOnTpFOpxkYGDgvG5fpdJpjx45htVrp6upCLpdXlYiV41mx+qko554uAPnFo5P883/+gtaAk2g0jcOiZ1KSR3ucJnK5AjHJ/bq3w4dQEBgdW0Mul9HS6GJSqpYcdgMIsLWZpLfTTzFXYmoqtB38toOAdDoVXe1eTj45jyCA2aqmWIR0UnRNaO3wEg7FMGk1LM2FxWHRynColNEzM7pKV1+Apel1jCYtwUqW0A4Caun0IRSLLE6vU6hY8ewgoNZeP2qFjJEn56rHo0pAgkDXgXpKuSITR+cBcdDTWWdifS6GzqDC7jKiUquYk2Taaq0Kf6OL+dEVOg40MDe0gKfOyYKkItTo1Hib3KTjabLxNJlk5jRVm1KtpP2iZq7/h3fSflHzWZ8fgiBwyy238Kd/+qfccsstvOlNbzrrbZ4tHnzwQa688spnPH799ddz00038b73vY/5+XkefPDB097zkY98hNHRUWpra/mbv/mbV8WQ6Z4kn/n5eQwGA1qtds/1d8rlclVN1d/fv6sBUxVDxMqFs1Qq4XQ68Xg8Zx1zvROVGR6ZTEZ/f/8rZgJ6NkgkEhw7duwFVXkVX6/19fWq1U+lT1Sx+nngsUn++av3IQiioWhTwM6UJI/2us2kU3nsZh3ZdAGXw8jImOj9th2FLRJQXa0dq17NyCnx7r6tzcPUVGg7+K3Lz/LiJi6bgeBKFJtNy9qKqJjz+i2kkjkS8Sx19XbMBg2jJ5YQJKl0d3+AEYmAtHoV3d01HHtEvIOuLMFVCMjlt+DxWhh+XKwqGtq9rMyHqwTUtk+KJ3hKJJ2uAw2MPrWTgOqhVGbsyVlkMhltA/VMHBGfVyjlNPb4CS+FiayJmT/2WjMb81FAJKDui5s5ds/J6v/9LduBcP5mN0aLlvHHxX3fqWrTGjT879s/TuclbWd2MjwHbr/9dv7gD/6A73//+1xzzTW7ss0L2D3sSfK5/vrrue2223jjG9/Iddddx1VXXbUnjDh3pnb29/ef02pBEATi8XhVwp3L5U4ban2phFFxFzAajfT09Jx3rgsAkUiEEydO0NDQQENDw4u+Ocnn86cJQHQ6XZWIHj66zL9/+yFATBdtrLEzPbeBQi5joLOG6ekN4gmxAurp8DE8tsP9ut4BpTLhYBy1WkmxWCIqLX21t3uZnBSD3xobHJj1Gk5JA58qtRihsCYZiHp8FlxOI+MnliiVyrR2+ZgeXasSUFd/gNWFTYw6FcHlCA1tHmZGT+8Bra9EaOvysbUeJ5vKVWOv69s8rC1sks8V6dxXQ6lQYurk4jYxSgSkUMpp6vCiUikYfVLqAclktA/UM35kDrvXjEIoY3GZmDom9owUSjnOOiuh2S0CnS5Wx4IE2n3MST0i0Z3aRzKaIhNLkY6nq4QDoFQpaD3QxHs+/Vv0/EbHSzonno6f/vSn/N7v/R7/9//+X/7H//gfu7LNC9hd7EnyKZfLHD16lFtuuYUf/ehHLC8v8/rXv57rrruON7/5za9InG02m+X48eOo1eqXPbWzMvtSGWrd6Rrtdrtf9BBmpVrweDyvmJT6bFGJdGhra6O29qU3o4vFIpubm9W+m0KhYHwhzy33iIOVKqWCriY3WxtJVoMx/F4Lsfi2oWhPp4/h0TVUSjmdTR5y6Twz0nKdy20S46ZjkqdchxelDMaGVhAEaGpxMjslqt50ejVOh4H1UIzGBieJSJp4LENKIrqdBFTX6MBq0XHqyXmg4s+2TUBunwW3y8iI1Ldx+61kM7lqrHVTlw8VAhOS4Whbf4Cpk0vb8d4HG4mH4yxKjg5dB5uqBASw7zWtzJ+cJxZOIpPL8DbbWZsSxRNyhYzeS1uq7tRypRxPk521SfF7+pvcmB0GRh8RI69Fs9A6po7Oodaq+JtbPsq+K3bHZeCee+7hPe95D9/61rd417vetSvbvIDdx54kn50ol8sMDQ1x6623cttttzE9Pc3rXvc6Dh8+zNVXX43NZjvnF9HK4KXL5aKjo+MV7z9VXKMrAXlWq7VKRM811Lq5ucnQ0NAZVwt7CWtra4yOjtLT03NapMPZolwuE4lEWF9f56f3j/GLx9do8llYC6bwuc3MSfECtX4rkUi6Ggy3f1+AtcUIoVAclUpBXcDGrOQC4HabyWYKyOVgN+nQaJRMjgWr4pnWdjdT4yJZ1dXbMWpVjEumoL4a6+kE1OlDKYOpUyuUSmW6+usYPVaZ/hcJKBlNU8rkyWbymK161ha3l+DymQLlUhmLWYNcISe0uElOSkRt7RPngixWPVqtApvLxNiOJbgKAQVa3Gwuhqnr9DH2xLYqrm2wgfGnZum6qJHxx6do7q9n6qj4frlCjrfVSXIrRS6eJpcq0NAbYPbEtllox8UtvPOT19F/Zfeu/JYPPPAA73znO/nqV7/K7/7u756X5/mvC/Y8+eyEIAiMjY1xyy23cNtttzE6OsprX/tarrvuOt761rfidDp3/WSr3Gk3NTVRX1+/507mpwfkmUym02aJYPui3dnZid/vf4X3+KWh4tPW19d3TkP4BEHgh7c/xU3ffwoApVKGw6IlJHmT1fqtbEVStNQ5mRhbo6PNy7AUJaBWKaittTI3K97t9/XWsLEaJ7gmLqvVN9lYkFJLATq7/QjFMgtT6ygUMmx2AysSafhqbcSjaXLZPK2tHsrFMlOjq1UZ9k4Cau3yohBgQkoxNZi1mG161qQ4hrYeP9l4hkVJLl7X6iG0tE1AvRc3sTq1xqa0n50XNZ5GQINXtDP0wGi1Z1TT4WRlXPyOMrmMwSvaOfIzsccjl8to3d/IxFMiQdW0ejBZdYw+Mll9vbfNydr4BiqNkk/94MMMvn537G1+9atf8Vu/9VvceOON/P7v//6e+1u9gNNxXpHPTgiCwPT0dJWITpw4wWte8xoOHz7Mtddei9frPeuTr3LBe3p42l7Fzp5GJb5Ao9EQi8XYt2/feZlFX/FpW1paor+/H6vV+rJ87g9vP8p/fe9xQCQVi0nJRjiL2aTCZzexvBQlK0Vw93T5twlIrSRQa0GnUjE6vILXZyEdz5GoVDHtHqYmgigVctpa3FAWGJfeqzdosNl0rEgGoq0dXoR8kRlpoLOt238aAXX21SIvw9jReeRyOY0dHqalbRlMWix2A1qtktWZEEazToy1loxMAy1uNlYieGptrC9sUNPsZvbUUnXIteNAI+NH5mjvCzB1dJb2A02MSiIBgK6LWxh7cobW3homnpyh8+IWxqTnZTIZbRc1kYqkCC9tkE1mabuomfEnpOflMhoHAux/ew++budZ+fhV8Nhjj/G2t72Nf/7nf+aDH/zgBeI5D3Deks9OVAYlK0tzFWv0a6+9lsOHD1NbW3tGJ2PFHywYDL6sF7zdRKFQ4NSpU0Qi4oVMo9FUK6LdCMh7OfB8Pm0vB7536xG+88MnANBqlHQ2uxkbXiNfKGG3q0nG8xQKkpS6y8/I8Cp+nwWVTIZcLqu6GTicetKJHNmMZPrZH2BzNcrqUkTM8OmuYVySYVcISKNWsr4cwWzVEY9kSEnpqRUCUirlNDW5UCrk20twCskgdHgFBIGeA/VEQ7GqIajTZ6FYLBOVYq/7L21i+vgiyZhY1bXsCzA3slz1mdt/ZQdH7xmqkl1Np4uVMXFbKo2S3ktaOCqp2gA6L2ll7LEpAOo7/RhMGoYfFns8MpmMjotbGHtsCrVOzd/c/BF6X9v5DB8/i8VSJaIXGzx45MgRrr32Wj7zmc/woQ996Lw4ty/gVUI+OyEIAsvLy9x2223cdtttPPLIIwwODnLddddx+PDhF+x3FItFTp06RSaTob+/H71e/zLu/e6gVCoxPDxMMplkcHAQtVpdba5vbGygUCiqRGS1Wl/xHtazoRI7Ho/HGRwcfMXmkP6/m5/k7vtGsBq0BIMxnHYjS5KtTY3fzMZ6XCQgQaC7w8XUWJhisYxGo8TrNVfdDLw+M8l4joDfxvzUOo0tLiaGV0AQbXvauv1MDK+CINDbX0sklGBF6jX5ArbTCKhnMEB0Lc6KRG5d++sZPSopzxRymrokgcORefQmLTaHsRqJ4PBaKJVK+AN2Rh+fprbFzWYwRiYpDrk299YyP7pC274Ao49P036gQVxCq6jiLm5mdmgJt9/KwugKXZe0MvroRPV4dV3SKrodjC2RzxTourSN0Ucnq8/vu6KLd/7F4WdVte0MHtza2qq6gLhcrue8YTpx4gRXX301n/rUp/j4xz9+gXjOI7zqyGcnBEEgGAzyox/9iNtuu42HHnqInp6eKhG1traedrJms1lOnDiBUqk8Jxk2LwcKhQInTpxAEAT6+/ufsYyxs7m+vr6OIAhVubHdbt8T0utKiF0+n6+S5ysFQRD4f99/ku/98EkA9Ho1NquelZUoAA31DjKpLDqlgqWFCDW1BlakGASVSo7Fqia8nkGjUdLV7mV6LEhKcjPo7KlhfHi5SkCdvTXkkjlmx4MYjBosNj2rlR6QREBur4nwUgRfvYPp4ZXtHtD+OkaPLmIwqvH4zCgUcqaGxNkavVGDzWViZWYDuUJG92Ady1MhIuvijFFNk5vIRpx0IotCKWffxU0M/WqCYiUfqNXB2lQYygImm4HmnhqO/2Kkeoy6L21lRFKxNffVodEoGX54fPv517Qz8sgEOpOWT9/6MboufeE5nooaseLjJ5PJcDqd1YrIYDAwPDzMm9/8Zj760Y/yqU996gLxnGd4VZPPTgiCwObmJnfccQe33HIL999/P21tbRw+fJjrrruOZDLJxz72Mf71X/+VAwcO7Mlq4IVQMTjV6/UvKrJbEITThloLhcJpQ61PD8h7OVAoFDh+/PieGoAVBIH//v8e4+bbjgJg0KuxWvSsrETobPMiFEoszIWrmT5tHW4mJSWbUiWjxm8itZVjK5wSlWzRzGkENHZqmfp6B6loGpfXXI3CPo2ABIGBQ03MnFohIUUotPbUMD2yTUD9FzexPLVGeC2GXCGnubuGKWnWRmfQ4A3YKOcLLIytYfeYkSGwGRQJyN/oIpfJYzSomR9dobGnlsWJVUoFcQmubbCerbUIQr5IeCVyWo8HoOuSFgq5PFNPTlMulem+rJ2Rh7crooHX9/LuT11H+8GWMz7+leHrjY0NRkZGeP/7309PTw+Tk5P80R/9EZ///OdfFuL5yle+wuc//3mCwSB9fX186Utf4uDBg8/62ptuuonf+73fO+0xjUZDNps95/t5vuDXhnx2onLR/fGPf8ytt97K3XffTbFYZP/+/dx444309fWdd+STSCSqcvD29vYz3n9BEEgkElUiymQyVX80l8v1spBAZZaq4g6+F6qwCgRB4L++8yi33n4MAI/bhN9l4aQ0aNnY6GRlOVJ1kq6rN7M4H6Ozw8PiTBi9UclmSCQNl8dIOpEnlcyDIHDRJU0cf2SackkQe0A9NYxLVYvBqMHpMaFRKpg6tYIvYCceSZGSLH8qBNTU7mFlOkRTp5/RI9tS55aeGiZPLuH0WtAoxV7UkqR6s7nNyOUyNtei2FwmXD4Ly5NBUlIPyFVvJRZKks8W8Tc6sdj0jD8xvS1KONTMuOTN1nFRIwilqqoNtisek93IZ378v2iWIrHPBuVymdtvv50/+qM/wmKxsL6+zqFDhzh8+DB//Md/jNlsPuvPeDb84Ac/4L3vfS9f//rXOXToEDfeeCM333wzExMTz2qvddNNN/HhD3+YiYltApbJZOeFcOnlwq8l+ezEf/zHf/DRj36U66+/nmAwyN13343X6+Xaa6/lbW97G4ODg3ueiLa2tjh58iT19fU0Njbuyl3gTn+0ZDKJzWar9omeL67gpeLZfNr2GgRB4Fs3PczoyCrBlSiCIGA2alldjQIiAS0tbFIqCVgtOlqa3RyTnKK1OhVOl5FlSf5stWsoFcFq1LA8F6GjVyQcGZxGQB6fBY1STrlYrvaAvAEbyUhGzPURBPZf1syJX01WhQJdB+oZfWoeEJVl/Zc0M3lkjlQ8g1avxlVrY0nKHrK6TLj8FkIz68Q2k3jrncQ346Slyqy+049SKWN5dIVsKkfLQD1zp5aqn9V2oBGFXGDkV+Iy29N7PPuv6uP6v/tt6rvP3p0aYHZ2lje96U389m//Nl/4whcIhUL85Cc/4a677uK73/3uOevRHjp0iIsuuogvf/nLgEiCgUCAP//zP+eTn/zkM15/0003ccMNNxCNRs/J/rwa8GtNPg888ADveMc7uP3227nssssA8aL7s5/9jFtvvZW77roLm83Gtddey3XXXcfBgwf31N04QDAYZGRk5JzO8GQymSoRxWIxLBZLlYh2QwjwYn3a9gLK5TLf/Oav+MmPTwBgNGowGTSsSTMyXp8Bq9HI8vwW6VSO7t4aRqUqRqtT4XKbWJrfpK7ejqxUIrQaIyep4Bpa7cxPblYJaPBQIyNPzJHLFsS+jcO4TUC1NvK5PA6bgamhJVp6a5kdXalWJRW7nI7+ADMnl2jq8jEhVWkanRpvnZ2FiSDN3X5iUu9nY1kkRovbQLlQJrGVpm2gjlwyQ3B2g2xKEiX01zM/skwxX6TrUBPFXIHJI7MIUmZ3RfXmrLXz9z/9C/wt3l059gsLC7zpTW/immuu4Ytf/OLLdoOSz+fR6/Xccsstp8UfXH/99USjUe64445nvOemm27iAx/4ADU1NZTLZQYHB/mnf/onurt3Z5j21YBfa/KpCBKeKzwtk8lwzz33cNttt/GTn/wEvV7PNddcw3XXXcell176ivREdmJhYYGZmZmXdYYnl8tViSgSiZwWkPdSpNAv1aftlYQgCPzHfzzET38iyoyNRg1KuUAmU6SpzkkhX2RxbpOiVB3sJCCdXk1Hu5eTj88iCOAP2IhG0qQltZmvzkhoKUF9g5XFiTDtvTXVKGy9QYPNZWRlfhOX14zNqmd1foOk1ANq6alhbmxNzCiSy9h/WQtH7hsFpNmb/kDVoVqtUdJ9sJHjvxgVKziHEYVKRiQoyrBdtTa8tVaGHhIrmkCbj/DKFhlpXqm5rw6lSsbYo6K0uu1AI9PH5iiXxO986K2D/MHn34MrsDsDwSsrK7zxjW/kjW98I1/72tde1sp4dXWVmpoaHn30US655JLq45/4xCd46KGHeOKJJ57xnscee4ypqSn27dtHLBbjC1/4Ar/85S8ZGRk5K1uoVxN+rcnnTJDNZvnFL37Bbbfdxh133IFcLq8S0eWXX/6ye71NTk5W55BeCa872E4WrQy16nS6KhGZTKYXJJLd8ml7JSAIAt/4+oPceecQAPUBM2qZipkpUWjQ1OJmcS58GgEFl7cw6dWsr8Vxuk0sz4lVjD9gIxZJk0rmcDiN+HxGRo4sIQOQQaDZxtKUWJXoDRqaOr3MnFgik8rhqbWRTmZISAaizd01rK9u4bAbmR9bpeuixqpjtUwmo70/wMSxedoH6pg5uUhNo4u5EVHgoDWpsdhNhBY26RysY31pk2K+RHRdrOpqWjxEgzHy+QKBZjelYomV6SB5ySmhZVCMUQi0+/nMHf9rV6KvQazur7rqKi677DK++c1vvuyrDy+FfJ6OQqFAZ2cn7373u/n7v//7c7m75w0ukM9LQKFQ4KGHHuKWW27h9ttvp1Ao8Na3vpXDhw9z5ZVXnpOeSAXlcpnh4eHq/MtemUOqSGNDoRDhcBiVSnXaLNHTiehc+bS9nEin03zuc7cTXc8zPxPBZNai16sJSUtwOwmoo92LWiljWBoI1erUzyAgq0XH/ESQTCpPx75aJoaWqvM1/kYzq7NR6pptrC/FsbuMrM5Kiai1NrLJLPFICk+tDafLyPjR+e0e0A4C0hs1tPfVcux+sSJSaZQ4/WbWZsRt2dxmapucDD00BoDDb0UoC2wFxe/U2FML5RIzx+YBqO+qJbiwQU5akrv8tw7xR//2uxhtL25A9IWwvr7Om9/8ZgYHB/nv//7vV2S14aUsuz0b3vGOd6BUKvne9753jvb0/MIF8jlLFItFHn744SoRJZNJ3vzmN3Pdddfx+te/fleHIwuFAidPnqRUKjEwMPCKzr88H0qlUjUgb2NjA5lMVk1qtdlsLC8vvyw+becSqVSKo0eP4nS6ePDnK9xzlxhzbLbo0GlVhKSLdXunF0WZqnqta18to5IHW4WAgssR2to9xLZSxDbTVUPRnQRksupoanFx8lEp+VOjwGzTsrkq2uW4a6w43EZmT4qppk3dfhYnghQLYj+p80ADocVNlDKB0OLmaf5tCqWcujYvG8sRLFYdkVAUq9PMyrRo62PzWsSgvnIJuSAgl8tIxTMkpOTWQIefzdUtOg618hf/90/RGnbn5iscDnP11VfT0dHBd7/73VdUdn/o0CEOHjzIl770JUC8Cayrq+PP/uzPnlVw8HSUSiW6u7t5y1vewr/927+d6909L3CBfHYRpVKJxx9/vEpE4XCYq666qppJ9GLtQp4NFRmyVqtl3759e0748Fx4ekBeJR69paWFQCBw3nyPnagIJPx+Py0tLQgCfP2Lv3gGAem0ShKbaewOAwuz6xSlmZmdBBSot2M2ahmVYg58ATvxrdMJKJPIEA8niG6m6OgPMC69VqNTYbJqCK/EqW22ktrKUiqUqhEKjV1+lqeCFPIlGtq8GMwahndIoeu6PSyOiKo3f4MTq13PiNTD0Rm1OPxWlifEeIWW/joKqSxzp8T9dtc5yWXyxDZEscJb/vA3+f3PvhuVencqk0gkwlvf+lbq6uq4+eabX/EbrR/84Adcf/31fOMb3+DgwYPceOON/PCHP2R8fByPx8N73/teampq+OxnPwvA3/3d33HxxRfT0tJCNBrl85//PLfffjtHjx6lq2t3oiPOd1wgn3OEcrnMkSNHqplEq6urp2USnck8QjKZ5NixYzidzj0R6fBSUHEkX19fx+VyEYlETgvIc7lcr7iA48UgFotx/Phx6urqaGpqqj5eLgt87d/v4+c/G0ahlNPd6WNjNUZIkmE3t3meRkA1CMUys2NrYjy128SyZJfjC9iIb2VIxTN09dUiFEuMSymmAB0DAcal5Tu7y4Q/YGX4MbEiMtq0lEtl0jFxGayh04dOo2LiyCzlUpmOA42MPTWzva2LGsklsqxNB8ln8zT11jF1fB4ArUGDu9aOQiljdWIVtU6NVq8hNC95xdXaKRVLXHr4AB/4l/+5a+dlLBbjmmuuwe1286Mf/eicLmOfCb785S9Xh0z7+/v54he/yKFDhwC44ooraGho4KabbgLgIx/5CLfddhvBYBCbzcb+/fv5h3/4BwYGBl7Bb7C3cIF8XgaUy2VOnjxZNT6dnZ09LZPo2XoiFVTUYJWL3fmgBns6Kn2qRCJR9WkTBOG0WaJUKnXaUOsrfaf7bKj8FpV4jaejXBb4r//4JU/+cpLQagyzVayA1qUeUIWANGoVNTUWVCplteLR6lS4vBaWJA+2hhY3OpWiWuW09wWqkQkgElA8nCQbT5OKZ/AGHCxMSstkbiPFfIFkNIu33kQ5L7C1Gq9GIgQ6XSyOhUCAjsF65DIYkSoiuUJOS38dk5IqrutQI+lomrkhcT9MNgMGq4G1GbFiuv7v38HbPvzmXTsvE4kE1113HUajkZ/85CfPmU91Aec/LpDPywxBEBgdHa1GQYyNjXHFFVdw+PDhZ2QSTU1NsbS0dF6qwSp4sT5tqVSqSkSJROJFBeS9nNjc3OTkyZMv+FuUywJf+9efc++d0hLc0wio/0A9KzPrhEOipLmrP/A0AjIjKwskt9JotCqSsTTJmBjJ3bavlqlTywgCdOyrQS6Uq8OkGq0Kb72DhQmRgALNbvQ6BRNSqqkzYCYSSlLKi5VX60AAhQzGHhMtcroubq4uucnlMloHG1DIYOThcdRaFTWt3uqSm8Gix+a1cN2fXcXr33v5rhxfEM+Bt7/97cjlcu68886zWqa+gL2PC+TzCkIQBKampqpEdPLkSS677DIOHz7M3Nwc3/ve93j44YfPW+Kp+LTJ5XL6+/tf9LJaNputElE0GsVsNleJ6JVQ91Uk4R0dHS9qkPfZCMhoUGO36hk9vkRTm4fFnUtwFQISBHoG6khtpZiXHAg8tTZS8UyVgNoHapEVy4xLpNK5v4ExyU5HrVXhb3BSyBVIbSWQyWTIZLAlEZ+rzkIklEQGWBxq1BoVKxMbOxyrWxh5dBKFUk5zbwAZAuOPi4Sk0iip66xh5sQCap2a/3XTH3PRm/p34/AC4kzdb/3Wb1EoFPjZz36GyWTatW1fwN7EBfLZIxAEgbm5OW6++Wb+/d//nbW1Nbq7u7n++us5fPgwNTU159WS2275tOXz+SoRbW1tYTAYThtqPdfHJBQKMTw8fMaS8J0E5PNb0GtUpBJZ1qUe0NMJqGewjvRWirnxIBqdCo/fyuK0ODPkqbWRTmTRaJWo5GCy6JkaWtoOlTtQz5hUAXXuryOfzDEjVSlWlwmFQs6m9LltA3WkI0mWJCGBv93F6uQ2AXUcaiS5kWBxVJz96by4hbHHxCU5hUpB96VtvOfT/4O2A80v7YA+C7LZLO9617uIx+Pcc889r9jc2gW8vLhAPnsI+Xye3//93+fRRx/l29/+NidOnOBHP/oRjzzyCPv3769GQezFOO+dSKfTHD16FLvdTmdn5641oguFAuFwmPX1dcLhMBqNBo/Hg9vtxmw27/oxWV1dZXx8nN7eXlwu1xm/v1wW+O43f8Xt/+8JSsWyqILTq6sE1NjmYXl2g7pGJ+tLW9Q1uaq5PBqdCk+NlUVpaLX3onrW5jYIS+9t7a1lZnh5207nonqEfImxp2ZRqZUEWj3MDkvmpBYtCqUMm8PM+vwGNreZSChKWjInbe6vY/bUEia7jlI2h8VjYnk4VP0eXZe0MProJL4mN5++5SP4mndvLiuXy/Ge97yHUCjEvffei81m27VtX8DexgXy2UN46KGH+MQnPsGPf/zj6l22IAisra1VM4l++ctf0tvbWyWilpaWPUVEFRmyz+d7Rl7SbqJUKp3TgLylpSWmpqbOehapXBb4+ufv4d4fi1Y8JosOg15FaDWGSqWgdyDA8BOzVTfsroG6bQLSqvA32NGqFYwdmcddYyWXzhPbEvOCWnprmR1exmwzYDSoMdv0jD4pGpkqVQrq2r3MnlpGEAR6DjURXtwkKCnV/E1uYpsJUpI1T99r25k5Okc8LPai6vv8LJxcrX6PS64b4I8+/x6srt2rSgqFAu9973uZn5/n/vvvP29nvi7gpeEC+ewxlEql51yiEgSBcDjM7bffzq233sr9999PR0cHhw8f5vDhw3R2dr6iRPRK+bSVy+XThlorAXkejwe73X7GRLSwsMDs7CwDAwO7EqFeLgt84wv38PM7tgmopsZKbD1OaCVKQ5uHlbmNZxCQy2tGp1Uil8P8uCgkcPmtFLJ5opsiAQ1c2sLsqUViYXHgs+tgI6NPiAQkV8hx15sx6fVMHp0XlWpmDUFJ0u1tdJGMpKhtdjHxxDQNPbUsjCxXQ+Q6DrUw/sQ0vb/ZxhUfPIBcKasqEp1O51lJ44vFIu9///sZGxvj/vvvf9ZYggt4deMC+ZynEASBSCRSzSS69957aWxsrEZB9PT0vKzzQHvFp+3pAXnFYrE6S+R0Op+391Tpuy0uLjI4OLir2TAiAf2ce+84TldvLavzYbRaFSEpkruh1cPKvERAgsCBy1oYemSafK6ISqOkptHB/JjYp3H6LBTzRfwBG2NPzNLUU8P8+HbwW+dFjYw9OYvBosFq1aMzaJk6LlZTRqsek03P2sw6Mhnsu7SV2ZPzxCW3goaeAMuTaxSyol/b7/7t23nbh69CJpMRj8erXn7pdBq73V6Vxp/JLE6pVOKP//iPOXbsGA888ABe7+64Xl/A+YUL5PMqQSwW46c//Sm33nor99xzDz6fr0pEAwMD55SIVldXGRsb23M+bYIgEI/Hq0SUzWZxOBx4PB6cTudpdi2CIDA9Pc3q6iqDg4PnRG1VLgt87xsPceu3HwHAaNFhMmoISgRU3+omsp7A67cweXKJrv3buTwqtYLaZidzo2sYLVoCjU6CsxvVKOymnprT7HSa9rkJToRJxTLi7E5fgEkpUkFv1uKutSErlpkdWsQVcFDI5ohK26rvqmV9Mczv/cM7eMNzSKlTqVSViOLx+ItWJJZKJT70oQ/x8MMP8+CDD1JTU3P2B/YCzktcIJ9XIZLJJHfddRe33norP/vZz7Db7VxzzTW87W1v46KLLtpVS5vFxcXzwqdNEITTZomSyWT1zt3pdDI/P8/6+jr79+8/p/MlgiDwn/9yD3ffIkZyG81aTGYdwaUtAo0ODAY1c6Nr5KTKo2uwnlFJVq1SK+gYCLA0ukI0nBSjsAWBzYrpZ5efhck1/I1WlkfX6byokdHHRTcDmVxG20A9E0fn8QRsKGWiy3VF9eaosSEUi2wFYxgsev7iOx+k9zc6XtR3yuVyVSKqKBJdLtcz3M3L5TIf/ehHue+++3jggQeedVD3An59cIF8XuVIp9PVTKKf/vSn6PX6ajjeJZdc8pLX7QVBYGZmhuXlZQYGBs47eWw6nT4tIE8ul1NfX09NTc2umsE+GwRB4Jtf+Dk/++ERQOwBtbS5OfnYDEJZoK7FTWh5i5wUVVCpgLoGapk+uUSg2c2MpGQTo7AFNldjqHVKfI0WVsc2yGdFN4POg02MSVHXMpmMgSvaGfnlONlUTrTPqXOwOCYKC+w+K546O3/6xeupeYkBcMVi8TRFolwu5/vf/z5vectbeOihh7jzzjt58MEHT7MmOpf4yle+UrXE6evr40tf+hIHDx58ztfffPPN/M3f/A3z8/O0trbyuc99jre85S0vy77+uuEC+fwaIZvNct9991UziZRKZTWT6Dd+4zdetGuwIAiMj4+zsbHB4ODgSwqR2wvYGU/h9/uJRCJEIhFMJlN1CelcVUGCIPDtf72Xxx8Yx6BVsrWewGLXszovRhvUtbhZX4mQTecx2/Q0t7s5/uAEAAqlgsZOL9OSU7bFaURvUpIMJ4iH09R3+AjObVTJq/NgE2NPzojppo9N0XGgibHHRWcDjU6Nr9nN/PAy+y7v4OPf/kNMuxSHUC6XmZub42//9m+56667yOfzXHfddbz3ve/ljW984zkfGP7BD37Ae9/7Xr7+9a9z6NAhbrzxRm6++WYmJiaeVeDw6KOPcvnll/PZz36Wt771rXz3u9/lc5/7HMeOHaOnp+ec7uuvIy6Qz68pCoUCDz74YNWBu1gscs0113D48GGuuOKK52wgP5tP2/mIcrnM0NAQmUyG/fv3V21/8vk84XCYUCjE1tZWNSDP4/Hs+lCrIAh858b7+PF/PwqIWTs2p5EVSY1W2+RCp1WwNiumlXYeaDgtBqGxy8/0iUVq2xzEgnE0WjUbUv+ort3L+uIm2VQenUFD54F6jt47DNKfe+ehFsYeq7gXqLj2T1/Puz5xDUrV7rqMC4LA3//93/Nf//Vf/Ou//itDQ0P86Ec/YmVlhccff5x9+/bt6uftxKFDh7jooov48pe/DIi/eSAQ4M///M+fNQbhne98J6lUip/+9KfVxy6++GL6+/v5+te/fs7289cVF8jnAqqZRDfffDO33347qVSKt7zlLVx33XW87nWvqxJMPB5naGgIpVL5vD5tex0Vv7lCocDg4OBzVnxPX0JSq9XVishisewKEQmCwHf+z738+DuPASIB2Z1G1pa2aOvykdhKshmMkZFitnfa6WgNamqaLcw8JboRmOwG9AYNwUWJvFo9IAhkoinCy1t0XNTE+FOzVQLquriFiSdn+MN/eTdvvH73PNp2frfPfe5zfO1rX+P++++nt7e3+vjo6ChtbW3nLKPnpQTA1dXV8dGPfpQbbrih+tjf/u3fcvvtt3Py5Mlzsp+/ztj7HvYXcM6hVCq54ooruOKKK/jiF7/IY489xi233MInPvEJtra2uOqqq7jiiiv48pe/zODgIF/72tfOi/iDZ0OxWOT48eMA7N+//3m/h1KpxOv14vV6TwvIq/jVVYjIZrO9ZDWhTCbjvR95A3K5jNtvepR0MofDbaK928fokyLJ+BudyGUJUoksY0fn6TjQwFYwRj6dZvbYKq2D9UwdWyCxlUIoC/ganKzNhzEYNGQTGTJx0Rdu/KlZ2g80Mnl0DqEssDId4u9//DE6D7W8pH1/PgiCwI033siXv/xl7rvvvirxVL5zd3f3rn/mToTDYUql0jPUlx6Ph/Hx8Wd9TzAYfNbXB4PBc7afv844/4JhXgD/+I//yKWXXoper3/RA4KCIPDpT38an8+HTqfj9a9/PVNTU+d2R/coFAoFl112GTfeeCOzs7Pce++9OJ1OPvKRjzA5OUksFuO2224jHo+/0rt6xigUChw7dgy5XM7g4OAZEahCocDlctHd3c1rX/vaag9geHiYX/7yl4yMjLCxsUGpVDrj/ZLJZLznw6/nbb//Gjr7agjOhpgdXSXQKl4IV+fCmJ0mDGYdCAJCqYRGB9H1JIIA0yeXaD/QCEAymiaVyNF/WSsTT86wMLaKxWWuxlpPHJmjZaCB9v2NfOG+vzxnxPOVr3yFL3zhC9x9990MDg7u+mdcwPmPVx355PN53vGOd/DBD37wRb/nX/7lX/jiF7/I17/+dZ544gkMBgNXXXUV2Wz2HO7p3odcLsfhcHD33XfzO7/zOzz22GP09fXxuc99joaGBn77t3+b//f//h/RaJS9vnqbz+c5evQoKpWK/v7+s5KbV45LZ2cnl19+Of39/ahUKsbHx3nooYcYGhoiGAxSLBZf9DZlMhm/8+evo/tAA4V8iWw6z/pqhPp2kYDW5sPYfRa69tcx8dQcS2MbtA00gEyGIAhMHJun46JGbC4TFpOGyadmqW0VFWtrcxsYrQbMDlEYEmjz8ZkffQRnjf0lH4PngiAI/Od//if/+I//yJ133vm8yrJzicpAcSgUOu3xUCj0nEOtXq/3jF5/AWeHV23P56abbuKGG24gGo0+7+sEQcDv9/Oxj32Mj3/844A4sOnxeLjpppt417ve9TLs7d7FDTfcgFqt5nOf+1y1xyEIAiMjI9UoiPHxca688spqJpHD4dhTfnPZbJZjx45hNBrPqfNDJSAvFAqxvr5OJpPBbrdXh1pfbI/sh1+9nx98+ReAlNNTZ6dcKJGKJClTIpcqkEmIPaC2gXqmji8gCAJN3X50WiXDD4su1FqDBlfAwdK4KKX2Nbp46x9eyZved/k5+X0EQeC///u/+eQnP8lPf/pTLr989/tIZ4JDhw5x8OBBvvSlLwGi4KCuro4/+7M/e07BQTqd5ic/+Un1sUsvvZR9+/ZdEBycA/zak8/s7CzNzc0cP36c/v7+6uOvfe1r6e/v59///d/P7Y7ucTyf1xyIF5zJyclqSuvJkyf5jd/4DQ4fPsw111yDx+N5RYkok8lw9OhRbDYbXV1dL+u+PD0gz2azVftEL2RHc+s3HuS7/34vMpk4aJqOpZkbEYUFrhob+UyemGSJ0zZQj0IoMyqp1zoPNW9LqfVqvPVOEpEU/+ubH6D9wLmZrxEEge9+97t89KMf5Y477uA3f/M3z8nnnAl+8IMfcP311/ONb3yDgwcPcuONN/LDH/6Q8fFxPB4P733ve6mpqeGzn/0sIEqtX/va1/LP//zPXH311Xz/+9/nn/7pny5Irc8Rzs+u8S6i0ky80Gh8drzQ8pRMJqO9vZ1PfepT/OVf/iWzs7PceuutfP/73+djH/sYl1xySdX41O/3v+wX/2PHjuF0Ouno6HjZSdBgMNDY2EhjYyOZTIaNjQ2CwSATExMvaEfz9j+6ApVGyQO3PMXI4zMoVHI8TTZCsxE2ViI4/VasbhMyATKRJGqdCoVSTqlYZuyJGTEG4bFpcuk8No+FT//gz7C5z80gsCAI3HzzzXzkIx/hlltu2RPEA2Ils7Gxwac//WmCwSD9/f3cfffd1b/1xcXF06rgSy+9lO9+97v89V//NZ/61KdobW39/9u786CozqwN4E8DsolIQAWJqCDBBsNiRFSiYydg0A5LU8YRJQio4FJxXJgJ+E2EijGJJs4MJpqoVBTRpCIGEFcUF9zAqCyCGyojKtCNIhA2CdD9fn8wXAUEAeluuj2/qq6S6204XUXz9L33vedg//79FDxyohJHPhEREdiwYUOn+9y8eRN8/rN2IF098klPT8e7776LkpISDB06lNv+17/+FTweD3v37n2l2l9XjDE8fPgQCQkJSEpKQnp6OpydnbkgkvdMopqaGmRmZsp9tENPtG1HY2Bg0Oqm1udrTf7pDOLWHwHQPCZhhI0ZNyjubRdLPCkuR0lB88yfUQ4WKLxeBOn/+rvZTbIGf5wl5oR7QlOrd+/fed7+/fsRGhqKX3/9FZ6ennL7OUS9qET4PH78GE+ePOl0Hysrq1bn1Om0W9/BGENJSQk3k+jcuXNwcHDgZhKNGjWqV8OhqqoKWVlZsLCwgJWVVZ8KnrbaDsjT1dVtdUSUk5ODrNQCHN/ZvDxcU0sDVmPehCZrPsJ5w9QQGho8blKp1dvD8DC/BDp62vjb9/Pg7C7fT+2HDh1CcHAw9uzZA19fX7n+LKJeVCJ8eqK7Cw7+/ve/IywsDEDzH68hQ4bQggM5YIzh8ePH3Eyi06dPg8/nc0H0qqfHKisrkZ2dDUtLS4wcObL3ClcAqVTKBdHjx48hk8mgra0NOzs7ZKXexbbIJJhavAENmQwGhrpcl2qjwQPQT1sLj4vKAQCTvd/Bx//njSEWvb+a7XnHjh1DQEAAfvrpJ8yePVuuP4uoH7ULnwcPHqC8vBwHDhzAt99+i3PnzgEArK2tuR5kfD4fX3/9NfdJbcOGDVi/fj127doFS0tLrFmzBrm5ubhx4wZ0dXWV9lrUXctMouTkZCQkJODEiROwsrLiRkGMGTOmWyvTysvLkZOTg7feegsWFhZyrFy+mpqakJWVBalUigEDBqCsrAw8Hg/F16pwYNNZNNQ3NnepdhyO/MxCAIChiQH0DHQwcboD/CN6v01OW6dOnYKfnx+2bt0Kf3//Pn10SfomtQufoKAg7Nq1q93206dPQyAQAGi+SL5z504EBQUBaP4jGBUVhe3bt6OyshKTJ0/GDz/8ABsbGwVWTv744w8cPHiQm0lkbm4OHx8f+Pr6wsnJqdMgKisrQ25uLvh8PszNzRVYde9q6cCgoaHB3Y8kk8m4AXlnEq/g+LYrYAzg8QCbsSORf+UeBrzRH8ui/eHsJt/OAQBw9uxZzJo1C5s2bUJwcDAFD+kRtQsfoh6qq6tbzSQyMTHhRkG0nUlUVFSE/Px8jBkzRqVvCGw54tHU1OzwRljGGFLj07E9/DfIZM1vXSc3a8xa8QGs7Szl1iutRUZGBnx9fbFhwwYsXryYgof0GIUP6fPq6uqQkpLCzSQyMDCAt7c3fHx8kJeXh23btiElJaXVakVV0xI8WlpacHR0fOkS94tHryJ6+R54L5qK8V6jUfakDLW1tdyAvCFDhvR649fLly/Dx8cHa9euxbJlyyh4nlNYWAhLS8t226dOnYq0tDTFF6QCKHzkrLy8HMuWLcPBgwehoaGBmTNnYtOmTZ3OwBEIBDhz5kyrbYsWLaK7rNHcrSA1NRWJiYmIj49HXV0d3NzcsHLlSkyePFnun/zlobGxEdnZ2V0OnhY1lXUwMHp2j9DzA/KqqqpgZGTEBdGrXrvMzs6Gp6cn/vnPfyIsLIyCpw2pVIrHjx9zX0skEri7u2Pp0qVYu3atEivruyh85GzGjBkQi8XYtm0bGhsbERwcjPHjx+OXX37p8DkCgQA2Njatfmn19fVhaGioiJJVwqZNmxAZGYnIyEjk5+cjOTkZUqkUnp6eEIlEEAgEKjHyoafB8zL19fVcEFVWVr7SgLy8vDwIhUKEhYVh9erVFDwvUV9fD4FAgMGDByM5OVlu7ZxUHYWPHN28eRN2dna4fPkynJ2dAQApKSkQCoUoKirq8MK4QCCAk5MToqOjFVit6jh//jy8vb2RkpLCNa5samrCuXPnsG/fPiQnJ6Ourg5CoRA+Pj5wd3fvk6sWW7psa2trw8HBodeCp62GhgbuptYnT56gf//+XBC9bEDejRs3IBQKsXTpUkRFRVHwdMHcuXNx9epVXLx4EQMGDFB2OX0WhY8c7dixA2FhYaioqOC2NTU1QVdXF/v27evwpjyBQIDr16+DMQYzMzN4eXlhzZo1ch87rCoYYxCLxR2Gt1QqRXp6OjeltaKiAtOnT4dIJMK0adPkNhq7O54PHkdHR4V9Om4ZkFdaWoqysjLo6Oh0OCDv9u3bmDFjBoKCgvDVV19R8HTBunXr8J///AeXLl3CqFGjlF1On0bHg3IkkUjazYrX0tKCsbFxp33j5s6diz179uD06dNYvXo1du/ejY8//lje5aoMHo/X6XJqTU1NTJkyBZs2bcK9e/dw/PhxDB8+HJGRkRg5ciT8/f0RHx+P6upqBVb9jLKCB3g2IM/R0ZE7vdvQ0IDs7GycO3cOMTExOHjwIG7evAlPT0/MnTsXX375pdKCp7y8HP7+/jA0NISRkREWLFiAmpqaTp8jEAjA4/FaPRYvXiz3WhMSErB27VrEx8dT8HTBa99YtCe62muup0JDQ7l/29vbY+jQoXBzc0NBQQH9UneThoYGJk6ciIkTJ+Kbb75BdnY2EhISsH79eixZsgTu7u7w9vbGhx9+2GujsTvT2NiIzMxM6OjoKDx42tLU1OSOemQyGSoqKnDw4EFERkaiuroafD4fAoEAjY2NL+3CLS/+/v4Qi8VITU3lrpmGhoZ2es0UAEJCQtpdM5Wna9euYd68eQgPD8eYMWO4D5fa2towNpZvpwlVRafdeqCrveb27NnTo9NubdXW1sLAwAApKSnw8PB4pdpJM8YYrl27xs0kun37dquZRMbGxr0eRC3Bo6urCwcHhz55Ibq4uBjTpk3D22+/jbfeegtJSUkoLy/Hp59+is8++0yhtajSNdPY2FgEBwe3205LrTtG4SNHLW+eK1euYNy4cQCA48ePY/r06Z2+edq6cOECJk+ejKtXr8LBwUGeJb+WGGPIz8/nZhLl5uZiypQpEIlE8PLywpAhQ145iFQheMRiMaZPn44pU6YgJiYGmpqaYIwhKysL9fX1ePfddxVaD10zVW8UPnI2Y8YMlJaWYuvWrdxpA2dnZ+60QXFxMdzc3BAXFwcXFxcUFBTgl19+gVAohImJCXJzc7Fy5UoMGzas3b0/pPcxxvDf//4Xv/32G5KSknDlyhW4urrCx8cH3t7ePZpJ1NDQgKysrD4dPKWlpRAKhRg3bhx27dolt5V33fHVV19h165dyM/Pb7V9yJAh+Pzzz7FkyZIXPm/79u0YMWIEzM3NkZubi/DwcLi4uCAxMVERZZMu6nvvAjXz888/g8/nw83NDUKhEJMnT8b27du5/29sbER+fj7q6uoANJ8jPnHiBD744APw+XyEhYVh5syZrUb7Evnh8XgYNWoUwsPDkZGRgYKCAohEIuzfvx+2trZwd3fHd999h/v3m0dXv0xDQwMyMzOhp6fXZ4OnrKwMXl5esLe3R2xsrNyDJyIiot2CgLaPW7du9fj7h4aGwsPDA/b29vD390dcXBySkpJQUFDQi6+CvCo68iGkC1pmEiUmJiIxMRHnz5+Ho6MjNxzvRTOJWoJHX18f9vb2fTJ4ysvL4enpiZEjRyI+Pl4hN+bSNVMCUPgQ0m2MMTx69IibSZSWlgZbW1v4+PhAJBJh9OjREIvF+Ne//oWAgIA+e8Tzxx9/wMvLC6ampkhMTFTairaO0DVT9db33hGk123ZsgUjR46Erq4uJkyYgEuXLnW6/759+8Dn86Grqwt7e3scOXJEQZWqBh6PB1NTUyxatAjHjh2DWCzG8uXLkZmZCVdXV4wdOxbjx49HdnY2bG1t+2TwVFdXw9fXF8bGxkhISOhzwQMAtra2mD59OkJCQnDp0iVcuHABn3zyCfz8/LjgKS4uBp/P536nCwoK8MUXXyAzMxOFhYU4cOAA5s2bh7/85S8UPH1M33tXkF61d+9erFq1ClFRUcjKyoKjoyM8PDzw6NGjF+6fnp6OOXPmYMGCBcjOzoZIJIJIJMK1a9cUXLlq4PF4MDExwfz583Ho0CHk5eXh6dOn0NfXx9WrV+Hi4oKoqChkZ2dDJpMpu1wAzaehPvroI+jp6SEpKalPth5qQddM1ReddlNzEyZMwPjx47F582YAgEwmg4WFBZYtW4aIiIh2+8+ePRu1tbU4dOgQt23ixIlwcnKirtov8ejRI7z//vuwt7fH7t278fTpUxw+fBiJiYk4evQoBg0a1GomkTKOiJ4+fYqPPvoITU1NOHr0aKfd1QmRJzryUWMtF7zd3d25bRoaGnB3d0dGRsYLn5ORkdFqfwDw8PDocH/yjIaGBkQiEXbv3g0tLS0MGDAAfn5+iI+Ph0QiwcaNG1FWVgZfX1/Y2triH//4B86fPw+pVKqQ+urr6zFnzhzU19dzc5EIURYKHzVWVlYGqVQKU1PTVttNTU077C0nkUi6tT95ZtCgQVi3bh20tNp3rerfvz9mzpyJn3/+GWKxGFu2bEFtbS38/PxgY2OD5cuXIy0tDY2NjXKp7c8//0RAQADKy8tx5MgRDBw4UC4/h5CuovAhRMH09PTg7e2N2NhYSCQSxMbGAgCCgoJgbW2NpUuXIjU1FQ0NDb3y8xobGxEUFITi4mIcO3YMb7zxRq98X0JeBYWPGhs0aBA0NTVRWlraantpaSnMzMxe+BwzM7Nu7U9ejba2Njw8PBATE4OSkhLs3bsXenp6WLJkCSwtLREaGoojR46gvr6+R9+/qakJCxYsQEFBAVJTU2FiYtLLr4CQnqHwUWPa2toYN24cTp48yW2TyWQ4efIkJk2a9MLnTJo0qdX+AJCamtrh/qT3aGlp4f3338ePP/6Ihw8fIjk5GcbGxli1ahUsLS0RHBzMDcrrCqlUisWLF+P69es4ceIEBg8eLOdXQEg3MKLWfv31V6ajo8NiY2PZjRs3WGhoKDMyMmISiYQxxlhAQACLiIjg9r9w4QLT0tJiGzduZDdv3mRRUVGsX79+LC8vT1kv4bUnlUpZeno6W7VqFbOysmL9+/dnvr6+LDY2lkkkElZbW9vuUVVVxQIDA5m1tTUrKipS9ksgpB0Kn9fA999/z4YPH860tbWZi4sLu3jxIvd/U6dOZYGBga32j4+PZzY2NkxbW5uNGTOGHT58WMEVk45IpVJ2+fJlFhERwWxsbJiuri7z9PRkMTExrLi4mNXU1LDq6mq2cOFCZmlpyQoLC5VdMiEvRPf5EKKi2P9mEu3btw+JiYm4c+cOBAIBmpqacPv2bZw5cwZWVlbKLpOQF6LwIUQNMMZw69Yt7N69G5s3b8bZs2fh5OSk7LII6RCFDyFqRiaT9cl+coQ8j35DiVJ0p9lpbGxsu3kvfbkfmbJR8BBVQL+lROG62+wUAAwNDSEWi7nH/fv3FVgx6aovv/wSrq6u0NfXh5GRUZeewxhDZGQkhg4dCj09Pbi7u+POnTvyLZQoHYUPUbh///vfCAkJQXBwMOzs7LB161bo6+tjx44dHT6Hx+PBzMyMe7RtAUT6hoaGBsyaNavDEdcv8s033+C7777D1q1b8fvvv6N///7w8PDo8Y21RDVQ+BCF6kmzUwCoqanBiBEjYGFhAR8fH1y/fl0R5ZJu+vzzz7Fy5UrY29t3aX/GGKKjo/HZZ5/Bx8cHDg4OiIuLQ0lJCfbv3y/fYolSUfgQhepJs9PRo0djx44dSE5Oxp49eyCTyeDq6oqioiJFlEzk6N69e5BIJK0+jAwcOBATJkygTupqrn37XUL6mEmTJrVq7+Pq6gpbW1ts27YNX3zxhRIrI6+q5QMHdVJ//dCRD1GonjQ7batfv34YO3Ys7t69K48SSRsRERHtVhu2fdy6dUvZZRIVQ0c+RKGeb3YqEokAPGt2+sknn3Tpe0ilUuTl5UEoFMqxUtIiLCwMQUFBne7T004KLR84SktLMXToUG57aWkp3SSr5ih8iMKtWrUKgYGBcHZ2houLC6Kjo1FbW4vg4GAAwLx58/Dmm2/i66+/BgCsXbsWEydOhLW1NSorK/Htt9/i/v37WLhwoTJfxmtj8ODBcuuIbWlpCTMzM5w8eZILm6qqKvz+++/dWjFHVA+ddlMDcXFxMDExwZ9//tlqu0gkQkBAgJKq6tjs2bOxceNGREZGwsnJCTk5OUhJSeHO+z948ABisZjbv6KiAiEhIbC1tYVQKERVVRXS09NhZ2enrJdAOvDgwQPk5OTgwYMHkEqlyMnJQU5ODmpqarh9+Hw+kpKSADQvoV+xYgXWrVuHAwcOIC8vD/PmzYO5uTl3ZEzUlLI6mpLeU1dXxwYOHMji4+O5baWlpUxLS4udOnVKiZWR101gYCAD0O5x+vRpbh8AbOfOndzXMpmMrVmzhpmamjIdHR3m5ubG8vPzFV88USjq7aYmli5disLCQhw5cgRA842cW7Zswd27d8Hj8ZRcHSGEtEan3dRESEgIjh8/juLiYgDN/dCCgoIoeLrh7Nmz8PLygrm5OXg8XpduckxLS8M777wDHR0dWFtbIzY2Vu51EqIOKHzUxNixY+Ho6Ii4uDhkZmbi+vXrL12hRFqrra2Fo6MjtmzZ0qX97927hw8//BDvvfcecnJysGLFCixcuBDHjh2Tc6WEqD467aZGfvzxR0RHR2PatGm4c+cO/RF8BTweD0lJSZ1e9A4PD8fhw4dx7do1bpufnx8qKyuRkpKigCoJUV105KNG5s6di6KiIsTExGD+/PnKLkftZWRktGoLAwAeHh7UFoaQLqDwUSMDBw7EzJkzYWBgQMtUFUAikbywLUxVVRWePn2qpKoIUQ0UPmqmuLgY/v7+0NHRUXYphBDSIepwoCYqKiqQlpaGtLQ0/PDDD8ou57VgZmb2wh51hoaG0NPTU1JVhKgGCh81MXbsWFRUVGDDhg0YPXq0sst5LUyaNIm7r6pFampqqw7chJAXo/BRE4WFhcouQeXV1NS06pR979495OTkwNjYGMOHD8fq1atRXFyMuLg4AMDixYuxefNmfPrpp5g/fz5OnTqF+Ph4HD58WFkvgRCVQUutCfmftLQ0vPfee+22BwYGcjftFhYWIi0trdVzVq5ciRs3bmDYsGFYs2YN3V9FSBdQ+BBCCFE4Wu1GCCFE4Sh8CCGEKByFDyGEEIWj8CGEEKJwFD6EEEIUjsKHEEKIwlH4EEIIUTgKH0IIIQpH4UMIIUThKHwIIYQoHIUPIYQQhaPwIYQQonD/D5bX5ncuJE4QAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAGhCAYAAAC6Z2l0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hkd3Wvi7+Vc+qcc56enHskUMCSOfwIl+OAMb6SgcPRMcGY64MODj/j4wTGBBswwb5GBmQwHBuDLcASQkISyjPTaTrnXN3VlXPa94/dtadqpqenQ3WY0X6fRw9MdfXe36qu2p+91netz1IIgiAgIyMjIyOzByj3ewEyMjIyMq8dZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRkZGRkdkzZNGRWZdHHnkEhULB1NTUuv/ebT7+8Y+jUCj25Fy7xSuvvEJXVxcmkwmFQsHnPve5697DvX5fb8Rf/uVf0tbWRjqd3vNzf/nLX6ampoZYLLbn55bZe2TROUD87d/+LQqFgrNnz+73UjbF888/z8c//nG8Xu9+L+XAkUgk+OVf/mXcbjef/exn+cY3vsF+eOsODg6iVqtRKBS43e51n+P3+/nkJz/Jww8/jFK595eEBx98kHg8zle+8pU9P7fM3iOLzgHi0Ucfpa6ujpdffpmxsbH9Xk4Ov/Ebv0EkEqG2tlZ67Pnnn+eP//iPZdFZh/Hxcaanp/nd3/1d3ve+9/Gud72LD33oQ9e9h7vNxz72MaqrqwHo7+9f9zn/8A//QDKZ5Nd+7df2bF3Z6PV6HnjgAT7zmc/sizDL7C2y6BwQJicnef755/nMZz5DcXExjz766H4vKQeVSoVer7/lU17bJRQKben5y8vLANjtdumxvX4Pn3/+eR577DG+9rWvATcWna997Wu85S1vQa/X78m61uNXfuVXmJ6e5qmnntq3NcjsDbLoHBAeffRRHA4Hb3rTm/ilX/qldUUns88xMjLCu971Lmw2G8XFxfzhH/4hgiAwOzvLW9/6VqxWK2VlZXz6059e9/eHhob4lV/5FaxWK4WFhfz2b/820Wh0w/Vdu/fw8Y9/nP/5P/8nAPX19SgUCunnDz74IHV1dTdc/7U899xznD59Gr1eT2Nj4w3TLPPz87z73e+mtLQUnU7HoUOH+Id/+IcN172d15557sDAAO985ztxOBzccccdAFy+fJk3vvGNWK1WzGYz9957Ly+++GLO7z/44IO8/vWvB+CXf/mXUSgU3HXXXVvav9nJa83w8MMP8+CDD3LXXXdhs9nWFZ3JyUl6e3t5wxvekPP4f/kv/2Xdv6EgCJw4cYI777xzU2sYGRmRPhvX/pctyCdPnqSgoIDvf//7W3qNMrce6v1egIzIo48+ytvf/na0Wi2/9mu/xpe+9CVeeeUVTp8+fd1zf/VXf5X29nY+8YlP8Nhjj/Gnf/qnFBQU8JWvfIV77rmHT37ykzz66KP87u/+LqdPn+Z1r3tdzu//yq/8CnV1dfzFX/wFL774In/zN3+Dx+Ph61//+qbX+/a3v52RkRG+9a1v8dnPfpaioiIAiouLt/S6+/r6uO+++yguLubjH/84yWSSP/qjP6K0tDTneU6nk3PnzqFQKPjABz5AcXExP/rRj3jPe96D3+/nwx/+8KbOt5XX/su//Ms0Nzfz53/+5wiCwJUrV7jzzjuxWq189KMfRaPR8JWvfIW77rqLn/3sZ9Je3H//7/+dyspK/vzP/5wPfehDnD59mtLSUubn5ze1xny81h/84Ae8+uqrfOtb3wKgvb2dvr6+6573/PPPA3DixImcx0+fPs2PfvQjPB4PDodDevzb3/42ly9f5rnnntvUa7FarXzjG9/IeWxoaIg/+7M/47777st5/MSJE/z85z/f1HFlbmEEmX3n1VdfFQDhiSeeEARBENLptFBVVSX89m//ds7z/uiP/kgAhPe9733SY8lkUqiqqhIUCoXwiU98Qnrc4/EIBoNBeOCBB677/be85S05x/2t3/otARB6enqkx772ta8JgDA5ObnuvwVBED71qU9d95ggCMIDDzwg1NbWXvc6M+fP5m1ve5ug1+uF6elp6bGBgQFBpVLlPPc973mPUF5eLrhcrpzff8c73iHYbDYhHA5fd771zr2Z15557q/92q9dt1atViuMj49Ljy0sLAgWi0V43etel/Pcp556SgCE7373u9Jj672H6z2209eaTCaFQ4cOCR/5yEekx37zN39TcDgc1z33D/7gDwRACAQCOY//4Ac/EADhySeflB6Lx+NCY2Oj8OY3v3nD82/E+Pi4UFFRIdxxxx1CKBTK+dn73vc+wWAwbPvYMrcGcnrtAPDoo49SWlrK3XffDYBCoeBXf/VX+fa3v00qlbru+e9973ul/69SqTh16hSCIPCe97xHetxut9Pa2srExMR1v//+978/598f/OAHAfjhD3+Yl9ezWVKpFP/5n//J2972NmpqaqTH29vbuf/++6V/C4LAv/zLv/DmN78ZQRBwuVzSf/fffz8+n49Lly5t6pxbee0PPfRQzloff/xx3va2t9HQ0CA9Xl5ezjvf+U6ee+45/H7/5l74BuTjtf7jP/4jMzMzfOxjH5Mea29vx+PxXBdtra6uolarMZvNOY9nIuzsc331q19lcnKSP//zP9/Wa5udneWee+6hsrKSxx57DKPRmPNzh8NBJBIhHA5v6/gytway6OwzqVSKb3/729x9991MTk4yNjbG2NgYZ8+exel08uSTT173O9kXaACbzYZer5dSXNmPezye636/ubk559+NjY0olco97xVZWVkhEolctx6A1tbWnOd5vV6++tWvUlxcnPPfb/7mbwJXN+5vxlZee319fc4awuFwzroytLe3k06nmZ2d3dQaNmKnrzUajfJHf/RHvOMd78Dr9UqfJ6vVCrBuim09ysrKqKys5PLly4BYSPEnf/InvOtd76Kzs3PLr2tpaYl7770Xm83Gj3/8Y2k92QhrlWuv1WKV1wryns4+89Of/pTFxUW+/e1v8+1vf/u6nz/66KPX5b5VKtV1z1vvMWBTJaj5/pLf6HjrRW2bIdOw+K53vYsHHnhg3eccOXJkW8fe6LUbDIZtHXMn7PS1/vVf/zVzc3P83d/9HX/3d3933c/7+/v5xV/8RenfhYWFJJNJAoEAFosl57mnT5+WROczn/kMHo+H//2///eWX9Pq6ipveMMbUKlUPPHEExQUFKz7PI/Hg9Fo3Jf3XWbvkEVnn3n00UcpKSnhi1/84nU/+9d//Ve+973v8eUvfzmvX8TR0dGcu/ixsTHS6fS61UobcaMLtsPhWLd3Z3p6OuffxcXFGAwGRkdHr3vu8PBwzvMsFgupVOq6Kqutst3XXlxcjNFozFlXhqGhIZRKpdQPsxN28lo9Hg+f+MQneN/73scv/MIvXPfzBx544LoKtra2NkCsYrtWzE6fPs0PfvADZmZm+Ku/+iv+x//4H1vuMfL5fNx3331EIhGeeeYZSkpKbvjcyclJ2tvbt3R8mVsPWXT2kUgkwr/+67/yy7/8y/zSL/3SdT+vqKjgW9/6Fj/4wQ/41V/91byd94tf/GJO9PT5z38egDe+8Y1bOo7JZAK4TmAaGxvx+Xz09vZKF7LFxUW+973v5TxPpVJx//3382//9m/MzMxIacPBwUH+8z//M+d5//W//lf+6Z/+if7+/uvSOysrK5uumtvua1epVNx33318//vfZ2pqShIpp9PJP/3TP3HHHXesmzLaKjt5rX/+539OKpXik5/8ZE45coY//uM/vi69dv78eQBeffXV60Tn1KlTpNNp3vnOdyIIAr//+7+/pdcSDAZ54xvfyPLyMs8++yyVlZUbPv/SpUv8+q//+pbOIXPrIYvOPvKDH/yAQCDAW97ylnV/fu7cOalRNJ+iMzk5yVve8hZ+8Rd/kRdeeIFvfvObvPOd7+To0aNbOs7JkycB+P3f/33e8Y53oNFoePOb38w73vEOHn74Yf6v/+v/4kMf+hDhcJgvfelLtLS0XLcJ/sd//Mf8+Mc/5s477+S3fuu3SCaTfP7zn+fQoUP09vZKz/vEJz7BU089xdmzZ/lv/+2/0dHRgdvt5tKlS/zkJz+5ocVLPl/7n/7pn/LEE09wxx138Fu/9Vuo1Wq+8pWvEIvF+Mu//MstvHMbs53XOjs7yxe+8AU+8IEPrCs4IN4MPP7446TTacnupqGhgc7OTn7yk5/w7ne/O+f5p06dAuDnP/85H//4x28odgqFgte//vU8/fTTOY//xm/8Bi+88AJ/+Id/yHPPPZdTZt3Z2cmxY8ekf1+8eBG3281b3/rWm709Mrc6+1c4J/PmN79Z0Ov115WOZvPggw8KGo1GcLlcUinvyspKznMeeOABwWQyXfe7r3/964VDhw5J/878/sDAgPBLv/RLgsViERwOh/CBD3xAiEQiOb+7mZJpQRCEP/mTPxEqKysFpVKZ8/PHH39c6OzsFLRardDa2ip885vfXLdkWhAE4Wc/+5lw8uRJQavVCg0NDcKXv/zldZ/rdDqF97///UJ1dbWg0WiEsrIy4d577xW++tWv3vD9285rv9H7LAiCcOnSJeH+++8XzGazYDQahbvvvlt4/vnnr3veTkqmt/NaH3zwQUGr1Qrz8/M3fA8+8pGPCIAwMjKS8/hnPvMZwWw2r1uKXVdXJxQXF19XUp0hEAgIgPCOd7wj5/F0Oi2YzWYBWPe/L37xiznPf/jhh4WamhohnU7fcP0ytwey6LyG2OhiervzWn7tN8Pr9QoFBQXC3//93+c8Pj4+LqhUKuGv//qvb/i7jz32mKBQKITe3t5tnz8ajQplZWXC5z73uW0fQ+bWQS6ZlpF5jWOz2fjoRz/Kpz71qZzRBh/72Meoq6vL6Ve6lqeeeop3vOMdHD58eNvn/9rXvoZGo9nwPDK3D/KejoyMDA8//DAPP/wwXq+XH/3oRzz99NN897vf5Uc/+hFarfaGv/epT31qx+d+6KGHZMF5DSGLjoyMjMSTTz7JO9/5TqqqqvjKV76S4wwhI5MPFIIgD7CQkZGRkdkb5D0dGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdGRkZGZk9QxYdmT1HEAQEQdjvZcjIyOwD6v1egMxrC0EQSCQSRCIRVCoVarUalUqFSqVCqZTvgWRkbncUgnzLKbNHpNNp4vE46XSaWCyW8zOFQoFarZZESK1Wo1Ao9mmlMjIyu4UsOjK7jiAIpFIpEokEgiCgUCiIx+NSZCMIAul0Wkq7KRSKHBHKCJEsQjIytz6y6MjsKpl0WiqVAsSIJvPYjURkPRFSKpWoVCo0Go2UjpNFSEbm1kMWHZldISMc2dFNRiQyabbsxzZzrGtFKDsKkkVIRubWQBYdmbwjCALJZJJkMglwnbhsVXSuPXbmGLIIycjcesiiI5NXMtFNOp0GWLcibSeicy2yCMnI3FrIoiOTF7LTael0GqVSecOLfD5FZ711ZM6RTqdRKBQkk0n8fj9lZWWyCMnI7DNyn47Mjrm2WGAjwdltMufNCIsgCITDYQYHB3E4HMTjcWmNmaIEtVq9r2uWkXktIYuOzI7IRDepVOpAXrgzqTYAjUYjpeAEQSAajeY8R6PRSJHQQXwtMjK3A7LoyGyLa3tvtnKR3s+LeXZKLxMJrSdCmQhIFiEZmfwii47MlslHOm0vL+AbnetGIpROp2URkpHZBWTRkdkSyWSSWCwmpaRutwvvRiIUi8WIRqMolcrrquNux/dCRmY3kEVHZlNkem8WFxcZHR3lwoULt9RFdrtFmtdW2GVEKJVKkUqlcgRYFiEZmZsji47MTbm2FDrTC/NaJCNC2b5xGRFKJpPSz69Nx+1GebiMzK2ILDoyN2S93puM6MiI3EiEksmk5C8ni5CMzFVk0ZFZlxsVC2QMO28l9rpo4WYi5Pf7MRgMWK1WeZaQzGsOWXRkrmOj3huFQiFZ3GwXQRAIhULo9XrU6tv7I7ieCM3MzFBYWCjNDLp2lpAsQjK3M7f3N15mS2TvTdzIyman6bVEIkF/fz/Ly8soFApsNhsOhwOHw4HFYtm1i+1Bic6yK+Oym1UTiUSOW4IsQjK3K7LoyACb773ZSXrN5/PR3d2N0Wikq6uLZDKJx+PB4/EwOztLOp3GbrdLImQ2m2/LfY/s92+9SCgTaWb708kiJHO7IIuOjOQscDOjTtie6AiCwPT0NKOjozQ2NlJXV0cikUCr1WIymaiqqkIQBILBoCRCk5OTKBQKSYAcDgdGo3FbInQrCVem6CBDtgglEgnpOfJob5lbFVl0XsNkz73ZrJXNVkUnHo/T39+P3+/n1KlTOBwOqeT62jt+i8WCxWKhpqaGdDpNIBDA4/GwsrLC2NgYarU6R4QMBsO2X/t+sxXLoBuJUCYSkqeqytxKyKLzGiWdTpNMJrdsZbMV0fF4PPT09GC1Wunq6kKr1W56fUqlEpvNhs1mo66ujlQqhd/vx+PxsLi4yPDwMDqdLkeEdDrdDY93UPZ0YGdr2awIybOEZA4qsui8xthojPRm2IzoCILA5OQk4+PjNDc3U1tbu+OLnkqlksQFRDsen88n7QcNDAxgNBpzREij0ezonLtJvkQgW4SyZwnF4/EbuiXIIiSzn8ii8xriZmOkN0Omeu1GrgSxWIy+vj5CoRBnzpzBZrPlZe3XolarKSwspLCwEBCr4rxer7Qf1N/fj9lslgoSDhK7FXVlV8Zln0cWIZmDhCw6rxGye2+yq6W2SubitJ7ouN1uenp6sNvtdHV17WmkodFoKC4upri4GBDFL1uEAF599VUpCrLZbDlpqtuRjUQoFotJJdrxeByNRoPJZJJFSGbXkUXnNmczvTdbIVt0ss8xPj7O5OQkra2tVFdX7/tFS6fTUVpaSmlpKdFolOeff56Kigq8Xi8DAwMkk8k96xFaj/14f9abqioIAlNTU2i1Wurq6gB5qqrM7iKLzm3MboyRvlZ0otEovb29RKNRzp49i9Vq3dmid4HMmsvLy6moqEAQBCKRyL71CB2UooZrxzhkC5E8VVVmt5BF5zYlnU7jcrkwGo157ePIFh2Xy0Vvby9FRUWcOHHilrG0USgUGI1GjEYjlZWVki3PbvQIbbSGg0J2QclmpqrKIiSzE26Nq4TMpskeI/3CCy9w55135nVvJZOCGhsbY25ujvb2diorK2+Ji86Nih8UCgVmsxmz2Ux1dTXpdJpgMIjb7d6VHqGDEulkyPRoXYs82ltmN5BF5zZivXRavslcbFZWVjh//vyBqwzLB0qlEqvVitVqpa6ujnQ6LZVnb6dHaD0O0kV5s/ORNjPaW56qKnMzZNG5DbhR741SqdyxI3Q2y8vL9PX1AXDixIkdC85eDYPb6TmUSmVOj1AqlZIq427FHqFr2e7f4UYiJE9VldkIWXRucTbqvcnHGAIQ94dGRkaYnZ3l0KFD9PX1vaYNJ1Uq1aZ7hBwOB3a7PWe/6yCm1/IhAhtNVc0WoUw6Lts3Thah1w6y6NzCZE/1hOvTafmY8hkOh+np6SGdTtPV1YXJZKK/v//AXTg3w26t+doeoXg8LhUljI6OEo1GsVgskggdtHHf6XR6V9YjT1WVWQ9ZdG5B1hsjfaMN8p1EOktLS/T391NRUUFra6vUZHgrTg/dS7RardQjBOI+WEaEBgcHicVijI+PEwgEcDgcWK3WfY0c9zLNuVkRyjYvfS1H1bcjsujcYmyl92a7kU4qlWJ4eJiFhQU6OzspKyvLy3H3i/2+a9br9ZSXl1NeXo4gCLz44os4HA5CoRBzc3P7PkdovyKvjUTo0qVL1NXVSc4RsgjdPsiicwux0Rjp9dhOIUEoFKK7uxulUklXVxdGo/G65+Rrr+i1SOYim9kT2o8eoWs5KOm+bBGKRqPSvzOREMhTVW8HZNG5Bcjuvdns3BvYujgsLCxw5coVqquraWlpueGXWU6v7Yxr5whttUdIr9fnVSQOiuhkk06nJUG5NhKSp6re2siic8DZiZXNZtNgqVSKwcFBnE4nR48epaSkZMPn71R09usCd5CEcqOU6G73CF3LQRWda9e0XjpOnqp66yGLzgFmK2Ok12Mz6bVgMEh3dzdqtZqurq5NddrnI9J5LV8ItvLebbVHyG63b2lYXmY9B+3vkfnMb0T2LCFYf6BdtghlV8fJ7B+y6BxAru292W4z3UbpNUEQmJ+fZ3BwkNraWpqamjadlrjV0msH8SKz3TXdrEcoFApt2CO0HgdRdG5kzbMRmxEhebT3/iOLzgHj2t6bnfQs3Ci9lkwmGRgYwOVycfz4cYqKirZ8XLmQYPvkU7C32iO03hyhgyY6mb2bne7NbFaE5IF2e4ssOgeEzfbebIX1Ih2/3093dzd6vZ6uri70ev22jnsrRToZbsU1b5Wb9QjF4/GcOUJWqzUvF/h8kn3DlU+yRUieqrp/yKJzANiNuTeZ42S+XIIgMDs7y/DwMPX19TQ2Nm77HPKezs7Zq9d/bY9Q9hyhTI9QOp3G6XSiVCqxWCz7/re5kcNGPsn2jANZhPYSWXT2ma323myFTKSTSCS4cuUKHo+HEydOSPsBOznurRQ1HLSLxH69dwrF+nOELl68SCgU4vLlyygUipxGVZPJtOfvX+b92Y9JrtkilPkvM9o7HA6TSCQoLi6WRWgHyKKzT2R6b+bm5lheXubIkSN5//AqlUoikQjPP/88JpOJCxcubLmyaT3yITq3kmjtBgfhQpXpEVIqlTQ3N2MymQgGg3g8HlZXVxkfH0elUl03R2i3175b6bWtsJ6DtsfjwefzYbVacyIheaDd1pBFZx/ITqelUimp+zrf5wiFQvj9fpqbm6mvr8/bOfIhOrFYDEEQdtxjshUOitAdlHVkyBQSZPcI1dbWkk6n8fv9eDwenE4nIyMjaLXa6xpV802mR+cgXbwzn/lM5Zs8VXX7yKKzx1zbe6NWq/NeCRaPx+nv7ycYDFJWVkZDQ0Nej7/T6rW5uTkGBgZIp9NSZVVBQcG6lVW3KwfpQnQjl2mlUondbsdut1NfX08qlZIaVTPl9jvtEbrReg5SYUOGjEsCyFNVd4IsOntEdu9NtpVNvsuPPR4PPT09WK1WysvLd+Uivt1IJ5VKMTAwwMrKCkePHkWv10sXscHBQRKJhFRZVVBQkLdN7df6l/xmbLZkWqVSUVBQQEFBASCW3md6hKampggGg1vuEbrReg6i6GT2XdfjRiIkT1W9Hll09oB0Ok0ymVy3Oi1foiMIApOTk4yPj9Pc3ExtbS0jIyPSOfPJdkQns1GdcT5QqVSkUinKysooKyuTKqvcbjcej4eZmRkA6QJWUFCwJ/sJe8FBTa9tFbVaTVFRkdTnFY/HJREaGxsjEonctEdoPQ5ypLNZEd1IhGKxGNFo9DUrQrLo7CI3GiOdTT5EJxaL0dfXRygU4syZM9hsNmD33KC3KjqZuTxVVVWSkWjGKyv7mJnKqqqqKgRBIBAISMaXo6OjaLVaCgoKJBHajt3LQeGgXFgy70k+1qPVaikpKZG8+zbTI7SeuOzWULmdkkqltp0+vPa7v9Fo74xbwu06VVUWnV1iozHS2exUdFZXV+nt7cXhcNDV1YVGo8k59m5caDcrOul0muHhYebn5zl8+LDUsJg5xs3OkW18mdlPcLvdkueYyWSSRGi7qZzXOvkUnWu5WY9QKpXKKc/OpFMPcqSTr3T1eualGRFKJpPSzzPiMz8/T1FREXa7PS/n30/kb+kukN17k/3BWo/tio4gCIyPjzM5OUlrayvV1dXruvLuV6QTiUTo7u6WxlyvN5dnK1y7n5BIJPB4PLjdbsnuxWq1SiKUfRd90O4UD1LEtZuik82NeoQyIjQ9PQ0gFSNkLsIH6W+30Z7OTrmRCGVmCf3Gb/wGDz30EA888MCunH8vkUUnj2TfqWzWymY7ohONRunt7SUajXL27FmsVusNj70bF7ibrXllZYXe3l5KS0tpb2/flWIGjUaTk8rJ3EW73e6caZwZETpoHJSL6V6JzrVkeoQyc4Qy6dRMeXYkEuG5557b8x6hjdjLCOxaEQqHw5hMpj05924ji06e2K6VjVKp3NJmv8vlore3l6KiIk6cOLFhSmm3jDlvFOkIgsDY2BhTU1N0dHRQWVm54THyicFgwGAwUFFRgSAI1zU5AoyMjFBUVLRr/SWb5bUY6dyM7HSqTqdjbm6OpqamPe8R2ohUKrUvJf2ZqNBsNu/5uXcDWXTyQMavaTtGnZk7mZvdRaXTacbGxpienqa9vZ3KyspN7YvslejEYjF6e3uJRCKcO3cOi8WS9/NuFoVCgcViwWKxUFNTQzqd5umnn0an0zE/P8/Q0BAGg0EqSLDb7Tl7YXu1xoPAfljO3IzM3slGPUJDQ0Po9focEcpHj9DN1rVf71MwGNzX71Q+kUVnB2x3jHQ2mxGdSCRCT08PyWSS8+fPb/qOZ68KCTweD93d3TgcDo4fP37gNvQz72tNTQ16vT5nBs34+HhOaW+mSfUgXYR3k4MS6WSzXp/ORj1C09PTXLlyBZPJlNMjlO8biXwWEmyVcDgsRzqvdfLlDJ0tOuuxvLxMX1/ftvZHdju9JggCU1NTjI2N0dLSQk1Nzabfg8zv7wfXzqDJLu29cuUKyWQyZz/IbDbn9aJ8ENNrB4nNRBQb9QiNj48TDodzeoTsdvuOBWM3Cwk2IpNek/d0XsNkRzc7raO/keik02lGRkaYnZ3l0KFDVFRUbPnYu5leSyaTXL58Gb/fz+nTp2+JUs4bXWCvLe0Nh8NSk+rk5GTOyOhMk+pOOSiRRT4+w/lmO3061/YIxWIxqbBkaGiIeDyO1WrNaVTdqoDsV6QTiUQky6jbAVl0tsBme2+2QiZCyhaHcDhMT0+PVG683Tuc3UqvJRIJlpeXsdvtdHV17XoufS9RKBSYTCZMJhPV1dWk02mpSXVpaYmRkRF0Op2U6tmO39hBii4OWlky5GfvRKfTXed2kYlm5+fnSaVS2Gy2nGj2Zufcr0gnFAoByOm11xrXjpHO54cvOw2W6d6vqKigtbV1R3dW+Y50BEFgbm6OxcVFrFYrJ0+ePHAXrBux3XUqlUpsNhs2m436+vob+o1lN6lu5m92UN63g9j9n2/vta30CN1ojlDGXWQ/Ip1QKIRSqdzXist8IovOTch82OLx+LaLBW6GUqkkmUwyMDDAwsICnZ2dlJWV5eW4+bqrzqzP5XJRVlb2mh1etd5eQiYVl0njZO6g82laulvcrpHORmzUI3SjOUKZaHa/Ip39GKa3W8iiswGZYoHR0VHC4TCHDx/etT98b28vGo0mL937GfIV6QSDQbq7u6X1zc3NEYlE8rDCvWU30lparXbLpqVyem1j9jr6yu4RutEcoUwl3MrKCoWFhXsadWSi6YP2d9ousujcgGvHSO/WF2FhYYFEIkFhYSFHjhzJe9pupxe4xcVF+vv7qampobm5WYr0DtKF86BwM9PSsbEx6eLlcrkoKSnZ0yF263FQRWev+6ayWW+OkMvl4sqVKywuLjIyMrKnPUK3kxsByKJzHetZ2ahUqrxXgaVSKQYHB3E6neh0OqqqqvIeuu+kZDqdTjM0NMTCwgJHjx6VqoJ2etwM+2G7stesZ1rq9Xrp6elhYWGB0dHRfTctPYiic9Dm6ahUKiwWC0qlklOnTu15j1AoFMJoNB64v9N2kUUnixv13mzVquZmBAIBenp60Gg0XLhwgYsXL+5KafN2xSFj1ikIwrrpPjnS2R6ZBkeAY8eOoVQqN21aulscRNE5iMUN2ftMe90jlEmv3S7IorPGtWOksz/0+Yp0BEGQxvzW1tbS1NQkDXI6CHNv4KpZZ1lZGW1tbet+WW5V0TkIa85ew1ZNS3djM/mgis5BinRg43LpG/UIZReX7KRH6HbyXQNZdK7rvVmvOi0z5XInZFd/HT9+XLpLypxzNyZ8bkXMBEFgdHSU6enpmzaj5kN0DtqFbq9Z7/XfzLRUrVZLBQn5MryURWdzbKVc+toeoWzHi4WFBZLJZM5Y9pv1CN1ObgTwGheda3tvdmvQmt/vp7u7G71eT1dX13UXi72wq9nowhKLxejp6SEWi23K2+1WjHQO2oX1ZqxnWnqt4WU+TEsP2v4JHEzR2W5jqEKhuO5mIhwOSyI0MzODIAg5RQnXRrS3m+gcrL/sHpEpFojH4zmD1m50YdpupCMIAjMzM7z00ktUVFRw+vTpde9Od0t0sgdC3Qi3283zzz+PTqfbtJlovkTnVhOCfLDd9y1jxdPQ0MCpU6e48847aWxsRKFQMD4+zrPPPsurr77K+Pg4Ho9nSxHuQfs7HMQ15asxNON4UVVVxeHDh7nzzjs5ceIEdrsdt9vNxYsXee655+jv72doaIi+vj4CgcCW02vPPPMMb37zm6moqEChUPBv//ZvN/2dp59+mhMnTqDT6WhqauKRRx654XM/8YlPoFAo+PCHP7yldcFrMNLZjlHndkQhkUhw5coVPB4PJ0+elDaQ83X8zZB5XevdOQqCwOTkJOPj4zecPLrX691tDlJ0ttOLqlqtzjEtjcViUn9QtmlpdgpnvXMe1Av87RLp3Iz1ItpMmf3jjz/O7/3e76FSqWhoaOCRRx7hnnvuoaam5qbHDYVCHD16lHe/+928/e1vv+nzJycnedOb3sRDDz3Eo48+ypNPPsl73/teysvLuf/++3Oe+8orr/CVr3yFI0eObOs1v6ZE59rem81+2bYa6fh8Prq7uzGZTFy4cOGmNfx7HekkEgn6+vrw+/2cOXMGm822pePeium1g8JuvW86ne6GpqVTU1M3NC2VRWdz7JUFTrbt0n//7/+dX//1X+dXfuVXUCgUfPWrX+W9730vra2t9Pb2brieN77xjbzxjW/c9Hm//OUvU19fz6c//WkA2tvbee655/jsZz+bIzrBYJBf//Vf5+/+7u/40z/90229xteE6GxnjHQ2m93oFwSB6elpRkdHaWxspL6+flPn2Y0+IFjfwTojiGazedtmnbei6By0C+turmcj09JMh33GtPQg/i0P4j7Tfpl9ms1m7HY7r3vd6/if//N/4vf76e/vz7sAvvDCC7zhDW/Ieez++++/Ln32/ve/nze96U284Q1vkEXnRuRj7o1Kpbrphnw8Hqe/vx+/38+pU6dwOBybPv5epNcEQWB2dpbh4eEtCeKNjnvQLlQyN2Y901Kfz4fb7WZ5eZlYLMbLL7+8ZdPS3eKgRjr7tabskmmr1UpXV1fez7G0tERpaWnOY6Wlpfj9fiKRCAaDgW9/+9tcunSJV155ZUfnuq1FZ6Pem62Q+bClUql1O8Y9Hg89PT3SB2Kr0cNuzr3JzL7p7e1ldXWVEydOUFhYuOPj3oqicxDWfBDWoFarKSwspLCwEKPRiNPppLKyMmf2TLbtf6Ybf684iM2hqVTqNT01dHZ2lt/+7d/miSee2HGp/m0pOtm9N/lwhs582K4VhuzN+ObmZmpra7d1HpVKRSKR2Pb6NkKhUHDp0qUblmtv95g7vXguLS3hcrmkC9t+em3tBwfloioIAiqVitLSUkpLS3Nmz7jdbsm0NLtJdbctWeRIJ5e9KJkuKyvD6XTmPOZ0OrFarRgMBi5evMjy8jInTpyQfp5KpXjmmWf4whe+QCwW27Qo33aik06nSSaTOx4jnU12pJMhFovR19dHKBTa1mb8tcffjUhnYWGBdDpNYWEhHR0defvS7NTTbXh4mPn5eUpKSpicnKS/vx+LxSKNA9jOVMebcZAu8geJa1PG682eWc+0NLtJNd+mpQdxTyedTu+5Lx5cHVW921NDz58/zw9/+MOcx5544gnOnz8PwL333ktfX1/Oz3/zN3+TtrY2Hn744S1FgbeN6GTm3uRrjHQ21/qvra6u0tvbi8PhoKura8d36fkWnXQ6zeDgIEtLS6jVaqqrq/M+FGs7F89YLEZ3dzfJZJJz586hVqtRKpVSua/b7ebKlSukUinpzrqgoOC2MjvMcFBez82q19YzLc00qc7OzjIwMCCZXWaaVHd6cT6IkU4qldq3CbnbscEJBoOMjY1J/56cnKS7u5uCggJqamr42Mc+xvz8PF//+tcBeOihh/jCF77ARz/6Ud797nfz05/+lO985zs89thjAFgsFjo7O3POYTKZKCwsvO7xm3FbiM5ujJG+lkzZ9NjYGJOTk1vubdmIfIpOOBymu7sbEO9eXnrppbxHUdsRHY/HI33oOzs7USgUxONx4Ppy31AohNvtxuVyMT4+jkajkQSooKDgNZeK2022WjKdMS0tKCigsbGRRCIhdddnm5ZmRGirpqWZm8eDIsoZ9mtqKGxvtMGrr77K3XffLf37Ix/5CAAPPPAAjzzyCIuLi1LqFKC+vp7HHnuM3/md3+Gv//qvqaqq4u///u+v69HJB7e86KTTaVwuF263m9ra2l27Q1IoFNJd+Llz5/Ia7uZLdJaXl+nr66O8vJy2tjbJTDTfKZ2tiE7GlWFkZISWlhZqamo2LJzInupYU1Mj3Vm73W7JRn67qbiDkNo6CGvIZqd9OhuZls7Pz2/ZtDTz/hzESGc/1pROp7cV6dx1110bftbWcxu46667uHz58qbP8fTTT29pTRluWdHJ7r0JBoM4nU7q6+t35Vwul4t4PI7FYuHMmTN5z+3uVHTS6TSjo6PMzMxcZ9a5G/tFmxWdVCrFlStXWF1d3XIZeYbsO2u4vvP+Vk3FHZQ15rs59FqfsUzU6na7c0xLM5HQtYUtB1V09ivSCYfDCIKw63s6e8ktKTrX9t6o1epdcWlOp9OMjY0xPT2NTqejtrZ2VzYTd+IyHY1G6enpIZFIrOudthvl2JuJnsLhMJcvX0atVnP+/Pm8jfe9USou48ScnYrLnuh4kC7yB4nddCS4NmrNNi1dWFhgeHj4OtPSDAdNdPYr0gmHwwD7XjKdT2450Umn08Tj8Zzem90QnUgkQk9PD8lkkvPnz9PX17drfmPbjUZWV1fp6emhsLCQkydPriuIu5Ve22i9Kysr9PT0UFlZSWtr666mPDebikun0wfKL+4gieBeXUyzrXgaGhpIJpPSftDExEROGsnr9e57k2o2+xXphEIh1Gr1vo81zye3jOhk0mmZ6rTsUuh8zLvJJrM3UlpaSnt7OyqVatdm3sDWRUcQBCYmJpiYmLhpQcNuRDo3Sq8JgsD4+DiTk5M3ncmzG6yXisvsLySTSbq7u6W76v1Kxb2WIp2bsZ5pqdPpZGxsjMHBQWnuTObvdSPT0r1gvyrqgsHgrgzv209uCdG5mZVNvkQnu4eko6Mj56K5W/5osDXRicfj9PX1EQwGN9UftFeFBIlEgt7eXkKh0LYLLTLHzNcXLHuY1urqKs3NzcTj8Zum4nabg3QBOUiGnzqdjqKiIiYmJrhw4cKmTUv3gv1yJMiIzu3EgRed7OjmRqXQGdHZyRcoHA7T09ODIAicP3/+uj90vqOpbDYrOj6fj8uXL0t2O5spHd7NQoLM+x0IBLh8+TImk4nz589vq6Q5Fo7x5d/5Or1PD3Dsnk6O3XuII6/rwFZizcualUolBoOBsrKyvFfF3coctEbM7LT5Zk1LM0K0mzcN+xXpbKdc+qBzYEVnK703mzHk3IilpSX6+/upqKiQSo2vZTdnyNwsiso262xqaqKurm7Tr3O30msZFhYWuHLlCvX19dJQsa3inF7h6///7/Lyf1wilUzz1D/9nPnRRf72g/9IZXMZx+4VRaj1TBMabX4+stem4uLxeE6DajKZ3JVUnJxe25gb9ehca1qaSqXwer05Nw1ms3nXTEv3q5AgY4FzkP5GO+VAis61Y6Rv9sfOfLiSyeSW7nZSqRTDw8MsLCzQ2dlJWVnZhufYj0gnmUzS39+/qWFwNzp2vi90mb/H4OAgi4uLHDt2TMrLb5Wep67wmXd/hYA7iM6opf5oBdYiK3OD88TCMSZ6pvGt+Hnh+6/iWfJy6I5Wjt3byfF7DlHeVLalL+NG74NWq82Za7/ZqrjtcJAuIAetEXOzEYVKpZJMS0G8acjs3w0PDxOLxfJmWpppWN2v9NrtVLkGB0x0sq1stuIMfSNDzo0IhUJ0d3ejVCrp6urCaDRu+PzdjHRuFI0EAgG6u7vR6XR0dXVtq4JlN9adcRJwu92cP3/+pu/degiCwPc//2Mu/riXsvoSkskkSqWKVDzNpf/sBaCg3E5dZzXRcIzJvhmioRiXHu8lEojy/370nyiqLuTY3Yc4ef8ROrpasBTk58t5uzeoZnPQIp3tpvu0Wu2GpqWCIOT4xW0lct3sze9usBdmn3vNgRGdncy9yXijZVJxNyOTEqqurqalpWXTd1a7Felk0mvZF4DMGuvq6mhqajows288Ho/UtXzq1Klt9d9EghH+5n/8Pc/+n5ekx6paytCZdOiMOqrbKpkdmqesvoTLT/YjpAUUSgVNJ+ux2E24FtwoFOCaXWX88iQvfP9VIoEIjSfqOXbvIY7d00nzyXrUmqsf7526jG82FbeZrvuDdpE/SOvJx97JjUxLPR7PtkxLM6KzXyXTsujsAtsdI53NZkQhlUoxODiI0+nk6NGjknXHZlAqlbs2fiB7rHQ6nWZoaIilpaUdpa2yj52PSCfbzqa5uZmhoaFtXRwWxpf4s1/9HCtzqzSfakClVqFUKhi9NEkiKr6/Gr2G9nPNJOJJWs804ZxaRm/W417wMHZxEgCDRU/7+WYigRg6k5aQL8zCyBLJeJLvfvLfMVoNdL6ujbNvOk77uRbpNeSDm6Xi1Gp1jlfcfhlFboaDKDr5Xk+2aWltbe2WTUv3O9KR02t5ZKdjpLO5megEAgF6enrQaDRcuHBhy3fou72nA2L+tr+/H4VCQVdXV15KQvNRSJBKpejv78ftdnPq1ClsNhtDQ0NbvohffKKH7/zlvzM/KorD2KVJ2s41M/D8CKV1RRRWFJCMJ4mEogy+OCr9XsvpBgLuIGX1JTjK7CxNLlPVUs6lx69arTefbkBn0BENRtAZtYT9EQKrQb74gUdIp9LYy62c+sWjnPyFoxy+sx2jNT/lthul4mZmZhgYGJA2uAsKCvbFHn8jDqLo7PbFfaumpRk39P14n+RIJ4/kY4x0NjcSBUEQmJ+fZ3BwkNraWpqamrb1od7t5lCAl19+ecMKuu0eeyd3+Jm9L7VaLe0rZY632eOm02m+85c/4NH//S8IgoBGp6b9fDM6k47FcXFwlHPKhdFiYHlmlVgkTv2RGgxmPTqDlstP9gOwOL6MvdRGYbmDeCRBR1cL3mU/BouemStzxMLiXpPWoOXo3YdIxBOUN5YwP7JEOpWi+ydX+MnXnkWpUtJ6ppFzbzlF65kGGo/Xo1Ll5/3eKBU3MDAgDRacmZmhoKBg3yuTXouicy03Mi31eDz09fVJ7Rj78TcLhUI7znYcNPZFdARBIB6P7yiddi3riU4ymZQMJ48fP05RUdGOjr8bhQQZs05AcmHOJzuJdJaXl+nt7b3OziZTvr6Z44b9YT7//n9gdcFN86kG5oYXKCh3sDS5gmfJC4CtxErTsToC3hAIkIwnWZ5yUVJXxMDzI9iKLZQ1lKLRqVmZWWVmcF46fseFFuaGF6k7XAMCeFe86PQ6ep66Ij2n7Xwzfp8fg8FAIprA7wqgUCj42se+BYDZbuLcW07SfKqBY/ccorh6Z+O8s7k2FbeyssLAwIBk/bLfqbiDJjoHoW/oWtPSpaUlRkZG8Hg8TE5OolKpNjQtzSehUGjXjIz3i30RnczGfz4/8NeKjt/vp7u7G71ez4ULF3bsXbQbkU62WSewI1G8EdtZtyAIjI2NMTU1RWdnJ+Xl5dc9ZzMFCnMjC/zZr36O2aEF6bGO8y2E/REqmkox2Y0sz6xQWlvExcd7peN2XGhBrVHjWfahUIBvJUBlczmDz4+QSqapbC7DUWZHrVXR+/Qg6VQavytAZUs5sXACpVJFx4VWwr4wBqueoRfGpLWarAbazjWDAhqO1jA7tEBhpYMX//0iP/n6MwBUNJdx4e1naD5Zz6ELrRjM+bmoKBQKDAYDSqWSo0ePkk6n8Xq9OXsL2ak4m82265vXB010DloJt0KhQK/Xo9Vqpb+Z3+/H7XazuLjI8PAwer0+p0k1n/Oe5ObQPJLvQWsZ08/sRsqGhgYaGhryFknlM9LJmHUWFRVx6tQpfvrTn+5K+m6rBRDxeJze3l7C4fCGdjY3E50X//0in37Pl1CpVbSdFavvNHoNvU8PSM8prHBQXl8KArSdbWJxaoWS6kLGL00Ri4ipMnOBiabjdURDcWwlVtwLXuLRBCuzLpxTLnRGLVVtFVgKzCxNLON1+vA6fbjmVqk/Wsv4pSnqj9YQT8ZQCipC3jCDL1zdL+q40EokGKGmvRL3khf3ogeT1cB3P/kDANQaFeffdoqajiqO3dNJ/ZGdT2HNfB6VSmXO3kJ2r8ng4CCJRCJnbMNupHUOoujsd6RzLdmNoUqlErvdLjliJ5NJqUn12tHrDodjxzcOcp/OAUalUhGPx+nu7sbr9W6rkXIj8hXpZJt1trW1UVVVJUV+u5G+20p6ze/3c/nyZSwWy03tbG4kOqlUmu997jF+9s8vEA3FENICC2NLOMrsTL84SkVTKQVlDlDAzOA801fmpN/t6GphdcFD4/E6oqEoPlcAo8VA95NXU2WHX9dGOiUQDcfwOH3EI3F0Bi3dPxH3fQorHFS2lKNQKhh+eYx4NMFE9zRlLUV45twYLWKkk0qk0Bo1XHl2WDq2o9xORVMZKrWK1jONzI8uUt5Qxsv/cZlnv/sSj/7xv+Aos9H11lM0HKvj6N0dFJRvbUbQzRpUs3tNMt5jbrd711JxsujcnI0aQ9VqNUVFRVKWIttkNrOHd22T6lbe73A4LIvOQSWVSjE1NYXdbufChQt5z43nI9LJjiLOnj2L1XrVV2y3RGezhQTz8/MMDAxsOjpcT3SC3hB/9Zt/y6s/7gHAYNbTdq4JISUwOyym2BbGnBSUORj4+TBqnYbG43XojFpUKiV9zwwB4JxaoaqtAlCg0Wno6GrBNb9KYUUB/c8OS+e1FJppOdlAOi1Q0VTGwtgSRruRqb4Z/KtBlColNR2VFFUXMj04SywcJxaOE48mKK4pZOzSJFVtFdgKLaRSKRbGnEz1zUqvp+NCC75lP40n6gn7wridHqxFFh77ypPSc8686Thl9cUcu6eT9q4WdIabf+42c9FZz3ssUxWXz1TcQROdg7Cncy1bscDJNpnN3DhkRGhqagqFQpHTH2QwGDZ8/+XqtTySrw+6IAhMT0/jcrmw2+2cPHlyV75EOy2Z9nq9dHd3Y7Va140idlN0Njpupi9oq3Y214rZ1JVZvvjBf0CpUtJ4rI6pK7PUHa6h75khknGxabeyuYyy+lJ8Lj8qrZp4JE7QG8K34sc156awwkFJbRFag5bxy5MEPWFW591o9BrqD1ezOLFM69lG0sk0kVCUSCBK/3NXI5XDr28nHo1jNOtJCwKxcBy9USc5HBhtBppPNIAgMD0whyAIzA0tYD7XxOirE2gNWrGpVKtBrbkqgvOjS5TWl2C0GNFo1bR3tbA6t4q9zMbF/+whlUzzgy88jslu5OT9R6nrrOb4vZ3UdFTm7bOY7bCcz1TcQbvI32qRzkZk3zhUVVXd0LQ0W4Syb5YzPWC309RQuMUjnYzNfyAQoKysDI1Gs2t3bdsVheymyo3MOvcjvRaNRunu7iadTm/Zzib7uM9//xU+854vEw3FAFCplbSdayYWitF6uhHXvJtELIkgwMXHxShIrVVz/A2HScTirC54APA4fZTUFtPz0ysoVUpqD1VhLbaQSqQY+PkIAF6nj6aT9aJIVRbQcaEFvzuItcBM388GpfU5ymxUNJSi1qqpO1zN9MAcJbWFDL00KpVWlzeWUN5YisfpQ6lSEglEWVlLwS2MLVFUVUBJTSFqjZrpK/P4XP611w5t51twTi7TcrqRZCKFb9mHRqfhmX9+gWf++QW+/off4ejdh3CU2Th2bydH7urAXmzNa4NqPlJxBy3SOWiFBJA/s88bmZZ6PJ4c01KHw0EkEqG2tnZb6bVnnnmGT33qU1y8eJHFxUW+973v8ba3vW3D33n66af5yEc+Ijm1/MEf/AEPPvig9PO/+Iu/4F//9V8ZGhrCYDDQ1dXFJz/5SVpbW7f8PtyyouPxeOjp6ZFs/mdmZohEIrt2vu1EOtlmnadOncLhuHH+f7dKsm+UXnO73XR3d1NcXExHR8eW7+QUCgXJRJJ/+L1v8a+ffYySmiIaj9eRiCZJJpJcyYpAGo7WEg1FsZdaMduNzA4v0Hi0jss/udrcWd5USnFlIdFwDJPVSMgfRqFUMNkzQ9ATwuwwUdFUitlhYvzyFJFAlLmhBUx2E8VVBUz1ztJ8qgG1WkkikcI5ucLIqxPS8auPliOkxbW4ZlcJesPojXqpwVSjU3P07g4EAZZnXAC45tyU1BTR98wQSpWC2s4qLA4zSpWC3qdFgXMveqlsKScRS6Iz6Tl0oRWfO4DFYaL36QEEQeDpbz2PwaKn8442iusKMNXoSJxOoNHlp8ppJ6m4gyY6By3ygt2LvjYyLf34xz/O008/TSqV4pvf/CaCIHDq1KlNNReHQiGOHj3Ku9/9bt7+9rff9PmTk5O86U1v4qGHHuLRRx/lySef5L3vfS/l5eXcf//9APzsZz/j/e9/P6dPnyaZTPJ7v/d73HfffZKbw1a45dJrgiAwOTnJ+Pi41NeiUCh21TEArkYim/2SZsw69Xr9psw6d2MEwXrHzaQjR0dHbzp1dCMi/hiPfOw7DKxtxC/PuNCbdPhXAwS9YRqO1mIw69Ho1PQ8dQVBEPdzDBY9Va0VBL0hac9EACL+CL0/u1rZdvwNh4lFYjjK7YS8IRKxBEJakESivLGUktoiErEEwy+NkUqmGX11gvZzTUz2TFNYUUB1WwXRSAydTpvjcFBSW0RJbRF6s46mk/XMDS9Qe6iKKz8fkVKBhZUOatorCfsjGG1GQt4QIW+YSCDK8rRLFMHmMoxmPbPDC3icPiliajndyFTfLE0n61GpVWvrT/LKj7qlNfT/+zgGs55j9xzi2L2dVDZvzTF7I7aSitvN78x2SKfTB861Ya8GuGVHr//yL//ClStX6OrqYmJigje96U0kk0n+5E/+hA996EMbHueNb3wjb3zjGzd93i9/+cvU19fz6U9/GoD29naee+45PvvZz0qi8+Mf/zjndx555BFKSkq4ePEir3vd67b0Og/WX/cmxGIxaSP+2qmZuy062U7WN/sAZjblt2LWuReFBJlmWbfbzenTp6Wyz60y3j3F1z/4r/idQQAKKwtoOFKNfzWEc3qFZDzJ3PACDUdqufLzYeylNioaS8Wem9UQo1kRSOuZRpZnXGtCUIxzepmyupKcKKiyuQxbsRUhLWAvteF1+jA7TAy9MEpsrXqt4UgllmILswPzpJJplmdcxGMJTFYDM1fmKWksxFZoRa1WM9k7w/K0Szp+x4UWgp4QLacb8LsC+FfFqrnLaxVxCoWCI3d1IKTTUoFC0BNCo1HT/VOxsq68oYSiqgKUaiVXnhsmGU8x+uoE1e0VeJf96E06OrpaCAXCpEgw+LyYLrz0eC96s47mkw2U1BRx7J5DHLmrI2+O2bBxKi4SiTAwMEBRUdGmzC93m4OYXtuPfSaFQkF1dTUAX//613E4HJLjfL554YUXeMMb3pDz2P3338+HP/zhG/6Oz+cD2FaF8C0jOqurq/T29uJwONadmrkXkQ5sfNeTbSi6VbPO3UyvpdNpQqEQly9fRqPRbHtMAsBT33qOf//SE9hKLGg0GjxLPkpri3jlR2t7NRoVh+5oQ6vX4JxaAcR9mJKqQmaG5olH4tR2VGFyGEkJSYafHwfAs+TDVmzBWmjB7w7S0SU2kSpUCpyTK8yPLklrOHp3B/FYgsqWcmaH5lHrNCTiSalgoLDCQU1HJfFInPGeadHhYHwVW4GVoRfGsBaZqT1UDUIahVIp7RcBVDSVYbIZMVjEyruliWXKG0vpf3aIdEr8+1gKzTQcqSEeTVJYWcDqvJtUKs3ixDKuObHwoeFoFfYSC85pFwF3kIA7yOqCh4bjNcxenqeusxqTzUA4FCPiC0v7UU9+41laTjWgUCo4/Pp2jt3TScvphhzH7J1wbSru5z//OdXV1SQSietScbsxDO1mHNRCgv2IvsLhMABmsxmlUsmJEyd25TxLS0uUlpbmPFZaWorf7ycSiVznAZlOp/nwhz/MhQsX6Ozs3PL5Dnx6TRAExsfHmZyczOlruZa9jHTWIxwOc/nyZWk+z1bNOnezkCAej/PCCy9QVVW16VEO15KIJ/jHP/wO//Y3P5IesxaZaTomFkY0n2pgZmCOyuZypvtnCXpDgGhx03yinoAnhEqtIp0WcM2vEo6GWZlwozNrcVRa0Rl1RDxRyb1gYXSJjq4WpvpmqWgpQ6NVs7rkweqw0PPU1TRcVWs5RqsBtUZNWX0xS5MrFNcU0vuzQVKJFEqVkvojNSh0AoHVIIIg4FsJoNFpUKmVLE+vUtlSjq3YglKlZOzSJNFgjMXxZRRKBW1nm3AveWk720QkGMO/6kdv0ues4dAdraK1UyROwBMkFoqjN+m49IQYKdlLrFS1lKPRaxh+eZx0SmCqf5bq9go8S+IdY8tpUWg0OrF3SBAEhl8e59//9nHqD9diLTRz9O5DHLvnEGUNJXmNBqxWK3a7XTK/zERBQ0NDJBIJbDYbhYWFOBwOzGbzrkYiB3FPJ5VK7YtTeCgUQqvV5tXhIB+8//3vp7+/n+eee25bv3+gI51oNEpvby+xWGzD7njYfdHJOCisdw6n00lfX991HmVbYTdERxAEFhcXiUQiHD16dF07m83gcfr45Ls+z8jFCZpO1KMzaPGsevA5gzmb9Z2vayfkDVHXWS129y95KKkulPp2FAoFzWcaiMbCJILi+xgLxrHarIxfmiKVTGOvsGAqMGE06xl6eYx0Ms3YxUkKKwtQa1X4Vvy0dzUTjyRQqVRMX5mV3AsUCjj8unYS8QQNR2uZH15ErVOTiCeZ6xXFzOww0Xyqnng0wezggmgIO7KIvdhK/zND6M16mk7Wo9FqUCoVXPm5uGflnFyhsqUMBQp0Bi0dF1pwzbtxlNoYeH4EIS2mMPVmHYdf304qmaKypZz5kUW0Bi1LUyu45twoFAoKqu3UtlXjXfYR9kdIp9KMXZqi5XQj/c8MUdZQQkG5nXgsQTQQZWhtP+rlxy7TeKyWWCROR1crx+45xOHXtWOyb32IXoZr9yg1Gs0NU3HZvmOZooR8p3sOaqSzX1ND98JctKysDKfTmfOY0+nEarVed/P8gQ98gP/4j//gmWeeoaqqalvnO7Cis7KyQl9fH0VFRZw4ceKm4a1Kpdr0ELftcm0KLJ1OMzIywtzc3E3HXd+MfItOphE1GAyi1+u3LTgjr47zjY9/l8EXRd+zsUuTHLrQytKoC1uJhboLrcQicbR6Df3PXC1ZLqktorS2GLVWQ+uZJuaGFyissTPZPU0yLgqOpcBE4/F6oqEoZocJ30oAkgrS0TSj/VOodWqK6hyYbHpC7ijOSTFdtzK7yqELrYy8Ok5VawUGsx7/ahC1VkVf1hqq2yrQ6DTozTqKah24pj3UtFfS89MBKVVW1VZOSXUR7kUvKrWSaDCKb9kPCliZWaW4upCi6gI0WjUTa5V0rnm3FAUtTizTekbsHfKt+FFr1Tml221nGxFQoAASsQS+lQBGu57LT4h7VnqTjvrDNegtembXjEyXJpZRqZUE3CEigQj1R2swmA2o1Er6nx1CSAvMDS/y1D89R8PRWlAopIKEphNbc8zeqDBmo6q4ubk5BgcHMZlMkgDlIxV3EPd08lUyvVUyorPbnD9/nh/+8Ic5jz3xxBOcP39e+rcgCHzwgx/ke9/7Hk8//fSOTEgPXHot47o8MzNDR0cHlZWVmzrebkc6154j0+OSSqU4f/78jj8c+RSdbDubjo4OBgYGbv5L6/D4I0/zt7/9CMl4Ep1RS+OJaqwFZib7Zkmn0ngWfSgVKnRGDVN9LhqO1mK06EkLMNEzlbNZX3OkgrAvQvOpBkKeMJ5lLwVlDrrXxhYAHLqzFYVCQcgTRqVWkowlKSh2MPzSOEJawFJswlpqxmDSM3JxgkQsyWTvDKV1RaSSaRLuJG1nm0inBZRqBeOXpkjExBsRhVKMspLxJC2nG1iaWAZASAlcWhMAnUHLkbtaSMSTOQJXXFNI79ODqDQq6g5XY7KbUCmVUrWd1+mjsrmMeDSBxqDl0IVW/J4gJquBkVcmJIHT6NS0nmskFAxRf6SG2aF5THYTqwseqUy7sLKAmo5Kwr4wqwse8TX2zNDR1ULfzwYlx22FApKJJMMvi3tiwy+N8eIPLhIJRmk8Vsexew5x9J5DlNRsbCK7lZLpa6viMnNoVldXc1JxGRHaTipOjnSukjH73Op7GAwGGRsbk/49OTlJd3c3BQUF1NTU8LGPfYz5+Xm+/vWvA/DQQw/xhS98gY9+9KO8+93v5qc//Snf+c53eOyxx6RjvP/97+ef/umf+P73v4/FYmFpSdxjtdlsW95KOFCRTiQSoaenh2Qyyfnz57fUFLVbG/HZZPzXXC4Xvb292+5xudGx87H+a+1sfD7flhsSE3Gx/2ayd5rq1gqmrsxisBiI+COMrF3kbKUWqtoqSMcFxi5NkEykmOiZpvOONgZ+PoS91EbDkVpisTiRSJiZtfSWa9pDZXMZlgILOqOW1rNNLI4tUdFcxtCLY6QSoqibbEaaT9YTi8QpKHeIzgRqDclQmrH+aZRqJUV1DsxFJqLeGK4pNwC+FT8dXS0MvjhKZXMZ1iILYV+EcCTM6MtZfTtt5ShVKkw2I1qDlumBORqO19Hz1NUoqKyumPKmUgKeEHqzjmgwRsgTIuyLsDzjwlpoprypFJ1Rx9zQ1bLpeQW0n29hsm+GxuN1qNQqfC4/arWK4RfHpTXUH61BpVKh1WtQqhQsTa5QVlckRUGiu0Mt1mIrKzOra68vgN6kIxFP4V4Q30t7iRWlRsXIy+PEwnGWp128+O8XaT3TiN8V4Og9nRy75xCHLrRgtOam4nbSp5M9hyY7FefxeJiamsoxNN1sKu6g7uns19TQ7dzMvvrqq9x9993Svz/ykY8A8MADD/DII4+wuLjIzMyM9PP6+noee+wxfud3foe//uu/pqqqir//+7+XyqUBvvSlLwFw11135Zzra1/7Wk4T6WbYV9HJ9u9aXl6mr6+P0tJS2tvbt3whz0Qhu9nsplQqmZubY3l5mfb29m3nNG907J1Eaul0msHBQZaWlnJmB221/2d1wc1fvPPzDL2UNbnzVANKlRKlSoWj1IbH6cNWZmHgWXEvQ6NT03q6EUuBmbkRUVy8Th9qrYpYNEZwNUztoSosBWYUSiXDL48Sj4jO15k0lXfZT+uZRsL+CD6XH5PNJJUjg2gGqlAqiIVjeJa8xCMJiiuKGXphFEEQMNr02KusGMwGJvtmpBRUaTxFMpYg4A1Rf6wanV6HQqlkbC1Syqyh/Vwz0XCMtrNNuObdRENRVFq1VDatVCk5evch0qk07iXRQcG/GqS6rYLetaKC9UYujL46QVlDCfFInKRGRfPpevzeIPYCK2OXpiSRVSgVdN7ZSjKRpuV0A/PDS2j0aiLBGOPdogiZbEZaTjeQiCaYXavmmx9dwlZipe/pQXQGLY3H69Cuedn1r9n4LIw5ufyTPpLxJKV1xRy9+xDH7+2k7kh13r4vN0rFeTweaYjiZlJxcqRzle06TN91110b3mg+8sgj6/7O5cuXb/g7+XLSgAMQ6aTTaYaHh6V9ke3uPWQ+FKlUalfKG+PxONFolEQicZ1ZZz5QKpXb3pOKRqNcvnwZQRCuq5zbyuTQgedH+MS7Po/JZqDzzjZ8K34sBWaGXhq7miLSazj8ujb8vgBVbeUsjDqxl9jwuQIMvyLexReU2ylpKMTnDogVY2mB6StzdN7RRt/PBrAUmMW9CBQI6bQ0amBx3ElVazlqjRq9UUf7+RacU8uU1hXnrEFv1nHkrg5SiSRlDcUsji9jMBtJBtOMX5kGBRRU27CWmImHkjinPCDAZPcsHV0ta+OxiymsdBANx1EgMPD81bLpypYyNDoLlgITzScbmBtZoPZQNX3PDEprsJdaqe+sIRyMYC00418NEglFSc25WZpcRm/SUdVagdlhZHlmFfeiFxD3iaoPlzN+eZqatkoMFj0Bt7gf1Z/leF3RXIbOqMVg1qPWqpgdWqC6vYLepwdIJcU1lDeVUl5fgnfZj0anJhYRLYX0Jh1LE8vi36G2CI1Ow9zIAp5FH645N1eeG6bnp1eYHZqntKOIyNtTnL7/GEWV+Rtel52Ka2hokFJx11bFXZuKO4h7OvslhLfjLB3YZ9EJh8N0d3dLF8udvMEZodkN0clY7iiVSpqbm/MuOLD99NrN7Gw2E+kIgsCT33yW//fhRwl4QrgXPSxNLtN4vJ7pK3O0nGxAoVIQcAdJpwTJCBOg9XQTgpBGo9OQTCRxzbmxlJoY+rkoQCq1ipbTjVgKTCyu7aME3EF8rgCxUEy0kWkuw1ZiRaVRMvzSBPFInJWZ1bXu/gZc827azjYRC8fwrfjRmfQ5c3nazokNuKlkiqA7RDgQoay6hMG14W1ao4bCGru4WT8sbtY7p1YQBIF0Ko3PFaDhaC16sw6FAoZfmSCZiYLWUmVBb4i2c034XUF8Lh/WAos0Rhug8842AIKekFiQEIqh0WvoeWoAIS1QWFlAaV0RCo2CkRfHScaTTPbNUFjhQKVR4VuJ0nq2CQQBAZjuu1qVlzl+LByj5XQjy9MuIoEoOoNW2o9Sa9UcvqsdBHDNiak496KXkpoirjwnlmBXt1VgKbKg1WvoebIfQQD/s0GWh938xxd+glqrFgsS7umko6sZnTF/lWnXpuIikYhUFZedisseYX9Q2CtHgmu5HR2mYR9FRxAELl++jN1up62tLW+DsfL5gc22jGlubmZ5eTlvx76WrYqOIAhMTU0xNja2Yf/SzSKdeDTO337oa/zkG8+iUquoP1yDpchMKpHmynOiuAy9PEbD0Vq8Tj/2Eiudd7SxvLCCxWFm5NVx6fg6o5bKQ2UgQOPxOmYG5iiscOBZ8jKyFgXZisW+nXAgIs3SWRhbwlZspe/pIQwWPc2nGtBo1aTTglQuvDKzKu4hCaA1aOi40MLqvBt7qS1ns15r0FwtWW4tF/3ZbCaigTiLQ2JxgK3MgqPSQioqsDDsJJVMM9EzTceFFq48N4KjzC4VJyiV5ERBpfUlWAos6M062s42sTDupLyhhKGXxiQLHb1Zx+GzzcQicYoqC1iZXSUejeNfDTI3tCD5uNlLbATcQSa6pwHwr47R0dXC0EtjlNWXYC+xEvZH0Bm19D97VegLKhyU1hejN+loOlHH7NACVa0VjLw0LgmVtchC04k6gt4wRqueoCeMa96NSqNi4LlZ0Y6opZxIPIwiqWJ2UEyLzg7OM/LqBNP9s7ScbuTYvZ0cvbuDus7t2SWth0KhwGg0YjQaJfflzDTOjF9hvqvidsJ+RTq34wA32OfqtbNnz+btw5Rv/7VkMklfXx8+n08y63S73btWrLAV0cl8Mb1e703tbDKis17ufnnGxdd+/9ssjC+h1qqli+ZE9zRBTwhbsZXyxlJMVgPDL48T9IYIekMsz65S0lDI3NCSaLKpUeF1+Qj6Qsxfueoc0HqmiVQyhc6oRalS4pxaobqtglf/82rfTuPxWiyFFlxzYiFAJBAVPc6CUTxLXikNptaqGXllnGgwhnvBg1KlpPV0I0uTYslyMp7Cu+xFZ9TllCw3n6xHqVYRCgVJRJIE3SEq6ssYemkMIS2g1qkobSjCaDOwMCn2KniWvCiVCtRaNSuzq5KDAsBEzzTRYEw6fseFFjyLXlpONay5VK9SUlOUU5XXfLIerVFLLBxHt/a/eqNuzS4nidlhorKlDJPdxNirooAujC3hdwdwlNiY6p+l8UQdWp2GRCzB4sQyk72enDWEvGEaT9ThdfpFK6GGEsmnTlxDA0arHt9KQHLUTiaSOEdXSUSTFFcXUljpwGDRM/D8CLFQnN6nBxh6aZTn/uUl3Itejt7dwbF7RMdsR+lVC6qdkj2Nc35+ns7OTqlJdXh4mFgsljO2YbcbVK/lViskOOjsa3pNo9Hk9SKeGVm9UwKBAJcvX5YsvDPdyPmaHroemxWdjJ2NVqvl/PnzN60IynxZrt0M7f3ZAJ941+fxuwKAWM576v6jREJRDF49QY/YIyKkBS4+3otSqaD2UBX2UhvJWFJqmhx5ZZyqjnJcc27sJTZq7qgi5AtjtBmlSAnAYNHT0dVCOp2m5VQDM4Pz2Eqs+FYCjF8W7/RNNiOtZxqJhGIEPKKv2/L0CoWVDnqfGkCrvzr0TcHVxk2P00dlSxmppPgaD11oxbviw2w3MnZ5WtqsV6qVYhSUSFF3qJqZwTlMViMqQc3kK+LwNnOhkYJaO6RgadRFOpVmemCOjgstDL4wKm7mn6lCoQCNVi3twyxOLFNY4cBWbBULE7pacM2uYi4wMTu0II19UKgUNJyuRqVRUVpXxPzIEol4gmSWjU95YyklNUUk4lfNTMcvTdF8qoHpK3NYi6zUtFeSiCXQGbVcee5qJGayGqk/XAtA69lGFsecmB1mlmdWxD4oxIi080Ir4VAUnUVHIprENS+Oirj8RD8qtZK6zmrMBSaEtCA5hv/s2y8w0TvD33/0UUqqizh6j+iQ0Ha+Ca0uPx376XQajUaDw+G4aSputxpUsxEEYV9Lpq+1p7kd2PfqtXySj0gn0/RWX19PY2Njzhp3syx7M6KTcT6orq6mubl5U3dfmfVnUmCCIPD9z/+Y//zaU9S0VRJwB1maWqb+cI0UgQA0HqvD7DAR8oXR6jXEownUGjVjFyfXRMVAcV0BGoOauf4l4uEEy1MufMt+ajuqGbs0SfPJBjR6DWFfmHAgkpOmajndSCKWwGDRo9FrWBxzUnuoStqjAKg7XI2j1I570YNCqSAeTRDyhfE6fawueCisLKCkpgitXs34WnTmXvRK+zAzg/M0HRdtehamFrHYLTlRUG1nFTqDDpVaSSwcZ3XeTVVTBaOXJkklUiiUCorqHViKzCzPuxDSAkFPiKVxJ9YiC3PDi1Q0lWIvsSEgsDDmZH5kUTp++/lmVmZXqT9SQzKeZGHcSWl9EROvXC1XrWguw1FmIxlPSQUJOoOW0VcnCAci6AxaajvLsRdbmRtZJBFLsjrvxu/yU9dZzeALY9QeqsJkNxINRQl6woxdmrz6dzxeSywcp7K5nIJyBzODczQdr+di1vtc2lBMWV0JYV8Eg1VPxB8lHIjgdwdxL3jESKypDINVz+zQAiFvmEnvDJN9M4y8Ms7Y5Sk672jl6FpvUHVrxba/29emsjZKxW2lKm67ZL6T+xXpyOm1A85ORCeVSjEwMMDy8nJOyXG+jn8zNhI0QRAYHR1lenqaw4cPb8n5IDvSiYSifOX/+QY/+cefATDLAoUVDsobShHSAu3nm1kYW6KwooClyWVC3aLhoFqr4uT9R4mFYpjtRkK+MPFonFg0xnTPvOiI215JYbmDRDwh3RmPrtnmOKdXsBSY6byjjXAwgsGi50pWpZbOpKXtXBPplFguPDe0iMkhniczPlpv1tPR1UwsHJfMP1fn3ZTWFdHz1AAqjbgfZbIZUKgU9P1MjLKGXx6ntL4YBAXJRIpDF1oIesNojVqm+mZJRBPSOo7c1UEinqCus1o0ElWrMZlMUhRksOooaihApVSxPC5u1i+MObEUmBnvnkalVkppMI1eI5VSu+bc4tyf6kJi4TjVR8pJhQVQQsgTYiHLzPTYPYeIx5KU1BYxOzRPPJZAq79aMFBQ4aCyqRSVRrXm45Zm+socVW0VeJ1iT1bL6QaUSqW4fyNZ9CyKKckzjURCUTq6WliZc+P3+lEplfSsladnjEYRBLwrATyLHrE4QqOi56fifKCyhhIKKuzoDVr6nhkiEUty6Yk+xntn+OFXnyQZT3Ls7kMcvaeTI69vw1q0ucKbTBp4owt8diru2qq43UjFZb6T+1VIIIvOAWe7ohAKheju7kalUnHhwgX0ev26z9stU86Njh2Px+np6SEajW65YRauRjqLk07+6v/+EjMD89QfqcFkNZJKpZkZmJMmdwJ03tGGx+ml/nANAU8Q5/QKtR3VXMyKgmoOVZJWJknFBbQGDfFIAq1Ow+jFCUK+sHhn3FyO2WFk9OIkkYA4Wtq7LN6dj74yQdPxOrQGLUF/eM1f7GoHdePxOlKJlNi4qdcyP7JI49HanD2KqrZyiqsK8S77UWlUpBIpAp4gIX+Y5WkX9hIrZQ2laPRq5oYW8C8H8S8HcU6s0HGhhaneWeo6q1FrVLjm3VgLLTkVcWUNJViLLKKRaEMJSxPLVDaVMzu0IE0etVdacVRY8a76SCVT0kiHyuZyBl8YpaiqgOLqwjWTUb8koABNJ+pwL3kpqy+hrL6UhfFFqtsqc3qTbEUWqjsqSSXTFFcXsjK7ilqjYn7MKe1r1XRUUljpwL3gI+gRTVZHXpmgo6uFK88NU95QgqPMTjQUQ6FUSOXpACW1hRhtBqxFFkx2E/PDi1S2imvP7O8ZrQZRqILiED7Pkg/fih+9UcfAcyNodGrqj9ZgtpuIBCKMXZoC4MlvPsfs8AKf/63/l9qOKskhoeV0Ixrt+pedTDS+lahis1VxGb+4G323b0TmeiJHOvnjNZ9eW1paor+/f1MOzCqVilgsdsOf74T1RMfn83H58mVsNhvnz5/fVim4QqFgpnuRn/zlS0xfmSOdSjPZO0PnHW0MvzSKrdhK7aEWkvEUGp2a/rV9mPlRMeIprS0GQYyCFsecmAqNOKdWiIXEC69KczUKshSI6bh4JI4CuLi2R1HVWkFRpYNUMk3/s4MIAoxdnqL+cDWumVWMVgPt58VqL71Jx+Dzo9IFSKNT036+mWRCtLiZG11Eq9eQSqSkxk2tXsOR17ev2deIFYbeZT8VTWX0/2wIFFBcX4C92IbRbJTu6kdfncBRbkdn0BL0iEPlxCIBgaXJFckqB8QoKB5NUNtRxdzwIvFYnOLyIkZfEV0OtAYNxY0ONDotK9NiFOSac2O2m1iedhGLxqk7XI1apyQppMSLswDuBS9qrYqGo3V4l/3SSIeAJ4hGp5EaPAE6upoBBfFYgrA/TDQYw+ww0f2TKwiCgMlupLqtAqPVyPhlMcW2OLFMOBTDYNKJoxWO1qI36UgmU8wMzBENxvDMik7XHRdaCKwGaTndQMAdZHFimarWcul9Bqg/UoOlwCymXdduOISUwNgl8eYiY9NjtBoYuzRBIppg7NIkk73T9P5sgJnBeTrvbOf4vWIkVJ7lmL3TVNZGqbiFhQWGhoakVFymh+hmEUwm3bcfvUOy6NwCbEV0Mk2pmWqZzaSs9jLSyewtNTY2Ul9fv60PvSAIfPev/p0f/O8nQbhqLmmyGxm7PEU6LaxNuxT905xTLuoOV2O2mbKiILd0vNpjlfhXAtQfqcHn8uOac9N4pC4nCqrrrMJWbCPij6A36cR+Fa2asctTBD0hjFYDVS3lmAvMTPRME/ZHCPsjeJw+mk7UMfLKBHVHqjGY9QQ9QZLxVM7dee0h0QXCbDeh1mmYHZin8USufU1JbRGVLeUEVgNo9GrikYTo56ZUMfry5FokVoZGr8U1tyqJi3NqhbZzzUz1z1LRVIreqGNlfpWCMkdOFGQrslBzqBKlSklVWwVzQwuU1BThWwgQcIvHspaYKaixEw/FicfipBIppq/M0XC8lqmLc1iLLJQ3ipvEqWRKKilfGF2ioqkMpUqJ2W6i/XwzyzOrFFU5GH55XGoMVWtVHL3nEIlYgormUuZHliANYf/VqLGsvoTS+mLi0Tgjr0yQWrMqaj3TyPjlKcwOE44qK2azGa1Bm5PyNFj11HZUiWnXc00sTbvQ6rV4nD4me8U9KZVGxfFf6CQeSWCP2ogEovhWAlS2lEtWPhVNZRRW2FGqVfQ/M0gqmebVH3UzMzDH//mrx9Dq1JJNT+u5BiB/N6MbpeJGRkaIxWJSg2phYeG6qbj9qlwDuXrtlmCzopPxeNuqWedu7ulkRCedTjMwMIDT6eTEiRPS/PStEg5E+Or/8w2Wppaxl1nwLgYwO0x4V/zS6ObyhlIqmksJecKMXBRLdaf6ZqUoyFpspaOjhVgsRjwRZ7pbbKz0zPuxFpspqiognRbo6GphYcyJvcTK6oKHqX6x/0apUopRUDhGNBwl6AkRC8dQadRcevxqpVZRVQEKhYK+ZwYR0gKTPTNUtVXgdwVQqVW0n28mEU+i1aoZfuXqhVehVHDoQiuJWILW0w0sTiyTTCTRm3TSRU+lUXHkrg58fh8hVwRASkMNvSimkTLNqTqDlu6fXkFIC0x0T2OyGimuKcQ1u0r7+RYS8QSRYJSwL5KTDuy40CKVPi+MOfG7AlQ1V0jD4VQaFaUthRhtRlbXSsP9LtFDLZVMix5qLWKxAApxMms0GJP81g5daMU5vULrmUbiUbFgo7i2SIrYQPSSsxRaSCXTUkGC0apn+KUxqVG1pqMSR6md+ZEFUokUvmU/AbcC81EzA8+NUNVWgbXQTDQUJeyPMn55Sjp+3aFqEvEEhY0lFFY4mB2ap/F4HZefuBoF2Utt1B2uJhqIYik0E1gNEvSGxBEb4050Bi11hysw2Y14nV7JEPbxrz3N7NA8n373BMUNDpbf5ufovYdoOdmASp2/vZSNUnHT09OSi0JmP0iv1+9bj44gCIRCoQ3HudyqKIR8mupskXQ6TSKRuPkTN0l/fz86nY7m5uYbPmdlZYXe3t5tebzNzMywvLzMqVOn8rHcHHw+H6+++ipGoxFBEDh+/PiW3VszzI8u8me/+jlm1qzyAVrPNaFWq0jEkswMimmVzjvaGHh+mHRauBoF2YyMdU/hdYopF1uJFaUWfItBatorMdtNpJMpJgdnifii0vE7LrTgW/bjKLWL/TqjSzSfqM+pWKtqraCwwkE0GGV6bQ2VLeUEPSFxn8Csp7q1HLPdxOzwgtS7k6lGG355jKq2Ckw2IwF3EJVKxVT/1X2SsoYS9CYdRquRsD/M7OA8DcfqmO6fJb5WMGAvtdFwtIaAO8Tc8AKRQBS9WUdlcxnjl6fFNbRVoDVoCfvC0l09QOOxWpamViiuEvdCVhfcFJY7GHj+aiSm0WtoOdWAkBYIByLMDs5jLbaKk1TXnKuNDgPF9Q6EJDjHXVKqsqNLLMvWm0ULHZVaiVqrzkmxWYss2IosqNQqjFYD3mU/SrUSr/Pqng5kChIShH0RZofmSafStJ1tlm44HGV2yhqKCEVCrIx7iPjFv2V5Ywlhf5RENEFlazlqtRKUSkZeGZdKzzN/77AvIq3BveShvL6Uyb6r71fr2Sa0eg2B1SCzQ+IY8aYTdUwPzJOIJnCUiTY9JquBoRfHCAfEmwKNTk1NRxWLE06OvK5Dqoorq9v8JN6tkp2Kc7vdBAIBDAYDRqMRv9/P+fPn97SYQBAEGhoa+OEPf8iZM2f27Lx7wW0lOoODgygUCtra2q77mSAIjI2NMTU1taWRCdnMz88zPz+/Kx+C2dlZrly5QlVV1bYMTzO8/MPLfPGD/yAOPdOomB9dwlJqZP6KU9onMVj0tJxqJJVI4V7ysDDmpKDcjsGslyrDyhtKsFdY8bi8OEdXEVLi7x660MrQS2MYbXoKqhxoNTp0Bi39z14tRbYWmimuLpIumovjTkx2E0FvSBIzpUrJsXs6iEUSuJe8LI6JjZkZbzQQRaSoqhCVRkn/zwalCEcaZRBLUN5QSjqdRgBmrsxJm/wgWsdEQ1HRe2x0gWgwRt2hakYvTkpraDndiM6oxTW7Kr32us5qlmdchP0RSuuKKagQ930Gnh+RjEpVaiVNJxtYmnBS3lhKOiXgXfai1WuZG75aNl13uBqtXoNKo2J5ysXqgoeqQ2UsDi+TSqZRKBU4qm3YSiyEXCGWJ0WhNVoMFNcWMt0/R0ltEUWVBaRSKTyLPmkMAkDTyXrcCx6KawpBUDA3skDdoWqphwnEuUV1h2tIJlK4ZldZmV2lsMKBQqkQB8spFeINQWUB/hU/k73TZK4Kmb9HSU0RRVUFRMMxtAYtQ1kpT2uRhYJyu2ibI8DCuOgw4VnyEvKKFZBavYbO17UTDUVxzblZnnahUCAJoUKpoKK5FLRQUOCg/5lBaQ1lDSVEAlGMVoNUkNB5RxtG6/ZuyjZDJhW3sLCAxyMW2mR7xVksll2foFpaWsrFixfp6OjYtfPsB7eV6IyMjJBIJDh06FDO45kKsEgkwvHjx7cdsi4uLjI1NZUz3GinZOxsRkdHSafT/OIv/uK2jpNOp/m3v/kR//Cxb0mP6Yxaag9Vs7KwQkl1CbFgjKAvhFanYWHs6qTAjvMtKFQKEtEEM4PzREMx6o5VMd07j7AWBdV2VmNxmBm7PCkJh9FuoLiikNnhBSkKiscSLM+4pOeAeMcbdAexl9oI+yPMDM7TdrY5p3m0pLaI8oZSwoEIcyMLRPxR8UKKaIGjM2qpbqvE7DDgnFplcTxr/RdaGH5pjMqWcswOE35XAOPaLJsMJoeBoqpCTBYj0XCMmYE5ypvK8Cx6pQjBUmCm5XQ9IW+E2eFFQt6Q5II9+MIoWr2G6vZKdCYtCkGRc2EvayghHk1gshqwFlrEfhuThukr8zll2W1djYQCYbRqHbNDYiRa3VYppbL0Fh1F9Q40GjXLE6uEPOLdf/3hGpamlknGk1S3VaI361BrRDfrDEqVkuZT9QTdIewlVoLeMN4VP2abURJUgNYzjag1aiKhCLNDCySiSVrPNDF2aYJUMo3RaqCypRxLoVgK7lv7WxosekrrikXz0bYKjFYD0VAMr9MnGZqCWH0YC8ewFlqIBMSotu1sk5RuBCiuLqSytZywN8zc8CLhQARbsQVUAr6loGjT01qBwWzANb+aU1befr5Z7AM71SCVZjccq93S8LrNsry8LM32yoxtcLvd66bi8kkymaSgoIDp6Wlqamryeuz95rYSnfHxcUKhEEeOHJEe83g8dHd343A46Ozs3JEZ6PLyMqOjo1y4cCEfy82xs2lvb+fy5cvcf//9W76DCvnCfPo9X+Llxy5TUOGgvL6EVCpFyBtmdmhBel7D0Vr8qwEKKwpQqhTMjy5S01YlpdhAFKry9hLSiTSxQALn5ArWIgv2EiszA+JFsryxFFuZmUggyuyVRWkDv+1sM+Pdk5hsRioay0gmk+gMupxpnnqzjpp2cYNapVHhnFxGrVWjUCikO3iFUiG6SCdTeBa90gUzk34SBEG8+68uQGfU0vf0oDSN1FpkwVpoxrcSoKJZ9IGLR+M4Z1YIeyPSOjLVcmKU42ZldjUnylIoFNQdrsZeYmN13s3s0DyCgFQC7ZpzS82pKo2KmYE5yd0hs9bpgTkqm8WiAOe0i+LqQmkeEax5qNUWoVAqRZPVtWox74qfoFsUQnuFFXuFhZg/wdL4ihRxZtbqKLVRWl9COpVCEMSKvAwltWK0abKb0GjVYil5qY25oYWrI76VcOzew5KZ6vzIEiqNioajtdKxSuuKKakT+9aGXhiVRkJUt1XiXvKgUqvEoghB/JsOvjAqje8G8aYgthYhuebcBDxBSmuKJe89hVJB27lmFEpwzi7jnvEiCOSk4oqrCymqcqC3GBj4+XBO9WTDkRqWJlc4clcHx+45xJG7Oyiuyo9j9uLiIouLi5w4cUJ6LJ1OEwgEWF1dxePx4Pf7MRgMOQ2qOzUd9nq91NTU4Ha7cTgcO30ZB4p9FR1BEIjH4zd/4iaZmprC4/Fw/PjxHEPMlpYWampqdhwOu1wuBgYGeN3rXrfjtQaDQS5fvoxer+fo0aMIgsBTTz3FL/zCL2xtn2lwjm/+73+h5+kBQl7xQtV0op6FsSWpxDeajGC1Wxn6+aiUslBr1TSdqCewGsRRaiPoCeFZ8aLSKXHPXo1S2s40odGriYbjzAyI6av2c82MXpogGU9hMOupaa/EUmRh7NLVKMhg0VPZXM5Ez7QUBUWCUYLeIM6pq+mh+iM1xKMJbEUWIoEI04PzUmSRuXA5ymzUdVYT8oWZH1ki5AtjKTRjL7ExOzi/FoFUYLIa8buDOf0wLacbme6fxVJiwl5iI+KPYSuy5Nx164zatVEL4kjpmcF5LA4zaq1KWmumXyURSzI7NC9ZyrSfb2bopTGxZ6atEoPVgEanztnkN9lNFFY4SMQSmBwGAt4gKlREAlE8WRFh551tJBMp0smUdPffcaFFWqtGr6ag1o7JZmR12oPPKa7BXmpDZ9SyPO2iuq0Cs8NEOplmdnhBSm8BtJ1rxr3ooajSQSySYHZ4nqK6AhYGrkaNxdWFlDWK838Wx5z4V4OU1hURjybxLHnR6NRUtVZgK7Himl3NSSV2XGhh8PlRKprLsBVZCPnC6Iw6qTIPwFZsobDCgdagJZVIMze6QGFFQU4qzmDR097VTDQQxbmWksy814MvjKJSK6lqrcBSYEKhVOa4TBRXF5JKij1eGZuejq5W9KbtWeXMz8/jcrk4evToDZ+TSCTwer3SflA0Gt1xKm5+fp729nbi8TgajWZbaz+o3HbVa8lkkkQiQX9/Pz6f76aGmFs9fj5Kptezs8lEfFvxeXr+317hs//tK0SCURQKBTXtlZTWFbE0Ke5HAMwOzVNUX8Dgc6MUVRVSWltEMpEkGopJDs7zo4uUN5UiKARshVZKq0qYG1mkqqWc0YuTUqOgRqfmxC8cJhaJYyuxsjon2tMkkyle/VE3IEZBpXXFJBMprjw3hJAWmOqfpeFoLc6pFTQ6NR3nW0gkkmh0aklc5kcWUanFjvlYJE7b2WaWp1eIReNYHGapV0ShUHDozlZUSiXuJS8A8WgCpUrF0EtjxKMJqSnTYNbR/9ww8UiC2HQc71KA+s5qpvvnxK59lRL/agAhLeSUZdcdFr3RdHotKJQ4J5epaa/MmWVT0VRKeWMpq/MecaxCIsXS1DJldSUM9M1IzakoFARWA8wMzEnHL2spJuSJUFRdQFljCc7JFcrqS3KcpNU6cVRBOpGmqrWcueFFdEYdakHDxMviZr2lxERBpQ0EBQtDToS0wMzAPC2nGpjonUFn1NJyugGFUoFOr6F3zaVhedqFRq+hqq2coD9Ix4VW3IseouEYSpWSvqyUXfbIBr/LTyKWRG/U0rNW5Se+zhJMNiNDa6Mk5kcWcS96KKktYmZgjqYT9Wj0asKBKP4VPxM9V4sNmk7UkYglqT1UhXfFz8LIEvWHa7j0n1k2PfXFVDSWEnAHJcPU1UVxlPfC2JJk06MxanHPe1iZFecXzQ4tMPLKBNNXvkTLqYarjtmHqzddkbaZkmmNRkNxcTHFxWKhQzgcltJwMzMzKBSKLafiQqEQer1+X921d4vbKtJZWFhgcnKSVCqF0WjkyJEjkllnPvD7/bzyyivce++92/p9QRAYGRlhdnb2ut6gdDrN448/zt13331TA8NUKs23/vRf6P/5MCFfmOkrc2j1Gmraqxh5VbyrtBZaaDhaAwoFAy8MEw+LolbXWc3qoodYKEZNeyVao5ZoNMJUzzzprFLkjvMt+FwB7CVW/K4AqwseyupLGO+ektZR0VpCUVkRkVCU6StzxCNxGo/XsTC2RCQQxWDWi2W4RWYmumfwrImESq2k9XQTQy+PSYPOAp4gChRSCg/EYgatQYvJZiQSjDEzOEf9kRpmB+al9JDJbqTtTCNBb5i5kSVC3pDYJX+4hpFXJ9Do1FS3VZJSJlApNExcmpaOX9Vajn81iNluxF5qJ+QNoTNpmeiekYQW4Mjr24nHkqQSKeZGFkin0lS1VlzdhzHpJDfr2aF53Avi66ztrMI16yYciIizbBxmkukkIy9PSGkyhUKMQFxzbtEmJxLHNb+Ko9SeE7HVdFRgspsR0mkWRpfwrwZpOFrL/OgisXAcpVqJo8qKrcSCbzHI6qwYHShVSppP1jP88jjljaU4Sm1EIzFSsRTTWUJY3liCQqHEWmgmnRaYH16kormUqf5ZKZ2m1WvovLONSFAsBliZXUWtFe2HRi9OolAoqGwRp6cK6fTaHJ+r77XH6UNv0lNSU0gilkCtUzPy8tWxFADVR8rRaw2o1CqcU8uE/REqmsqu9gaplbScaUKrU+Oac+cUfyxNrRANRimtL6awwoFGr2Ewq/gDxPd6cdwpOmaviZCj1H7D79rU1BThcHjbm/mZVFwmCtpsKu7SpUv81//6X1lZWTlwQ+12ym3jSCAIAl6vl0AgQHNzMw0NDXn/Y+2kOTTbzubcuXPXdRpf25V9IwLuIJ968Is5xphVrRXYiq0I6TS2Ygu+lQBFVQWMrplzKpQKKlpKqWgoZ2nSSWBVdHCe6J2hsqOU2b5FSmqK1i56MQSQNsnnhhcoqy+moNyORqem7Vwzc8MLFFTaWZpYZmFYbIZUaVScvO8I0Uhc2kCOxxKoNSou/ljsyaloKhVz7UoFvU8PrN2Zz1HeWEI0FCedStF2tolUKo1CAdP9c9cMMmslEozRcKyW5WkXPpefypZyLq7Z4ygUCppPNWCyGlhd29hOxJLEIjG8Kz5CnsjaPkoxWp2asZ4pQp4wfleAhTEnHRdamOydof5IDSq1EtfsKo4yO71Z6ZuCCjvFVUWoNUoqmspYGFuiqLqQqf45Am7xfS2pLaK6rRzfSlB8P9cikI4LLQy/MI7eoqO2vQpBASqlUoqyVmZXKaiwY7KaUCgUdHS1sLroRWfQ4JpzMzNwdX/u2L2HSEQTlDeWMjsoliMXlxVJ/UNGuwFHlRWDSc/M2t7J4riTREy8AAdWg9QeriIlJDEZTEwNzBELxVhYaz/q6GrB7w7SfKqBgCfE/MgiDcfqcj53Fc1lFFcVEvKH0Zt1RIMx4tEEc8OLeJa80swek83I4oSTkDdMyBtmdd5NR1cLw6+MU9221rez7ENv1jFx+WoUZLKbqOmoQqNV03islpmhBQrKHSyMLuFb8QNgdphoOS3a9Gj1GqLBKM7JFQorHPQ8eUWy6REnsKolP7xnvvMil37Sh7XAjEav4fg9nRy95xBt55rRGa7eqO60OVSpVGKz2bDZbNTX15NMJqUoaHR09IapuFAohNFo3NK5nnnmGT71qU9x8eJFFhcX+d73vsfb3va2DX/n6aef5iMf+QhXrlyhurqaP/iDP+DBBx/Mec4Xv/hFPvWpT7G0tMTRo0f5/Oc/v6MK3n1PrykUih3P306lUly5coXl5WV0Oh2NjY15Wl0umebQrc6V34ydjUKhuOmUz4neaf7y//4COqNOahi0l9qZH15gbvjqBenELxyW0kxhfxiFEgxmPa/+uBsQ9wAqmkoJRYIsDIq9I8szLlRaNfFwjKA3RPPJejR6LYIgMNkzLVnzg5hycS24KW8uIR0TpCmjF9caPgFqOiopKHMQ8oYkl2oUCmaGFq5ekForMFoMLIwtSVGQbyWwVpY9SlWreEHyLfsw2U0545ythWbqD9eiUqtoOFbLzMAcJTXFrMy4GF0WL0iZUQnRUAy3Uzy+e8FDWX0xPU+LJqF1h6sxWY2otSp61i5Io69OYC2yYCkwS/Y4EX+UZDyB3x1k+OWrjaGdd7aRiCcxWvSkU2lCvjBFVQVcXEsPafQamk/WYCmyMLdW1BENxFiaXMZkM7Iw5pSaU9PJNEuTyyyMXa3UajndgHvRS01HFalkirnhBeoP19D95NU9I0uBifojtWLzZoWD1QUPGp2WZCjNWP/a+O4aG5YiM8loivnBJRBgum+OivYSxi5PYi+103Ckhngsgf6acQkavYam4/WkkinazjXjnFomLYhOCj1PietQqpRrRqHgXvLgWRJnIynVSnp/Jo75LqkporDSgd6sp//ZIcmlQaPXUN1WIfrbdZRisVjwuwMk46mcwoi6zmqUaiWF5XaMNgOLY841m54+af+vrKGEyuYyPEs+1FqxL21+ZJGqlgomekYkmx6lSkHIG5HSntP9c1z6SR++lQANR2s4tiZCSWUyrykutVqdk4rLblCdmZlBEAS++tWvYrfb0Wq1W7rOhEIhjh49yrvf/W7e/va33/T5k5OTvOlNb+Khhx7i0Ucf5cknn+S9730v5eXl3H///QD88z//Mx/5yEf48pe/zNmzZ/nc5z7H/fffz/DwMCUlJdt6D/Y1vQZiBLCTJWTmy2g0Gurq6hgYGODuu+/O4wqvEovFeOqpp7jvvvs2ffeTsbNpamqirq5uww/RT37yE86ePbtuSffPv/cKn37Pl4hn3/nf0cbyrIuS6iIiwQiLk8tUt1bmXBTLG8vQWdUoFWKfSNAdoqyhGL8nSNgTQaVWUXuoCkepjeVpF7NZ4tV5Rxv9zw1RVl9CUWUBoUAYvUEnNRgC2IutFFYWoNVrEASB2aEF7GU2wt6wtEmu1qo5elcH8VgC59SK1Il+6EKrFFGVN5ZSUG5Hq9dIrgBwtRot4A5S3lBKKpUmHonjcwWuK8tOxpNoDVpWZly45tw5xwcobyqhrKEM19wqc4NiNZq10CyNKbCX2iirL0GpVLC64ME5tSL9btPJepyTK5TUFaHVaVmadFLRWMqVrIIEtU5N+7lmUsmUNCXUXCAWMGQEx1ZqpbDWjlFrZPTShNRX1HSijpmBeZRqFdVtYmOoRq+m7+mr+zxib1A9kUAUs8OEbyWAz+XPOT6IxRNavYZIMCo6VUcS4iTXQbESTGfSYq+wYLIbWBp1EfaKjaGZVNzYpUmq2iow24z4PSGEtJBz/NL6YvRGHSabkWgoxuzQPDUdVcwOzktNuCa7kbazTQS9IakgQaFU0HK6geGXxlFr1VS3VmC0G0BAciYHMVIU16mjoMwu7lmqlMxlHR/g8Ovbpe/D/OgiIV9EOj6IYtlwpBaDVc/iuFNqzi2pLSIeTeB1+qhoLsNebEWpUjDePU0kkNXw3NXC/NgiLefqufOt5zlydwfWwt1zCEin06ysrPCZz3yG//iP/2B2dpbW1lbuu+8+7rvvPu69995NN4wrFIqbRjoPP/wwjz32GP39V10l3vGOd+D1evnxj38MwNmzZzl9+jRf+MIXpDVWV1fzwQ9+kP/1v/7Xtl7nvkc6OyFj1pnZkA8Gg7s6Xz1zx7OZkDuVSjE4OMjy8vKm7WzWS9+lkim+9vvf5t/+5kc4Sm00Ha8jkRDvvjLmnMvTLgorCiiqKCCdStPR1cLi2swXz5KPxXGxykmhUNByvoFwMIRdZSXsiZBKpjBaDVKUkrHO167Z1gMsTS4Tj8QxWsW7y5bTjaTTKYKBMBFPNGefp+1cM5FAhMqWcox2I/PDi7SdbcqJgsrqSyhrKGZpdhmVVkUqniLkC6FSK5kbXpSiIJ1Ri9fpkyqkfCsBmk/W45x2UVpTREVTKe4lLwWlthxXAJVGxaE72xBSKRqO1TI7OI9aJ37UL6+tw2g10HyyAUFIS7Y9XqePokoHs4MLJOLi5rbJZkCj00hRUMAdFJtKTzWwMuumvUssB15d8GArsuZUUtV0rDk4pNKSLYyl0MRc3yLxSEIclna4moJyO4sTy2sX1ARjFydoPdtM39ND0uTUWCiOQFq6oAIUVxVgL7ZishpoPdPE/NgiRRUFzA7NSxdPtVbN8V84TCwcp7DCwdLEMrFQHHuBXTqWrdyCpdiEzqBj7OIkqWSa6X5x1LhSrSQWitF6tlEcDxFPsjhx9QIO0N7VQjQUpelEvVj6PblCbUeVZPgKUN1eQXFlAe4lHyq1kmQ8iWfZRzgQxjnlwlZsoaDKjoBAePVqVd/ShDgZdnpgnqo28TOxMuumuLog573W6NR0dLUgpAXqOquZGZzHYNbjW/FLN2H2Eit1h6tJxJLSftnC6BJmm5Hx7inUGjWNx+vQ6jVo9Vf/5q/8oJdLP+yncS3aO3bPIY7d00nLmRs7Zm8HpVJJaWkpn/zkJ+no6OCf//mf+d3f/V0ef/xxfud3focnnniCurq6vJ3vhRde4A1veEPOY/fffz8f/vCHATEguHjxIh/72Mdy1viGN7yBF154YdvnvSVFJ9us8/Dhw9J0vd30RoOr7repVGrDMsZIJMLly5dRKBScP39+03cn14qOb8XPP/7Rd3juX14CxAmZWoMWIS3gXvLSeKwOvVknmnNeyTXn7Ohqwbfip6a9EtfSKstTLqo6yhl54Wq6ori6kMqWciJBsds77I+gUChwzXlYnHCi1qppPFaHtdCMx+mVLs4jr4zTeKKWlclVSmuLqG6twO8JYCuw0JdVgaU1aOnoahHTMmeamBmaR2vQghIpPaTWqmg4VU0ikcS7KKbFIoEoCAIjL48TX9u3sJfa0Bm09D49IE3zVGlUNB2vY25kidazTQjpNO5FDwaLkStZ66hqKQeNgE6vo7iqgJU5N+WNpQy/PCalDcsbSyhvLMW96CUeS4j7MIPztJ5pouepAWzFokFnOi0gpNMMvSReyJZnXBRXFaztGajEOTWzonP2ysxqTmHEsXsOEfSHsFfYWJlcJZVMY7AYpJENtmIrlS1l6AxaSRCcUyviTB2dBs+SV5ycatCSiCdYGHOyMnf1b956tpGgJ0z9kRpC3jAzg/O0nG6UfOgAiioLqGorJ+yPYLDoiARiCAlIBFPM9U6j1qkori3AaDUQCyZYGhX37PyrQZpP1jM7NE9xdSH1h6sJeEKY7CYGs6yOlColh+5oJZVM03yqgfnhRRRKBYIAl9YqEHUGLR0XxD3XxfHltc96AEuxGef4Csl4as2LzoJaJ9oApZJpJrqnUSig9WwzS+PLtK1FlctzLuxF1pxoqbyhBFuJda2yMMnKnBtbiZWhl8aJrlV7VrWWU1pbjGvBTTotEIvEGb88RXtXCz1PDeAos2MpMYIABoNREq/xy1M8+Y1nsRSaKa0tlkqzK5rK8raPHA6HsVqtvPWtb+Wtb31rXo55LUtLS9dNJi0tLcXv9xOJRPB4PKRSqXWfMzQ0xHbZd9HZ6p5OJBKhu7sbQRDo6urK2WxTqVTSeNndMOnLWJxvtO+yurpKd3c3ZWVltLe3b2kd2aIzdmmSP3vH51iZXUWpEscHF5Y7cM2vMr12IRvvnqLzjjZGXhqjsLKA+iM1RINR9Ga99AWcH11Cb9FRXF+AkBJoP9fM/OgiBrMeQYDuJ/vXzq3g2L2dCKk0K/PihSwZT6Izaun92SCpZIri6kJKaovQm3R0//QKqUSKhTEn7kUv1W0VjHVP0XqmCaVKQcAdJJ0ScrzXajsqERQCSVKU1hfhnHRRf6RWrJBaS5vYSi0U1trFGTVrNxArsy4sBWa6n++XoiC1RkUqmWJ4rdnS7wpQ1lCCIIACMXXncfrQmbQsjjlz9qSO3i2OKahsKWdmcJ5kPIm92CZd/A0WPfWd1ejMeiZ7xGo330oAtVaDSqVkZW5VjGIcohv33NC1/TBNrM57qO2sIh5NMDs0T9OJhpxZOdYiM3WHa0hEEthLbWupQgGv08fCmBOFUkFNRyX2UtGxO2PdM355iqaT9eLY6kILNe1VxKJxDGad5BI9PyIObGs720QiGqf9fLMYrYYTGK0GSfAVSgXVhytwFIrTWQGSsRQmo4nFYSexcBxzkRFriRm9Rc/MFTG9NT+6xPzoEu1dzUz2ztB8sh6VRs3qohuL3Zxz8S+osFNYUSD296w5chfXFjHRMyO9ZwUVDuoOV7O6tLomUGLZta3YQs9PB9Cb9dS3lqPRqlGpVVJpucfpw+wwYi+xkU6m6bjQQtAdIpEQPecWs0ZTHLqzda3qsJy5YdESyVpokSJwvUlHdbtoeDrVv2Zsu+Ql6AtRVOVg9opY9GApNBOPxPAuB5gdXGB2cIFXf9xDR1cLv//dD2Mw58eZ4HYdawAHQHS2Qsass6ysjLa2tus2+DIb9LtpR65UKteNpgRBYHJykvHxcdrb26mqqtrWsdPpNE9+81l++uizopcVkE6lMTtMXHxC/II4yuxUNpehM4rd/um0wMrsKoloAmuRhdnhq6OiAx4/bqfon5ah+WQD8WgcS4EZvUnHzOA8HV2t9D51RXImKKhw0HC4Bv9qEI1OTSqZIuQTZ7hceW4YjV5DSX0BRWVFRENR6aI4/LI4PtnnCmAtMNN5ZxsBdxC9WcfYpakc08gjr28nHr06qTOVSFFaXczIy2I0ptaqqDlSgUIFi1Pi5nokECXgDhILx/EsecUy4DI7CoVYaBHxR1mdFy+gHV0tzI8uUdtZTSgQxD3npfZQtZQ2AbAWmKk53Ug6naa4ppCVmVWMFgOrix6pMbSsoYSy+hLCgQhjFyelarTWM42MXZ7CaDGIkZYgoNWr6X9GvOhmSoobjtURCUTo6GrBObtCyBcRh8ZlraPtbBNqnZqQN4xKrSSVTKPRqhl+cYxYJC6NYzDajIxdniQRTbA678a94KbtbDNDL45Rd7gao9WAzxVAo1Xn9B4VlNvFvRizjoajtcwMzomvd2qV2T5xv8ZkFwsvIoEoOoPYDxN0halqqmDoRbEBtqjOgd6iR28U5x4BjF6cxOwwYisWm4w71lKO4VCUiC+SUwwgRqQCZruRpYllvMt+SuuKuLSWilOoFNR2VlFUKU6vBYgGo8wOzlPRWMZk34zoTlBdQCqZIugJ5TSoVrVVEI8kKKktpryxDOfUMiU1RQw+PyqVZiuUCo7de4h4JEF1WzmzQ4trVX0KqQCkqKqA8oYSguEgCwPLCGlxv7K0rohoKE48Gqf5ZD1qrRproZkP/937pO9rPtgL0SkrK8PpdOY85nQ6sVqtGAwGVCoVKpVq3edsZXrxtdwSopNt1nno0CEqKirWfV72nstudfGu1yCaTCbp6+vD5/Nx5swZbDbbto4tpAW+8Yf/h5/+48+lx0pri6hoKiPkj0hlqco125SFsaspMEuBGe+yT3JdHr04Qc3hShbHlrEUmyk9WUw6Jn7Z+7PuRFUaFZ13tJFKpmg53cjs0AIKlQJrgZlX1+bkqNQqDr++HZVaxdKE+AFMRBOkUmkmeqYJ+cKU1hVTVFWARqdh8IURYuE4gdUg86NLdHS1MNE7TVlzEWazmZWZVYqqC3NKkR3ldkpri1GqFJQ3lrA4vkxJTTF+51WTUHuZlYJq0b/N5xJTcYvjTuylVgafH0Nv1tF8qgGVas2dee2O2LfiR2vUUFJXRMgblhyxI8GoOLguKxXXdq4JlVpFLBzD4/QRj4huCf3PDpGMi2MTqlrLsRZZmeydFieWuoOMXZqk8XgdV54dWfu5hbAvQjqdzrG+Kay0Yyk0YSkw07SWrqpoLGPqyhzRoLgPozNoOXpPqzSkLRaJSyOjM6myypZyHKU2qepOSAtM9c1iL7FisOjxuEO0nWsmnUoRi8TxLPmY6Lnao9R6ppFwKEJJfSFRX5zlaRe1h6pzprNWtpRRVlfC6qI4pTSdShN0hdHr9Yy9NIXBqsdWYUGj1RAPJZgfES/+yzMuqjsqCXnCFFY4qGgqY3XRi63YzNjFCanBFuDo3eJMoPojNcwMziGkBbR6rbQfZHaYqDtUhVqnYWJt73BlVoyI4tEEAXdQElshLUb/8UhcuvFoP9/M6oKHtrNNxMIxZocXaDxel1P95yi1UdNeKTY9l9rwOX0kYgmWZ1ZxTq2gVCmpPVSFfc25wzk1tfYdm+TM/+84H/mHh9Do8nu92YtZOufPn+eHP/xhzmNPPPGE5C2p1Wo5efIkTz75pFSQkE6nefLJJ/nABz6w7fPuu+jcLAcai8Xo7e2V+ls2MutUKBQ3jETyxbXHz7az6erq2nYzqmfJy3d+/4coUmJaZGZwHmuhhXQqzeW1FJhKreL4GzpJJwWc0+JdYCYF1v/sIMlESnIDjqViTF6cIZ0U8Mz7CLpC1B+pZaJ3Zi0FpsSz7EOjuVqQAOL+h96sR2/SUdlczvzoIvVHahi7OElk7aJYUG6nqr2ClYUVqe9jecZFUWUB3U/2ozPqaDnVgFqnRhCuptjmB5wUlMUwWPREAhEOXWjFt+oHAQLukOSQAGIpsmhnYiASjBALxalsLGNgbaqoWqemrLkYjUnF7MiCOB8lEF3rKyph6KUxKppKsZfYiMfirC79f+z9d7jt51nfCX9W7723vXavp+ocHemcI8k12CHwTmESk8kEYwJDJiQkcYhtrgDhzRUwvAweM0CAUBLAzrzYEyZDSeyAZdlWsaQjnbr32b2t3nsvv/ePZ63f3stykY5kSead57r0h/ZZ5bfacz/3fX/vz7dEfOPkRBxZCaLRa7B7bdg8VuKbKcLLAXZfPpQHQ1Ua8X53ml2cATvZozy9Tg+VWiX7AfmmPXin3CjUCta/vIkkScS3UniaQpXZqrdZvDInegv9PvGtlPDKORCZ58pVIbyYPT9FKV0mtZdl/qHpic3fP+slMOulmq+h0anpdfpU8lUUCl4hvKjkqsTui8ylkqsycy5K7qiAO+IkshSkkq9hdhjYemF/go929h0r9Lt9Fi7NcLyZYDiQ0Jv0cvlJZ9Qy/9A0Gp1GfvxWtY3NbaGUKVMvN3GEbZjsBjRaNYn7GbqtnsyjG4tbFi7PMhwMSWyniayEZMk1gNFmwD/vQaNV4426yR7lUWvVZI8LMpcvMOfFN+OlVW2x+7IQPRzejbFweZb920eYrAZmzkaQJElw+U5RGBRKBUtX5mnXOqxeW6SUKVPKVrC4LNw+ZdI3/9A0BotBZJ0aJYPekKEksf3iHq1aG5PdSGghwMJD03zw5z6AWvPGb6ONRuM1k/Dr9Tq7uyfK1YODA27duoXT6WRqaoqf/MmfJJFI8Ad/8AcA/P2///f5tV/7NT7ykY/wQz/0Qzz55JN85jOf4c///M/lx/jwhz/MBz/4QS5fvsyVK1f45Cc/SaPR4EMf+tADv7a3POh8s1UsFrl9+zYOh4OLFy++Kojet1tMcPrx0+k0d+/eJRqNsrCw8MBNxM3nd/j5v/2/y3V1EGUIoRgzotaqSe6mWXl0gdtPnpTAvFNuplZDlLNVFErx3LVSHbQS2d0COqOO6IUQfalPt9WVGVhbL+wytRKiXWuhdogSWCVXw2DRcXgvPiHLHp9EI8shju/H6XV6+Ke93HlS/EjHdtJGq0EGOHaaHYrpMgqlQmQ1U078U14kaSj3A8Zr4fIs+VhhVMISBOOZs1MT2YfWoBXX0e3jnXaTOcih02nRqrQc3hCZnSNgw+o3M+j35Un7cSZYTJXpdXtEz4UxGPUoVEp2Xtyn3+3LKqxxP2Dx4Vkq2SrpQ7H5n7ZqDi74cYedNCotGccyHAxIH2TJxQrCpOyckBrnEkWS2+J1br+wx9KVeQ7vxnGG7Pjm3SLrdJjkEhUISfTqtUUGgyGLl2eJj5rwWp1Gvg6NTs2Zx5dQqlRy+alVa9Ntd0mMeG3+WS/OgB21Rs3m8zt0Wz1Z0LB6bVEIDC7P0u11yRzlCM8GJ5RgVreZ0EIQhQJ5ANbqtpDay8o0aU/ERXgpSKvWpJAsgwSleAWX38Hey0do9Gp8Cy7UOg1Gk0E+eJQyFVQaFXMXojTKYgaqWqhTzlYwWPXsvzTpX6Q36+m2utRKdeF9ZNRz/1mRSY9N4WweK/EtYUxXLdSpFuqsXlvk7pc2Cc77sXutNKtNtHrtxMHG7DASnPWh0WtZujJHYieF0WokFyvKw6cqjYq1J5ZAEhT2Vq1No9wkuhbmQ7/wt79tZfwHKa/duHFjYlzkwx/+MAAf/OAH+ff//t+TSqU4Pj55f2dmZvjzP/9z/uk//af8yq/8CuFwmN/5nd+RZ3QAPvCBD5DL5fiZn/kZ0uk0Fy5c4HOf+9wrxAWvZb3lczr9fv8VQeI0rHNpaYlIJPKqN/SnnnqK8+fPf9vIrM8++yyzs7NUKhVisdiEeu5B1ud+90n+7U/8Ib4ZL0odNMttvGH3RDNWq9ewMDIG63V6HG0k0Jt0OLw2eYPV6jXMPTRNvVmjmmxQyYoT5uz5KKn9NK1ah+C8D2fAgVqtYv257Qnk/pnHl0dU5ACSJAmfmFmfrNICUYYILfgBBZnjHLnjAr5pD8PBkFxMnNy9IzVbMVvi6G6c4Qj3snJ1gZ0b+8LBcjmEUq1ErVNPcL7UWhVzF6Zp1tpYnCYquSrlXBV30CkHNICZ81FMVgPtRpvYZpJOsysjZxqVJhqdGs+0E41JTSlRpZqpy/cdAzTHWVCj3MBgMUy8TpPNSGDOh0qjEly4rRRGmx5QyK9TlCWXGA4lssd5OXiN+zyDUdYpD0N++b6MkxnPq8Q2koSXAijVSgrJkgjc905ep2fKid0rSBCVXI3EdorISpBi6gSO6QzYmTkbpV6uc7gek+nL4xklnUErsjqdBrVezd0vnrzfOpMWe8CKWqHG5rUKYkCliVKpnPDsGfcuhoMh8a0UjUqThcuzHNwRuCC1Vk14KYAr6CCxk5btv1HA7MUp9l8+xuYzY3abGPYl1Go1sfWTuR+H34bZbgK1UL9VUlVMdvH5j20nlCol5965Sq/To5Kryn2c02TwMbXbYDGw8ewW7boQj+iMWgJzPlJ7GcLLQbQ6DfVSg3bzxJ0VILTgR61VY7IZaVSbxO4n8c45yR+U6I96kTaPhb/x99/L9/2z7/m24mn+5t/8m3z3d383P/7jP/5te463ar3lQWcwGNDvn3Cuer0ed+/epVqtcvHixdfcH/nKV77CysoKbrf7jb5UQASdcU/n4sWLD1x37XV6fPpf/0f+z//1z+S/6cxavFMuqrkGoXk//d6AaqmGUqGY8L+ZPhNBa9Ci0arJHOXIx4tMnQmS3MnSH21svmmPQM+nShzcPUIanjDV1p/ZwmQzElkKglJkb6eHKB0+G2aHCZVKhdlpopAqo0CiVe/I5ACA8LkAdquNdrPD0bpgdK1eW2Tz+R2GAwmtQUt0LYzNY2Xv5qF8X61ew/TZKbZf3CM4L3hgzVqbfq8vl25ADCFqtOoTavJ2En/US+YwJ7tMqjQqzr9zlU6zSy5e+LqDp46ADaNLj0qrJH4nzbAvvvJj+nM+ViC0FEClVtKoNmlV27JrKQiGmlKpxGDRy/j/xYdn2b99wmgbO5JWRy6ZnUZXnufZfH5XJmFLSqGuPLx5ElycQTsarQalSonTb6NeaTLoD6hkazJaB0TAHPQHICFz5k5vuiq1kshKCFfQQXI3LcuRdUYtocUA+7eO8ERceCIuet0B1WKVzP7JvE1gzsugN8TmtaLWiEzK6bcT20zKQ5kKhVA5dltdasW6bPmwcm1Rlk7bvVaC8370Jt2EI6jJYcRoM1BMlHFOCQm81Jeo5RtU8yevc+ZshG6nL8jj9TbH9xMyP25cEhTMvXkalSbJvczI2lzJ7IVpdm7so1QpBXHbaUKBYiJzdofFPJtCqZQ5cIMRDeL0cOjKtQUKuSJ2h41CokwhUeRvffT/xQd+8r/5tvPQvvu7v5sPfvCD/PAP//C39XneivW2CjqVSoVbt25hNps5e/bsA/VHnn32Webm5l5X9vGNVrlc5oUXXsBsNnPlypUH9szIxwt8/H/839l6cQ+b20JwIYBSpSB9lJVBjSDKC2PfFoNZL/omYRc7L+1PAClnH46IYUPUxO4nUaqUzD80I5cSdCYtwUUfTq+DnRv7VEfsNU/EhVKllJH4VpeFfr8vAyXHa+nKHKV0BXfYSb/T53BDUKM3n9+F0bdHZ9Ky8oj4kZbTNWo5oVgLLwbZfVko2wKzPrxRNyBx50v35Q0kMO+jXWvTbfcILwWELH0w5HgzKTfXQWwCzUoLk91IKVMhtZuZ2HRBBNvgvI9qoS5P4JsdRox2A9mDAhq9Bs+0E4UGuo0+uf2Tk250LUw+UcTmtogsqNL8ugDQ05Pw8c0UrUZbDi4gNv/Z81HMTjPJ3QyZURnM4beJrCZewh124p1yIUkIR9FTpdX5h6bJxQp4ox7UGhWp/SzBOZ/sJQQnnkP9Tl8OdBq9huhqWH6/bR4rUytBlGoVOy/uy5u/b9ot+i3FOt4ZFw63ncFgwOE9wV+TP/dH5qlkKziDDtr1DkcbMZauTJqxWZxm5i5O0260Se1lRJnWqscTFoRphVJBZDmI3WOl1+1PKOr8c17KmQoqrRKr34I0GKJWa0jvZGV/JIC1x5ZoN9poDVoK8SLZ4wLLjy5MlMoiK0HcISflTJXj+3EG/SFWtwWjxUD6IIvZYSK44EerVVNMVyZQQzPnoqQPMnin3AK7lKtidpgEmPXU9vj3/j//I3/jRyeHKb9d653vfCcf+chH+MAHPvCmPN+bud4WQafX6xGPx9nc3GRubo6ZmZkHPkk8//zzRCKRb6hwe9AVi8XY3NxEr9cTiUQeeDL43tObfOYX/4SNr56k/0tX5jm8d0yv0ycw78XmtqLRarjz1LpM6VWqlCw/ukDuOI8v6qFZa5E+zGL1mUhvn5RCfDNevBEn/d6AxE6aar6GZ8pJp9WlmhOBJLIcxBNxUcnVJmgCK1cX2bmxh8ku5LljkcKYTABiwn3h0gyteovesEevLszi3OHJEtj8pRlMViO1Yp2j9RiD/pCplRCVXJVKvobBoieyHMJg0ZPYTk1kFmMn0MCcD6vbQjlXxea2TPQ/tAYNs+fFZzDoDYhtJdDqNDLSZnytK4/Oo1ApOd6IUR75z5y2o3YGbRidBhQqidRmnn7n1GZ3fYmDu8eEF0UJLLWfITAzWXI0Wg3MnJ1CQpKzIIffhtaglUtudp/wA+p1euy8vC8Tv+cuThPfTAq0yEoIvVGHSqMU7/epX+XKtQWKqTKugINWrU1yP83USnhCiuyJuPDNeOh3Tw4NnrCToQSFhLCkjiwFcQYdVPOT9gKLD8+yd+sIq8uCf8ZDr9NDZ9RNlHgVCli+uki32UE7Mr6r5KuEFgIyARrEQUm4t9blzV/YTbeo5GqjJrx/9LmnJz730Jqf9FYWe8iKwaqnXeni8NnYefFAvo1SpWTl0XmGQ4let098K4lCqcATcnF8X/StdAatUDGqlWKAdlQSDS8FKKUrNCpNmbit0qrYfmFvwuZ89doisc0kgXkf1WqFZr7DBz723/DXf+TdvFnr8uXL/PIv/zLf8z3f86Y955u13vKgM6Yvj42SXg0u5putGzdu4PP5iEQib8j1ncbZnD9/nlgsJhNjX8uSJIk/+42/4Hc++mkG/YHMPHMG7BxvJsmOOF8anZrZ89NsvbAr/G+m3XSbXYaDIXunJK+ukIOhYojFYcZkNpHaTWPzWimlK1QLJw6WD733LLWqaNTmDsUP/Mxjy7JbqMVlJrIYxGgzsv7Mplxe0Bm1RFfD7N06Ymo1hNFqpFasyfMK4+Wf8aDWq5GUQxSSktROlshykHysSH1kKqcz6jj7+DKtRofETkqWQK89tiRvbKEFPzafTbDXTjXv9WYdwXk/ueMCwQU/0lCinKuiVqsmTqvBBT9GqwGdXkM+WSZzkGXm3NREycTutzJ3PkolV5fLgXDS59EaNLijTlBIqLRKYrdPHt9g1eOLCnMzYQXdoFFuotapJ5Awcxem0Ro0E/2PcXDptETJzTvjIjjrJ32Qm7BhHmdtwpHURbfVRaPXyORoAJPViHfGjUqlQqMT5VUFCpQqpby5jt9bhVIM6R5vCNvx+UszHI2sCswOE+4pB1qjmtR2jlqhceo6Fth8XgxDmu1GyrkqerOevZcP5duYHUb8Mz40Og29jhiAtbosDAZDiiPTNZ1By8q1BTFEvJelMBo6Hge5QW8w6q1Z0Rp03H5qXbZ8AIieD5PZz2EPWlCr1VQzdRwBO0d3Tw43dq8V34wXtVpJOVslsZMWbLVWl/II/OoMOpheC9Ostjhcj50c9h6ZY/vFfbQ6DeFloWbU6bUTijqFUsHf/5Uf4K/9wDt4s5YkSaytrfGpT32Kd7zjzXveN2u95UEnmUyyu7vL+fPn3xCf8Zs3b+JwON4QRtFpnM3FixfR6/XcuXMHo9HI/Pz8q36cTqvL737s0xytx8nFhPzTZDfhi7rl2Ql32IUjZAEJ9l8+lmcZIktB6uUGzVqb6GoIlUZNq9UkuZWZ8AlZvbZENV/F5rUJ07DNBGeuL0/IoR1+GzNnozQqTWKbCZrVFiabEW/UzcGdY+F+uRrC5rbSbXcnSiHh0XWo1Sp80x6ajTaNep1yskb31Cnx7OPLtJodtHot6b0MxXSZtceWWT8ty14O4Y+6ycULHG/EkSSxmXqiLg7vxjDZjaPsQkWr2pTxOyBmR5qVFhaXGYvDRClTxWDREd9KTZxWx03nXrfP8UZcQC8vR9m7Id5vjU5N9EwYq8vC0XpC3hBNViPuiMjanGE7RrtePE6rTzFembiOXqcvYJFqJcmdNJ4p96QVtGI8hNilPBICAExfDMs9HbvXSmDeh8Fs4P5z23KANFoMeKZcJHbSRJaDGCx6mtUmjXJrIriEFv0olUosTjPthvAciq5FJuCberOe1WsLoywpS2UU9GcfEk3+sQ+O1WNBq9Ny+8l7coZttBhwR5yUs1WCcz4kSaJaqNPv9Sea8FMrQTR6LXqjluJI+n0aMiq+486RWVuN2P24/P0dB1utQUNg3ovRbECtUU9k2HqLDqvHTLcjyqX99oBOs4tKqZrIluYuTqPRqZGGkNxLUyvUhe31epxepy/3etwhJ+mjHInTzqfjoB90COhot8/8eyL8vY/93TfVTE2SJKanp/n85z/Pww8//KY975u13vKgMxwO6Xa7b1hj7s6dO5hMptdtb5DP57l9+/YrcDbr6+toNBoWFxdf1eNkjnL8/Pd/kr1bJ1nKyqMLaPRCQTMuPc1diJLcy4hpcKOO6FoYi8PE4b2YbNcLEL0Q4viOmEVxBR1U8lUsDvNEX0Nv1jG9FgGFAmkocbQRQ6VR4vQ55CxFqVJy5rFlVGolqYOcPPQ5fTYiZynOoAP/tAetXiN784zX8qPz7N48wDXlwOGyk4sV8E97JwQJOqOWhUuzIEG90uBoPY7FIajL41KIwaJn4dIcKCT2bx9RL4oT99RqSFZphZcCWFxmlEoF2y/uT5CGV68vktzN4J/xMOgPZfT/6ffDYNETWPQACur5JtkjEfRdAbt8HZ6Ii+C8j+FgyP2v7sg9hfBSgHK2SrfTwz3lQFJKKIDcXlHOlECo8yr5GnaPyIJim0lWHl2YuA67z4ZvzkWr1qZwXKZRacrB5Wg9Lm+IVreFXrs3UcYLzvupl+qodRp8ow0RBcTWExOeQ6vXl+g022gNulO07cUJGnZw3od/1kv6KEt6Nytmcsw6/DNeDu/GMFoNhJcCqDVqWo02B6dKcYE5L616B4vDhMVlplqoi77TXmYi6J99YoVetycyvs1XWm+rtWqmVoLY/XYS22m576XRqwkvBjm4c3xK9NCjVe9MkK6dQRuD4RCdWYtWr6GabWB1mckfFyeRR+9eo9/p06gIFt1wMJx4P8wOE6FFP2a7ie0b+7LXlFav4Z/83v9M01DhXe9615tqpCZJEh6Ph9u3b7O8vPymPe+btd7yOZ2xj8wbtcaW1Q+6JElif3+f/f19VldXXzGg9VqGT289eY/f+einMdmMzJ6LcrgeY/HynJiaHp9CTTouvmeJZq2NUi3eh267i0anlgfzwosBrF4rzVadw5fEJpnay9AoN3CM1EUrjy4wHA6pl5v0u/2JDSu06GOokLC5rfRmB6T3M8xfmGbrxT06TfEDdfhtzF+YplKo0WmJvxWTJYJzPm49Kcyw5h+aQWfUolQp5KG7zE6eWqYhJteTJdYeW6JZbVEr1NEaNBOqoZmzEQwWA0gSVreFar6Gb9rD7ksnTe7wUhBv1EU+XpTlsrHNJGvXl7j3lS2sLjOz56MMB0M0eo1cnitnKuiMWqZWQzSrLdauL5JPlmlWGtg8VvZfOnHhnLsohv9atRYavYZeu4feomfv1hH1kvD/mbsYweIyk9pNy9eR3MywfHWBred3cQZtGBx6mtUWZrtZzgqTO2nUWhVLV+bo9/osPzJPcjdNvzvA5raw9azowygUCpauzKEz6eRy1HAwpNfpc7Qep5qvCcjorA+NQcPxRkIWdxSTJZYfnWf/1pEoK1oM5BMF3CEXG6eCvkKp4MwTYsh2nHUolQr0Jr08fKrRq1l5dBaNXktsFICb1RblbJVeu0cpU5H7HygkjjeS1EsnlIjFh2fJHOaYXougUClI7qQJL4e4++UTabZSpeTCu9fodfqEl4Ij7ycJpUol42/sPhu2gAmjxcjhbZEF5mKFkcpMQTlbZeacMGMbw05P8+4Cyz5q5TquaTvDAeQOCsxdiHLnixuyGEBn1LJ2fYlWvS37DjUqTSQJmYAwNqb77z/83cxdjvLCCy+86c6dvV6Pbrf7TQfhv5PXW57pvNGW1ZubmwyHwweyl+33+9y5c4darcbFixexWq2vuM329ja9Xo+1tbVv+DiSJPF/ffI/8+9/6v8rD3IqlArOPLZMty3q+rGtJN1ml5lz0Qn/m9CKD1/YR/Y4LxuzOQN2BgyopGpYXGbCiwFUGjX5WEEeEASYvzhN+jCHO+zEbDMKJZbXyu5Lh0JqO1oX3r1GtyMGRseZ1vIj8/KpXPSVolgcZg7uHsuZljA2M4lmedCGwa7DYrZSyVVIn+prTK2GadVaOPx2VGoViZ0U/mkPRxvxidPweNq/WqzLp9jTajSL00xoyY/RYmTzuR05MBmsevzTXo7W43LfoV5p0m11ZZkwiEn+seS6Wq6RPcgTWgiQPRIigvFrPfvECp1Wl8xhTi7VrF5fkjdwb1RQHnRGLXe+uCGXPjU6NVOrIeJbKVxRBxJDmqUWepOezN6JuMMVdODw29EaNBTTJdL7OULzfmqlhjyxb3aYWLg0S6fZ4WgjQWPUD1t+dJ7tF0WgEqZ2BrQGLbe/MNl3WLoyT+YgK8QEvQHZwzzuiJP9Uxm2w28jMCtUnflEkexRHnvAilKhkgOfZ8pFeEQe3335QM74xv0g1cjvR61Vo9KoWf/K5oTCa/XaIuVsRdh/VxokdtLMno9+DQrIQWghQKfVIbkrnGxtHgsKtYJyqiqLHhwBO81qk50bJ0KC6JkwmYMcerMe/4yXYX+AUq1k58YkXmfqfJDmCB3VKnUoxEWgPt0f8894Ccx5ZfVft9XDZDPyU//xn7L08By1Wo2bN2/yxBNP8GauYrHI9PQ0pVIJu93+pj73m7H+ygWdnZ0dOp0OZ86ceU33q9frvPzyyxiNRs6dO/cN5dp7e3s0Gg3OnTv3df+93WjzKz/627z8l3eJLAcBBflkEYvDNKHycUdcuAJiPqOUqZDYSeGdFmZstbzYcGxuC8EVP5VChfxBSa6Brzy6wO7NA4YDianVEAaLAa1Wza2vaYCuXl0UsxYhO7VKnVq2QXghwNaLJxuA028nuBgQk/X7YuLcFRJU4PGQn3/GS3DeR6VYE83k0TfGPeugkWuBBFMrYuBTpVSy+eLehMT4zOPLlDMV7F4b1UKN+HaS5UcXJ07lDr+dqdXQCO6YpFlrYXYYcQYcHG8kBHV5OYTNY6Hb6U1sHqFFP/VSA4VSiX+06YJEfDM1UWqZfWgKaSBcVHOxArnjwkTJB0SACS8GKOeqHG/E6XcHaA0aIish9l4+HA1bhtDqNQwGgwl/G1fICUigkDDY9aJhLUm0Kt2JU/nU2SB6vQGlSkFiR/Qdlh+ZZ/vGvjjZKxQEF0QJLHOQk9V44+Cy+dUdrG4LwTlhaqdUKdk6ldmaHUYcfgcqlRKj1UApU6bb7o1sK4oT16HWqFGgIr6ZoNPsMndxWu4HiUHeIDavjfhWUp6BghPxxdjvp1lrYTDpJ/qAGr2G6TNhkEQ5LX2QpdfpYXNbJ6gUS1fm0Bq0pI8z5I9KSENpQmk2hp3qzXpi9xMyFQGEf9POjT1CiwEsDjPlXAXr1ygdUUD4jJ9Bf4BSoaQQKzPoDQkvnijvVBoVK48u8IM//wFmz0UBMcJx7949rl+/zpu5YrEYa2trdLvdbxtD8q1cb3l57Y1eD1JeG+NspqenmZ+f/6bp9DcrryX30vzyh35D3tQ3n98ltBRAGkpIQ4kzjy2TTxQxWPRkj/JsnWoIn3vnKo16A41eRafepdvu4Qhb2XxmF2koodaomLs4jdNvE1YAo35CYjvF7Lkot57ZEmq3qJt2uwNDhdxfKSRLmF1GXEGHyAJHHCy9xUCn2eHeqVLI2XesAFAbOT1KQwmbx8qdL90XwEuzjqmVMCabkc0Xd+TG99aLe6yNnEbDS0HsXivVfA2jzSiX2OLbKdk8bTgYyH4rGr0avUnH7SdPkPtr15dQaVTk4uI9kobCs2Dv9hGNchO714p/1odWr+HgzrE8RFnOVFi5usDuzUPCCwEMVjHfZHQa2H/5JOiPfV+kocTchagoPamVmO0mXh5BNbV6DavXZtEadHLpqdPqUslXGQ4kComivOlKkkRyN0NlpJgiDjPnp8jFCtgDFqx+E+V0DVfITmw9NcE9u/CeM/TaXUKLfpHxKUSW99LnTqCXkZUQBpOOrVHWU83XGA4G2L02EjtpplZCmJ0m2o0u1UJVvl4QQVmr12LzWHD47cS3kgTmfMQ2E/Tapzhzf+0s3WYHR8BB5iAru3eOOXNjVZ3BapC/M5nDHIVkkeiZCHs3D2W/n3KuilKpmMhSHH4bnik3BrMenVHH0UYcb9RNai8jlw51Jh2rVxfotns0Kk0aFeTy5t2R7XVowY/NY0V7yl9pjPlZubogE8AVCgXpwyyesEumoIMYwnbP2OkOu3hnXGQPCtjcFv7nT/xd4b00Wt9OWv03W41GA6PR+KaKF97M9ZYHnTe6Xvpa2GvD4ZDt7W3i8Tjnz59/VZ7fX48yDXDj87f5pR/8ddr1DjPnpjBaDSiUCrae36XX6cvqqDOPLZM+zDJ9JkK72REcrEuz3DkFHDRaDQRXvQz7EnafjVKqjM6oQxpKvPhfBPnZG3WLUokkycZp+XgBtVZNv9ujVmwI6KZWTashvEVOG4otPjxLs9omOOfDYjdxtBFn9foi609vyQh4o9XAyqMLZFM51DoV/W6fbquHWqPi5l+KjTm8FMTht6FSq2RvnvhWkurIRjmxnWL50QWkoUS9XKfX6cseOCBmhrQGDTqDboTfyTK9FmHv9qEsbbV7rcxenKZerMsZVDlbJTjv585TG6g0KmbOTaG36NHqNHLwOrh7LKwFzkVJH2eZfWgKxVBBLlHA6XNMzKF4ply4Qy4UCuR6vyPgILWfk0kK3qib0GKARqXJ3mgAM3OYEx4s63FUKmEnPfZ9WX9mS7zukThi4cos+USB4IqXdr1DKVEhejYsv28wIh6vhmg3u7LbKEjUCjXuP7stm4+5gg66rZ5sHX58P0FowS9v3kuPzInDjgTH63E6rS6pPSEWWX50nlatTWglQKPUJHdYYOnKpNmb3Wdj9tyUbEvRrncoZys4/TZe/vwd8Z6fncJg1aNQKmQvn72bh9h8NvQGLZ3egJWrC/Q6PZq1Fs1Ka0KUMHs+ikqtxO61oYvlycWKhBZ8wr9phJ3xTXsILQUoZyooVQqGA+ERZfdaufWFe+jNesIjrx21Vi0z5LZe2EOj1xBZEp/X2vVFGpUWxUwJs81M8v5JpuWdc/H+jzxBppakf9jB6XRisVgYDodvycZfr9cxmUxvei/pzVpveXkNxKzOG3UZ8XicZDLJlStXvuntOp0Ot2/fptvtviaczdc+/nA45E9/47/yf/1v/5n8KLCcxs14o248ERfNWgudXsfm8ydpv8luIjjnRaFQoNaqiW0lkJDQ6AUzbLxWri6g1WtEyWddSIynz0QoJEvUinUMZj1Tq2GMFj2xzaR8HSBq7Fsv7mHzmQlOByjnRJnrdINfqVKydn1Rzp5im8KuObISlGczFAoF85dmsDhMZI9yxEcwS1fQgVavJbWfweqyEFoUOJlCQriPjtfM2SnyySKugAOj1UAxVcbiMk8YuAGce9cq3VaXXqcv19lXri3I5RKVRkV0NYzdZyW+lZJLPjqjlvBSkL2bh7iCDnzTHrqdHv1uj8NTcx2uoAOtUSuftrOHOXRGHY1KU4Y8Apx5YhlpINGstTjeEEOOp9E3OqOW8HIQ28jioJQ+kVOP+1L+WS9Ov51GpYnBrJ8Qd+iMWnxzHgb9PkOGlJM1FAphKZE+haZZfmQOrUFHKVMmvplEkkTmUs3XqRXr8qS93qgjsZ2aUDouXZln79YhgVkvFpeZcraKzW3m/nMn1zF+rb1OH2kolGadVoe5C9Nsj4ZPlSolM+emsLrNpA9ypEZIJqvLjMluJLWXxeGz4Z/1gkKilKpO9BrDy0FqhRpOvwODRU8hVcJkM4rv2anPfupCEL1Oz7A35Pi++OxPlz81eo1QvHntxO7HyR6fcPDGJHRv1I075BQw1uGAgzsnAhKbxyI8pMx6NFo12aM8erOen/2/fwKT00ChUKBYLFIsFlEqlRiNRjqdDpcvX35gevyDrC9/+cv82I/9GAcHB38lA89bnum80evVZDrlcpmbN2/idDp56KGHXhPO5nSm06w2+cQP/xZf/dOXAAjM+fBOuUChkE/b2aM8g94QnVEz8nufR6lU0KoLM7LTab9/wUOv28Ppc2C2mIltJll8eI7920dyA95oNbB6TZzaBn2x4Y59YW5+4R4KhYLISgib24JWp+HlUUZSjFeoF1pMn4lwtB5n5eoCw/5Q9Juc5omZCHfIScBvpdVp4Yo4KMRK+Gc9FJMleQre5rFiDZuxGM3s3TwEoFqo4et52L8tZiJmzk5htBlRqZXc+8omw8FQlqSuXV8itZ9h4eIMvU6P460Ec+enJ4zNDBY9Z985T7/Tl22mdQYtg/5AVl+5Qk5CCz4UKFh/9qScqNaq6HcHVIt15i5O0x/2kPoSxVRlYmOeuzhNs9oitOgXg7obcRYuzbLxzLac8WkNGs6/a41mrY3ZYaKcqQjKsV4jl578M15cIRGAx8OF6f0slVwV30hEsXB5ll6/S7XQQK/Tcnz3JPN0hRzozFqUGgWuqI3CcQXfjIf49ol6zmQTJmvtZkfOaOqlBgqFYIuNeyEWl1mUnp4URIvYKZGGsOAW4wSx7SSeKSf3Tn32BouepUfEDFpo0U9iO43JbqRVa8mfs81jIXomAkOJ3dGhpJSpyAZyzWqL6FoYs93I8JTHTSUnRBNLV+bIx4vMX5ym3xU0idlz0Ql5uVqrkhlvvhkvmYMs/W4flUbNSyOfJ1fQgX/Wh0an5v5z2/LvrVltYnVZycULzF6IojfqqFcb1IvNCcO36TMRfuY//TPsHiEYCoVChEIhhsMh1WqVo6Mj6vU6Tz/9NBaLBafTidPpxGazfVvLbv9PpvMmrDcy08lms2xvb/PYY4+94t8kSSIWi7G1tcXCwgLRaPQ1f7CZTIbd3V2inhn+8Gc/y9F6TD71jwc5hY2uiciSKB3Fd1IU4pMn0MN7MfzTHixOE4VkCY1ZTezeZK3//DuFrUC/N+D4fpxuuzehMlMqFcxemMbutRLfTsuzNmaHCXfIyeE9YerlnXZTq9bQKHUcb5yc+seAR5PNiMlmJBfLozPpKCSLNMot+XZnn1hhOBjSbXU5HE3yrzy6wNaLuwwHot8UWQnhDDqI3U/I2YdCAWujAdXxwF2nJZD0pxvOBoteplvrDFoyR3n6nR4Wl3lik5i7OI3RoqdebnB8PylPtNfLTeE1o9cwtRLC4jCROcrL5SSA8Jqf9E4OV9CJK+SgVW2jNwsg5env3trjy3QaHTQ6NalR0Bg37+XHWgrgibgopSscbQjjMZPViCvs5Hgjjt6sJ7IcRKNT06p3ZMtrAGfIRr87wGQ14fDbaZQbSEgU4qWJOaiZixG6nR6DoVAttipt5i9Ns3/rWA6GwXkfgTkf2ViB+P2EPNA5zrRMdiOhxQAKhcgGNp4+2dR1Ji3OkI1hH1wBB9V8TXZ7Pd3kH1s0D3oDmbAwnhmqjvp+Y7xOOVvh8O5JZrF4eZa920eY7UYCsz6GwyFqnYaNU2VNgLXri0LqT49BW5RYl6/MT2SGnrCL0KhUFt9K0qq1MVoMuMJOYvcTqDRCVWd2mOh1ehMCjzGhQKlS4pv20Ov20Rm0fPRT/xCz4xtXOBKJBPl8npWVFTkDKhaLDAYDHA4HLpcLp9OJwWD4ho/xIOuzn/0sv/Vbv8Xzzz//hj7u22W9LTIdhULxhgWdb5TpDAYDNjY2yOVyXLp0CafT+cCPv/X0Pp/85X93glfx2Vi4OEO1WCN9KMoK9VIDpVolaswKhdzn0eg0cg3/aCOOSqMisOihGC8zd2maeqVOs9DCF/Vw+6lT7oZ+G/MPzSBJEu6wk3y8iCPgoFFuyoBHV9BBdDVMt9uTN/VytorFZaaUqNLvDJi7MI3epGMoSezfOpLndECo4tLHWexhK+6wi9hmktWri+IUPfp8tAYND33XOdqNNgabnkaxhYRA3bz0uVG/acqNf8aLSqvizujUX0iW6HZ62L02YptJ5i/OoNVrqJXrdFs9+TWAyBjNdiNmuwmNTsPRepyplRDp/ay8MesMWs69c1XYIlfF59Br91BrVdwZNZx90x6cQTs6ueEskTnMkTnMCTfT20fMPzSNWqMmc5TFHXGzfqrsqDfrWH5kAYVSSHWPNxLyJjX2tzFY9Mw/NINSqeBgtOG2623qpTrNaptKripQLz6bsDS/e0y71qGaqwtTs0szZI7yhBb8MtkguBBg64XdiQPIwqPTtOotHCErhVgZJLC4zPJ8iclmJLwcwGQzymWxRrnJ8UZcHvoMLQaweSy0ai267b5MSMjs53AFHdg8VoxWg+wtY3FZqORrcqakUCg4984VhgMJlVpBtVBHGkrojDrZWdXiNMtIop2X9hn0BlRyNSq5GqvXBYl6ajUkMsZsBZvbOjG4qlQrRzNnEosPz5HYStEf9DHaDfLvZkzvNtoMMp1h0BtQG3npFJMlbB4rgTkvKrWK7HFeRuIUU2XOPL7MT/4f/0jMjH2TNRYSaLVa/H4/fr8fSZKo1+sUCgUymQzb29sYDAacTiculwu73f66+0BvhmvoW7neFplOr9f7us35B1mVSoWXXnqJd7/7BM7XbDa5desWSqWSCxcuPDBuZzgc8ns//X9w47/eRKPUyoDL09mHVq9h9lwUi9PEzs1DeYjOZDPim/Gwf+tI9HnCLhq1JrVyjcJxWX4Oq9eE1W7FYDGg0atJ7mQwOYw0y01KmZO+wdknVgGJernB4b0Y0uhHerQeE6Ufo5apFYF52b97ROmUzPTM48vc+8qmbDFdLzcwWY0T5Q2VRsXSw3P0un00WjXJnTTtVofwQoDdUZkFYPpsGIfXTilzcup3hZxoRhJZnVHH1EoQnUlPJVeZsC6IroWFss5hwhVwUC830OjVxO6nJoLh2mNL9No9VBoVyZ00lXyNtetLbDy7LQdD/5yX4JyPXKxIbDMBEihVChYuz7L1/B5aowb/nBejyYBKpZzY6Ew2kaX02j05+6gWa+iNuom5n8hKELPdJJRqI6hmeClAJXdiQRBc8OOLuqnm6+zfPpSzj3GZVK1V4Z12YTQbUWpU3H96+xVzLpVcFZvXSq3UILGVZPHhyUzL5DDinXPRqrepJGty1uab9sh+PKEFP86gHWnIRP/OFXKiUAjjN0fYikajQepDMV2WZ4bE5xphOJAwO4zUCg1imwnmL81weDcmiznMDhOLV+ZolpvEt5PUS+JAMLaVkPE6bgs6g3bCEE+Q0KdJ7mYILQYAiePtBL6wZyJbMjtNhBcCqNQqocrbTOHw21Br1HLAMTtMzF2YZjgYcHD3WL6OyEqQfFwQCsJLQaxOM86AnX/wax9CZ/jWPZrDw0OazeY3nfnr9/uUSiWKxSKFQoFut4vNZpOzoAcpk/36r/86zzzzDH/6p3/6mu73nbLeFpnOG7m+NtMZ42wCgQDLy8sPXIutlxv8rx/6N9wYneZBpO3+GS+9dg+T3USj3MDislAt1tgcDXyGFvx4o27a9Y6sNBI2vEqKmQoMkPs83W6X2P0k1exJSWn50QUa5QahxQBmh5nYZmL0o96cUJmtXl2kUWmi1mroNIXkWqvX8NJ/FddrD1mJzIXQ6NSyJDhzmKNWrOOddrN764DImQBGk4lyropWp5kIQu6wk0jUjVavZWolxPH9BLaAhUquJjfqjVYDK4/M0+30ObgrVEqdZgdJgp0b+3SaHUKLAeweKyqNkvvP7dDr9KmXGqT3s6xeX+J4I870mYiwYt5OEV0LT6jMlCol59+1Rr/XJ7wcJHY/gUanxuowy30eo9VAdC2MzqhlZ5RBdZs9CvEifZeN5G5ayG69VjGcWqhxPDpApPYyBOZ9aPVaLE4zVreVxHYSV8hJ7rgwETTPv3uVfm+IQqGUg47VZeb2F4WM12g1CMSK08zuyI6i3+1zfC8pGuRf2ZKvo5qvYXaYTqy9d9JodGpZXr70yDyJnRSD/gB30MnBjZONObTqR61Tyv0ygHarQ3InQyEpmvZj2XQhWZQDaaPSJLTsF/42fjvhpQD1YgOtQcPhvfgrZq267S5zF6MkdtLUiw2mVkMyUQAgtBjAP+MhezSSuUsSiZ00JpuRm8/ck5l6KMTowTgb33p+F6PFgMGho9sW4oFasU6t1ECn106U2SIroVGvaEi72RGDpW4LuzcPaJSbsrrPE3FRzlVp19uir3U/wdX/5jL/8Df+Hhrtq9v2Xo1kWq1W4/F48Hg8wp681ZIFCfv7+2g0GjkLcjgcr2ru5kFcQ7+T1l+5TKfVavGlL32J7/qu7+Lg4OAb4mxeyzpcj/G//chvoTNo6bQ6HG3ECc76qRZqcto+hjsO+kOyR3lZvbP08JxwdGx2sbosBBd8DBhwdDdOt3HKufOxJe5/dQd7yEZgykc+IZRep1lmKrWSlauLDPpDBv3BCJYpEV2NsH1jT76O+YdmsLjMpPczsvmbwa7H5XUQ307JVAOFUkkpUyK1e0pptOiXG+ZWp4VipoxWr5mgRoPIPoqFImaT6Lu0am3ZHbTfG4xOuQH8025S+9mJPsGYLm1xmgkt+BkOJTQ6zQQUdExFaNXaWJxmytkKxXSZwKx3Asvvn/XijbjotLrENpM0qy1cQQdqrZrMYQ6FQoFnxoXepkWNhv2bJ/2VyHJQzh5DiwGQhMHa8UZigpywdGWOZlVARscOnitXFyb6QSa7kaUr8zTKDbn3AUJ5ON5cw0tBtCYVap2a7edOzY0YtYQWAsI6erQpF5Ml9Cb9BNHb4bPhjrjQ6NRUC4Li4I266Xf78sCkwaInsOyh0+pSOCrTromMcfpshPR+lnajI5fZms0G8Y30hJ3DyqPzxLZSBOd9KJQKEfhXwxMDtHDCNKsWa6PZIuGGOu6lmGxGIstBUWZ7+UAOiMJrx8XxRkK+jna9TavRkVVxIErFOpMOs80oyo67GUw2A/VSc8LY7swTyyAhaNr3RzTth6bloGm0CI7c4sNzfPBf/y1U6ldf+trZEZ/bwsLCq77P6TUcDimXy3IW1Gw2sVqtchCyWCxfNwv6l//yX1Kr1fjt3/7tB3ret/t6WwSdr2dZ/aCr2+3y5JNP4vF4qNfr3xBn82rXV/7jV/mVH/3ticn24KoXg844Kr+ckJTvj+wCQGQG02ciFNNlju4J1IxKrSS47CN2L4VKo2J6LYLBrEehVnL3a+Z0ArM+StkKgRkvnWaHUqaCyWaUAZUgzLicASdKlUJGuPhnffQ7PVk27fDbia6FyaQy5PdKsix69kKU5G6abqtLaCmA1WkBFOy8tC8blIEo92SO8jJk8vDuMUsPz0/Qq4V75xqdVkdQtI/yKFVKlq7MyRuuzWslvBhAb9Rx7+nNCTWeb9oj921MdiPVYh1pZA0wXq6gA4vTjMGsF8KKzQQOr41uuytvuEqlgrPvWEGSIBfLyyd677ybaqpGu9GRJ/m1Bq0AjJZOAunyo/PsvHRAaN6PxWmimK5g81rZPCV6gFMS44FwM+00uhMmbgqFgujZME6/ncxBTg64Boseu99Kaic7Ak0GUCgkuq3eRCB1BR2oNCp0Bi1Wl/ATGvQHtBsduVwLwuxNrVUjSRLxLeEkOnt+isR2WoaAeqadmNwGavkmhcMTMcvK1QXuf3UHw0j0gAJ0+knvJBBePtVcTZT7inUSO2nh4nmqUW/zWJg+E6HT7JLcFWVHg0WPd8otl6CD835cQTsSsP70ltyvcgUdKJQKGpUm1oAZh9NOu9ahlC3LajeAyHIIFGB1mqhXmhxvJJg5O0Vs60R2bbDoWb26SLPWmqBpv+/vvYsf+V//zmuucmxubqLRaF43PHi8Op3OhCxboVBMCBJ0Oh0AP/ETP4HBYOCTn/zka3r8X//1X+eXfumXSKfTnD9/nl/91V/9hqMjvV6Pj3/84/z+7/8+iUSCpaUlfvEXf5H3v//98m0GgwE/+7M/y6c+9SnS6TTBYJAf/MEf5Kd+6qdel7Lur1zQqVQqPPfcc7hcLs6fP//A+vpBf8Af/MvP8p9/+y+ZWg6hVClJ7qUJzPsnNiGtQcPSw/MC+Z6vcXw/IYLGnE+WmOpNOqbPRWh3W2R3izQrQhnmCjrQGbWCkjzrxeG3UywUkNqKCeRIZClIZ+TjotaqSeykcAYc5I4LE9nH+XetCVlyqc7RuuivrDy6wM7LB/S7fdlZ0ua2sHNzXzZ1g5M+j3dKzBU1qk1MNtNE9jHu83TbPXQGLYf3j+m1BkRXw+y8dGIoFl4K4Am7qBRqHK3HGfQG2DxWzA4Tie3UiDAcwmQzyoyv8QrMeek0uqAQMuRuq0uvN6A4mkkar/mHZpCGEnqTjmy8QO4oz+LDsxzcOZYDq8lpJLDkga5StjeAk0xrzBEzWPSodZqJwC+QM3Ok9rIE5nwMen1h4jbnnzBPM9pGJm6SRGmE9DfZTTj9NjlLsbotRM+EUaBg84Ud2cTNM+Vi0B9SSpeFSsxhptsRDLjT9s3RM2GalRbOoANpKJHYSuGf807YFygUCs6/W6gdy9mqLBI4bSNttOqxh6xoDGoy23na9ZPDxXgWapx9VAs1TDbjRHDR6NTMnIsCEgqlcgQy7U8EFxAHGovTRCldITZS1TmDdpRKJfl4EaPFQGgpgNagpZytTNgLhJcClDIVrC6LsDGvtgRI9FQgBVi+Os+gN0ClFr3DcqbC8iPzwtJ63Oeb8fKe/+kx/vt/9jceaJPc2NjAYDC8Zu+sV7MkSaJarcpBqFarkclkeOaZZzg8POSRRx7hF3/xF1/14/3RH/0RP/ADP8Bv/uZv8sgjj/DJT36Sz372s2xtbX3dofePfvSjfOpTn+K3f/u3WV5e5vOf/zwf/vCHefbZZ7l48SIAP//zP88nPvEJfv/3f5+1tTVu3LjBhz70IX7u536OH//xH3/g1/5XKuikUinu3bvHYDDgiSeewGg0PtDjVAs1/rcf/i1e/Nwt+W82j7AwliRJSDubEr1OH71JK5ewAGbOTWGyG+m1ehxtxGk3OvhnPVSLNZrltpijWQ7iDrsoZyuynw7A3EPTHG/E0eq0RFaCSBKoVEp2XtqfwOivPbYkY/TL2SrxraQcNMbLZDey/Mg8jUqL2P0EjUoTlVrJwqWTE3lgzoc77EKtVXPzL05q8+NMK7mbJrISQq1WUkiV0Bv1HJ2SXJucBnxTHgwmg5Axb8RxR9wgSXKTV2fQipmgocTxRlwuR0bXwhQSRerlpiysUCiV7N85lIMyiNJWbDNJcN6PVq8hfZDFN+1l6/kdOauEEcS03aPd7MiBbvpCmMNb4nrVWjXTZ8LYvQIjNGaQqbWijLf94h7OoANf1E233QWFYsK0zGQTPjsKhQKj1UA+XqTT7GC0Giek2dNnI5jtJjoj2kSn2RV2ALU25WwVpUqBb86DL+yhnKtONM1nzkVJ7aXRGbVCYjwYolDC3tfYZa9cXaBRaWJxmCllhPXyaUApgMVpYvHyHLVyg8RmikZ1stynUChwhK0YbHpUGiXHN082fo1eQ2Q5SOYgR3gpACgoJAoYbcYJqoXVbcE/7UGj08hlNkfgJLiA8OOZvzQtyAgbcTl7GQeXRrlJYM6L1WOlVq9SOq7Sqp5YlM9fmiG9nyUw60WlEQHGP+1h68W9r0EJrdFt9WjV2/Iw79/+qf+O/+EnvueBT+V3797FZrMxNTX1QPd/LavX6/HVr36Vf/Nv/g1/8Rd/AcD73vc+3ve+9/H+97//W2ZbjzzyCA8//DC/9mu/BojSXiQS4R/9o3/Exz72sVfcPhgM8i/+xb/gx37sx+S/fd/3fR8Gg4FPfepTAHzP93wPPp+P3/3d3/2Gt3mQ9bYQErzeIajhcMjW1haJRILz589z+/btB+4R7d065Oe//1copkvMPyRkvb12j2ysMHGamzk3NXKRtKE36Tm8F2P+4syIpCxKcWqNiqXrs9QrDXRNHU3aSJKExWnm1pP3GA6GOPx2ArNeDBY9d750n167T6/dZ+v5XVavL7P51R3ZuTOfKOD02+XGenwziVavYe36EsPBkMXLon+kUivxz3hlOa1CocC74MIX9hLbOtk02vU2xWSRxE4ai3PU51GJhvTYxnr7xT2Ccz76vSHDoTSCd5ZRKJXkkwX2b52UhZauzKFUKhlKEs1qi0alydRqiI3ntuUsIzjvJzDvkwMOCGGFO+Tk/jOb6Iw6Fh+eQ6lUoNVpuDNifI2zodXrixSTZVauLlIvN0jspFi4NMutJ0/k5TqzlrnLUVSosPtslDMVVBoV0lCShSBjEYhCqZA5YsVkiWF/gNEqpLizF6JoDVqaIxO9o1Nmcr5pD1aXBbPDhNGi5/h+At+0h3y8KAcSlUbFhfesCerzKHMdzzWtP7st1HKjSX6dQcP2jQPajQ7tRodKrsbKtUW2X9wjsiR6I/lkEXfQOSHwADj7xDK9bp/Fy7PEtpKib7MQkK0xFEoF0TMRXEGHDHGVJIlqto7JYuL4ZhKjVY8jbGcw7MNQIdOpt17Yw+q2YLIZGQ6GrF5fpFqo06q1USiQ5dkAU2thjBYDkiTRaXWpFeo4g3b2bh3JwNPAnACZ1kZDpACpvSx6i570Zh6tXsvCpRlUGjVKlYLNr+4yHAzlIeqVqwuU0oKv16q2OdqIsfLoIrdOUbd1Rh0/8ssf4Lt+8J28njUcDt809ppGo+Hxxx/n8ccf5/u+7/u4dOkSDoeDP/7jP+Yzn/kMX/rSl77hfbvdLi+99BI/+ZM/Kf9NqVTy3ve+l+eee+7r3qfT6bxCxWswGHj66afl/7927Rr/9t/+W7a3t1lcXOT27ds8/fTTfOITn3hdr/VtEXRez+p0Oty6dYt+v8+1a9dkUN6DZE5P//Hz/MY//X0Z2rj78gGr15c4uHuMb9pDZClIMVNG0gxkmfK4Xj/G48+cmyK+lRRDdCs+tp45VXZaDOCf8co+ISAURP3egJc+fwetQYN33oXL40SpVMqlrYM7x1hdZhx+O4VESXiC1NpUClX0Rt2E2CAw68XuExPTzoCdYqosMq1Cjbs7YnN1BhxMn43QaXRklV2tWKfd7JA9ytNudJg9H8Vg0YMksXtTzPMUgNgmLD+yQC6exxm2g6Qge5Bn/uIMWy/sya9LoYCH/to5Oq0OroCD1Gizc/hs8jyPsC4IYLYaWR/1w1r1Nns3D1i4NMudL98nvBTE5rZQK9bQGXVyQzt9kMVg0TNzLipbMxzfTzCUhjj8NrafO3nfFy7NYLIZKabLKBQgSQIgmtrLkIsV0Jt0zF4IoTeNcTPi1L9/64jISohSWvTTVq8tio1SIZE5yNOqn5zIFx+eY9AfiAzhKEcxWWb+4jR3v3RfRu67Qk7c03YapSbS6FBUylQIzPu59eQGaq2amfNT6E06QTYYBdLDezEUCvG+J/cyrFxdoN/tk9hJE14OTjpsmnTiEDIcEpjzig3dpEMBMj3B6rYwtRKi0ayT2hLInWa1jabQQmfQkDvK451xoTFp6La6dGon3Da2UsIyQqfG6rbgDjmJbyexe20U4kWOTw24nn3HCtJQQqFS0hz51phsBu6O4LEGi57wkrCmOLgbY9gf0q632XnpQGRkz+7gnXbjCjhoVJqYbCey/rFQZ+2xJdrNDitXF8ke5Simynzo519/wAHR03gr2GvNZpOFhQV+6Id+iI985CPf8gCdz+cZDAb4fL6Jv/t8PjY3N7/ufd73vvfxiU98gieeeIK5uTm+8IUv8Md//McT++bHPvYxqtUqy8vL8p76cz/3c/ydv/N3Xtfr+44OOqVSiVu3buF0Ojlz5oz8BXmtQaff6/N7P/l/8Ce//nlUatXJIKdWLZ+gEztpcvGiaF5ux1l8eJZBXyJ7nMMbcU+YVpmdJkKrPjEBPeMhc5DD7rWhUCq4MUJ4mB0m5i5Oo1QouD/isXVbPdrVNvlOkVysINOau+0euVhezrSyx3miq2FUahVmh5mVRxc43kzKSrHxBg9CZdSoNej2ujRKwobAF3Vz56kNmSE2dz6K1WVm786xrLrav33EmceWWX92G0/EhXdqhnq1gcl6qs+TQGDj1/zkswXCZ/xU0zWqhQaLl+d4+VTJzhd1E1rwUyk00OjU9Dp9et0evVaXG8/toFQpmT4Twew0wRBZqBDfSlIrWDA7zWSO8qw8usCgP6BaEGWa0/0Vm8+M0+fGaDGiREliJ01w3k82VqAyOimPUTLddk+WdbcbHQa9AbsvHdCqtwnO+3H4bSgVCrZuCGFFvdQgc5hj+ZF5YltJwkvCTnssv956YbLcc/7da/TaPSIrIY43hGOlL+qe4IjNXYxg91g4uCcyo363z9G9OAuXZrj95DqukFNQw5tt1BqNLLkvZyroTFrCiwF6Iz5ZPl6kXmzgCjsnyqyhxQDOgJ1WvY3OpKXT6KLSqMgc5cgdF4RlxGoYu9dKq9aSM4rsQYHAnI9WqYM0HBJa8zPo95EGEqVUhU6jI2dNM+emGPQHRM+EZVXd/KUZ7j+3I5cFjVYDy1cXaFZaGC16OVsS8Fgxv2MPWglM+9AZdNx5SpivZQ5yZA7EMO/erUMZqJo+yOKf8b5CTv/hf/ejXP/vvjl38dWuNzPTOb3q9fqEgdu34xp+5Vd+hR/5kR9heXkZhULB3NwcH/rQh/i93/s9+Taf+cxn+PSnP81/+A//gbW1NW7dusU/+Sf/hGAwyAc/+MEHfu63RdB5reW10zibxcVFpqamJh7jtQSdUqbCH/zLz/Ds/30DEAKCUqZCv9sntilsod0hB+2WmHwfG65tPb+Hb9qD2WZCgVB5JXfS6Exa6tUm8XsnEuHVq4uoNCq5rzLoD/FEXOy9fEi93EClVjF7Porda2V//VDuh8S3kphsRg7vHsvMtV63j0anZvuFvYmyzdpjS9SLDWbPR8knSqT3M6xdX5JPyyD6PCuPLlArio2/3+0L3xSdhhufP3EpdfjsaPQaOWiIie4K02en2L91yOLDsyiVSnKJAna3dcKKW2/W4p1z0mjUCSx4Se/lsDrN4vFGm4tGr+HM48uotWoORxvucDCkURMluVysgCvkwBcVsw+5eEFujFfzNcLLQTrNLnafTbzv+2nUBhWNfGsC8Lj22BLDoYTJZqRdb9NpCvuAu1++T6/TR6FQMLUawhNxkTnIyZlLcldQjO89t43JZmD2nBAKaPRauRQ33pzHw5wrjy5QLQo59dKV+Ve87wuXZug0OhgdBpqlFtJwiFKp4KXRbJFv2i3k0Fo1d54Sz1FIFGlVW7gjTmKbKdk2oJKrAAr2Tsm/7T4bvhkPBrNOuIRuxLF5rLTrbZm8rFIrOfP4Mkqlguyx+N5IQ4lBfyAr+cQkvw+NVkVsKyUTshvlllDG7aSx+SxoTQ4apSYGi17uoYzXmceX6XV6zF2IkthJUS81iZ6JTMz0BOZ8BOd95GIFOfssJ6sEp/0yPTqyFEClUaHVa+T3ZPelAxRKBYuXZymmSqxeW6RVa5E6yPLjv/nDPPq9l175I3/A9VZQpiVJotlsviYigdvtRqVSkclkJv6eyWTw+/1f9z4ej4f/9J/+E+12m0KhQDAY5GMf+xizs7Pybf75P//nfOxjH+P7v//7ATh79ixHR0d8/OMf/84POq9lDQYD1tfXKRQKXL58GYfD8YrbvNqgs/XiHj///Z+kkCyhVCqIroVxBgRDamzulD7IYrIZSB/kUCgVrDy6QKlUxmQykthKT0ipp86FqJcbhBcD1EtNElspVkd1+f4I1a436bj43hWalSaM4uRg1EcYD22OydQ6g5abX7iHNJTotntU8jXxeDf2mTk7hUavIX2YxR+dPPFpdGohda1WCSx6yB4UUSjBP+2RexpKlZKlh+cwO0zEtk5mQSqFGiq1iqONOFaXhfBSAGk4pN3osD3yCdp+cR9X0IFGr6Hb7rH22JII1J0ew6FEeutEeeeZdaDRC4tro9VAs9rCPyNcP8dqtMCcF/+cj3qhLvduCokSDq+N2FYKJImFSzOotWpQwO7Lh7KVMohMq1vrM3suSqve5mg9xtLD89x/dlsWG6g0Ki591znajQ42r5V8rCj6a44TlIzdayMw58VoMXD3K/cF8qTcZOvFPUGdeHqT6GoYs9NEKV3G7DRPDnPqR0rGgcTiw7PEt1IMB+KAcbrnEFzy4w27ZbdOgGatTTldIbGTRm/SEVkRg7ztWpv90Xdx7+Yh7rBT/vxWry/SqrXlOZfTJoFTqyF0Bi0anQYUCgqJIsHFAPu3j+ReislpZPZchG5zQC4mPrNKroo74mLv5gHDwZDoGeGdpFAqxPs5kMgeiEPRwsMzQt235KXX61NKVAgt+icyLYAL7z1Dr9UlvBSQZfAOn01+340WA745DwqtRHx0uGjX2+zePGTx8ix3nrqPf8aLMyCI3TqDVrbHyBzm0Rq0fPTT/5CL73ltxo3far2VfjqvZThUq9Vy6dIlvvCFL/Df/rf/LSAC5he+8AX+4T/8h9/0vnq9nlAoRK/X4z/+x//I3/pbf0v+t2az+YrX/42sXV7L+o4KOs1mk5s3b6JWq7l69eo3xNm8GiO3v/iDL/GFTz9NtyMa3MOhhNlu4s5TGwz6AzwRF54psfGf9ve4/9UdIucCHN2NM7UWxmDSk9rPYPYaOb4tmvTF4zJKlZJz71ih3xswc3aKw/UYw6HEzLkpboxUcQqFgrnzUWGsdWp4spqvYXNZWH96SwzZrQQBcSodB5edlw+wuMw4/XYq+Sprjy1TzdeolcSMxGnnxMCcD6VeQj2qw1fzNdxhJ6VMRTac8065CS366bZPuG3VQo1awUK1WKdeFlmU3qSj1+2T2stM0Jpnz0dp9Ad4Qg7sPhtH63Giq2Fim0k6TXE7hVLB1MUACkk0+2sjBwabx8qdJ8X7Ph4qNNiM7L64J4sydl46kNE3gXkfVreZbCKPxWni6JZ438en9zOPL9Npdlh6ZJ7kboZqvsri5Tm5sQ7gn/EQWghQTJfl7LNebjDoDXjpv96RVW0Gs+6EoYfg5RmtBrxRN7mjvMg+Oz2KyTJGm2Fiet7hs+Gd9qBSK+X+itltolVryRwxk93I3IUocKKWazc6VAs1Os0u5UyF4IIfh9dKvzcgtZ+R5dTZo7zw3ml0cIedBGa8pPYzOHx2UvuZiQPRGNqq0ag52hDqPqvXxMYzuwx6A/n12r1W4jtpWS15dE8QyTee2cbus+GfEcBMveGklzjOhuYfnqZaqBE646NRalFOVJm7NM2tU/gbYcs9Q7MqnGHrpSathhAl7L8gstTggh+Hz4pGqzkhdh9kKaRKRJaCHN9PyGW2UqbCj/3ah1i7vsQbvd4qP50HYa99+MMf5oMf/CCXL1/mypUrfPKTn6TRaPChD30IgB/4gR8gFArx8Y9/HIDnn3+eRCLBhQsXSCQS/OzP/izD4ZCPfOQj8mN+7/d+Lz/3cz/H1NQUa2tr3Lx5k0984hP80A/90Ot6fW+LoPNqymu5XI47d+4QDAZZWlr6pieQbxaNe50ev/UTf8jnfudJ+blnzk3hCjqIb6cZ9EVwqeRrOAMOge+wGYksh5CQUCmVbIww6vu3jjBaDZg9Rur5JqvXl6gX65SyFVwBB3e+dNLn8USc+Ka9DAdDbB6Bj3H4bbQaHfZGfR53yInBo8NitrA1smNuVJqUMxX6vSHFVEnuN3WaXYqpktznSeykiSyH0BrUoBkSPRcmvZslMCvoBmIIUtTgL7z7DNJwSCF54rtj81jYeHaHTrMj+/OYbAYO7sZkn5n920csPzrP/u0jPGEn0dWw8Iqx6GURQeZANKbPPL5Mq95m7kKU9IGwwR57DI2X0WnAN+emVqnD6ONsVJooVSpu/tc7cvZpcZhQnwKlJnfSpPcVRM6EKB6XWH5kXmRYIznt6ZO2zqRj9foSSAKhEhvNURnMBjkI6U06lq9E0Zl08mxVv9snHy9icZpI7KTlQ0i/06debsoKtVKmgjvsRGPQoNFrWL22SDaWR6VU0uv2J2ykQyt+FGrQqrQ0yi26TTF7tX/7eGS3Lcp9zoCDSrYiv5fJnTQ6g47kbgq1Ri27YkqSxP6d44msb/HhWeqlBnMXotTLTWFl8PAc68+cmPPpDFouvHuNdDyDxWminKkKV1iTTs623WEn7ogTo1kvCxXKmQrlTIXVa4tsPr/D9NnIhKrytIU4Cpi7PEWn3ca36KIUr9Lr9PFOu+UejkKhIHomjCvoJLl3cujKxwvoDFoO7mzLRAGlRsmwL8nZ9u5LB5jtJn76jz/MwqU3fo4G3ppMR5IkGo3GRE/n1awPfOAD5HI5fuZnfoZ0Os2FCxf43Oc+J4sLjo+PJ15Lu93mp37qp9jf38dsNvPd3/3d/OEf/iF2u12+za/+6q/y0z/90/yDf/APyGazBINBfvRHf5Sf+ZmfeV2v8W0xpyNJEt1u9xv+297eHgcHB6ytrREMBr/l4926dQubzfaKoa5CssRv/cQfUEpXSGwnqRbqOHw2TDajnNa7Q07CS0GGw6HsAQOi5KVQKMjFCnimnVidFtrNDqVMmXr+RLETXvQjSQqsbguDXp/D9Tj+aQ+VfG3CJOz8u1aRhlAYSZZBZAuJ3RSdRhe9SUd0NYzBaiD+NcZsY7Cn3WPFHXGJkoNRy97NQ/rdk7Li2mNLtOsd9CYdR5sx6oUma9eXuP/cSdnJ5rWycGmWSq7K4d2Twcrx3I/w5wlidpjR6tUTZSKFAlauLXF491ieGE/spIksBSasC1QaFavXFhkOhtRLYp5HrVUzfXZKFgKotCo8M4I6kNktUB3Ncxgsehl94wo6cARtVMtVtFo98Y2TsqDFKawClEolJpuRfKJIu9HGZDOR3D3Z0EKLARw+G912j/iWwOa4I04UKOReWmhRDLe2m+2JjTQw56NZa9Gud5haDaHWqOg0O+RixYnB1anVEIP+ELvHKpf73NNOSomKLB1XaVSce8cK3XaP7FFefu7TCJdxf0U/YsiNZccwoifc2Ccw78fmslDOVbA4zWw9fzIcOf4cu22B9U/spKkV6jKQc7x8027CS0EKyZIseoCTgdHx3I7OqEOjU3HniyeHKeXILTV3XMA/46Hb6ZMaiStOe0VpDRpCK3663R6NYoNysobWoME/6+V4XWSqeouO2XNRdAYtOy8dnPgI2U3YPZaRMMSH3Wuj3x/wv3zyg0TXwny71lNPPcWVK1ceeN7vQVa73cbr9ZJMJgkEAt/6Dt+B620ddHq9Hnfu3KHRaHDx4sVXHf3v3r2LXq+fYCZtPLvNx//Or0w4PJ5/9xmQJLLHJ94r4mSek0/wUyth9BYd8fvJiXJSaNVPZk+o0vxRL7VSHb1Jx8GdY3lKHARxt9PqoDVoSe1mKGUqrF1fYvP5XTmrsnutLDw0QzlXZe/2EcNRU3btsWV54G9qReDgtQbNBK13/By7tw5wTTkwmUyk9jJEV8MTG4tCKabTFSipj4gFKrWSxYdPUDVavYaZc1NYnGZ2TxGytQbNiDpwgNNvxz8rSAEKtZKdF09N51sN+Ge8DPoDzA4ThUSJarGOJ+ycmHHyz3jwTAmPkzEvze61ojfrZUWUPWjB5reiVqjYe+mkV2H2mNDptNQKdaKrYdRaNc1qi3q5QSFx8vkE5ryoNWosTjPtZpej9Rj+GQ+1YkOmKStVSs4+sYwkIVsegDD3yh7nBW/NaRawTIOW443EKzA0sftJ3GEndq+NarGOzqjl6F5sYpg3fNbPsCdhtVtI72cpZ6sjP6ITibl7lDmWsmWO1hNyOXf56gKbz+2gUivFd9GsQ6PXTJjdgZhfim0mBctuMCS2mWTm7NTETI9CIZxZ+50BlcKYmcaEd43epGNq1Lfae/lAHuZUaVTMnpti56UDPFMuPGFBuVZpVOyeCi7CwTXAcCBhsOjJx4vC3C/qmfgOuMIOzF6jsO2OiWCst+hEaXA3IxOqHX4bg95w4nW4Qg7+33/yzwnOf/0m+RuxJEnii1/8IteuXXtgKv2DrEKhwMzMDJVK5XXhu97O620RdEDM25xetVqNmzdvYjKZOHfu3Kuis47XxsYGSqWS5eVlJEniP//bv+TJTz+NSqMitpWUT3v3v7oj/+hdQQcz56KUMmUO7pwYZZ15TJiQKVXK0ZCmgXqzzvHNk1O2QgGr15c4Wo8TWQ4y6A+FG+LZ6CuAnWeeWBEeI9kqsa0kKo2Kxcuz8sav1qqYWgvj9NnZvrEvb5Bag5bpMxG2X9zDHXLim/aIfodSMfGjN1oNBOf99Lt9THYTuVieeqmByW0gt3+SLfmmPQRmvLQabUFOqHeweSxYXRYZ3xKc9+MOOxkOhpN4/JGIoJgqEV0No9GqqZcbtJvdCXyPN+rGYNZjshnpNIUBnCfsmuSlqZSceWwJlAohjx1t/KGlAJVslXqpgc6sxRm2oVQraRRalFMnGeP02QjZozx2nw2H10atWEelVZHey07M0SxdmUMaSqg0KlJ7GcrZKguXZjm8d5LduYIOps9OUc3XOLh7QgEQWcUBkiTJ+B6lRsW9L21w+tezem2J2GaC0ILwXTm6H8c97SB+9yTTArj4njN02z1q5TqxDYGJGaN5QAT/yEoQm8fK/u0jypmT17v86DybX90dWXK7aTc66E36yeAyQvi0am1MdiOldJnMYY75izMTw5xGh57Zc9P0Wj3iI2rBOKsZD4cG5304A3bR13rq5PUaLHo8ETeZgyyRlSAanYZStoxaoxHBbLTMDiO+aS/akejk+H4Cg0mH0WqUZ22UKiWBZS9KtYJatk45Jb7zjoANlUpFPl4UrLoFP0abkR/95b+LN+rm27kGgwFf+tKXePzxx1/T3vN619HREefOnaPb7b4mR+PvpPW2DDrJZJL19XVmZmaYm5t7zZLqra0t+v0+C3ML/Jt//O/5yz/4svxvWoOG1UcX6fcHsrRYa9Ayc3ZKlkMbLHphtWw1sPHstqz20Zt12INW0ts5nEE7wVk/jWoTlVo1wQ8z2U34ZzwgiZ5Cej9Dr9vH6bdPnPZEGcdJo9LkaF04g5ocBixOC+kRrDKyHMQZcNDv9icCmCvkRKVWjIYLvRjNoinbbU9u/L5pD0aLgT49GCiIb6bwz3jotHqyekqlVnHm8WUAErsp8jERnMJLQWrFOpVcdXTiFxLW9EFmwgl17Itj81ixe6xU8jXUWtXIOvgEabP48BwgoVKf+OLMX5ohtpGQuVrukFPMe+Rr7N85lk/8wRUvmV0xVOucsmGymdDqtey/dJIZgphYT+5mCMx6GUoSsfsCDLn51UlszkPvPSum5kt1Ge0ysfEbNESWQ9i9NvZvH05kyOPbOQN2/CMgq96sn1AQAoTWfAw7Ek6fGNJN7WdZubooWyuDMGJbeGiGRrUlhorLTZQq5cgHSHwf/TNenCE7Gq1GzK+MXodaqxL24xsJplaEWi2fKGBxmifk1Dqjlum1CAqVkn6vz/FGHKVKidltJH94IvKYuxAV5c3DvFySNNmMOPw24lspjFYD4aUgSo2SbrMrByYQA6eCRjDEFXLSqrapFqqo1GpZ4AHgmXLj9NtQqVXkYoWRPN5Jv9ejkq2N3hMTrqidXrdPdq9AryWCf3g5yM/+p3+GM/BKxeobvXq9Hl/5yld4xzve8aaKCTY2Nnjve99LpVJ5S5Rzb8Z624RShULBYDBga2uLZDLJhQsX8Hg8D/RYKpWKTqfDcChx5a9fRBpKvPi5W6g1KgxmPbe+eNKXGP/QKoUaCqUCaShhtovp9Y1nt8XQ4tkIBouOYq5EelucxIvJMlqdln5vQLveZvnRBaTBkGa9TbPSlBvSIDx17EYdRquByHKI2GaCyLLY0MfzJ1q9hgvvOUu5VKJ4ytRNqVKyf/uIWlH0nwJzPlRqFYfrx9QKouZ9fC/J7Pko5UwFV9DB2mPLFFMljBY9yd2MnD0ArFxdFJuWAjqNDo1Kk7kL09z/6o5Ml/ZF3YSWQ1QyFRKjIcxaUbhEbj2/C5I0UrLpR6iSHfq9AfVSQ8b+pw+yRNfC9LsDjjYEIuhrN/6Lf+0s3VYX95RLhj76ZjyylFZn1Mp9nuxeQQ5AhcMyjst2dp8/wOwyYg9YGfaGmO0WOWMc98/WHluiUW6ycm2RfKxA5ijP6vVFXv7Lu/J1WJxmFi7N0Kg0ZVl3r9MXfkQjkUdgzocz4EBr0HLrL8X1FVNlKrkq8w/Nsn1jX3ZDTR1m0Fk0JNZFyTa1m0WjU7N6bRFJErDSMcPON+WWm/cKhdj47V4rqYOTz6ycq2Aw69m4uz3y6AmgVCkY9k/wMHs3DzFaDbiCDmrFBqvXF2lWWhQzJSwOi6xSBOFC65/xUqlUcIcd5OMlLE4z9XKT3ZGCzuaxyP2ScXbUrLbIxQuoRwFj7I3UbrSp5Gty5pI5zAtxhU6LxWnCFXKQ3M+iG2U7Y7kzwMLlGbQGLZW8yGoHvSFmu4nCYYVasY5SrcQ/78EaMPGuH32UVDFJhzYul+uBYb6vZo1HLt7sjX+sXHu9aLC383rbZDrValXG2Vy8ePF1Ne8ODg4ol8syLRVgMBiy9cIuz//Zyzz/5y8T30pO9G/gxAyt3eywd+tQtqOOrAVJ72fptfoic3DqUSmVxDcztL8GhRLfFgOlYym1J+Lm4M7RRJ9nLKXudwcc3hM9oJWrC+y8dCCXdMKLAQKzXjJH+Qk7A6Ec2kWpVjC1EkKr16HRqlh/emtiQ197bInMYQ5f1EO70WbvzhELl2fZffFAbjQrlApx4m8KS4LMeND0VKPZaDXIjpmbX92V36vTt/PPeHCFnNQKdSwu8ytO/ELQ0EZn1JE5zFFMlVi5ujhRErL7bMyej1Ir1jlaj9Ft9YRN9LkTaGd4KYDNa0Wr1XDzCyd9LZVGSXDJT3onizNqR6/XUs7U8IbdE81sjU7NwuU5kCQZDKpUKYmuhuVMValSMntuCqvbSnI3RXq0+etMOkLzfvZvH42soU9k7NunNnS9WYfJbUApqfCG3aLXlCzhDNgnYJl2r5XQYhBJGpI5zFNICKWcMI0TAdjmtRJdDaNQisA+toMQttJ6UntZ4YjpMtOqtWhUWxNZrt1nw2QzYLQaUamUJPcyaLRqFEqFDOQEQYUeB9vjjTj9rhgZGPQHFFNCUh5ZDmF1W2iUmzKXD8QhoV1vM+gPZU+iVqNDOV2mespULjjvR61VYbabaFSFNUFw3kc5W5UFEmqtitURRzC1l6UwEs8sPTLPv/jMP2ag6FMoFCgUCtRqNSwWCy6XC5fLhdVqfUM36mazyQsvvMA73/nON+wxX8166qmn+Mf/+B+zt7f3VzbwvC2CzniQyW63s7a29rrT2ePjY7LZLJcvX/6Gt0nspHjhP9/k+T97mY0R9+vM48vC60MSJaDIShCNRU1qO0s9f2IhMPvQFPsvH2N2mEQPpzdAa9Ry72u8SNYeW6KYKuMKOITX/NbI9fPUpqw1aDjz+ArtepvkboZytgIKWLt2svHbfTZC8350Jg23ntyQy0lKlVK2yo4sB7G5rZQyJaxu66R6TK0ktOJDqVRjMOqJbSVp1dosPDQzMVfin/YQWhSzK0frcTHXMcLZb7+4J/paI+dGpVrFnVNWAGOxQXI3Q2Q5OGrOZ3GHXROlR51Jx/yFKCgUspJNZ9IRnPPLxG21RoV7zonTayezm5cFHOP5mMO7MaxuC6EFP4PegOFgOGGhbbTqMTmN9Ht9LG4z7VqXRrGB0+8UVtaj5Q458c96GQyGotyXq2J1WWSZNIg+j7BTFmKU8aHA7rVisOjJHORkN8tirkyj0qSaOdlsnQE7ZrsJg8WAQgGxrRR6oxaVWjVRdlp4aAaD1SBcTEcKMnfEiTSUKCRKqDUq0eB3CD+Z/VOv1xd10+0IV9LggqBTN6st6qXmhGLSP+tFb9JhshqolhrE7ifwz3hoVlpygNDqNSxfXUAaDolvp2Wb89CiXw4QDr8d/4wHhUpJaic9YaMeWQ5RTJdwBhxYnCYq2SoqjciMxoc4ENmeUqVEqVLI1t/+BQ+lREUOrp6Ii/PvWuOHfuFvozfpOL263a4cgMbeNGNzNKfT+bqzoHFP+Yknnnhdj/Na15/92Z/x8z//89y9e/db3/g7dL0tgg5AuVxGr9e/IdE9mUwSi8V45JFHXtXtq4Uat764zjN//AIv/8UdWvU2WqMWV8ROakuUDMYOlSqNmpunSjN6s47IUpCDuzGiq2H0Jh35eAGLyzKx2RqtBqZWwyiVCnqdHkfrQjYcmPVNnBwDi16hhMrV5ZLTGKt/dC+OWqdmei2C1qBlOBhMSHrNDhPukJNKvkZgpDArJEvY3FYO10/wMFa3hfBCAIVKQSFZIr2fxeIyY/faiI2yKoNZz/zFadQ6Dds39mmMfHtsbsFBS2yn5NmVXrtHq9GZaCDbfTbMdhNqrQqT1UguXqDT6mK0GCasAELzfhxBO712j+PNBK1qG5PLgNFkJHcsZMT+GS++aQ+D3oD1ZzblZrY7LMCoxXSZqZUQerOeRrkhykAjCTKAzWdBpVOhN+tQKZRk9vPYPFaGg+GE4m3l6oKwdE6V5Nfim/bQa/copstoDZqRgkxPNVedyECdYTvtRgetVktw1ke30x3ZKTcmNv7ggh+9SYfBpJdtCUILfmrFurzxG8x6lh6dZ9AdcLgek103I8sBShlRhvJEXHgibhQKMcV/2vBsaiVEKVPBGbRjtBopJotodBoKydLExu9dcGG3Cybg2AQueiZM5jAvZ/D+GQ+BeT+1Qp3920eywGbm7BTJvTSD/lD0k0xahgOJg9uTWf3s+SkquRqeKZdQ1W0lCcz6iG2emK8BzD8yzbA/pNcaEB958Fx+/3l+4vf/AVr9N2/kD4dDarUa+Xxe9qaxWq1yFvSNHDq/2apUKty7d4/r16+/pvu93vVHf/RH/O7v/u43pEP/VVhvm6DzRlpWZzIZ9vb2uHbt2mu/jk6Pr/zpV3n6T55l68tHVEbKIU/EhUqtElgchxH3lAOj0US1UJPLISAm+xVKBWqNCoffTjlbFf4sEhMn2+CCH7vbCgox/FfOVfFNe2i3OvJz2n02Zs5EaLXabL+wx7B/Yk7V74nhxXGG02m1KaYrr5ANSxJYnWZanRaFWAWby0yn2aOYOrnd4sNzAuFfbcoup8F5P616m1K6LM/qOHx26uXGK/pVjUqLTqvD1HIIhUpBuyGcTse0bhAnZZVKhcVpplltCcvveWH5fSJhVhA+G8BisZA7LpI9EqWtyHKAcrZGrViXiQVavYbUfnYiuEythCimy5jtRlwhJ/VSA0mSKCZLso0CgHfWBUrQG3XUsnVK6SrRtTC5WEEWPoz7PJ1ml/07R/JmfVpOPZ4ZqddrpPfyE/bjM2enKCSLeKbc6AxaMoc5rG4hmT6tqlu9tgAo6HX6HN+P02l2xbzWTlqmMYSXAnin3JQylQnUzeyFaeJbCRSIoVKNVs1gKIlybuvUhn5xmmqxjivoGNl6C6vo2P2k3CdTKBSce/cq/W6fUqoiCwlOzw3pRy6jRpuB4/tJSqdGCBYuzbB/51hQGKaEqk6tUbF3+0h+jvF3rdPqYLIaKWWE6d3i5Vl2bx7KAc1kM/Luv3Odv/uv/iZqzWtvO3c6Hdki+muzIJfL9arUaMVika2tLa5evfqan//1rN/7vd/jT/7kT/jCF77wpj7vm7neNkKCN3IplcoHsjaQJIlYIsbA1uaHf+HvEggIVtWNz93i5S/clctijVITm9fM0UGMfrfPwqVZNDo1w8GQo424vEEldtLMX5ym1+nhCjmweSwc3I0xfSZCYjtF8hT65sJ7zjDsD0kenAQwd9DJxnPbdJpdQSW+EMFsNxLfSsk1+dhmEv1DOmIjddHq9SU6zQ5KpZLYZoL2KRpw9GwIhaTE6XegM2pI7WVFU3v9xANIZ9Rx/t3iMWobNfl90Rq0oq/Q6goY57QXlUbJ3suH8ka99eIeCyPTLV/UQ3gxQCFRwuwwcXw/PrERrl5dZDAYYHYYGfSHNMoNfAseUvdzHHdEluGJuJhaDVPJV2lURHbUqDQZDobcf17gW6bPRDDZjfLz9zt96qUG6YMci5dnyRznCS0KO+b4ZpLQYoCDO0eTczTn/QylAbaAhXajzXAgEZjzcmeE4FepVcycncIRsJHay8ivN7mbAY1EeiePwaxn9pEokiShVArjvX5vIGcvS1fmqBXrzJ6PCsO7+wkWL8+y/eK+zOVTa1Q89F3n6DQ7WFwm+TMx2Uzc/qLABI19j3QmHXsvH8jv6c5LByw9Ms/uSwd4o26cfnFA0Jt17NwQHLVxv2fpkTlKhTLhVT+1XJNissTCwzPcfeq+vPHbPBbmH5qlVhRKxH63T7veRqlScueLQkEXWvBj99pQaVTce3qTYX9IPl4kHy+y/Mg8h/dizJyNoNFpSR9m8UXdr6Bxn33HCr1On9Cyj8x+nm6rx6Pf+xA/8K8/gEr1YE18nU5HIBAgEAgwHA5lh87j42M2NjZeVRb0ViJwXgt37TtxvW0ynTfSsrpUKnH79u3X1ATs9/vcu3dPFiDYbLZX3CYXK/Dif7nJra/c44U/vUV/ws1zmfvPbo3sfq3kEwVcAWG4dfotPvuOFdqNDhqt+mRmaDQEOr6d2WVi6eF50odpUjtZhgPx9zOPLbM+ul1kOYjVbZmwXxivM48tsXfriMhyCJVGSWwriWvKwfHtxMS1XHjXGt3OpNvm2mNLbDwjrlmhUBBaCuCLekjupUmdckgdc9C0Bi3R1RAKlRKtTs29r2xNPMdY0OCNiobz4b1jISJ4ZvJ9mXskik6to5gsn3iljJ5DkiQMZj3hZdE0376xL5ecQMxI3X92G1fQgXfaQ6vWQm/Rc/+ZSbOztceWqJca8uBq+iD7CsdNjV5N6IyPYQfyxyUBZmVSXOGJuHCFHLR7bWJ3kgx6w1PXssjW83uElwJChZUsYfdb2Xxud+Jazj6xQrfdRaFQENtK0SgLxdnGqWv2TrmZWg1RTJU5Wo/JJOfx7cY9NpPNiFqrljllp9+Xo/UY4cXgqJ+UJLIcnMTVIGwYuu0urWqb4/txhgNJngcC0ROMrIRwBQQjMHNKWTemFpjsRsKLAVAIN9b1r0yKSVauLoj+ZsgxEiwkWHpkboIRqFQp+Zsf+V7+5ke+99umGut0OnIGNM6CxgHI6XTKWVA2m+X4+Pib9oW/HesXfuEXODw85NOf/vSb+rxv5vorGXSq1Sovvvgi73nPe17V7ZvNJi+//DJarZYLFy58yyZkPB7ncO8IRVHDc3/6EpVcZYISoNaqmX9omuxxQQxg1tskdlPMnI2y+dWTH5lGr2Ht6iK93mDUW8mgVCuJrAY4uiP6BTqjlumzU1gdZu4/vyOjQU7TBJxBh/w8erNuYuMa366QLmJyGGmVOmSPc4LCfOpajDYDSw/PiWvdTlErNgSJ+soJscAZsBOY9aE367j15PpJaUapYPmRBTa/ukNkOYjFZaaYKmH32iYEDeMh2l67h1ItgmGj3GT6/IlCDcQM0vSZMOVMlcP1GIPeQCB3Roq3seW3xWVGq38loUF4rxwRXQ2h0qhIbKcILwVf4bh57p2inNRpdTm8J55n9dopVZ0CHGEbrrCDSrJG7uiklBda85FYz6Az6phaDaFSq9DqT2wJxmvt+iKpfeH90m2JAdmlK/MTYhKFQmS63VZP7vOI+54EOr1JJ0qpHhs7N/ao5GunnkPcTgyMeui0BEbpa1WES4/OkU8WhOVBpUtyN/0KJI7OqBVy62qL1G5GztTGNtcAzqAD75QLo0Vw2U5njavXF7n/7A7h5eCI61bB5pkUtgCceXyJTrOLWqMmtS+Gdd/z967zD375h9401dbpLKhQKMjMM5fLhSRJlEolLl1646wSXs366Z/+aVqtFr/1W7/1pj7vm7n+SgadRqPBM888w3d913d9y9sWCgVu3br1qkCi45VMJjk+PubRRx8FhDXB/a/u8MKfv8ydL2/SabblqX4Au8eKI2BHq9eKE+dmErVWhdVtlRv3IJhdWrOacq5K4aiMNJSwuszYfTaONxLC/2UlhNVjQRpIstEZCOM4V8BB5jDH1GoYlVpJPlHEZDXKnjUAOpMWz4wLvV7HoDvkeCOO3qTHM+WSIZYKhYK5i9NYXWZSexnZFM5oNeCb9nBw51jebNVaFZIEm6c2Fb1ZqNHK2Qr+Ga8gFRzm8E27J7x31Ho102fD6LQ6ebPVGbVEloKyGk1n0DJzbgqT3cjOjQPZvE2j1zC9JtA8Y8vvTruDWq2emAPR6NTMnJ2iVW9jdVspZ8pkjnLMnotOTOeb7EYWHpqh2+qS2M1QyVUn0C8ARocBR9CKSqcieS8jc+5UaiXzl8QwZ3gpgM1tpVyoYrYaJ65lHMR7nT4anYbUvniepStzE9mHw29j5myUWumUfHzkHDo+KIQW/Nh9NoFF+ovJoLtydZHdmwdEV0ICv3SQwR12svPiwcTtzr5jhX63z6A34Oh+gk6jMxl0EUQC/6yX3HFh4js9DkIanVpI9w1a1DoNd5/6GjzPtUXi2ymC8z6G/SHHmwlmz0VfcQB4/4+/g/f/yLuYmprirVrjLGj8nyRJ+Hy+V2RB38714Q9/GIvF8rotod/O669k0Gm32zz11FO8733v+4anJkmSODo6Ymdnh5WVFcLhVw8O/FZChfh2Up4HqpebVPNVyqea6kLtIyyJs0dZcrEi4UU/tVJDViEZLHpBTx5I7Ly0L/cRgnM+2q0uxWQJd9iFL+qm3x9QTJYmmur+GQ+DwRCD2YDFYSQXF/4xg/5wwsfFNWXH7rGiUqpJ7GRolIUySqE4MfpyBR0CgjoYsvHs1on9ctCBWqsme5QXmYfTTLPapFVvy/MtIAQRFqcZvUmHWq3iaDMOCC+bzMGJuGJqJYjDb6dRbnK4PoJeui2YHScS5vBSEIffhjSUJtA8FqcJu9dG5igno3mK6TIavXYisJvsRoJzPjRaDb1uj8P1OBqtGk/ENUGLmDk3hd1rIx8/2Wx1Ji0Wj4n8YQmVRokr6sBg0qHRaNm9cSjfdzzTk08UCc37GfSHZA6yuCPOiaCrNWhYeGgGFApqxTqx+wnUWjXRtYisfFRr1cyci2B1Wzm6F5N7eSqNMP7bubEvaBELfgZDCY1Gzcazk+ilqTNhiukSnoibfqtPfDvJ3IXpyeCs17B2bZFup08uXiB3lEehgKVRBjt+70KLAUw2I9sv7E3MbC0/Ivht3qgbd0hQNow2I/e/JrisXFukWW1ithnJJ8tkDrL8vV/820Su+XA6na/pd/jtXEdHR+TzeWw2G8VikUajMdELMpvN35aM7Ed/9EeZn5/nX/2rf/WGP/bbZb1thARv5Ac4bgAOBoOvyy86bQT38MMPT+C8X836VkKF8GKQ8IeDfN+Hv4dKrsqNz9/i+T+/yct/cYfpMxH2bh1OlCQuvHuNeq1Bq3Oiaoosh9h4VogIlColM2encAaET8o4aOTjBRxeK7GtpDyzAzAcSMQ2ExMqqdnzUdqNDp6IFZvLwuF6jKnVENmjPIUxAUEBC49Mo1ZrKCbK8n3NDhN7tw6plxroTTrmLgh5cuYoJ9f3j+8niCwHqORqqLVi+r7d7NJrd6kW6hMbvyNsw+qwYLaaUKnUJHfTBOa81IoNju+LDV5r0HD+XWsAHN49UWz12l2SO2khBfdaCc75kCSJcqYqB4edlw5kcrRqMGTtsSWq+RrNeguVUjUxMOqZEpukQiHKh8VUGbvPRqvWkpViFqcZ/4KbdrtNdkds+oPeUFg59yRyR0lsAQtWt5lhb8iwL8kzR9V8DbPDhDPgQJJEeTF3nKdZa+H021k/VQp1h50E5/10mh15WFOr19Bt9XhpZL7njbrxRd2oNCq5lFcr1jm4e0xw3s/eywdCXGEzUsxUUGrg4JZ4HZV0DY1ew+z5aSRJcNwS2yla9Q7R1fBEb9A37RH24qPPcywkYChx8y/uyq6rJocJzalrGROzFy7NcHD7iIVLM6g0alIHGfzT3okgpFAo+PHf+mHe+f3XuHXr1tsK+yJJEgaDgfl58Ztqt9uyIu7o6AiVSjUxF/RGZUEP4qXznbbeNkHnjVzfLOi0Wi1u3ryJUqnk2rVr6HS6r/cQ3/LxX6282+ax8p7/6Qne8z89Qbfd5c6X7vPCf36Z5//sZQrJEmuPLU382A02PZG1AIoToRfDwRCjzSj7v/imPbhDTrQGLbe/uC4rjjaf32XtsSV2b+4RWQqK4cXjPL4pN5vP7zIcDOV+wdnHl+l2+kythIltJmhWW8w9NM3ejRPYqdVrYWo1SLPUkjOtdqMjXCSf26bfHTC1GsbiFJbdmyP1GAhEzMKlWXLZKv5ZL4E5L0f349i8FkqJCqX4KZbZ9SUkoNvsUCs16Hf7hBYCbN/Yk5WA4cUAnqiLSrYmb+iVbBW7x0o+XqTb7jJ/cRqtXkun3SN7lJPtBhLbKUKLAbQ6DXavDbvXytFGHFdQnMhPs9CWry6g1aqp5GuyjbLGoCK5k6FRbKEeZRgmh4lGqc7+7dGGnqqhRDjWdhodAite1Co1nXoHaQDHGydZlDNgxzftwWDSM3NuiqP1OFa3BbXmZOBWOYJ2Gi0GubwJ0Kq1KKbKJHbSGEYSZrVWTbfdk7Ojw3sxTDYjZpeJaqbB4pVZhr0h2VgBh9c2QVAwWPUsPjyLAkF1TmyLEudpJ1utQcPyI/OYbEb2Ru+9JEkyzfz+zcORDYOXbqeHWiPs1EEcAJRqJXPno9QKwvm2Vm6Q2k3z47/xwzz2P4hZuuFw+LaawP9aLx29Xk8wGCQYFLYnlUqFQqHA4eHhKxRxrycLeq1W1d+J669k0FEqlTLL7fQqFovcunULr9fL6urqA5+sHlSSrdVrufy+81x+33n+l0/+IBsvbPGnv/c5/BkP6Z0cGp0a/4yH7WdPSisLl2exuS0TE/f5eEEYzP3lXSGhXQrS7/bRGbVyyeng7rHcfC8kS6xcXRAlnM0kq1cXuXuqNKVSK7n43rN0ml2cQbsM/HSHHdx7agTANGoJzHtxeG3svHggZ2rHG3HWHlvi3tNbQkod9dCqtzGY9dx/bgdJkuTNf+pcEKkrptGLqTKpvYzoDZyifWsNGi6975wY0NVp5KBjcpi4+9R9+r0BNo+V4LwPnUHL9kv7NCsiIO7ePGTh0iyxzTjukJOplRDVYh2tXk18M0Wn1SU1AqnOX5pBGkrYfTbUGhWFZImZs1Mc3Y3JGaLJbiSw5KHT7NI6FPJlgS/qc3DrkHq5KVuLS4Mhid207AOUup/FM+WkWWuht+mYOh+kURSZVqc1CcscY4YkhCS8VmzgCjnJx4syjcEZsBNeDiINhtwf9X9a9Ta5eAGNVkP2OE94KYjNbaFZa1Ip1Mjsiyx0+4V9rC4LNo8FjU7D6tVFUgcZeh1RvjwtPPHPeEdKwxZ6s452vYNaI+wjxvQK/6wXT9gl5NNfEkGykqvSqrcILQTYu3fIzLkp9CYdxXQZg1kvZ5fJ3QxqrZp//gc/xsN//YL8vMPh8G2V6XwzybRSqcThcOBwOJifn6fdbsuKuHEWdFoR91po0f//IJl+2wSdN/qUo1Kp5MAgSRKxWIytrS2WlpZed7PyjfAJL5fLZBpJvucfvZfV31ilkChx+6l1/usfPoVKo2LQG2C06Ok0OtwYNbzDiwEcAQcKBfKJuFasc7wRxxt1c/D8MbMXougNOvLJIhaHSW7YZg5z6Ixalh6eYzgYsnh5jqMNYaE9fSYyQVkIzfvxzXopJIryab/fET23W3+5jkKpILDgxeq0ojfpuD3K1AqJEsWk4Kod3Dlm8fIsQ0k0jwPz3gmFGggju16nz/TZKSEJ7g1YeGhWBn6CGCoNzPpI7WfkeZZKrkp4KcCtJ9fR6NRyhqPSqrj35U0kSSK5myG5m2H16gKJ3TSz56MMBgOONgR1evuUl834Wgb9Id6om+ONOJIENr+Zg5djDHpDGfzq9NlJH+XkYdPsUR6zw0xiK4lSrWTp4TkUKgX93oDEVopWvU2j1KJAGe+si06rg8Vrwuw0kt7LEpzzU0qVid0/adKfeWIZhUJB6dQAr/DpiVPJVdHoNcxfnMFg1VPJ1zge9aLiW0k6DSftdpd+r8/ilTkYSlSLdfrd/oQQwOG34Zv2oDfqUGvVHN9PYHUJv6o7T4nPU6VWsfzIPHqLfmKmrFaso9aoJsjTKrUgWO/cEMHl4M4xerMOX9RDvdRg5doC7UaH7FGef/I7PyLmc3o9+YD4dgs6g8HgVZfM9Ho9oVCIUCg0kQUdHBywvr7+mrKg/yfofAcvlUpFv99nOByysbEhs9gcjtePRX/QTGe8EokEGxsbLC4uMjU1hUKhwBNx8d6/+wSr75lnd2sPRVHL+tObfOkzJziMfm9AajdNPlHE4bMRnPczGAypnJpU3791hCvkRKNV0W52Wbu+RCVXoVFtoTfpJ1hrzqAd/7QXEM3+cqaCxWlCqVHx8qiUZ7YbmT47hUavlmWv0lCimCzTH/TJPV/E7rfiibjotfuoNWo50G29uIdKoyS0FEDqijJaPlEknygyd2Ga26eMyMaS7Xa9g8Vlplaoo1AqsLos3Bj1M+xeG8F5H3qzgbtfEhtjr9Nn9+Yha9eXuPul+wTnfYIEkatg99hktxBTCAAAdipJREFU2fBYoHHmsWWatRbLjy6QOcxRSBRZu770imvxLbnoN4foDDqavRbDwVAQyp+8x3Ao4Ym48E65UWvVbDy3LSNdtl7cGzm7xgnM+rA4TZRSZYw2I0frwtytMvKL8S956A67OKfsKFQKaoUGM+em2H3pgHZDZFY2j5W5i9O06m2KqUPxmts9Ou0uqf0MjUqTwJwXp99Bvz8gthWnWRaZ2vYLezIOyeax4o16yMULIEn0u4MJskR4MYDNY2HQH1IrNWiUG1jdZgqnBCrukJPggjBOG8usm9UWqb00FqeZ1F52ND9mpV6sMRgMZXFGPl7EaDXwU//nP2HpyjzD4ZDhcCj/jgaDAZIkvW2Cz4NexzfKgk73gr5RFiRJEs1m86980HnbqNeGwyG9Xu9b3/BVri9/+cssLCxweHiIJEk89NBDb5gD4KtRx329JUkSW1tbJBIJzp8/j9v9SiOqdDrNwcGBjN8Yy7Fv/uVdXvzcLbmfAUIckD7ICv7VagiVSkWv2ydzmJXneUD4kAwHwj5ZzIrE8U65aVZbAjA6WitXF9DqNBRSZeJb4lTsnXIhSWIwVkAnQ5hsJlr1lozBByEn1ujVtKsdAgs+EZhSRUxWs+wNBMJrKLQgiMOtWpuj9Th6kw7vlHtC2j17IYrdayO9lyE5YrWdlklr9AIwqtWrUapUE0o2pUrJ4uVZEjtpwksB+t0B8e0k02cir5gXOf+uNfq9vgwflSQInfGRuJeRHyuyHMQTcRO7H5dJ3HDiqyPcNkMo1SrUGtUrwK8rVxfIHOXxRz10Oz2O1mPMXZhm+8b+RLY1dSEAkoJOrSeXxuYvzchOpGqNMPizuy2kDnITDLvoWpjUfgaFSkF0JYJCoaDb7ZHZz054GoUW/SgUCmzuEytt75SbRrUl44gUCgUr1xbQaDXkYgW5D+gKOVEA+UTxhENn0tKstuTeFoDVZcFoE0IIod4bUMpW+Mn/8OPMXZiWbzcOPPv7+ySTSS5evCjPyCkUCjkLeiuC0N27d7HZbG+ohHs4HFIul+VSXLPZxGaz4XK50Ov1uN1uVlZW+OxnP8tjjz32mh7713/91/mlX/ol0uk058+f51d/9Ve5cuXK171tr9fj4x//OL//+79PIpFgaWmJX/zFX+T973//xO0SiQQf/ehH+S//5b/QbDaZn5/n3/27f/e6B2bfNkHnG1lWP+j68pe/TK/Xw+PxvCHk6tOr2+3y5JNP8t73vvdV12v7/T63b9+m2Wzy0EMPfcNmYTabZWdn5xuCBsdy7IO7xzz9xy/I1GOA5UcX2Lt1SHDOh9lhIhcrYvNYOLx7PKGWW3pkXrhoqpXEt5LUig1mL0RJ7WbkfoY4YUdp1Trsvrwv338Mk6wV6/hnvbgCDvq9PpnD3IQs3OozIw2FLNriECdmpULBcChNYPWDcyIzGfQH8rCo3WvFaDUIzAzg9NsJLwVQKBXce3pLHko12Yy4R1bYoQU/Dp+NarGGSq2eYJSNCdiD/hC9WUfmIEclX2P23NTkrI7DiGvGjnKgInsg+GoKhXhfx8HKHXbii3rQm7RiQPaUgdx40HJMiyimyjj89gniAcCZx5cFHFSvIbmXoZypsHptUe6BAegtOgLLHgatIZmDPJ2G+G0sXZlj9+VDBv0BvqgHd9iBQqVg8/ld+p2T7Hv8eXqjbswOk/B/MmjIHObkLArEwUWjU6NUKWVjveC8AJCOe3E2r5WZMxH6vQE7L+3LFGh3xMmwP6SYKgu/Ib+ddqtLrVCbsFhw+O38qz/550ytTsqhJUliZ2eHVCrFpUuXMBqNExnP6a1JqVTK/70Z6/bt27hcrm+rhLvVasmKuJ/92Z/l5s2bVCoVfuEXfoEf+ZEfedV21X/0R3/ED/zAD/Cbv/mbPPLII3zyk5/ks5/9LFtbW3i93lfc/qMf/Sif+tSn+O3f/m2Wl5f5/Of/f+2dd3hb5fn+bw1Llmx5aHrveMbbScgAAgkEQhI7ZbaUDFaBAoXQQqCMb4FCKbS/sAO0NIxSIJuQkBCyCCQkxHvvbWvZsmXJ2jq/P5RzItlO4qXhcD7XlesCRbZfK9K5z/s+z3PfB7BhwwacOHGCioPRaDTIzc3FVVddhfvvvx8SiQSNjY1ITExEYmLilH7vS1J0urq6UFVVhYiICGRmZk57vchms+HgwYO4+uqrx2WhrtfrUVJSAh6Ph+zs7AueFavVatTW1uLyyy+/4Pe02+3QKAZw5kA5fv6mDIYh4ygblIyFKVB2qh13sgPDaKvqdLGWARx3lLlLHfHJ6q4+ar4m9bJZaDzTApvVRu0qgkSBaKvucpnzIZM/OTyOwy1ZOwSr1YbBniGXi5soNhRMBhMh0iCY9RZ01HQhKuWckSfg6NhKX5QCJosJRYuS2lVIYsWwW23o69aAy+MgJj0SXB4XukE9NdAKOI4IeYFcDGuNiEiSwWq2or93ADyBP7rqz3nakaahLD/W2ZpYN7h8DoLCAqlIbyaL6ZjVkTha0smLKMuP5dil/NxM7XBYLBZVT3ImfX4yelsUCE+UwWK0oK2mE8kFiaOcAnKWzIbFZMFQn45yrnZ2CmCyGBDGhCBEFoT+zkGXdvbkOQloLG4Fx98PsRnRYDIZYLIYLp5u5L+TVjUEcZQQJoMFHTWdiEqJQE+jnEptBRwDoyAAjXKQctqOTA7HoHIQuoFhKmJBEMrHgGrIZbZJEi2C1WKD2WBGVIrDesegM+LJzx5GeKLM5XcmCAJ1dXVQq9WU4DhDio7NZhtTgBgMhlt3QSUlJZR/mycwGAw4cOAA1qxZg4SEBHR0dGDhwoXYuHHjqB3ISObNm4c5c+bgrbfeAuB47aKjo/HQQw9h48aNo54fERGBP//5z/j9739PPXbjjTeCx+Ph008/BQBs3LgRP/74I44fPz6Nv6WDS6qmY7fbUVdXh97eXgQFBSE0NNQtbZjkG308dZ2JOh4wmcwLNikQBEF9GIPEAiz57eVYeoejHbvy+1qc3luK0u8qESILoS5aqo4+MFlMZCxKgc1iQ3JBAtpqumAeNiFtfjLVGgs47uTjZkehr3uAWofFaAGXx6GeF5USgSBxIDhcNsoOO2ohJoMZdaeaEJ0ZjoF2DaJSIsD156CnRQFpjBgtZW2wWmxQtTnqAzFZEWCz2ZAlSGAxW2DUmRCX6VrPEEc5OtD0A8NoPNsObDKYYdCZIG91tERHp0YgSCSA2WiGqrOP6k4bVGkhjRGBzWGDy+cifX4yeloUYDIZ8OP4udS2RNGh4IVywWVxoRMMwzBkBE/Ag9lgptrUJdEihMVLwfRjovLsTIpRb0JbVSeiUyLQcqoDMWmREIgCMaAYAD+Ij5qzrdgaxeBZq6Akauq/t0UBjXwQafOTUeYUSBcodPju6fp14An8YRhyGJBKwsTUbksgCUCwTACewB+Np1tB2AmYhs1o+LkZ6fNnof50CyJmhSFIFAiNfBCBoXw0lThcnMmB39R5SbBabEjMiUNvq2MtCTlxqD/dRJmICoSBSMqPh0lvolzJrRYbLCYzmkod4YfSGEf3ns3mGIAls3XqTzchIkmG579+ApIokct7mKyzDgwMoKCgADweb8zPAXBu/IGs/5ACRL433XUM5+naEo/HoxxUfvzxRxgMBuzfvx8CgeCCX2c2m1FcXIwnn3ySeozJZGLp0qXnjUcwmUyjSg08Hg8//PAD9f9fffUVli1bhptvvhnHjh1DZGQkHnjgAdxzzz2T/RUpfEZ0pioOJpOJSh6dP38+6urqps3hYCTkG/xi37+jowP19fUTcjy4kOg43/mRd3rk68bx5yD/2mzkX5sNgiDQXNaG03tLcXpfKZTtjt2O8x12QAgfKVc6vMfIoUg/LhvC8FCc2e+40PKDeA5DyRC+Sy2ku6EHQaJklB2ugTAsBJJYEfrVGgQI+FSHGlmkzliUAo1iEClzkzCg1qK7vhcplyWi4VQzlYvDZDGQuigJhJVAQEgAJTrC8FDK6Zkn8EdMWiR4An+0V3dRu6POuh7EZ8ZA3qaEf4A/0hckwzRsgtViR193H3QDw1Rcd3iSDP58LvgCHjg8P3TW9SA0IhimYRP6Oh0XVRabhYyFKfDz90NXw7luL7PRAnW3Q9R4gY61MNksWEzn5mM6arvBE/hDFiuBuqsf6QuSYTZa0NuiQFicxDVYz4+F2VekgbA76nEdNd1gMBmISo6gIrJJd2tRZKhLds+QSg9pjBiNJ9vgx2NDFBMCPz8/8AP5qDn7M8hhXFLgUuclwWxy7DATsmMdURlObs85V2fAYrYhPEFG1bZksWJUHa9zeOWxmIibHY3QsBCou/ooNwJlhxpcvh/6egZgt9kxqyABbD8WCDuBjZ89hFBZiMt72G63o6qqCjqdDnPmzBn3nJzz0drIXZDz59D5eVMRDW+4TOv1jjpsYGAgwsLCcP/991/0a9RqNWw2G2Qy152kTCZDXV3dmF+zbNky/POf/8QVV1yBxMREHDp0CDt27HB5HVtaWvDuu+9iw4YNeOqpp/Dzzz/j4YcfBofDwdq1a6fwW/qQ6EyFwcFBlJaWIiQkBPn5+WCz2S4t0+7gQm3T5I5LLpdPuGPufKIzUnAu9IFiMBhIyo1HUm48fvP0r6DsUOPnb8pwel8pqr6vhUDksKRxTv5MzIlFkFjgUm8BHHfzdaeaKFcEfjAPTCYTld877vb75QMYUA8iOj0S8kYVkuckgslkoKdZjsikcEroyJZbh9+XDYm5cWiv7oLFZEViXhzqfnDyHosIRlRKBAYVWqpmZRgygsVioeJsl1lsRhQCQwLAYDFQe6IBNqsdhiFH/s+s/AT0tasRnigDm8NGV0MvxJFC9DYrXI78otLDACbA5YTAPNwDs8ECWZwEnfU9VFFdGitGRGIYTEYzZQdj0Bmh7u4Hi+1IxCQHZHUDOpgNFqohQqMYREAIH5IoERhMJtIXJKOn2VE3i0iQoer7c+agoWEhiM2IgkF7bj7GESnhR3XvSaJFkMaKwWQzqKM8i8EKeb0aCXkxqP+pGaHRwRAIA2AYMEIYFkJ1Emrkjh3I7EUpMOiM57r3zs5wlR+poY6wAoL5SL0sCfpBAzhcP1iMFthtdrD82Kg6XguLyUrNZLGYTLRWd1LNCo1nWpCUF4/ndv4RQSLXLiybzYaKigqYTCYUFBRMOt3zYrsgq9XxnpnKLmjkcKgn0Ol0YDKZY+78ppPXX38d99xzD1JTHa35iYmJWL9+PT788EPqOXa7HQUFBXjppZcAALm5uaiqqsLmzZsvLdFhMBiYaImpp6cH1dXVSExMRHx8PHXn727ROd9Ox2w2o6ysDBaLBfPnz5/wG2gs0XEWHPJDNBGkMWLc8LuluOF3SzGsNaD8aA1+2nMGOo0eQ/16hMVLoVEMUr5gwZIgxM2OAmEHdURktzlqSCaDCT1NCoTFSxAoDsCgegBsNhftFY4dTsPPzeAJ/BGeKMPwkMHRJt3Vhz75AOJnR6Py2LkLLU/gj4zLU2HSmxAkEjjMPBmOwnXlEcfzeEH+CEuUIlgUhNoTDdTdeXv12aHU7+uo9mW9dhg8gT/qTjY5itRnBxLJC2hibhw0coexaHiqFL2NKqopgc1hI3fpbFjNVhh057q9/PlcNBa3OLzEgniITo2EH5cNVWcftYPqqOmCNEYEm9Vx0UtfkAyTwQxt3xCYDKZLV55AFIi49CiwuWxEp0Wis7Yb/CAegoSB1DEbi83CrLx4BIkFLjucfvkAAoR8tJV3gsvnIDYjCkw2E2w/NiVCms5BaDoHEZMdiY66HkSmy8BgMCFvcuQLVY1VTzJaHLut2m4QdgIx6ZEo+bbybDYQA7HpURBFC6FoVVENJX3dGoRIgtBR1wMGwzHwy+Gy4S/g4U9bHgA/yPV9b7PZUFZWBpvNhvz8/Gk1zxy5C3L+M9YuaDxi4q2dTkBAwIQ+32KxGCwWCwqFwuVxhUKBsLCwMb9GIpFg165dVDt3REQENm7ciISEBOo54eHhSE9Pd/m6tLQ0bN++fQK/0dj4lOhMBLvdjoaGBnR1dSEnJwcSicTl772x09HpdCgpKYFAIEBeXt6EJpFJRorOVAVnJPwgHuavysf8VfmwWW2oOdGAssNV+HHnz9RzgiUCNJe1Q6fRO0wpCxLgz+eir1dD7VjkrSoE6YfBZvnBaNIjbf4sWM1WDKi1YDFZLhP3AlEg4jNjwOH6IW52NNprusAL9Ic0Vowyp1iC+MxoCMNDqRZpADDpTTCbTCj7rgosNhORaWEICAqAP59L7XpUnX1QdfYhY1GKYyh1TgIABjpqHUdJIwv3sbkRIOwMxGVEob2mG1azFYm5cag4Wgub1fGeCU+UISJRBo1igDpKGtY6ElI7ahyhd2SAnNloRk+TAvqzA6P9vQOQxTvej0HiQAgjQtDdIKe6xOqdbGgiksIciZ7DJnADuDDpTfAP4MJoMKPRqZ4ki5fAarOg/qTja03DZjSXtSMhKwZ1J5uo+RiNQgOBMBD1pxzP6x48ayM0OwwquRoxWRHQKnQYUGgdFkxO9SR+EA/pC5Kh0+jBD+ZBPzAMu50AP5iH0rMiFBoWgvB4KTg8P9Sfbqbmk5pKWpGzZDY2fvoguHzXIzOr1YrS0lIwGIxJfy7Gy1jHcKQATWQX5I2dzmREh8PhID8/H4cOHUJRUREAx+996NAhPPjggxf8WnKo1WKxYPv27bjllluov1u4cCHq610/Nw0NDYiNjR3/L3QeZqTomM1mlJeXw2QyYf78+WO2H7PZbJhMpjG+enoYudNRqVQoLy9HbGwskpKSJi0OTCaTEhpnK5/pEJyRsNgsZF6Rhswr0vDb525Cd0Mvig9W4PTeUmpC3mywgLDb0fBzM8xGC6LTIsHkAmazFQOdg9AOOc6ha082IjI5HHaLHUEygeMoqUkOLo/jaLV1ak2OmBUGYVgILCYrVSwXiAJhNlmpwr0wLAQRyeEOM8mzVis2qx2KFhWE0RYoT/VBFB0KUXgohrVGBATzKHEh3ZPTFyRDPzDs6OI765wcNTsM7aXnajUcfz/kL8vGsHYYAcF8KjohRBqE0u8qYbcTVFonh89Bc2kb1VbeVtWJhJw4dNf3OHYwGdEYHnIMkpLR16oOR+MEVU8K4oHL80NXgxySaBFMwybqqJLtx0L6wmRweRzK+BQAhoeMUHaqoWxVwz+Ai9j0KDBYTBB2O/W7OuIylIibHQ1Fq5q6Ceis70FcRrRL4wQARGeHQavVIjxZCnmTCoSdQHxWDHWURxp6SmLE6G2UUycQGvkAZHESVBytAYtz1g2Cx4EoUog/bL4bflzXHYzFYkFJSQn8/PyQnZ3t0d3DWMdw490FeXOnM1E2bNiAtWvXoqCgAHPnzsWmTZug1+uxfv16AMCaNWsQGRmJl19+GQBw6tQpdHd3IycnB93d3fi///s/2O12PP7449T3fPTRR7FgwQK89NJLuOWWW3D69Gm8//77eP/996f8e/qU6IzneG1oaIjaTVx22WXnvWvy1E6HIAi0tbWhqakJs2fPnnKLpXNnHCkyzg0D7oLBYCAqJQJRKREofPC6s+7Y5Wg404JjX5yg2mo7a7sRlREGZaMaodJgJGTFYlhrAIvDQkeNI5Ka9AuLy4wGYScQGBIAXiAXXQ1yRCaHY6hviNoxkcLHZDHR1XCurZkAAXWnGvJWFbh8h7P1SGPLvk4NtOohBIcJ0F+nQUJeLBgEA/JWJSISZS6ZLUwWA1GZMnA5XGq3RdgJJOXHU4V7AIhKCUdYvBTdTXLqKG+o3+GOUHGkBiw2EwnZsfAP4ILJZKD2pybYrDaYzsY0J+XFo6/H0b3HZDHQWdcLSZQQinYV5SMHOFqYuTyO4xiuXweL0YLQiFDIm5Xolw8AcBi7yuIl0Gl1aClxzB0Z9SZ0NcoRIg1CT6Oc6pgbVGvBYrOo12ZAOQg2h42E7FhYTBakL0iG/Gx3WcqcRBcR4vD9EJ4mxdDgEOVuTRCOGSvS3To0LARh8VL4B3JR/UMd7HYCdqMFTaVtuOKW+fjDe3eD7ef6WTSZTCgpKQGfz0dmZqbXnQbO14xAdoSSuyDy7z3NZHY6AHDrrbdCpVLh2WefhVwuR05ODvbv3081F3R0dLi89kajEU8//TRaWloQGBiI5cuX45NPPnFx258zZw527tyJJ598Es8//zzi4+OxadMm3H777VP+PX1mTgdw3BVd6B9bLpejsrIS8fHxSExMvOA/TltbG/r7+5GXl+eOpeLUqVOIiIiARqNBX18f8vLyxoy4nigWiwWHDh1CXl4eQkJCvJLTPhKz0YzT+0vw7WdHYNSaUf9Di8vfpy9MQXuVY+4DINBR243Y9Cg0lbS6zIrMvjwVdrsd5mEzWs8mdcbNjoayQ00VosPipQhLlMIwaHA5hpLGiGC3Eejr0SA6zZHdM6TRwzRscolP5gb4ITgsCBwuBwGBfCja1RjWDiM4QgBV87kmCYEoEEm5cRjWGimXbccgaDLlOu240ErAF/ij/GgNFdoGnHMjCIuXQhQZCp1GD57Af1RXWHJBIkwGk0tEdnxmDHpbzjU1+HHZSF+YAsJGoLO+myr6S2PFMOgMGOrTU/Ukph8T+n6dy04oICQAobIg6AcNCI93OD0rWpUQRQld5pjYHBZS5yaBACgHBsAxLEyFyDEAYXQwhBEhGOwdgqr93GtG/s5+XLbDDYLnqCvd89odYLFcBcVoNKK4uBhBQUHIyMjwuuBcDHLnQxAE1Go1ampqMG/ePLDZbI8Npn7++efYsmULfvzxR7f+HG/jUzud80FOLnd0dCA7O3vMKduRsNlst+50GAwGWlpawOFwMH/+/Gmx2CH1Pzw8HBUVFWCxWJBIJJBIJBAKhV774A7ph2AJNmDty7cgPj4eLeXtOL23FKf2liAgiE/NA9Wfdly4Zl+eCv3gMJLnJFIdUukLklHzYz11QebyOMi5OgOGISOYThcsR/BXI0zDJkc4WXI42BwWehrl6O8dAAB01HQjPEEKg85EHUkZhozQDegBAlA2nwuz4wVxERodjMCgAHCSuehu6AVP4A9RRCgVc81kMZGY67Ddcc79GVAOQhYnQfG3lY4E0/wYsDgscLh+VH6MvFUJeasSGYtS0F7dheQ5iSDsBNpruxCfGYP6U00uIpR5ZRpsVjsiZoWhvaoTNqsdUSkRqPupCaZhhwiFJ8ogi5NA2a3CULvj+HJYa4BGMeDwblMOUvWkIY0OxiETNfyqkQ8gIIQPcaQQbD/2uY65IQMiksJcGgmCxAIk5jh2quQOBwQgCRej/ieH4AcIeQgOD4IgOAB1Z/99Sb+7lb+/Fnf97Tejbv4MBgOKi4shFAqRlpbmU5EF54MUFZVKhdraWmRkZIDL5bocx5HPc9dgqk6nu+RjDQAf2+mMlR5qsVhQUVEBvV6PvLy8cZvh9fb2or29nYqUnk60Wi1++uknBAYGYt68edOyGxnZMEBmtKtUKqhUKlgsFohEIkilUojFYo9E5wIO/6W6ujqkpaUhIiJi1N+rOvtwep9jHqjmRD0SsuOo1mKSnKsdE/fa/nNhbuRdM+AQ8Oi0SEijhehuUrh4is3KT0BbVQcIAohNjwSXz4XVYnOE1DkdV0UmhzmOqMJCAAYDnbXd4AT4wWq2Qtd3LuFSHCd0WPcYreio6YbFZAU/iAdJlAjtZ+/8pTFiSGPF8OOyUXaoymmeyOHpVneqyREjIAlCX28/hLKQUfHLpPDyBDwo21WOuZ35s1D7UxN1c8Hlcx0tzHpHvPlQn2P2KC4zGt2NvbAYrVQ9ieXHQk+zwsUNQhojgtVsA5PFhDROAqPOiEG1Fmw/NtVZB7g6MJCBen7+fohJjaA6FpksJmIzoiCKEKKzrtvl62fNiUfjz61gcVgQxYbAn+ePjEUpWPf8raNutvR6PYqLiyGVSpGSkjIjBIdEpVKhsrISGRkZLnMvI1uynd08pnMw9fXXX0dxcTF27tw55e/ly/i06JDdYAEBAcjKyprQhfZiHmaThTzi4/P5kMlkVLLgZCHfxOTd1FgNAwRBQKfTQalUQqVSQafTISQkBBKJBFKp1C19/QRBoLm5GZ2dncjOzoZQKLzo1+gH9Sg7VI3T+0px5kA5jHqTYxDR6ZgsWBqExJw4DPUNoa26i+p+crZ9EUcJIY0Vg8vjoOJojYu/WcrcJDSVtiIsToIQaTAGVFpw+Rx0N8ipnQIASBNEYLAYCBWHor+7H8qOPkhiHIV7rdpxcWdzWIjLioJ/AA+d1d0YPDubExDChzAsBJ11PY5jrbRIgCDAYDLOHUPBcaGelZ8ARZsK4YkymI0WtNd0Ijk/YZQI5SxxWA3pB84Zi6bNn4U6JxGKTo2AKFqIzvpu9HWcE5e4zGjIW5Swmq2ISY+Cf6A/TMNGKNv7qCFZwOGF5ufHhkAYCJYfC10NvWAyGOAF8SB3CoKTRIsQkRQGg86IjtouR2YOh4242ediskWRoQiLk4LL56D8aA3VWg4AKx5ZiuxVKdBqtRAIBBCLxVT3aGlpKSIiIqbUTOMNVCoVKioqMHv27FGDls5czJ5nKsdwL730Erq6uvDJJ59M6utnCj4rOkqlEhUVFYiJicGsWbMm/Abu6+tDdXU1rrjiimlZG3kRbm1tRXZ2NpRKJbhcLmbNmjWl7+m8dR9vw4DRaIRKpYJSqYRGo0FAQAB1DBcUFDTlDzsZ563VapGbmzupLb/NakPdqSac+roEp/aWQN6idDgTp0ahqdRxYfPz90P87GgEiQLRWNxKXfSBcyJEXvQJux0cf46LmzTgmMFRtqsRFi+FyWBBe3UHJPEiqNr6XAww0xemgMlkUPlDBAFHyJrOCH2/YyckjRNBFCUEYSVcxCUgJADCsGB0N8oRkx4JfhAf/b394Av4Lq7fTBYTKXMTYTVbweaw0d0gh/ZsWqazCPGDeEibnwydxhGqR9azUuYlouHnFhB2AqFhwQiPl8HPn4WGM60uu7rYjCgoO9QIFgsgihRCp9HDbLJAPzBMDbUCjiiCkLBgcHlcDCgcaaOBoQEIFgvQ7dTIkZATC4EwEB21XVSAH4vNpJywuXwuYtIiwOayccVN87H83iUAHF2karWa+mOz2SAQCJCQkDDh8DJvolQqUVlZeVHBGYvp3AX9+c9/htlsxubNmyf8O8wkfEp0bDYbLBYLdXHPzMw874DTxRgYGEBpaSmuuuqqKa/LarWisrISWq0WeXl5EAgEqKmpAZPJRGpq6qS+p3PnDDB5yw6LxYK+vj6oVCqo1eop14HI4VYAyMnJmfTUuDMEQaCrvhcVx6rx/dafUH+qGQRBwD+Qi/AEGeUIHZ0agWCJAGw/tkuEN+Bof64/3YyY9EjwAv2haFMhLEGG6h9cRSg662zbdrAAXY1yDPXpMCs/Hm1n4wEAx3FTytxEGIdNaClvh1Hn2CGJokMxrDXAMGhEoCgAYXESMFlMDKn16G05d+QXGBqAEGkwLEYLxFFC6Ab0ULSrEJEY5iJCLD8WMhYmw2axQ6MYpCIC0hcmU2mdTBYTMWmRCAkLRnNFK4aU5yIpUi9LQsPpZrDPFu79OGzYCQLNZe3UDhFwOH8Paw0QRQkBgkBnXQ8EoQEwGSwu0RUxaZEIlgbBOGRE29lsH34QD6KIUCrgTRorhjRGDD8OG2VHqkHYyfcnAw+9ezeuvn205b5Go0FpaSnCw8PBZDKhVqthMBggFAohFoshFotHGXr6CqTgZGZmjqtWfCFGtmRPdBf0yCOPIDQ0FK+99tqU1uHr+JTokC2WQ0ND1MV9sgwNDeHUqVNYunTplNZkMBhQWloKFovlkvdRX18Pm802amp3PEz3wCeJ3W6fUh1Ir9ejtLSU6jhyV+fcgFKLMwfK0PBzM45+foKyyucH8SCJFqG9ugvC8BCEJchg0BnA4fi5dLKRcQMa+SBEkaGUO3NUZhi6KuUuP4t00O7v0aD37BFTckECWio6YDVbwWI7MoKCJUFQdqhdEjJDI4Nh1JlgNVoRPssxZ6MfNMBisFDGmYBjJySLFYPj7we7nUBnXTdsVhuiU87VTABHaF5cRgwG1UNor+6kLH5S5iVSw5zSWDEkUUJweRyUHalxydtJmZeEppJWhMdLESINgkapBYfnh+6GXsqkE3CIN8efA/8ALlRd/VC2q1xiCADHLnNWXjy4fA5aKzsxcNaokxvARXi8FG1VneAJ/BGdGgmWHwsr7rsGi341Op+lr68P5eXlSE5OdvEX1Ov11A5Io9GAz+dTx3DBwcE+0c02nYIzkrEGUy+2CyKtaf7v//5vWtfia/iU6DQ2NkKhUCA7O3vKd9jDw8M4fvw4rr322klf1Mk7OKlUivT0dJc3SGNjI4xGIzIzMyf0PZ13OO6cv5loHUij0aC8vByRkZEePY83GcyoPFaD0/vK0FrR7ppvE8KHKDzU4W+WFgkG0zGDI44SUbUHAGAwGYhIl4LjxwGb6Yf2mk6YDRaXOhEACMNDkJAdi375ANU5BriKUFi8FKKIUBAg0FrZAYP23LFWcLgAVqMVASF8hMpCoFU54hv8uH4u+TFB4kBEp0SCAKgmAkebcTR1tMjhOaII/IO4aCxuhXHw3M8hmyzINmkAYHFYqBnhrJBckAB1dz9kcRJYzVa0VXchMikMijYVNcAKAMlzEsHlcaAb0KO9ussR6CcLBofrR4lnRJIM4kghCALUsCrgGJ594r8PoWBZ9qh/O7LwnpqaOmaTCYnVakVfXx8lQna7HSKRCBKJBCKRaFp20xNFoVCgqqrKLYIzFs4t2efbBd1xxx24/PLL8ac//cnt6/EmPiU6NpsNZrN5Wu6CTCYTjhw5gmuvvXZS32+sSGlnWlpaMDQ0hOzs0R/G8+G89XaHw8CFIOtAKpUK/f39LnUgvV6P2tpapKSkuDW06mLY7XY0l7bh9L4yVP1QB3Vnn8uOIjA0AMLwEDCZTAQE86HoUGFQpUVoZBCUTjM4HB4HGQuTYRo2o6dJToXLOXfM8QL9EZ0WicCQADScaXZJWp2Vn4DWyg7wAv0RmRwOm8UGq80KebPSpbYSJBOAy+cgWCSAzWJHR3UXBCIBuDyOS/dXTHoURBEOJ2+ynsTmsBGVGoa2s551USnhCBYHgcPzo1q5STIWpqD2p0aH43cwH8quPojCQtDws+tM0KyCxLO1r3PhcFGpEejv0VB1I16gP2YVODwKSasjwDG3FBjCR2+zkuqYAwP4zdM3IuvKtFH/VuRFe6J1EIIgoNVqoVarqZuh4OBg6hguMDDQ7Z8Lcu1ZWVmj7LM8wcjBVLKmu2DBAtxyyy144YUXPL4mT+JTlb7p7H0nj4asVuuE7qScI6Vzc3PHjJQGzm/4eb7vOVavvyfx9/dHdHQ0oqOjXepAZ86cgd1uh1gshr+/v1cz6plMRzfYrHyH8aCyQ42fz7Zjy1uUsNns6Kg5N0fDD+FBGBOC4NAg8Pz5aK/uAofnh+jUCJcLd3RqBKRxYvQ2nevgMuiM8OOyUXKwAkwmwzH3EswHi81E5fd1IAgCQ/061P3UiFn5CZA3KxGRFAYuj4OeZgWCRIFQdfZBqxiCqtUxFySODUWQUAA2mw394DB0Gj2CxQJYTGZqPYEhfMTOjgYBGxrPtFHr6WlSgH925ilEGoyIJBlMBjP8AziUUJLGoekLU6DuVCNtfjL02mHHfFBBApUoSuIIZHPsqIe1jtctRBaEtspOaPt0DqubtEiESINgMlioOauhfh066rrx3I7HkDJ3dHdmT08P6urqJnXRZjAYCA4ORnBwMBITE2E0GqkdUGtrK/z8/CgBEgqF037E623BAca253nnnXfQ3t6OuLg4r6zJk/jUTsdut8NisVz8ieOAIAgcOHAAixcvHvfg5ngjpQGgs7MTcrkcc+bMueg6pqNhYLohg7T6+/uRmJiIoaEhlzoQuQvy1DzQxdAN6FF2qAqn95Wi+NsKsDks2Ow2DKnO7VBkcRLIzs6rtFU7jtj8/P0QmxaJprP5PqFhIQhPcNi5lB9xbQUmj+McwWRC6AcN4Am4qD/luqNIyo2DcdiEYEkQBlVD6KrvQWRyGPrlA+eO4xhAfHY0eIE89HVrKNeEwNAA8IP9oWzrA4vNREx6FOXI7GxMymAAKfNmoaW8DTFpUeBw2ehqlCM6NWKUgensK1JhNljAZDLQWdcD/eAwkvLj0VZ5rm4kEAYiKS8eJoMZzWVtMJFBedFC2C129MsHHHW0eMdR0z2v/RYJWaPNHTs7O9HY2Ijs7GyIRKJRfz8VbDYbNBoNJUImkwlCoRASiYS6KZoKviA4IyEIAv/+97/xzDPPYN++fdM+4uGLXLKiAwDffvstFixYMK6B0olESgOOu73Ozk7MmzfvvM8hdzikY62vzC1YLBaUl5fDarUiNzeXCtK6UB1IIpH4RAeSzWZDRXkl6k43QttkQMm3lZC3KCGOEoLBYEDV6dh1sDlszMqPh3+gP1rL26kjNocIOdq2uXwuYtMdYWxsDtsl3wZwHMe1VXYiOjUCdrsdHbXdiJsd4zjWcirwpy1IBgOOoLf2s11h0ngxdBo9hgccx1pB0kBEJIXBbDKhtbQTxNkv5wfxII4UoqO2G2HxEkcLdL8eHD7HxSQVcHTwDaqHECINwoByEN0N8lF1KyaTgZwls2EyOOLHyWO+uMxo9DYrYRp2uDjEnM0jGlAMusQnCMND8MLXT5y1NHKlvb0dLS0tyM3NdfHpcgcEQVDNCCqVCoODg9SRsFgsRnBw8IQ+T3K5HDU1NcjMzPQpwfn444/x+OOPY8+ePVi8eLG3l+QRfEp0CIKA2Wy++BPHyaFDh1BQUHBRT7SJRkoDjjdxS0sLFixYMObfu6tDbaoMDw+jtLQUAQEByMzMvODxxYXqQNMxDzRRSLG02+1UOzfZjl36XSV+3HWaascWRYSCyWJSIhSZHA5hWDAAhkuhnM1hIz4zGk0lbYhJi0RgaABUXWqIIoQuSZ+AQ4QMQwb4B/CgaFOir0eDlLmJLsdafv5+mL0oFVaTBR215wZOhZEhMOqNGB4wgsPzQ8TZbjiT3oxWJ380bgAXEQkyqDrViEqJgN1OoKuhBzGpkaOcorMWp8NissJiMlOBeGnzk1H3UyO1sxZHChE7OwqDKi1ayjsosYxKiYBG7ohtIJsnwAAefvduardDQhAEWltb0dHRgby8PAQFBU3Dv+bEcD4S7us7e5x59hhOJBJd8CaRFJysrKzzHpd7GoIg8L///Q+PPPIIdu/ejSVLlnh7SR7jkhado0ePIisr64LT9JOJlAYcnTv19fVYtGj03II3GwYuxMDAAMrKyhAeHo7k5OQJrWvkPBCTyaQ64UJDQ91uTGo0GqmdaFZW1nl/3oBSizP7HY0IJ3b9TLVjC8ND4Mfxg6JdhVBZMOUgYLfZ0FLeQX09i81EYm48NPIBKhiuvboL6fNnofpHV5eB3CWzYTZZqJZtAKNmgqJSwiGOFEHeqYC88VxzQZA0EHabHXqNAbIEMYJFQdAPDoOwA91ObttsDhvxWTGwWawuYjdy4NTP3w9ZV6ZhWGtET5McgyrHzi5lbiIai1tht9mp5gleIAfdDQqou881X0TOCsfzXz8OcaTrZ4UgCDQ1NaGnp2fKYwzTBUEQGBwcpN6Ler0eISEhVEs2n8+n3tu9vb2ora31KcEBgG3btuGBBx7A1q1bcf3113t7OR7lkhad48ePIzU1dczttHOkdG5u7oQipQHH7qiqqgpXXnkl9RjZi082GHgikmC8kHd7SUlJiImJmdL3Ot88kLvqQKQdklgsRmpq6rjrYmQ79plvy1FzogHtVV3U34VIg8AT8NDfO4DYjEgwWSwo2pUIkQRTw6qAox07bf4sR3s1AXTUdsEwZBx1rBUkCkTynERo+4bQVtVJzc3EZ8Wgq74HFpOVEjsQgLxNSc3MAAA/xB9+XDYAJqQxIliMVig71JBGi12SRxlMBmYvSoXdZodWo0NnzWgvOwCISg5HWIIU8lYVuurPOVIn5MSis64HVpOVcutm+bHw2L/vR4jUdQdDNtUolUrk5+f7rBmlwWCg6kD9/f3gcrlUoiZpEuxLgrN7927cfffd+N///odVq1Z5ezkex6dEB8C0Bq+dOHECCQkJo1wNnCOl8/LyJuVdNtLxwFcbBsi8H9LhYbrPs91dB+rv70d5eTliYmKQkJAwaRGn2rH3lqLmZAN6mhTo7z3nbyYQBiBYEgwWm4nAkACouvrRL9cgLj2KakIAHH5tmZenwWR0xAeQ2UHOF33S+j8wNABNFa3Qqc8ZjsakR0Ld1Q+b1Y6Y9Eiw2EzoBoYxPDjsIkLcAA5CwoPAC+TBj312ANRocfFHA4BAYQBSChIxpNGhvaabahBIX5iCmrOiGCwNQkRiGPz82Wg80+LS9p08JxHP7XgMgaGugkIQBGpqaqDRaJCfn+8Wfz93YLPZ0N/fj/b2dmg0GjCZTOoYTiwWU/VLb7F3716sW7cOH3/8MW688UavrsVb+FTL9HQzVpDbdERKA64t0xcz7PQW5G5OrVajoKDALWfxDAYDAoEAAoGAaoEld0CNjY3g8/mQSqWTqgPJ5XJUV1cjNTUVkZGRU1rnyHZsRbsKP+8ro9qx7Xa7y44gIJiPxOxYsDlsxGZEoaOmC0wWEwnZcSh1ingOS5AiKjkcCqfhUIvJCjaHhbIj1QABRM4KQ4jMUVdsONMMi9Fx9NZ4pgURSWHQDw4jWCxAeKIMfd0aGPRGcPz9oGg69z05AX6IzYoAi8WENFoEZWcfGEwGomaFU2mrbD8W4rNiIIoIdbHjGVRqER4vRdWxWkfaZ148OFw/8IN4eGzL/eALXAXFbrejuroaQ0NDKCgomJbYDk/BYrFgtVop30AulwuVSoXu7m7U1tZSBqVisdjjdclvv/0W69atw7/+9a9frOAAPrjTMZvNF00PHS/FxcWQSCTUcdJ0RUoDjm63H3/8Eddcc41PNgyQkRBmsxm5ubleuXBYrVaq+8i5DkT6wl2oDtTR0YGmpiaPdBs5t2OfOVAOP64f/PkcyJ3C4YQRoYhJjYBhyIi2mi6Y9CaqrZmMcggSBSJiVhg4fMdsjc0p9I1sOAgSBSI8QQaz0Qyr1eZwD3DaeUiiReAJeAgMDYBhyID26i7wAv0hEAdA3nxuPaLoEIQnyDCkPudaDbi6dYclSCEKD4Ufl43yI9Vw/ljlX5uFJ/77ELg81xk2u92OiooKGAwG5Ofne8UtYCqQM0RjtXQ7G5T29fVRuyDy/ehOg9IjR47g1ltvxTvvvIM77rjDZ64T3uCSFp2ysjIEBwcjLi5uWiOlAcc58rFjx7BkyRIQBOFTgkP6xfn7+yMrK8sn3H7tdjsGBgaoYzjnOpBYLKYubmRgX09PD3Jzc6cljXUiWC1W1P3UhFN7S3B6bwnkrSqHM7MkiCrws/1YiMuKQbBYgNaKDpdjseR5CWg41QI2h4XYjGhw/Tlg+TFRdbze5X2dlBsHeZsK4QlSsDlsdNX3IDA0EPoBPbR95+IKpLFiSKJFsFls1AyOn78fJLFC9NQ7TEj9A7kInyVDiDgIdT81uYgYKUJkIJ7NYoMsToJHPrgXfhzX94XNZkN5eTl17OwrM1rjhRScnJyci0ZxkO9HUoSGh4cRGhpKvR+nczzg+PHjuOmmm/D//t//w1133eUz1wlvcUmLTkVFBfz9/WE0Gqc1UpogCFgsFhw9ehShoaHU8ZG3z4sBYHBwEGVlZVSIlq/Ulpwh60BkPANZBxKLxdBoNFRgn7fngoizjs3lR6txfOtPjtgBggBP4A9ZrIQq8EckySAMCwWYBKq+dx3czFiUiuof6hw2N5JgaOQDCAzlo7m03cU9ICYjCiwWE/wgHhVrLYoUAiDQ1+2oGzGZDCTmxkEgCkRnfS9UZ4/0GCwGIpKl6K5VgMliICxJisDgAPjz/VFxtMZlPVf9ZiEeeucusNiuu0yr1YrS0lIAQG5urk/cqEyEiQjOWAwPD1O7cmeDUrFYjJCQkEl/jk6ePInVq1fj5ZdfxgMPPPCLFxzAB0XHYrFQdjFTpbKyEmq1Gv7+/tN2xOTcMDA8PEzVL7RaLYKDg6k2Ym9cMJVKJaqqqpCYmDimX5yvYjQaIZfL0dbWBovFQgXkeWse6HwMKAZx5kA56s+6Y5sNjk5LPy4bEckytFd2QyAKQHRK5FkLG+4o94D0+clQtKsgi5PANGxGW1UHYmdHo6u+x8UpelZBPLh8LvQDw5RJp8MfLYBKVpVEiyCLkzhiCA5XuRyfRaRL0VOjhDAyBOJIIYw6E9IXpOB3/7xj1AXUYrFQTuo5OTlub3+fbrq7u1FfXz9pwRmJ1WpFf38/dSxMGpSSIjTeI8czZ85g1apV+Mtf/oKHH37YZ97H3uaSFR2tVotTp06By+Vi4cKFbomUdn4TnW+QUiqVQiAQuPUNRxAEOjo60NzcjNmzZ3vENXc6MRqNKC0tBZfLRXp6OgYGBiZVB/IkJoMZFUdrcOrrYrTVdqLxtKvrdcqcRLRUtCM2IxpsNgud9d2IzYgeJUJp82fBZrGByWais64X+gE9olPD0d87CP2go+uNJ/BHUl48mEwGGotbKfNObgAX4QlStFV2gh/EQ0xaJOx2AhwuG1Ujfk7e6gys2nANFXNB7srNZjNKSkrA5XIvOP/kq0y34IzE2aBUrVZjaGgIQUFB1DHc+QxKy8rKcMMNN+Cpp57CH//4R1pwnLgkRYeMlA4JCaE+TFNlIg4DFovFpYDu5+dHCdBUtupjYbfb0dDQAIVCgZycHI/XQKaKTqdDaWkphEIh0tLSXF6b8daBvAVBEGhpaUF7WzuCmSLUft+I4gPlYLJZLm3NAJCxMBlD/XoIRIHo6+6HvFU1Kq6awWAg+6p02Kx2KNtVVEecNEYEi9kGjXyACn0LDOXDarWjzsk1gcliIikvHs2lbY6wOwEPynYVrll7JZb//mpquJeMmQ4NDYVSqYRAIEBmZqZPHsVeiK6uLjQ0NExqzm6ymEwml2YEZ4PSwMBA8Hg8VFVVYfny5XjkkUfw5z//mRacEfic6DhHVk+UkZHSer0eg4ODyMnJmdKapuIwQM4NkPULANSdu0gkmtKdJZloajAYkJubO2NmKUg0Gg3KysoQHR2NxMTEC76uY9WBgoODqXqap48zycFJhUKB/Px8F38/RZsKp8+6Y9ecaMCsvHjU/uRqqZN9dQYsJgsMWoc5KWEnRpl0SqJFiEwOh0FnQMPpZur4LEgkQEAID73NSkhjxRBHiTA8MAw2lz1K7Na/dBuKHnadeDebzejp6UFzs8MyiMvlUkI+mbRZb+ANwRmJ85B0a2sr7rjjDiQnJ6OpqQl33XUXNm3aRAvOGFwyojNWpHRHRwdUKhXy8/MntZbpdhggCII6OlIqlTCZTFTL5kQn+ckjKQ6Hg6ysrBnXaaRQKFBdXT0qcXK8jDzO5PP51G7S3XUgco5lcHDwooOTOo0OJd9V4eez7tj6weFRbgb8IB7SFiRDr9GjvaaL6j6LSYuEursfw1oDdXzGYDEwpNahy8kqh8vnICIxzOHXlhoBu41AV30P1r14K5bdOTqunTS3FYvFmDVrFvWeVKlUsFqtPrWbHAtfEJyR2O127NmzB/fccw9CQ0PR29uL9PR0rFixAk899dS4TId/KVwSonO+SOnu7m50d3dj7tzRMbsXY2QGznRb2ow1yU+2bEql0gs2PQwNDaG0tBQikWjUkdRMgLTHn676E5lMqVQq3V4HstlsqKiogNFoRF5e3oQ6Fq0WK2pPNuLU1yU4va+UcoB29lEj47NDpEGQtyipiG3g3DGbVj2E2Iwo+Af6QyPXgM3xQ6eTUzSTxcQf3r8Hi28dbUar0+lQXFyM8PBwzJo1y+U97bybVKlULvULiUSCgIAAr9+5d3Z2oqmpySNO1xOhpaUF1113HW6++Wb84x//wODgIL799lscOnQI77777oyrlbkTnxMdm80Gq9U67udfKFJaLpejtbUV8+fPn9AanOs30xksdyEMBgO1AxoYGEBgYCCkUimkUqnLh52MCI6Pj0dcXJzXLwITgTSP7O7uRk5OjlsuGmQdiHwtp7MOZLFYUFZWBgDIycmZ0u6SIAh01HSj/Eg1fth+Cg1nWqjazqz8eLSePWYLT5BCGB4Ki8UKebPCZYZHIAxAoDAQIABhWAi0/Tr0Nivwxy33Y/6qglE/U6vVoqSkBNHR0eOyFDKZTC67SdLTTCKRIDQ01OM3O74qOO3t7bjuuuuwYsUKvPnmmzPuJtDTzGjRuVik9IWcoM+HL0QSkJPTSqUSfX198Pf3h0Qicdj4d3UhIyNjlJ+cr0OGxmk0mosG5E0XY925T7YOZDKZUFJSQg3cTvedq0YxgDP7y9HwczOObz/lMuAZnRaJvu5+sP1YiEwOh9VsxaBqCGAASif7HQ6Pg6f+9zByl2aO+v6kVyB5szJRnGuTarUaNpuNEnORSOT2YzhfFZzu7m4sW7YMS5YswXvvvUcLzjiYkaLjHCl9IQfZ/v5+VFRUjDscyRcEZyQ2mw1qtRpNTU0YHh4Gm82GTCaDVCqdMUVfMpHVYrG4hMZ5msnWgYaHh1FSUoKQkJBRu2l3YBo2ofxoDU7vK0VPoxxNpW0wDZ8zwhVHOY4MBaJAcLhsdDfKYTZZ8MzWR5GxKHXU9+vv70dZWRlmzZqF6OjoKa+PIAgqaZY8GiZn1EZGC0wH5DiArwmOXC7Hddddh/nz5+PDDz+kj9DGic+JzsXSQycSKT04OIji4mJcffXVF/yZZMOAL5p22mw2VFZWQq/XIzs7mzryUCqVsFqtEIvF1OyFL06Rm0wml4YHX1njeOtAQ0NDKCkpQVhY2IQziKYDu92OxuJWnN5bip/3lcJoMMGoM1F5OYAjivq5nY9RZqbOqNVqVFRUIDU1FRERo9NApwNSzJ2jBcjXcqojAqTgTJebyHShVCpx/fXXIzc3Fx9//LHPvK9nAjNKdCYaKa3T6XDy5Elcc801532OuxsGpoLJZEJZWRmYTOaoGgI5tEYK0PDwMIRCoU9Z8pD/XqGhoR7ZIUyW89WBAgIC0NHRgbi4OMTHx/vE+0LeqsTP3zjcsat/qEdgaACe3/MnxM0enZGkUChQVVXl0eNYm83mEvZnt9tdogUmUgfzVcFRq9W44YYbkJKSgv/9738zrnPU28wY0ZlMpDRpyrls2bIxLxi+moEDnBuaHO8FW6/XUxdNrVaLoKAgqhHBG5Y8ZEppZGTklB29PQlZB2pvb0dvr6MtmcwH8tZreT50A3qYhk0QRYyexO/t7aUimt3t0n0+nG+MVCoVlfA5nqyl9vZ2tLS0+JzgaDQarFixAjExMdi6datPtpT7Oj4nOmOlh042UtpsNuPw4cNYunTpqO2vL9ZvSPr6+lBRUTHp4DLnIziydkEKkLsteYBzHnDTVUPwNOQFOyMjAyEhIWPWgSQSCYKDg33qfUNCzrGMZe/vTciET+fXkuyGCw4Opm6sfFVwBgcHsWrVKojFYuzatcsnThNmIj4tOlONlLbZbDh48CCuuuoqlzeI8w7Hl47TAMcFgxTY6TiDt1gsLrULd1ryAOcueDPRAw44N0OUlZU1qkGFrAORIuSLvnDkkVROTo7PDE6OhfNrqVY7OvDEYjEIgoBKpXJb6OBkGRoawurVqxEQEICvvvpqxrl/+BI+KzrTESlNEAQOHDiAK664Anw+36cbBsgZlq6uLmRnZ7vFvNBut6O/v58aSCUIgmpEmKolD2lB1NnZ6fMXvLEgfdQ6OjrG1SU1sg5kNpupu3ZvTfK3traira3N53YIF4MgCAwODqKpqQkajQYMBoMalJZIJF6/wOv1etx4441gMpnYu3evR9r9L2V8UnT6+/upSOnMzMwpdYYcPHgQl112GQIDA322YcBms6G6upqK2PXUDMvg4CCUSiVlySMSiahOuIlcNO12O2pra9Hf34/c3NwZZ/lxIR+18X79WPNAnqoDkYLf1dWF/Px8CAQCt/48d9DW1kYJJpvNHpVt460jTYPBgJtvvhlmsxnffPPNjHxtfQ2fEx2TyYTvvvtuWiKlAUdMbE5ODgQCgU82DJA7OsAx5e6NO2SCIKDX6ykBIkPVyE64C91pWq1WVFRUwGQyeS0WeypMxEdtvJxvHsgdF02CICiX8fz8/Bl5F97a2or29nbk5eWNOlIjj4dJZ2cA1G5SJBK5tVXZaDTi17/+NQYHB3HgwIEZtXv0ZXxOdABHIX267paPHTuG9PR0qlDpK7sbwLFtLy0tRVBQEDIyMnyiJgCcs+Qh7zTPZ8ljNptRWloKNps9I01Hp+KjNl7cWQciCAK1tbXo6+tDfn6+T3XWjRdScMazQ7Pb7RgcHKReS4PBAKFQSInQdB7Dmc1m/Pa3v0Vvby++++67GXdc7Mv4pOhMV2Q1QRD46aefAADh4eGQSqU+03HS39+P8vJyREVF+XRL8UhLHi6XS03wNzY2IiQkBBkZGT61exwP0+mjNl6c60AqlcrFZXwyR5rkkWx+fv6M22ECoGpokz0S1Ov11DHcwMAAFZw41cRZi8WCtWvXorW1FYcOHTqv4wnN5LhkRYes3xgMBurYiIyUJu/avVWg7OnpQW1tLVJTUxEZGemVNUwGcvCvu7ubmuIPDw+n/LdmivC420dtPFyoDkQ6Op8Pu92OyspKypXDV26kJsJUBWckzsGJfX19YDKZlKBPpEnGarXi7rvvRnV1NY4cOTIjOzB9HZ8Unamkh14oA4c8a1cqldSxEelj5qniPflhy8rK8qkZivFCulwnJiZCIBC4pHo637X76lGbp33Uxst460DkkaDJZEJeXt6MHE4kuxzd1fQw1o7S+RjufLtCm82G+++/H2fOnMGRI0cQHh4+7WujucREZyIOA+SxkUKhQH9/P3g8nlsHKMnjkIGBgRnZ4QWcy6PPyMiATCajHicNIEkB0uv1PmfJA3jfR228nK8OJBQK0dnZCYIgkJub67PCfiFIwSkoKPDIZ4AgCAwPD1Ov5eDgIAIDAylBJz/rNpsNDz/8MI4fP44jR47MyKHmmcIlIzrk/I3NZptww4DVaqXqFuQApVQqhUwmm5ZuI7PZjPLyctjtduTk5PjMRXi8OO/QxjNDNDw8TAnQ4OAgZclzsWMjd0Ja+8fGxvqMj9p4IO/aFQoFuru7qdkqmUzms8me58O5rdtbN13kzSb5Z9OmTQgKCoJWq0VjYyOOHTs2qegHmvFzSYjOdFrakLkh5EWTwWBQO6DJBFcNDw+jtLQUAQEByMzM9JkOtfFCukKo1Wrk5eVN+GLhHATW19dHWfJMtdg7EcgjwZlqy2M2m1FSUgIOh4PExERqFzSROpA3IW9avC04IyEjpv/yl7+gqakJHA4H11xzDVauXInCwkK3eNZ9//33ePXVV1FcXIze3l7s3LkTRUVFF/yao0ePYsOGDaiurkZ0dDSefvpprFu3btrX5il80o97IhcismFguhwGWCwW9SG22+3QaDSUl5jdbqcG/sZTnCRNLyMiIkZFA88EnFuK586dO6kOKS6Xi6ioKERFRVE7SpVKhZKSErBYLEqA3JVE6eyjNtOC7wCHaBcXF1M3LUwmE8HBwUhISIDRaKR26E1NTT7pC0cOrnZ3d/uU4JD8/PPP0Gq1qK6uhsViwZ49e/Dhhx9CLBZfVAwmAxlRcuedd+JXv/rVRZ/f2tqKG264Affddx/++9//4tChQ7j77rsRHh6OZcuWTfv6PIFP7nSsVivVCHA+LtQw4A5GTvCTtifny7KRy+Worq5GcnLyjL27JmMVxhMjMVFGWvKQgk4We6djR9jR0YGmpqYxfdRmAkajEcXFxQgODr5o04Mv+sL5suAQBIEXX3wRH374IY4cOYL09HSPr4HBYFx0p/PEE09g7969qKqqoh677bbbMDAwgP3793tgldOPT+50LsbIhgFPWNowGAyEhIQgJCQEs2bNgk6ng0KhQEtLC6qrq6nCuVgsRk9PD1pbW71qKz8VyCNBgUCA2bNnu2UHQra0kiaP5NBfU1MTqqqqqChkiUQy4bqFcw0qLy/Pp9Imx8vw8DCKi4shEomQlpZ20fc3mSgrk8lcurfq6+unZHE0WUgvwZ6eHhQUFPjU0R9BEPj73/+ODz74AIcPH/aK4IyXkydPYunSpS6PLVu2DI888oh3FjQN+KToXOgD5guGnQwGAwKBAAKBAElJSZSFTGdnJ2pqasBgMBAbGzsjfZq0Wi1KS0s92uHlLOjk66lSqdDV1YXa2lqXPJuLzVaRPmpKpRJz5szxqbvr8aLT6VBcXDzpfwMmkwmhUAihUIjk5ORR709314F8XXBef/11vPnmmzh48CCysrK8vaQLIpfLXTpFAUAmk0Gr1cJgMHjdDHUy+KTonA9fzcAJCAhAVFQU+vv7ERAQAJlMhv7+frS3t3s9TG0ikNHGCQkJXuvgYTAYCAwMRGBgIOLj411mqxobG6l2V6lUisDAQJf3gLOP2pw5c2bkB3JoaAjFxcWIiopCYmLilN/jzq+nJ+pApOD09vb6pOC88847ePXVV3HgwAHk5+d7e0m/SGaM6Ex3w8B0YjAYUFpaCh6Ph7lz54LNZiMxMdElTK2pqem8Hma+AOmSkJ6e7lNDcf7+/oiOjkZ0dDQsFgtVs2hrawOXy6UESCAQoKKiAmazGXPmzJlxbemAIySspKSEisd2B/7+/i6NHWQdqKysDAwGg6pTTqYORBAEGhsbIZfLfc58lCAI/Otf/8KLL76Iffv2Ye7cud5e0rgICwuDQqFweUyhUCAoKGhG3lQBPio6zhfjkQ0DviY4g4ODKCsrg0wmQ3Jyskv9w7lzi7TpUCqVaG1thb+/PyVAnmodHguCIChb+dzcXLfk+EwXfn5+iIiIQEREBGXJQ14wbTYb/Pz8kJKS4lbnYXeh0WhQVlaGxMRExMTEeORnjqcONN66mq8LzkcffYRnnnkGe/bswcKFC729pHEzf/587Nu3z+WxgwcPYv78+V5a0dTxye41u90Oi8XilYaBiaBQKFBdXU1dKMa7NpvN5jKMymazIZFIIJPJEBIS4rHfkSAI1NXVQaVSITc3d0bWoMiWYjabDYFAALVaDYvF4lI49/XJffJYMyUlxSe8+MioC3KXfrF5IOd4hYKCAp86RiYIAp999hk2bNiAXbt2YcmSJV5dj06nQ1NTEwAgNzcX//znP3HVVVdBKBQiJiYGTz75JLq7u/Hxxx8DcLRMz549G7///e9x55134vDhw3j44Yexd+9eumV6OrHb7TCbzVT9hsFg+IxHFuB4I5M57lONZXZuHVYqlQBA7YCEQqHbfm+bzUaZRubm5s7IrfpYPmqkkSb5epKWPOQF09fcmJVKJSorK33uWNMZsg5E+sLxeDwXN+fGxkYolUqfi1cgCALbtm3D73//e2zbtg3XXXedt5eEo0eP4qqrrhr1+Nq1a7FlyxasW7cObW1tOHr0qMvXPProo6ipqUFUVBSeeeaZGT0c6pOi09bWhoCAAPj7+/vccZrdbqe6o3JycqY12Ik84iAvmDabjbI8mWqctDPkDA6DwfCYrf90M14fNdJ3S6lUUpY8ZB3I20dA5CxXZmbmjHEzdq4DqdVq2Gw2MBgMJCcnIzw83KccN3bt2oV77rkHn3/+OVauXOnt5dCcxSdFZ+3atdixYweuvfZaFBUVYdmyZT7R+uqckpmTk+PW3QFBENBqtVAqlVAoFFT2ylSPjAwGA0pKShAYGIjZs2f71EVivJD1j7i4OMTFxY37psRsNlMC5HzH7o26GmmeOlMHV8mjWaVSCbFYDI1GM+E6kDv5+uuvsX79enzyySfjmvyn8Rw+KTp2ux3FxcXYtm0bdu7cia6uLixduhRFRUW4/vrrvRIbazQaUVpaCg6H4/GUTPKMXaFQuBwZkcdw4/1wk7sDmUyGlJQUn9pBjhfSRy05ORlRUVGT/j7kHTtZVyPtjybrsTcROjs70djYiJycHJ9u3Dgf5CyUSqVCQUEBeDzehOtA7uTAgQP47W9/i3//+9+47bbbPPZzacaHT4qOM3a7HRUVFdi+fTt27NiBpqYmLFmyBIWFhbjhhhsQGhrq9osnOTApkUiQmprq9foS6eJMBtOFhIRQAnS+mkVfXx8qKiomvDvwJUgftdmzZ48amJsKzh57SqUSdrud2lWKRKJp7YZra2tDa2srcnNzZ6RTwliCMxYj60Bkt6a7feGOHDmCW2+9Fe+88w7uuOOOGfk+v9TxedFxhsyE37ZtG3bs2IGamhpceeWVKCoqwooVKyAWi6f9TUbeWSckJCA2Ntbn3sQjg+kEAoHLLBBw7mKdlpaGiIgIL694cpA+atnZ2W4Nv3M+1lQqlTAajS7ZQJM9MiKteTo7O5GXl4egoKBpXrn7IY/U1Gr1BQVnJCPrQOQ80ERTPS/G8ePHcdNNN2HTpk248847fe6zSuNgRomOM+TkMylAZWVlWLhwIQoLC7Fq1SqEhYVN+U1HXuhGhpb5Ks41CzJGgMvlYnBwcEbXDsiLdU5Ojsd3B6SFjPOR0UTjzskZlt7eXp8zvhwvpOD09fUhPz9/0vXMsVI9p6MOdPLkSaxevRp/+9vfcP/999OC48PMWNFxhhxwJI/gTp8+jcsuuwyrVq1CYWEhoqKiJvQmJI8Q5HK5Vy5004HFYkFlZSU0Gg0Ax6AqebH0Fdv7i+HsozaZLJ/pZuSuMiAggHpNR1rykDjvDnytpXi8kCcM/f39UxKcsb7vdNSBzpw5g1WrVuEvf/kLHn744Rnx3v4lc0mIjjMEQaCrqws7duzAjh078OOPPyIvLw9FRUUoLCy8aD3DarWisrISBoMBOTk5M/IiYbPZUFVVBZ1Oh7y8PHA4HKporlKpqBwbqVSKkJAQr9eoxoL0UdNqtcjLy/O5OSJnh4m+vj4qbZZ8TRkMBux2O2pqajAwMDCtF2tP4iw4BQUFbp1zcg78G28dqKysDDfccAOeeuop/PGPf6QFZwZwyYmOMwRBQC6XY+fOndixYweOHTuG2bNnUwI0MljNaDSirKwMbDbbLRkynsBisaCsrAwEQSAnJ2fUccXIojlBEFTXlrdyV0Zis9lQXl4Os9lMiaYvMzJtFgDEYjEMBgPMZjMKCgpmpBecJwVnJBeqAwUEBCAgIABVVVW4/vrrsWHDBjz11FO04MwQLmnRcYYgCPT19WH37t3Ytm0bDh8+jOTkZBQWFqKoqAg6nQ6PPfYY/vGPf6CgoMAn7/4vBmk8yufzxxWNTRCEyzCqxWJxGUb1hoeZxWJBaWnpjB1cJd9ntbW1MJlMLiaaM8GSh4QgCNTU1ECj0XhccEbiXAeqrq7GXXfdhdmzZ6OhoQG/+93v8Oqrr3pEcN5++228+uqrkMvlyM7Oxptvvnle49AtW7Zg/fr1Lo9xuVwYjUa3r9PX+cWIjjPkxfarr77C9u3bsX//flitVuTn52PTpk3Izs6ecaIzNDREtXWnpKRMeP0EQWBoaIgSIIPBQPmXSSQSj1wsyVkoHo83LtH0RWw2G2VAmpOTA5PJ5GLJExoaSr2mvmbJQ0IKDnks6EvrtNvt2LVrF373u98hODgYSqUS8+bNQ2FhIe677z63dQV+8cUXWLNmDTZv3ox58+Zh06ZN2Lp1K+rr68d0k9iyZQv+8Ic/oL6+nnqMwWDMiIYkd/OLFB1n3n//fWzYsAFr166FXC7H/v37ERYWhlWrVmH16tXIy8vzeQHq7+9HeXk5YmNjER8fPy13fc7+ZTqdjrpYSqVStxwVjeWjNtOwWq0uu7SRO0WDwUC9poODg1R7u0Qi8XqTBIkvCw4AtLS04LrrrsMtt9yC1157DQqFAnv27MG+ffvw2Wefua0GO2/ePMyZMwdvvfUWAIf4RUdH46GHHsLGjRtHPX/Lli145JFHMDAw4Jb1zGR+0aJz5MgR3Hzzzdi1axcWLVoEwHGx/eabb7B9+3bs27cPoaGhWLVqFYqKijB37lyfu/sm/bvcOYMz8mI5mbbhCzFeHzVfxmKxoKSkBH5+fsjOzr7o+2SkJY+nhicvBEEQVAieLwpOe3s7rrvuOqxcuRJvvPGGx25MzGYz+Hw+tm3bhqKiIurxtWvXYmBgALt37x71NVu2bMHdd9+NyMhI2O125OXl4aWXXkJGRoZH1uzL/KJFh2w0OJ+7r8FgwIEDB7Bjxw7s2bMHfD4fK1euRFFRERYsWOD13Jb29nY0Nzd7dAbH+bhIo9G4BNNN5m59sj5qvoTJZEJJSQlVS5voxdC5aK5SqcBkMqnX1N2WPCTOguOLjQ/d3d249tprce211+Ldd9/16E64p6cHkZGROHHihEuOzeOPP45jx47h1KlTo77m5MmTaGxsRFZWFgYHB/Haa6/h+++/R3V19ZTsmy4FftGiMxGMRiMOHTqEHTt2YPfu3WAymZQAXXHFFR73YmtoaKDmiLzhRQeASvIk24Z5PB51sRQIBBcVkOnyUfMmRqMRxcXFCAoKQkZGxpQvhs7dhSqVinIad4clDwkpOFqtFvn5+T4nOHK5HMuWLcOiRYvwr3/9y+OnDZMRnZFYLBakpaXh17/+NV544QV3LtfnoUVnElgsFhw7dgzbtm3Drl27YLFYsGLFChQWFuKqq65y64fWbrejqqqKml/xlTki8m5doVBArVaPObfijLt81DyJwWBAcXExhEIh0tLSpn2X5mzJo1KpYDAYXLKBpuN9RhAEqqqqMDQ05JOCo1Qqcf311yMvLw8fffSRV04XJnO8NhY333wz2Gw2/ve//7lppTMDWnSmiNVqxQ8//EAJkE6nw/XXX4+ioiIsXbp0WgcCLRYLysvLYbPZkJub67PzKyPnVhgMBpWMGhoaiq6uLo/4qLkTvV6P4uJiSKVSjzl2k5Y8KpUKWq2Wmt6XSqWTuvkgB3B9VXDUajVuuOEGpKam4rPPPvNqu/m8efMwd+5cvPnmmwAcr11MTAwefPDBMRsJRmKz2ZCRkYHly5fjn//8p7uX69PQojON2Gw2/PTTT5QAqdVqLFu2jMoEmoq9O9lO7O/vj6ysLJ9raDgfI4PpyBjypKQkREdHz5jfwxmy8SEiIgJJSUleqUORljzk9D5pySORSMZ1tOnrgqPRaLBixQrExMRg69atXr/B+uKLL7B27Vq89957mDt3LjZt2oQvv/wSdXV1kMlkWLNmDSIjI/Hyyy8DAJ5//nlcdtllSEpKwsDAAF599VXs2rULxcXFSE9P9+rv4m1o0XETdrsdZ86coTKBenp6XDKBJjJPoNPpUFJSArFY7BPRCpOBnG5XKpWQSCRU6BdZr5BIJF5vzBgPg4ODKC0tRUxMDBISEry9HADnLHnI6X3yaFMikYxpc0Qe0ep0OhQUFHj9gj6SwcFBrFy5ElKpFDt37vQZQXzrrbeo4dCcnBy88cYbmDdvHgBg8eLFiIuLw5YtWwAAjz76KHbs2AG5XI7Q0FDk5+fjxRdfRG5urhd/A9+AFh0PYLfbUV5eThmStrS0uGQCjVXzICG7u8iL3Ezs7iIvckNDQ5SPGkEQLrNAer3eZRjV1y6EwLl/CzLmwhchjzbJBg8AVA1IJBKBwWCgqqoKer0e+fn5Pvc6Dw0NoaioCIGBgdizZ4/PtW3TTB1adDwMOXxHRjLU1tZi8eLFKCwsHJUJ1NjYiM7Ozhnd3TVeH7WREQLjCabzJH19fSgvL59R/xak8wYpQCaTiaqL5OfnezTNczzo9XrceOONYDKZ2Lt3r8+tj2Z6oEXHi5A5K6QAlZeXY9GiRSgsLERrayv+97//4YcffpgxF7mRkD5qTCZzzAn982E0GikBGhgYQFBQECVA3ujWI1u7U1NTZ2wIHmnPo9PpwOFwKEseshHB28JuMBhw0003wWKx4JtvvoFAIPDqemjcBy06PgJBEGhtbcXWrVvx+uuvo7e3FxkZGVi7di0KCwsRGRk5o47WpstHzWw2UwLkXDC/UIbNdKJQKFBVVTWjW7vtdjsqKysxPDxMHakZDAZqBzQwMACBQEAJUEBAgEffa0ajEbfddhu0Wi0OHDjgtbkzGs9Ai44PYTabceedd+LEiRP48MMPUVZWhp07d+LHH39Efn4+Fcngi7HZzgwPD7vMr0xX44Nzho1arQaXy4VMJoNUKkVQUNC0vyY9PT2oq6tDZmYmJBLJtH5vT0EKjsFgOO/xptlsdskG8vf3pwTI3ZY8JpMJv/3tb6FQKHDw4EGEhoa67WfR+Aa06PgQx44dw+OPP46vvvqKuqsmCAK9vb1UJtD333+PzMxMSoC81bJ7Psh24vDw8FF5RdOJzWZzazBdZ2cnGhsbZ/Qskd1uR0VFBYxG47hziUa+rkwm0yVvaTo7Jy0WC9asWYO2tjYcPnx4xr7ONBODFh0fw2aznfcoiiAIqNVq7Nq1C9u3b8fhw4eRmpqKwsJCFBYWumUqfiJ4y0fNbre7DKOSwXQymWxSF8r29na0tLQgNzd3RkaVA66Ck5+fP6nBypEzVjabjeowFIvFU2pxt1qtuOuuu1BbW4vDhw+PGQ9Ac2lCi84MhSAIaDQaKhPo4MGDiI+PpyIZZs+e7dF5Hl/xURsZTGe1Wl1C1C5UWyLrah0dHcjLy3NbNou7mQ7BGQlpyUPWgYaHhyEUCqkW94nM0thsNtx3330oKSnBkSNHEBYWNuX10cwcaNG5RBgcHMTXX3+N7du348CBAwgPD6cEKDc3160C1NPTg9raWp8rtjt7lymVShiNRohEIshkslEpngRBoKmpCT09PcjLy5ux3VPkTBjZou4u6xi9Xk8JkFarHXeHoc1mw8MPP4wffvgBR48eRWRkpFvWR+O70KJzCaLT6bBv3z5s374d33zzDYRCIVauXInVq1djzpw502o909HRMSN81AiCcJkF0ul01J26WCxGW1sblEqlT86vjBdPCc5ITCaTSzZQQEAAVQdytuSx2+3YsGEDvvvuOxw5csRnB2xp3AstOpc4w8PDVCbQ119/DT6fT4XSzZ8/f9Ln8gRBoLm5GV1dXcjNzZ1xba7Dw8MuwXRMJhOxsbGIjIycVpNWT2Gz2VBRUeFxwRmJ1Wp16TBkMpn4/PPPsXz5chw7dgx79+7F0aNHPWYh9Pbbb1PWNdnZ2XjzzTcxd+7c8z5/69ateOaZZ9DW1oZZs2bhlVdewfLlyz2y1l8KtOj8gjAajfjuu++oTCA2m01lAl1++eXjvlARBIG6ujqoVCrk5eX5TNTyRHGOiYiIiIBGo4FGo6FipMmZFV+HdH2wWCxeFZyR2O12tLa24rnnnsO+fftgNptRVFSENWvW4Nprr3X7oO8XX3yBNWvWYPPmzZg3bx42bdqErVu3or6+fszGhRMnTuCKK67Ayy+/jBUrVuCzzz7DK6+8gpKSEsyePduta/0lQYvOLxSLxYKjR49SjthWqxUrV65EYWEhFi9efN7C8Fg+ajMRsthuMBhcPMjImRWFQoH+/n4qmE4mk3lkGHWikIJjtVqRm5vrM4JDQhAEXnjhBfznP//BP/7xD1RUVGDnzp3o7u7GTz/9hKysLLf97Hnz5mHOnDl46623ADj+zaOjo/HQQw+NGUdw6623Qq/X4+uvv6Yeu+yyy5CTk4PNmze7bZ2/NGjRoaEygbZu3Ypdu3ZBr9dj+fLlKCoqwpIlSyhh0Wq1qKioAJvNHvfchy8y3p3ByKMiDodD7YDcPTQ5HpwFJy8vz+dcugmCwCuvvIJ3330Xhw8fRmZmJvV4TU0NkpOT3SaSkwlei4mJwYYNG/DII49Qjz333HPYtWsXysvL3bLOXyK+9S6l8QpsNhuLFy/G4sWL8cYbb+DkyZPYtm0bHn/8cfT392PZsmVYvHgx3nrrLeTl5eHdd9/1uQvceLFarSgtLQXgML280O/BZrMRFhaGsLAwl2A60k+OFKDQ0FCPx03MBMHZtGkT3nrrLXz33XeU4AAAg8FARkaGW3++Wq2GzWYb1U0pk8lQV1c35tfI5fIxny+Xy922zl8iMy+Y5SL89a9/xYIFC8Dn88c92EcQBJ599lmEh4eDx+Nh6dKlaGxsdO9CfRQWi4VFixZh06ZNaGlpwcGDByEWi/Hoo4+ioaEBg4OD2LFjB7RarbeXOmEsFgtKSkrAZDInfKFmsViQSCTIyMjAlVdeSZ3xV1VV4fvvv0d1dTVUKhVsNpu7lk9Bmnf6suC8/fbbeO2117B//37k5eV5e0k0PsQlJzpmsxk333wz7r///nF/zd///ne88cYb2Lx5M06dOoWAgAAsW7YMRqPRjSv1fZhMJkQiEfbv34/bb78dJ0+eRHZ2Nl555RXExcXhlltuwX//+18MDAzA109pzWYziouL4efnh5ycnCm1jZOvS1paGq644grk5OTAz88PdXV1OHbsGCoqKiCXy2G1WqfxN3BACo7dbvdZwfnggw/w17/+FXv37r1gp5g7IQeBFQqFy+MKheK8w6hhYWETej7N5LhkazpbtmzBI488goGBgQs+jyAIRERE4LHHHsMf//hHAI5BS5lMhi1btuC2227zwGp9l0ceeQQcDgevvPIKVcMgCALV1dVUJENdXR2uuuoqKhOIDAvzFYxGI0pKShAYGOhWpwYymE6hUECpVMJgMEAoFFLDqFOtgTkLTm5urk8KzkcffYSNGzfi66+/xhVXXOHV9cybNw9z587Fm2++CcDRSBATE4MHH3zwvI0Ew8PD2LNnD/XYggULkJWVRTcSTCO/eNFpaWlBYmIiSktLkZOTQz1+5ZVXIicnB6+//rp7F+rjXMgLDnBcaBoaGqhU1PLyclx++eUoLCzEypUrIZPJvCpABoMBxcXFCA0NRXp6ukfXMjKYLjQ0lKoDTTSC2WazobS0FARB+KzgfPbZZ9iwYQN2796Nq6++2ttLwhdffIG1a9fivffew9y5c7Fp0yZ8+eWXqKurg0wmw5o1axAZGYmXX34ZgKNl+sorr8Tf/vY33HDDDfj888/x0ksv0S3T04xvvXO9AFkkpAuIY3OxYygGg4GUlBQ89dRTePLJJ9HS0oLt27fj888/x2OPPYb58+dThqQREREev+iXlJRALBYjNTXV4+IXEBCA+Ph4xMfHU/k1crkc9fX1EwqmmwmCs3XrVjz66KPYtm2bTwgO4Ni5qFQqPPvss5DL5cjJycH+/fupz3pHR4fLrnfBggX47LPP8PTTT+Opp57CrFmzsGvXLlpwppkZsdPZuHEjXnnllQs+p7a2FqmpqdT/j3enc+LECSxcuBA9PT0IDw+nHr/lllvAYDDwxRdfTGntv1QIgkBnZye2b9+OnTt34sSJEygoKKAEyN2ZQDqdDsXFxW6PWJgMI21jAgMDXYZRnddKCg4A5ObmTquF0XSxa9cu3Hvvvfj888+xYsUKby+HxseZEaKjUqnQ19d3weckJCS4nJnTx2u+A0EQ6OnpoTKBjh8/jqysLCoTKDExcVpFQavVoqSkBNHR0UhISPApwRnJyGA6f39/lx1QWVkZGAyGzwrO119/jfXr1+PTTz/F6tWrvb0cmhnAjBCdyTDRRoI//vGPeOyxxwA4LlpSqZRuJHADBEFApVJRmUBHjhxBamoqJUBTPQYbGBhAaWkp4uPjERcXN30L9wA2m40SIJVKBbvdDg6Hg/T0dJ9rzgCAAwcO4I477sC///1v3Hrrrd5eDs0M4ZITnY6ODvT39+Orr77Cq6++iuPHjwMAkpKSKI+w1NRUvPzyy9Sd2SuvvIK//e1v+OijjxAfH49nnnkGFRUVqKmpgb+/v9d+l0sdMhNo9+7d2L59O7777jskJCRQkQwZGRkT6jTr7+9HWVkZZs2ahejoaDeu3L1YrVaUlJTAZrNBIBBArVaDwWC4LcFzMhw+fBi33XYbNm/ejNtvv93nBJHGd7nkRGfdunX46KOPRj1+5MgRLF68GICj+P2f//wH69atA+C4+D333HN4//33MTAwgEWLFuGdd95BcnKyB1dOMzg4iD179lCZQBERESgsLMTq1auRk5NzwQutWq1GRUUFUlNTERER4cFVTy+kYwKTyaTmicZK8CQFSCQSefzY7fvvv8fNN9+M119/HevXr6cFh2ZCXHKiQ3NpMDQ05JIJJBKJqEiGkZlAXV1dqK+vR0ZGxowe5CN3OCwW67wDrM7BdAqFAiaTySUZ1d2GnydPnsTq1avxyiuv4L777qMFh2bC0KJD4/MMDw9j//79VCZQYGAgVq1ahcLCQlRWVuK9997D/v37XboPZxqk4LDZbGRnZ49r90IG05HDqHq9ngqmk0ql027I+vPPP6OwsBDPP/88HnroIVpwnGhra0N8fPyox6+88kocPXrU8wvyYS45Gxxfo7+/H7fffjuCgoIQEhKCu+66Czqd7oJfs3jxYjAYDJc/9913n4dW7Hvw+Xz86le/wqeffgq5XI53330XBoMBv/rVr/CnP/0JsbGxqKurg8Vi8fZSJwXpCTcRwQEcx8SBgYFITEzE/PnzsWDBAgiFQvT09OD777/HmTNn0NHRMS12TqWlpSgqKsLTTz9NC84YREdHo7e3l/pTWloKkUjkdVcGX4Te6biZ66+/Hr29vXjvvfdgsViwfv16zJkzB5999tl5v2bx4sVITk7G888/Tz3G5/MRFBTkiSXPCF5//XU8++yzePbZZ1FfX4/du3fDZrNhxYoVKCoqwuLFi2dE9ILFYkFpaemEBediGI1GqgY0MDAwpWC6yspKLF++HI899hiefPJJWnAugtFoxOLFiyGRSLB7926vN334GrTouJHa2lqkp6fj559/RkFBAQBg//79WL58Obq6us5b8F68eDFycnKwadMmD6525vDDDz9g1apV2L9/P2UoabVacfz4cWzduhW7d+/G8PAwli9fjsLCQixdutQnuxDJHQ6Hw0FWVpbbGgLMZjM1jNrX14eAgABKgC4WTFdTU4Ply5fjgQcewHPPPUcLzjj4zW9+g/Lycvz0008QCATeXo7PQYuOG/nwww/x2GOPQaPRUI9ZrVb4+/tj69at5x2mW7x4Maqrq0EQBMLCwrBy5Uo888wzbo/3nSkQBIHe3t7zirbNZsOJEyeoVFSNRoPrrrsORUVFuOaaa3wigtpZcLKzsz12N0wG0ykUCqjVanC53PMG0zU0NOD666/HunXr8NJLL9GCMw5efPFF/L//9/9w+vRpJCYmens5Pgm973Mjcrl8VBY7m82GUCi8oK/bb37zG3z66ac4cuQInnzySXzyySf47W9/6+7lzhgYDMYF26JZLBYuv/xyvP7662htbcW3336LmJgYPPvss4iLi8Ptt9+OL7/8EkNDQx5c9Tm8JTjAuWC67Oxs6hjXbDajtLQUx48fxwcffIA9e/agtrYWK1aswG9+8xv89a9/9ZrgzKSa6Pbt2/H888/jyy+/pAXnAviWc+AMYbxecJPl3nvvpf47MzMT4eHhWLJkCZqbm+k38wRhMpm47LLLcNlll+Hvf/87SktLsX37dvztb3/D/fffj6VLl2LVqlW44YYbPBJBbbFYUFxcDC6X63HBGQmLxaJ2OXa7HRqNBnv27MGzzz6LoaEhpKamYvHixbBYLBN2xZ4ubr/9dvT29uLgwYNUTfTee++9YE0UAO65555RNVF3UlVVhTVr1uCJJ55ARkYGdVPJ4XAgFArd+rNnGvTx2iQYrxfcp59+OqnjtZHo9XoEBgZi//79WLZs2ZTWTuOAIAhUVVVRmUANDQ0umUBCoXDaBYgUHH9/f2RlZflkgbm7uxvXXHMNZs+ejVmzZmHnzp3o7+/H448/jqefftqja5lJNdEtW7Zg/fr1ox6nW6ZHQ4uOGyE/NGfOnEF+fj4A4Ntvv8V11113wQ/NSH788UcsWrQI5eXlyMrKcueSf5EQBIH6+noqE6iiogKXX345ioqKsHLlSkil0ikL0EwQnN7eXlx33XW4/PLL8cEHH4DFYoEgCJSUlMBoNGLhwoUeXQ9dE700oUXHzVx//fVQKBTYvHkzdTxQUFBAHQ90d3djyZIl+PjjjzF37lw0Nzfjs88+w/LlyyESiVBRUYFHH30UUVFROHbsmJd/m0sfgiDQ0tKCbdu2YefOnThz5gwWLFiAwsJCrFq1alKZQGazGSUlJT4tOAqFAsuXL0d+fj4++ugjn3C0fumll/DRRx+hvr7e5XGpVIq//OUv542kf//99xEbG4uIiAhUVFTgiSeewNy5c7Fjxw5PLJvmIvjeu/8S47///S9SU1OxZMkSLF++HIsWLcL7779P/b3FYkF9fT2Gh4cBOM6Av/vuO1x77bVITU3FY489hhtvvNElQpfGfTAYDCQmJuKJJ57AyZMn0dzcjKKiIuzatQtpaWlYunQp3njjDbS3t2M892tmsxnFxcXg8Xg+KzhqtRorV65EZmYmtmzZ4nbB2bhx46hC/8g/dXV1k/7+9957L5YtW4bMzEzcfvvt+Pjjj7Fz5040NzdP429BM1nonQ4NzTggM4F27NiBHTt24IcffkB2djYVSjdWJhApOHw+H5mZmT4pOP39/VixYgXi4uLw5ZdfemSglq6J/rKhRYeGZoIQBAGlUkllAh09ehRpaWkoLCxEUVERUlJS0Nvbi3/84x+44447fHaHMzg4iJUrV0Imk2HHjh1e61A7H3RN9NLE9z4JNNPO22+/jbi4OPj7+2PevHk4ffr0BZ+/detWpKamwt/fH5mZmdi3b5+HVjozYDAYkMlk+N3vfocDBw6gt7cXf/jDH1BcXIwFCxYgNzcXc+bMQWlpKdLS0nxScIaGhrB69WoIhUJs377d5wQHANLS0nDdddfhnnvuwenTp/Hjjz/iwQcfxG233UYJTnd3N1JTU6n3dHNzM1544QUUFxejra0NX331FdasWYMrrriCFhwfwfc+DTTTyhdffIENGzbgueeeQ0lJCbKzs7Fs2TIolcoxn3/ixAn8+te/xl133UWZPBYVFaGqqsrDK58ZMBgMiEQi3Hnnnfj6669RWVkJg8EAPp+P8vJyzJ07F8899xxKS0tht9u9vVwAjuOmm266CTweDzt37vRJiyASuiZ66UEfr13izJs3D3PmzMFbb70FALDb7YiOjsZDDz2EjRs3jnr+rbfeCr1ej6+//pp67LLLLkNOTg42b97ssXXPRJRKJa6++mpkZmbik08+gcFgwN69e7Fjxw588803EIvFLplA3tgBGQwG3HTTTbBarfjmm2+oNF0aGk9B73QuYchC9tKlS6nHmEwmli5dipMnT475NSdPnnR5PgAsW7bsvM+nOQeTyURRURE++eQTsNlsCAQC3Hbbbfjyyy8hl8vx2muvQa1WY/Xq1UhLS8Of/vQn/PDDD7DZbB5Zn9FoxK9//WsYjUYql4iGxtPQonMJo1arYbPZIJPJXB6XyWTn9X6Ty+UTej7NOcRiMV588UWw2aPdpQICAnDjjTfiv//9L3p7e/H2229Dr9fjtttuQ3JyMv7whz/g6NGjbssEMplMuOOOO9Df3499+/YhODjYLT+HhuZi0KJDQ+NheDweVq1ahS1btkAul2PLli0AgHXr1iEpKQkPPPAADh48CLPZPC0/z2KxYN26deju7saBAwcQGho6Ld+XhmYy0KJzCSMWi8FisaBQKFweVygUCAsLG/NrwsLCJvR8mqnB4XCwbNkyfPDBB+jp6cEXX3wBHo+H+++/H/Hx8bj33nuxb9++Sad/Wq1W3HXXXWhubsbBgwchEomm+TegoZkYtOhcwnA4HOTn5+PQoUPUY3a7HYcOHcL8+fPH/Jr58+e7PB8ADh48eN7n00wfbDYbV199Nd599110dnZi9+7dEAqF2LBhA+Lj47F+/XoqoG482Gw23HfffaiursZ3330HiUTi5t+AhmYcEDSXNJ9//jnB5XKJLVu2EDU1NcS9995LhISEEHK5nCAIgrjjjjuIjRs3Us//8ccfCTabTbz22mtEbW0t8dxzzxF+fn5EZWWlt36FXzw2m404ceIEsWHDBiIhIYEICAggVq9eTWzZsoWQy+WEXq8f9Uer1RJr164lkpKSiK6uLm//CjQ0FLTo/AJ48803iZiYGILD4RBz584lfvrpJ+rvrrzySmLt2rUuz//yyy+J5ORkgsPhEBkZGcTevXs9vGKa82Gz2Yiff/6Z2LhxI5GcnEz4+/sTK1asID744AOiu7ub0Ol0xNDQEHH33XcT8fHxRFtbm7eXTEPjAj2nQ0MzQyHOZgJt3boVO3bsQGNjIxYvXgyr1YqGhgYcO3YMCQkJ3l4mDY0LtOjQ0FwCEASBuro6fPLJJ3jrrbfw/fffIycnx9vLoqEZBS06NDSXGHa73Sf93mhoALp7jcZLTMSEdMuWLaPyVnzZL8zb0IJD48vQ704ajzNRE1IACAoKQm9vL/Wnvb3dgyumGS9//etfsWDBAvD5fISEhIzrawiCwLPPPovw8HDweDwsXboUjY2N7l0ojdegRYfG4/zzn//EPffcg/Xr1yM9PR2bN28Gn8/Hhx9+eN6vYTAYCAsLo/6MtOqh8Q3MZjNuvvnm80ZJj8Xf//53vPHGG9i8eTNOnTqFgIAALFu2bNIDsTS+DS06NB5lMiakAKDT6RAbG4vo6GgUFhaiurraE8ulmSB/+ctf8OijjyIzM3NczycIAps2bcLTTz+NwsJCZGVl4eOPP0ZPTw927drl3sXSeAVadGg8ymRMSFNSUvDhhx9i9+7d+PTTT2G327FgwQJ0dXV5Ysk0bqS1tRVyudzlJiQ4OBjz5s2jnc0vUUbb4dLQ+Bjz5893seFZsGAB0tLS8N577+GFF17w4spopgp5o0E7m/9yoHc6NB5lMiakI/Hz80Nubi6amprcsUSaEWzcuHFU9+DIP3V1dd5eJs0Mgd7p0HgUZxPSoqIiAOdMSB988MFxfQ+bzYbKykosX77cjSulIXnsscewbt26Cz5nss4H5I2GQqFAeHg49bhCoaCHWy9RaNGh8TgbNmzA2rVrUVBQgLlz52LTpk3Q6/VYv349AGDNmjWIjIzEyy+/DAB4/vnncdlllyEpKQkDAwN49dVX0d7ejrvvvtubv8YvBolE4jaH6vj4eISFheHQoUOUyGi1Wpw6dWpCHXA0Mwf6eO0S4OOPP4ZIJILJZHJ5vKioCHfccYeXVnV+br31Vrz22mt49tlnkZOTg7KyMuzfv5861+/o6EBvby/1fI1Gg3vuuQdpaWlYvnw5tFotTpw4gfT0dG/9CjTnoaOjA2VlZejo6IDNZkNZWRnKysqg0+mo56SmpmLnzp0AHK3wjzzyCF588UV89dVXqKysxJo1axAREUHthGkuMbzlNEozfQwPDxPBwcHEl19+ST2mUCgINptNHD582Isro/mlsXbtWgLAqD9HjhyhngOA+M9//kP9v91uJ5555hlCJpMRXC6XWLJkCVFfX+/5xdN4BNp77RLhgQceQFtbG/bt2wfAMYD59ttvo6mpCQwGw8uro6GhoXFAH69dItxzzz349ttv0d3dDcDhV7Zu3TpacCbA999/j5UrVyIiIgIMBmNcw4lHjx5FXl4euFwukpKSsGXLFrevk4ZmJkOLziVCbm4usrOz8fHHH6O4uBjV1dUX7TiicUWv1yM7Oxtvv/32uJ7f2tqKG264AVdddRXKysrwyCOP4O6778aBAwfcvFIampkLfbx2CfHuu+9i06ZNuOaaa9DY2Ehf/KYAg8HAzp07L1jMfuKJJ7B3715UVVVRj912220YGBjA/v37PbBKGpqZB73TuYT4zW9+g66uLnzwwQe48847vb2cS56TJ0+62LcAwLJly2j7FhqaC0CLziVEcHAwbrzxRgQGBtLtph5ALpePad+i1WphMBi8tCoaGt+GFp1LjO7ubtx+++3gcrneXgoNDQ3NKGhHgksEjUaDo0eP4ujRo3jnnXe8vZxfBGFhYWN6yAUFBYHH43lpVTQ0vg0tOpcIubm50Gg0eOWVV5CSkuLt5fwimD9/PjUXRXLw4EEXR2waGhpXaNG5RGhra/P2EmY8Op3Oxbm6tbUVZWVlEAqFiImJwZNPPonu7m58/PHHAID77rsPb731Fh5//HHceeedOHz4ML788kvs3bvXW78CDY3PQ7dM09Cc5ejRo7jqqqtGPb527Vpq2LatrQ1Hjx51+ZpHH30UNTU1iIqKwjPPPEPPR9HQXABadGhoaGhoPAbdvUZDQ0ND4zFo0aGhoaGh8Ri06NDQ0NDQeAxadGhoaGhoPAYtOjQ0NDQ0HoMWHRoaGhoaj0GLDg0NDQ2Nx6BFh4aGhobGY9CiQ0NDQ0PjMWjRoaGhoaHxGLTo0NDQ0NB4DFp0aGhoaGg8xv8HcjTAz1u5FK4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Configure both RIS as focusing lenses\n",
+ "ris1.focusing_lens([tx.position, tx.position], [rx1.position, rx2.position])\n",
+ "ris2.focusing_lens([tx.position, tx.position], [rx1.position, rx2.position])\n",
+ "\n",
+ "# Compute paths and average path gain\n",
+ "paths_lens = scene.compute_paths()\n",
+ "a_lens = tf.squeeze(paths_lens.cir()[0])\n",
+ "path_gain_lens = to_db(tf.reduce_mean(tf.reduce_sum(tf.abs(a_lens)**2, axis=-1)))\n",
+ "print(f\"Path gain with focusing lens: {path_gain_lens.numpy():.2f}dB\")\n",
+ "\n",
+ "# Visualize phase and amplitude profile for one reradiation mode\n",
+ "ris1.phase_profile.show(mode=0);\n",
+ "ris1.amplitude_profile.show(mode=0);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33ca2de4",
+ "metadata": {},
+ "source": [
+ "We can now compare the path gain behaviour of the learned and deterministic RIS configurations in more detail:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "65fe9c8c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMXklEQVR4nOzdeVhUZfvA8e8szLAJKLKpiKi4K2JaqZWWmpotvpUt9iqaZZa+5Z71K7cs01LzLUvf3CvLyjKzUin3LDUNC/c1NxDcQLZhlvP7Y5yRUUAGBmaA+3Nd55qZc+45554DzLl5nueco1IURUEIIYQQQgCgdncCQgghhBCeRIojIYQQQoh8pDgSQgghhMhHiiMhhBBCiHykOBJCCCGEyEeKIyGEEEKIfKQ4EkIIIYTIR4ojIYQQQoh8pDgSQgghhMhHiiMhRKUxceJEVCoV58+fd3cqNxgwYAD16tVzdxpCiGKQ4kgIUeYWL16MSqWyT97e3jRq1Ihhw4Zx7tw5p9f31ltvsXLlStcnetWWLVt47LHHqF27NjqdjsDAQG677TYmT55conyFEBWL1t0JCCGqjsmTJxMdHU1ubi5bt27lo48+4scffyQpKQlfX99ir+ett97i0UcfpXfv3i7Pcfz48bzxxhvUr1+fAQMGUL9+fXJzc9m1axczZsxgyZIlHD161On1fvzxx1gsFpfnK4RwPSmOhBDlpmfPnrRt2xaAZ555huDgYGbOnMl3333Hk08+6ebsYPny5bzxxhs89thjfPLJJ+h0Oofls2bNYtasWSVat5eXlytSFEKUA+lWE0K4zT333APA8ePHAXj33Xfp0KEDwcHB+Pj4cMstt/D11187vEelUpGVlcWSJUvs3XQDBgxwiLl8+TIDBgwgKCiIwMBABg4cSHZ29k3zGT9+PDVr1mTBggU3FEYAgYGBTJw40WHed999R69evahVqxZ6vZ4GDRrwxhtvYDabHeKuH3N04sQJVCoV7777Lv/73/9o0KABer2edu3asXPnTof3pqSkMHDgQOrUqYNeryciIoKHHnqIEydO3PQzCSGcJy1HQgi3sXVPBQcHAzB79mwefPBBnnrqKfLy8vjiiy/o06cPq1evplevXgB88sknPPPMM9x6660MHjwYgAYNGjis97HHHiM6OpqpU6eye/du5s+fT2hoKNOmTSs0l0OHDnHo0CGeeeYZ/P39i/0ZFi9ejL+/PyNHjsTf35/169czfvx4MjIyeOedd276/mXLlnHlyhWee+45VCoV06dP5+GHH+bYsWP21qZHHnmEvXv38p///Id69eqRmppKQkICJ0+elEHeQpQFRQghytiiRYsUQPn555+VtLQ05dSpU8oXX3yhBAcHKz4+Psrp06cVRVGU7Oxsh/fl5eUpLVq0UO655x6H+X5+fkp8fPwN25kwYYICKE8//bTD/H/9619KcHBwkTl+9913CqC89957DvMtFouSlpbmMBmNRvvy63NWFEV57rnnFF9fXyU3N9c+Lz4+XomKirK/Pn78uAIowcHBysWLF2/I4/vvv1cURVEuXbqkAMo777xTZP5CCNeRbjUhRLnp2rUrISEhREZG8sQTT+Dv78+3335L7dq1AfDx8bHHXrp0ifT0dO688052797t1HaGDBni8PrOO+/kwoULZGRkFPoe27LrW43S09MJCQlxmBITE+3L8+d85coVzp8/z5133kl2djYHDhy4aa6PP/441atXd8gV4NixY/b163Q6Nm7cyKVLl266PiFE6Um3mhCi3MyZM4dGjRqh1WoJCwujcePGqNXX/kdbvXo1U6ZMITExEYPBYJ+vUqmc2k7dunUdXtuKj0uXLhEQEFDge6pVqwZAZmamw3x/f38SEhIAWLdu3Q1dZXv37uW1115j/fr1NxRf6enppcoVQK/XM23aNEaNGkVYWBi33347999/P/379yc8PPym6xdCOE+KIyFEubn11lvtZ6tdb8uWLTz44IPcddddfPjhh0RERODl5cWiRYtYtmyZU9vRaDQFzlcUpdD3NGnSBICkpCSH+Vqtlq5duwJw+vRph2WXL1+mU6dOBAQEMHnyZBo0aIC3tze7d+/m5ZdfLtap+8XJdfjw4TzwwAOsXLmStWvX8vrrrzN16lTWr19PXFzcTbchhHCOFEdCCI+wYsUKvL29Wbt2LXq93j5/0aJFN8Q625JUHI0bNyYmJoaVK1fy3nvv4efnd9P3bNy4kQsXLvDNN99w11132efbzr5zpQYNGjBq1ChGjRrF4cOHad26NTNmzODTTz91+baEqOpkzJEQwiNoNBpUKpXDKfAnTpwo8ErYfn5+XL582eU5TJw4kfPnz/Pss89iNBpvWH59y5Ot1Sf//Ly8PD788EOX5ZSdnU1ubq7DvAYNGlCtWjWHrkchhOtIy5EQwiP06tWLmTNn0qNHD/r27Utqaipz5syhYcOG/PXXXw6xt9xyCz///DMzZ86kVq1aREdHc9ttt5U6h759+5KUlMTUqVPZsWMHTzzxBNHR0WRlZZGUlMTnn39OtWrV7OOCOnToQPXq1YmPj+fFF19EpVLxySefFNl956xDhw7RpUsXHnvsMZo1a4ZWq+Xbb7/l3LlzPPHEEy7bjhDiGimOhBAe4Z577mHBggW8/fbbDB8+nOjoaKZNm8aJEyduKI5mzpzJ4MGDee2118jJySE+Pt4lxRFYb03SvXt3PvjgAxYuXMj58+fx8fGhUaNGjBo1iiFDhtgHQgcHB7N69WpGjRrFa6+9RvXq1fn3v/9Nly5d6N69u0vyiYyM5Mknn+SXX37hk08+QavV0qRJE7788kseeeQRl2xDCOFIpbjyXxwhhBBCiApOxhwJIYQQQuQjxZEQQgghRD5SHAkhhBBC5CPFkRBCCCFEPlIcCSGEEELkI8WREEIIIUQ+cp0jJ1ksFs6ePUu1atXK5BYGQgghhHA9RVG4cuUKtWrVcrjhdUGkOHLS2bNniYyMdHcaQgghhCiBU6dOUadOnSJjpDhyUrVq1QDrzg0ICHBzNkIIIYQojoyMDCIjI+3H8aJIceQkW1daQECAFEdCCCFEBVOcITEyIFsIIYQQIh8pjoQQQggh8pHiSAghhBAiHymOhBBCCCHykeJICCGEECIfKY6EEEIIIfKR4kgIIYQQIh8pjoQQQggh8pHiSAghhBAiHymOhBBCCCHykeJICCGEECIfKY6EEEIIIfKRG88KIYQQotwoioLJZMJsNmMymQp8rtVqqVWrlttylOJICCGEKGeKomCxWDAajZhMJoxGo8Pz/I/XPy9o3vXLC4q/cb6FvDwLeXkKeXkWjEblugmMRgWT6dpjQZPZrLI/WizWR+ukxmK59mixWB8VRYO1/LA9am94HRWlcOLE8277+UhxJIQQwuPZWhuMRiN5eXkFPhY23Wx5/unaNowYDBYMBmvRYDBcKyKsj9ZiIS/PWkSYTKqrj9bn1sn63FYomEzWAsFWLIDX1UlbwPP8j4U99y5gXmHvKWie546suXQpya3bl+JICCGqKEVRyMvLw2AwYDAYCnye/9GZyWDIIzfXjMFgITfXgsGg2Ke8PGtRYTCA0Qh5eWA0qq4WGCpMJjVGI5jNmqvFhQaLRQ3ouFZEFPa8oNd+172+viApaH7VPTyq1WY0GgsajYJabXtU0GoVNBoFjQY0GgUvL9tzri4DLy8VWi1XJ+tzLy8VXl62ZSp0OjVarQovr2vPdTo1Xl6qq+uCyMgWbt0HVfenL4QQbmBrAcnNzSU3NxeDwXDDc1uBcv28wh5zcoxkZ1vIzjaTm6uQk2MhJ8dafOTmgsEAeXlq8vJUGI0ajEY1RqMas1kD6G8y6fI9+l/3+mZT5aJSWexFw7VHBa3WcrUIsBYQ14oD8PICnY6rBYDtUYVef604sL5W2wsEayHhuI78j7bn1mKk4NjrcyhsPVqt43rUarB2b2ncvLfdS4ojIYQAzGYz2dnZZGVl2Sfb6/yPtiknJ+fq/GwyM01cuWImK8tCZqa1MMnJgZwcyM1VXS1MrJPRqEFRdFi7RPRFPOqBakDNAuZf/7piHMi0WhNareVqq4MFrdZytaAAnU6xH6B1OuujXm8tImzFhF6vtk/e3taiIn/89e93drIVDoXNV6vVeHJXlHAdKY6EEBWKyWTiypUrZGRkcOXKFa5cuUJmZqbDlJWVZX/MysriypVc0tPNXLli4coVhawshawsFTk5GnJz1eTmemEy6bB2v/hhbSGxPfe9+lj96vOCJs+hVlvQas3odNbCQ6ezoNcr6PXWosHHx1p0eHur8PFR4eurxsdHjY+PBm9vlT1Or3ecbPPyP17/3FZMXD9Pr7e2TqhUcsgRFYP8pgohyp3FYuHy5ctcuHDBYbp48aJ9On8+nbQ0IxcvWrh8GTIy1GRmasjL0wMB+aZqVyd/oM7VR1txY3tePl08Go0Znc58tSCx4O2t4O2t4ONDvmLEWpD4+mrshYleD97eODxe/7ywede/1mqldUOI0pLiSAhRKoqikJWVxfnz50lLS+P8+fM3PE9JySAlxUxamsKlSxoyMvQoSnWsXUbBV6daQAugxtXX1Vyeq0ZjwdvbhLe3GV9fBT8/BX9/8PdXU62amsBADQEBGvz9Vfj5YZ98fW989PW1tsL4+VkffXxAq5WxGkJUBlIcCSEc2Iqd1NRUUlNTSUtLu+ExJSWD5GQLaWkqLl3ywmgMBEKBkHyPTa8+hlCaricfHyPVqpkJDFQICoLq1TX2qVo1CAjgaoFT8OTnd+1Rp7Od8SSEEIWT4kiIKiI3N5ezZ8/ap5SUFM6dO0dKSgopKedITs7m3Dk4f15LXl4QEJZvCgWaX30MxdpV5Ryt1kxQkJHgYIWQEDUREVpCQjQEB0PNmlCjBgQHWx9r1IDq1SEoCLRa2ynWQghRPqQ4EqKSyMnJ4ejRoxw5coQTJ07Yp6NHz3HqFKSn+wO1802RQDsgAgjHevZT8el0ZmrUMBEaCuHhGiIiNISEqAgJwWEKDbUWP/7+GlQq6XISQng+KY6EqEAMBgNHjx7l8OHDHDlyhMOHD3Po0GEOHMggOdkPiAEaAtFAR6Ae1m6t4vHzMxEaaiEiQkOtWhrCwiAszFrgXP8oxY4QorKS4kgID3Px4kWOHDnCkSNHOHbsGMeOHePo0eMcOZLJ2bM+WIsfWxHU5epj0d1c1aqZqV0b6tZVU7u2itq1oVYtCA+HiAjrY1gY+PjIV4IQQlSab8KNGzdy9913F7hsx44dtGvXDoC//vqLoUOHsnPnTkJCQvjPf/7D2LFjyzNVIVAUheTkZP7++2/7tHfvUQ4fNpGREYK14GkAtAEexdoCVHi3l0ajEBlpoUkTNTExKurXh+hoqFfPOgUGSguPEEIUV6Upjjp06EBycrLDvNdff51ffvmFtm3bApCRkcG9995L165dmTt3Ln///TdPP/00QUFBDB482B1piyri0qVL7Nixg+3bt/P779v5/fc0Ll2KBFoCrYCHsBZDhV+fRqNRqFXLTJMmGmJiVMTEQMOGEBMD0dEqdDopgIQQwhUqTXGk0+kIDw+3vzYajXz33Xf85z//QaVSAfDZZ5+Rl5fHwoUL0el0NG/enMTERGbOnCnFkXCptLQ0Nm3axMaNG/nllz84cCAIuO3qNBTrdXxu5OdnpmFDFY0aqWnYEOrXx94KFBmpQqutNH+yQgjhsSrtN+2qVau4cOECAwcOtM/77bffuOuuu9Dprl3npHv37kybNo1Lly5RvXr1G9ZjuwGkTUZGRtkmLiqkK1eusHnzZn7++WfWrt3G/v3BQGcgHpjN9RcG1OkstGgBsbFqWrWCli2hRQsIDdVwtZYXQgjhJpW2OFqwYAHdu3enTp069nkpKSlER0c7xIWFhdmXFVQcTZ06lUmTJpVtsqLCMZvN7Nq1i7Vr17J27Xp+/92C2Xw31vFB73D9n1a9embuuEPDbbfBbbdZiyKdXItQCCE8kscXR+PGjWPatGlFxuzfv58mTZrYX58+fZq1a9fy5Zdflnr7r7zyCiNHjrS/zsjIIDIystTrFRXPqVOn+OWXX1i7di1r1hzi8uXbgO7AS1jv8XVNVJSZLl003H03dO4MderIeCAhhKgoPL44GjVqFAMGDCgypn79+g6vFy1aRHBwMA8++KDD/PDwcM6dO+cwz/Y6/3il/PR6PXq93smsRWWQnJzMpk2bWL9+PT//vJvjxyOxnjo/Geup9NdUr26mWzcN3bpB165Qr54UQ0IIUVF5fHEUEhJCSEjxL2KnKAqLFi2if//+eHk53nKgffv2/N///R9Go9G+LCEhgcaNGxfYpSaqDpPJxMGDB/n111/ZunUrmzcf4J9/agGdgBewnlF27UwyjcZCx47Qo4ea7t2hdWsNarkRuhBCVAoeXxw5a/369Rw/fpxnnnnmhmV9+/Zl0qRJDBo0iJdffpmkpCRmz57NrFmz3JCpcAeTycQ///zDoUOHSEpKIikpicTEo+zfr8JobAp0AF4DGt3w3iZNzNxzj4Z774W771YTEHBDiBBCiEqg0hVHCxYsoEOHDg5jkGwCAwNZt24dQ4cO5ZZbbqFmzZqMHz9eTuOvZMxmMydPnrRfZfrIkSMcOnSE/fuvcOKEF2ZzPazdYs2APlgvsHijpk3N3HXXtXFDYWHSVSaEEFWBSlEUxd1JVCQZGRkEBgaSnp5OgDQdeIwzZ87w008/8d13v/Dzz3nk5tbDen+x+lcfoynqCtMhISZatdLQvr2KDh3g9tutd4UXQghROThz/K50LUei6lAUhQULFjJjxo8cOFAP6AksBgoeQK/VWoiKMtO4sZZGjVQ0amS9tlDz5lCjhvwpCCGEsJIjgqiQkpOT6dv3NTZu7AescFhWu7aBjh29aNBA7XCF6bp11Wg0MmpaCCFE0aQ4EhXOV199zcCBv5GVNRvwR6s1ceedFh56SEfPnhATo5erTAshhCgxKY6Ex0lJSeG3335j69adHD+ejl6v4OMDPj5qDh/OIiHhMWAGALfcksWXX/px3aWuhBBCiBKT4kh4hO3btzNlytf89pvChQvRwK1ALyD/PTYsgAJo0GiMTJ2qYtQoP7m+kBBCCJeS4ki4VWJiIkOHfs62bfdivSeZI5VKQVFsfWTWKqhZs0y+/tqfpk3LL08hhBBVhxRHwi0OHDjA0KGfsn79XYD13nlqtYnmza/QqZMvd96pp107qFdPhckEOTmQnQ0mE9Su7S9jioQQQpQZKY48TFZWVqHLNBoN3t7XrtVz6dIlXnzxS777rhoREVk8+KAfTz99C3Xr1kGtVuPj41Os9V4fm52dTWGXv1KpVPj6+pYoNicnh2PHjjFy5BesW9cBmHI1zsS//nWZmTNrEhVV3R5rsVjIzrZ9dqhWzbZN8PPzs683NzcXs9lc6OdzJtbX1xfV1crLYDBgMplcEuvj44P6av9fXl4eRqPRJbHe3t5oNBqnY41GI3l5eYXG6vV6tFqt07EmkwmDwVBorE6ns9+6x5lYs9lMbm5uobFeXl7odDqnYy0WCzk5OS6J1Wq19vswKopCtu2Xt5Sx1//dO/Md4czfvad8R1gslkLzyP+37EysfEdUzO8It1KEU9LT0xVASU9PL5P1Yx1UU+B033332eP++ONvBd5WwKyAkm9KU2C5EhLyHyU7O8ceX7NmzULX27ZtW4ccoqKiCo1t1qyZQ2yzZs0KjY2KirLHnT59WgkK6qLA9/lyNSowX4F6Ss2aNR3W26lTp0LX6+vr6xB73333Fbnf8nv00UeLjM3MzLTHxsfHFxmbmppqj33hhReKjD1+/Lg9dvTo0UXGJiUl2WMnTJhQZOyOHTvssdOnTy8ydsOGDfbYDz74oMjY1atX22MXLVpUZOyXX35pj/3yyy+LjF20aJE9dvXq1UXGfvDBB/bYDRs2FBk7ffp0e+yOHTuKjJ0wYYI9NikpqcjY0aNH22OPHz9eZOwLL7xgj01NTS0yNj4+3h6bmZlZZOyjjz7q8DtcVGz+7whFURRfX99CYzt16uQQ6+7vCEVRlLZt2xYaK98R16aq8h3has4cv2UoawVjMpkYPvxj2rY1Ay9jHYfzFbAauALUBB4jLe2/BAf/xdKlO9yYLZw7d45//3sGdevu5vLln4H7ATPWizU2Bp4BTrgvQSGEEOI6cvsQJ5X17UOKatpWFIW2bT/m4MHnAW+8vNKZPTuH/v2t/U1GI/zyyxX+978zJCQ0RVF8gTzi4tawfHkctWrVKHC9ZdFkfv78ef7v/77miy9iMJsfvDrXTJcuKcyYUZ2GDW98jzSZOx9bkZvMpVtNutWkW+0a+Y6wKstuNWeO31IcOcmd91b7/PMd9O3bFlDTqtVp1qypTUREwSOT//orgwceOMnJky0A0GiOMHr0CaZO7WL/Yy0Lx44dY/LkH/n00yjM5geuzrXQuXMKH30UQZMmMpJaCCFE+XPm+C3dahXI4sXJgJqQkIMkJtYptDACaNUqgBMnWjB58gE0mjTM5oZMm9aV4OAtrFz5t0vzysnJ4cMPvyYm5kMaNMhgyZJhVwsjC506nWHfPhUbNtSSwkgIIUSFIMVRBbJ9u7X7rFOnnGKdyq5SweuvN+HMmQA6dPgDMHHp0l3861+NiI39gaNHU0ucS0ZGBvPnf8+dd/6PgIANDB36EEeOvAC0RqXKo1OnU+zbp2Ljxto0bSpFkRBCiIpDutWc5K5utdOnU4iM9AECWbPmIt27Fzx+qCgbN6bSt+85kpNbXp2TgZ/fPurVu0Dbtiruuy+EW24JJSSkOtWqVbN3v2VlZXHo0FF27jzLH39cJCHBzD//NENRbnFYf+3apxkyxIcXXgimhvPpCSGEEGVGxhyVIXcVR6+//hNTpvREo0nHYAjk6pg5pykKzJixn9de88dgiCwk6iJwHq02HZXKiNEYAdQBbhwkFxp6mu7dTbz8cl2aN5eGSCGEEJ7JmeO3XASygli50nomSUzMKTSawBKvR6WC0aObMmIErF+fyvffJ/Pbb0aOHAnk8uW6gB6oAdTg+hMrVCojvr4XadjwMk88EciAAeGEh9cpcS5CCCGEJ5LiqAIwm80cOGBt5XngAb1L1qnRQLduoXTrFppvO3DxosLp07kcP57JyZPZ5OZaiI0NplWrAMLDvdBowoAwl+QghBBCeCIpjiqATZsSMZms43sGD44us+1oNBASoiIkxIe4OJ+bv0EIIYSohKQ48jAFXYdt7txjwC34+Z2lYcNaRcbaqNWQ75ptTsVmZ1vHJhVEpYJ812xzKjYnB4q4Zhv5rsPmVGxurrXVyxWxvr7YzwQ0GLiha7GksT4+1v0MkJdnvWCnK2K9vbGPP3Mm1mi0xhdGr4er12xzKtZksu6Lwuh0YLu+mzOxZrP1Z1cYLy9rvLOxFov1d80VsVqtdV+A9W+iiOs6OhWr0Vh/djZF/S07EyvfESWLle8Iq/L4jnCrsrh/SWVW9vdWK3yqUSPDIdbXt/DY626bpNSsWXjsdbdNUqKiCo+97rZJSrNmhcded9skpW3bwmOvu22S0qlT4bHX3TZJue++ovdbfo8+WnRsvtsmKfHxRcfmu22S8sILRcfmu22SMnp00bH5bpukTJhQdGy+2yYp06cXHZvvtknKBx8UHZvvtknKokVFx+a7bZLy5ZdFx+a/bdLq1UXH5ru1mrJhQ9Gx+W6tpuzYUXRsvlurKUlJRcfmu7Wacvx40bH5bq2mpKYWHZvv1mpKZmbRsdfdWq3I2OturSbfEVfJd4RVRfuOcDW5t1olVbu2a8YbCSGEEKJwciq/k8r+3mqOrz/66EfGjLkPMJGSoiUsrPDY/KTJvGSx0mRuJd1qzsdKt5qVfEeULFa+I6zKsltNrnNUhsr7OkcdOy5i27aB1Kp1nDNnym4wthBCCFGZyb3VKglFUdi9OxiALl2khhVCCCHKgxRHHuzPP/8iN/cOAAYOrO3mbIQQQoiqQYojD7ZwYSJQA602izvvlMHYQgghRHmQ4siDbdpkLYgaNz5rH8wmhBBCiLIlxZEHu3jResuQpk3PuzkTIYQQouqQ4siDmc3WH4+vbxHnqwohhBDCpaQ48mC24sjLS+XmTIQQQoiqQ4ojD2axWIsinU5+TEIIIUR5kaOuB7O1HOl00nIkhBBClBcpjjyYxWK9jru0HAkhhBDlp9IcdTdu3IhKpSpw2rlzJwAnTpwocPnvv//u5uwLZrHImCMhhBCivFWaq+d06NCB5ORkh3mvv/46v/zyC23btnWY//PPP9O8eXP76+Dg4HLJ0Vm24kiv17g5EyGEEKLqqDTFkU6nIzw83P7aaDTy3Xff8Z///AeVyrHlJTg42CHWUymKtSjS6ytNA58QQgjh8SrtUXfVqlVcuHCBgQMH3rDswQcfJDQ0lDvuuINVq1YVuR6DwUBGRobDVF5sLUcy5kgIIYQoP5X2qLtgwQK6d+9OnTp17PP8/f2ZMWMGX331FT/88AN33HEHvXv3LrJAmjp1KoGBgfYpMjKyPNIH8rccSbeaEEIIUV5UiqIo7k6iKOPGjWPatGlFxuzfv58mTZrYX58+fZqoqCi+/PJLHnnkkSLf279/f44fP86WLVsKXG4wGDAYDPbXGRkZREZGkp6eTkBAgBOfxHleXscwmeozf/4BBg1qcvM3CCGEEKJAGRkZBAYGFuv47fFjjkaNGsWAAQOKjKlfv77D60WLFhEcHMyDDz540/XfdtttJCQkFLpcr9ej1+uLlaurWSzaqzlIy5EQQghRXjy+OAoJCSEkJKTY8YqisGjRIvr374+Xl9dN4xMTE4mIiChNimVIutWEEEKI8ubxxZGz1q9fz/Hjx3nmmWduWLZkyRJ0Oh1xcXEAfPPNNyxcuJD58+eXd5rFImerCSGEEOWv0hVHCxYsoEOHDg5jkPJ74403+Oeff9BqtTRp0oTly5fz6KOPlnOWxaMo1h+Pt3el+zEJIYQQHsvjB2R7GmcGdJWWSnUZCGLTphTuusvzr8skhBBCeCpnjt/SX+OhrDWrDMgWQgghypsURx7KYrFgK46kW00IIYQoP1IceSij0QhYz7bz8ZHiSAghhCgvUhx5KIPBiJzKL4QQQpQ/KY48lMFgsj/38bn59ZqEEEII4RpSHHmonByj/bl0qwkhhBDlR4ojD5WTc63lyMtL5cZMhBBCiKpFiiMPZTCY7c+10nAkhBBClBspjjxUbu61liONjMcWQgghyo0URx4qN9fWcmREJb1qQgghRLmR4shDXWs5MhUZJ4QQQgjXkuLIQ9mKI5XKfJNIIYQQQriSDPX1MFl5WQBk5GaCVxaoM8jKs/aradQavLXeN8QWRK1S4+PlU6LYbGM2hd2PWKVS4evlW6LYHGMOFsVSaB5+Or8SxeaacjFbCi8inYn19fJFdbUf02AyYLIU3nLnTKyPlw9qlfV/kTxzHkaz0SWx3lpvNGqN07FGs5E8c16hsXqtHq1a63SsyWLCYDIUGqvT6PDSeDkda7aYyTXlFhrrpfFCp9E5HWtRLOQYc1wSq1Vr0Wv1gPXeiNnGbJfEOvN3L98RBcfKd0TF/I5wJ5VS2G+tKJAzd/UtCdWkwgcY3RdzHz/0/cH+2u8tv0K/VDtFdWLjgI321yHvhHA++3yBsW1rtWXnszvtr+u9V49/0v8pMLZZSDP2vrDX/rr5h83Zl7avwNiowChODD9hf93u43b8cfaPAmNr+tYkbUya/XXnxZ3Z9M+mAmN9vXzJevXaF3mvZb348fCPBcYCKBOu/Yr3+aoPX+/7utDYzFcy7V+UA1YOYMmeJYXGpo5OJcQvBIChPwzlwz8+LDT2+EvHqRdUD4Ax68bw7m/vFhqb9HwSzUObAzBx40QmbZpUaOyOZ3bQrnY7AN759R3G/jy20NgN8RvoXK8zAHN2zGHYT8MKjV395Gp6NeoFwOLExQz8bmChsV8++iV9mvcB4Ku9X/HY148VGrvooUUMaD0AgB8O/cD9n99faOwHPT9g6K1DAdh4YiN3L7m70NjpXaczpuMYAHae2cmt828tNHZCpwlM7DwRgL2pe2nxUYtCY0e3H807974DwInLJ4ieHV1o7AttX2BOrzkApGWlEfpuaKGx8bHxLO69GLAWJf5T/QuNfbTZo3zV5yv7a/mOsJLviMr/HeFqzhy/pVtNCCGEECIfaTlyUlm3HNmatuf9byejRrZD65XC5UvhgDSZFxYrTeYVs8lcutWkW02+I66R7wirsuxWc+b4LcWRk8q6OLKZOfM3Ro1qj053CoMhssy2I4QQQlQF0q1WCeTlWf8jUqsL/89ICCGEEK4nxZGHst0+RKWS4kgIIYQoT1IceahrLUdynSMhhBCiPElx5KHy8qxDwaRbTQghhChfUhx5KBlzJIQQQriHFEceSoojIYQQwj2kOPJQRqO1W02jkeJICCGEKE9SHHko25gjKY6EEEKI8iXFkYeytRyp1XKNTiGEEKI8SXHkoa51q0lxJIQQQpQnKY48lHSrCSGEEO4hxZGHMl29P6FWKy1HQgghRHmS4shDSbeaEEII4R5SHHkoW3EkLUdCCCFE+ZLiyEOZTCoANBo3JyKEEEJUMVIceSiTydZy5OZEhBBCiCqmUhVHhw4d4qGHHqJmzZoEBARwxx13sGHDBoeYkydP0qtXL3x9fQkNDWXMmDGYbKOfPYit5UiKIyGEEKJ8Vari6P7778dkMrF+/Xp27dpFbGws999/PykpKQCYzWZ69epFXl4e27ZtY8mSJSxevJjx48e7OfMb2eo1Ly8ZcySEEEKUp0pTHJ0/f57Dhw8zbtw4WrVqRUxMDG+//TbZ2dkkJSUBsG7dOvbt28enn35K69at6dmzJ2+88QZz5swhLy/PzZ/Aka04kjFHQgghRPmqNMVRcHAwjRs3ZunSpWRlZWEymZg3bx6hoaHccsstAPz222+0bNmSsLAw+/u6d+9ORkYGe/fudVfqBbJ1q3l5qdyciRBCCFG1VJoRLSqVip9//pnevXtTrVo11Go1oaGhrFmzhurVqwOQkpLiUBgB9te2rrfrGQwGDAaD/XVGRkYZfQJHZrOMORJCCCHcweNbjsaNG4dKpSpyOnDgAIqiMHToUEJDQ9myZQs7duygd+/ePPDAAyQnJ5d4+1OnTiUwMNA+RUZGuvDTFe5ay1G5bE4IIYQQV3l8u8SoUaMYMGBAkTH169dn/fr1rF69mkuXLhEQEADAhx9+SEJCAkuWLGHcuHGEh4ezY8cOh/eeO3cOgPDw8ALX/corrzBy5Ej764yMjHIpkGwtR9KtJoQQQpQvjy+OQkJCCAkJuWlcdnY2AGq1Y2OYWq3GYrHevLV9+/a8+eabpKamEhoaCkBCQgIBAQE0a9aswPXq9Xr0en1pPkKJSHEkhBBCuIfHd6sVV/v27alevTrx8fHs2bOHQ4cOMWbMGI4fP06vXr0AuPfee2nWrBn9+vVjz549rF27ltdee42hQ4e6pQAqisViLYp0OimOhBBCiPJUaYqjmjVrsmbNGjIzM7nnnnto27YtW7du5bvvviM2NhYAjUbD6tWr0Wg0tG/fnn//+9/079+fyZMnuzn7G5nN1h+NtBwJIYQQ5cvju9Wc0bZtW9auXVtkTFRUFD/++GM5ZVRyUhwJIYQQ7lFpWo4qG4vF+qPR6eRHJIQQQpQnOfJ6qGvFkbQcCSGEEOVJiiMPZetWk5YjIYQQonzJkddDKYoUR0IIIYQ7yJHXQ9m61fR6+REJIYQQ5UmOvB7KYrGeSCgtR0IIIUT5kiOvh7J1q+n1GjdnIoQQQlQtUhx5KIvFWhRJy5EQQghRvuTI66EUxVoceXtLy5EQQghRnop1hew2bdo4tVKVSsWqVauoXbt2iZISoCgy5kgIIYRwh2IVR4mJiYwaNQp/f/+bxiqKwttvv43BYCh1clWZreVIxhwJIYQQ5avY91YbM2YMoaGhxYqdMWNGiRMSNrZutUp1+zshhBDC4xXryHv8+HFCQkKKvdJ9+/ZRq1atEidV1VksFsALkDFHQgghRHkrVnEUFRXl1EojIyNLlIywMplM2H400q0mhBBClK9S9dlkZWWxfPlycnJyuPfee4mJiXFVXlWa0WjE9qORbjUhhBCifBX7VKiTJ0/SqVMnqlWrRrdu3Th58iRt2rThmWee4T//+Q+tW7dm8+bNZZlrlZG/OPLxkeJICCGEKE/FLo5Gjx5NXl4ec+fOxdfXl+7duxMTE0NycjLnzp2jZ8+eTJw4sQxTrTqs3Wq2MUdSHAkhhBDlqdhH3s2bN7Nq1SpuvfVWevbsSc2aNVm4cCFhYWEAvP7663Tp0qXMEq1KrC1H1QC5zpEQQghR3op95E1NTbUPzK5Rowa+vr72wgggPDycS5cuuT7DKih/t5pWGo6EEEKIcuVUs4RKpSrwuXCtvDwTtusceXm5NxchhBCiqnGqXWL8+PH4+voCkJeXx5tvvklgYCAA2dnZrs+uisrJMdqfS8uREEIIUb6Kfei96667OHjwoP11hw4dOHbs2A0xovQMBrP9uRRHQgghRPkq9qF348aNZZiGyC8312R/Lt1qQgghRPmSU6E8UE7OteJIWo6EEEKI8lWsQ+/IkSOLvcKZM2eWOBlhlZdnsT9XS/kqhBBClKtiFUd//vmnw+vdu3djMplo3LgxAIcOHUKj0XDLLbe4PsMq6Fq3mhGVSvrVhBBCiPJUrOJow4YN9uczZ86kWrVqLFmyhOrVqwNw6dIlBg4cyJ133lk2WVYxtgHZKtW1K2ULIYQQonw43WkzY8YMpk6dai+MAKpXr86UKVOYMWOGS5OrqgwGa7eaSmW+SaQQQgghXM3p4igjI4O0tLQb5qelpXHlyhWXJFXV2brVpDgSQgghyp/TxdG//vUvBg4cyDfffMPp06c5ffo0K1asYNCgQTz88MNlkWOVYxuQrVZLcSSEEEKUN6dPFJ87dy6jR4+mb9++V+8BBlqtlkGDBvHOO++4PMGqSLrVhBBCCPdxujjy9fXlww8/5J133uHo0aMANGjQAD8/P5cnV1VdG5BtuUmkEEIIIVytxJcY9PPzo1WrVq7MRVxlNEq3mhBCCOEuxRpz9PDDD5ORkVHslT711FOkpqaWOKmqztatJsWREEIIUf6KVRx99913pKWlkZGRcdMpPT2d77//nszMzLLO/QaHDh3ioYceombNmgQEBHDHHXc4XKMJQKVS3TB98cUX5Z5rUa4VR4qbMxFCCCGqnmJ1qymKQqNGjco6l1K7//77iYmJYf369fj4+PDee+9x//33c/ToUcLDw+1xixYtokePHvbXQUFBbsi2cEajtShSq2XMkRBCCFHenL5CdnHVrl3b6feUxvnz5zl8+DALFiywj4V6++23+fDDD0lKSnIojoKCghxeexrbqfwajRRHQgghRHkrVnHUqVOnss6j1IKDg2ncuDFLly6lTZs26PV65s2bR2ho6A33fBs6dCjPPPMM9evXZ8iQIQwcOBCVSlXgeg0GAwaDwf7ambFXJXX1CgnSciSEEEK4QYnPVvM0KpWKn3/+md69e1OtWjXUajWhoaGsWbPG4VYnkydP5p577sHX15d169bxwgsvkJmZyYsvvljgeqdOncqkSZPK62MA0nIkhBBCuJPTV8gub+PGjStwEHX+6cCBAyiKwtChQwkNDWXLli3s2LGD3r1788ADD5CcnGxf3+uvv07Hjh2Ji4vj5ZdfZuzYsUVevPKVV14hPT3dPp06darMP7NtzJFGIwOyhRBCiPKmUhTFo4/AaWlpXLhwociY+vXrs2XLFu69914uXbpEQECAfVlMTAyDBg1i3LhxBb73hx9+4P777yc3Nxe9Xn/TfDIyMggMDCQ9Pd1hO67Uu/dXfPddHyIj93PyZNMy2YYQQghRlThz/Pb4brWQkBBCQkJuGpednQ2AWu3YGKZWq7FYCu+eSkxMpHr16sUqjMqLbcyRtBwJIYQQ5c/ji6Piat++PdWrVyc+Pp7x48fj4+PDxx9/zPHjx+nVqxcA33//PefOneP222/H29ubhIQE3nrrLUaPHu3m7B1d61ZzcyJCCCFEFeT0mKNz587Rr18/atWqhVarRaPROEzuUrNmTdasWUNmZib33HMPbdu2ZevWrXz33XfExsYC4OXlxZw5c2jfvj2tW7dm3rx5zJw5kwkTJrgt74KYTNZHaTkSQgghyp/TLUcDBgzg5MmTvP7660RERBR6Crw7tG3blrVr1xa6vEePHg4Xf/RUtpYjrVaKIyGEEKK8OV0cbd26lS1bttC6desySEcAmEzWglNbaTo9hRBCiIrD6W61yMhIPPwEtwrPZJKWIyGEEMJdnC6O3nvvPcaNG8eJEyfKIB0B185Wk5YjIYQQovw5ffh9/PHHyc7OpkGDBvj6+uLl5eWw/OLFiy5Lrqoym6VbTQghhHAXpw+/7733XhmkIfKTMUdCCCGE+zh9+I2Pjy+LPEQ+tlP5r2uUE8LB5dzLJKUmcfzScc5cOcOZjDOczTxLSmYKJovJIVav0RPiF0KobyihftYpKiiKhjUaEh0UjV7rORdBFUIIdytWcZSRkWG/1PbN7kpfVrfUqEps3WpeXp5zmQThPkazkYMXDrInZQ97zu0hKTWJv1P/5nTGaZesX4WKyMBIGtZoSLOazWgW0oymIU1pFtKMEN8Qj7pchxBClIdiFUfVq1cnOTmZ0NBQgoKCCvyyVBQFlUqF2Wx2eZJVjXSrVU0WxcLJ9JPsTd3L3rS97Evbx1/n/mJv2l7yzHkFvicyIJJGwY2oHVCb2tVqU6taLSL8I9BpdAD2v9VsYzZpWWmkZaeRmpVKSmYKxy8f58jFI2TmZXIy/SQn00+y/vh6h/UH+wTTPLQ5zWo2sz6GNKNxcGNqVaslRZMQotIq1uF3/fr11KhRA4ANGzaUaUICLBZpOaqsLIqFs1fOcuTikQKnLGNWge+rpqtGq7BWxIbF0jKsJS1DW9I8tDlB3kGlykdRFNKy0zhy8QgHzx9k//n97D+/n31p+zh+6TgXci6w+Z/NbP5ns8P7/Lz8aBTciEbBjWhQvQFRQVHUDaxLVKD10U/nV6q88udnMBvINmaTbczGYDJgUSxYFAsKChbFgpfaCx8vH3y0PnhrvfHx8kGtcvpEXI+mKApZxiwu514mw5DhMGUbs8k15ZJjzCHHlEOeOc++j2yTWqVGo9KgUWvQqDRo1Vr0Wj3eWm/0Gr39ef596KP1sT/6evni42VdVtn2bUEURcFkMWG0GMkz52E0GzFajDc8miwmzBYzZsXs8Ny2380Ws/131bbe66lUKlSoUKlUqFXqAieNSmN9vPrzy/+oVWsdntsmL7WX9VFjfawKPzdXKlZx1KlTpwKfi7Jh61bT6aQ4qohsBdDhC4c5fPEwhy4cshc/Ry8dJdeUW+h7vdReNK7ZmOYh1laaFqEtaB3emnpB9crky02lUtnHIHWI7OCwLNuYzcHzB+2tWHvT9rI/bT/HLh0jy5jFnyl/8mfKnwWu11vrTQ2fGgT7BFPDpwb+On+8NF72L2ytWovRYsRgMpBnzsNgNpBjzCEzL9NhyjZm2w8sxf5MqAjyDqKGTw37VNO3JqF+oYT5hVkf/cPsnzvULxRvrXeJ92FJGEwG0rLT7K15aVlpnM8+T1q24+OF7AtcyLnAxZyLhbYelje9xlpI2Yoo23PbfL1Wby+4dBodeo310TbpNXr774LtwO2l9rrhwH/977utGLYVHWbFjNlithYvV4sY25T/98pgNmAwGcg15ZJrysVgtj63xdmW299rNnjMvnYlFSqH/X398/x/m7Zl+Qutwgoyh+Lt6qOt0FOhsr++/jlQ4HPbY1RQFC+0e8Ft+6vEHTfZ2dmcPHmSvDzHX6JWrVqVOqmqzmy2filIy1HFcC7zHL+f/p3fT//O9jPb2Xl2J5l5mYXGa1Qa6gXVo2GNhjdMDao3wEvjGSPxfb18iYuIIy4izmF+njmPY5eOcejCIQ6eP8iJyyf4J/0fTqaf5J/0f8gwZJBryuXslbOcvXLWZfloVBq8td72L2Tbl6/RYiTHmIPRYr1AmILCpdxLXMq9xNFLR4u17gB9ACG+IVT3qW4vqKp7V8df54+vly9+Xn74evnaW07yTyaLyeHAnGvK5UreFa4Yrlgf865wKecSF3Mu2qfCWghvRqvWEqgPJEAfQIA+gGr6atZWnXwtPl5qL4cDlwoVCopDQWFSTPaCwVYsGEwGckw55BhzrC1RV59nG7Pt+xawFxzphvQSfYaKSqPSOBR1tmLi+mIhfytP/t9TWze0rRgA7IW/RbGgKPmKP8Xs8No2L//P8PrWKrPF+tpkMRX4D4WCYv8drQja12lfsYqjtLQ0Bg4cyE8//VTgchlzVHpSHHm289nn2XB8A78c/4Vfjv/CkYtHbojRqDTUr16fmOAYYmrE0LBGQ/tj3cC6HlMAlYROo6NJzSY0qdkEGt+4/Irhir21w9bykW3Mxmg22rsqTBYTXmovh9YFb6031fTV8Nf546/zx8/LDz+dn/3gf7N9ZrKYyDXlkpWXxaXca8XIhewLnM8+z7msc5zLOkdqVirnMq2PqVmpGC1GexcVl8popxVAq9ZS07cmIb4h1ke/kGvPrz7W9K1pbYHzDSbYJxhfL1+3jPUyWUw3FE225/lbZewtMvlaY2wtMddP+bumjBbjDQd+i2JxKCQAh6LDVozoNDq81F4Oj9e3XuVv3bIty9/Klf89+Vu5vDTW9VW0bimLYrHu13z72DYV1UWYP8bh9XVdiPl/Rtc/t7Xw5S/uFBQURbEvA+yv8z+3vUdBoV5QPTfuwRIUR8OHD+fy5cts376dzp078+2333Lu3DmmTJnCjBkzyiLHKkfGHHme5CvJfPb3Z3ye9Dl/Jv/p8J+ZChXNQ5tze+3bub3O7dxW5zYaBzeu0AVQaVTTV6Oavlq5f7lp1Vp7YRXmH1as9yiKwuXcy5zLOseF7Av2osrW0pNlzCLbmE2WMYusvCwMZsMN43m0au0N3UbVdNZ9EKAPoJqu2g3dfDV8ahDkXfDJLZ5Iq9baf67C86lVavvvoygZp4uj9evX891339G2bVvUajVRUVF069aNgIAApk6dSq9evcoizyrF1nKk11ec/1QqI4PJwPeHvmdx4mLWHFmDWbnWKto8pDld63elS3QX7oq6i0DvQDdmKkpKpVJR3ac61X2quzsVIYQHcbo4ysrKIjQ0FLCe4p+WlkajRo1o2bIlu3fvdnmCVZHFogFAp5PiyB3+TP6ThX8uZFnSMi7mXLsdTofIDsTHxvNg4wcJ9w93Y4ZCCCHKktPFUePGjTl48CD16tUjNjaWefPmUa9ePebOnUtERERZ5FjlWCwy5qi8ZRgyWJK4hIWJC0lMSbTPr12tNvGx8fSP7U/jmgUMsBFCCFHpOF0cvfTSSyQnJwMwYcIEevTowWeffYZOp2Px4sWuzq9KshVH0q1W9i7nXub97e8z6/dZXMq1jsbVaXT0btKbp1s/Tdf6XdGoNW7OUgghRHlyujj697//bX9+yy238M8//3DgwAHq1q1LzZo1XZpcVaUotuJIDspl5WLORWb/PpvZ22fbT0luHNyYoe2G0rdlX4J9g92coRBCCHcp9Q0qfH19adOmjStyEVfJmKOyczrjNLN+m8X/dv/Pfi2iFqEteO3O13i02aPSSiSEEML54mjkyJEFzlepVHh7e9OwYUMeeugh++1GhPMURYojV9uXto93tr3DZ399Zr+gXWxYLOM7jad3k94V6homQgghypbTxdGff/7J7t27MZvNNG5sHaB66NAhNBoNTZo04cMPP2TUqFFs3bqVZs2auTzhqsDWciRjjkrvQvYFRq4bydI9S+3zOtfrzMsdX6Z7g+4V5jozQgghyo/TR9+HHnqIrl27cvbsWXbt2sWuXbs4ffo03bp148knn+TMmTPcddddjBgxoizyrRJsLUfe3tLFUxpf7/uaZh82Y+mepahQ8XDTh9n+zHY2xG+gR8MeUhgJIYQokEop6DbBRahduzYJCQk3tArt3buXe++9lzNnzrB7927uvfdezp8/79JkPUFGRgaBgYGkp6cTEBDg8vUrioJanQjE8cUXl3n88SCXb6OyS76SzLCfhvHN/m8AaBbSjAUPLuD2Ore7OTMhhBDu4szx2+mWo/T0dFJTU2+Yn5aWRkZGBgBBQUE33JBWFI/JZMLW2yljjpz3w6EfaP5hc77Z/w1atZbX73qd3YN3S2EkhBCi2Jwec/TQQw/x9NNPM2PGDNq1awfAzp07GT16NL179wZgx44dNGrUyKWJVhX5iyMfn1KfTFhlmC1mJm6cyJQtUwBoE9GGhQ8uJDY81s2ZCSGEqGicPvrOmzePESNG8MQTT1w9kINWqyU+Pp5Zs2YB0KRJE+bPn+/aTKsIo9EIWG9YKtc5Kp7z2ed56punWHd0HQDD2g1jRvcZctNFIYQQJeL0mCObzMxMjh07BkD9+vXx9/d3aWKeqqzHHF24cIGaNa8A9fj1VxMdOkjrUVF2nd3Fw18+zMn0k/h6+fK/+//HU62ecndaQgghPIwzx+8SH3n9/f1p1apVSd8uCpG/W03OVivaqfRT9PisB+ezzxNTI4ZvHv+GFqEt3J2WEEKICk6aJTyMtVvN+mORG88WzmAy8OhXj3I++zxx4XFsiN9AoHegu9MSQghRCcjpUB4m/5gjrZSuhRq+Zjg7zuygund1Vjy2QgojIYQQLiPFkYfJ360mxVHBliQuYe6uuahQ8dnDnxFdPdrdKQkhhKhEpDjyMI7dau7NxRMlpiQy5IchAEzoNIGeMT3dnJEQQojKpkRtE4cPH2bDhg2kpqZisVgclo0fP94liVVV1pYj6VYryNkrZ3nky0fINeVyX8x9vN7pdXenJIQQohJy+vD78ccf8/zzz1OzZk3Cw8Md7k+lUqmkOCql/C1HUhxds+bIGvp924/z2eepF1SPT/71CWqVNHwKIYRwPaePLlOmTOHNN98kJSWFxMRE/vzzT/u0e/fussix2Hbv3k23bt0ICgoiODiYwYMHk5mZ6RBz8uRJevXqha+vL6GhoYwZM8Z+MUtPYDAYsf1YpDgCo9nIuJ/H0fOznpzPPk/r8NYk9Eughk8Nd6cmhBCiknK6OLp06RJ9+vQpi1xK5ezZs3Tt2pWGDRuyfft21qxZw969exkwYIA9xmw206tXL/Ly8ti2bRtLlixh8eLFHtXaZTCY7c+r+pijk+kn6bykM9N+nQbAC21f4LdBv9GwRkP3JiaEEKJSc7o46tOnD+vWrSuLXEpl9erVeHl5MWfOHBo3bky7du2YO3cuK1as4MiRIwCsW7eOffv28emnn9K6dWt69uzJG2+8wZw5czzmRrk5Oddasdac+I7b59/O4QuH3ZiRe5zLPEfHhR3ZdmobAfoAvurzFXN6zcFb6+3u1IQQQlRyxeq4+e9//2t/3rBhQ15//XV+//13WrZsidd1zRsvvviiazMsJoPBgE6nQ62+Vu/5+PgAsHXrVho2bMhvv/1Gy5YtCQsLs8d0796d559/nr179xIXF1fgeg0Gg/11RkZGGX4Kx5ajL/YtZfuZ7Xzy1ydMvntymW7Xk+SZ83jky0c4nXGaRsGN+Ompn6hfvb670xJCCFFFFKs4st1Q1sbf359NmzaxadMmh/kqlcptxdE999zDyJEjeeedd3jppZfIyspi3LhxACQnJwOQkpLiUBgB9tcpKSkFrnfq1KlMmjSpDDN3lL84yrXkAPDH2T/Kbfue4MWfXuTXU78SoA9g1ROrpDASQghRrorVrXb8+PFiTbYb0brSuHHjUKlURU4HDhygefPmLFmyhBkzZuDr60t4eDjR0dGEhYU5tCY565VXXiE9Pd0+nTp1yoWf7ka5ubbiyILBlAtYi6MS3h+4wpn3xzzm7ZqHChWfP/I5jWs2dndKQgghqhinq4bJkyeTnZ19w/ycnBwmT3Z918+oUaPYv39/kVP9+taWhb59+5KSksKZM2e4cOECEydOJC0tzb48PDycc+fOOazf9jo8PLzA7ev1egICAhymsmRrOVKpzOReLY7SstM4lVG2RZkn2PLPFob9NAyAt7q8xX0x97k5IyGEEFWR08XRpEmTbjg9HiA7O7tMup9CQkJo0qRJkZNOp3N4T1hYGP7+/ixfvhxvb2+6desGQPv27fn7779JTU21xyYkJBAQEECzZs1cnntJ5OVZL6qpUpnJMeXY5+88s9NdKZWL0xmnefSrRzFZTDze/HFe7viyu1MSQghRRTldHCmK4nDhR5s9e/ZQo4Z7rz3zwQcfsHv3bg4dOsScOXMYNmwYU6dOJSgoCIB7772XZs2a0a9fP/bs2cPatWt57bXXGDp0KHq93q2529hajtTqay1HULnHHVkUC/2/7U9qViqxYbEseHBBgb9jQgghRHko9mUGq1evbh/j06hRI4eDl9lsJjMzkyFDhpRJksW1Y8cOJkyYQGZmJk2aNGHevHn069fPvlyj0bB69Wqef/552rdvj5+fH/Hx8WXSHVhSBsO1liOH4ii58hZHs3+fzYYTG/D18uWrPl/hp/Nzd0pCCCGqsGIXR++99x6KovD0008zadIkAgMD7ct0Oh316tWjffv2ZZJkcS1duvSmMVFRUfz444/lkE3J5OXZxhxZbmg5KqzVriLbm7qXV355BYAZ984gJjjGzRkJIYSo6opdHMXHxwMQHR1Nhw4dbri+kXANW8uRRuPYcnQ59zJHLx2tVFeHzjPn0e/bfhjMBno27Mlztzzn7pSEEEII58ccderUyV4Y5ebmkpGR4TCJ0jEarafsq1QWcozWAdnh/tYz6SrbuKNJGyfxZ8qf1PCpIeOMhBBCeAyni6Ps7GyGDRtGaGgofn5+VK9e3WESpWMfc6Q2YzBbr8x9R907gMpVHG07tY23f30bgHn3zyOiWoSbMxJCCCGsnC6OxowZw/r16/noo4/Q6/XMnz+fSZMmUatWrWKN+RFFs53Kr9FdO43/zrp3ApWnODKYDMSvjMeiWPh3q3/zaLNH3Z2SEEIIYVfsMUc233//PUuXLqVz584MHDiQO++8k4YNGxIVFcVnn33GU089VRZ5Vhn2bjWva8WRreVoV/IuzBYzGrXGLbm5yuztszly8QgR/hG83/N9d6cjhBBCOHC65ejixYv2K04HBARw8eJFAO644w42b97s2uyqoLw8a3Gk0VuvQq5WqWkV1gpfL18y8zI5dOGQO9MrtdSsVKZsngLA1C5TCfIOcm9CQgghxHWcLo7q16/P8ePHAWjSpAlffvklYG1Rsl1sUZTctZYj65lq3lpvtGotceFxQMXvWhu/YTxX8q5wS8Qt9Ivtd/M3CCGEEOXM6eJo4MCB7NmzB7DeFHbOnDl4e3szYsQIxowZ4/IEqxp7caS7VhwBtK3VFqjYxdHf5/7m490fAzCr+yzUqpLfEFgIIYQoK06PORoxYoT9edeuXTlw4AC7du2iYcOGtGrVyqXJVUW2Adnq64qjdrXaARX3StmKojBy3UgsioVHmz3KnVF3ujslIYQQokDFLo4sFgvvvPMOq1atIi8vjy5dujBhwgSioqKIiooqyxyrFJPJeq0fW3Hko/UBrrUc/Zn8JyaLCa3a6brWrX44/AM/H/sZnUbHtK7T3J2OEEIIUahi92u8+eabvPrqq/j7+1O7dm1mz57N0KFDyzK3KqmwbrWY4Biq6aqRY8phX9o+t+VXEkazkVHrRgEw/Lbh1K9e380ZCSGEEIUrdnG0dOlSPvzwQ9auXcvKlSv5/vvv+eyzz7BYLGWZX5VjK47UXo7FkVql5pZatwAVb9zRnJ1zOHThEKF+ofzfXf/n7nSEEEKIIhW7ODp58iT33Xef/XXXrl1RqVScPXu2TBKrqmzdaqrriiPIN+6oAhVHKZkpTNg4AYApd08hQB/g5oyEEEKIohV74IrJZMLb29thnpeXF0aj0eVJVWXXTuXPAxyLI9u4o51nd5Z/YiX08s8vk2HIoG2ttjwd97S70xGi0jCbzfL9K8R1dDodanXpz4QudnGkKAoDBgxAr9fb5+Xm5jJkyBD8/Pzs87755ptSJ1WVmc3WR9uYIx8vH/uyW2vfClgHZR+5eISGNRqWe37O+PXkryzdY72lzAc9P6jwV/YWwhMoikJKSgqXL192dypCeBy1Wk10dDQ6na5U6yl2cRQfH3/DvH//+9+l2ri4kclkfVR5WW86m7/lqF5QPXo07MGaI2sYv2E8yx5Z5o4Ui8VsMTPsp2EADIobxG11bnNzRkJUDrbCKDQ0FF9fX1QqlbtTEsIjWCwWzp49S3JyMnXr1i3V30axi6NFixaVeCOi+IzGqz9M7Y3FEVhvubHmyBo+T/qcMR3GEBcRV94pFsvcP+aSmJJIkHcQU7tMdXc6QlQKZrPZXhgFBwe7Ox0hPE5ISAhnz57FZDLh5eVV4vXIJYo9jNlsG5B9dcyRxrE4ah3emidbPAnAq+tfLd/kiiktK43XNrwGwJv3vEmIX4ibMxKicrCNMfL19XVzJkJ4Jlt3mtk2RqWEpDjyMLZuNVvLUf4xRzZv3P0GWrWWNUfWsPHExvJLrpjG/TyOy7mXiQuP47lbnnN3OkJUOtKVJkTBXPW3IcWRh7G1HBXWrQbQoEYDBrcZDFgLEUVRyi2/m/n73N8sTFwIwJz75sggbCGEEBWOFEcexmy++iMpojgCeL3T6/h6+bL9zHZWHlhZTtnd3NSt1vFFjzZ7lPaR7d2cjRBCCOE8KY48jK2bVLlJcRTuH86I2603Af6/9f+HyWIqMK48Hbl4hOV7lwPwf3fKlbCFENcMGDAAlUqFSqXCy8uL6Ohoxo4dS26u9bIle/bsQafTsWrVKof3rVixAm9vb5KSkgpcb3JyMn379qVRo0ao1WqGDx9e1h9FVAFSHHkYe8uR5saLQF5vTIcx1PCpwf7z+/n878/LI70ivb31bSyKhfti7qN1eGt3pyOE8DA9evQgOTmZY8eOMWvWLObNm8eECdYr6MfGxjJ+/HgGDx7MhQsXAEhNTWXIkCFMmjSJFi1aFLhOg8FASEgIr732GrGxseX2WUTlJsWRh7EVR4rm6oBs7Y0Dsm0CvQPtA57dPTD7VPop+wUfpdVICFEQvV5PeHg4kZGR9O7dm65du5KQkGBf/sorr1C3bl37Tc2fe+45YmJiGD16dKHrrFevHrNnz6Z///4EBgaW+WcQVUOxr3MkyodtQLZFU3S3mk2rsFYAHLxwsGwTu4l3t72L0WKkc73OdIjs4NZchKhKFEUhOzvbLdsuzUUok5KS2LZtG1FRUfZ5Go2GJUuW0KZNG/r27cvatWtJTExEo5ETO0T5kuLIw1gsV1uO1MUrjhoHNwbgwPkDZZtYEVKzUvl498eAtBoJUd6ys7Px9/d3y7YzMzMdbh91M6tXr8bf3x+TyYTBYECtVvPBBx84xDRt2pThw4fz9ttvM23aNBo1auTqtIW4KelW8zC24shSzOKoUbD1i+NCzgXOZ58v2+QKMeu3WeSYcri19q10ie7ilhyEEJ7v7rvvJjExke3btxMfH8/AgQN55JFHHGIyMzNZvnw5vr6+bNmyxWGZv7+/fRoyZEh5pi6qGGk58jC24sistg7ILugikPn56fyIDIjkVMYpDp4/SM26Ncs8x/wu5Vxizs45gLXVSC5OJ0T58vX1JTMz023bdoafnx8NG1pvmL1w4UJiY2NZsGABgwYNsseMGTMGb29vtm3bxu23387SpUvp378/AImJifa4gICA0n8AIQohxZGHsVisfetmlfX01pu1HAE0qdnEWhxdOEjHuh3LNL/rzdk5hyt5V2gZ2pL7G91frtsWQlivCOxM15anUKvVvPrqq4wcOZK+ffvi4+NDQkIC8+fPZ9u2bcTGxjJlyhSGDx9Ot27diIiIsBdWQpQ16VbzMNdajorXrQbuG3eUa8rl/R3vAzDujnGoVfLrJIQovj59+qDRaJgzZw4ZGRkMGjSIMWPG0K5dOwBGjBhBs2bNGDx4cJHrSUxMJDExkczMTNLS0khMTGTfvn3l8RFEJSUtRx5GUa62HFH84qhJzSZA+Z+xtuzvZaRmpRIZEEmfZn3KddtCiIpPq9UybNgwpk+fzt69ewkMDGTixIn25Wq1mkWLFtG6dWuH7rXrxcXF2Z/v2rWLZcuWERUVxYkTJ8r4E4jKSoojD2NrOTI5URw1rmltOTp4vvyKI0VRmPnbTABevO1FvDRe5bZtIUTFs3jx4gLnjxs3jnHjxhX6vpiYGLKysopctyfdX1JUDtIP4kEURbG3HNmKo6IuAmljazk6eukoRrOx7BLMJ+FYAnvT9uKv8+eZNs+UyzaFEEKI8iDFkQexWCxYG/MUjOQAxWs5ql2tNn5efpgsJo5dOla2SV416/dZAAyKG0SQd1C5bFMIIYQoD5WqONq9ezfdunUjKCiI4OBgBg8efMMprrYbH+afvvjiCzdl7MhoNAJe9vuqQfGKI5VKZe9aK49B2XtT97LmyBrUKjUv3vZimW9PCCGEKE+Vpjg6e/YsXbt2pWHDhmzfvp01a9awd+9eBgwYcEPsokWLSE5Otk+9e/cu93wLYi2OtKDNtc8rTnEE185YK49B2e/9/h4A/2ryL+pXr1/m2xNCCCHKU6UZkL169Wq8vLyYM2cOarW15ps7dy6tWrXiyJEjDtfHCAoKIjw83F2pFspkMpG/OFKhQqfRFeu9tnFHZd1ylJqVyid/fQLAyPYjy3RbQgghhDtUmpYjg8GATqezF0YAPj7Wwcxbt251iB06dCg1a9bk1ltvZeHChUWe6WAwGMjIyHCYyoq95cjr2nij4l5xurxajj7a+REGs4Hbat9G+zrty3RbQgghhDtUmuLonnvuISUlhXfeeYe8vDwuXbpkPz00OTnZHjd58mS+/PJLEhISeOSRR3jhhRd4//33C13v1KlTCQwMtE+RkZFl9hmsLUde9paj4napQfm0HOWacu23ChnZfqTcKkQIIUSl5PHF0bhx4wocRJ1/OnDgAM2bN2fJkiXMmDEDX19fwsPDiY6OJiwszKE16fXXX6djx47ExcXx8ssvM3bsWN55551Ct//KK6+Qnp5un06dOlVmn/X6MUfOFEcxwTEAXMy5WGY3oF11cBVp2WlEBkTycNOHy2QbQgghhLt5/JijUaNGFTioOr/69a2Dgvv27Uvfvn05d+4cfn5+qFQqZs6caV9ekNtuu4033ngDg8GAXq+/Yblery9wflkoTXHk6+VLVGAU/6T/w4HzB7ij7h0uz2/53uUAPNXyKbRqj//VEUIIIUrE449wISEhhISEOPWesLAwwHrXZ29vb7p161ZobGJiItWrVy+3Aqgo1m41H3tx5ON18wtA5te4ZmP+Sf+Hg+cPurw4umK4wo+HfwTg8RaPu3TdQgghhCfx+G41Z3zwwQfs3r2bQ4cOMWfOHIYNG8bUqVMJCgoC4Pvvv2f+/PkkJSVx5MgRPvroI9566y3+85//uDfxq661HBX/ApD5NQkuu3FHqw6uIteUS6PgRsSGxbp8/UKIym3AgAH2oRBeXl5ER0czduxYcnOvXbpkz5496HQ6Vq1a5fDeFStW4O3tTVJSUoHrTk5Opm/fvjRq1Ai1Ws3w4cNdlne9evVuGMpRp04dl63/ZiZOnEjr1q3LbXvCyuNbjpyxY8cOJkyYQGZmJk2aNGHevHn069fPvtx2qv+IESNQFIWGDRsyc+ZMnn32WTdmfU1putUg3z3WyuCMNVuX2uPNH5eB2EKIEunRoweLFi3CaDSya9cu4uPjUalUTJs2DYDY2FjGjx/P4MGD6dixI8HBwaSmpjJkyBAmTZpEixYtClyvwWAgJCSE1157jVmzZrk878mTJzscJzQajcu3ITxLpWo5Wrp0KRcuXMBgMLBnzx6Hwgisf5h//vknV65cITMzk8TERJ577jmHAdvudP11jpwujoLL5irZl3Mvs+bIGsBaHAkhREno9XrCw8OJjIykd+/edO3alYSEBIeYV155hbp16zJ06FAAnnvuOWJiYhg9enSh661Xrx6zZ8+mf//+BAYGujzvatWqER4ebp/yD/X46KOPaNCgATqdjsaNG/PJJ584vPfy5cs899xzhIWF4e3tTYsWLVi9erXLcjt16hSPPfYYQUFB1KhRg4ceeogTJ07Ylw8YMIDevXvz7rvvEhERQXBwMEOHDr36z7jVhx9+SExMDN7e3oSFhfHoo4+6LL+KqlK1HFV09tuH2MYcFeOms/nZTuc/dukYeea8Yl9A8mZWHliJ0WKkWUgzmoc2d8k6hRCuVdSd6zUaDd7e3sWKVavV9mvEFRXr5+dXgiyvSUpKYtu2bURFRd2Q65IlS2jTpg19+/Zl7dq1JCYmemRrzbfffstLL73Ee++9R9euXVm9ejUDBw6kTp063H333VgsFnr27MmVK1f49NNPadCgAfv27XPZZzEajXTv3p327duzZcsWtFotU6ZMoUePHvz111/odNZjwIYNG4iIiGDDhg0cOXKExx9/nNatW/Pss8/yxx9/8OKLL/LJJ5/QoUMHLl68yJYtW1ySX4WmCKekp6crgJKenu7ydW/cuFGBLIV2cxQmojyy/BGn3m+xWBT/t/wVJqLsS93nsrx6fNpDYSLKpI2TXLZOIYTzcnJylH379ik5OTk3LAMKne677z6HWF9f30JjO3Xq5BBbs2bNAuOcFR8fr2g0GsXPz0/R6/UKoKjVauXrr78uMH7cuHEKoEybNs2p7XTq1El56aWXnM6vMFFRUYpOp1P8/Pzs0+zZsxVFUZQOHToozz77rEN8nz597Pt77dq1ilqtVg4ePFji7U+YMEGJjY0tcNknn3yiNG7cWLFYLPZ5BoNB8fHxUdauXasoinW/R0VFKSaTySHHxx9/XFEURVmxYoUSEBCgZGRklDhHT1LU34gzx2/P6E8SQOnHHKlUKpdfKftC9gV+PvYzIF1qQojSufvuu0lMTGT79u3Ex8czcOBAHnnkkRviMjMzWb58Ob6+vje0Yvj7+9unIUOGlDiX5s2b29fTs2fPImPHjBlDYmKiferfvz8A+/fvp2PHjg6xHTt2ZP/+/YD1bOg6derQqFGjEudZlD179nDkyBGqVatm/yw1atQgNzeXo0eP2uOaN2/u0FoVERFBamoqAN26dSMqKor69evTr18/PvvsM7Kzs8sk34pEutU8SGmLI7AOyt6VvMtl446+PfAtJouJ2LBY+4BvIYTnyczMLHTZ9d04tgNjQa4fg5l//Epp+fn52e9zuXDhQmJjY1mwYAGDBg1yiBszZgze3t5s27aN22+/naVLl9oLksTERHtcQEBAiXP58ccf7eNu8ncjFqRmzZoO9+csrputt7QyMzO55ZZb+Oyzz25Yln9clJeXl8MylUqFxWIBrOOpdu/ezcaNG1m3bh3jx49n4sSJ7Ny5036md1UkxZEHMRhMgLpUxZHtdH5XtRzlP0tNCOG5nBkDVFaxzlCr1bz66quMHDmSvn372guJhIQE5s+fz7Zt24iNjWXKlCkMHz6cbt26ERERUaIipSDXj3UqiaZNm/Lrr78SHx9vn/frr7/SrFkzAFq1asXp06c5dOhQmbQetWnThuXLlxMaGlqqQlGr1dK1a1e6du3KhAkTCAoKYv369Tz8cNW9E4J0q3kQg8FsfVLCAdlw7XR+V7QcpWalsv74ekAu/CiEcL0+ffqg0WiYM8d6z8aMjAwGDRrEmDFjaNeuHQAjRoygWbNmDB48uMh12bq8MjMzSUtLIzExkX379pVp/mPGjGHx4sV89NFHHD58mJkzZ/LNN9/Yz6zr1KkTd911F4888ggJCQkcP36cn376iTVrrGf/njlzhiZNmrBjx44it5OTk+PQrZeYmMjRo0d56qmnqFmzJg899BBbtmzh+PHjbNy4kRdffJHTp08X6zOsXr2a//73vyQmJvLPP/+wdOlSLBYLjRtX7Z4CKY48SG6uyfqkhBeBhGtnrB08fxBFUUqVz4p9K7AoFtrWakv96oXfgkUIIUpCq9UybNgwpk+fTlZWFsOHDycwMJCJEyfaY9RqNYsWLWL9+vUsXbq00HXFxcURFxfHrl27WLZsGXFxcdx3331lmn/v3r2ZPXs27777Ls2bN2fevHksWrSIzp0722NWrFhBu3btePLJJ2nWrBljx47FbLb+I2w0Gjl48OBNx/gcOnTI/vls03PPPYevry+bN2+mbt26PPzwwzRt2pRBgwaRm5tb7JakoKAgvvnmG+655x6aNm3K3Llz+fzzz2nevGqfmaxSSnsErWIyMjIIDAwkPT29VM2YBfnf/77kuecegweehVvmM+XuKfzfXf/n1DpyjDn4T/XHolg4/tJx6gXVK3E+dy+5m40nNvJOt3cY3aHwa4wIIcpHbm4ux48fJzo62uHUfCGEVVF/I84cv6XlyINc361WkpYjHy8f+33Vvt3/bYlzSctKY/M/mwF4tJlcEEwIIUTVIcWRB8nLs549YOtWc/bGszaPNrUWM1/v/7rEuaw6uAqLYqFNRJtStT4JIYQQFY0URx7E3nLkVfIxRwAPN7WeYbDt1DbOZJwp0Tq+OfANAP9q8q8SvV8IIYSoqKQ48iAGg2PLUUmLo9oBtekQ2QGAb/Z/4/T7MwwZ9gs/2gotIYQQoqqQ4siD2LrVVF4lH3NkY+taW7F/hdPv/fHwj+SZ82gc3JimNZuWOAchhBCiIpLiyINcG3NU+uLI1uKz+Z/NnMs859R7ba1N/2ryL1QqVYlzEEIIISoiKY48yLVutZJfBNImKiiKdrXaoaDw7YHin7WWa8rlx8M/AtKlJoQQomqS4siDGI1XLzlVygHZNrZT8L/eV/yz1hKOJpBlzKJOQB3a1mpbqu0LIYQQFZEURx7Eld1qAI80td7teuOJjaRlpRXrPfnPUpMuNSGEEFWRFEcexN5ypDEApS+OGtRoQFx4HGbFzHcHv7tpvMliYtXBVYB0qQkhhKi6pDjyIHl51uJIsY05KuFFIPOztR4V56y1zf9s5mLORWr61rRfZVsIIVxhwIABqFQqVCoVXl5eREdHM3bsWHJzrd93e/bsQafTsWrVKof3rVixAm9vb5KSkgpcb3JyMn379qVRo0ao1WqGDx/uknxsVCoVK1eutL/etGkT99xzDzVq1MDX15eYmBji4+PJy8srdFslzVG4jxRHHsTaraa4rFsNro07+vnYz1zKuVRkrO0stQcbPYhWrS31toUQIr8ePXqQnJzMsWPHmDVrFvPmzWPChAkAxMbGMn78eAYPHsyFCxcASE1NZciQIUyaNIkWLVoUuE6DwUBISAivvfYasbGxLsunIPv27aNHjx60bduWzZs38/fff/P++++j0+nsN5N1dY7CPaQ48iAmkwIaI6isLUiuKI4a12xMi9AWDl1mBbEoFvtZbdKlJoQoC3q9nvDwcCIjI+nduzddu3YlISHBvvyVV16hbt26DB06FIDnnnuOmJgYRo8u/MbX9erVY/bs2fTv35/AwECX5nO9devWER4ezvTp02nRogUNGjSgR48efPzxx/j4FN7SX5ochXtI84AHycu71moErimOwHpByKTUJBYmLiS+dXyBMb+f/p2zV85STVeNLvW7uGS7QoiypyiQne2ebfv6QknP20hKSmLbtm1ERUXZ52k0GpYsWUKbNm3o27cva9euJTExEY1G46KMncvneuHh4SQnJ7N582buuuuuMs9JuI8URx7EaMShONJr9C5Z76A2g5iyZQqb/9nMzjM7aVe73Q0xM3+bCUDvJr1dVpQJIcpedjb4+7tn25mZ4OdX/PjVq1fj7++PyWTCYDCgVqv54IMPHGKaNm3K8OHDefvtt5k2bRqNGjVycdbO5ZNfnz59WLt2LZ06dSI8PJzbb7+dLl260L9/fwICAsosT1H+pFvNg5hMOIw3ctWp9HUC6vBkiycBmPHbjBuW70/bbx9vNLbjWJdsUwghrnf33XeTmJjI9u3biY+PZ+DAgTzyyCMOMZmZmSxfvhxfX1+2bNnisMzf398+DRkypFjb3LJli8P7PvvsM6fyyU+j0bBo0SJOnz7N9OnTqV27Nm+99RbNmzcnOTm5xDkKzyMtRx7EaFRKfdPZwoxqP4pP/vqEr/Z9xduX36ZeUD37sqlbp6Kg0LtJb1qEFjzoUQjhmXx9rS047tq2M/z8/GjYsCEACxcuJDY2lgULFjBo0CB7zJgxY/D29mbbtm3cfvvtLF26lP79+wOQmJhojytuS03btm0d3hcWFuZUPgWpXbs2/fr1o1+/frzxxhs0atSIuXPnMmnSpBLlKDyPFEcexGRSufRMtfxiw2O5t8G9rDu6jlm/zWJ2z9kAHLt0jGV/LwPg/+78P5duUwhR9lQq57q2PIVarebVV19l5MiR9O3bFx8fHxISEpg/fz7btm0jNjaWKVOmMHz4cLp160ZERIS9kHGGj49Psd5XUD7FUb16dSIiIsjKygIoUY7C80i3mgcxmVx7Gv/1Rre3nvGx4M8FXMy5CMD0X6djVsx0b9BdbhcihChXffr0QaPRMGfOHDIyMhg0aBBjxoyhXTvruMgRI0bQrFkzBg8eXOR6EhMTSUxMJDMzk7S0NBITE9m3b1+p8inIvHnzeP7551m3bh1Hjx5l7969vPzyy+zdu5cHHnigXHIU5UNajjxI/gHZpbnpbGG61u9Kq7BW/HXuL+b9MY/+sf1ZlLgIkFYjIUT502q1DBs2jOnTp7N3714CAwOZOHGifblarWbRokW0bt3aoXvtenFxcfbnu3btYtmyZURFRXHixIkS5/P888/jd12T3K233srWrVsZMmQIZ8+exd/fn+bNm7Ny5Uo6depU5LpdlaMoHypFURR3J1GRZGRkEBgYSHp6usv7k5s0mc1Bc2P4d0/iwuPY/dxul64f4JM9n9B/ZX/C/cP5V5N/8dEfH3Fn3TvZPHCzy7clhHCt3Nxcjh8/TnR0NN7eclapENcr6m/EmeO3dKt5kLIcc2TzRIsnqF2tNimZKXz0x0eAtBoJIYQQ+Ulx5EGuP5W/LHhpvBh++3D767a12nJvg3vLZFtCCCFERSTFkQcxm8u+5Qjg2TbPEqC3Nin+353/57LrKQkhhBCVgQzI9iD5u9V8vFw/INsm0DuQH/r+wOELh3mo8UNlth0hhBCiIqowLUdvvvkmHTp0wNfXl6CgoAJjTp48Sa9evfD19SU0NJQxY8ZgMpkcYjZu3EibNm3Q6/U0bNiQxYsXl33yxWSxqMrsIpDXu6PuHQyMGyitRkIIIcR1KkxxlJeXR58+fXj++ecLXG42m+nVqxd5eXls27aNJUuWsHjxYsaPH2+POX78OL169bJfMn748OE888wzrF27trw+RpEcutU0ciaKEEII4Q4Vpltt0qRJAIW29Kxbt459+/bx888/ExYWRuvWrXnjjTd4+eWXmThxIjqdjrlz5xIdHc2MGdb7izVt2pStW7cya9YsunfvXl4fpVDlNeZICCGEEIWrMC1HN/Pbb7/RsmVLh/vmdO/enYyMDPbu3WuP6dq1q8P7unfvzm+//VauuRbGbNaUy5gjIYQQQhSuwrQc3UxKSopDYQTXbjCYkpJSZExGRgY5OTkF3kvHYDBgMBjsrzMyMlydup3ZrAKv8hlzJIQQQoiCubXlaNy4cahUqiKnAwcOuDNFpk6dSmBgoH2KjIwss21ZLGrpVhNCCCHczK3F0ahRo9i/f3+RU/369Yu1rvDwcM6dO+cwz/Y6PDy8yJiAgIBC78D8yiuvkJ6ebp9OnTrl7McsNimOhBCV1YABA+z/9Hp5eREdHc3YsWPJzc21x+zZswedTseqVasc3rtixQq8vb1JSkoqcN3Jycn07duXRo0aoVarGT58uMtyAlCpVKxcudL+etOmTdxzzz3UqFEDX19fYmJiiI+PJy8vr9BtlTTH4qhXr94NDQt16tRx2fpvZuLEibRu3brctlce3NqtFhISQkhIiEvW1b59e958801SU1MJDQ0FICEhgYCAAJo1a2aP+fHHHx3el5CQQPv27Qtdr16vR6/XuyTHm5HiSAhRmfXo0YNFixZhNBrZtWsX8fHxqFQqpk2bBkBsbCzjx49n8ODBdOzYkeDgYFJTUxkyZAiTJk2iRYsWBa7XYDAQEhLCa6+9xqxZs1ya0/X27dtHjx49+M9//sN///tffHx8OHz4MCtWrMBsNhe6ndLkWByTJ0/m2Weftb/WaDQu30ZVUmEGZJ88eZLExEROnjyJ2WwmMTGRxMREMjMzAbj33ntp1qwZ/fr1Y8+ePaxdu5bXXnuNoUOH2oubIUOGcOzYMcaOHcuBAwf48MMP+fLLLxkxYoQ7P5qdxZJvQLZWBmQLIYovK6vw6bqGkCJjc3KKF1sSer2e8PBwIiMj6d27N127diUhIcEh5pVXXqFu3boMHToUgOeee46YmBhGjx5d6Hrr1avH7Nmz6d+/P4GBgS7PKb9169YRHh7O9OnTadGiBQ0aNKBHjx58/PHHhfZAlDbH4qhWrRrh4eH2KX/Dw0cffUSDBg3Q6XQ0btyYTz75xOG9ly9f5rnnniMsLAxvb29atGjB6tWrXZbbqVOneOyxxwgKCqJGjRo89NBDnDhxwr58wIAB9O7dm3fffZeIiAiCg4MZOnQoRqPRHvPhhx8SExODt7c3YWFhPProoy7LryAVZkD2+PHjWbJkif11XFwcABs2bKBz585oNBpWr17N888/T/v27fHz8yM+Pp7Jkyfb3xMdHc0PP/zAiBEjmD17NnXq1GH+/PkecRo/2FqOZEC2EMJ5/v6FL7vvPvjhh2uvQ0MhO7vg2E6dYOPGa6/r1YPz52+MU5SSZHlNUlIS27ZtIyoqymG+RqNhyZIltGnThr59+7J27VoSExPLpSWksJzyCw8PJzk5mc2bN3PXXXeVeU6l9e233/LSSy/x3nvv0bVrV1avXs3AgQOpU6cOd999NxaLhZ49e3LlyhU+/fRTGjRowL59+1y2v41GI927d6d9+/Zs2bIFrVbLlClT6NGjB3/99Rc6nQ6wHssjIiLYsGEDR44c4fHHH6d169Y8++yz/PHHH7z44ot88skndOjQgYsXL7JlyxaX5FcoRTglPT1dAZT09HSXrtdsNiuwXGHgHQoTUb7e+7VL1y+EqPhycnKUffv2KTk5OTcss5YrBU/33ecY6+tbeGynTo6xNWsWHOes+Ph4RaPRKH5+foper1cARa1WK19/XfB33bhx4xRAmTZtmlPb6dSpk/LSSy+5NCdA+fbbbxVFURSTyaQMGDBAAZTw8HCld+/eyvvvv+/UMcGZHIsjKipK0el0ip+fn32aPXu2oiiK0qFDB+XZZ591iO/Tp49y39VfirVr1ypqtVo5ePBgibc/YcIEJTY2tsBln3zyidK4cWPFYrHY5xkMBsXHx0dZu3atoijWn0NUVJRiMpkccnz88ccVRVGUFStWKAEBAUpGRsZNcynqb8SZ43eF6Var7Ky3OdHKmCMhRIlkZhY+rVjhGJuaWnjsTz85xp44UXBcSdjuTrB9+3bi4+MZOHAgjzzySAGfJZPly5fj6+t7QwuBv7+/fRoyZEixtrtlyxaH93322WdO52Sj0WhYtGgRp0+fZvr06dSuXZu33nqL5s2bk5ycXOIcC9K8eXP7enr27Flk7JgxY+zDTRITE+nfvz8A+/fvp2PHjg6xHTt2ZP/+/QAkJiZSp04dGjVqVOI8i7Jnzx6OHDlCtWrV7J+lRo0a5ObmcvToUXtc8+bNHVqrIiIiSE1NBaBbt25ERUVRv359+vXrx2effUZ2YU2fLlJhutUqO2vfqlYuAimEKBE/P/fH3nxdfjRs2BCAhQsXEhsby4IFCxg0aJBD3JgxY/D29mbbtm3cfvvtLF261H6wT0xMtMcFBAQUa7tt27Z1eF/+690VN6fr1a5dm379+tGvXz/eeOMNGjVqxNy5c5k0aVKJcizIjz/+aB93U9R4JoCaNWvaP4czbrbe0srMzOSWW25xKEht8o+L8vLyclimUqmwWCyAdTzV7t272bhxI+vWrWP8+PFMnDiRnTt3Fnqv1dKS4shD2IsjuQikEKIKUKvVvPrqq4wcOZK+ffvaD9IJCQnMnz+fbdu2ERsby5QpUxg+fDjdunUjIiKixAVAcd5XWE43U716dSIiIsi6OlK9JDkWpKixT8XVtGlTfv31V+Lj4+3zfv31V/tZ3K1ateL06dMcOnSoTFqP2rRpw/LlywkNDS1VoajVaunatStdu3ZlwoQJBAUFsX79eh5++GEXZnuNdKt5CGu3mpd0qwkhqow+ffqg0WiYM2cOYL0DwaBBgxgzZgzt2rUDYMSIETRr1ozBgwcXua78ZzCnpaWRmJjIvn37Sp3T9ebNm8fzzz/PunXrOHr0KHv37uXll19m7969PPDAA+WSozPGjBnD4sWL+eijjzh8+DAzZ87km2++sZ/916lTJ+666y4eeeQREhISOH78OD/99BNr1qwB4MyZMzRp0oQdO3YUuZ2cnByHbr3ExESOHj3KU089Rc2aNXnooYfYsmULx48fZ+PGjbz44oucPn26WJ9h9erV/Pe//yUxMZF//vmHpUuXYrFYaNy4cel2ThGk5chDXN+tJsWREKKy02q1DBs2jOnTp/P8888zfPhwAgMDmThxoj1GrVazaNEiWrdu7dC9dj3bGcwAu3btYtmyZURFRTmcMl6SnPyu61e89dZb2bp1K0OGDOHs2bP4+/vTvHlzVq5cSadOnYpct6tydEbv3r2ZPXs27777Li+99BLR0dEsWrSIzp0722NWrFjB6NGjefLJJ8nKyqJhw4a8/fbbgPXYdPDgwZuO8Tl06JDD5wPo0qULP//8M5s3b+bll1/m4Ycf5sqVK9SuXZsuXboUuyUpKCiIb775hokTJ5Kbm0tMTAyff/45zZs3d25nOEGlKKU9IbNqycjIIDAwkPT09FI1EV7v1KlT1K17Al7tCbosjr54lPrVi3d1cCFE1ZCbm8vx48eJjo7G21v+gRLiekX9jThz/JZuNQ9hbTnykotACiGEEG4mxZGHMBqN1p+G2nr5eelWE0IIIdxDiiMPYTKZQHvtvjxSHAkhhBDuIcWRhzAajQ7FkV5bPje7FUIIIYQjKY48hLU4sl7wSqfWo1bJj0YIIYRwBzkCewiTyQReJgB0aulSE0IIIdxFiiMPUbt2bfyDrEWRTiPFkRBCCOEuUhx5iLp16+LtrwNALy1HQgghhNtIceRBjIr1Gkd6aTkSQggh3EaKIw9iVskFIIUQldOAAQNQqVSoVCq8vLyIjo5m7Nix5OZav/f27NmDTqdj1apVDu9bsWIF3t7eJCUlFbje5ORk+vbtS6NGjVCr1QwfPtwl+dioVCpWrlxpf71p0ybuueceatSoga+vLzExMcTHx5OXl1fotr755hu6detGSEgIAQEBtG/fnrVr1xYrT+EeUhx5EJMqBwC9XONICFEJ9ejRg+TkZI4dO8asWbOYN28eEyZMACA2Npbx48czePBgLly4AEBqaipDhgxh0qRJtGjRosB1GgwGQkJCeO2114iNjXVZPgXZt28fPXr0oG3btmzevJm///6b999/H51Oh9lsLvR9mzdvplu3bvz444/s2rWLu+++mwceeIA///zTqXxF+ZEbz3oQM3LTWSFE5aXX6wkPDwcgMjKSrl27kpCQwLRp0wB45ZVXWLVqFUOHDuWLL77gueeeIyYmxn4H+YLUq1eP2bNnA7Bw4UKX5nO9devWER4ezvTp0+3zGjRoQI8ePYrcznvvvefw+q233uK7777j+++/v+FmrcIzSHHkQcxqKY6EEM5RFIVsY9F3TC8rvl6+qFSqEr03KSmJbdu2ERUVZZ+n0WhYsmQJbdq0oW/fvqxdu5bExEQ0Go2rUnYqn+uFh4eTnJzM5s2bueuuu0q8LYvFwpUrV6hRo0aJ1yHKlhRHHkJRwHJ1zJGvl4w5EkIUT7YxG/+p/m7ZduYrmfjp/Iodv3r1avz9/TGZTBgMBtRqNR988IFDTNOmTRk+fDhvv/0206ZNo1GjRq5O26l88uvTpw9r166lU6dOhIeHc/vtt9OlSxf69+9/07u85/fuu++SmZnJY4895oqPIcqAjDnyEBYL4GUdc+TjJS1HQojK5+677yYxMZHt27cTHx/PwIEDeeSRRxxiMjMzWb58Ob6+vmzZssVhmb+/v30aMmRIsba5ZcsWh/d99tlnTuWTn0ajYdGiRZw+fZrp06dTu3Zt3nrrLZo3b05ycnKxcly2bBmTJk3iyy+/JDQ0tFifQZQ/aTnyEEYjoL16tpoUR0KIYvL18iXzlUy3bdsZfn5+NGzYELCOD4qNjWXBggUMGjTIHjNmzBi8vb3Ztm0bt99+O0uXLqV///4AJCYm2uOK21LTtm1bh/eFhYU5lU9BateuTb9+/ejXrx9vvPEGjRo1Yu7cuUyaNKnIHL/44gueeeYZvvrqK7p27Vqs/IV7SHHkIUwmpDgSQjhNpVI51bXlKdRqNa+++iojR46kb9+++Pj4kJCQwPz589m2bRuxsbFMmTKF4cOH061bNyIiIuyFjDN8fHyK9b6C8imO6tWrExERQVZWFkCh2/r88895+umn+eKLL+jVq1fxP4BwC+lW8xD5iyNfnRRHQojKr0+fPmg0GubMmUNGRgaDBg1izJgxtGvXDoARI0bQrFkzBg8eXOR6EhMTSUxMJDMzk7S0NBITE9m3b1+p8inIvHnzeP7551m3bh1Hjx5l7969vPzyy+zdu5cHHnig0PUuW7aM/v37M2PGDG677TZSUlJISUkhPT3d6RxF+ZDiyEM4FEcyIFsIUQVotVqGDRvG9OnTeemllwgMDGTixIn25Wq1mkWLFrF+/XqWLl1a6Hri4uKIi4tj165dLFu2jLi4OO67775S5WNrCcrv1ltvJTMzkyFDhtC8eXM6derE77//zsqVK+nUqVOh6/3f//6HyWRi6NChRERE2KeXXnrJ6RxF+VApiqK4O4mKJCMjg8DAQNLT0506O+FmkpOh1uDnoO3/mNx5Mq93et1l6xZCVA65ubkcP36c6OhovL2lhVmI6xX1N+LM8VtajjxE/pYjuc6REEII4T5SHHkIKY6EEEIIzyDFkYdwPJVfxhwJIYQQ7iLFkYcwmbBfBFJajoQQQgj3keLIQ0i3mhBCCOEZpDjyEFIcCSGEEJ5BiiMPkX/MkRRHQgghhPtIceQhNBrQ6K8OyNbKgGwhhBDCXSpMcfTmm2/SoUMHfH19CQoKKjDm5MmT9OrVC19fX0JDQxkzZgwmk8m+fOPGjahUqhumlJSUcvoUhWvbFiLqyoBsIYQQwt0qzI1n8/Ly6NOnD+3bt2fBggU3LDebzfTq1Yvw8HC2bdtGcnIy/fv3x8vLi7feessh9uDBgw5XxwwNDS3z/Isj1yTdakIIIYS7VZiWo0mTJjFixAhatmxZ4PJ169axb98+Pv30U1q3bk3Pnj154403mDNnDnl5eQ6xoaGhhIeH2ye12jN2gxRHQojKasCAAfbWei8vL6Kjoxk7diy5ubn2mD179qDT6Vi1apXDe1esWIG3tzdJSUkFrjs5OZm+ffvSqFEj1Go1w4cPd1lOACqVipUrV9pfb9q0iXvuuYcaNWrg6+tLTEwM8fHxNxxr8vvmm2/o1q0bISEhBAQE0L59e9auXVusPG+moB6RO+64wyXrLo4BAwbQu3fvctteefCMqsAFfvvtN1q2bElYWJh9Xvfu3cnIyGDv3r0Osa1btyYiIoJu3brx66+/Frleg8FARkaGw1RWbMWRXARSCFEZ9ejRg+TkZI4dO8asWbOYN28eEyZMsC+PjY1l/PjxDB48mAsXLgCQmprKkCFDmDRpEi1atChwvQaDgZCQEF577TViY2NdmtP19u3bR48ePWjbti2bN2/m77//5v3330en02E2mwt93+bNm+nWrRs//vgju3bt4u677+aBBx7gzz//dCrfwixatIjk5GT7dH2BKZxTaYqjlJQUh8IIsL+2jSmKiIhg7ty5rFixghUrVhAZGUnnzp3ZvXt3oeudOnUqgYGB9ikyMrJM8jdZTJgs1vFR0nIkhKiM9Ho94eHhREZG0rt3b7p27UpCQoJDzCuvvELdunUZOnQoAM899xwxMTGMHj260PXWq1eP2bNn079/fwIDA12eU37r1q0jPDyc6dOn06JFCxo0aECPHj34+OOP8fEp/B/b9957j7Fjx9KuXTtiYmJ46623iImJ4fvvv3cq38IEBQU59IjUqFEDAIvFwuTJk6lTpw56vZ7WrVuzZs0ah/eePn2aJ598kho1auDn50fbtm3Zvn27S/ICSEpKomfPnvj7+xMWFka/fv04f/68fXnnzp158cUXGTt2LDVq1CA8PJyJEyfalyuKwsSJE6lbty56vZ5atWrx4osvuiy/gri1OBo3blyBzYH5pwMHDrhse40bN+a5557jlltuoUOHDixcuJAOHTowa9asQt/zyiuvkJ6ebp9OnTrlsnzys7UagRRHQgjnZeVlFTrl/365WWyOMadYsaWVlJTEtm3b0Ol0DvM1Gg1Llizhu+++o2/fvqxdu5bFixej0WhKvc2S5pRfeHg4ycnJbN68uVTbslgsXLlyxV7ElJXZs2czY8YM3n33Xf766y+6d+/Ogw8+yOHDhwHIzMykU6dOnDlzhlWrVrFnzx7Gjh2LxWJxyfYvX77MPffcQ1xcHH/88Qdr1qzh3LlzPPbYYw5xS5Yswc/Pj+3btzN9+nQmT55sL1JXrFhhb9U7fPgwK1euLHSIjau4dUD2qFGjGDBgQJEx9evXL9a6wsPD2bFjh8O8c+fO2ZcV5tZbb2Xr1q2FLtfr9ej1+mLlUBr5v7z0mrLfnhCicvGf6l/osvti7uOHvj/YX4e+G0q2MbvA2E5Rndg4YKP9db3Z9Tifff6GOGWC4nSOq1evxt/fH5PJhMFgQK1W88EHH9wQ17RpU4YPH87bb7/NtGnTaNSokdPbcnVONn369GHt2rV06tSJ8PBwbr/9drp06UL//v0dTvS5mXfffZfMzMwbioSSevLJJx0KyE8//ZTevXvz7rvv8vLLL/PEE08AMG3aNDZs2MB7773HnDlzWLZsGWlpaezcudNeqDVs2NAlOQF88MEHxMXFOZwYtXDhQiIjIzl06JD9Z9uqVSt7d2ZMTAwffPABv/zyC926dePkyZOEh4fTtWtXvLy8qFu3LrfeeqvLciyIW1uOQkJCaNKkSZFTURV8fu3bt+fvv/8mNTXVPi8hIYGAgACaNWtW6PsSExOJiIgo9WcpLVtx5KX2QqMu+/+QhBCivN19990kJiayfft24uPjGThwII888sgNcZmZmSxfvhxfX1+2bNnisMzf398+DRkypFjb3bJli8P7PvvsM6dzstFoNCxatIjTp08zffp0ateuzVtvvUXz5s1JTk4uVo7Lli1j0qRJfPnll0WeLe3MZ501axaJiYn2qVu3bmRkZHD27Fk6duzoENuxY0f2798PWI+BcXFxZdaCtWfPHjZs2ODwWZo0aQLA0aNH7XGtWrVyeF9ERIT9eN6nTx9ycnKoX78+zz77LN9++63DZXrKQoU5lf/kyZNcvHiRkydPYjabSUxMBKwVrr+/P/feey/NmjWjX79+TJ8+nZSUFF577TWGDh1qb/l57733iI6Opnnz5uTm5jJ//nzWr1/PunXr3PjJrGQwthCiNDJfySx02fX/cKWOTi0kEtQqx/+ZT7x0olR55efn52dvlVi4cCGxsbEsWLCAQYMGOcSNGTMGb29vtm3bxu23387SpUvp378/gP27Hyh2S03btm0d3pd/fGpxc7pe7dq16devH/369eONN96gUaNGzJ07l0mTJhWZ4xdffMEzzzzDV199RdeuXYvchjOfNTw8/IYWn+KcQFTUOClXyMzM5IEHHmDatGk3LMvfMOHl5eWwTKVS2bv2IiMjOXjwID///DMJCQm88MILvPPOO2zatOmG97lKhSmOxo8fz5IlS+yv4+LiANiwYQOdO3dGo9GwevVqnn/+edq3b4+fnx/x8fFMnjzZ/p68vDxGjRrFmTNn8PX1pVWrVvz888/cfffd5f55rmfr55fxRkKIkvDT+bk91hlqtZpXX32VkSNH0rdvX/tBOiEhgfnz57Nt2zZiY2OZMmUKw4cPp1u3bkRERJSoy8fHx6dY7yssp5upXr06ERERZGVZx2IVtq3PP/+cp59+mi+++IJevXrddL2l7d4KCAigVq1a/Prrr3Tq1Mk+/9dff7V3S7Vq1Yr58+dz8eLFMmk9atOmDStWrKBevXpotSUvOXx8fHjggQd44IEHGDp0KE2aNOHvv/+mTZs2Lsz2mgpzttrixYtRFOWGqXPnzvaYqKgofvzxR7Kzs0lLS+Pdd991+GGMHTuWI0eOkJOTw4ULF9iwYYNHFEYg1zgSQlQ9ffr0QaPRMGfOHMDa0jFo0CDGjBlDu3btABgxYgTNmjVj8ODBRa7L1p2UmZlJWloaiYmJ7Nu3r9Q5XW/evHk8//zzrFu3jqNHj7J3715efvll9u7dywMPPFDoepctW0b//v2ZMWMGt912GykpKaSkpJCenu50js4YM2YM06ZNY/ny5Rw8eJBx48aRmJjISy+9BFjHKoWHh9O7d29+/fVXjh07xooVK/jtt98A2LFjB02aNOHMmTNFbic9Pd2hWy8xMZFTp04xdOhQLl68yJNPPsnOnTs5evQoa9euZeDAgUVe+iC/xYsXs2DBApKSkjh27BiffvopPj4+REVFlW7nFKHCFEeVncliws/LDz+vsvkvTQghPI1Wq2XYsGFMnz6drKwshg8fTmBgoMNp3Gq1mkWLFrF+/XqWLl1a6Lri4uKIi4tj165dLFu2jLi4OO67775S53S9W2+9lczMTIYMGULz5s3p1KkTv//+OytXrnRonbne//73P0wmE0OHDiUiIsI+2YqUsvLiiy8ycuRIRo0aRcuWLVmzZg2rVq0iJiYGAJ1Ox7p16wgNDeW+++6jZcuWvP322/bB3dnZ2Rw8eBCj0VjkdjZu3Gj/GdimSZMm2VuuzGYz9957Ly1btmT48OEEBQUV+wLMQUFBfPzxx3Ts2NHe4/P9998THBxcup1TBJWiKM6fclCFZWRkEBgYSHp6ulNnJgghRGnl5uZy/PhxoqOj8faWVmYhrlfU34gzx29pORJCCCGEyEeKIyGEEEKIfKQ4EkIIIYTIR4ojIYQQQoh8pDgSQgghhMhHiiMhhKhg5CRjIQrmqr8NKY6EEKKCsN0qITu74JvGClHV5eXlATjchLckKsztQ4QQoqrTaDQEBQXZb8jp6+uLSqVyc1ZCeAaLxUJaWhq+vr6lulUJSHEkhBAVSnh4OIC9QBJCXKNWq6lbt26p/2mQ4kgIISoQlUpFREQEoaGhN72lgxBVjU6nK/ZtSYoixZEQQlRAGo2m1OMqhBAFkwHZQgghhBD5SHEkhBBCCJGPFEdCCCGEEPnImCMn2S4wlZGR4eZMhBBCCFFctuN2cS4UKcWRk65cuQJAZGSkmzMRQgghhLOuXLlCYGBgkTEqRa5D7xSLxcLZs2epVq2ayy++lpGRQWRkJKdOnSIgIMCl6xaOZF+XH9nX5Uf2dfmRfV1+XLWvFUXhypUr1KpV66an+0vLkZPUajV16tQp020EBATIH1s5kX1dfmRflx/Z1+VH9nX5ccW+vlmLkY0MyBZCCCGEyEeKIyGEEEKIfKQ48iB6vZ4JEyag1+vdnUqlJ/u6/Mi+Lj+yr8uP7Ovy4459LQOyhRBCCCHykZYjIYQQQoh8pDgSQgghhMhHiiMhhBBCiHykOBJCCCGEyEeKIw8xZ84c6tWrh7e3N7fddhs7duxwd0oV3tSpU2nXrh3VqlUjNDSU3r17c/DgQYeY3Nxchg4dSnBwMP7+/jzyyCOcO3fOTRlXHm+//TYqlYrhw4fb58m+dp0zZ87w73//m+DgYHx8fGjZsiV//PGHfbmiKIwfP56IiAh8fHzo2rUrhw8fdmPGFZPZbOb1118nOjoaHx8fGjRowBtvvOFwby7Z1yW3efNmHnjgAWrVqoVKpWLlypUOy4uzby9evMhTTz1FQEAAQUFBDBo0iMzMzFLnJsWRB1i+fDkjR45kwoQJ7N69m9jYWLp3705qaqq7U6vQNm3axNChQ/n9999JSEjAaDRy7733kpWVZY8ZMWIE33//PV999RWbNm3i7NmzPPzww27MuuLbuXMn8+bNo1WrVg7zZV+7xqVLl+jYsSNeXl789NNP7Nu3jxkzZlC9enV7zPTp0/nvf//L3Llz2b59O35+fnTv3p3c3Fw3Zl7xTJs2jY8++ogPPviA/fv3M23aNKZPn877779vj5F9XXJZWVnExsYyZ86cApcXZ98+9dRT7N27l4SEBFavXs3mzZsZPHhw6ZNThNvdeuutytChQ+2vzWazUqtWLWXq1KluzKrySU1NVQBl06ZNiqIoyuXLlxUvLy/lq6++ssfs379fAZTffvvNXWlWaFeuXFFiYmKUhIQEpVOnTspLL72kKIrsa1d6+eWXlTvuuKPQ5RaLRQkPD1feeecd+7zLly8rer1e+fzzz8sjxUqjV69eytNPP+0w7+GHH1aeeuopRVFkX7sSoHz77bf218XZt/v27VMAZefOnfaYn376SVGpVMqZM2dKlY+0HLlZXl4eu3btomvXrvZ5arWarl278ttvv7kxs8onPT0dgBo1agCwa9cujEajw75v0qQJdevWlX1fQkOHDqVXr14O+xRkX7vSqlWraNu2LX369CE0NJS4uDg+/vhj+/Ljx4+TkpLisK8DAwO57bbbZF87qUOHDvzyyy8cOnQIgD179rB161Z69uwJyL4uS8XZt7/99htBQUG0bdvWHtO1a1fUajXbt28v1fblxrNudv78ecxmM2FhYQ7zw8LCOHDggJuyqnwsFgvDhw+nY8eOtGjRAoCUlBR0Oh1BQUEOsWFhYaSkpLghy4rtiy++YPfu3ezcufOGZbKvXefYsWN89NFHjBw5kldffZWdO3fy4osvotPpiI+Pt+/Pgr5TZF87Z9y4cWRkZNCkSRM0Gg1ms5k333yTp556CkD2dRkqzr5NSUkhNDTUYblWq6VGjRql3v9SHIkqYejQoSQlJbF161Z3p1IpnTp1ipdeeomEhAS8vb3dnU6lZrFYaNu2LW+99RYAcXFxJCUlMXfuXOLj492cXeXy5Zdf8tlnn7Fs2TKaN29OYmIiw4cPp1atWrKvKznpVnOzmjVrotFobjhr59y5c4SHh7spq8pl2LBhrF69mg0bNlCnTh37/PDwcPLy8rh8+bJDvOx75+3atYvU1FTatGmDVqtFq9WyadMm/vvf/6LVagkLC5N97SIRERE0a9bMYV7Tpk05efIkgH1/yndK6Y0ZM4Zx48bxxBNP0LJlS/r168eIESOYOnUqIPu6LBVn34aHh99w4pLJZOLixYul3v9SHLmZTqfjlltu4ZdffrHPs1gs/PLLL7Rv396NmVV8iqIwbNgwvv32W9avX090dLTD8ltuuQUvLy+HfX/w4EFOnjwp+95JXbp04e+//yYxMdE+tW3blqeeesr+XPa1a3Ts2PGGS1IcOnSIqKgoAKKjowkPD3fY1xkZGWzfvl32tZOys7NRqx0PkxqNBovFAsi+LkvF2bft27fn8uXL7Nq1yx6zfv16LBYLt912W+kSKNVwbuESX3zxhaLX65XFixcr+/btUwYPHqwEBQUpKSkp7k6tQnv++eeVwMBAZePGjUpycrJ9ys7OtscMGTJEqVu3rrJ+/Xrljz/+UNq3b6+0b9/ejVlXHvnPVlMU2deusmPHDkWr1SpvvvmmcvjwYeWzzz5TfH19lU8//dQe8/bbbytBQUHKd999p/z111/KQw89pERHRys5OTluzLziiY+PV2rXrq2sXr1aOX78uPLNN98oNWvWVMaOHWuPkX1dcleuXFH+/PNP5c8//1QAZebMmcqff/6p/PPPP4qiFG/f9ujRQ4mLi1O2b9+ubN26VYmJiVGefPLJUucmxZGHeP/995W6desqOp1OufXWW5Xff//d3SlVeECB06JFi+wxOTk5ygsvvKBUr15d8fX1Vf71r38pycnJ7ku6Erm+OJJ97Trff/+90qJFC0Wv1ytNmjRR/ve//zkst1gsyuuvv66EhYUper1e6dKli3Lw4EE3ZVtxZWRkKC+99JJSt25dxdvbW6lfv77yf//3f4rBYLDHyL4uuQ0bNhT4HR0fH68oSvH27YULF5Qnn3xS8ff3VwICApSBAwcqV65cKXVuKkXJd6lPIYQQQogqTsYcCSGEEELkI8WREEIIIUQ+UhwJIYQQQuQjxZEQQgghRD5SHAkhhBBC5CPFkRBCCCFEPlIcCSGEEELkI8WREEI4qV69erz33nvuTkMIUUakOBJCeLQBAwbQu3dvADp37szw4cPLbduLFy8mKCjohvk7d+5k8ODB5ZaHEKJ8ad2dgBBClLe8vDx0Ol2J3x8SEuLCbIQQnkZajoQQFcKAAQPYtGkTs2fPRqVSoVKpOHHiBABJSUn07NkTf39/wsLC6NevH+fPn7e/t3PnzgwbNozhw4dTs2ZNunfvDsDMmTNp2bIlfn5+REZG8sILL5CZmQnAxo0bGThwIOnp6fbtTZw4EbixW+3kyZM89NBD+Pv7ExAQwGOPPca5c+fsyydOnEjr1q355JNPqFevHoGBgTzxxBNcuXKlbHeaEKJEpDgSQlQIs2fPpn379jz77LMkJyeTnJxMZGQkly9f5p577iEuLo4//viDNWvWcO7cOR577DGH9y9ZsgSdTsevv/7K3LlzAVCr1fz3v/9l7969LFmyhPXr1zN27FgAOnTowHvvvUdAQIB9e6NHj74hL4vFwkMPPcTF/2/X/l1S3+M4jr88nRws0YIgC0GioiyJfi0NNSRNNUtEQbQYLQ39CVl5oJaiMaJoKAgKXKIkghoqCiIoCDTJLSwapKHQ7hBXvp4O93Y5nnOP8HyAoJ/vV9+f72eQF+/P5/FRBwcH2t3dVTQalc/ny7ovEoloa2tLoVBIoVBIBwcHmpmZ+UWrBeBnsK0GIC/YbDaZzWZZLBaVl5dnxhcWFtTc3KypqanM2NLSkpxOp25ublRbWytJqqmp0bdv37J+03h+yeVyaXJyUn6/X4uLizKbzbLZbDKZTFn1vhcOh3V5eanb21s5nU5J0srKihoaGnR6eqr29nZJ7yFqeXlZVqtVkjQ4OKhwOKxAIPBzCwMg5+gcAchrFxcX2t/fV3FxceZVV1cn6b1b87fW1tYP393b21N3d7cqKytltVo1ODioh4cHPT8/f7r+9fW1nE5nJhhJktvtlt1u1/X1dWbM5XJlgpEkORwO3d/f/6dnBfB70DkCkNeSyaT6+voUDAY/XHM4HJn3RUVFWddisZh6e3s1OjqqQCCg0tJSHR4eamRkRC8vL7JYLDmdZ2FhYdZnk8mkdDqd0xoAcoNwBCBvmM1mpVKprLGWlhZtbm7K5XLp69fP/6WdnZ0pnU5rdnZWX768N9E3Njb+td736uvrFY/HFY/HM92jq6srPT09ye12f3o+AP4cbKsByBsul0vHx8eKxWJKJBJKp9MaGxvT4+Oj+vv7dXp6qkgkop2dHQ0PD/9jsKmurtbr66vm5+cVjUa1urqaOahtrJdMJhUOh5VIJH643eb1euXxeDQwMKDz83OdnJxoaGhIXV1damtry/kaAPj1CEcA8sbExIQKCgrkdrtVVlamu7s7VVRU6OjoSKlUSj09PfJ4PBofH5fdbs90hH6kqalJc3NzCgaDamxs1Nramqanp7Pu6ejokN/vl8/nU1lZ2YcD3dL79tj29rZKSkrU2dkpr9erqqoqra+v5/z5Afwepre3t7f/exIAAAB/CjpHAAAABoQjAAAAA8IRAACAAeEIAADAgHAEAABgQDgCAAAwIBwBAAAYEI4AAAAMCEcAAAAGhCMAAAADwhEAAIAB4QgAAMDgL0OG8PPGapnCAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Compute path gains for each paths\n",
+ "rx_ris_path_gain = tf.abs(a_it)**2\n",
+ "rx_ris_path_gain_lens = tf.abs(a_lens)**2\n",
+ "\n",
+ "# Path gains per receiver\n",
+ "rx_path_gain = tf.reduce_sum(rx_ris_path_gain, axis=-1)\n",
+ "rx_path_gain_lens = tf.reduce_sum(rx_ris_path_gain_lens, axis=-1)\n",
+ "\n",
+ "plt.figure()\n",
+ "\n",
+ "plt.plot(to_db(rx_path_gain[:,0]), \"k\", label=\"RX-1\")\n",
+ "plt.plot([to_db(rx_path_gain_lens[0])]*num_iterations, \"--k\", label=\"RX-1 - Foc. Lens\")\n",
+ "\n",
+ "plt.plot(to_db(rx_ris_path_gain[:,0,0]), \"b\", label=\"RX-1-RIS-1\")\n",
+ "plt.plot([to_db(rx_ris_path_gain_lens[0,0])]*num_iterations, \"--b\", label=\"RX-1-RIS-1 - Foc. Lens\")\n",
+ "\n",
+ "plt.plot(to_db(rx_ris_path_gain[:,0,1]), \"g\", label=\"RX-1-RIS-2\")\n",
+ "plt.plot([to_db(rx_ris_path_gain_lens[0,1])]*num_iterations, \"--g\", label=\"RX-1-RIS-2 - Foc. Lens\")\n",
+ "\n",
+ "plt.legend()\n",
+ "plt.xlabel(\"Iteration\");\n",
+ "plt.ylabel(\"Path gain [dB]\");\n",
+ "plt.title(\"Path Gains\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1f16924c",
+ "metadata": {},
+ "source": [
+ "In this scenario, the learned RIS configuration amplifies the link to the closest RX at the cost of a weaker link to the other RX to obtain an overall path gain.\n",
+ "\"RX-1\" denotes the overal path gain for the first receiver, while \"RX-1-RIS-1\" and \"RX-1-RIS2\" denote the path gains for the individual links between the first receiver and the first and second RIS, respectively.\n",
+ "\n",
+ "The results for the second receiver look identical due to the symmetry of the setup."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e61f5fa",
+ "metadata": {},
+ "source": [
+ "## Summary\n",
+ "\n",
+ "In this notebook, you have learned how to configure, use, and optimize reconfigurable intelligent surfaces (RIS) in Sionna RT.\n",
+ "It is important to keep in mind that not all RIS configurations, such as the ones showed above, are realizable in practice.\n",
+ "\n",
+ "RIS modeling and optimization are fields of active research and the examples in this notebook are only meant to help you get started.\n",
+ "\n",
+ "We hope you enjoyed this tutorial and encourage you to get hands-on, conduct your own experiments, and deepen your understanding of ray tracing. Thereโs always more to learn, so do explore our other [tutorials](https://nvlabs.github.io/sionna/tutorials.html#ray-tracing) as well."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b6098866",
+ "metadata": {},
+ "source": [
+ "## References\n",
+ "\n",
+ "[1] Vittorio Degli-Esposti et al., [Reradiation and Scattering From a Reconfigurable Intelligent Surface: A General Macroscopic Model](https://ieeexplore.ieee.org/abstract/document/9713744), IEEE Trans. Antennas Propag, vol. 70, no. 10, pp.8691-8706, Oct. 2022.\n",
+ "\n",
+ "[2] Enrico Maria Vittuci et al., [An Efficient Ray-Based Modeling Approach for Scattering From Reconfigurable Intelligent Surfaces](https://ieeexplore.ieee.org/abstract/document/10419169), IEEE Trans. Antennas Propag, vol. 72, no. 3, pp.2673-2685, Mar. 2024."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/Sionna_Ray_Tracing_Scattering.html b/docs/examples/Sionna_Ray_Tracing_Scattering.html
index 5ffbf03b..68e68409 100644
--- a/docs/examples/Sionna_Ray_Tracing_Scattering.html
+++ b/docs/examples/Sionna_Ray_Tracing_Scattering.html
@@ -3,7 +3,7 @@
- Tutorial on Scattering — Sionna 0.17.0 documentation
+ Tutorial on Scattering — Sionna 0.18.0 documentation
@@ -398,6 +398,18 @@
When an electromagnetic wave impinges on a surface, one part of the energy gets reflected while the other part gets refracted, i.e., it propagates into the surface. We distinguish between two types of reflection, specular and diffuse. The latter type is also called diffuse scattering. When a rays hits a diffuse reflection surface, it is not reflected into a single (specular) direction but rather scattered toward many different directions.
One way to think about scattering is that every infinitesimally small surface element \(dA\) (as shown in the figure above) reradiates a part of the energy impinging on it. It essentially behaves like a point source that radiates electromagnetic waves into the hemisphere defined by the surface normal [1]. Similar to the far-field of an antenna which is determined by the antenna pattern, the scattered field is determined by the scattering pattern of the surface element, denoted
-\(f_\text{s}(\hat{\mathbf{k}}_\text{i}, \hat{\mathbf{k}}_\text{s})\), where \(\hat{\mathbf{k}}_\text{i}\) and \(\hat{\mathbf{k}}_\text{s}\) are the incomning and scattered directions, respectively. In other words, the scattered field can be stronger in certain directions than others.
+\(f_\text{s}(\hat{\mathbf{k}}_\text{i}, \hat{\mathbf{k}}_\text{s})\), where \(\hat{\mathbf{k}}_\text{i}\) and \(\hat{\mathbf{k}}_\text{s}\) are the incoming and scattered directions, respectively. In other words, the scattered field can be stronger in certain directions than others.
The most important difference between diffuse and specular reflections for ray tracing is that an incoming ray essentially spawns infinitely many scattered rays while there is only a single specular path. In order to computed the scattered field at a particular position, one needs to integrate the scattered field over the entire surface.
Let us have a look at some common scattering patterns that are implemented in Sionna:
@@ -1465,7 +1490,7 @@
Scattering Basics
-
As expected from geometrical optics (GO), the specular path goes through the center of the reflector and has indentical incomning and outgoing angles with the surface normal.
+
As expected from geometrical optics (GO), the specular path goes through the center of the reflector and has indentical incoming and outgoing angles with the surface normal.
We can compute the scattered paths in a similar way:
[6]:
diff --git a/docs/examples/Sionna_Ray_Tracing_Scattering.ipynb b/docs/examples/Sionna_Ray_Tracing_Scattering.ipynb
index 37891dd5..9551f05e 100644
--- a/docs/examples/Sionna_Ray_Tracing_Scattering.ipynb
+++ b/docs/examples/Sionna_Ray_Tracing_Scattering.ipynb
@@ -137,7 +137,7 @@
"source": [
"When an electromagnetic wave impinges on a surface, one part of the energy gets reflected while the other part gets refracted, i.e., it propagates into the surface. We distinguish between two types of reflection, specular and diffuse. The latter type is also called diffuse scattering. When a rays hits a diffuse reflection surface, it is not reflected into a single (specular) direction but rather scattered toward many different directions.\n",
"\n",
- "One way to think about scattering is that every infinitesimally small surface element $dA$ (as shown in the figure above) reradiates a part of the energy impinging on it. It essentially behaves like a point source that radiates electromagnetic waves into the hemisphere defined by the surface normal [1]. Similar to the far-field of an antenna which is determined by the antenna pattern, the scattered field is determined by the scattering pattern of the surface element, denoted $f_\\text{s}(\\hat{\\mathbf{k}}_\\text{i}, \\hat{\\mathbf{k}}_\\text{s})$, where $\\hat{\\mathbf{k}}_\\text{i}$ and $\\hat{\\mathbf{k}}_\\text{s}$ are the incomning and scattered directions, respectively. In other words, the scattered field can be stronger in certain directions than others. \n",
+ "One way to think about scattering is that every infinitesimally small surface element $dA$ (as shown in the figure above) reradiates a part of the energy impinging on it. It essentially behaves like a point source that radiates electromagnetic waves into the hemisphere defined by the surface normal [1]. Similar to the far-field of an antenna which is determined by the antenna pattern, the scattered field is determined by the scattering pattern of the surface element, denoted $f_\\text{s}(\\hat{\\mathbf{k}}_\\text{i}, \\hat{\\mathbf{k}}_\\text{s})$, where $\\hat{\\mathbf{k}}_\\text{i}$ and $\\hat{\\mathbf{k}}_\\text{s}$ are the incoming and scattered directions, respectively. In other words, the scattered field can be stronger in certain directions than others. \n",
"\n",
"The most important difference between diffuse and specular reflections for ray tracing is that an incoming ray essentially spawns infinitely many scattered rays while there is only a single specular path. In order to computed the scattered field at a particular position, one needs to integrate the scattered field over the entire surface.\n",
"\n",
@@ -310,7 +310,7 @@
"id": "75fc033f",
"metadata": {},
"source": [
- "As expected from geometrical optics (GO), the specular path goes through the center of the reflector and has indentical incomning and outgoing angles with the surface normal."
+ "As expected from geometrical optics (GO), the specular path goes through the center of the reflector and has indentical incoming and outgoing angles with the surface normal."
]
},
{
diff --git a/docs/examples/Sionna_tutorial_part1.html b/docs/examples/Sionna_tutorial_part1.html
index 911f742c..2d83ebbf 100644
--- a/docs/examples/Sionna_tutorial_part1.html
+++ b/docs/examples/Sionna_tutorial_part1.html
@@ -3,7 +3,7 @@
- Part 1: Getting Started with Sionna — Sionna 0.17.0 documentation
+ Part 1: Getting Started with Sionna — Sionna 0.18.0 documentation
@@ -398,6 +398,18 @@
Sionna requires TensorFlow 2.13-2.15 and Python 3.8-3.11.
We recommend Ubuntu 22.04.
Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs.
diff --git a/docs/searchindex.js b/docs/searchindex.js
index c8209727..d008c1eb 100644
--- a/docs/searchindex.js
+++ b/docs/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["api/channel","api/channel.discrete","api/channel.optical","api/channel.wireless","api/config","api/fec","api/fec.conv","api/fec.crc","api/fec.interleaving","api/fec.ldpc","api/fec.linear","api/fec.polar","api/fec.scrambling","api/fec.turbo","api/fec.utils","api/mapping","api/mimo","api/nr","api/ofdm","api/rt","api/signal","api/sionna","api/utils","em_primer","examples/5G_Channel_Coding_Polar_vs_LDPC_Codes","examples/5G_NR_PUSCH","examples/Autoencoder","examples/Bit_Interleaved_Coded_Modulation","examples/CIR_Dataset","examples/DeepMIMO","examples/Discover_Sionna","examples/Evolution_of_FEC","examples/Hello_World","examples/Introduction_to_Iterative_Detection_and_Decoding","examples/MIMO_OFDM_Transmissions_over_CDL","examples/Neural_Receiver","examples/OFDM_MIMO_Detection","examples/Optical_Lumped_Amplification_Channel","examples/Pulse_shaping_basics","examples/Realistic_Multiuser_MIMO_Simulations","examples/Simple_MIMO_Simulation","examples/Sionna_Ray_Tracing_Diffraction","examples/Sionna_Ray_Tracing_Introduction","examples/Sionna_Ray_Tracing_Mobility","examples/Sionna_Ray_Tracing_Scattering","examples/Sionna_tutorial_part1","examples/Sionna_tutorial_part2","examples/Sionna_tutorial_part3","examples/Sionna_tutorial_part4","examples/Weighted_BP_Algorithm","examples/dev_blog_example","index","installation","made_with_sionna","quickstart","tutorials"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1,nbsphinx:3,sphinx:56},filenames:["api/channel.rst","api/channel.discrete.rst","api/channel.optical.rst","api/channel.wireless.rst","api/config.rst","api/fec.rst","api/fec.conv.rst","api/fec.crc.rst","api/fec.interleaving.rst","api/fec.ldpc.rst","api/fec.linear.rst","api/fec.polar.rst","api/fec.scrambling.rst","api/fec.turbo.rst","api/fec.utils.rst","api/mapping.rst","api/mimo.rst","api/nr.rst","api/ofdm.rst","api/rt.rst","api/signal.rst","api/sionna.rst","api/utils.rst","em_primer.rst","examples/5G_Channel_Coding_Polar_vs_LDPC_Codes.ipynb","examples/5G_NR_PUSCH.ipynb","examples/Autoencoder.ipynb","examples/Bit_Interleaved_Coded_Modulation.ipynb","examples/CIR_Dataset.ipynb","examples/DeepMIMO.ipynb","examples/Discover_Sionna.ipynb","examples/Evolution_of_FEC.ipynb","examples/Hello_World.ipynb","examples/Introduction_to_Iterative_Detection_and_Decoding.ipynb","examples/MIMO_OFDM_Transmissions_over_CDL.ipynb","examples/Neural_Receiver.ipynb","examples/OFDM_MIMO_Detection.ipynb","examples/Optical_Lumped_Amplification_Channel.ipynb","examples/Pulse_shaping_basics.ipynb","examples/Realistic_Multiuser_MIMO_Simulations.ipynb","examples/Simple_MIMO_Simulation.ipynb","examples/Sionna_Ray_Tracing_Diffraction.ipynb","examples/Sionna_Ray_Tracing_Introduction.ipynb","examples/Sionna_Ray_Tracing_Mobility.ipynb","examples/Sionna_Ray_Tracing_Scattering.ipynb","examples/Sionna_tutorial_part1.ipynb","examples/Sionna_tutorial_part2.ipynb","examples/Sionna_tutorial_part3.ipynb","examples/Sionna_tutorial_part4.ipynb","examples/Weighted_BP_Algorithm.ipynb","examples/dev_blog_example.ipynb","index.rst","installation.rst","made_with_sionna.rst","quickstart.rst","tutorials.rst"],objects:{"sionna.Config":{xla_compat:[4,1,1,""]},"sionna.channel":{AWGN:[3,0,1,""],ApplyFlatFadingChannel:[3,0,1,""],ApplyOFDMChannel:[3,0,1,""],ApplyTimeChannel:[3,0,1,""],BinaryErasureChannel:[1,0,1,""],BinaryMemorylessChannel:[1,0,1,""],BinarySymmetricChannel:[1,0,1,""],BinaryZChannel:[1,0,1,""],CIRDataset:[3,0,1,""],ChannelModel:[3,0,1,""],EDFA:[2,0,1,""],FlatFadingChannel:[3,0,1,""],GenerateFlatFadingChannel:[3,0,1,""],GenerateOFDMChannel:[3,0,1,""],GenerateTimeChannel:[3,0,1,""],KroneckerModel:[3,0,1,""],OFDMChannel:[3,0,1,""],PerColumnModel:[3,0,1,""],RayleighBlockFading:[3,0,1,""],SSFM:[2,0,1,""],SpatialCorrelation:[3,0,1,""],TimeChannel:[3,0,1,""],cir_to_ofdm_channel:[3,2,1,""],cir_to_time_channel:[3,2,1,""],deg_2_rad:[3,2,1,""],drop_uts_in_sector:[3,2,1,""],exp_corr_mat:[3,2,1,""],gen_single_sector_topology:[3,2,1,""],gen_single_sector_topology_interferers:[3,2,1,""],one_ring_corr_mat:[3,2,1,""],rad_2_deg:[3,2,1,""],relocate_uts:[3,2,1,""],set_3gpp_scenario_parameters:[3,2,1,""],subcarrier_frequencies:[3,2,1,""],time_lag_discrete_time_channel:[3,2,1,""],time_to_ofdm_channel:[3,2,1,""],wrap_angle_0_360:[3,2,1,""]},"sionna.channel.BinaryMemorylessChannel":{llr_max:[1,1,1,""],temperature:[1,1,1,""]},"sionna.channel.CIRDataset":{batch_size:[3,1,1,""]},"sionna.channel.FlatFadingChannel":{apply:[3,1,1,""],generate:[3,1,1,""],spatial_corr:[3,1,1,""]},"sionna.channel.GenerateFlatFadingChannel":{spatial_corr:[3,1,1,""]},"sionna.channel.KroneckerModel":{r_rx:[3,1,1,""],r_tx:[3,1,1,""]},"sionna.channel.PerColumnModel":{r_rx:[3,1,1,""]},"sionna.channel.tr38901":{Antenna:[3,0,1,""],AntennaArray:[3,0,1,""],CDL:[3,0,1,""],PanelArray:[3,0,1,""],RMa:[3,0,1,""],TDL:[3,0,1,""],UMa:[3,0,1,""],UMi:[3,0,1,""]},"sionna.channel.tr38901.CDL":{delay_spread:[3,1,1,""],delays:[3,1,1,""],k_factor:[3,1,1,""],los:[3,1,1,""],num_clusters:[3,1,1,""],powers:[3,1,1,""]},"sionna.channel.tr38901.PanelArray":{ant_ind_pol1:[3,1,1,""],ant_ind_pol2:[3,1,1,""],ant_pol1:[3,1,1,""],ant_pol2:[3,1,1,""],ant_pos:[3,1,1,""],ant_pos_pol1:[3,1,1,""],ant_pos_pol2:[3,1,1,""],element_horizontal_spacing:[3,1,1,""],element_vertical_spacing:[3,1,1,""],num_ant:[3,1,1,""],num_cols:[3,1,1,""],num_cols_per_panel:[3,1,1,""],num_panels:[3,1,1,""],num_panels_ant:[3,1,1,""],num_rows:[3,1,1,""],num_rows_per_panel:[3,1,1,""],panel_horizontal_spacing:[3,1,1,""],panel_vertical_spacing:[3,1,1,""],polarization:[3,1,1,""],polarization_type:[3,1,1,""],show:[3,3,1,""],show_element_radiation_pattern:[3,3,1,""]},"sionna.channel.tr38901.RMa":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.tr38901.TDL":{delay_spread:[3,1,1,""],delays:[3,1,1,""],k_factor:[3,1,1,""],los:[3,1,1,""],mean_power_los:[3,1,1,""],mean_powers:[3,1,1,""],num_clusters:[3,1,1,""]},"sionna.channel.tr38901.UMa":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.tr38901.UMi":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.utils":{time_frequency_vector:[2,2,1,""]},"sionna.fec.conv":{BCJRDecoder:[6,0,1,""],ConvEncoder:[6,0,1,""],ViterbiDecoder:[6,0,1,""]},"sionna.fec.conv.BCJRDecoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.ConvEncoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.ViterbiDecoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.utils":{Trellis:[6,2,1,""],polynomial_selector:[6,2,1,""]},"sionna.fec.crc":{CRCDecoder:[7,0,1,""],CRCEncoder:[7,0,1,""]},"sionna.fec.crc.CRCDecoder":{crc_degree:[7,1,1,""],encoder:[7,1,1,""]},"sionna.fec.crc.CRCEncoder":{crc_degree:[7,1,1,""],crc_length:[7,1,1,""],crc_pol:[7,1,1,""],k:[7,1,1,""],n:[7,1,1,""]},"sionna.fec.interleaving":{Deinterleaver:[8,0,1,""],RandomInterleaver:[8,0,1,""],RowColumnInterleaver:[8,0,1,""],Turbo3GPPInterleaver:[8,0,1,""]},"sionna.fec.interleaving.Deinterleaver":{interleaver:[8,1,1,""]},"sionna.fec.interleaving.RandomInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],find_s_min:[8,3,1,""],keep_state:[8,1,1,""],seed:[8,1,1,""]},"sionna.fec.interleaving.RowColumnInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],keep_state:[8,1,1,""],perm_seq:[8,1,1,""],perm_seq_inv:[8,1,1,""],row_depth:[8,1,1,""]},"sionna.fec.interleaving.Turbo3GPPInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],find_s_min:[8,3,1,""]},"sionna.fec.ldpc.decoding":{LDPC5GDecoder:[9,0,1,""],LDPCBPDecoder:[9,0,1,""]},"sionna.fec.ldpc.decoding.LDPC5GDecoder":{encoder:[9,1,1,""]},"sionna.fec.ldpc.decoding.LDPCBPDecoder":{edge_weights:[9,1,1,""],has_weights:[9,1,1,""],ie_c:[9,1,1,""],ie_v:[9,1,1,""],llr_max:[9,1,1,""],num_cns:[9,1,1,""],num_edges:[9,1,1,""],num_iter:[9,1,1,""],num_vns:[9,1,1,""],output_dtype:[9,1,1,""],pcm:[9,1,1,""],show_weights:[9,3,1,""]},"sionna.fec.ldpc.encoding":{LDPC5GEncoder:[9,0,1,""]},"sionna.fec.ldpc.encoding.LDPC5GEncoder":{coderate:[9,1,1,""],generate_out_int:[9,3,1,""],k:[9,1,1,""],k_ldpc:[9,1,1,""],n:[9,1,1,""],n_ldpc:[9,1,1,""],num_bits_per_symbol:[9,1,1,""],out_int:[9,1,1,""],out_int_inv:[9,1,1,""],pcm:[9,1,1,""],z:[9,1,1,""]},"sionna.fec.linear":{AllZeroEncoder:[10,0,1,""],LinearEncoder:[10,0,1,""],OSDecoder:[10,0,1,""]},"sionna.fec.linear.AllZeroEncoder":{coderate:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""]},"sionna.fec.linear.LinearEncoder":{coderate:[10,1,1,""],gm:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""]},"sionna.fec.linear.OSDecoder":{gm:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""],t:[10,1,1,""]},"sionna.fec.polar.decoding":{Polar5GDecoder:[11,0,1,""],PolarBPDecoder:[11,0,1,""],PolarSCDecoder:[11,0,1,""],PolarSCLDecoder:[11,0,1,""]},"sionna.fec.polar.decoding.Polar5GDecoder":{dec_type:[11,1,1,""],frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k_polar:[11,1,1,""],k_target:[11,1,1,""],llr_max:[11,1,1,""],n_polar:[11,1,1,""],n_target:[11,1,1,""],output_dtype:[11,1,1,""],polar_dec:[11,1,1,""]},"sionna.fec.polar.decoding.PolarBPDecoder":{frozen_pos:[11,1,1,""],hard_out:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],num_iter:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.decoding.PolarSCDecoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.decoding.PolarSCLDecoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],k_crc:[11,1,1,""],list_size:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.encoding":{Polar5GEncoder:[11,0,1,""],PolarEncoder:[11,0,1,""]},"sionna.fec.polar.encoding.Polar5GEncoder":{channel_interleaver:[11,3,1,""],enc_crc:[11,1,1,""],input_interleaver:[11,3,1,""],k:[11,1,1,""],k_polar:[11,1,1,""],k_target:[11,1,1,""],n:[11,1,1,""],n_polar:[11,1,1,""],n_target:[11,1,1,""],subblock_interleaving:[11,3,1,""]},"sionna.fec.polar.encoding.PolarEncoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],n:[11,1,1,""]},"sionna.fec.polar.utils":{generate_5g_ranking:[11,2,1,""],generate_dense_polar:[11,2,1,""],generate_polar_transform_mat:[11,2,1,""],generate_rm_code:[11,2,1,""]},"sionna.fec.scrambling":{Descrambler:[12,0,1,""],Scrambler:[12,0,1,""],TB5GScrambler:[12,0,1,""]},"sionna.fec.scrambling.Descrambler":{scrambler:[12,1,1,""]},"sionna.fec.scrambling.Scrambler":{keep_state:[12,1,1,""],seed:[12,1,1,""],sequence:[12,1,1,""]},"sionna.fec.scrambling.TB5GScrambler":{keep_state:[12,1,1,""]},"sionna.fec.turbo":{TurboDecoder:[13,0,1,""],TurboEncoder:[13,0,1,""],TurboTermination:[13,0,1,""]},"sionna.fec.turbo.TurboDecoder":{coderate:[13,1,1,""],constraint_length:[13,1,1,""],depuncture:[13,3,1,""],gen_poly:[13,1,1,""],k:[13,1,1,""],n:[13,1,1,""],trellis:[13,1,1,""]},"sionna.fec.turbo.TurboEncoder":{coderate:[13,1,1,""],constraint_length:[13,1,1,""],gen_poly:[13,1,1,""],k:[13,1,1,""],n:[13,1,1,""],punct_pattern:[13,1,1,""],terminate:[13,1,1,""],trellis:[13,1,1,""]},"sionna.fec.turbo.TurboTermination":{get_num_term_syms:[13,3,1,""],term_bits_turbo2conv:[13,3,1,""],termbits_conv2turbo:[13,3,1,""]},"sionna.fec.turbo.utils":{polynomial_selector:[13,2,1,""],puncture_pattern:[13,2,1,""]},"sionna.fec.utils":{GaussianPriorSource:[14,0,1,""],alist2mat:[14,2,1,""],bin2int:[14,2,1,""],bin2int_tf:[14,2,1,""],generate_reg_ldpc:[14,2,1,""],get_exit_analytic:[14,2,1,""],gm2pcm:[14,2,1,""],int2bin:[14,2,1,""],int2bin_tf:[14,2,1,""],int_mod_2:[14,2,1,""],j_fun:[14,2,1,""],j_fun_inv:[14,2,1,""],j_fun_inv_tf:[14,2,1,""],j_fun_tf:[14,2,1,""],llr2mi:[14,2,1,""],load_alist:[14,2,1,""],load_parity_check_examples:[14,2,1,""],make_systematic:[14,2,1,""],pcm2gm:[14,2,1,""],plot_exit_chart:[14,2,1,""],plot_trajectory:[14,2,1,""],verify_gm_pcm:[14,2,1,""]},"sionna.mapping":{Constellation:[15,0,1,""],Demapper:[15,0,1,""],DemapperWithPrior:[15,0,1,""],LLRs2SymbolLogits:[15,0,1,""],Mapper:[15,0,1,""],PAM2QAM:[15,0,1,""],QAM2PAM:[15,0,1,""],SymbolDemapper:[15,0,1,""],SymbolDemapperWithPrior:[15,0,1,""],SymbolInds2Bits:[15,0,1,""],SymbolLogits2LLRs:[15,0,1,""],SymbolLogits2LLRsWithPrior:[15,0,1,""],SymbolLogits2Moments:[15,0,1,""],pam:[15,2,1,""],pam_gray:[15,2,1,""],qam:[15,2,1,""]},"sionna.mapping.Constellation":{center:[15,1,1,""],create_or_check_constellation:[15,3,1,""],normalize:[15,1,1,""],num_bits_per_symbol:[15,1,1,""],points:[15,1,1,""],show:[15,3,1,""]},"sionna.mapping.Mapper":{constellation:[15,1,1,""]},"sionna.mimo":{EPDetector:[16,0,1,""],KBestDetector:[16,0,1,""],LinearDetector:[16,0,1,""],List2LLR:[16,0,1,""],List2LLRSimple:[16,0,1,""],MMSEPICDetector:[16,0,1,""],MaximumLikelihoodDetector:[16,0,1,""],MaximumLikelihoodDetectorWithPrior:[16,0,1,""],StreamManagement:[16,0,1,""],complex2real_channel:[16,2,1,""],complex2real_covariance:[16,2,1,""],complex2real_matrix:[16,2,1,""],complex2real_vector:[16,2,1,""],lmmse_equalizer:[16,2,1,""],mf_equalizer:[16,2,1,""],real2complex_channel:[16,2,1,""],real2complex_covariance:[16,2,1,""],real2complex_matrix:[16,2,1,""],real2complex_vector:[16,2,1,""],whiten_channel:[16,2,1,""],zero_forcing_precoder:[16,2,1,""],zf_equalizer:[16,2,1,""]},"sionna.mimo.StreamManagement":{detection_desired_ind:[16,1,1,""],detection_undesired_ind:[16,1,1,""],num_interfering_streams_per_rx:[16,1,1,""],num_rx:[16,1,1,""],num_rx_per_tx:[16,1,1,""],num_streams_per_rx:[16,1,1,""],num_streams_per_tx:[16,1,1,""],num_tx:[16,1,1,""],num_tx_per_rx:[16,1,1,""],precoding_ind:[16,1,1,""],rx_stream_ids:[16,1,1,""],rx_tx_association:[16,1,1,""],stream_association:[16,1,1,""],stream_ind:[16,1,1,""],tx_stream_ids:[16,1,1,""]},"sionna.nr":{CarrierConfig:[17,0,1,""],LayerDemapper:[17,0,1,""],LayerMapper:[17,0,1,""],PUSCHConfig:[17,0,1,""],PUSCHDMRSConfig:[17,0,1,""],PUSCHLSChannelEstimator:[17,0,1,""],PUSCHPilotPattern:[17,0,1,""],PUSCHPrecoder:[17,0,1,""],PUSCHReceiver:[17,0,1,""],PUSCHTransmitter:[17,0,1,""],TBConfig:[17,0,1,""],TBDecoder:[17,0,1,""],TBEncoder:[17,0,1,""]},"sionna.nr.CarrierConfig":{cyclic_prefix:[17,1,1,""],cyclic_prefix_length:[17,1,1,""],frame_duration:[17,1,1,""],frame_number:[17,1,1,""],kappa:[17,1,1,""],mu:[17,1,1,""],n_cell_id:[17,1,1,""],n_size_grid:[17,1,1,""],n_start_grid:[17,1,1,""],num_slots_per_frame:[17,1,1,""],num_slots_per_subframe:[17,1,1,""],num_symbols_per_slot:[17,1,1,""],slot_number:[17,1,1,""],sub_frame_duration:[17,1,1,""],subcarrier_spacing:[17,1,1,""],t_c:[17,1,1,""],t_s:[17,1,1,""]},"sionna.nr.LayerMapper":{num_codewords:[17,1,1,""],num_layers0:[17,1,1,""],num_layers1:[17,1,1,""],num_layers:[17,1,1,""]},"sionna.nr.PUSCHConfig":{c_init:[17,3,1,""],carrier:[17,1,1,""],dmrs:[17,1,1,""],dmrs_grid:[17,1,1,""],dmrs_mask:[17,1,1,""],dmrs_symbol_indices:[17,1,1,""],frequency_hopping:[17,1,1,""],l_bar:[17,1,1,""],mapping_type:[17,1,1,""],n_rnti:[17,1,1,""],n_size_bwp:[17,1,1,""],n_start_bwp:[17,1,1,""],num_antenna_ports:[17,1,1,""],num_coded_bits:[17,1,1,""],num_layers:[17,1,1,""],num_ov:[17,1,1,""],num_res_per_prb:[17,1,1,""],num_resource_blocks:[17,1,1,""],num_subcarriers:[17,1,1,""],precoding:[17,1,1,""],precoding_matrix:[17,1,1,""],show:[17,3,1,""],symbol_allocation:[17,1,1,""],tb:[17,1,1,""],tb_size:[17,1,1,""],tpmi:[17,1,1,""],transform_precoding:[17,1,1,""]},"sionna.nr.PUSCHDMRSConfig":{additional_position:[17,1,1,""],allowed_dmrs_ports:[17,1,1,""],beta:[17,1,1,""],cdm_groups:[17,1,1,""],config_type:[17,1,1,""],deltas:[17,1,1,""],dmrs_port_set:[17,1,1,""],length:[17,1,1,""],n_id:[17,1,1,""],n_scid:[17,1,1,""],num_cdm_groups_without_data:[17,1,1,""],type_a_position:[17,1,1,""],w_f:[17,1,1,""],w_t:[17,1,1,""]},"sionna.nr.PUSCHPilotPattern":{mask:[17,1,1,""],normalize:[17,1,1,""],num_data_symbols:[17,1,1,""],num_effective_subcarriers:[17,1,1,""],num_ofdm_symbols:[17,1,1,""],num_pilot_symbols:[17,1,1,""],num_streams_per_tx:[17,1,1,""],num_tx:[17,1,1,""],pilots:[17,1,1,""],show:[17,3,1,""],trainable:[17,1,1,""]},"sionna.nr.PUSCHReceiver":{resource_grid:[17,1,1,""]},"sionna.nr.PUSCHTransmitter":{pilot_pattern:[17,1,1,""],resource_grid:[17,1,1,""],show:[17,3,1,""]},"sionna.nr.TBConfig":{channel_type:[17,1,1,""],check_config:[17,3,1,""],mcs_index:[17,1,1,""],mcs_table:[17,1,1,""],n_id:[17,1,1,""],num_bits_per_symbol:[17,1,1,""],target_coderate:[17,1,1,""],tb_scaling:[17,1,1,""]},"sionna.nr.TBDecoder":{k:[17,1,1,""],n:[17,1,1,""],tb_size:[17,1,1,""]},"sionna.nr.TBEncoder":{cb_crc_encoder:[17,1,1,""],coderate:[17,1,1,""],cw_lengths:[17,1,1,""],k:[17,1,1,""],k_padding:[17,1,1,""],ldpc_encoder:[17,1,1,""],n:[17,1,1,""],num_cbs:[17,1,1,""],num_tx:[17,1,1,""],output_perm_inv:[17,1,1,""],scrambler:[17,1,1,""],tb_crc_encoder:[17,1,1,""],tb_size:[17,1,1,""]},"sionna.nr.utils":{calculate_tb_size:[17,2,1,""],generate_prng_seq:[17,2,1,""],select_mcs:[17,2,1,""]},"sionna.ofdm":{BaseChannelEstimator:[18,0,1,""],BaseChannelInterpolator:[18,0,1,""],EPDetector:[18,0,1,""],EmptyPilotPattern:[18,0,1,""],KBestDetector:[18,0,1,""],KroneckerPilotPattern:[18,0,1,""],LMMSEEqualizer:[18,0,1,""],LMMSEInterpolator:[18,0,1,""],LSChannelEstimator:[18,0,1,""],LinearDetector:[18,0,1,""],LinearInterpolator:[18,0,1,""],MFEqualizer:[18,0,1,""],MMSEPICDetector:[18,0,1,""],MaximumLikelihoodDetector:[18,0,1,""],MaximumLikelihoodDetectorWithPrior:[18,0,1,""],NearestNeighborInterpolator:[18,0,1,""],OFDMDemodulator:[18,0,1,""],OFDMDetector:[18,0,1,""],OFDMDetectorWithPrior:[18,0,1,""],OFDMEqualizer:[18,0,1,""],OFDMModulator:[18,0,1,""],PilotPattern:[18,0,1,""],RemoveNulledSubcarriers:[18,0,1,""],ResourceGrid:[18,0,1,""],ResourceGridDemapper:[18,0,1,""],ResourceGridMapper:[18,0,1,""],ZFEqualizer:[18,0,1,""],ZFPrecoder:[18,0,1,""],tdl_freq_cov_mat:[18,2,1,""],tdl_time_cov_mat:[18,2,1,""]},"sionna.ofdm.BaseChannelEstimator":{estimate_at_pilot_locations:[18,3,1,""]},"sionna.ofdm.PilotPattern":{mask:[18,1,1,""],normalize:[18,1,1,""],num_data_symbols:[18,1,1,""],num_effective_subcarriers:[18,1,1,""],num_ofdm_symbols:[18,1,1,""],num_pilot_symbols:[18,1,1,""],num_streams_per_tx:[18,1,1,""],num_tx:[18,1,1,""],pilots:[18,1,1,""],show:[18,3,1,""],trainable:[18,1,1,""]},"sionna.ofdm.ResourceGrid":{bandwidth:[18,1,1,""],build_type_grid:[18,3,1,""],cyclic_prefix_length:[18,1,1,""],dc_ind:[18,1,1,""],dc_null:[18,1,1,""],effective_subcarrier_ind:[18,1,1,""],fft_size:[18,1,1,""],num_data_symbols:[18,1,1,""],num_effective_subcarriers:[18,1,1,""],num_guard_carriers:[18,1,1,""],num_ofdm_symbols:[18,1,1,""],num_pilot_symbols:[18,1,1,""],num_resource_elements:[18,1,1,""],num_streams_per_tx:[18,1,1,""],num_time_samples:[18,1,1,""],num_tx:[18,1,1,""],num_zero_symbols:[18,1,1,""],ofdm_symbol_duration:[18,1,1,""],pilot_pattern:[18,1,1,""],show:[18,3,1,""],subcarrier_spacing:[18,1,1,""]},"sionna.rt":{Antenna:[19,0,1,""],AntennaArray:[19,0,1,""],BackscatteringPattern:[19,0,1,""],Camera:[19,0,1,""],CoverageMap:[19,0,1,""],DirectivePattern:[19,0,1,""],LambertianPattern:[19,0,1,""],Paths:[19,0,1,""],PlanarArray:[19,0,1,""],RadioMaterial:[19,0,1,""],Receiver:[19,0,1,""],Scene:[19,0,1,""],SceneObject:[19,0,1,""],Transmitter:[19,0,1,""],cross:[19,2,1,""],dot:[19,2,1,""],load_scene:[19,2,1,""],normalize:[19,2,1,""],phi_hat:[19,2,1,""],r_hat:[19,2,1,""],rot_mat_from_unit_vecs:[19,2,1,""],rotate:[19,2,1,""],rotation_matrix:[19,2,1,""],sample_points_on_hemisphere:[19,2,1,""],theta_hat:[19,2,1,""],theta_phi_from_unit_vec:[19,2,1,""]},"sionna.rt.Antenna":{patterns:[19,1,1,""]},"sionna.rt.AntennaArray":{antenna:[19,1,1,""],array_size:[19,1,1,""],num_ant:[19,1,1,""],positions:[19,1,1,""],rotated_positions:[19,3,1,""]},"sionna.rt.BackscatteringPattern":{alpha_i:[19,1,1,""],alpha_r:[19,1,1,""],lambda_:[19,1,1,""],visualize:[19,3,1,""]},"sionna.rt.Camera":{look_at:[19,3,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.CoverageMap":{as_tensor:[19,3,1,""],cell_centers:[19,1,1,""],cell_size:[19,1,1,""],center:[19,1,1,""],num_cells_x:[19,1,1,""],num_cells_y:[19,1,1,""],num_tx:[19,1,1,""],orientation:[19,1,1,""],sample_positions:[19,3,1,""],show:[19,3,1,""],size:[19,1,1,""]},"sionna.rt.DirectivePattern":{alpha_r:[19,1,1,""],visualize:[19,3,1,""]},"sionna.rt.LambertianPattern":{visualize:[19,3,1,""]},"sionna.rt.Paths":{"export":[19,3,1,""],a:[19,1,1,""],apply_doppler:[19,3,1,""],cir:[19,3,1,""],doppler:[19,1,1,""],from_dict:[19,3,1,""],mask:[19,1,1,""],normalize_delays:[19,1,1,""],phi_r:[19,1,1,""],phi_t:[19,1,1,""],reverse_direction:[19,1,1,""],tau:[19,1,1,""],theta_r:[19,1,1,""],theta_t:[19,1,1,""],to_dict:[19,3,1,""],types:[19,1,1,""]},"sionna.rt.PlanarArray":{antenna:[19,1,1,""],array_size:[19,1,1,""],num_ant:[19,1,1,""],positions:[19,1,1,""],rotated_positions:[19,3,1,""],show:[19,3,1,""]},"sionna.rt.RadioMaterial":{complex_relative_permittivity:[19,1,1,""],conductivity:[19,1,1,""],frequency_update_callback:[19,1,1,""],is_used:[19,1,1,""],name:[19,1,1,""],relative_permeability:[19,1,1,""],relative_permittivity:[19,1,1,""],scattering_coefficient:[19,1,1,""],scattering_pattern:[19,1,1,""],use_counter:[19,1,1,""],using_objects:[19,1,1,""],well_defined:[19,1,1,""],xpd_coefficient:[19,1,1,""]},"sionna.rt.Receiver":{color:[19,1,1,""],look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.Scene":{add:[19,3,1,""],cameras:[19,1,1,""],center:[19,1,1,""],compute_fields:[19,2,1,""],compute_paths:[19,2,1,""],coverage_map:[19,2,1,""],dtype:[19,1,1,""],frequency:[19,1,1,""],get:[19,3,1,""],mi_scene_params:[19,1,1,""],objects:[19,1,1,""],preview:[19,2,1,""],radio_material_callable:[19,1,1,""],radio_materials:[19,1,1,""],receivers:[19,1,1,""],remove:[19,3,1,""],render:[19,2,1,""],render_to_file:[19,2,1,""],rx_array:[19,1,1,""],scattering_pattern_callable:[19,1,1,""],scene_geometry_updated:[19,3,1,""],size:[19,1,1,""],solver_cm:[19,1,1,""],solver_paths:[19,1,1,""],synthetic_array:[19,1,1,""],trace_paths:[19,2,1,""],transmitters:[19,1,1,""],tx_array:[19,1,1,""],wavelength:[19,1,1,""]},"sionna.rt.SceneObject":{look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""],radio_material:[19,1,1,""],velocity:[19,1,1,""]},"sionna.rt.Transmitter":{color:[19,1,1,""],look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.antenna":{compute_gain:[19,2,1,""],dipole_pattern:[19,2,1,""],hw_dipole_pattern:[19,2,1,""],iso_pattern:[19,2,1,""],polarization_model_1:[19,2,1,""],polarization_model_2:[19,2,1,""],tr38901_pattern:[19,2,1,""],visualize:[19,2,1,""]},"sionna.rt.scene":{box:[19,4,1,""],double_reflector:[19,4,1,""],etoile:[19,4,1,""],floor_wall:[19,4,1,""],munich:[19,4,1,""],simple_reflector:[19,4,1,""],simple_street_canyon:[19,4,1,""],simple_street_canyon_with_cars:[19,4,1,""],simple_wedge:[19,4,1,""],triple_reflector:[19,4,1,""]},"sionna.signal":{BlackmanWindow:[20,0,1,""],CustomFilter:[20,0,1,""],CustomWindow:[20,0,1,""],Downsampling:[20,0,1,""],Filter:[20,0,1,""],HammingWindow:[20,0,1,""],HannWindow:[20,0,1,""],RaisedCosineFilter:[20,0,1,""],RootRaisedCosineFilter:[20,0,1,""],SincFilter:[20,0,1,""],Upsampling:[20,0,1,""],Window:[20,0,1,""],convolve:[20,2,1,""],empirical_aclr:[20,2,1,""],empirical_psd:[20,2,1,""],fft:[20,2,1,""],ifft:[20,2,1,""]},"sionna.signal.BlackmanWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.CustomFilter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.CustomWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.Filter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.HammingWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.HannWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.RaisedCosineFilter":{aclr:[20,1,1,""],beta:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.RootRaisedCosineFilter":{aclr:[20,1,1,""],beta:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.SincFilter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.Window":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.utils":{BinarySource:[22,0,1,""],BitErrorRate:[22,0,1,""],BitwiseMutualInformation:[22,0,1,""],PAMSource:[22,0,1,""],QAMSource:[22,0,1,""],SymbolSource:[22,0,1,""],complex_normal:[22,2,1,""],compute_ber:[22,2,1,""],compute_bler:[22,2,1,""],compute_ser:[22,2,1,""],count_block_errors:[22,2,1,""],count_errors:[22,2,1,""],ebnodb2no:[22,2,1,""],expand_to_rank:[22,2,1,""],flatten_dims:[22,2,1,""],flatten_last_dims:[22,2,1,""],hard_decisions:[22,2,1,""],insert_dims:[22,2,1,""],log10:[22,2,1,""],log2:[22,2,1,""],matrix_inv:[22,2,1,""],matrix_pinv:[22,2,1,""],matrix_sqrt:[22,2,1,""],matrix_sqrt_inv:[22,2,1,""],sim_ber:[22,2,1,""],split_dim:[22,2,1,""]},"sionna.utils.plotting":{PlotBER:[22,0,1,""],plot_ber:[22,2,1,""]},"sionna.utils.plotting.PlotBER":{add:[22,3,1,""],ber:[22,1,1,""],is_bler:[22,1,1,""],legend:[22,1,1,""],remove:[22,3,1,""],reset:[22,3,1,""],simulate:[22,3,1,""],snr:[22,1,1,""],title:[22,1,1,""]},sionna:{Config:[4,0,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","property","Python property"],"2":["py","function","Python function"],"3":["py","method","Python method"],"4":["py","data","Python data"]},objtypes:{"0":"py:class","1":"py:property","2":"py:function","3":"py:method","4":"py:data"},terms:{"0":[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52],"00":[24,26,27,29,30,33,34,35,36,39,42,45,46,47,48,49],"000":[30,50],"00000000":[30,45],"0000e":[24,26,27,29,30,33,34,35,36,39,42,45,46,47,48,49],"0001015052548609674":46,"00010455576578776041":39,"00010481770833333334":34,"000107421875":[25,34],"000109375":34,"00011207682291666667":34,"00011341145833333334":34,"0001171875":34,"000125":34,"00012890001138051352":25,"000130859375":39,"00013986518306116904":25,"00014040694277510683":34,"0001484375":35,"00015":19,"000154296875":39,"00016032155354817708":39,"000166015625":34,"00016822318007662836":34,"000171875":35,"00017363823784722222":34,"00017578125":34,"00018594996134440104":39,"000189453125":25,"00018975482723577235":34,"00019383680555555555":34,"0002002495659722222":34,"000203125":35,"00021171875":34,"00021787":50,"00021878598441540356":25,"0002265625":[34,35],"000234375":34,"000236328125":39,"00025":34,"0002836583455403646":39,"0002842496236165365":39,"0002859627328267912":25,"0002903820264457476":25,"000291015625":39,"000298828125":25,"00031632105509440104":39,"000322265625":34,"00034796381644684255":34,"00036102":50,"0003671875":35,"0003685031467013889":34,"00037141927083333336":34,"00039453125":39,"0004":19,"0004007025824652778":34,"00040878831294544955":39,"0004105794270833333":34,"0004375":35,"00046706814236111113":34,"0004711371527777778":34,"0004936694871486797":39,"0004983015045593167":39,"0005078125":34,"000513251788663255":39,"000522487214110478":34,"00052734375":34,"000537109375":39,"0005442922765558416":25,"000556640625":34,"0005703125":34,"000576171875":34,"000609375":34,"0006104324281090033":34,"000610752203525641":34,"0006171875":[34,35],"0006175756209935898":34,"00063671875":39,"0006721880008012821":34,"0006736387408842243":39,"0006881306568781534":25,"0007145616319444444":34,"0007226888020833333":34,"0007239105504587156":25,"0007274208566108007":25,"00073293":50,"00074452":50,"0008359375":35,"0008500541736877042":39,"0008716690492438504":39,"0008862955729166666":34,"0008864811488560267":39,"0008932291666666666":34,"0008932893926447088":25,"0008977457682291666":34,"0009102860117346291":39,"0009150437801932367":34,"0009155009900555915":39,"00092697":50,"0009830457899305555":34,"0009838684538653367":25,"000984375":35,"001":[14,19,25,44],"0010078125":39,"0010234375":34,"001028917273696588":39,"0010344430083840252":39,"0010432377567997685":39,"0010703125":39,"001083984375":34,"0011":19,"001123528113731971":39,"001171875":34,"0011800130208333333":25,"0012659071180555555":34,"0012970784505208334":34,"0013081868489583333":39,"0013986585930973266":34,"0013e":36,"0014250651041666667":34,"0014438384618514623":39,"0014839694274598686":39,"0015677095994417248":39,"0015692459909539473":25,"0015725519627700617":34,"00157427":50,"0015751008064516128":25,"00158195":50,"0015e":34,"0016104890352813088":34,"0016146116805757136":34,"001625":39,"0016827532040175571":39,"001748046875":39,"0017822608351707458":25,"0017890625":35,"0018911941496331237":39,"0018940899107191297":25,"0019156403011745876":39,"001916015625":39,"001927071604235419":25,"0019609375":34,"00197416":50,"0019759736530521373":39,"002038750155218716":25,"002067384265718006":39,"0020746665425819925":39,"00207564":50,"002078125":35,"0020e":24,"0021562364366319443":34,"002158962763272799":25,"0021640625":35,"0021730139552350023":39,"0021742226420969203":39,"002197265625":40,"0021e":45,"002203125":34,"00220703125":34,"0022606077648344492":39,"0022843567251461987":39,"0023060985233472743":25,"00231561":50,"002356225794011896":25,"002383282310084293":25,"002402254330214634":39,"0024296875":34,"002434003298685431":39,"002463582466684675":34,"00248046875":34,"002491552599862259":34,"002527833716269651":39,"0025576324126052015":39,"0025938579014369418":25,"002616008663393743":39,"0026281823645104897":34,"002695751694775132":34,"0026965757616523173":39,"00270201943137429":25,"0027163238447260626":34,"0027629886053304755":39,"0027646346830985913":25,"0027969644134477824":39,"0027e":34,"0029":19,"0029088469112620633":25,"0029e":36,"0030405569595645414":39,"003129789240790991":39,"0031916920731707315":25,"00322376":50,"0032421875":34,"003267002566425121":34,"00329827":50,"0033478243597622574":39,"003375189644949777":39,"00339787":50,"0034094621080139375":39,"0034728119338768115":34,"003497385589670746":34,"003527675356183733":25,"0035807291666666665":39,"0036":19,"00363045":50,"00370962642928929":39,"0037109375":34,"0037265625":34,"003813561333550347":39,"003845776165569867":39,"0038869121287128713":25,"0038e":27,"003994941711425781":25,"0039e":34,"004016548428705441":34,"004091796875":34,"004094309277004666":25,"00412695":50,"004137017877252252":34,"0041796875":34,"004231770833333333":39,"00423828125":34,"004243488387664524":34,"0042660244551720895":39,"004354306629725865":25,"0044":19,"0044257":50,"004440556877759382":34,"004458076408844189":34,"00455021":50,"00466044":50,"0046953125":34,"0047":19,"004715737951807229":39,"0048e":39,"004930473776424632":39,"0049e":33,"0050665537516276045":39,"005103715945512821":34,"00513376":50,"00516200065612793":25,"0051e":33,"005208117621285575":25,"0052e":[36,39],"0053125":34,"005330264568328857":25,"00536264":50,"00536535":50,"005400390625":34,"00541865":50,"00547640931372549":39,"0055":19,"00550126":50,"0055e":[34,36],"005684130119554924":39,"0056e":[24,36],"005744590415610923":39,"0057531419143178105":34,"00579527":50,"006009458884214744":39,"0060276442307692305":39,"0060546875":34,"006234":30,"006649925595238095":39,"006675488753019323":34,"00674398":50,"006755871242947049":39,"0068515625":34,"006892088627304434":34,"00692451":50,"0071e":45,"0072280695408950615":34,"007244318181818182":25,"007266274813948007":39,"007286241319444445":34,"007302355410447761":39,"007306861877441406":25,"00733877":50,"0073e":36,"00740625":35,"0074375":34,"007462130248091603":39,"007512019230769231":39,"007593437477394387":39,"007724609375":34,"00784375":39,"0078e":[24,39],"00797399":50,"0080e":47,"00814517":50,"00815982288784451":39,"0081787109375":25,"008189432548754143":39,"008275953389830509":34,"008390893240343348":39,"0083e":35,"00840893126370614":34,"0085":19,"008695991960152116":34,"008697916666666666":39,"00873":24,"00879211":50,"0087e":24,"008838085418051861":39,"008847415447235107":25,"009239894087596606":39,"009787991515591614":39,"0097e":34,"009874105453491211":25,"009994818239795918":39,"01":[24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49],"010":30,"0100e":40,"01010792525773196":34,"01011981865284974":39,"01016029792746114":39,"01019287109375":39,"010201009114583333":34,"010203043619791666":34,"010329062478584155":39,"010409740691489361":34,"010500672043010752":39,"01058502197265625":34,"010646654211956522":34,"0107":49,"0107e":45,"010815988179125817":34,"010883246527777777":34,"011":6,"011013454861111112":34,"0110234375":35,"011118797019675926":34,"0111273555":42,"011337403130032207":34,"01134":35,"01144":1,"0114e":45,"0116":49,"0116162":50,"011625744047619048":34,"0116e":36,"0117e":36,"011899021693638392":39,"0119":49,"011945026676829269":39,"0120":49,"012090203220858896":39,"012147801143483709":34,"012176890432098766":34,"0122":49,"012251420454545454":25,"01235750786163522":39,"0124":49,"012451171875":25,"0125":49,"0125e":24,"0126":49,"012662074554294975":34,"0126e":36,"012703033186431624":34,"0128":49,"012939049586776859":34,"0129e":39,"0130":49,"013012210264900662":39,"0130e":46,"013199090957641602":25,"0133":49,"0133107503255209e":39,"01331313775510204":39,"013366284013605442":39,"013377568493150685":39,"0134":49,"01351276625934829":34,"01357635":50,"013622879981994629":25,"013671875":[25,34],"013739224137931034":25,"0138e":39,"0139":49,"014048549107142858":39,"014152748564369658":34,"0142":49,"014243278974368249":39,"014265790397738233":39,"01474389097744361":34,"014757650869864004":39,"0147e":35,"014954079198473283":39,"015":37,"015027618408203125":39,"015064206897702992":34,"0150e":[24,33],"01532451923076923":25,"015516493055555556":39,"015562996031746032":34,"015564680099487305":25,"0155e":42,"0156e":[33,34,36,46],"0157e":39,"015814012096774195":39,"0158e":24,"015960693359375":25,"016":24,"016199555652680653":34,"016286409818209134":39,"0165e":45,"016684469":40,"0166e":39,"016722694":40,"016904633620689655":39,"016959404550827423":34,"016983695652173912":34,"0169e":49,"017":24,"017085597826086957":39,"0170e":24,"017314453125":34,"017377266589506172":34,"017422566371681415":39,"017550057":42,"017578125":25,"017648507882882882":39,"017681360244750977":39,"018019153225806453":34,"018199747258966618":39,"0182e":33,"018300805910669193":34,"0183e":27,"018465909090909092":25,"01862839033018868":34,"018694196428571428":25,"0189e":27,"019152002427184466":39,"0192e":24,"0193958849009901":39,"0195e":25,"01961605j":30,"02":[24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49],"020":24,"0200e":24,"0201e":47,"02025612113402062":39,"0202e":39,"0203":49,"0204":49,"0205":49,"02055921052631579":25,"0206":49,"0208":49,"0209":49,"021073190789473683":25,"0211":49,"021114864864864864":34,"021193258807588076":34,"0211e":34,"0212":49,"021271128713348766":34,"021399456521739132":39,"021505604619565216":34,"021543560606060608":34,"0217":19,"021739130434782608":34,"0217667818069458":25,"0219":49,"0219e":27,"0220":49,"022064606348673504":39,"0220e":24,"0221":49,"0223":49,"022349964488636364":34,"0224":49,"02249379743609512":39,"022494612068965518":34,"0225":49,"022894965277777776":25,"023092830882352942":25,"023115808823529413":39,"0234e":[34,36],"023676058021336554":34,"0238":19,"02383753765060241":39,"023890053353658538":34,"0242e":[24,40],"0247e":34,"024936834971110027":39,"0250e":24,"02517761752136752":34,"02548694577991453":34,"0254e":34,"02562223161969866":39,"025895074503311258":34,"025933353484623015":34,"0259e":27,"026328125":39,"026551942567567568":39,"026970704396565754":39,"0273":17,"027770973104990583":34,"027840169270833333":34,"0279e":34,"028":29,"0280e":24,"028158723021582732":34,"0281e":24,"02837611607142857":39,"0285078125":35,"0286998781383547":34,"028878348214285716":25,"028894761029411766":34,"029":[19,24],"0292e":27,"0293":17,"0298e":42,"02e":46,"03":[7,9,11,24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49],"030048076923076924":39,"03009588068181818":39,"0306e":39,"0312e":[25,26,27,35,39,45,46],"0313e":24,"032366275787353516":25,"03264973958333333":39,"0327e":24,"0329127311706543":39,"03308937766335227":39,"0333e":49,"03380926724137931":39,"0339e":39,"03400135869565218":34,"034078663793103446":39,"0344e":25,"0348e":36,"035":19,"035006009615384616":25,"035026493778935186":34,"03506866591928251":34,"0351e":39,"035385449727376304":39,"0354e":33,"0359039306640624e":39,"0359e":47,"036205150462962965":34,"036322832107543945":25,"036498360339506174":34,"037109375":25,"03722222222222222":34,"0374e":34,"037556287977430554":34,"0376e":39,"0379e":35,"03807645631067961":34,"03808736801147461":39,"03808903694152832":25,"0380e":40,"038147865853658536":34,"03822603202160494":34,"0382e":46,"0385e":24,"0388e":25,"03906005859375":34,"0390e":24,"039197":27,"0391e":24,"039274":27,"0395e":34,"04":[24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49,52],"0400e":[24,39],"040529":49,"0406e":[39,49],"04071949146412037":39,"0407421875":34,"040905":49,"0409e":33,"041056315104166664":39,"0412e":34,"041335":49,"041555851063829786":39,"041801":49,"041838":49,"0421e":27,"04232830471462674":39,"0425e":24,"042754":49,"043059":49,"0430e":36,"043392":49,"043501602564102564":34,"043619791666666664":25,"043627":49,"043680429458618164":25,"0436e":[24,35],"04389":11,"0438e":39,"0439e":34,"044397":49,"04469992897727273":39,"0450e":24,"045135":49,"045256":49,"0455e":42,"04578732221554487":34,"046":[2,37],"0460e":42,"0462":19,"0464409722222224e":34,"0466e":40,"04682849702380952":34,"0469e":[33,39],"047":24,"047115184642650465":39,"04732923j":30,"047477":49,"047521":49,"04783954326923077":34,"04793":49,"0480e":48,"048251139322916664":34,"0484e":24,"048708":49,"0489e":26,"0494e":24,"0498e":33,"05":[24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,48,49],"0502e":36,"05034939448038737":39,"050380608974358976":39,"0503e":48,"050638":49,"0508e":[34,39],"0510e":24,"0511e":36,"05126953125":25,"0512e":42,"0513e":24,"051650":49,"05171542697482639":34,"0517e":27,"05180921052631579":39,"051859085648148145":34,"0518e":33,"0519e":35,"05217441340488215":34,"052293":49,"0523e":33,"05242598684210526":34,"052485826280381946":34,"0525e":24,"0527e":34,"0528e":35,"0529e":39,"053":[45,46,47,48],"05356038411458333":34,"0537e":39,"05387931034482758":34,"05396792763157895":34,"0540e":33,"054314":49,"0545e":24,"0546875e":39,"05490451388888889":34,"05495876736111111":39,"0550e":34,"055182658450704226":34,"05524":43,"0558841228485107":42,"0559e":25,"0560e":36,"05613839285714286":39,"0562e":36,"05672554347826087":34,"056919642857142856":25,"0574e":34,"0581e":33,"058506":49,"0586":17,"05891682330827068":34,"0589e":39,"0595e":34,"05962775735294118":34,"0596e":[33,36],"06":[3,24,25,26,27,29,33,34,35,36,39,40,46,48,49],"0601e":34,"0605e":27,"0613e":24,"0615e":24,"0616e":36,"0621e":26,"06243896484375":34,"0625e":[24,33],"0626e":27,"0628e":35,"0630e":[27,36],"0637600806451613":39,"0650e":27,"06517052283653846":34,"06542392306857639":34,"06556919642857142":25,"06557798032407407":34,"06609598795572917":39,"06611466407775879":25,"0664e":[34,39],"0665e":33,"0667e":27,"0669e":33,"06702995300292969":39,"0670e":40,"06746260325113933":39,"0675e":34,"0676e":42,"0677e":39,"0678e":47,"0679e":39,"0681504143608941":39,"0686e":24,"06876168536324787":34,"06897718641493056":34,"06929166666666667":34,"0696557791435366e":34,"0696e":26,"0697e":33,"07":[12,24,26,27,29,33,34,35,39,42,46,48,49],"0700e":[24,27],"0703125":25,"0706e":24,"0710e":36,"0712e":26,"07155566745334202":39,"0718":19,"0723e":33,"07241030092592593":39,"0724e":36,"0730e":49,"0732e":24,"074":[19,42],"0742e":25,"0743e":49,"07458043981481481":39,"0750":19,"0751953125":39,"07575":42,"0759e":24,"0760e":24,"07624737774884259":34,"0763e":39,"07647235576923077":34,"0768e":[45,46],"077881":27,"0781":17,"078234":27,"0787e":48,"0788e":[34,42],"07905292510986328":39,"0791e":36,"07j":42,"08":[24,25,27,36,39,45,46,49],"0800e":[24,49],"0809461805555556e":34,"0812e":24,"081484375":39,"0816061000631313":34,"0818e":27,"0819e":35,"0820e":24,"082763671875":34,"0828e":34,"0833e":26,"08352726063829788":34,"08406575520833333":34,"0840e":36,"08414149284362793":25,"08418807983398438":39,"08457483362268518":34,"0850e":27,"0855e":36,"0857e":[24,49],"0858e":27,"086263020833334e":25,"0863e":34,"08697916666666666":34,"0875":34,"08780924479166667":34,"0882e":24,"08891149450231481":34,"08907222747802734":25,"08939985795454546":34,"0895e":24,"0897e":45,"08984375":25,"0898e":34,"08e":35,"08it":29,"09":[8,13,25,33,34,39],"0900e":[24,27],"090132594j":42,"09064275568181818":34,"090927124023438e":39,"091":45,"0912e":24,"0913e":36,"09145228068033855":39,"0916e":24,"09259588068181818":39,"09346512j":42,"09424036792200854":34,"0942e":33,"0943e":[25,39],"0946e":27,"0960e":27,"0961e":46,"0965e":39,"0968e":24,"0971e":40,"0972e":36,"0973e":35,"0977":17,"0980e":24,"0982e":27,"0990e":24,"0e":2,"0s":[11,12,17,24,27,31,45,49],"0x7effa863f0d0":36,"0x7f10cd1182e0":43,"0x7f10f2195c90":43,"0x7f10f21962c0":43,"0x7f10f2196fb0":43,"0x7f10f21979d0":43,"0x7f10f2197a30":43,"0x7f10f2197a60":43,"0x7f10f2197b20":43,"0x7f10f2197c10":43,"0x7f10f2197e20":43,"0x7f10f2197e50":43,"0x7f10f2197f40":43,"0x7f10f2197f70":43,"0x7f10f2197fa0":43,"0x7f10f2197fd0":43,"0x7f81f00ef0a0":19,"0x7f83d0555d30":19,"0x7f86f28c72b0":25,"0x7fe0b00c13a0":29,"0x7fee100c3e20":24,"1":[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,52,55],"10":[2,3,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53],"100":[1,2,3,6,9,11,14,19,23,24,26,27,28,29,30,31,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49],"1000":[3,19,20,24,25,26,27,28,30,31,32,34,36,37,38,39,40,41,42,45,49,50],"10000":[14,24,26,27,31,49],"100000":[24,27,48,49],"1000000":[19,24,40],"10000000":24,"100000000":24,"10006385216346154":34,"1000e":[24,27,49],"1000m":42,"1001":[24,26,34,39],"10011":[6,13],"10016025641025642":35,"1002":[24,27,34,39,46],"100260":27,"100289":27,"1003":[24,34,39],"100352":34,"1004":[24,34,39],"100415":40,"1005":[24,27,34,39],"1006":[24,26,34,39],"100654":27,"1007":[17,27,34,39],"100736000":24,"1008":[24,26,34,39],"1008000":49,"1008e":42,"1009":[24,27,34,39],"1009e":36,"100e":[3,30,34,35,47,48],"100e9":41,"100n":3,"101":[6,36,40,46,47,48],"1010":[26,34,39],"1010102":30,"1010475093482906":34,"10106":26,"1011":[24,34,39],"1013":[34,39],"1014":[26,39],"101406":27,"101449728":39,"1015":34,"1016":34,"10168":24,"1016e":[24,34,39,47],"1017":[34,39],"101788":24,"1018":39,"10182":36,"1018e":36,"1019":[33,34,39],"102":[35,46],"1020":39,"1021":[24,26,27,34],"1022":[26,33,34],"10223616":39,"102236160":39,"102272000":24,"1023":[12,17,24,34],"102322048611111e":34,"1023e":46,"1024":[3,5,11,17,20,24,25,26,31,33,34,36,39,40,43,45,50],"10240":39,"102400":34,"1024000":24,"1025":[24,34,39],"1026":[24,39],"1027":27,"10274":34,"1027e":36,"1028":34,"1029":27,"102912":39,"10296":36,"103":[30,36,45,46,48],"1030":34,"1032":[24,39],"1032192":36,"10321920":36,"1033":34,"10335":24,"1034":34,"103421":33,"103424":39,"10343790054321289":25,"1035":[24,34,39],"103515625e":39,"103558":34,"1035e":33,"1036":[24,34,35,39],"1037":[26,34,39],"103733":24,"1038":24,"103809024":39,"10383360":[34,42],"1038e":34,"1039":24,"103936":26,"104":[6,34,40,46],"1040":34,"10400000":49,"104000000":24,"1040187392":25,"1040e":24,"1041":27,"1041e":47,"1042":39,"10439":24,"1044":34,"10442":24,"104439":34,"1045":[26,34],"10459":24,"1046":39,"10468":36,"1048":[24,27,39],"1049":[24,34,46],"10496":36,"105":[34,39,42,46,47],"1050":34,"105252":27,"105255":27,"1053":24,"10546875":39,"1055":36,"1055e":24,"1056":[26,34],"10565":48,"1057":39,"106":[14,24,29,35],"1060":39,"106028":33,"106057":34,"1061":[24,26],"106168320":39,"1062":24,"1063":46,"1064":[14,24],"10645":24,"1065":[27,34],"106537":45,"1066e":24,"1067":34,"1068":24,"10682":24,"107":[27,48],"1070":24,"107031":24,"1073":[26,39],"10739712":47,"1073e":25,"1074":39,"1075":34,"10752":25,"1076e":36,"10778331756591797":39,"10789":40,"1078e":49,"1079":34,"1079e":24,"108":[41,46],"1080":34,"10800":42,"108007":27,"1080e":24,"1081":34,"108163":34,"1082":[30,34,39,47,48],"10825":24,"1084":[24,36],"1086":34,"1087":42,"1088":11,"10880":46,"10880000":24,"108859":27,"108885":33,"1089":34,"10894097222222222":39,"109":[27,31,46],"109051904":25,"10911744":33,"1091e":33,"1092":39,"1093":34,"1094e":[24,35],"1096":34,"10965":48,"109673":27,"1096972":42,"1096e":39,"1097e":34,"10985":36,"1098e":24,"1099":[24,29],"109961":27,"1099776000":30,"109994":34,"10e":17,"10e6":[19,41,42,43,44],"10e9":41,"10m":43,"11":[3,16,17,18,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53],"110":[24,26],"1100":39,"11000":49,"110000":24,"1100177":30,"110045":24,"11008":[36,49],"1100e":[42,49],"11010048":39,"1102186":24,"1103377904647436":34,"1103e":36,"110457":27,"110592":39,"110622720":42,"1107":34,"1109":[3,26,35,46,48],"110914":24,"1109e":24,"111":[6,32,43,46,48],"1111":39,"1112":[27,39],"1113e":40,"1114e":24,"1115249":42,"1115e":49,"111616":39,"1117":27,"1118":24,"112":[24,26,27,36,47,48],"112238":34,"11225088":35,"112459776":39,"11264":[25,34,39],"1127":24,"112758":25,"11285":27,"1128702":42,"113":[24,40,46],"1130":24,"1133":34,"1133715":42,"113390":30,"1134":39,"1135206":42,"11354":26,"113664":39,"1136e":34,"1137e":35,"11400000":27,"1140e":47,"1142":34,"114277":25,"1145":[24,34],"1146965579710145":34,"1146e":39,"1148":3,"114830":27,"115":[24,29,48],"11501568":36,"1150e":24,"1151":24,"1151e":24,"1152":[17,26,29],"1152000":24,"115234375":[25,34,40],"115414":39,"1154e":34,"1156":39,"115747":33,"1157e":42,"11581440":42,"1158854166666666e":34,"115961":27,"1159905":42,"116":42,"116180":27,"11620":27,"11626561482747395":39,"11636797587076823":39,"11648000":24,"1164e":33,"11661":34,"1167":26,"116736":[47,48],"11673600":[29,46,47,48],"116858":27,"117280":40,"1172e":[36,39],"1174e":33,"1176":36,"11760":42,"11771":40,"11776":[25,33,39,47],"11787":24,"1178870":30,"1179":[24,42],"1179648":[33,36],"11796480":39,"117980":27,"1180":27,"1181":39,"1181043":42,"1184":49,"1185":[24,34],"118503":33,"11854":51,"1188e":33,"1189":39,"119":[27,30,35,49],"1190":27,"11926":26,"119296":39,"1193":34,"119396":39,"1195":27,"1196":[24,34],"1199":34,"11n":[14,27],"12":[2,3,11,13,14,17,18,19,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49],"120":[17,26],"1200":[27,30,46],"12000":[24,49],"1200000":27,"120021":33,"1200e":[27,49],"1204":34,"12052":36,"1207258":42,"12076":24,"1208":34,"12083":24,"12091392":36,"12093":47,"121":[24,25,42,43,46,48],"1211":39,"1212758":42,"1213032":25,"12139423076923077":34,"1214":27,"1215565":42,"1216":34,"12163461538461538":34,"121634816":25,"12168":36,"1217":[24,39],"1217e":36,"1218893527985":34,"1218e":39,"1219482421875":40,"122":46,"12202":24,"122160":24,"12231":45,"1225":24,"122527":27,"122598":34,"122701":39,"1227e":45,"1228":24,"12288":[34,36],"1228800":30,"1228800000":30,"123":[27,29,47],"123013":25,"123302":34,"1233286":42,"12337239583333333":34,"1234":[8,12],"12345678":[8,12],"1235e":34,"1236":34,"123628":27,"123642":25,"1236e":24,"1237":[36,39],"1237e":49,"124":46,"1240e":49,"1241e":34,"124245":25,"1243":34,"1244":42,"124664":25,"1246e":45,"1247":24,"124717":45,"1247232":35,"124781":34,"124910":27,"12498":36,"125":[24,30,46],"1250":17,"125056":25,"1250e":[24,26,29,34,35,36],"125123":34,"12524":[24,34],"12533760":34,"1254":24,"12544":36,"1255":[24,35],"125561":25,"1256":34,"12560":42,"125674":27,"125677":34,"1257377":42,"125808":33,"12582912":25,"1259148":30,"125935":33,"1259765625":39,"1259e":47,"125e":35,"126":[36,46,47],"126000":49,"126033":34,"1260e":39,"1261e":36,"126615552":39,"12672000":24,"1267e":27,"1269":24,"126953125e":34,"126976":25,"127":[14,35,52],"127000":24,"12702298164367676":25,"1270929":42,"1270e":[25,33,34],"127197265625":39,"1271e":34,"127238":34,"127691":33,"1276e":39,"1277":36,"127843":25,"1279296875":39,"1279e":36,"128":[1,20,24,25,26,29,33,34,35,36,38,39,43,45,46,47,48],"1280":[33,36],"12800":[35,39,46,47,48],"128000":[24,26],"1280000":24,"12800000":24,"128000000":24,"1281":[40,49],"1282e":39,"1283":24,"128662109375":39,"12869":40,"1287":46,"12872":24,"128802":27,"1289e":34,"129":[2,3,33,35,38,40],"129083":27,"1293432":42,"1294e":34,"1295":27,"1296e":45,"129737":29,"129906":25,"12993":29,"13":[17,24,25,26,27,28,30,34,35,36,37,38,39,40,41,42,43,44,45,46,47],"130":[27,42,43],"13000":24,"13000000":24,"1300e":[24,49],"13017":24,"1303":27,"130307":25,"13049":36,"13056":36,"13056000":46,"130566":[25,34],"1306e":39,"1308":39,"1308632":42,"130957":27,"131":49,"131179":27,"1315":34,"13159":24,"1315e":34,"1316":24,"1316718":42,"13200000":27,"13225":24,"1323":34,"132505":25,"1326185":42,"1326e":36,"13271040":34,"1329026":42,"132907008":39,"133":24,"13312":[25,34],"133424":34,"13369344":39,"133695":27,"1337e":35,"133888":25,"1339":39,"134":[24,34],"1340042372881356":34,"1340e":33,"134100":27,"13411458333333334":25,"1341259":42,"1341e":24,"134217728":25,"1342604":42,"134358":33,"13440000":24,"1345":24,"1346":34,"135":[34,46],"135062":27,"135065":33,"1350e":24,"1352":17,"135214":39,"135220":34,"1355":48,"13565952":33,"135694":34,"135754":25,"135762":34,"135862":24,"136":33,"136338":33,"1363969":42,"13640":36,"1367e":25,"136878":34,"1369":49,"136932":27,"13708":36,"1371e":39,"1375e":24,"137625600":39,"1378e":36,"138":[33,34],"1384":34,"138412032":25,"1384e":33,"1385":34,"138539":25,"1386e":34,"1387":24,"139":29,"139048":27,"1392":35,"139211":39,"139273":27,"1392e":34,"1394e":24,"1396":40,"139721":27,"1398e":24,"139996":34,"13a":24,"13w":30,"14":[17,18,19,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53],"140":[11,24,33],"140000":24,"14008320":34,"1400e":[24,27],"140175":34,"14020647321428573":39,"1403":24,"14070":24,"1408":[39,46],"14080":33,"1408000":24,"1409024":40,"1409286144":25,"141":[3,48],"141111":25,"141124":34,"1411e":33,"1412":46,"141380":34,"14155776":[36,39],"141584":34,"141643":34,"142":36,"1420e":24,"1422":24,"142266":34,"14240":42,"142565":27,"1426e":46,"142999":25,"143":[23,44,45],"1430":[20,34],"1431e":36,"143222":45,"143387":34,"143464":27,"143489":33,"14363":24,"143698":34,"1437":34,"14372":45,"143744":42,"143784":34,"143816":27,"1438e":24,"144":35,"14400":30,"1440000":26,"144029":27,"14403":24,"144242":34,"1442840576":40,"1442e":36,"1443":34,"14450688":36,"1446634928385416e":39,"1446e":36,"144737":27,"144779":34,"1447e":36,"14512":36,"1452e":36,"145327":34,"14547797309027777":34,"145486":25,"145489920":39,"1455e":39,"1456":24,"145610":34,"1457":27,"145861":34,"1458e":[26,46],"146":36,"1461009307822678e":42,"1462e":39,"1463":34,"1464194":42,"146532":34,"1466e":35,"1467e":27,"146939":34,"147":[42,48],"147192":25,"147456":[36,40],"1474560":[33,34,36],"147458":34,"147528":25,"14763176j":30,"147692":34,"147729":27,"14807788":30,"148162560":42,"148254":27,"1484":34,"148407":27,"148435":25,"14848":[25,36,39],"1484e":39,"148504":34,"148558":34,"148671":34,"148704":34,"148935":27,"1489e":[34,42],"14931":36,"14960":39,"1496e":[27,39],"1499":34,"14e9":42,"14ghz":42,"15":[2,3,8,13,17,19,23,24,25,26,27,30,32,33,34,35,36,37,39,40,41,42,44,45,46,47,48,49,52,53],"150":[24,34,37,41,42],"1500":26,"15000":[27,34],"1500000":24,"150000000":27,"1500e":24,"1501":34,"1502e":39,"15031":40,"15040512":36,"1504e":33,"150564":27,"1507e":24,"15084":24,"151":33,"1511":34,"1512000":49,"1514e":[27,29],"1515":34,"15165":39,"15169959435096153":34,"1517568":48,"15175680":42,"152":[24,36],"152113":34,"1523":17,"1523014":42,"152316":27,"152321":27,"152349":25,"1523e":25,"15248":35,"152526":34,"152911":25,"153":[3,19,23,24,25,36,44],"153046":34,"153236":25,"15337":24,"1536":[25,33,36,39],"153600":46,"1536000":[24,26],"15360000":46,"1536e":30,"1537":24,"1539":24,"154":[3,46],"15400":27,"15402":24,"154555":25,"15457589285714285":34,"1546e":33,"15482880":34,"155":46,"1550e":[27,40],"155136":39,"15517663955688477":25,"1553":35,"1554":47,"1556e":49,"1557e":39,"155883":45,"1558e":33,"155954":27,"15599834735576923":34,"1561":34,"1562e":26,"1563e":49,"156465":34,"15661":49,"1567":24,"156722":33,"1567e":24,"156805":34,"1569e":34,"157":[17,33,46],"157010":27,"157277":24,"1572864":39,"15728640":39,"15734931098090277":34,"15740831163194444":34,"1575000":49,"1575e":33,"1578e":24,"158":[45,46,48],"158046":27,"158072832":39,"1582":24,"158451":27,"1584e":39,"1586":40,"158859264":39,"158880":34,"15899":24,"1590e":25,"159218":24,"15948":36,"15974":36,"1597440":34,"159757":25,"1598e":42,"15995":39,"15e3":[3,28,34,42],"15khz":17,"16":[2,3,7,9,11,12,17,19,20,23,24,25,26,27,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,50,53],"160":[2,17,19,24,37,46],"16000":[24,49],"16000000":24,"16006485376602564":34,"160091":34,"1600e":[24,27],"1602":17,"1605":24,"1607":49,"1607e":48,"16080593532986112":34,"160973":27,"160n":43,"1610":24,"1611":1,"1611e":24,"16121":48,"1613":35,"16134":36,"161742":34,"1618e":42,"161938":27,"162":[27,36],"1620e":25,"162159":39,"1622":34,"1622016":36,"16220160":33,"162301":34,"16250":24,"16256000":24,"16276041666666666":34,"162964":34,"162975":42,"163":[27,33],"1630":34,"1630952623155382":39,"1633e":45,"1635":34,"16351":26,"163760":34,"16384":[25,40],"16384000":24,"163931":24,"164":33,"164137":39,"164177":45,"1641e":36,"16431":49,"16438802083333334":34,"164486":34,"1644965277777777e":34,"164506":34,"16453":34,"164788":27,"1649":34,"164979":27,"165":[24,33],"16500":24,"1650e":45,"16536458333333334":25,"165701":27,"165718":34,"16591":34,"166":43,"166083":25,"1664":48,"1664000":24,"1666":24,"166666666666667e":25,"166733":34,"1667e":[26,46],"16682":24,"16690":24,"1672":24,"16768000":30,"16777216":25,"167772160":40,"167896":27,"168":33,"1681915904":25,"1681e":40,"16820":36,"168200":27,"16822":42,"1687e":34,"16880":42,"16896":[25,39],"1689600":46,"169":33,"169054":39,"16923":45,"1692e":24,"1695e":48,"16972468449519232":34,"169761":34,"169869312":39,"169921875":39,"16db":41,"16qam":[25,27,38,40,50],"17":[3,16,17,24,25,26,27,30,34,35,36,37,38,40,41,42,43,44,45,46,52],"1700":34,"170000":24,"17003":34,"1700e":49,"17031":33,"17067":27,"1707":35,"171":[24,25],"17104896":36,"171168":27,"1711e":24,"171442176":39,"171574":34,"171605":34,"1717":[27,44],"1718":49,"171821":33,"171853":27,"171875e":39,"1719e":39,"172032":25,"172110":27,"172124160":42,"17214":36,"1723":34,"1723e":39,"1725e":24,"1727":[14,27],"1727e":36,"1728":44,"172801":24,"173":[27,46],"17301504":39,"1730e":49,"1731":48,"17312":24,"17338":48,"1733e":36,"17363":24,"1737":[14,27],"17371mib":30,"1738e":40,"174":25,"17408":[34,39],"1741e":39,"17426":29,"1742e":40,"17447916666666666":34,"1745":[34,39],"17451":27,"174587904":39,"1748":34,"17483605278862846":39,"175004":27,"175069":39,"1750e":[33,42],"1751736111111111":34,"1753":[24,42],"1753e":34,"1754":[16,33],"1756":36,"175723":27,"1758":17,"1758e":39,"175910":33,"17604166666666668":34,"1760e":24,"17642795":30,"1765":[16,33],"17664":33,"176640":39,"1767e":25,"1769472":[33,36],"177027":34,"1771e":26,"17728":36,"1773e":39,"1775e":36,"1776e":24,"1777e":36,"17783":24,"1778e":49,"178038":[27,34],"17806":36,"178176":35,"17817600":35,"1781e":49,"178324":27,"17844460227272727":39,"1784e":34,"1787e":25,"178854":25,"178883":27,"178884":33,"179000":30,"17906":27,"1792":[36,46],"17920":[36,39],"17950481838650173":39,"1796875e":39,"1797e":34,"18":[3,17,23,24,25,26,27,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,49],"180":[33,41,46],"18000":24,"1800000":27,"1800e":[24,25],"1804":11,"1806e":[34,39],"18087936":39,"180883407593":25,"181":29,"181313":27,"18131510416666666":34,"181657":25,"1819e":39,"182000000":24,"182138":34,"1822e":24,"1824":47,"182453":34,"18247":36,"182593":25,"1826e":27,"183":[24,48],"1830e":35,"183209":25,"183238656":39,"1832e":39,"1833":45,"1836e":34,"18370560":42,"18392":39,"184":33,"18432":34,"18432000":34,"18435":47,"184362":45,"1844e":40,"1846":24,"185":23,"1851":46,"1853e":34,"1855e":34,"18572":48,"1857e":36,"186":43,"18600000":27,"18608":20,"1861e":24,"1862e":34,"1863e":27,"1864":34,"18646":24,"1866e":35,"1868e":34,"18692":24,"1870e":34,"1871e":47,"1874e":24,"1875e":[35,36,46,49],"18775770399305555":34,"1878":42,"1878e":42,"1879e":25,"188":36,"1884e":27,"1885102":42,"1889":29,"188979":27,"1889e":24,"189000":49,"189090":34,"1892e":34,"18937":35,"189406":33,"18944":39,"189644":34,"1897":[24,27],"1897e":34,"189928":25,"18999":42,"19":[6,11,16,17,23,24,25,26,27,30,31,34,35,36,37,40,41,42,45,46],"19000":27,"190784":34,"19091796875":34,"1909e":30,"191298":39,"1912e":46,"1914e":36,"191532":34,"1916":34,"191610":34,"1916928":36,"19169280":42,"1917e":25,"1918e":39,"191916":34,"192":[29,30],"1920":26,"192000":24,"1920000":24,"19269":40,"1927e":46,"1928":36,"193":[2,17,36,37],"19302435980902777":34,"1930e":27,"193157":34,"193264":34,"1933e":24,"1934":17,"193689600":42,"1941":16,"194114":24,"1941e":39,"1944":23,"1944e":27,"19456":34,"1949813":42,"195":25,"1950":27,"1951":23,"19525":33,"1953e":39,"1955e":33,"19577":26,"1960":41,"1960e":24,"1962":[23,41],"1963":24,"19660800":39,"196644":24,"1966e":48,"1967":6,"197":39,"1970":34,"1970e":40,"19718":36,"1973":2,"1973e":33,"1974":[6,23,27,41],"1976":2,"197837":24,"1978e":34,"1979e":30,"19800000":27,"1981":45,"1982":27,"1982150607638889":34,"1982e":24,"19832":24,"1984":[23,41],"1987e":[42,48],"1988":[16,34],"199":24,"1990":[23,41],"19906560":34,"1991":2,"199126":34,"1992":27,"1992e":25,"1993":13,"1993e":29,"1995":[10,24],"19968":[36,39],"19968000":34,"199680000":42,"1997":[19,34,45],"1998":[23,27],"1998e":24,"1d":[9,11,22],"1e":[2,17,24,25,26,31,33,34,35,36,37,39,40,41,42,43,46,47,49],"1e1":33,"1e3":37,"1e4":37,"1e6":[19,24,27,30,41,42,44,45],"1e7":19,"1e9":[41,42,44],"1f":[24,30],"1ghz":41,"1j":[18,28],"1s":[11,12,17,24,27,31,45,49],"1x1":3,"2":[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,55],"20":[3,9,11,14,16,17,19,23,24,25,27,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],"200":[2,9,11,19,25,30,31,36,40,44,45,49],"2000":[2,24,27,31,34,42,45,49],"20000":24,"200000":[30,45],"2000000":[19,24],"200000000":24,"2000e":[24,27,42,49],"2001":[11,14,27,42],"200192":39,"2002":[14,42],"20023":27,"2003":[9,12,27,33,42],"20034":24,"2004":[9,14,27,44],"2005":[3,14,23,42,49],"2006":[3,42],"2007":[23,27,42,44],"200704":39,"20078":47,"2008":[11,24],"2009":[2,11,24,27,49],"2009e":39,"200e6":44,"201":[25,33,36,40],"2010":[2,11,37,49],"2011":[16,23,33],"2012":23,"2012e":34,"2013":42,"201326592":25,"2014":[16,49],"2014e":[29,39],"2015":[10,11,16,23,24,33],"2016":[1,9,11,24,35,42,48,49],"2016000":49,"2017":[3,11,24,26,35,42],"2017e":39,"2018":[3,8,9,11,13,19,24,27,49],"2019":[1,11,23,26,29,42],"202":[25,35,36],"2020":[6,11,12,15,24,26],"2020e":45,"2021":[7,9,11,23,24,27,35,46,48],"2022":[16,23,30,33,45,46,51,53],"2023":[19,23,25,33,49,53],"2024":53,"2026":42,"2027":[40,42],"2028":42,"2029e":27,"203":[25,36,40],"2032e":49,"2033e":[24,39],"20348928":33,"2038e":30,"204":[24,25,36],"2040":[19,23],"2040e":49,"2041":42,"2042e":39,"20451":24,"2047":42,"2048":[25,26,31,34,36,39,45],"2048000":45,"204800000":45,"205":[25,36],"2050":49,"2050e":49,"2051e":46,"2052":49,"205312":25,"20566":24,"2058":48,"206":[25,33,36],"2063":49,"2063e":34,"2064384":36,"20643840":34,"2064e":33,"20652":26,"2066e":34,"206992":45,"207":[25,36],"2070e":34,"2071":27,"207146":25,"2072":49,"2074":42,"207410":25,"2075e":36,"2077e":29,"2078":42,"2079":27,"20799":24,"208":[25,33,36],"2080":42,"2081":34,"2081e":25,"2082e":40,"208333333333334e":25,"2083e":[24,36,46,48],"2085":27,"208544":34,"208w":30,"209":[25,27,41],"2091":49,"20926":48,"2095":49,"2096":24,"209674":34,"2096e":30,"20971520":25,"20e6":[42,44],"20m":[3,19],"21":[2,17,19,23,24,25,27,33,34,36,37,39,40,41,42,45,46,48],"210":[24,25,34,36,39,42],"21000":24,"210000":24,"21000000":27,"2100e":[24,27],"2101248":29,"2101e":26,"2103":27,"2103e":36,"21076633j":30,"2108e":34,"211":[12,15,17,25,36,45,46,47,48],"211149":25,"2112e":36,"2114e":33,"2116":49,"21193":24,"21193033854166668":34,"212":[7,8,9,11,13,17,24,25,27,36,45],"212304":39,"21248":36,"2124e":36,"2125e":45,"21268":48,"2129":17,"213":36,"21318":24,"21366":29,"21381120":34,"214":[17,25,27,34],"2141":[27,49],"21427":27,"2142e":27,"2143e":39,"2147":40,"214857":39,"215":36,"21504":[34,39],"2150400":46,"215368":34,"2155":27,"215510":33,"2156e":26,"216":[25,36],"21624":24,"2165":49,"2168e":39,"217":[34,36],"217305":24,"2174":[27,49],"217420":25,"2176e":34,"217828":25,"21785":36,"217898":33,"2178e":24,"2179e":34,"218":[24,33,34,36],"218155":33,"2181e":26,"2185546875":34,"21863":24,"2186e":39,"218982":33,"2189e":39,"219":36,"2195e":24,"219804":42,"219878":33,"2199":17,"22":[17,19,20,23,25,27,33,34,36,37,38,41,42,43,45,49,52],"220":[19,24,35,36],"22000":[24,27],"22000000":24,"220084":33,"2203":51,"220451":34,"220608":39,"2207e":33,"220m":19,"221":[3,36],"2211840":[34,36],"22118400":[30,34],"22120":24,"221203":34,"2214e":42,"22160":42,"2217984":48,"222":[2,29,36,40],"22200520833333334":39,"22218640645345053":39,"2221e":24,"2222e":49,"2223e":34,"2224":36,"222415":34,"222467":25,"2227e":34,"223":36,"2230e":39,"22315":48,"2231e":34,"223264":39,"223649":39,"2236e":33,"224":36,"224061":40,"2242e":24,"22448":24,"2246":49,"224817":34,"2249e":40,"225":36,"2251":24,"2251e":[25,48],"2252":[44,49],"2252341248":25,"22556":24,"22563":44,"2256e":27,"2258e":24,"2260e":48,"2261":49,"2261e":39,"2265625":39,"2266":17,"2269492j":30,"227037":39,"227077":39,"227161":40,"22729":34,"227307":34,"2277e":30,"228":[3,36],"22806528":39,"2280e":34,"2282e":27,"22833":24,"228468":25,"2285895680":25,"2286":36,"22890":35,"228982":34,"229":[24,36,42],"2293e":34,"2294e":34,"22961112780448717":34,"2296581268310547":39,"22992":45,"23":[17,23,25,33,34,36,37,42,45],"230":[24,25],"2300e":[24,27,34],"2302e":49,"2303047":42,"230320":45,"2304":[33,36],"2304000":24,"2305e":[36,39],"2306":49,"230686720":25,"23069":36,"2309":27,"231":[24,36],"2310":49,"231337":45,"23144":48,"2315998077392578":39,"2316":24,"2316e":34,"2319e":39,"232":27,"2320":42,"2320e":24,"23232108j":30,"2323e":45,"2324e":33,"233":25,"2331":33,"2333e":27,"233472":[29,47,48],"2336e":49,"2339":40,"2339e":24,"234":[33,40],"234375":25,"234399":25,"2344":17,"2346e":24,"2347e":35,"234809":34,"2348090277777778":39,"234862":34,"235":25,"235015":39,"2350e":27,"23511":24,"2352e":48,"2353e":36,"235431":24,"235439":25,"2356e":24,"2358":36,"23582":47,"2359296":[36,39],"23592960":34,"2359e":24,"236":[24,25],"236218":39,"236328125":25,"2364e":26,"2366e":[25,34],"23671":24,"237258":34,"237390":34,"2375e":[34,36],"2377":49,"237890625":34,"2379e":[34,36],"238":[36,42],"2380e":34,"238284":34,"238288896":39,"2383e":36,"238431":39,"239":36,"23907":48,"23910984848484848":34,"2391e":25,"239211":25,"2392578125":34,"2396160":34,"239622":34,"2396e":29,"23w":45,"24":[3,17,18,19,24,25,27,30,34,37,39,41,42,45,47,49],"240":[17,24,25,36],"24000":49,"2400000":[27,49],"24000000":27,"2400e":[24,49],"2401e":35,"240466":39,"240503":39,"24076704545454544":34,"241":36,"2412109375":25,"2413e":24,"2416":46,"2416449652777776e":34,"242":[3,25,34],"2423":43,"24265mib":45,"24267mib":30,"24268mib":[30,45],"242769":39,"243":36,"2431243":42,"2432":48,"24320000":24,"24375":36,"24388":42,"2439":49,"244":36,"24405":24,"2443e":25,"24477696":36,"244874":39,"245":36,"2450":33,"24505":24,"2451e":25,"2455078125":34,"245625":39,"24563":47,"24576":[25,39],"2458":24,"24588":24,"246":36,"246000":24,"2460e":48,"2461e":[25,34],"24625":24,"246337890625":34,"2467":36,"247":25,"2470e":49,"2473":46,"247983":25,"248":46,"248046875":34,"248078":39,"2480888171073718":34,"24832":33,"248794":33,"2489e":34,"249":[3,36],"2493":27,"24957":24,"249660":33,"249662":33,"249776":33,"2498e":24,"249945":33,"24w":45,"25":[17,20,23,24,25,27,29,31,33,34,36,40,42,43,45,49],"250":[27,30,36,37,42],"25000":[24,49],"250000":[27,30],"25001":24,"2500e":[24,27,34,48,49],"2502e":36,"2503":26,"250368":39,"2503e":24,"250538":39,"2505e":26,"2508e":34,"250m":19,"251":[17,34],"2510e":[24,27],"2511e":49,"2512":33,"2516":26,"25165824":[25,40],"2516e":24,"252":36,"2522":33,"252373":45,"25244140625":39,"2525e":47,"253":36,"2531e":24,"25326":48,"253302":39,"2533e":[24,39],"25374190938511326":35,"2539e":25,"254":[25,36,39],"2544":49,"2545e":34,"2548e":46,"255":[36,46],"2552083333333335e":25,"25544":33,"256":[24,30,34,35,36,43,46,47,48],"2560":[25,33,36,39],"25600":[34,39],"256000":24,"2560000":24,"25600000":24,"2563e":24,"256990":3,"257":[24,25,36],"2570e":27,"257647":39,"2577709j":30,"25779":48,"2577e":49,"2578":17,"257937":34,"258":27,"258170":34,"25823":24,"2583":34,"25848482572115383":34,"258655":34,"2589":29,"2591":24,"25920":24,"25929497612847224":34,"2594e":36,"2595":36,"25952256":39,"2596":48,"2598809136284722":34,"25e":39,"26":[3,17,19,24,25,34,36,42,45],"26000":[24,49],"2600e":33,"2603e":34,"260hz":43,"261":[27,43],"2610134548611112e":34,"2612e":39,"2613e":24,"2614e":39,"26160":24,"262":36,"2620e":27,"26219":48,"262275":24,"2624000":24,"2627":24,"2627e":27,"2628":49,"263":[25,46,47,49],"263243":39,"2632e":45,"2639e":42,"264134":39,"2642e":35,"264557":39,"2647e":36,"26495":47,"265":36,"2650e":42,"265100":39,"26513671875":34,"2654208":[33,36],"26553":24,"26566":24,"2656e":26,"266":[3,25,36],"2660":36,"2661628723144531":39,"26624":39,"26654":49,"266602":33,"2667e":24,"2669e":34,"26728":24,"2672e":24,"26738688":39,"267553":30,"2675e":34,"267822265625":39,"26806640625":39,"268220":39,"26829":34,"26843706766764325":39,"2687e":[45,47],"26880":33,"2688000":24,"2689e":24,"269":25,"269403":33,"2697e":47,"2698":36,"26a":19,"26db":38,"27":[2,3,17,19,24,25,34,35,36,37,39,42,43,44],"270":41,"2700e":24,"2701497395833333":34,"2701e":24,"2702e":25,"2704e":34,"2705e":34,"2706e":24,"270849609375":34,"271":36,"2712268829345703":39,"271319040":39,"2713e":33,"2715657552083333e":39,"2717":49,"272":49,"272025":39,"272511":33,"2725e":33,"2728":25,"272823":39,"273":[25,45],"2734e":[33,39],"273507":39,"273565":33,"27360":36,"2736e":24,"2737e":33,"273984":33,"27417":49,"2742e":25,"2748e":24,"274944":25,"275":17,"2750e":24,"275132":24,"27525120":39,"27531":33,"275310":34,"27543":34,"27565479767628204":34,"2757e":36,"2758370":26,"2763e":24,"27645":39,"27648":[34,39],"277":27,"277061":45,"277305":25,"2773e":[24,36],"2777":26,"27778":24,"277872":34,"2779":24,"27792":36,"2784":35,"2786e":42,"278990":39,"279":36,"279040":25,"279074":39,"2791e":39,"279730902777778e":34,"28":[2,3,17,19,23,24,25,27,33,34,35,37,39,42],"28003":25,"280064":39,"2800e":[24,27],"2802":26,"28027":33,"2802734375":25,"2805e":34,"28083":47,"2810":49,"28107":48,"2812e":[26,34,46,48],"2814":49,"2816":36,"28160":25,"281639":39,"2818048":40,"2818e":49,"28192":24,"28196":29,"2820":26,"28202":24,"2822e":27,"28233":36,"28242":33,"282469":34,"28294":33,"2832e":[29,34,48],"2833":24,"2834e":36,"2835011017628205":34,"2838e":33,"2840":16,"284333":34,"2844e":49,"2847e":35,"2849":16,"285471":34,"2854e":27,"285749":39,"2857e":27,"286":[36,45],"28606464":33,"2861e":40,"28636":24,"2865e":34,"2866e":33,"28672":34,"287":[25,36],"287202":39,"287353515625":34,"28737":36,"2873e":35,"28753920":34,"28777":24,"2878e":39,"28790":47,"287993":24,"28800000":27,"2880e":49,"28829":33,"288389":34,"28853":35,"28895":33,"2890e":25,"2892e":39,"28937":33,"2895e":25,"289820":39,"28c":30,"28d":23,"29":[23,25,30,33,34,36,42,43],"290":35,"2900":26,"29000":24,"2900114059448242e":25,"290063":39,"290097":39,"2900e":[25,27],"29014":24,"2901e":39,"29097984":39,"291":3,"2910e":39,"291203":30,"2914e":30,"2919e":36,"292209201388889e":34,"29248792860243056":34,"292515":39,"29261":26,"2927":24,"29272":24,"293":3,"2930":24,"2930e":[33,42],"293242":39,"2932e":33,"2933891":26,"2935e":27,"29360128":25,"2936e":33,"293844":39,"294":24,"29400000":27,"2942e":36,"2947":27,"294912":36,"2949120":[33,34],"29491200":36,"295":27,"2950e":49,"2953":24,"295455":39,"29563":39,"29584":33,"2959":39,"296":34,"2960069444444444":34,"2960662841796875":39,"296091":39,"2963e":48,"2964e":26,"296647":30,"2967e":49,"29680":42,"29695":33,"29696":34,"2969e":[35,36],"297":3,"2970e":[24,40],"29719797770182294":39,"29741":34,"29768":24,"2978e":[39,47],"2979132334391276":39,"298":33,"298073":30,"2988":36,"2988e":39,"298907":39,"29894":33,"2989e":39,"299":24,"29900":46,"299052":39,"2990e":40,"2997":34,"29it":29,"2_":[3,16],"2_0":16,"2_i":18,"2_k":16,"2d":[13,29,35,42,48],"2e":[35,42,46,48],"2e6":[19,44],"2f":[24,25,30,34,42],"2g":5,"2hf_c":2,"2hf_cw":2,"2i":15,"2j":23,"2k":16,"2m":16,"2n":23,"2nd":19,"2t":37,"2w":23,"2x":23,"2x2":[3,23,25],"2z_0":23,"3":[2,3,5,6,8,9,10,11,12,13,14,15,16,18,19,20,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,52,55],"30":[3,17,19,20,23,25,33,34,39,41,42,43,44,45],"300":[3,24,41,44],"3000":[24,26,27,49],"30000":[24,35,45,46],"3000000":27,"30000000":27,"300000000":27,"3000e":[24,27],"30012":35,"30026":24,"3002915":26,"3004e":39,"300799":45,"3008e":34,"30097":36,"300e":[3,34],"300n":3,"301":3,"3017e":26,"3019e":24,"302":[3,36],"30208":39,"3021e":46,"303":36,"3030":36,"303240":25,"304":46,"3040":42,"3040e":36,"30456":36,"30458":24,"30479":48,"3047e":26,"305395":39,"3053e":34,"3054520":[35,48],"30565":45,"30589":27,"306":46,"3061":24,"3061e":25,"306236":30,"3062e":34,"3063e":24,"3065":24,"3066":17,"306640625":34,"30670848":39,"30676472981770836":34,"3067e":42,"3069e":25,"307":3,"3071":49,"3072":[25,30,33,34,36,39],"30720":34,"307200":46,"30720000":45,"3073":14,"307449":39,"30747767857142855":39,"307494912":39,"307761":39,"307901":39,"308":17,"3080e":24,"308281344":39,"30855":47,"30883":47,"3093e":25,"309443":39,"3094e":34,"3095527":19,"3096576":36,"30965760":33,"309751":33,"3097956730769231":34,"3097e":36,"30993":36,"30e3":[18,25,30,33,35,36,39,42,43,47,48],"30e9":[41,44],"30khz":43,"30n":3,"30th":51,"31":[17,19,23,25,34,42],"31000":[24,27],"3100e":[24,27],"310120":34,"3101364":[35,46,48],"3101e":[33,36],"310272":39,"3104":24,"3105e":33,"3107e":36,"3108":24,"310801":39,"310886400":30,"311505":39,"311521":39,"312":[27,42],"312037":33,"31223":33,"312285":39,"312320":39,"3125e":24,"312623":39,"3127e":39,"312820":39,"3128e":27,"3130":40,"313232":39,"313263":34,"3136e":42,"3139":49,"313944":39,"314046":33,"3142e":26,"3143e":33,"3145728":39,"3145e":34,"31488000":24,"315":34,"3150":29,"315000":49,"315114":39,"315191":39,"315385":39,"3153e":34,"31579":34,"315993":33,"316":[3,45,46,48],"31600":[33,35],"316219":39,"3162278":32,"3162278j":32,"3162e":39,"3166e":34,"3167e":24,"317":36,"3170e":36,"31742":34,"3175e":27,"317651":33,"318254":39,"3184e":[34,39],"318566":39,"319":36,"3190":46,"3190e":[33,39],"3194880":34,"31954":36,"31983":36,"3199e":25,"32":[3,11,17,20,23,24,25,30,31,34,38,39,40,41,42,43,44],"320":[17,29,41,42,43,44],"3200":46,"32000":49,"320000":24,"3200000":24,"32007":36,"3200e":[27,49],"3203e":[34,36,39],"3207e":34,"321":[24,25],"3212e":27,"3213e":48,"3218e":34,"32215":36,"3223":17,"3226e":33,"32344":24,"32348160":42,"323995":24,"324":[14,24,27],"3240":36,"324000":24,"324099":45,"3241e":36,"3242e":36,"3244032":36,"32440320":34,"32501":48,"3252e":36,"3255e":42,"3262":17,"3262e":39,"326507":34,"3266e":24,"3268608":48,"326920":39,"32714":33,"3274e":36,"32768":[33,34],"327680":40,"3281":17,"3281e":24,"32823":24,"328462":39,"3287e":[27,49],"3291":46,"3291e":34,"3293":24,"3293e":27,"329507":39,"32969":47,"329960":39,"33":[19,23,24,25,34,39,41,42,44,45],"33000":[24,27],"3300e":[24,27,49],"3301":17,"33024":36,"33030":33,"33030144":39,"3303e":25,"330547":39,"3305e":48,"330990":39,"331083":39,"3310e":36,"331412":39,"33146880":42,"33177600":34,"33187":26,"332":49,"3320":17,"3320e":[24,25],"3321e":39,"3328":36,"33280":39,"3328000":24,"333":[24,36],"3331":34,"3333e":[39,46],"333508":39,"3339":40,"33394":24,"3341e":30,"33449":36,"3350":47,"33509":29,"3352":24,"335327":39,"3353600":30,"3354":14,"33546240":42,"33554432":25,"335544320":40,"3356e":24,"33582":47,"336":36,"3364":14,"3366e":34,"3372e":[27,36],"3377":24,"3378e":34,"3379e":[34,36],"338":[27,36],"33809":36,"3383":36,"3385e":36,"33873":24,"3387e":39,"339":36,"3390":35,"339141":39,"33914880":34,"3394":19,"3395e":33,"3397":48,"33c":45,"34":[23,24,25,34,42,45],"340":[17,34,48],"34000":24,"3400e":[24,27],"340262":39,"34072":36,"34091":34,"341":[24,49],"3411e":25,"3413":36,"342106103897095":38,"34255":48,"34256":26,"3427e":39,"342848557692308e":34,"34298":36,"3429e":36,"3431e":36,"3433":35,"3433e":49,"34375e":35,"3437e":[24,29,35],"3438e":[24,25,36],"344":33,"34480":42,"3448e":36,"3450e":24,"3456":46,"346":49,"3460e":49,"346477":45,"34652160":34,"34682":36,"3470052083333333":34,"3470e":36,"3473e":24,"34753":33,"34755":35,"3477e":[33,39],"34818":33,"349":45,"34931":24,"3498e":34,"35":[23,24,25,34,42,45],"350":43,"35000":27,"3500000":24,"3500e":24,"350208":[29,48],"3503e":39,"35082":33,"3509e":36,"350hz":43,"350w":[30,45],"351106":39,"351316":45,"3515":19,"3516e":34,"352":36,"3520e":36,"352387":39,"3524e":39,"352682":39,"3528e":45,"352900":39,"352915":25,"3529e":[24,33],"3530e":34,"35314":36,"35328":39,"3535e":39,"3537068684895833":34,"353711":33,"3538944":[33,36],"354":[24,35],"3543e":25,"354491":33,"354712":39,"35491":36,"3550e":[27,45],"35543040":42,"355662":33,"355731":33,"356":42,"3562e":25,"356352":35,"3570e":42,"3572":36,"3575e":34,"35812":47,"3584":[25,30,36,39,48],"35840":39,"358464":39,"3586e":24,"3588e":24,"35911":33,"3592e":35,"35940":48,"35942400":34,"3594e":[34,46],"36":[8,13,23,24,25,30,33,34,36,39,42,45],"360":3,"3600":[25,30,34],"360059":39,"360064":33,"3600e":36,"36018":36,"36096":36,"3611":36,"36110":27,"3611e":36,"361239":39,"3612e":24,"361558675766":34,"3616":34,"36183":36,"3620e":25,"362117":34,"362196180555556e":34,"3623e":25,"363":3,"36337":36,"3633e":[25,34],"364":45,"36433":24,"3643484115600584e":25,"3643e":25,"3644e":35,"3645833333333333":39,"3645e":[24,36],"36463":24,"3652":49,"36560":35,"3660e":34,"3667":3,"3671875e":39,"3672e":[25,39],"3673e":27,"36741120":34,"367634":39,"3676e":39,"3679":3,"368":[24,45,46,47,48],"3680":42,"3680e":25,"3682":49,"368467":39,"36864":39,"3686400":[30,34],"36918":24,"3697e":35,"3698e":39,"37":[3,16,19,24,25,26,34,36,42,49],"370":27,"3700e":27,"3701e":34,"3702":36,"37073863636363635":34,"3708e":34,"370n":43,"371":25,"3711e":33,"3712":35,"3712000":24,"37181":36,"371853298611111e":34,"372":[43,49],"37223714192708335":34,"3723e":29,"3725":36,"373596":25,"3735e":34,"37369":35,"37376":39,"3739e":25,"3745":49,"374645169220823e":25,"3746e":25,"3747":24,"375":[19,34,36],"3750e":[26,34,36,47],"37511":33,"3756510416666667":34,"37576":27,"3757e":24,"375e":35,"376":[23,49],"3761e":27,"37659":48,"3766e":39,"3767e":40,"3770":17,"377212":39,"37748736":[25,33,39],"37763":49,"3777e":24,"3779e":34,"378":17,"378000":49,"3781e":39,"37826":24,"3783e":39,"378535":39,"37877":27,"3789":35,"3789e":[26,46],"379":17,"37944":36,"3795e":24,"38":[0,7,9,11,12,15,17,19,21,23,24,25,27,33,34,35,36,39,40,42,45,47,48],"3800":24,"380000":24,"3800e":[24,27],"38013":36,"3803759":30,"3804":24,"38043648":36,"3804e":33,"3807e":[24,34],"381":36,"3810e":[24,48],"38158":47,"3815e":34,"38204":27,"38211":15,"3823e":27,"38243":24,"38248":35,"3824e":34,"3825":24,"3825e":42,"3828e":33,"383":49,"38306":36,"3831e":34,"3833856":36,"3833e":[25,49],"3834635416666667":39,"3839":34,"38392":24,"384":[46,48,49],"3840":[36,42],"38400":36,"384000":24,"3840000":[24,46],"3843000":49,"38454":49,"384565248":39,"38541":24,"3854e":34,"3855":24,"3857e":27,"3859e":45,"38609":24,"38645":40,"3867e":39,"3868e":39,"3871e":34,"3873e":24,"3874e":24,"38771":48,"3878":49,"38786":34,"38800":42,"3881e":36,"3885362413194444":34,"38858":36,"389":[33,42],"38912":39,"3896":35,"38_seri":15,"39":[3,19,23,24,28,30,34,35,41,42,43],"3900e":49,"390294":34,"390625":34,"3907e":39,"3911e":27,"3913e":39,"3914e":24,"39152":27,"39173":36,"3921e":34,"3925":[35,48],"392578125":39,"392623":27,"3930e":48,"3932160":39,"39321600":39,"3936e":36,"3940":[35,48],"39424":39,"394240":39,"394421":40,"3949e":36,"395":34,"3953":24,"3954e":24,"39588":45,"3961":36,"3968000":24,"3968e":29,"3969000":49,"3969e":27,"3972e":34,"3975e":34,"39788":33,"3979e":39,"3981e":40,"3982e":27,"3984e":[27,39],"3987223307291666e":39,"3987e":25,"399":33,"3992e":42,"39936":34,"3993600":34,"39937":36,"3993e":39,"399413":39,"3996e":36,"3d":[19,23,42,43,44,53],"3db":25,"3e":[3,37],"3f":[24,30,45,49,50],"3gpp":[0,7,8,9,11,12,13,15,17,19,21,24,25,27,30,33,34,35,36,39,42,45,46,47,48,51,53],"3gpp38211":17,"3gpp38212":17,"3gppts36212_i":8,"3gppts36212_turbo":13,"3gppts38211":15,"3gppts38211_scr":12,"3gppts38212":11,"3gppts38212_crc":7,"3gppts38212_ldpc":9,"3k":13,"3r":13,"3rd":3,"3u":3,"4":[2,3,6,9,10,11,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,52,55],"40":[17,19,24,25,27,31,33,34,39,45],"400":[24,29,41,42,49],"4000":[24,27,38],"40000":[24,27,42],"400000":49,"4000000":24,"40000000":49,"400000000":24,"4000e":[24,27,49],"4002":24,"4005e":27,"4007e":39,"4008":46,"4008e":36,"400m":42,"4010e":26,"401178":39,"4011e":[34,39],"4012e":39,"40135":47,"401371":34,"4017e":34,"402":24,"4023e":36,"402460":42,"4026e":24,"4028e":30,"40305":48,"40343":35,"4035":36,"404":34,"4040":[34,39],"40416":24,"4045":24,"4051":47,"4052e":42,"4057e":[36,47],"4059e":42,"406":34,"40625":39,"4063":17,"4066e":34,"4071e":46,"4072516025641026e":34,"40773":36,"4077e":48,"4079e":49,"408":24,"4088e":24,"40894464":39,"4089e":39,"4096":[25,33,34,39,40],"40970":30,"41":[3,10,17,19,24,25],"410":[34,49],"41000":24,"4100e":[24,27],"4101e":42,"41110":24,"4113e":46,"4114e":40,"4118e":27,"4119":36,"41193":45,"4121e":25,"4123e":27,"4126e":40,"41287680":34,"4128e":24,"413":[39,42],"41312575j":30,"4131e":34,"4132e":39,"4136":46,"41376":24,"414":42,"4141e":[25,34,36],"4142795138888887e":34,"4142e":35,"4144e":29,"4147200":46,"41472000":24,"4148e":36,"414940":39,"414991":39,"415":34,"415090":42,"4150e":24,"4157e":30,"41582592":36,"415988":45,"4164":24,"4165e":34,"4167":40,"4167e":26,"417":[29,43],"4171e":24,"41794":36,"41799":48,"4181":49,"41819661458333335":34,"4181e":36,"41822":36,"4193e":46,"4194304":25,"4194304000":25,"4198e":27,"42":[19,34,36,46,48],"4200000":27,"420009":39,"4200e":[24,42],"4209e":34,"421":[46,47],"42128":35,"4213":24,"421407063802083e":39,"421458":40,"4217":36,"4219e":[34,35,36],"422":46,"42223":35,"4224000":24,"42253":47,"423":[2,40],"42309":33,"423624704":25,"4245e":[27,42],"42467328":39,"4246e":33,"4247":23,"425335":45,"4256":23,"425811":39,"4258e":33,"426":39,"4263":24,"4264e":24,"4272":24,"4273":36,"42741012573242":38,"4277e":34,"4282e":40,"4286e":27,"429":45,"4292819552951389":34,"4296e":[33,34,36],"4297":24,"429878":34,"43":[3,19,25,27,30,42,46],"43008":39,"4300e":39,"430178304":39,"4303e":48,"4304e":45,"4305e":34,"43069":48,"4307e":36,"430909":39,"4312e":49,"43130880":34,"4318e":26,"432":49,"4320e":27,"43273":24,"4328e":[34,39],"4334147401800328e":34,"433850":25,"43387":35,"434":17,"4343e":33,"4348958333333333":34,"43499520":34,"435":25,"4351e":[35,42],"43520":39,"4352000":24,"4362":35,"4365e":49,"4375e":[34,36,46],"43777":36,"438":17,"4381e":47,"4387e":24,"439008":30,"43913898992976e":25,"4391e":25,"4398e":24,"4399":25,"44":[19,27,42],"4400e":[24,49],"44044":36,"4408e":49,"441":27,"44146":47,"4414e":[33,36],"4416e":34,"442368":36,"4423680":[34,36],"44236800":[34,36],"44256":36,"4428e":36,"4429e":25,"443":25,"443911":24,"444":29,"445":46,"4453e":[33,36,39,46],"44545":36,"447":[11,24],"4470e":47,"44721":36,"4477e":24,"4480e":36,"4481e":35,"4482e":[36,39],"449":[11,17,24],"4492e":[34,36],"44it":29,"45":[3,14,19,27,41,42,44,45,49],"450":[19,24,29],"4500e":[24,49],"45056":[34,36],"4505e":36,"4506":44,"4512e":34,"45158":35,"4516e":26,"4524e":[39,49],"4527e":48,"4531e":[36,48],"4533":24,"45340":47,"4535":34,"4536000":49,"454427083333334e":34,"4550e":24,"455168":39,"45607":24,"4560e":24,"4565e":33,"4567e":24,"45711":35,"4574e":34,"4575e":24,"4580e":24,"45824":36,"4583e":26,"459000":24,"4590e":39,"45916":36,"4598e":42,"45deg":44,"46":[6,16,20,24,33,39],"460":[24,27],"46001":42,"4600e":27,"4608":[25,39],"46080":[34,39],"460800":46,"46080000":26,"4609e":[36,39],"4611e":36,"46130":27,"46137344":25,"4615e":33,"4621e":27,"46267":36,"46314":35,"4631e":34,"4635e":[36,46],"46370":36,"46399488":39,"4640e":26,"46436":42,"464636":45,"4648e":34,"4652e":24,"46598":36,"466":17,"466249":39,"4662e":47,"4667":49,"4667e":[27,49],"4668e":42,"4671e":34,"4676e":39,"46788":47,"4678e":36,"4687e":45,"4688e":[26,35],"469":24,"4690":3,"46988":36,"47":[3,11,24,33,45],"470":[30,45],"4700e":24,"470184":39,"4701e":34,"4703e":39,"4705":3,"470643":42,"4706e":42,"4707e":39,"4709e":27,"471":[25,34],"4710":24,"47104":34,"4712e":33,"471791":39,"4718592":[33,39],"4735e":27,"4736":40,"474":[24,45,46,47,48],"4740":27,"4740e":24,"47498":27,"4749e":27,"4751e":34,"4760e":24,"4763e":30,"476577792":39,"4766":17,"4766e":36,"4767":34,"47706":36,"4774":24,"4774e":36,"4783e":45,"478515625":34,"4788411458333333":34,"4789e":34,"4792320":34,"47923200":34,"4792e":[27,34,46],"4793e":42,"4795":24,"4796e":34,"48":[17,19,24,25,27,42,45],"480":[17,24,41,42,43,44],"48000":27,"48000000":24,"4800e":27,"48025":47,"4803e":39,"4805e":34,"48069":33,"48079":33,"480khz":17,"481":6,"4811197916666667e":34,"48128":34,"4814":49,"48146":34,"4816e":33,"482301":45,"4823e":27,"4826e":39,"4828e":48,"4833e":24,"4834":24,"4836":42,"4842e":24,"4844e":[35,36],"4845e":36,"4852e":48,"4853e":34,"4855e":34,"4864e":49,"4878":36,"48878":47,"48936":24,"4896000":26,"49":[14,24,27],"490":17,"49000":27,"4900e":24,"4902":17,"4903e":33,"4907e":[34,40],"4912e":[33,36],"49152":[39,40],"4918e":47,"4922e":48,"4924e":45,"4926":24,"4932e":33,"49342":49,"49368":35,"4940897623697916e":39,"4941e":24,"495":24,"4950e":49,"4954e":33,"496":49,"49609375":39,"4961e":25,"4962e":42,"4964192708333333":34,"4965e":49,"4967e":24,"4968e":39,"4970":49,"49703":26,"49720":36,"49731":36,"49775":45,"498":[25,33],"4980e":24,"4982e":34,"4984e":36,"49867":33,"49880":49,"4988e":34,"49966":24,"4c":[30,45],"4f":[26,35,42,49],"4g":[11,18,24,34,47],"4prb":25,"4t":20,"4th":2,"4x4":3,"4x8":39,"5":[1,3,6,7,9,10,11,13,14,15,16,18,19,20,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],"50":[14,17,19,24,27,29,37,41,43,44,53],"500":[19,24,27,30,31,37,42,45,50],"5000":[24,27,42,49],"50000":[24,27],"500000":[24,27],"50000000":24,"5000e":[24,27,36,39,42,49],"5003e":39,"5006e":25,"501":24,"5014e":36,"5016e":36,"50171":47,"501953125":25,"502":[19,24],"5023":24,"503":24,"5034e":34,"5039e":36,"504":24,"5046e":39,"5049e":34,"505":[24,30],"50564":33,"5059e":24,"506":24,"50600":30,"5065e":34,"5071":24,"5074":34,"507546":45,"50796":39,"508":30,"5082e":36,"5083e":34,"509":25,"5094e":27,"5098e":36,"509e":17,"50ghz":42,"51":[14,24,29,30,33,34],"510":24,"5102e":27,"51046":36,"5104e":46,"5108":36,"5109e":42,"511":24,"51118080":39,"51127":34,"5115":36,"5117e":[33,36],"512":[19,24,25,30,31,35,36,40,42,43,45,46],"5120":34,"51200":36,"512000":[24,25,39],"51200000":24,"5120e":34,"5125":24,"5126e":34,"5132e":33,"513671875":25,"5147e":42,"515":[24,35],"515098":42,"5152e":39,"515625e":39,"5156e":[36,39],"5157":42,"51586":36,"515899392":25,"5159e":39,"5160e":39,"51632":40,"5164e":[24,33,36],"5166e":40,"5167104":35,"517":[17,49],"51712":25,"5171e":39,"5174e":34,"5180e":27,"5185546875":39,"51904512":36,"519446":34,"5195":48,"5195e":[35,39],"5198e":33,"51c":45,"52":[14,19,23,27,36,39,41,44],"520":11,"5200e":[24,27,49],"5205e":34,"5207mib":30,"5214e":24,"5215e":27,"5217e":34,"52193":34,"5225":24,"5227e":[24,34],"5228e":46,"5234":17,"5234e":46,"5238e":27,"524":30,"5248000":24,"525":[24,49],"5250e":24,"525390625":25,"5253e":27,"526":[17,23,46,47],"5260e":24,"526141826923077e":34,"5269e":24,"527":24,"52701":39,"5274e":36,"5276e":24,"5277e":25,"52789248":36,"5278e":30,"528":[24,27,35],"5280000":26,"5286e":36,"52875":35,"5290":24,"5292e":39,"5297e":39,"5298629981884056e":34,"52992000":26,"53":[3,24,36,38,39,43],"530":24,"53000":24,"5300e":24,"531":27,"5313e":24,"531422":45,"5314e":40,"5316e":48,"53173828125":39,"5320":40,"5322265625":34,"5325e":25,"532773":25,"533":[24,34],"533203125":25,"5338e":24,"5345e":[34,35],"5346e":34,"5350e":42,"5352e":34,"53582":34,"536":[35,48],"5364e":34,"5365e":[36,39],"5367080479452054":35,"5368":42,"5370e":24,"5373":24,"5373e":24,"5376":36,"5376000":24,"53821440":34,"5385e":24,"5386e":27,"5387e":27,"5390625e":39,"5390e":24,"539113362630208e":39,"53913600":42,"539174":45,"5391e":[24,39],"53mib":45,"54":25,"5400000":27,"5400390625":25,"5400e":27,"54013":36,"5405e":35,"540727":30,"54107":25,"54108":36,"5412":45,"5415e":39,"54171":24,"5417e":49,"542":33,"54212":34,"54216":24,"5424e":24,"54263808":39,"5428e":36,"5430e":34,"5436808268229167e":39,"5437e":27,"5439":24,"5441e":24,"544473":24,"5447e":24,"5449e":[33,34],"545":45,"54525952":25,"546":24,"5462":24,"547":24,"5471e":33,"5472e":26,"5474":24,"548":11,"5489":26,"549":49,"54922":36,"5495e":36,"5498e":40,"55":[3,23,25,44],"55000":24,"5500e":[24,49],"5503":26,"5505024":39,"55050240":39,"5505e":36,"5508e":[33,39],"5518e":25,"552":49,"55296":[34,39],"5529e":34,"552e":17,"553":[17,25],"5530e":36,"5538e":36,"5539e":36,"5540e":35,"5547":17,"55478":35,"5547e":[24,36],"5550e":24,"55517578125":39,"5551e":47,"55536":33,"55542":27,"5555":34,"5556e":27,"55583185":30,"556":34,"5564":17,"5565e":25,"5566e":34,"5569e":25,"55703":36,"55742":26,"5578e":35,"558":34,"55808":39,"5582e":39,"5584e":36,"5593e":[33,42],"55e12":[2,37],"56":[9,24,36],"560":49,"5606e":39,"56089":[25,33],"5614e":24,"5619e":39,"5622e":34,"5625e":[24,26,29,35,36,39,46,48],"5626e":36,"56279":36,"563":26,"5630e":24,"5632":25,"56365":24,"5638":49,"5646e":24,"5651e":29,"56547":27,"5655e":35,"566":24,"56623104":39,"5664":17,"5667e":27,"567":17,"567000":49,"5675e":24,"5676e":48,"5677e":27,"56783":36,"5684356689453124e":39,"568628":42,"5687e":34,"5691":49,"5692e":25,"5693":24,"5697":[24,48],"57":[27,36],"5700e":[24,27],"57026":36,"5703":17,"5703125":34,"5703e":36,"5707e":27,"5708":24,"5708e":24,"571":[24,45],"5712e":27,"571312":45,"5714e":27,"5716":49,"571845":45,"5718e":36,"572":30,"572892":24,"5729e":46,"57344":34,"574":39,"57409536":39,"57424":27,"5746e":49,"575":26,"57507840":34,"5750e":49,"5751e":25,"5757e":36,"576":27,"577":45,"5775e":36,"5778e":49,"5781e":[24,46],"578531901041666e":39,"579":[45,46,48],"5792e":47,"57939":36,"5796e":42,"58":[19,24,27,34],"5800e":27,"5806e":48,"5808e":27,"5816":40,"5816e":34,"5818e":40,"5820e":39,"5825e":45,"5832e":39,"58368":39,"583680":29,"5837e":36,"5839":24,"584":33,"5849e":39,"5855e":36,"5856e":33,"58572":35,"58578":36,"5859e":36,"586":34,"5862e":34,"58705920":42,"58720256":25,"58752000":24,"5878e":30,"588":24,"5888":[33,36],"5889e":49,"5895e":33,"589824":36,"5898240":34,"58982400":[34,36],"5898e":33,"59":[3,23,36,41],"590":46,"59000":24,"5900e":24,"5908e":34,"5909e":48,"5916e":[34,48],"59199":36,"5922e":24,"5930e":[24,39],"59344482421875e":39,"59375e":34,"5937e":36,"5938e":[24,26,29,48],"59392":39,"5939e":25,"594":30,"5944":39,"59455":49,"5947e":24,"59489":27,"5948e":45,"5951e":33,"595591168":25,"596":24,"5960e":24,"59619140625":39,"5961e":25,"5962e":36,"596547444661459e":39,"5971e":39,"59768832":39,"59858":49,"599":25,"5992e":27,"5993e":35,"5996e":34,"5999994":43,"5db":39,"5e6":24,"5e9":[3,19,25,30,33,35,36,39,42,44],"5f":42,"5g":[5,7,8,9,11,12,14,15,18,21,26,27,30,33,34,35,36,39,42,45,46,47,48,51,53,55],"5j":25,"5m":[3,19,43],"6":[2,3,11,12,13,14,15,17,18,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53],"60":[3,17,19,24,25,27,29],"600":[19,24,27,30],"6000":[24,34,49],"60000":24,"600000":27,"6000000":27,"6000e":[27,30,49],"60089":26,"6016":17,"6016e":[36,42],"602":17,"6020":24,"6023":27,"6030e":34,"6031e":39,"6036e":39,"60416":[34,39],"6042e":36,"6043e":24,"6049":36,"6050e":34,"6051e":42,"6053e":39,"60555264":39,"605552640":39,"6056e":33,"606070":40,"6063e":34,"606758":19,"6068e":40,"608":[24,49],"6082e":33,"60833":35,"6088":40,"60928":39,"6094":17,"6094e":[29,46,47],"6099e":34,"60e3":29,"61":3,"610":24,"61000":49,"6100e":[27,46],"61016":24,"6109e":[34,48],"611":29,"6110e":34,"61135":27,"6115e":[25,34,45],"612":49,"6125e":42,"6133e":39,"6134e":24,"6135e":49,"61390":33,"614":24,"6144":[8,30,31,34,36,39],"61440":[26,34],"614400":46,"6146e":[27,46],"6147e":34,"615":49,"6150e":24,"6152e":33,"61554":27,"6156":[5,31],"61586":45,"616":[3,17],"6160e":34,"6161e":34,"6162e":24,"6165e":39,"6168e":27,"6174e":36,"6175":27,"6177e":24,"6187":27,"6187e":24,"6191e":34,"6192e":34,"6193152":36,"6194e":35,"6195e":47,"61j":45,"62":[16,23,27,33,41,45],"6200e":24,"6205e":24,"6208e":24,"621":27,"6211e":[24,36],"6213e":[26,34],"62155":36,"6221e":34,"6225e":27,"623":45,"6232":24,"6233e":[24,27],"62353515625":39,"6236e":33,"6239e":34,"624":49,"624131441116333":38,"6249e":34,"6250e":[24,35,46],"6257e":39,"6258e":33,"6263e":33,"6267e":48,"6268":40,"62699520":42,"627":[24,49],"6276e":[35,36],"6278e":39,"628":27,"6291456":39,"6292e":26,"62937":34,"6294e":33,"62976":25,"6298e":42,"63":[14,19,27,39,49],"63000":49,"6300000":49,"6300e":27,"6302e":36,"6306e":34,"631049":27,"6315e":33,"63161":36,"6316e":27,"63171":36,"632":[45,46,47,48],"63203":36,"6323e":25,"6327e":45,"6328":24,"6331e":33,"63324":35,"6333e":27,"634":3,"6340608":36,"6341e":[27,34],"6342e":36,"6343e":34,"6350e":39,"6359e":[24,39],"636":45,"6362e":39,"6365e":49,"6367e":46,"637":27,"6370e":39,"6371e":33,"63753":27,"63783":27,"638":24,"6383e":39,"6389e":34,"639":29,"63902":27,"63j":45,"64":[17,18,24,25,26,27,28,29,30,33,34,35,36,42,45,46],"640":[17,46],"6400":29,"64000":24,"640000":24,"6400000":24,"64000000":24,"6400e":49,"6406e":[24,48],"6409e":27,"641":24,"6413e":49,"6414e":42,"6419e":24,"6426e":27,"6427e":36,"6431e":47,"644":49,"6440e":35,"645":42,"6451e":27,"6452e":33,"6455e":[34,47],"6458":24,"6463e":24,"6469e":34,"6471e":36,"6476":24,"648":[14,27],"6480":42,"6484375":34,"6486e":34,"649":34,"6491e":33,"65":[3,31,45],"650":42,"6501e":39,"6506e":27,"650858":25,"65180":35,"65196":39,"6520e":[46,48],"6523e":25,"6527e":34,"6528":26,"6528e":33,"653":49,"6531e":24,"65335":[12,17],"6535e":33,"6536e":25,"654":33,"6541e":33,"6544234752655":34,"6544e":39,"6545e":24,"6546e":33,"655":[3,19],"6550":24,"65535":17,"655360":40,"6555":[24,35],"6555e":36,"6556e":36,"65617920":34,"6562e":36,"65631":34,"65678275":19,"6568e":49,"657":40,"6571e":33,"6572265625":34,"6579":24,"6579e":39,"658":[17,19,24],"6580e":27,"6582e":35,"65869140625":34,"6593e":46,"6594e":[34,36],"6595e":27,"6596e":[33,39],"65c":30,"66":[3,19,42],"6600e":[24,49],"6602e":[34,36,46],"6603e":49,"66048":39,"6605e":24,"66060288":39,"661":39,"662":37,"6622e":33,"66273":49,"6635520":34,"6635e":49,"66396":34,"664":49,"6640":42,"6641e":[24,34,36],"66421":36,"6655e":24,"6656":[25,39],"66560":[34,39],"6657e":33,"666":17,"6660e":[34,49],"66640":49,"6667e":27,"6669e":39,"667":36,"6680e":36,"66846720":39,"6686e":45,"6689e":39,"669":24,"6691e":24,"6694e":36,"67":[2,31,33,34,37],"670":[14,27],"6703e":39,"670690":40,"6708":40,"6708e":36,"6710e":[27,36,40],"6715e":27,"6719e":[24,36,48],"6720":42,"6721e":36,"672475961538461e":34,"6724e":24,"673":49,"6732e":36,"6734e":39,"6736e":39,"675":39,"6750e":27,"67512":36,"67584":39,"676":24,"6762e":33,"676435470581055e":25,"6764e":25,"676615":30,"677454630533854e":39,"67756":35,"6776e":27,"6777e":34,"6778e":34,"678":[14,27],"6782976":[33,36],"6784000":24,"6786e":24,"6787e":33,"67891200":34,"679":[17,34],"67936":24,"68":[26,42],"6800e":24,"6802e":40,"6817e":34,"682":[17,19],"682281494140625e":39,"6824e":39,"6829e":27,"683":49,"683176676432292e":39,"6833":36,"6837e":35,"6839e":34,"684":[46,47],"6844e":35,"685":35,"6851e":42,"6852e":34,"6855e":39,"6856e":34,"686":34,"6863e":36,"686740451388889e":34,"687378":30,"6875e":[25,35,46],"688":46,"68832":43,"6883602142333983e":25,"6883e":27,"6884e":25,"68859":24,"6894e":48,"6898":24,"69":[25,27,39],"6900":26,"6900e":24,"6901e":27,"690425":49,"6909e":33,"691":49,"69120":39,"6914e":24,"6916e":24,"6918e":45,"6920e":[25,36],"6927083333333335e":25,"6927e":[36,46],"6928e":[33,36],"692947":49,"6929e":39,"693000":49,"69368":24,"6936e":33,"6946":24,"695":42,"6950e":42,"6953":17,"6954e":36,"6956":24,"695638020833333e":34,"696":[36,49],"6964e":34,"69659":35,"6971e":42,"6973e":[30,34],"6974":24,"69788":33,"698":3,"698124":42,"69865":24,"6987e":34,"6989e":24,"699":49,"6990e":27,"699138048":39,"6992e":34,"69j":45,"6e":31,"6e9":[34,47,48],"6g":[51,53],"7":[2,3,9,12,14,15,16,17,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],"70":[3,33,34],"7000":[24,26,27],"7000e":[24,27],"7006":36,"7006e":39,"7007":42,"701":[27,37],"7013e":39,"7019e":[34,40],"7020e":25,"703":49,"7031e":24,"7034e":36,"703924":49,"7039e":36,"704":49,"7040":26,"7040000":24,"704675":49,"705":34,"7050e":49,"705274":49,"7057e":[36,39],"706":24,"7060e":42,"7064":39,"70656":26,"7066e":42,"706761":49,"707":27,"7070e":34,"7071":19,"7072e":39,"707712":49,"7077888":39,"70778880":39,"7078e":26,"7079e":39,"7080e":40,"7083e":[36,46],"708751":49,"708984375":34,"709":24,"7090":24,"70918":36,"7091e":24,"71":[19,24,27,45],"7100e":24,"7103e":39,"7104000":26,"7106e":48,"71086080":42,"7109e":25,"711":[17,27],"7114e":39,"711995":49,"712":49,"7120":42,"7120e":46,"71223":34,"71240234375":34,"712704":35,"7127e":39,"71302":27,"71303168":25,"7133e":27,"714":[45,49],"71487":36,"7150e":45,"71533203125":34,"7154e":45,"7156e":39,"7158e":40,"7161e":35,"71630859375":34,"7167e":36,"7168":[25,39],"7168e":34,"7169e":33,"717423":49,"7174e":39,"7175e":[42,49],"7188e":[34,36],"719":17,"719159":49,"719171":42,"7193e":34,"7195e":24,"7199e":47,"71j":45,"72":[30,34],"720":[3,24,33],"72000":49,"7200e":24,"72041":36,"721420288":40,"7217e":46,"722":36,"7227e":34,"7232":35,"7235e":39,"72376":46,"7239":36,"7239e":36,"724":49,"7242e":24,"724549":49,"724609375":25,"7246e":36,"7248e":36,"725":19,"7250e":42,"72525":46,"7257e":46,"72586":46,"7263e":36,"72658":46,"7266e":[24,25,33,36,46],"72676":46,"72682":46,"72704":25,"72721":46,"7273e":27,"72771":46,"72773":46,"72783":46,"7278e":34,"728":[24,25],"7280":24,"728023":49,"728399":49,"72899":46,"729":27,"72913":46,"729707":49,"7298":47,"72999":46,"72j":45,"73":[19,23,25,27,42],"730":33,"7300e":24,"73027":46,"7303e":46,"7305":17,"73135":46,"7315e":46,"7319e":46,"732":[24,49],"7320508075688772":25,"7320e":36,"73216":39,"73242":46,"7325e":33,"73268":46,"7329e":34,"733":[24,27],"7330e":24,"73329":46,"7334e":34,"73405":36,"7341e":34,"7343e":24,"7344e":[36,46],"7351e":47,"73521":46,"7354368":47,"7354e":36,"73585":46,"7358e":34,"73643":24,"7364e":36,"737":[45,46,48],"7370e":36,"737280":[34,36],"7372800":30,"73728000":34,"7374e":34,"7375e":42,"7377e":46,"7378e":46,"7383e":36,"7385e":46,"739":48,"739189e":42,"7395e":34,"7396e":[24,39],"739966":49,"74":[3,24],"7400e":[24,27],"7401e":30,"7402":17,"7413":24,"741312":49,"74280960":34,"7431e":24,"743640":49,"743661":49,"74400":33,"7442e":39,"7444":34,"745":24,"745474":49,"74550":34,"7460e":46,"7464e":39,"7465e":27,"7466e":36,"7469e":46,"7474e":[36,46],"74752":34,"74755859375":34,"7478e":35,"74796":36,"7481":24,"74907":26,"7497e":[27,34],"75":[3,24,27,40,42,43,49],"750":37,"750000":24,"7500001":43,"7500e":[24,26,27,48],"7505952380952381":35,"7507e":34,"7510e":34,"75132":45,"752":26,"7525e":46,"7527e":26,"7529e":24,"7530e":24,"7535e":26,"754":[17,27],"7542e":27,"7544e":[45,46],"7545":36,"7546e":36,"75497472":[25,39,40],"7551":24,"7552000":24,"756000":49,"757":27,"75718":27,"7571e":34,"7578e":[25,34,46],"758":49,"7587e":39,"7588e":42,"759":49,"7590e":39,"7591e":39,"7594e":34,"75it":29,"76":[3,28,29,30,34,47,48],"7600e":[27,49],"76118":42,"7614e":46,"7617e":[27,45],"7619e":[24,39],"7624e":34,"7625e":27,"7626e":39,"7627e":34,"763":27,"7630e":39,"7646e":25,"7649739583333334":39,"7651e":36,"7654e":39,"765625e":[34,39],"7656e":[34,36,39,46],"7658":27,"766":34,"7660e":24,"76677120":34,"7667e":[24,27,30],"7668e":33,"768":[24,36],"7680":39,"768000":[24,26,46],"7683e":24,"7684e":[24,46],"7685e":34,"7691e":34,"7695e":[34,36],"7696e":36,"770":[35,48],"7700":48,"7701e":46,"7707e":35,"771":[27,33],"77123":27,"7712e":49,"7713e":39,"772":[17,24],"7723e":34,"7726e":36,"773":24,"7735e":35,"7740e":46,"7753e":34,"7754e":34,"7767":35,"7778":34,"778":[35,48,49],"7780e":39,"7790e":[24,34],"77952000":26,"78":[3,17,27,33],"7800":19,"7800e":49,"781":42,"7817e":47,"78205838616122":43,"7822":19,"7822e":[33,34],"7823e":25,"7824e":24,"78274560":34,"78294":36,"7838":24,"784":24,"7841e":48,"7844e":24,"785":[26,34],"78508":36,"7851e":39,"7853981633974483":18,"786":3,"786432000":39,"7865e":[36,46],"787000":24,"78701":34,"78785":36,"7879e":34,"7883e":40,"7889e":27,"789":[45,46,47,48],"7891":36,"7891e":[24,34],"7896e":45,"79":[19,24],"7900e":24,"7902e":34,"7904e":[34,39],"7907e":46,"791":49,"7913e":33,"7918":24,"7922e":45,"7926e":48,"7933e":30,"7937":24,"7938":20,"7939":17,"7943e":33,"7946e":36,"7950e":[24,49],"79532":36,"7955e":27,"7959e":24,"79691776":25,"797":[17,49],"797270":42,"7974e":42,"7976":27,"7983e":27,"79872":34,"798720":34,"79872000":34,"799000":24,"7994e":34,"7995e":[36,46],"8":[2,6,11,15,16,17,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52],"80":[2,3,17,19,24,36,37,43],"800":[24,27,34,49],"8000":[24,45],"800000":[24,49],"8000000":24,"800000000":24,"8000e":[24,27,30,42,49],"80018":24,"8001e":27,"8008e":39,"801279067993164":38,"8015":34,"802":[14,27],"8027e":[25,33],"8028e":35,"80334":36,"8033e":27,"805":17,"80553":26,"805673122406006":38,"8057e":39,"806":29,"8063e":42,"8064":[35,47],"8067e":39,"807":36,"8070e":24,"8072e":34,"8074":24,"8075e":49,"808":24,"8086e":34,"8089e":25,"809":35,"8094e":36,"81":39,"8100e":[24,27],"8108e":36,"811":49,"8110080":34,"8120e":[33,42],"812407":30,"8125e":[34,35,36,45,46,48],"81298":27,"813":49,"8139e":39,"814":39,"8141e":24,"8143e":27,"81450":29,"8145e":[34,35,39],"8154":17,"8155e":42,"8159":24,"8164":17,"8167e":49,"8168e":[24,33],"8170e":24,"8175e":34,"81793":24,"818":45,"8181e":48,"8182e":24,"8186e":40,"81876":36,"819":33,"8192":[34,40],"81920":34,"8192000":45,"82":24,"820":[33,49],"82000":24,"8200e":27,"8208e":34,"821":34,"82149":26,"8215e":24,"821776886070438e":42,"8219e":48,"822":[17,33],"8222e":24,"823":[24,33],"8242e":47,"82432":39,"826":33,"8263":24,"8271e":35,"8272e":42,"8274e":39,"8278e":39,"8279e":27,"8281e":[39,46,48],"8288e":34,"8292e":39,"82941":27,"83":[24,25,33,36,42,45],"830":24,"830286741256714":42,"8306e":35,"8308":29,"831":34,"8312e":34,"8315e":36,"832000":24,"8320e":34,"8322e":24,"8327e":27,"833":[24,29,49],"8333e":[26,27],"8349":24,"8359375e":34,"8359e":34,"8363e":34,"8371e":33,"8380e":24,"8387e":25,"8388608":[25,40],"83894":27,"839044":27,"8392e":24,"8395":34,"8395e":35,"8399":34,"84":[19,26],"840":[27,49],"8400e":[24,49],"8401":48,"841":[3,17],"8410e":[27,36],"8411e":46,"8413e":42,"8416e":36,"842":[46,47],"8422e":24,"84264960":42,"843":33,"8438e":[36,46,47],"84423828125":34,"8442e":36,"8445e":[27,35],"844701522435897e":34,"8448":[24,36],"8459e":34,"8463e":24,"8466e":25,"8471":27,"8471e":33,"8474e":25,"84765625":34,"8477e":[39,42],"8480e":36,"8483e":27,"8487e":24,"8488e":33,"84934656":39,"8493e":33,"8495":49,"849609375":25,"85":[3,36],"851":33,"8515625":34,"8516e":36,"85186":27,"8528e":27,"853":[17,24],"8533e":24,"8538e":24,"8543e":49,"8546e":[40,42],"8550e":24,"8555e":36,"8563e":33,"856935":42,"857":45,"85721088":39,"8587e":34,"859375e":39,"8594e":[34,39,46],"8596":24,"8596e":25,"86":[29,31,42,45],"8607":35,"861":33,"8617e":27,"8619e":27,"86328125":39,"8639e":33,"864000":26,"8642e":27,"8646e":30,"865":33,"865234375":25,"86528":39,"8657e":33,"866":[24,33],"8662":17,"8665e":33,"8667e":[24,49],"8672e":24,"8673e":36,"8674e":39,"8685e":27,"869339227676":39,"8694e":25,"87":[31,42],"8704":[25,39],"87040":34,"8714e":36,"8724e":34,"8729e":36,"873":17,"8730e":34,"8735e":40,"8741e":25,"8742e":39,"8746e":49,"8750e":[36,39],"8767e":47,"877":33,"8770":17,"878217911185171e":25,"8782e":25,"8785920":34,"8786":35,"8796e":34,"88":30,"880":[24,42],"8800e":[24,27],"8807e":34,"88080384":25,"8808e":27,"881":24,"8813e":25,"8814e":30,"8816":49,"88232421875":34,"8828e":[34,36],"8833e":24,"8840e":47,"8841e":39,"8845e":33,"884736":36,"8847360":34,"88473600":30,"88497":27,"885":17,"8852113":30,"88566":36,"8858e":[24,39],"886359":24,"8868":40,"8869e":25,"8870e":42,"8878e":25,"8881e":40,"8887e":24,"8888":52,"8888e":36,"8889e":49,"89":36,"890":33,"8904e":35,"8905e":27,"8906":17,"8906e":34,"891":24,"8912760416666666":39,"8923e":36,"893":24,"8932e":34,"8933":24,"8935":14,"8935e":46,"89382":36,"894":33,"8941e":25,"8945e":25,"895":[45,46,48],"89501953125":25,"895528157552083e":39,"8958e":46,"896":35,"89600":39,"896000":24,"8960000":24,"8960e":49,"89653248":39,"8970e":24,"8971e":46,"8976e":24,"8977e":36,"898":[24,49],"8980e":24,"89823":45,"8984e":36,"8992e":24,"8995e":24,"89961":36,"8mib":45,"8x16":25,"8x4":34,"9":[2,3,14,16,17,18,19,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],"90":[19,24,41,42,43,44],"900":17,"9000":[24,27,49],"9000000":27,"9000e":[24,27,30,42],"9004e":34,"901":[0,19,21,24,25,30,33,34,35,36,39,42,47,48],"9010e":36,"9016e":34,"9018068":30,"9023":17,"9026e":35,"9030e":[27,34],"9038e":25,"9041e":39,"9045e":34,"9050e":[26,45],"9053e":34,"906":42,"9060":36,"90611":27,"90615":36,"90625e":39,"9062e":[33,36],"9063e":[24,26,34,36,39],"9066e":24,"907":24,"9072":24,"9072e":25,"908":49,"9083e":24,"9085e":27,"9087e":24,"9088e":25,"9093e":36,"9096e":35,"91":[19,24,36,49],"910":17,"91000":24,"9100e":49,"9103e":24,"9104e":40,"91079":27,"911":[24,39],"9112e":36,"91136":34,"911512586805555e":34,"9116e":48,"9117e":27,"912":[27,47],"9121e":[24,34],"91226112":39,"9126e":[34,48],"912849":30,"9138e":27,"914":24,"9141":17,"9141e":39,"9143":27,"9148e":27,"9150e":24,"9152e":49,"9153e":34,"916":17,"9163e":27,"9164e":34,"91650":36,"9167e":27,"917":49,"918":49,"9180e":[24,36],"9185e":36,"9188e":49,"919":49,"9192e":33,"919921875":25,"9199448529411764":35,"92":36,"920":49,"921":49,"92138671875":34,"9215e":24,"9216":[25,34,39],"9219e":[34,35,36],"922":49,"9223e":24,"92274688":25,"923":[24,27,49],"9231":29,"9234e":24,"924":49,"9240":20,"925":49,"9262":19,"9270e":24,"9271e":25,"92798976":39,"928":[27,33,49],"9283e":[34,39],"9287e":27,"929":33,"92913818359375e":39,"9292":34,"9296875e":34,"9297e":[34,36,39],"93":[3,26],"9300e":24,"9308e":24,"931":49,"9312e":36,"9314e":36,"932":24,"9320":27,"9320e":40,"932264":40,"9327e":27,"9329e":25,"933":24,"93302":36,"9330e":[24,45],"9333e":27,"9338e":33,"934":[27,49],"9344e":48,"9346e":24,"935":49,"9351e":40,"93585408":39,"93600030352536":43,"9360e":34,"9362e":24,"9363e":27,"9367e":27,"9368e":33,"937":49,"9370e":[24,33],"9375e":24,"9377":24,"938":49,"939":49,"9395":[19,36],"9398e":34,"940":[24,49],"94061":27,"9408e":34,"941":27,"9414e":[25,39],"942":[24,49],"9423e":24,"9424e":39,"9429e":39,"943":45,"9437184":39,"9438e":24,"944":[24,46,49],"9444e":49,"945":49,"9453e":[34,36],"946":49,"9461e":24,"947":[46,47,49],"9472":[26,33],"94720":39,"9475e":42,"9476e":27,"948":[17,27],"9486833":32,"9486833j":32,"949":49,"9492e":[34,39,49],"9494e":34,"94957":26,"95":[27,35,36],"950":27,"9500e":[24,27,42,49],"9502e":36,"9506e":35,"9512e":33,"9513e":34,"95168":33,"9516e":24,"952":[36,49],"9520263671875e":39,"95232":34,"9525e":42,"9526":24,"9529e":42,"953125e":[34,39],"9531e":[24,34,36],"954":36,"9545e":27,"9547e":26,"955":3,"9550":24,"9556e":39,"9558e":34,"9560e":24,"956139087677002":42,"9570e":39,"9583e":[27,34],"9584640":34,"96":[27,45],"960":[17,24],"9600000":49,"96000000":26,"9600e":[27,49],"9608":24,"9609e":[36,39,46],"961":27,"9611e":34,"9621e":36,"9627e":36,"962890625":34,"96337890625":34,"9633e":33,"9634e":35,"9637e":24,"9638671875":34,"9643e":39,"96468992":25,"9646e":36,"9648e":34,"96541":34,"96628":36,"9663e":27,"9667e":[27,49],"9670e":42,"9673e":27,"9676":24,"9676e":35,"96770":36,"9683e":34,"968532986111111e":34,"9688":39,"9688e":[34,35,36],"96905":36,"96962":36,"97":25,"9700e":49,"97071":34,"9707e":26,"9709e":33,"971":24,"9712e":42,"9714e":[27,42],"9716796875":34,"9719":40,"9721e":27,"9722e":[27,45],"9724":24,"97265625":25,"9727e":36,"9728":[25,46],"9732096":36,"97348":27,"9744e":33,"975":27,"9750e":24,"976":[24,27,49],"9762e":42,"9765625":[34,39],"9769e":49,"9779e":24,"978":[33,49],"97819":34,"9781e":36,"979":24,"98":[24,27],"980":49,"9800e":[24,27,49],"98046875":34,"9805e":[26,33,34],"9808e":24,"981":[24,27],"9814e":27,"98168":24,"982":[27,33],"9823e":39,"9825e":49,"9826e":48,"982985019683838":38,"983":24,"98304":34,"9837e":[39,49],"9838":24,"984":49,"9843e":27,"9844e":[25,30,33],"9849e":39,"9850e":45,"98558":27,"9857e":39,"9862e":39,"986328125":34,"9868e":35,"9869e":36,"98705":27,"9874e":39,"9877e":49,"988":27,"9883e":[25,36],"9885e":42,"9887e":24,"9893e":39,"9897e":39,"9899e":29,"99":[17,19],"990":27,"9900":26,"99000":24,"9900e":[24,27,49],"9902e":34,"9903":27,"990347":27,"9904e":42,"991":49,"9915e":36,"9916930379746836":35,"99201":39,"99274":24,"9927e":42,"993":24,"9930e":27,"9931640625":34,"9932725694444446e":34,"9932e":24,"9933e":[34,45],"994140625":[25,39],"9942e":39,"9949e":25,"995":49,"9951171875":39,"9952e":40,"99566":33,"996":[27,33,49],"9966e":40,"997":49,"9970703125":34,"9978e":36,"9979e":24,"998":[24,27],"9981e":39,"9982e":42,"9984000":42,"9984177215189873":35,"9984e":33,"999":[14,27,49],"9990234375":34,"9993":27,"9996e":39,"9998022151898734":35,"\u00aa":51,"\u00b2":51,"\u00b3":51,"\u00b5":51,"\u00b9":51,"\u00ba":51,"\u00bc":51,"\u00bd":51,"\u00be":51,"\u03c9":51,"\u215b":51,"\u215c":51,"\u215d":51,"\u215e":51,"a\u00eft":53,"abstract":[3,16,17,18],"b\u00f6cherer":[27,35,46],"bj\u00f6rnson":3,"boolean":[6,7,8,9,13,14,22,24,25,27,31,46,47],"break":[24,26,27,28],"c\u00e9spede":16,"case":[1,2,3,6,8,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,34,38,42,43,44,45,49],"catch":22,"class":[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50],"d\u00f6rner":26,"default":[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,29,30,31,33,34,35,36,41,42,43,44,45,47],"do":[3,13,16,18,19,25,27,28,30,34,35,39,41,42,43,44,45,46,47,51,52,53],"export":[19,42],"f\u00fcr":23,"fay\u00e7al":[51,53],"fern\u00e1ndez":16,"final":[16,17,18,19,23,24,25,33,34,35,36,42,45,46,47,49],"float":[1,2,3,6,8,9,12,13,14,15,16,17,18,19,20,22,24,25,27,30,31,34,35,36,42,45,49],"function":[0,1,4,5,8,9,12,17,18,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53],"h\u00e4ger":49,"import":[4,10,14,16,18,19,23,30,32,37,50,52],"int":[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,41,42,43,45,47,48,49],"iotfay\u00e7":53,"long":[3,10,11,19,23,24,25,27,34,37,41,45],"m\u00b2":23,"new":[2,3,8,9,11,12,17,18,19,23,24,25,27,30,31,33,35,36,39,41,42,43,44,45,49,53],"null":[18,26,34,35,39,47],"ren\u00e9":37,"return":[1,2,3,6,9,11,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,42,45,46,47,48,49,50],"s\u00e1nchez":16,"schr\u00f6dinger":[2,37],"short":[3,5,11,14,19,24,25,27,31,38,43,44,49,51,53,54],"static":[3,15,22,25,34,47],"super":[24,25,26,27,29,30,31,33,34,35,36,39,40,42,45,46,47,48,49,51],"switch":34,"throw":18,"true":[1,2,3,4,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],"try":[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],"ungerb\u00f6ck":27,"var":[15,16,22,27,38,40],"while":[2,6,11,17,18,23,25,27,33,34,35,36,41,42,43,44,49,51,53],A:[2,3,6,7,8,9,10,11,13,14,15,16,17,18,19,22,23,26,28,29,30,31,33,34,35,36,37,41,44,45,46,47,48,49,53],ASE:[2,37],And:[24,30,31,40,42,43,48,49],As:[4,9,10,11,12,14,17,18,23,24,25,26,27,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,53],At:[2,19,24,34,35,43,46,48],Be:[9,49],But:30,By:[3,19,23,25,34,37,41,43,44,47,53],For:[2,3,4,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],If:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,38,39,42,44,48,49,51,53],In:[1,3,6,8,13,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,52,53],It:[1,2,3,4,6,7,9,10,13,14,15,16,17,18,19,20,22,23,24,25,27,29,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,51,53],Its:[43,47,53],NOT:[8,10,17],Near:13,No:[2,3,18,22,26,27,30,32,33,34,35,36,44,45],Not:[3,4,17,33],On:[11,20,26,52],One:[9,13,15,16,17,18,22,23,25,26,27,28,34,35,38,40,41,42,43,44,45,46,50],Or:[19,42],Such:3,That:[19,23,25],The:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,28,29,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,55],Then:[13,16,17,25,34,36,42],There:[25,41,42,43,44],These:[1,3,16,18,19,23,24,25,29,30,35,36,41,42,45,49],To:[2,3,6,8,9,10,12,19,23,24,25,26,27,28,29,30,34,35,37,41,42,43,44,45,46,47,48,52],Will:3,With:[3,15,16,17,23,25,30,33,34,40,41,46,55],_0:[19,23,25,43],_1:[18,25],_2:2,_:[2,3,9,15,16,17,18,19,23,24,25,26,27,30,33,34,35,36,37,42,43,44,45,51],__:45,__call:45,__call__:[3,28,42,45,46,47,48],__init__:[4,24,25,26,27,28,29,30,31,33,34,35,36,39,40,42,45,46,47,48,49],__version__:52,_a:42,_atanh_clip_valu:9,_batch_siz:29,_bce:[26,49],_ber:[24,31],_bg:9,_binary_bas:45,_binary_sourc:[26,29,33,34,35,39],_bm:9,_bs_arrai:[25,34,39],_carrier_frequ:[25,29,34,39],_cdl:34,_cdl_model:34,_cest_typ:33,_channel:[25,26,33,35,42],_channel_freq:[29,34],_channel_model:[25,33,39,42],_channel_tim:34,_check_input:9,_cir:29,_cn_con:9,_cn_mask_tf:9,_cn_row_split:9,_cn_type:9,_cn_updat:9,_coder:[29,34,39,49],_constel:45,_conv_1:[35,48],_conv_2:[35,48],_cyclic_prefix_length:[29,34,39],_dataset_s:42,_dc_null:[29,34],_decod:[26,29,33,34,35,39],_delay_spread:34,_demapp:[26,29,34,35,39],_demodul:34,_dense1:50,_dense2:50,_dense_1:26,_dense_2:26,_dense_3:26,_detector:33,_direct:34,_domain:[25,34,42],_dtype:45,_edge_weight:9,_encod:[26,29,33,34,35,39],_fft_size:[29,34,39],_frequenc:[29,34],_hard_out:9,_i:[18,19,23,43],_i_l:9,_ie:23,_ind_cn:9,_ind_cn_inv:9,_init_:[25,42],_input_conv:[35,48],_interp:33,_is_bler:31,_j:16,_k:[3,15,16,22,29,34,36,39],_k_b:9,_l_max:[25,34],_l_min:[25,34],_l_tot:34,_layer_norm_1:[35,48],_layer_norm_2:[35,48],_legend:[24,31],_lmmse_equ:[29,34,35,39],_ls_est:[29,33,34,35,39],_m:[16,18],_mapper:[26,29,33,34,35,39],_mcs_index:[25,42],_mcs_tabl:[25,42],_mimo_detector:25,_modul:34,_n:[13,18,19,23,29,34,39,43],_neural_receiv:35,_num_bits_per_symbol:[25,29,34,39,42],_num_bp_it:33,_num_bs_ant:[34,39],_num_guard_carri:[29,34],_num_idd_it:33,_num_it:49,_num_lay:[25,42],_num_ofdm_symbol:[29,34,39],_num_prb:[25,42],_num_rx_ant:25,_num_streams_per_tx:[29,34,39],_num_tx:[25,39,42],_num_tx_ant:[25,42],_num_ut:39,_num_ut_:[34,39],_ofdm_channel:[29,39],_output:36,_output_conv:[35,48],_pcm:9,_perfect_csi:[25,34,39,42],_perfect_csi_rayleigh:33,_pilot_ofdm_symbol_indic:[29,34,39],_pilot_pattern:[29,34],_pusch_receiv:[25,42],_pusch_transmitt:[25,42],_qam_sourc:39,_remove_nulled_sc:[29,34],_remove_nulled_subcarri:39,_removed_null_subc:35,_removenulledsc:33,_render_traceback_:[41,42,43,44],_res_block_1:[35,48],_res_block_2:[35,48],_res_block_3:[35,48],_res_block_4:[35,48],_rg:[29,34,39],_rg_demapp:35,_rg_mapper:[29,33,34,35,39],_rx_tx_associ:39,_s:[16,23],_scenario:[25,39],_siso_decod:33,_siso_detector:33,_sm:[29,34,39],_snr:31,_speed:[25,34],_subcarrier_spac:[25,29,34,39,42],_system:35,_t:23,_target_coder:[25,42],_tau:42,_train:[26,35],_ut_arrai:[25,34,39],_vn_con:9,_vn_mask_tf:9,_vn_row_split:9,_x:23,_y:23,_z:[2,9,23],_zf_precod:[29,34],a2012:2,a30:3,a_0:20,a_1:20,a_2:20,a_:[3,19,23,42],a_ab:42,a_freq:34,a_i:[19,23,41],a_m:3,a_max:42,a_n:19,a_shap:28,aabb:19,ab:[25,34,36,37,38,41,42,43,44,47,51],abil:53,abl:[23,25,34],about:[14,19,23,24,25,27,29,30,33,34,38,42,44,47,48,49,51],abov:[6,13,18,19,23,24,25,26,27,29,30,32,34,35,38,39,41,42,43,44,45],abruptli:[23,41],absolut:[3,16,19,20,23,37,38],abtract:20,acceler:[30,45,51,53],accept:[6,13,16],access:[3,4,5,8,10,13,16,17,19,23,25,27,31,34,42,43,45,49,53],accord:[2,3,9,10,15,16,17,18,19,22,23,32,33,36,41,51],accordingli:[18,27],account:[2,3,9,16,17,18,22,23,34,42,43,47],accross:[17,18],accur:[2,14,18,23,24,27,31,36,39,42,43,53],accuraci:[27,36,37,53],achiev:[3,11,22,23,24,26,33,35,36,39,46,48,49,53],aclr:20,aclr_db:38,acount:34,acquir:53,across:[14,17,18,22,36,41,44,53],act:[6,42],action:51,activ:[1,11,14,17,24,26,27,29,30,35,37,40,42,45,46,48,50],active_b:29,active_bs_idx:29,actual:[10,16,17,18,23,24,25,27,34,42,44],ad:[3,7,13,14,19,20,22,23,24,25,26,27,31,34,37,38,42,47],adam:[26,35,46,48,49],adapt:[2,5,12,16,24,25,27,29,31,33,51],add:[2,3,7,14,19,22,23,24,25,27,30,34,36,37,38,40,41,42,43,44,45,48,49],add_awgn:[3,25,29,30,33,34,39,40,42,47,48],add_ax:36,add_ber:[22,24],add_bler:[22,24,31,42],add_result:[22,49],add_subplot:[32,43],addit:[1,3,6,8,11,12,14,15,16,17,19,22,23,24,25,26,27,29,34,35,40,42,43,45,46,47,48,49],addition:[2,11,15,18,19,22],additional_posit:[17,25,42],adjac:[3,17,20,25,38],adjoint_a:40,adjoint_b:[36,40],adjust:[24,31,32,45,49],adopt:[23,27],advanc:[8,12,18,22,23,26,27,30,34,39,44,45,46,54,55],advantag:[10,16,19,50],affect:[34,37,47],affin:11,after:[2,3,8,9,10,11,12,17,18,20,22,24,25,26,27,28,30,31,33,34,35,37,38,42,43,45,46,48,49,53],afterburn:24,afterward:[24,42],ag:[3,34,47,52],again:[2,12,37,44,45,49],against:[26,27,40,43,45,46,48,51,53],againt:33,aggreg:[17,43],agraw:2,agre:11,agreement:23,ahead:26,ahumada:27,ai:53,aid:[11,24],aim:[24,30,35,46,55],air:23,ait:[1,26,35,46,48,51],akin:53,al:[10,14,19,23,44,49],alexand:[11,24,51,53],alexio:11,algorithm:[2,3,5,6,9,10,11,13,14,15,16,18,24,26,27,30,31,33,36,42,46,49,51,53],ali:11,align:[3,15,16,18,19,23,25,29,38,41,43],alist2mat:[5,10,21],alist:[10,14],alkhateeb:29,all:[1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52],allclos:40,allerton:[9,11,49],allevi:23,alloc:[17,18,19,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,49],allow:[1,2,3,6,7,8,9,12,14,17,18,19,22,23,24,25,27,29,30,31,34,38,40,41,42,43,44,45,49,51,53],allow_flex_len:14,allowed_dmrs_port:[17,25],allzeroencod:[5,21],almost:[25,36,38,41,42,44,49],alon:41,along:[3,18,19,20,29,35,42,43,48],alpha:[2,19,23,37],alpha_:[9,18,23],alpha_i:19,alpha_r:[19,44],alphabet:1,alreadi:[8,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],also:[3,5,6,9,11,13,14,16,18,19,20,22,23,24,25,27,28,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53],altern:[6,8,16,18,19,20,22,24,26,33,34,42,43,47,52,53],altes_rathau:42,although:[5,10,11,16,23,25,34,42,47,49,52,55],alvarado:27,alwai:[1,2,3,8,10,12,17,20,27,30,34,36,37,38,39,41,45,47,48],always_generate_lsp:3,america:[23,41],among:[19,25,33],amount:[38,39,41,53],amplif:[2,55],amplifi:[0,21,34],amplifier_cd:37,amplifier_nl:37,amplifier_ssfm:37,amplitud:[19,23,25,26,34,37,41,44],an:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,53],analys:27,analysi:[3,5,16,19,21,23],analyt:[14,27],analyz:[8,24,25,27,33,49,53],andersson:[11,24],andrea:[11,53],angl:[3,18,19,23,29,37,41,42,44,47],angular:[3,23],ani:[1,3,6,7,10,11,14,18,19,22,23,24,25,27,28,30,34,38,39,41,42,44,46,47,48,49],annex:3,annot:[19,55],annual:[9,11,49],anoth:[6,19,27,28,30,39,41,43],ant_ind_pol1:3,ant_ind_pol2:3,ant_po:3,ant_pol1:3,ant_pol2:3,ant_pos_pol1:3,ant_pos_pol2:3,antenna:[0,16,17,18,21,25,29,33,35,36,39,40,41,42,43,44,45,48,51,53],antenna_pattern:[3,25,33,34,35,36,39,47,48],antennaarrai:[0,21,25,29,34,35,39,47,48],anymor:27,anyth:23,aoa:19,aod:19,aoudia:[1,26,35,46,48,51,53],apach:51,apart:[3,14,16,34,44,47,51],apertur:23,api:[4,19,23,24,25,30,34,36,39,41,42,44,45,47,50,51],app:[9,14,15,16,17,18,24,26,27,29,30,31,34,35,36,39,40,45,46,47,48,50],appear:[22,41,42,43,44],append:[22,24,25,27,31,34,36,39,42],appl:[2,14,23],appli:[2,3,9,10,11,14,16,17,18,19,20,22,24,26,27,29,33,34,35,37,38,40,41,42,43,45,46,47,48,49,50,53],applic:[2,3,5,17,27,29,30,31,37,42,43,45,46,51,52,53],apply_channel:3,apply_dopp:43,apply_doppl:[19,42,43],apply_gradi:[26,35,46,48,49],applyflatfadingchannel:[0,21],applyofdmchannel:[0,21,29,34,39,42],applytimechannel:[0,21,29,34,39],approach:[6,9,12,19,27,34,36,41,43,44,53],appropri:[19,23,36],approx:[2,14,15,16,19,23,36],approxim:[2,3,6,9,10,13,14,15,16,17,18,19,24,26,41,43,49],apr:[14,23,27],apriori:6,apt:52,ar:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54],arang:[24,26,27,29,30,31,34,35,39,40,42,43,44,47,49],arbitrari:[3,7,8,9,10,12,14,16,17,18,19,20,22,23,24,25,27,30,31,42,45,49],arc:19,architectur:[3,35,45,48,51,53],archiv:15,area:[19,23,26,41,42,44],arg:[23,45],argmax:16,argmin:18,argument:[6,8,13,17,19,23,24,25,27,28,30,31,34,36,39,44,47,48],ari:15,arikan:[11,24],arikan_bp:11,arikan_polar:11,aris:16,around:[19,23,38,40,41,42,43,44],arr:14,arrai:[3,11,12,14,15,16,21,22,24,25,29,30,32,33,35,36,39,41,42,43,44,45,48,49,53],arrang:[14,19],array_equ:25,array_lik:19,array_op:[30,34,36,39,47,48],array_s:19,arriv:[3,18,19,23,29,42,43,53],art:[14,33,45,46,47,48,49,51],artech:[23,41],artefact:42,articl:51,arxiv:[1,11,24,35,49,51,53],as_list:[42,45],as_tensor:19,ashikhmin:[14,27],asic:[16,33],asilomar:33,aspect:31,assert:[15,25,36,40,42,45],assert_greater_equ:45,assertionerror:[7,8,9,10,11,12,14,22],assig:16,assign:[16,18,19,42,43],assist:53,associ:[7,8,12,14,16,17,19,23,24,34,35,39,47,48],assum:[1,3,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,39,41,42,43,45,46,47,48,49],assumpt:[3,18,19,27,42],astyp:24,asymmetr:1,asymptot:[6,14,23,27],atan2:23,atanh:9,atmospher:2,atol:40,attain:13,attempt:53,attent:53,attenu:[2,38],attribut:[8,9,17],aug:16,augment:53,author:[23,51,53],auto:[30,45],autoencod:[53,55],autograph:[25,33],autom:24,automat:[9,17,18,19,22,24,25,30,33,34,42,45,47,53],avail:[2,3,6,7,9,10,11,14,15,16,17,18,19,20,22,23,24,27,29,30,33,34,35,36,39,41,42,45,46,48,50,51,54],availab:11,averag:[3,17,18,19,20,22,23,24,25,26,27,30,34,36,39,40,41,42,44,45,49],average_street_width:3,avergar:26,avinash:51,avoid:[2,9,14,16,18,24,25,26,27,28,29,30,31,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],awai:[18,41,42,44,54],awgn:[0,14,17,18,21,24,25,26,27,30,31,32,34,35,40,42,45,46,47,49,50],awgn_autoencoder_result:26,awgn_autoencoder_weights_conventional_train:26,awgn_autoencoder_weights_rl_train:26,awgn_channel:[3,45,46],awng:[14,27],ax1:[31,37],ax2:[24,31,37],ax:[19,22,23,24,29,32,33,36,40,41,43,45,46],axi:[2,3,8,12,19,20,22,23,24,25,26,27,29,31,32,35,36,41,42,43,45,46,48,50],axvlin:41,azim:43,azimuth:[3,19,23,42],b100:3,b5g:53,b:[1,2,3,6,9,13,15,16,17,18,19,22,23,24,25,26,27,29,30,31,32,33,34,35,36,39,40,41,42,47,48,49,50],b_:[16,19,35],b_hat:[11,17,18,22,25,26,27,29,30,33,34,35,36,39,40,42,49,50],b_i:[15,27],b_k:15,back:[6,16,25,40,41,43,53],backend:52,background:[19,23,24,51],backpropag:[26,35,51],backscatt:[19,23],backscatteringpattern:[19,23,44],backward:22,bad:41,badli:[18,36],bahl:6,balanc:23,balani:[19,23],balanis97:19,balatsouka:[10,11],ball:41,band:[20,35,38],bandwidth:[2,3,9,12,17,18,25,27,34,37,38,44,53],bandwith:[3,34],banei:2,bar:[3,16,17,18,19,34,48],barrier:[49,55],barycent:44,base:[1,3,7,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,27,28,29,33,34,35,36,38,39,42,45,46,47,49,51,53],baseband:[3,17,19,20,23,26,41,44,48],basechannelestim:[17,21],basechannelinterpol:[17,21],basegraph:9,baselin:[18,26,27,33,46,48,49],baseline_l:48,baseline_pcsi:48,basest:[29,42,45],baset:45,bash:[30,45],basi:[10,23],basic:[11,17,24,30,42,46,47,48,49,55],bastani:11,batch:[3,8,9,12,13,15,17,18,19,20,22,24,25,26,27,28,31,32,33,34,35,36,38,39,40,42,45,46,47,48,50,51],batch_dim:19,batch_index:3,batch_siz:[3,9,14,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,40,42,45,46,47,48,49,50],batch_size_cir:42,batch_size_freq:25,batch_size_tim:25,batch_sizeus:30,batchsiz:42,bbox:41,bce:[26,35,46,48,53],bch:[14,27,53],bcjr:[5,13,21,24],bcjrdecod:[6,13,24,31],beam:2,beamform:34,beat:2,beaulieu:3,bec:1,becau:33,becaus:[3,19,25,33,35,36,44,52],becom:[3,11,14,18,19,25,27,33,34,37,41,43,44,53],been:[15,16,17,18,19,22,24,27,31,34,42,53],befor:[9,11,13,16,17,18,19,24,25,26,27,30,34,37,39,40,42,45,46],begin:[1,3,15,16,18,19,20,23,25,34,35,36,37,43],beginn:[26,35,51],behav:[27,28,44],behavior:[5,14,17,18,19,27,29,30,31,42,44],behind:[19,41,42],being:[6,13,19,36,41,53],belief:[9,11,24,53,55],belong:[17,25,52],below:[3,13,18,19,23,24,25,26,27,29,35,36,37,38,42,43,45,47,53],ben:1,benchmark:[18,24,26,35,36,46,51],bend:23,benedikt:11,benefici:[33,49],benefit:[10,49],ber:[10,17,22,25,26,29,31,33,34,35,36,45,46,47,48,50,51],ber_cod:30,ber_ep:[33,36],ber_idd2:33,ber_idd3:33,ber_kbest:[33,36],ber_lmms:[33,36],ber_mc:30,ber_mmse_p:36,ber_per_bit:27,ber_plot128:24,ber_plot:[31,40,42,45,46,47,48,49],ber_plot_5g:49,ber_plot_allzero16qam:27,ber_plot_allzero:27,ber_plot_ldpc:24,ber_plot_long:31,ber_plot_polar:24,ber_uncod:30,bernhard:37,bernoulli:19,berplot:45,berrou:13,besid:[5,9,11,24,37],bessel:18,best:[5,6,16,17,18,19,25,27,33,36,42,45],beta:[16,17,18,19,20,23,25,36,38],beta_0:[23,41],beta_2:[2,37],better:[19,25,29,33,34,36,37,39,41,49,53],between:[3,6,9,13,16,19,20,22,23,24,25,26,27,29,33,36,37,38,40,41,42,43,44,45,47,49,53],beyond:[27,41],bfloat16:14,bg1:9,bg2:9,bgt2000:2,bhs2017:[3,16],bi:14,bias:27,bicm:[9,30,35,45,55],bidirect:23,bigg:19,biglieri:27,bil:33,bin2int:[5,21],bin2int_tf:[5,21],bin:[19,27,34,39],binari:[1,5,6,7,9,10,11,12,13,15,16,21,22,24,26,27,30,34,35,39,45,46,47,48,49,53],binary_repr:15,binary_sourc:[30,32,34,35,36,39,40,45,46,47,48],binarycrossentropi:[26,46,48,49,50],binaryerasurechannel:[0,21],binarymemorylesschannel:[0,21],binarysourc:[14,21,24,26,27,29,30,31,32,33,34,35,36,39,40,45,46,47,48,50],binarysymmetricchannel:[0,21],binaryzchannel:[0,21],binder:[51,53],binom:23,bioglio:[11,24],bioglio_design:11,bipolar:1,bipolar_input:1,bird_cam:42,bird_po:42,birds_view:42,birefring:2,bisect:24,bit:[1,6,7,8,9,10,11,12,13,14,15,16,17,18,22,24,25,26,29,31,32,33,34,35,36,39,40,42,44,45,46,47,48,49,50,51,53,55],bit_channel:27,bit_error:22,bit_error_r:22,biterrorr:21,bits_hat:[45,47,48],bits_shap:36,bitwis:[22,27],bitwise_mutual_inform:22,bitwisemutualinform:[21,49],black:41,blackman:[20,38],blackmanwindow:21,blank:41,blankenship:[11,24],blender:[19,42,53],bler:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,45,46,47,48,49],bler_ep:33,bler_idd2:33,bler_idd3:33,bler_kbest:33,bler_lmms:33,block:[0,10,11,19,21,22,24,26,29,30,33,34,35,36,39,40,42,45,46,47,48,49,51,53],block_error:22,block_length:45,blocklength:[11,45,46],blog:50,blown:36,blue:[19,31,41],blueprint:55,bmatrix:[18,19,23],bmd:[26,35,46],bmi:49,boilerpl:25,boldsymbol:[16,19,23],bologna:19,bool:[1,2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,31,34,35,42],border:20,boston:53,bostontwin:53,both:[2,16,17,18,19,20,23,24,25,26,27,29,31,32,34,35,36,39,41,42,43,44,46,47,48,53],bottom:19,bounc:[19,42],bound:[6,19,43],boundari:[2,23,34,41],box:[21,23,32,36,43],boxplu:[9,14,17,27,30,45,49],bp:[9,11,14,17,24,27,30,53],bp_iter:30,bpsk:[10,14,22,49],bracket:23,brannstrom:14,brdf:23,breviti:23,brick:19,bring:[10,14,24,40,43],brink:[9,11,14,24,26,27,33,53],broadcast:[1,3,12,15,18,19,42],broaden:[37,38],brown:23,brows:52,browser:52,bs:[3,23,29,33,34,35,39,47,48],bs_antenna:29,bs_arrai:[3,25,33,34,35,36,39,47,48],bs_height:3,bs_idx:29,bs_index:3,bs_loc:3,bs_orient:3,bs_ut_associ:39,bsc:[1,6],bss:[3,34,47,48],bu:[30,45],bug:42,build:[3,9,11,19,23,24,30,34,35,36,39,40,41,42,44,45,46,48,50,51,52,53],build_type_grid:18,building_1:43,building_2:43,building_3:43,building_4:43,building_5:43,building_6:43,built:[18,30,35,42,45,48],burg:[10,11],burgeon:53,burshtein:[9,49],bwp:17,c0:[26,29,33,35,36],c1:[26,29,33,35,36],c2:[26,29,33,35],c300:3,c:[2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,45,47,48,49,50],c_0:[15,23],c_:[15,17,19,23],c_deint:8,c_descr:12,c_hat:[10,14,30,49],c_i:23,c_init:17,c_int:[8,27,30],c_n:15,c_phi:19,c_scr:12,c_theta:19,c_tilde_theta:19,ca:29,cach:45,cair:27,calc:[24,31,49],calcul:[1,2,3,7,8,9,10,11,12,14,17,18,19,24,27,30,31,35,42,49,50],calculate_tb_s:21,calibr:[19,53],call:[3,8,9,10,12,14,16,18,19,22,23,24,25,26,27,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],call_invers:8,call_no_xla:31,callabl:[16,18,19,22,24,27,28,31],callback:[19,22],callback_continu:22,callback_next_snr:22,callback_stop:22,cam:[19,41,42,43],cambridg:[3,23,24],camera:[21,41,42,43,44],cammer:[9,11,24,26,51,53],cammerer_hybrid_scl:11,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55],cancel:[10,11,16,24,33,45],candid:[10,16,18,19,36,53],candit:25,cannot:[2,8,10,11,12,16,17,18,19,24,25,28,31,34,41,44],canon:16,canyon:[3,43],cap:[30,45],capabl:[24,25,53],capac:[2,9,11,12,24,27,33,37,53],captur:[27,34,37,44],car:[19,43],car_1:43,car_2:43,car_3:43,car_4:43,car_5:43,car_6:43,car_7:43,car_8:43,car_:43,care:[3,34,47],carefulli:53,carlo:[11,19,22,24,27,31,33,34,36,40,42,45,46,47,48,49,51],carri:[17,18,23,25,26,28,35,36,42,44,48],carrier:[2,3,18,19,21,29,30,33,34,35,36,37,41,42,44,47,48,51,53],carrier_config:17,carrier_freq:29,carrier_frequ:[3,18,25,29,30,33,34,35,36,39,47,48],carrierconfig:[21,25],cartesian:23,cascad:23,cast:[2,14,22,27,30,36,37,40,45],categor:1,caus:[9,11,14,16,22,24,27,43,53],causal:3,cax:36,cb:17,cb_crc_encod:17,cb_crc_length:17,cb_size:17,cbar_ax:36,cd:37,cdf:[34,39],cdl:[0,21,29,33,35,39,42,47,48,55],cdl_model:[34,35,39,47,48],cdm:[17,25],cdm_group:[17,25],cdot:[2,3,9,14,16,17,19,23,24,35,37],ceil:42,cell:[3,12,16,17,18,19,24,25,26,28,29,30,34,35,36,38,39,41,42,43,44,45,46,47,48],cell_cent:19,cell_loc:3,cell_siz:19,cellular:53,center:[3,15,19,20,23,41,42,43,44],center_po:19,certain:[3,10,14,22,27,42,44],cest_typ:33,cf:[9,10,14,24,27,30],cfo:53,ch:[14,23,24,27,33,36],chain:[5,11,19],challeng:53,chan_est_var:33,chang:[3,5,7,8,9,10,11,12,15,16,17,19,25,27,28,30,34,38,39,41,42,43,44,45,46,47,48,49],channel:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,31,32,33,35,38,41,45,46,48,49,50,51,53,55],channel_estim:[17,25,36,42],channel_freq:[34,39],channel_interleav:11,channel_model:[3,28,33,36,39,42],channel_model_rayleigh:33,channel_model_uma:33,channel_sampl:36,channel_tim:34,channel_typ:[11,12,17,25],channelmodel:[3,34,42,47],character:[19,53],characterist:[9,14,27,38,53],chart:14,check:[5,10,11,12,14,15,17,19,21,24,25,27,29,30,33,42,44,45,49,51,52,53],check_config:17,check_scen:19,chen:2,chi_1:23,chi_2:23,children:17,choic:[5,13,17,23,30,37,46,48,49,53],choos:[10,25,27,29,34,42,47,48],chose:34,chosen:[3,6,15,16,17,19,20,22,23,25,29,34,37,47,48],choss:25,chri:53,christoph:53,chromat:2,chronicl:2,ci:[30,45],cir:[3,19,39,41,42,43,44,47,48,53],cir_gener:[3,42],cir_to_ofdm_channel:[0,19,21,29,34,39,42,43],cir_to_time_channel:[0,18,19,21,29,34,39,42,44],circ:[19,41],circl:[27,41],circuit:[16,23,33],circumv:39,cirdataset:[3,19,28,29,42],cirgener:42,cite:51,citi:53,clariti:[18,19],classic:[24,33,49,50,53],classif:[46,48],cleari:40,clip:[1,9,14,16,19,49],clip_at:19,clip_by_valu:49,clip_plane_orient:19,clip_value_grad:49,clone:[25,42,52],close:[10,15,18,19,23,24,27,28,41,43,44,46,48],closer:[24,27,44,55],closest:23,cloud:51,cluster:[0,21],cm:[19,41,42,43,44],cm_cell_siz:[19,41,42,43,44],cm_center:[19,43],cm_db_scale:19,cm_diff:41,cm_orient:[19,43],cm_scale:19,cm_scat:44,cm_show_color_bar:19,cm_size:[19,43],cm_tx:19,cm_vmax:[19,44],cm_vmin:[19,44],cmap:43,cn:[3,9,14,17,27,30,49],cn_type:[9,14,17,27,30,33,45,49],co:[3,18,19,20,23,44],cock:6,code:[2,3,5,7,8,9,12,16,17,18,19,20,21,22,25,26,28,29,30,31,33,34,35,36,38,39,42,44,45,46,47,48,50,51,53,55],code_length:[9,24],code_typ:24,codebook:[17,25,42],codedsystemawgn:45,coder:[5,6,9,10,11,13,14,17,22,24,25,26,27,30,31,32,33,34,35,36,39,40,45,46,47,48,49],codes_under_test:[24,31],codesanqi:53,codeword:[5,6,7,9,10,11,12,13,14,17,24,26,29,30,33,35,36,40,45,47,48,49,50],codeword_index:[12,17],coeff:2,coefffici:3,coeffic:23,coeffici:[2,3,16,18,19,20,23,25,28,37,38,42,43,44],cognit:26,coincid:[27,42],colab:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52],colab_compat:[41,42,43,44],colabsionna:53,colabw:53,collect:19,color:[18,19,31,41,42],colorbar:36,colormap:19,column:[3,8,9,10,14,16,18,19,22],column_swap:14,com:[25,33,45,53],combin:[2,3,5,11,13,16,17,19,22,23,24,25,29,31,33,36,41,42,43,44,46,49],combining_vec:[19,42],come:[23,25,27,30,41,42,43],command:[19,25,30,41,44,45],comment:[25,34,36,49],commerci:53,common:[3,7,17,19,41,44,51],commonli:[11,24,53],commun:[0,2,3,5,9,11,14,15,16,19,23,24,26,27,28,30,33,34,35,39,41,47,48,49,51,53,55],communicationreinhard:53,communicationsju:53,compar:[16,24,25,26,27,30,31,33,36,37,38,40,41,43,44,45,46,49,53],comparison:[11,19,24,27,31,34,39,40,44,49],compat:[4,9,10,13,19,22],compens:[37,53],compet:30,competit:53,compil:[24,25,30,37,42,45],complement:53,complementari:11,complet:[18,19,20,24,37,45,49,51],complex128:[2,3,15,16,17,18,19,22,36,37,45],complex2real_channel:21,complex2real_covari:21,complex2real_matrix:21,complex2real_vector:21,complex64:[2,3,15,16,17,18,19,22,28,30,32,36,42,45],complex:[2,3,5,10,11,15,16,17,18,19,20,22,23,25,26,27,30,31,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49,51,53],complex_norm:21,complex_relative_permitt:[19,42],compliant:[5,9,11,12,17,18,24,25,29,30,42,45,46,47,48,51],complic:[18,27,39],compon:[2,3,13,14,15,17,18,19,20,23,24,26,27,29,30,31,33,35,37,38,39,40,41,42,45,46,47,48,49,50,51,53],compos:[13,19,25,34,42,47,53],compress:[31,37],compuat:23,comput:[2,3,6,9,10,11,13,15,16,17,18,19,20,22,23,24,25,26,30,33,34,36,38,39,40,41,42,43,44,45,47,48,49,53],computation:[3,37,43],compute_b:[17,21,25,29,30,34,35,39,40,42,49,50],compute_bl:21,compute_conduct:19,compute_field:21,compute_gain:[21,41],compute_path:[21,41,42,43,44],compute_relative_permitt:19,compute_s:[21,36,40],concat:[35,36,43,48],concaten:[11,13,14,16,17,24,27,42,43,45],concentr:[23,44],concept:[9,26,27,41,49,54,55],concis:23,conclus:[41,44,51],concret:[18,23],cond:[34,39],cond_hist:39,conda:52,condit:[8,14,18,22,23,25,27,31,34,36,39,45],condo:[11,24],conduct:[3,19,23,41,42],conductor:41,cone:[19,23,41],conf:33,confer:[9,11,24,35,48,49],config:[3,4,16,18,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,49],config_typ:[17,25,42],configur:[1,3,12,16,17,18,19,21,30,47,48,51,52],configurabel:34,confirm:40,conform:3,conftel:2,conj:25,conjug:[20,23],conjunct:3,connect:[8,9,11,12,19,27,30,35,38,42,44,45,48,51,52],consecut:[17,53],consequ:24,consid:[2,3,10,11,16,19,22,23,24,26,29,33,34,35,36,37,40,41,42,43,47,48],consider:[23,33,41],consist:[1,2,3,9,10,11,15,18,19,23,24,25,26,29,34,35,36,37,41,43,46,47,49,53],consortium:11,constant:[2,3,12,17,19,24,25,26,27,28,30,33,35,36,37,39,41,42,43,44,45,46,47,48,49],constel:[1,16,17,18,21,22,24,25,30,31,32,33,34,38,39,40,45,46,47,48,50],constellation_typ:[15,16,18,22,25,33,36,42,45],constitu:13,constitut:27,constraint:[6,10,11,13,16,19,24,53],constraint_length:[6,13,24,31],construct:[11,14,18,24,41,44,49],consum:[11,34,55],contain:[3,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,27,29,30,31,34,37,41,42,44,45,47,49,52],contamin:25,content:5,context:23,contin:41,continu:[19,22,24,27,30,31,34,41,47,49,51],continuum:41,contrari:42,contrast:[23,34,37],contribut:[19,41],control:[3,9,11,17,18,19,23,24,33,36,37,42,49],conv2d:[35,48],conv:[6,13,24,26,31,35,48],conv_coder:13,conv_n:13,convencod:[6,13,24,31],conveni:[3,16,17,22,27,30,34,38,40,41,42,44,45,48,49],convent:[3,23,30,46],conventional_train:26,converg:[14,27,33,49,53],convers:16,convert:[3,10,14,16,18,19,34,42,43,45],convient:15,convini:35,convolut:[5,10,13,20,21,24,31,34,35,38,45,48,51,53],convolv:21,coordin:[3,19,42,51],copi:[14,24,42,49,53],core:53,corner:[19,23],corr:3,correct:[6,9,11,13,16,21,24,27,30,33,38,40,42,43,51,53],correctli:[1,11,17,23],correl:[3,27,36],correpsond:[34,39],correspond:[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,39,41,42,43,45,46,47,48],correspondingli:14,cosin:[20,23,38],cost:[19,36,43],cot:23,could:[19,27,28,34,36,39,42,45,47,48,49,50],count:[19,22,49],count_block_error:[21,24],count_error:21,counter:[16,25],coupl:[41,43,44],cours:24,cov:36,cov_mat:18,cov_mat_freq:18,cov_mat_spac:18,cov_mat_tim:18,cov_time_spac:18,covar:36,covari:[3,16,18,40],cover:[19,25],coverag:[21,43],coverage_map:[21,41,42,43,44],coveragemap:21,covproperrv:16,cp:[3,17,34],cp_sim:34,cpu:[2,11,14,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52],cpu_onli:11,crb:17,crc11:[7,11],crc16:[7,11],crc24a:[7,11,30],crc24b:[7,11],crc24c:[7,11],crc6:[7,11],crc:[5,9,11,17,21,24,27,30,31,45],crc_degre:[7,11],crc_encod:7,crc_length:7,crc_pol:7,crc_statu:11,crc_valid:[7,30],crcdecod:[5,21,30],crcencod:[5,21,30],creas:34,creat:[3,7,9,11,15,17,18,19,20,23,24,25,26,27,30,32,35,36,38,39,40,41,42,45,47,48,53],create_dataset:28,create_or_check_constel:15,creation:[28,34,42,47],criteria:5,criterion:46,crop:19,cross:[3,21,23,25,26,33,34,35,36,39,42,46,47,48,49,53],crucial:53,crunch:[30,45],cruz:16,csc_matrix:9,csi:[18,25,26,33,34,35,36,39,42,47,48],csr_matrix:9,cst2011:16,cubic:41,cuda:[30,45],cuda_visible_devic:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],cummul:[34,39],cumsum:[34,39],curli:23,current:[2,3,4,6,8,11,14,19,22,24,25,27,31,41,42,43,44,49],curv:[10,11,14,19,22,24,27,29,31,34,39,45,49],custom:[15,16,18,19,20,22,24,25,27,42,45,47,48,50],custom_materi:19,customfilt:21,customwindow:21,cut:[18,19],cve:52,cvpr:[35,48],cw:[9,24,49],cw_estiamt:24,cw_estim:24,cw_length:17,cycl:[11,14,53],cyclic:[3,5,9,17,18,21,22,25,30,47],cyclic_prefix:[17,25],cyclic_prefix_length:[17,18,25,29,30,34,35,39,47,48],d1:23,d:[2,3,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,27,28,33,34,35,36,40,41,42,44,45,46,47,48,49],d_1:23,d_2:23,d_3:23,d_4:23,d_:3,d_h:3,d_j:16,d_k:16,d_min:[11,24],da:[23,44],damp:53,damping_factor:49,dash:[17,22],data:[3,14,17,18,19,22,24,25,27,28,29,31,33,34,35,36,39,40,46,47,48,49,51,53],data_dict:19,data_dim:18,data_gener:42,databas:19,databit:35,dataflow:[30,45],datascrambl:12,dataset:[0,19,21,22,42,53,55],dataset_fold:29,dataset_s:28,datatyp:[1,2,3,6,7,8,9,10,11,12,13,14,17,18,19,22,30,45],david:53,db:[14,19,20,22,24,25,26,27,29,30,31,32,33,34,35,36,38,39,40,41,42,44,45,46,47,48,49],dc:[18,33,34,35,47],dc_ind:18,dc_null:[18,29,34,35],dci:11,de:[6,13,14,15,19,34],deactiv:[17,22,25,30,41,42,43,44],deal:[23,37],debug:[30,33,45,48],dec:[24,26,30,31,33],dec_typ:[11,24,31,45],decai:[23,36,41],decemb:[3,53],decibel:20,decid:[6,9,10,11,13,14,15,16,17,18,27,30,49],decim:6,decis:[6,10,11,13,15,16,18,22,24,27,34,36,39,40,47,48],decod:[5,7,14,16,17,21,25,26,29,30,31,34,35,36,39,40,42,45,47,48,51,53,55],decoder2:24,decoder_crc:30,decoder_exit:27,decoder_typ:27,decodingsebastian:53,decompos:23,decomposit:[16,18],decor:[3,16,18,22,30,37,40,45],decreas:[2,24,25,38,44],dedic:[34,42],deep:[9,11,26,29,30,33,35,41,45,48,49,53],deepen:41,deepmimo:55,deepmimo_dataset:29,deepmimo_param:29,deepmimo_sionna_adapt:29,deepmimosionnaadapt:29,deeprx:[35,48],def:[2,3,4,19,24,25,26,27,28,29,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50],default_param:29,defin:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,29,30,31,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,53],definit:[3,9,13,14,15,16,19,22,23,27,37,45],defintit:23,deg:[3,41],deg_2_rad:[0,21],degli:[19,23,44],degrad:[8,9,24,34],degre:[3,7,9,14,19,41,43,44,49],deinterleav:[5,21,27,30],del:42,delai:[0,18,19,21,23,25,28,34,38,41,42,44,47,48],delay_bin:43,delay_resolut:43,delay_spread:[3,18,30,34,35,47,48],delet:42,delic:24,deliver:23,delta:[3,17,19,23,25,43],delta_f:[3,18],delta_t:[2,18,37],delta_z:2,demand:3,demap:[9,16,17,18,21,24,26,30,31,35,36,40,45,49,51],demapp:[9,10,11,14,16,17,18,21,24,27,29,30,31,34,35,39,40,45,46,47,48,50],demapperwithprior:21,demapping_method:[15,16,18,24,25,27,30,31,33,42],demodul:[17,21,25,27,34],demonstr:[13,24,28,34,37,53],denomin:6,denot:[1,2,6,7,9,13,14,17,18,19,22,23,24,25,27,31,33,34,37,38,41,42,43,44],dens:[11,26,46,50],dense_1:46,dense_2:46,dense_3:46,densif:53,densiti:[2,5,12,14,17,20,21,22,23,24,26,27,37,38,45,47,51,53],departur:[19,29,42],depend:[1,2,3,4,5,9,16,17,18,19,20,23,24,25,27,28,30,31,34,35,36,37,39,42,47,48],depict:[3,19,34,37,47],deploy:[30,53],deprec:[15,16,25,30,33,34,36,39,47,48],depth:[8,16,19],depunctur:13,deriv:[2,14,17,23,25,27,53],descend:16,descent:[11,26,35,46,49,53],descrambl:[5,21,27],descret:3,describ:[1,11,14,16,17,18,19,22,23,25,27,37,41,42,44],descript:[23,34],design:[5,9,11,13,14,18,19,24,27,51,53],desir:[3,4,6,9,10,11,13,14,16,17,18,20,22,24,25,28,31,32,38,40,42,43,45,51],desired_properti:4,desktop:52,despit:[2,38,40],destruct:[41,44],desurvir:2,det:[25,33,42],det_method:36,det_out:36,det_param:36,detail:[1,2,3,9,10,11,14,17,19,22,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,47,49,50,53,55],detect:[7,14,17,21,22,24,25,27,31,35,40,41,42,43,44,53,55],detection_desired_ind:16,detection_undesired_ind:16,detector:[2,16,17,18,25,33,42,53],determin:[4,9,13,15,16,17,19,23,25,34,36,39,41,42,43,44,47,48,53],determininist:42,detriment:34,develop:[18,30,36,41,44,45,51],deviat:[3,8,34],devic:[8,12,21,22,53],deweight:53,df:23,dft:[3,20,35],diag:[16,18],diagon:[16,18],diagram:[34,36,38,40],diagramm:39,dick:[33,53],dict:[19,30,41],dictionari:[19,26,30,35,36],did:[24,55],die:23,diego:29,dielectr:23,diff:19,diff_path:19,diff_paths_tmp:19,differ:[1,2,3,4,5,6,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,35,37,38,40,41,42,43,44,45,47,48,49],differenti:[1,9,11,15,19,26,30,35,42,45,47,48,51,53,55],differr:42,difficult:[11,24],diffract:[19,42,43,51,55],diffus:[19,23,42,43,44],digit:[6,27,53],digon:18,dim:[9,11,17,18,24],dimens:[1,2,3,7,8,9,10,13,14,15,16,18,19,20,22,25,27,30,35,36,41,42,43,45,46,48],dimension:[16,18,19,20,23,26,45,51],diminish:41,dipol:[19,42],dipole_pattern:21,dirac:3,direct:[3,19,23,25,33,34,36,39,41,42,43,44,47,48,53],directivepattern:[19,23,44],directli:[1,6,10,14,19,24,27,30,37,39,42,45,49,50,52,53,55],directori:52,disabl:[19,24,27,31,36,37,42,45],disappear:41,discard:[10,35,48],discov:[17,42,44,48,51],discret:[0,3,17,18,19,20,21,27,35,37,44],discrimin:[19,23],discuss:[23,27,42,43,51],disp:[30,45],dispatch:[30,34,36,39,47,48],dispers:2,displac:[19,43],displacement_vec:43,displai:[19,25,42],diss:43,dist:[16,25,30,33,34,39,44,47,48],distanc:[2,3,6,8,10,11,16,19,23,24,36,37,41,42,43,44],distinct:[25,41],distinguish:[23,41,44],distort:37,distribut:[2,3,8,12,14,16,19,20,22,23,28,34,37,39,41,45,49,53],dive:[37,41,43,44],divid:[44,45],divis:[13,21,25,30,51],dl_sim:34,dmc:27,dmr:[17,42],dmrs_additional_posit:17,dmrs_config:17,dmrs_grid:17,dmrs_length:17,dmrs_mask:17,dmrs_port_set:[17,25,42],dmrs_symbol_indic:17,doc:30,docstr:45,document:[2,3,19,22,23,25,30,34,36,39,41,42,43,44,45,46,47,48,50,51],doe:[3,8,10,11,12,14,16,17,18,19,22,23,24,25,26,27,30,33,34,36,37,39,41,42,43,44,45],doesn:3,doi:[3,26,35,46,48],domain:[0,2,6,12,13,16,17,18,20,21,24,25,29,33,35,36,37,38,42,43,48,51],domin:[34,37,41,44],don:[33,35,44],done:[2,3,9,11,13,16,17,18,19,23,24,25,26,27,29,31,34,35,37,39,40,42,45,46,48,49],dong:53,donwlink:34,dope:[0,21,37],doppler:[18,19,34,42],doppler_bin:43,doppler_lo:43,doppler_ref:43,doppler_resolut:43,doppler_tx_lo:43,doppler_tx_ref:43,dot:[3,15,16,18,20,21,23,41,42],doubl:[17,36,37],double_reflector:21,down:[33,38],downlink:[3,11,16,29,39,42,47,48],download:[19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],downsampl:[21,34],dr:42,drastic:49,draw:[8,19,42,45],drawn:[14,15,16,18,19,29,30,42],drive:[43,51],driven:53,driver:[30,45,52],drjit:52,drm:25,drop:[2,3,18,39,41,44],drop_uts_in_sector:[0,21],ds:[19,20,38],dt:[2,23,37],dtype:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,28,30,32,33,35,36,37,40,42,45,50],dual:[2,3,17,19,23,25,33,34,35,36,39,42,47,48],due:[2,3,11,14,17,18,19,23,24,25,27,30,34,37,38,39,41,42,43,47],duidd:[33,53],dummi:[3,10,24,30,42],dump:[26,35,46,48],duplic:11,durat:[2,3,6,17,18,20,25,34,37,38,39,43,47],dure:[2,6,8,9,12,13,14,17,19,22,25,27,34,37,43,47,49],dx:19,dy:19,dynam:[24,41],dz:2,e2:[30,36],e2e_model:[30,42],e2esystem:35,e2esystemconventionaltrain:26,e2esystemrltrain:26,e:[1,2,3,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53],e_:[16,22,23,24],e_b:[22,24,26,29,31,33,34,35,36,39,45,46,47,48],e_i:2,e_j:16,e_k:16,e_x:2,each:[1,2,3,6,8,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49,50],eager:[4,25,34,51],eagerli:33,earli:[8,9,11,22,24,27,30,49],earlier:[25,30,52],early_stop:[22,24,27,31,42],easi:[30,34,40,46,47,48],easier:39,easiest:3,easili:[17,19,23,36,40,45,46,51],eb:[22,27,30,32,34,45,46,47,48],ebada:[9,11],ebada_design:11,ebn0_db:[36,46],ebn0_db_max:[45,46,47,48],ebn0_db_min:[45,46,47,48],ebno:[14,22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,45,46,47,48,49],ebno_db:[14,22,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,45,46,47,48,49],ebno_db_max:[26,35],ebno_db_max_cest:33,ebno_db_max_perf_csi:33,ebno_db_min:[26,35],ebno_db_min_cest:33,ebno_db_min_perf_csi:33,ebnodb2no:[14,21,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,45,46,47,48,49],ecc:[30,45],eceiv:16,ed:2,edfa:[2,37],edg:[9,19,23,42,49,53],edge_diffract:[19,41],edge_weight:9,edgecolor:[41,43],edit:[19,42],effect:[3,11,13,16,17,18,19,23,24,25,27,30,34,36,37,39,40,41,42,43,44,47,48,49,53],effectic:18,effective_subcarrier_ind:18,effectvi:[17,18],efficaci:53,effici:[1,3,9,10,11,12,14,16,17,18,19,23,24,27,30,31,34,40,42,45,46,48,53],efficienli:[35,48],effort:53,eigen:3,either:[1,3,6,8,9,10,12,15,16,17,18,19,20,22,24,25,26,27,31,33,34,36,42,43,47],ekwfg2010:2,electr:[23,37,41],electromagnet:[19,41,42,44,51,53],eleg:27,element:[1,3,8,11,12,13,14,15,16,17,18,19,20,22,23,25,29,30,33,34,35,36,38,42,44,45,47,48],element_horizontal_spac:3,element_vertical_spac:3,elev:[3,19,43],eleventh:18,elif:[24,25,33,34,35,36,39,42],elkelesh:[9,11],ell:[1,2,3,15,18,19,27,34],ell_0:15,ell_:[15,24,27,37],ell_i:15,ell_n:[15,19],els:[24,25,26,27,31,33,34,35,36,39,42,45,46,47,48],em:[19,42,44],email:53,embed:[11,53],emil:3,emiss:2,emit:19,emphas:24,empir:[20,24,34,38,39,40,49],empirical_aclr:[21,38],empirical_psd:[21,38],emploi:53,empti:[14,16,17,18,19],emptypilotpattern:21,emul:42,en:[14,24,51],enabl:[2,3,8,12,15,16,17,18,19,22,24,25,26,27,29,30,31,34,35,36,37,39,40,41,42,44,45,46,47,51,53],enable_pathloss:[3,25,33,36,39],enable_shadow_fad:[3,25,33,36,39],enable_xla_for_tensorflow_model:30,enc:[10,24,27,31],enc_crc:11,enc_mat:10,enc_polar:11,encod:[5,7,14,17,21,24,25,26,29,30,31,34,35,36,39,40,45,47,48,49,53],encoder_crc:30,encoder_polar:24,encourag:41,end2endsystem:46,end:[1,3,13,14,15,16,17,18,19,20,22,23,29,42,43,44,45,47,48,51,53,55],endless:41,endpoint:42,energi:[2,3,17,18,19,22,23,34,38,41,42,44,45,47,49],engin:[2,23,27],enhanc:[7,24,30,53],enjoi:[25,41,42,43,44],enough:[3,24,27,39,42],ensur:[1,3,4,10,12,15,16,18,23,24,27,30,33,41,42,43,52],entail:13,entir:[15,16,17,18,19,34,35,41,44,48,51,53],entiti:27,entri:[9,14,15,16,17,22,24,42,45,49,55],entropi:[26,35,46,48,49,53],enumer:[24,27,31,34,41,43,44],environ:[19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53],ep2014:16,ep:[16,18,33,36],epdetector:[21,33,36],episod:51,epr:17,epsilon:26,epsilon_i:26,epsilon_r:26,eq:[2,3,16,19,23],equal:[1,3,6,7,8,9,10,11,12,13,14,15,17,19,20,21,22,23,24,25,27,30,32,34,35,36,37,39,40,41,42,44,47,48,49,51],equat:[2,14,19,35,36,37,41,43],equip:[3,19,25,29,33,35,36,42,43,47,48],equival:[3,11,15,16,18,19,23,26,34,36,38,44,47,49],er:19,er_ep:36,er_kbest:36,er_lmms:36,er_mmse_p:36,eras:1,erasur:[1,24],erbium:[0,21,37],eri:[9,49],err_var:[17,18,29,30,34,35,36,39,47,48],erron:[27,45],error:[1,3,6,7,10,13,14,16,17,18,19,21,22,24,25,26,27,28,29,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,53],esno:[22,24],esno_db:24,esno_db_max:24,esno_db_min:24,esno_interv:24,especi:[16,18,34,39,41,51],esposti07:[19,23],esposti11:[19,23],esposti:[23,44],essenti:[27,44,53],essiambr:[2,37],est:[33,36],est_label:36,estim:[6,9,10,11,13,15,16,17,19,21,22,24,25,26,27,30,31,33,34,35,40,42,43,45,46,47,48,49,51,53,55],estimate_at_pilot_loc:18,estimate_covariance_matric:36,estimatior:17,et:[19,23,44,49],eta:[19,23],eta_0:41,eta_1:23,eta_2:23,eta_:[19,23],eta_n:41,eta_rad:19,etc:[3,15,19,27,29,34,42,49],etoil:[21,42],etsi:[7,8,9,11,12,13,15,24,27],euchner:53,eutra:[8,13],eval:[25,34,35,39],evalaut:30,evalu:[10,11,19,20,22,23,24,27,29,30,33,36,45,46,47,48,49,51],evaluate_ms:36,even:[3,18,20,23,24,25,27,30,38,42,45,53],event:3,ever:55,everi:[3,9,12,15,16,17,18,19,25,26,27,30,33,34,35,36,38,39,41,42,43,44,45,49,51],everyth:[19,23,30,40,49],evolut:[5,19,34,42,47,53],evolv:[8,13],exact:[2,5,6,8,13,17,24,27,34,39,43,45],exactli:[11,19,27,44],exampl:[2,3,6,10,13,14,17,18,21,24,26,27,28,29,30,34,35,36,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55],exce:25,exceed:3,excel:24,except:[3,7,10,14,17,19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],excess:44,exchang:[24,33,42,53],excit:[30,48,53],execut:[4,8,12,14,19,22,24,30,31,34,35,36,37,40,41,42,43,44,45,46,47,48,52,55],exercis:34,exhaust:[19,30],exhibit:41,exist:[10,15,16,18,19,22,24,30,37,41,42,45,51,53,55],exit:[5,9,21,41,42,43,44],exitcel:[41,42,43,44],exp:[2,3,14,15,16,20,27,37],exp_corr_mat:[0,21,40],expand:22,expand_dim:[8,22,42],expand_to_rank:[21,26,33,35,41,44],expans:19,expect:[1,6,10,12,16,17,18,19,24,26,27,33,35,37,40,41,43,44,48],expedit:53,experi:[19,25,27,37,44],experienc:43,experiment:[22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,49],expert:51,explain:[18,19,23,24,25,34,36,43,54],explan:[24,41,44],explanatori:34,explicit:[7,8,12,14,22,23,24,27,49],explicitli:[6,8,9,12,13,18,19,24,27,31,42],exploit:10,explor:[5,26,41,43,51],exponenti:[3,40],exponeti:40,express:[9,15,16,18,19,22,23,27,49],extend:[17,23,25,30,36,40,41,48,51,53],extens:[22,23,24,31,41,42,45],exterior:[23,41],extern:[0,10,14,21,42],extra:13,extract:[14,18,25,29,35,48],extrem:24,extrins:[9,14,27,33],extrud:53,ey:40,f:[1,2,3,6,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],f_:[2,19,23,37,43,44],f_c:[2,18,37],f_edfa:37,f_hz:19,f_max:20,f_min:20,face:[23,41],facecolor:41,fact:[14,19,23,24,27,38,42],facto:27,factor:[2,3,9,15,16,17,18,20,23,24,25,34,38,41,49],fade:[0,21,25,33,34,40,41,44,47],fail:[23,24],fair:[24,31,36],fairli:[34,39,40,47,48],fake:[14,27,49],fall:23,fals:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49],famili:[10,47],familiar:[34,39,41,44,49],fan:[30,45],far:[19,27,37,40,41,45,49,51],fascin:49,fashion:9,fast:[11,24,30,41,43,44,45,51],faster:[27,30,33,34,41,43,45,51,53],fastfadingchannel:40,fateh:[16,33],favorit:49,faycal:36,fbmc:34,feasibl:[10,24],featur:[17,19,26,30,34,36,40,42,45,46,53],feb:[11,23,29,41,46],februari:[37,53],fec:[6,7,8,9,10,11,12,13,14,17,21,24,26,27,29,30,31,33,34,35,36,39,40,47,48,49,50,51],fed:[23,25,26,35,48],feed:[6,35,48],feedback:[6,26,53],feel:[34,44,49],feick:27,feit:2,ferreira:2,few:[10,17,19,24,27,30,34,38,40,42,43,44,45,47,49,53],fewer:53,ffffff:19,fft:[3,18,21,37,43,47],fft_size:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,47,48],fftshift:[37,43],fiber:[0,21,37,51],fibonacci:[19,42],fidel:53,field:[3,18,19,41,42,44,51,53],fifti:16,fig:[9,11,17,19,22,23,24,26,31,32,33,36,37,41,43,46],fig_3d:19,fig_h:19,fig_v:19,figsiz:[15,24,26,27,29,31,32,33,35,36,38,43,45,46],figur:[2,3,5,9,14,15,17,18,19,20,22,23,24,25,26,27,29,32,34,35,36,37,38,39,41,42,43,44,45,46,47,48],file:[14,19,22,28,29,35,42,45,46,48,51],filenam:[10,14,19,26,28,42],fill:[9,13,17,22,25,26,33,35,48],filler:[8,9],filter:[3,16,18,21,34,35,36,37,48,51],find:[6,8,10,13,14,19,23,24,30,42,45,53],find_s_min:8,find_threshold:24,fine:[18,24,26,41,44],finer:44,finit:[3,18,23,34,38,41],first:[1,2,3,6,7,8,9,11,13,14,15,16,17,18,19,20,22,23,24,25,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,51,52,55],fit:[17,19,25,29,34,35,48],five:18,fix:[7,8,12,23,24,26,34,42,47,48,49],flag:[6,15,16,17,18,19,25,40],flat:[0,21,34,40],flatfadingchannel:[0,21,40],flatten:[16,22,37],flatten_dim:21,flatten_last_dim:[21,35],fleck:2,flexibl:[5,11,24,30,31],flip:[1,12,14,27],float16:[9,11,14],float32:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,26,27,28,30,31,32,33,34,35,36,42,44,45,46,48,49,50],float64:[9,11,14,15,16,17,18,20,22,40,45],flood:9,floor:[5,14,27,29,31,43,53],floor_wal:[21,41],floot:19,florian:53,flow:[11,14,24,51],fluctuat:41,fluctut:41,flux:23,fmf1976:2,fo:25,focu:[23,24,27,36,37,42,49,51],focus:[36,44],folder:[14,29,52],folllw:25,follow:[2,3,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55],follw:14,fontsiz:[24,27,31,46],footprint:[9,49],foral:24,forc:[3,16,18,34],forget:44,form:[3,6,10,13,14,15,16,19,23,26,27,29,35,41,42,44,46],format:[6,10,13,14,19,24,25,26,27,30,34,35,39,40,41,42,45,49,53],former:[2,3,16,19,23,26,37,41,43,53],formula:[19,23],fornei:11,forney_graph:11,fortun:43,forward:[6,16,21,22,24,26,27,33,35,42,46,48,51,53],forward_keyboard_interrupt:[22,24,27,31,42,45,49],foschini:[2,37],fossori:[10,24],found:[3,5,14,15,19,23,24,31,42,45,51],foundat:[3,53],four:[16,17,18,25,32,34,38,45,46,47,48],fourier:[0,3,18,20,21,23,34,35,38,51],fourth:[29,34],fov:19,frac12:[3,16,23],frac:[1,2,3,6,9,13,14,15,16,18,19,20,22,23,24,25,27,35,36,37,41,43,44],fraction:[23,44],frame:[17,18,22,25,30,33,45],frame_dur:[17,25],frame_numb:[17,25],frame_s:8,framework:[9,13,53,55],frauenkirch:[19,42],free:[6,14,22,23,25,26,27,34,42,49,53],freedom:[34,49],freeli:[19,34],freeman:49,freq:[17,20,25,33,34,36,42],freq_cov_mat:36,freq_cov_mat_:36,freq_respons:39,frequenc:[2,3,17,19,20,21,25,28,29,35,37,38,41,42,43,44,48,51,53],frequency_hop:17,frequency_update_callback:19,frequeni:42,fresnel:23,from:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,53,55],from_dict:19,from_logit:[26,46,48,49,50],front:[17,43],frozen:[11,24],frozen_po:[11,24],ft2015:16,ftp:15,ftt:18,fu:16,fuction:[25,33],fugihara:2,fulfil:[14,19],full:[6,9,10,11,14,16,17,18,20,22,25,27,33,34,36,37,43,45],fulli:[9,11,15,35,48,53],fun:[34,46],func:4,fundament:[3,23,45],furnitur:19,further:[1,2,5,6,9,10,11,12,13,14,17,18,19,22,23,24,25,27,30,37,38,40,42,45,50,53],furthermor:[53,55],futur:[30,34,36,39,47,48,51],fwhm:37,g:[1,2,3,6,8,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,34,35,37,38,39,40,41,42,45,46,52,53],g_0:37,g_:[23,37],g_db:41,g_dif_db:41,g_edfa:37,g_los_db:41,g_ref_db:41,g_tot_db:41,ga:[27,49],ga_sourc:27,gabri:24,gain:[2,11,19,23,24,27,33,34,37,41,42,44,47,49],gallag:24,gallion:2,gamma:[2,3,19,23,37,44],gamma_:18,gap:[9,24],gastpar:11,gather:[16,18,30,34,36,39,42,45,47,48],gaudio:24,gaussian:[3,14,16,18,20,26,27,28,30,34,35,37,49],gaussianpriorsourc:[5,21,27,49],gc:[1,23],gca:[24,29],gcf:24,gd1991:2,ge:23,geforc:[30,45],gen_poli:[6,13,24,31],gen_single_sector_topolog:[0,21,25,33,36,39],gen_single_sector_topology_interfer:[0,21],gen_topolog:[25,39],gener:[2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,29,30,31,32,35,36,38,39,40,41,42,43,44,46,47,48,49,51,53],generaliz:53,generate_5g_rank:[5,21,24],generate_channel:3,generate_data:29,generate_dense_polar:[5,21],generate_out_int:9,generate_polar_transform_mat:[5,21],generate_prng_seq:21,generate_reg_ldpc:[5,21],generate_rm_cod:[5,21,24],generateflatfadingchannel:[0,21],generateofdmchannel:[0,21,28,29,33,36],generatetimechannel:[0,21],geng:23,gentl:33,geograph:53,geometr:[1,15,19,23,41,44],geometri:[3,19,26,34,36,42,47,53],georg:46,geospati:53,geq:3,gerard:37,gerhard:37,germani:[27,42],get:[16,18,19,23,24,25,34,38,39,40,41,42,43,44,46,47,48,49,51,54,55],get_exit_analyt:[5,21,27],get_logg:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],get_num_term_sym:13,get_throughput:[24,30],get_weight:[26,35,46,48,49],geth:25,gf:14,ghz:[3,19,29,41,42],gi:[30,45],gian:53,gile:2,github:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],githubdigit:53,githubeven:53,githubin:53,githubit:53,githublarg:53,githubrai:53,githubrun:53,githubth:53,githubthi:53,githubw:53,give:[3,23,34,38,45],given:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,27,29,30,31,34,36,37,41,42,47,49,53],glavieux:13,global:[4,8,12,19,23,41,42,43,44],globecom:1,gm2pcm:[5,21],gm:[10,11,14],gnb:33,gnn:53,go:[23,25,27,30,41,44,49],goal:[23,27,39],goala_lp:11,goe:44,goebel:[2,37],goela:11,gold:17,gong:53,good:[18,19,23,30,34,36],googl:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],gottfri:27,gp:2,gpu:[11,19,22,30,37,45,47,48,51,52,53],gpu_num:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],grad:[26,30,35,45,46,48,49,50],gradient:[11,26,35,42,48,49,51,53],gradienttap:[26,35,46,48,49,50],grai:[15,26,27],grain:18,grant:14,granular:[19,24],graph:[3,4,8,9,11,12,16,18,22,24,25,27,31,36,46,47,48,49,51,53],graph_mod:22,graphic:23,grasp:44,great:[11,23,24,36,55],greater:[3,9,11,17,20,22],green:[19,23,31,41],grei:18,grid:[3,17,19,21,22,24,25,26,27,28,29,30,31,32,33,35,36,37,39,42,43,45,46,48],grosjean:[11,24],gross:[11,49],gross_fast_scl:11,groud:47,ground:[19,26,27,35,39,41,43],group:[2,17,19,25,37,52],grown:41,gsm:5,gt:[24,25,28,29,32,35,36,40,43,45],gtd:[23,41],guarante:[14,19],guard:[18,33,34,35,47],guardcarri:18,guid:[9,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52],guillermo:[51,53],gumbel:1,gumbl:1,gumblesoftmax:1,gvd:37,h00:15,h5:28,h5py:28,h:[2,3,9,12,14,16,17,18,19,20,22,23,25,27,33,34,35,36,37,38,39,40,41,42,43,44,49],h_0:25,h_1:25,h_:[3,14,19,23],h_avg_pow:42,h_corr:3,h_delai:43,h_delay_doppl:43,h_dop:43,h_eff:18,h_est:[34,39],h_f:3,h_f_2:41,h_f_tot:41,h_freq:[3,28,29,34,36,39,42,47,48],h_freq_hat:3,h_hat:[18,29,30,33,34,35,36,39,47,48],h_l:[17,18],h_n:19,h_perf:[34,39],h_sampl:36,h_samples_:36,h_sim:43,h_t:3,h_time:[3,34],ha:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,27,30,31,32,34,36,37,38,39,41,42,43,44,46,47,48,49,51,53],habilit:27,had:[19,55],hagenau:14,half:[2,16,19,34,37,47],half_window_length:2,ham:[2,14,20],hammingwindow:21,hand:41,handbook:9,handl:[9,10,13,14,15,18,22,24,26,31,42],hann:20,hannwindow:21,hanzo:16,haochuan:53,happen:[19,22,24,25,27,41,42,44,45,49],hard:[6,9,10,11,13,15,16,17,18,22,24,27,30,31,33,34,36,39,40,42,47,48,49],hard_decid:13,hard_decis:[21,27,31,49],hard_in_out:15,hard_out:[6,9,11,13,14,15,16,18,26,27,29,30,33,34,35,36,39,40,45,47,48,49],hardin:2,hardli:34,hardwar:[3,25,33,34,42],harmon:51,has_weight:9,hashemi:11,hashemi_sscl:11,hat:[2,3,16,18,19,23,25,43,44],have:[2,3,7,8,10,12,13,14,15,16,17,18,19,20,22,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55],hd5cirgen:28,hdf5:28,he:[10,23,24,35,48],heavili:53,height:[3,15,19,42],hello:[51,52,54],help:[3,9,17,19,23,25,26,30,34,35,44,45,48,49],hemispher:[19,44],henc:[2,23,36,37,41],her:34,here:[2,13,18,19,23,25,26,28,29,34,37,39,40,42,45,46,47,51,53],herebi:[1,12],hermitian:22,hertz:3,heurist:[23,41],hex:19,hf:28,hide:30,high:[2,3,10,16,17,19,24,25,34,39,40,41,42,43,45,51,53],higher:[10,12,17,24,27,30,34,36,37,41,42,43,44,49,53],highest:18,highli:10,highlight:[29,36],himself:34,hint:[14,27,37,45],hist:[34,39],histogram:[9,27,34,39],histori:27,hit:[23,41,44],hm:3,ho:53,hochwald:33,hold:[7,14,18,19,23,24,27,30,37,44],home:36,homogen:23,honkala:[35,48],hood:25,hop:17,hope:[30,41,43,44,48,55],hopefulli:[25,42],horizon:43,horizont:[3,19,23,34,47],horizontal_spac:[3,19,41,42,44],hou:[9,12,27],hour:[24,42],hous:[23,41],how:[2,3,6,7,8,9,11,12,13,14,16,17,18,19,20,23,24,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,53],howev:[2,3,6,8,10,11,12,13,14,16,17,18,19,22,23,24,25,27,30,33,34,36,37,38,39,41,42,43,44,45,46,47,48,49,51,53],hoydi:[1,3,11,24,26,33,35,46,48,51,53],ht1973:2,html:[14,25,39,42],http:[9,11,14,15,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,49,51,52],hui:[11,24],hui_channelcod:11,humphrei:23,huttunen:[35,48],hw_dipol:19,hw_dipole_pattern:21,hybrid:[11,24],hybrid_sc:11,hybscl:[11,24,31],hyper:49,hyperparamet:[33,49,53],hypothesi:16,hyung:53,hz:[2,3,18,19,33,34,35,36,37,42,43,47,48],i:[1,3,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53],i_:17,i_bil:11,i_il:11,i_k:23,i_seq:11,ia:[14,27],ibm:24,icassp:[11,24],icc:13,ici:[3,47],id:[12,14,17,25,30,45],idd2:33,idd3:33,idd:53,idd_it:33,idd_stop:33,iddmodel:33,idea:[24,26,27,30,38,49,51,53,55],ideal:[2,3,23,34,37,39],ident:[13,14,16,17,19,25,27,34,40,42],identifi:[12,17,19,25],idft:[3,20],ido:[11,24],idx:[22,24,27,31,42],ie_c:[9,14,27],ie_v:[9,14,27],iec:[14,27],ieee:[1,3,6,9,10,11,12,13,14,16,19,23,24,26,27,33,35,41,44,46,48,49],iev:[14,27],iff:[11,12,22,24],ifft:[21,43],ignor:[3,6,10,12,13,17,18,19,23,28,30,34,42,45,47],ii:[41,45,46,47,48],iid:33,iii:[41,45,46,47,48],illustr:[28,30,41,46],im:[16,28,36,50],imag:[3,19,26,32,34,35,36,38,39,40,42,45,46,47,48,50,52],imaginari:[15,16,26,32,34,35,39,45,46,47,48,50],immedi:[22,41,45,52,55],immers:53,impact:[19,25,26,36,37,39,40,41,43,45,49,51],impair:37,imped:23,imperf:[25,34,39,42],imperfect:[25,34,36,39],imping:[23,44],implement:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,35,36,37,40,41,42,44,45,46,47,49,50,55],impli:[6,13,19,25,34,49],implicit:15,implicitli:[6,14,34,42],implict:25,importantli:[23,41,42],importerror:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],impos:[10,14,16,34],imposs:4,impract:43,imprecis:36,improv:[9,10,27,33,34,36,38,44,49,53],impul:37,impuls:[3,18,19,20,28,29,38,41,43,47,48,51,53],imshow:36,in_stat:3,inaccur:[14,27],inch:15,incid:[19,23,41],incl:[24,27,31],includ:[2,3,9,10,11,17,18,19,23,24,25,27,29,30,31,34,35,36,37,39,42,44,46,47,49,51,52],inclus:[6,13,22],incom:[9,19,23,41,42,44],incomn:44,incorpor:[23,53],incorrect:23,increas:[2,9,11,14,16,19,24,25,31,36,37,38,41,42,43,44,49,53],incred:30,ind_iil_inv:11,ind_pam1:15,ind_pam2:15,ind_qam:15,inde:[25,44],indent:44,independ:[4,10,12,16,17,19,22,23,25,27,30,34,40,45,46,51],index:[3,9,12,15,18,19,20,22,25,27,30,34,35,38,39],indic:[1,3,4,6,7,9,11,12,13,15,16,17,18,19,20,22,23,24,29,30,34,36,39,40,41,46,47,48],individu:[16,18,19,24,25,26,27,30,34,37,42,45,49],indoor:[3,19,53],indoor_prob:3,induc:[2,37],inf:[6,9,10,11,12,14],infer:[6,13,14,24,25,33,35,46,48],infinit:[2,23,27,37,41,42,44],infinitesim:[19,23,44],influenc:49,info:[9,17,24,25,27,30,42,45,49],info_bit_length:30,info_po:[11,24],inform:[6,7,9,10,11,13,14,15,16,17,18,22,23,24,25,26,27,29,30,31,33,34,35,36,39,40,45,46,47,48,49,50,53],infti:[1,3,23,24],inher:[30,45],inherit:[1,2,3,6,7,8,9,10,11,12,13,17,30,33,45,46,47,48],init:[2,8,12,14,17,24,27,30,31,42,45,49],initi:[8,9,10,11,12,13,14,15,17,19,22,24,25,27,30,31,33,34,35,36,37,42,45,46,47,48,49,50,53],initial_valu:15,initialis:42,inlin:[2,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],inner:[22,46,53],inp:20,input:[1,2,3,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,29,30,31,33,34,35,36,37,42,45,46,47,48,49,50,51,53],input_domain:[17,25,42],input_interleav:11,input_shap:[35,50],inputs_reshap:45,insensit:20,insert:[14,20,22,34,38],insert_dim:[21,26,35,48],insid:[42,45],insight:41,inspect:[25,34,38,41,42,43,44],inspir:[24,33],instal:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],instanc:[3,7,8,9,11,12,15,16,17,18,19,20,22,25,26,29,34,38,40,42,45,47],instant:[3,34,47],instantan:[37,53],instanti:[3,4,10,13,17,19,20,25,26,29,30,34,35,36,37,38,39,40,42,45,46,47,48,50],instead:[1,3,7,9,11,14,15,16,17,18,19,22,23,24,25,30,42,46],instruct:[24,25,30,33,34,36,39,47,48,52],instrument:53,int2bin:[5,21],int2bin_tf:[5,21],int32:[8,12,13,15,16,18,22,24,26,30,36,44,45,46,48],int64:[22,35,42],int_0:23,int_:[3,19,23],int_method:36,int_mod_2:[5,21],int_rep:45,intanti:46,integ:[8,9,10,11,12,13,14,15,17,18,19,22,23,24,30,34,44,45],integr:[2,5,15,16,19,23,24,42,44,46,51,53],intellig:53,intend:[18,34],intens:[19,43],intent:55,inter:[3,25,30,34,45],interact:[19,37,42,51,55],interc:18,intercarri:[3,47],interest:[17,23,24,27,31,32,34,37,39,41,44,47],interestingli:27,interf:[3,16],interfac:[0,21,23,27,51],interfer:[3,16,18,25,33,34,41,44,47],interfernc:34,interior:19,interleav:[5,7,9,11,12,13,17,21,24,26,30,33,45,46,48,49,53,55],interleaver_typ:13,intermedi:[22,27,37,49,53],intern:[1,2,3,7,8,9,10,11,12,13,14,16,17,18,19,22,24,27,31,39,42,45,49],internet:[24,53],interp:33,interpol:[17,18,30,33,34,35,36,39],interpolation_typ:[17,18,29,30,33,34,35,36,39,47,48],interpret:[1,2,10,14,16,22,27],interrupt:27,intersect:[19,42,43],intersymbol:3,interv:[3,19,24,38,42],intrins:16,introduc:[2,8,23,27,37,41,46,48,53],introduct:[9,23,25,26,35,41,55],intuit:[24,27],invalid:[3,9,11],invalidargumenterror:[7,8,9,11,14],invari:3,invers:[3,8,9,11,12,14,16,17,18,20,22,23,35,37,42],invert:[9,29],invert_xaxi:29,investig:[34,37,39,42,49,51],invis:19,invok:19,involv:[24,34,47,48],io:[25,39,42,52],ioniz:19,iot:[24,53],ipykernel:52,ipython:[30,32,41,42,43,44,50],irregular:14,irrelev:[18,41],is_bler:[22,31],is_pcm:[10,14],is_us:19,isb:41,isd:3,isi:[3,34],isinst:33,isit:[9,11],isita:14,isn:49,iso:[19,23,41,42,43,44],iso_pattern:21,isol:37,isotrop:[19,23,41],issu:[25,33,51,53],iswc:16,ita:29,itali:19,item:[3,19,28],iter:[9,11,13,14,16,17,18,22,24,25,26,27,28,29,30,31,34,35,36,39,42,45,46,47,48,49,53,55],its:[1,4,5,6,10,11,13,14,15,16,17,18,19,20,22,23,27,28,30,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,52,53],itself:[2,6,13,24,27,42],itu:[19,23,41],itu_brick:[19,41],itu_ceiling_board:[19,41],itu_chipboard:[19,41],itu_concret:[19,41],itu_floorboard:[19,41],itu_glass:[19,41],itu_marbl:[19,41,42],itu_medium_dry_ground:[19,41],itu_met:[19,41],itu_plasterboard:[19,41],itu_plywood:[19,41],itu_very_dry_ground:[19,41],itu_wet_ground:[19,41],itu_wood:[19,41],itur_p2040_2:19,iturp20402:23,iturp52615:23,itw:[11,49],iv:[45,46,47,48],j2:[3,18,19,20,23,41,43],j:[1,2,3,6,8,9,11,12,14,16,18,19,23,24,25,26,27,30,33,34,35,37,39,41,43,46,47,48,49],j_0:18,j_fun:[5,21],j_fun_inv:[5,21],j_fun_inv_tf:[5,21],j_fun_tf:[5,21],jai:53,jakob:[3,11,51,53],jame:27,jan:[23,41,44],jang:1,januari:53,jc:23,jean:37,jelinek:6,jerkovit:24,jian:[35,48],jit:42,jit_compil:[3,4,11,16,18,22,24,25,26,30,31,33,34,36,39,40,42,45,46],jk:23,jk_0:23,jk_0r:23,johari:53,john:[6,19,23],joint:[1,26,27,37],jointli:[16,26,34,37,46,48,50],joohan:53,joseph:[23,41,53],joshireleas:53,journal:[2,16,23,26,33,37,41,49,51],jsac:26,jt:23,jul:[3,15,33,44],juli:16,jun:[11,19,23,24],june:[35,48],jupyt:[19,30,41,42,43,44,45,50,51,53,55],jupyterlab:52,just:[5,6,10,24,30,34,37,40,42,45,46,49,50],jx:23,k:[2,3,6,7,9,10,11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,33,34,35,36,38,39,40,42,43,44,45,47,48,49,50],k_0:23,k_:19,k_best:[25,33,36],k_crc:[7,11],k_exit:27,k_factor:3,k_i:19,k_ldpc:[9,30],k_n:18,k_pad:17,k_polar:11,k_t_lo:43,k_t_ref:43,k_target:11,k_x:[19,23],kaim:[35,48],kappa:[17,25],kbest:[25,42],kbestdetector:[21,25,33,36,42],keep:[10,16,18,19,24,26,30,35,36,37,39,45,55],keep_batch_const:[8,12],keep_stat:[8,12],keepdim:19,kei:[15,18,26,30,34,41,42,45,46,47,48,50,51,53,55],keirsbilck:53,keller62:23,keller:[23,41,51],kellerreleas:53,kept:[12,19,23,37],ker:20,kera:[1,2,3,6,7,8,9,10,11,12,13,17,19,22,24,25,26,27,29,30,31,36,42,46,47,48,49,50,51],kernel:[11,20,35],kernel_s:[35,48],kerr:2,keyboardinterrupt:22,keyword:[17,25,44],khz:17,kilo:2,kind:[18,37],kl:14,kline:23,km:[2,37],kn:3,knife:[23,41],know:[24,34,35,40,41,45],knowldg:15,knowledg:[3,14,15,16,18,19,27,33,34,35,36,40,53],known:[16,23,24,26,35,41,49,52,53],korada:11,korpi:[35,48],kouyoumjian74:23,kouyoumjian:[23,41],kramer:[2,14,27,37],kroneck:[3,11,18,29,30,33,34,35,36,39,40,47,48],kroneckermodel:[0,21,40],kroneckerpilotpattern:[21,34],ks:24,kth:3,kudekar:[9,24],kumar:53,kwarg:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,36,45],l:[1,3,6,9,11,12,14,16,17,18,19,23,24,27,31,33,36,38,42,49],l_:[2,3,18],l_a:1,l_bar:17,l_ch:27,l_m:18,l_max:[3,17,25,34],l_min:[3,17,18,25,34],l_tot:[3,34],label:[15,22,24,26,27,29,31,32,33,34,35,36,41,46],labelpad:43,labels:[24,31],lag:[3,17,18],lai:3,lamba_check:[25,33],lambda:[17,19,23,25,33,41,43,44],lambda_:19,lambert:23,lambertian:[19,23,44],lambertianpattern:[19,23,44],land:[11,24],languag:[30,53],larg:[2,3,10,11,14,16,18,19,24,25,30,33,34,39,40,41,42,44,49,53],larger:[3,6,11,16,17,18,19,22,23,24,25,33,34,38,44],largest:[3,18,19,24,29],laser:2,last:[1,2,3,7,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,35,37,39,40,42,43,44,45,46,48,49],latenc:[5,6,24,31],later:[1,17,24,25,27,34,40,41,42,43,44,45,47,49],latest:[41,42,43,44,52,53,55],latter:[15,16,17,18,19,22,23,34,41,43,44,45],lattic:19,launch:[19,52],law:[23,41],layer:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,24,26,27,31,35,37,38,42,45,47,48,50,51,53],layer_mapp:17,layerdemapp:[21,25],layermapp:[21,25],layernorm:[35,48],layout:[24,29],lazi:24,lceil:[3,13,19],ldpc5gdecod:[5,21,24,26,27,29,30,31,33,34,35,36,39,40,45,47,48,49,50],ldpc5gencod:[5,10,21,24,26,27,29,30,31,33,34,35,36,39,40,45,47,48,49,50],ldpc:[5,10,14,17,21,26,27,29,30,31,33,34,35,36,39,40,45,47,48,50,51,53,55],ldpc_cn_type:30,ldpc_encod:17,ldpc_qam_awgn:27,ldpcbpdecod:[5,11,14,21,27,49],le:[3,16,18,23],lead:[3,9,11,14,16,18,19,22,23,24,25,27,36,38,39,41,42,43,46,47,49],leakag:[20,38],leakga:20,learn:[1,9,11,15,24,25,27,28,29,30,34,35,37,38,39,40,41,42,43,44,45,46,47,51,53,55],learning_r:49,learningshap:1,least:[3,7,8,14,17,18,19,22,25,30,33,34,35,36,39,42,45,47,48],leav:34,led:46,lee:53,left:[1,2,3,6,9,14,15,16,18,19,20,22,23,25,26,34,35,36,37,41,42,43,44,47],leftrightarrow:14,leg_str:[24,27,49],legend:[3,14,22,24,25,26,27,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],leibl:[11,24],lemma:[11,16],len:[6,12,17,19,22,24,26,29,30,33,35,42,48],len_:14,length:[1,2,3,5,6,7,8,9,10,11,13,14,15,17,18,19,20,22,23,24,25,26,27,29,30,31,33,35,36,37,38,40,42,43,45,46,47,49,50],length_sp:37,leq20:24,leq:[3,18,20,24,36],less:[1,11,13,22,27,30,33,39,41,42,43,45,53],lesser:22,let:[10,13,19,23,24,25,27,28,31,32,33,34,36,37,38,40,41,42,43,44,45,46,47,49,50,51,53],lett:[11,24],letter:[2,27],level:[3,5,16,17,19,24,31,44,45,46,48,51,53,55],leven:3,leverag:[35,36,48,49,53],li:[19,43],lian:49,lib:[25,30,33,34,36,39,45,47,48],librari:[22,30,34,51,53],licens:19,lie:23,lieu:3,lift:[9,11,24],light:[18,23,42],lightwav:[2,37],like:[4,10,11,12,15,16,17,19,28,42,44,53],likelihood:[1,6,9,10,11,13,15,16,18,24,26,33,35,45],limit:[2,3,11,13,20,22,25,34,37,41,53],lin:[10,17,18,20,24,33,36,38],lin_time_avg:[17,18,29],linalg:[34,39],line2d:[24,29],line:[0,17,18,19,21,23,24,26,29,34,39,40,41,42,43,44,45],linear:[2,3,5,6,9,11,16,17,18,19,20,21,22,23,24,27,29,33,35,36,37,38,39,43,49],lineardetector:[17,21,25,33,36,42],linearencod:[5,14,21],linearinterpol:[17,21],linearli:[19,22,23,24],linefmt:34,linestyl:[24,41],linewidth:[24,31],link:[2,3,16,19,33,34,35,37,44,45,46,48,51,53,55],linkmodel:29,linspac:[2,29,33,36,41,45,46,47,48],linux:52,list2llr:[18,21,36],list2llrsimpl:[18,21],list:[10,11,12,14,16,17,18,19,22,24,25,30,31,34,36,39,41,42,43,45,46,53,55],list_physical_devic:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,49],list_siz:[11,24,31],literatur:[3,6,13],littl:[11,30,42,53],liva:24,live:[25,33],ll:19,llr2mi:[5,21],llr:[1,6,9,10,11,12,13,14,15,16,17,18,22,24,25,26,29,30,31,33,34,35,36,39,40,45,46,47,48,49,50],llr_:16,llr_a:6,llr_b:27,llr_bin:27,llr_ch:[6,10,24,27,31,33],llr_clip_val:16,llr_dec:33,llr_deint:27,llr_dist:27,llr_hist:27,llr_int:30,llr_max:[1,9,11],llr_np:27,llr_p:16,llr_pred:27,llr_sourc:[14,27,49],llrs2symbollogit:21,llrs_ch:[9,10],llvm:52,lm:53,lmmse:[16,17,18,25,30,33,34,35,36,39,40,42,47,48],lmmse_equ:[18,21,30,34,39,40,47,48],lmmse_int_freq_first:36,lmmse_int_time_first:36,lmmse_ord:36,lmmseequal:[16,21,29,30,34,35,39,47,48],lmmseinterpol:[17,21,36],ln:[15,16],lo:[3,18,19,34,41,42,43,44],load:[9,10,14,17,19,24,25,26,27,28,29,31,34,35,39,41,43,44,45,46,48,49,51,52],load_alist:[5,10,21],load_parity_check_exampl:[5,10,21,27,49],load_scen:[21,41,42,43,44],load_weight:26,lobe:[19,23],loc:[31,41],local:[19,23,25,27,30,33,34,36,39,41,45,47,48,52,53],locat:[3,18,19,26,27,29,35,38,41,42,43,53],log10:[21,26,35,38,41,44,48],log2:[11,21,24],log:[1,6,9,11,13,15,16,22,24,26,27,30,33,35,45,52],log_2:14,log_:[19,23,26],logarithm:[19,24,38],login:52,logit:[9,10,11,13,15,16,17,18,22,27,35,46,48],longer:[11,18,20,30,34,36,38,43,49],look:[16,17,19,27,30,33,34,36,38,39,40,41,42,44,47,49,52,54,55],look_at:[19,41,42,43,44],loop:[2,22,24,26,30,31,35,36,42,45,48,49,50],los_angle_of_arriv:[3,18],los_boundari:41,loss:[3,11,13,23,24,26,27,35,39,41,42,46,48,49,50,53],lot:34,love:53,low:[3,5,10,12,14,21,24,25,27,33,34,36,39,40,45,51,53,55],lower:[3,6,13,20,22,24,33,36,41,49,53],lowest:18,lp:11,ls:[17,18,30,33,34,35,36,39,47,48],ls_est:[30,34,39,47,48],lschannelestim:[17,21,29,30,33,34,35,36,39,47,48],lsp:3,lt:[24,25,28,29,32,35,36,40,43,45],lte:[11,13,24,31],luca:3,luebber:[23,41],luebbers84:23,lugosch:49,lump:[2,55],lumped_amplification_channel:37,lumped_amplification_channel_cd:37,lumped_amplification_channel_nl:37,lumped_amplification_channel_ssfm:37,luneberg:23,lvert:[15,16,18,19,23,25],ly:41,m:[2,3,9,10,11,14,15,16,18,19,20,22,23,24,25,26,27,30,33,34,35,36,37,42,44,45,47,48,49,50,53],ma:[24,53],mach:37,machin:[29,30,49,51,52,53,55],mackai:14,maco:52,macrocel:[0,21],macroscop:41,made:[9,15,19,23,26,33,35,41,46,50,51],magazin:[9,11,24],magic:[30,32,50],magnet:[19,23],magnitud:[19,20,26,37,38,43,51],mai:[2,8,9,11,14,18,19,24,27,29,30,37,43,49,52,53],main:[19,49],mainli:24,maintain:[11,41],major:[31,49],make:[16,17,18,19,23,25,32,34,37,38,39,40,41,42,44,45,46,51,52],make_systemat:[5,21],mal2018:3,malherb:[23,41],mallik:3,manag:[17,18,21,29,30,36,53],manakov:2,mani:[5,8,11,14,15,16,17,22,23,24,25,30,31,34,39,41,42,43,44,45,46,47,48,50,51,53,55],manual:24,map:[1,6,11,13,16,18,21,22,23,24,25,26,29,30,31,32,33,34,35,36,39,40,43,45,46,47,48,50,51,53],mapper:[13,14,17,21,24,25,26,27,29,30,31,32,33,34,35,36,39,40,45,46,47,48,50],mapping_typ:17,mapsto:19,mar:[30,33,45,51],march:[6,53],marciano:49,marcu:[51,53],mark:27,marker:[19,29],markerfmt:34,marti:53,mask:[17,18,19,25],massei:27,massiv:[3,29],mat:[14,19],mat_si:14,match:[5,9,11,14,16,17,18,20,22,23,25,27,33,35,40,43,44,45,49,55],materi:[11,21,23,24,41,42,44,45,46,47,48,50,53],material_nam:19,math:[14,23,26,35,37,41,45,46,48,50],mathbb:[3,16,18,19,20,23,25,26,36,43],mathbf:[2,3,14,15,16,17,18,19,20,22,23,25,36,43,44],mathcal:[3,9,15,16,24,26,27],mathemat:[3,6,23,27,34],mathop:[16,23],mathrm:[2,18,33,36,37],mathsf:[16,19,23,25,43],matlab:[30,45],matmul:[36,40],matplot:[15,17,18],matplotlib:[9,14,15,17,18,19,22,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],matrci:36,matric:[3,6,9,14,16,17,18,19,22,23,25,40],matrix:[3,6,7,9,10,11,14,16,17,18,19,22,23,25,27,29,34,35,36,39,40,47,48,49],matrix_inv:21,matrix_pinv:21,matrix_sqrt:21,matrix_sqrt_inv:21,matter:[34,39],matthia:11,matthij:53,max:[3,6,9,13,18,22,24,25,26,27,29,30,33,34,35,36,37,39,41,42,45,46,47,48,49],max_:[15,16,23],max_batch_it:24,max_block_error:24,max_cn_degre:14,max_depth:[19,42,43,44],max_dist:[19,42],max_gain_db:[19,42],max_it:24,max_mc_it:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,45,46,47,48,49],max_num_dmrs_port:17,max_num_path:[19,41],max_spe:[3,30],max_ut_height:3,max_ut_veloc:[3,25,33,36,39],max_vn_degre:14,maxim:[26,35],maximim:3,maximum:[1,2,3,6,8,10,11,16,17,18,19,20,22,23,24,29,37,42,45,47,48],maximum_delay_spread:3,maximum_iter:33,maximumlikelihooddetector:21,maximumlikelihooddetectorwithprior:21,maxlog:[6,13,15,16,18,24,25,27,31,33,42,45],maxmimum:2,maxval:[8,12,26,35,48],maxwel:23,mb:30,mbit:[24,45],mc_fun:22,mc_ite:49,mc_iter:[22,49],mcnamara90:23,mcnamara:[23,41],mcs_index:[17,25,42],mcs_tabl:[17,25,42],me:23,mean:[2,3,14,15,16,18,19,23,24,25,27,30,34,35,36,38,39,40,45,47,48,49],mean_pow:3,mean_power_lo:3,measur:[2,3,18,19,20,23,24,27,30,31,41,42,44,45,53],mech:49,mechan:24,media:37,medium:23,melodiareleas:53,membership:52,memori:[1,2,5,6,9,10,11,13,14,19,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,49],memory_growth:30,memoryless:[11,24,27],mention:[2,25,27,30],menyuk:2,merg:[13,53],merlin:53,mesh:[19,42,53],meshgrid:43,messag:[9,11,13,30,33,45,49,53],met:46,metal:[19,41],method:[0,3,6,11,13,14,15,16,17,18,19,21,23,24,26,27,28,31,33,36,39,42,43,49,51,53],meti:23,metric:[6,10,16,21,24,27,29,30,34,35,38,39,49],mf:[16,18,38],mf_equal:[18,21],mfequal:21,mffp2009:2,mhz:[19,23],mi:[14,49],mi_a:14,mi_c:14,mi_ec:14,mi_ev:14,mi_scene_param:19,mi_v:14,michel:53,microcel:[0,21],microscop:41,microwav:2,middl:44,mig:[30,45],might:[15,16,17,19,25,33,34,36,41,44],millimet:29,millisecond:53,milstein:[9,12,27],mimic:[27,49],mimo:[3,17,18,21,23,25,29,30,33,35,42,47,48,51,53,55],mimo_detector:[17,25,42],mimo_ofdm_transmissions_over_cdl:47,mimoofdmlink:36,min:[3,9,17,18,20,26,33,35,49],min_:16,min_bs_ut_dist:3,min_dist:[19,42],min_gain_db:[19,42],min_spe:[3,30,34,35,47,48],min_ut_height:3,min_ut_veloc:[3,25,36,39],mind:[18,19,24,36],minim:[6,11,35,46,53],minima:53,minimum:[3,11,16,18,19,20,24,27,35,36,45,47,48],minor:49,minsum:[9,17,27,30,33,45],minut:25,minval:[8,12,26,35,48],mirroredstrategi:22,miscellan:[5,21],miso:29,miss:[24,30,42,48],mit:23,mitsuba:[19,42,53],ml:[10,16,18,24,53],mmse:[18,21,33,36],mmse_pic:36,mmsepicdetector:[16,21,33,36],mmwave:19,mn:20,mobil:[3,14,19,25,33,36,42,47,55],mobility_sim:34,mobilkommunik:23,mod:14,mode:[1,2,3,4,10,12,16,18,20,22,24,25,27,31,34,37,41,42,43,44,51],model1:40,model2:40,model5g:49,model:[0,1,2,6,7,8,9,10,11,12,13,16,17,18,19,21,22,24,25,26,27,29,37,41,42,43,44,46,48,49,51,53,55],model_allzero:27,model_allzero_16_m:27,model_allzero_16_no:27,model_allzero_16_no_sc:27,model_allzero_16_sc:27,model_baselin:26,model_baseline_16:27,model_coded_awgn:45,model_convent:26,model_l:47,model_neuralrx:48,model_output_interleav:27,model_pcsi:47,model_rl:26,model_train:46,model_uncoded_awgn:45,model_weights_path:[26,35],model_weights_path_conventional_train:26,model_weights_path_rl_train:26,modelingjakob:53,modern:[23,24,27],modif:[30,34,45],modifi:[11,17,25,30,33,42,43,48,51,55],modu:24,modul:[0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,31,33,34,35,36,37,38,39,42,43,45,46,48,49,50,51,55],modulation_ord:[17,26],modulo:14,molischreleas:53,moment:[9,11,27],monoton:27,mont:[19,22,24,27,31,33,36,40,42,45,46,47,48,49,51],month:51,moon:6,moor:22,more:[2,3,5,7,9,10,11,15,16,17,18,19,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,54],moreov:[3,18,19,25,36,41,47,48,51],morpholog:53,morri:2,most:[3,4,10,11,14,17,19,23,24,25,30,34,35,36,37,41,42,43,44,45,49,51],mostli:5,mote:34,mother:[11,24],motiv:35,mous:[19,42],move:[19,41,42,43,44],movement:[18,19,43],msb:6,mse:[36,38,40],mse_:36,msg_vn:[9,33,49],mu:[3,6,13,14,15,16,17,19,23,25,27,33,42,51],mu_0:23,mu_:[14,17],mu_llr:27,mu_r:[19,23],much:[5,11,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,48,49],muga:2,muller:[11,24],multi:[16,18,22,39,42,45,47,48,49,51,53],multicarri:34,multicel:16,multilevel:27,multipl:[3,8,11,12,14,15,17,18,19,20,21,22,23,24,26,27,29,30,33,34,37,39,41,42,45,47,49,51,53],multiplex:[7,8,9,11,13,17,21,24,25,27,51],multipli:[16,18,20,23,25,27,38,41],multius:[25,55],munich:[21,27,42],must:[1,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,30,31,33,34,35,42,44,45,46,47,48,49],mutipl:[16,30],mutual:[9,14,22,25,27,49],my_cam:[41,42,44],my_dataset:28,my_gener:3,my_mat:19,my_materi:19,my_material_callback:19,my_object:19,my_rx:19,my_scen:19,my_tx:19,mycam:19,mygener:3,mzm:37,n0:[33,35,36,45,46,47,48],n1:17,n2:17,n:[1,2,3,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,33,34,35,36,39,40,41,42,43,45,47,48,49,50],n_0:[3,15,18,24,25,26,29,31,34,35,36,39,45,46,47,48],n_1:25,n_:[2,3,17,25],n_b:[3,18],n_cell_id:[17,25],n_exit:27,n_f:3,n_id:[12,17,25],n_k:3,n_ldpc:[9,30],n_lift:11,n_max:2,n_min:2,n_o:[3,15,22],n_polar:11,n_r:3,n_rnti:[12,17],n_scid:[17,25],n_sim:37,n_size_bwp:[17,25],n_size_grid:[17,25,42],n_sp:2,n_span:[2,37],n_ssfm:[2,37],n_start_bwp:17,n_start_grid:[17,25],n_t:3,n_target:11,n_ue:33,nachmani:[9,49],naiv:11,name:[19,20,22,24,30,31,41,42,44,45,49],namespac:45,nan:42,narrowband:53,nativ:[30,45,51],natur:[16,42,46,48],nb:53,nb_bit:[22,30],nb_block:22,nd_arrai:17,ndarrai:[9,10,11,14,17,22,49],nearest:[18,30,34,35,36,39],nearestneighborinterpol:[17,21],necessari:[23,24,25,34,43,52],necessarili:[11,13,19,51],need:[3,7,9,10,11,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,51,52],neg:[14,18,19,22,23,27,35,40,41],neglect:[2,11,27,37],neglig:14,neighbor:[18,34,35,36,39],neither:[3,17,24],neq:16,nest:14,network:[2,3,12,16,17,19,24,26,35,36,37,46,49,50,51,53],networkspaolo:53,neural:[19,42,45,46,47,49,50,51,53,55],neural_receiv:[35,48],neural_receiver_result:35,neural_receiver_weight:35,neuraldemapp:[26,46,50],neuralreceiv:[35,48],neuralrx:48,never:[23,30,34,36,39,47,48],nevertheless:37,new_shap:45,new_topolog:[25,33,39],next:[3,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,51,53],nice:[38,41,44],nicer:[24,42],nikolau:[51,53],nimier:53,ninac:24,nlo:[3,18,34],nlse:2,nn:[17,18,26,30,34,35,36,39,47,48,53],nn_input:46,nned:[34,39],no_:[33,35],no_db:26,no_eff:[16,18,29,30,34,35,39,40,47,48],no_eff_:35,no_est:27,no_est_mismatch:27,no_llr:27,node:[9,11,14,17,27,30,33,49,53],nois:[2,3,14,15,16,17,18,22,24,25,26,27,30,31,34,35,36,39,40,42,45,47,48,50,53],noise_var:[14,27,49],noise_var_eff:40,noise_var_est:40,noise_vari:27,noisi:[6,9,13,17,27,30,34,45],nomin:[3,17,34,47,48],non:[1,2,3,6,11,14,16,17,18,19,22,23,24,25,26,27,34,35,36,38,41,42,45,46],non_xla:31,none:[3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,25,26,31,33,34,35,36,39,40,41,42,43,44,45,46,48,49],nonetheless:27,noniddmodel:33,nonlinear:2,nonneg:18,nonposit:22,nonzero:18,nor:3,norm:[2,16,19,23,37],normal:[2,3,11,15,17,18,20,21,22,25,26,28,33,34,35,37,38,39,42,43,44,48],normalize_channel:[3,25,29,30,33,34,35,39,42,47,48],normalize_delai:[19,42,43],not_equ:27,notat:[2,6,11,13,23],note:[1,2,3,4,5,6,8,9,10,11,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,37,40,41,42,44,45,47,49],notebook:[5,6,13,18,19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55],noth:22,notic:[34,41,43,44,46],notimplementederror:33,notion:23,nov:[23,26,41,49],novel:[3,53],now:[7,9,10,11,23,24,25,27,28,30,31,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,49,50,53],np:[3,15,16,18,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],nprach:53,npy:36,nr:[5,7,9,11,12,15,21,24,26,27,31,35,37,42,45,46,47,48,51,53,55],nradiomateri:42,nrun:24,ns:[3,24,34,41,42,43,44,47],nth:15,nu:[15,17,18,23],nu_:16,num:[14,24,25,26,27,29,30,33,34,35,36,39,40,41,42,45,46,47,48,49],num_ant:[3,19],num_antenna_port:[17,25,42],num_b:[3,34,47,48],num_basest:45,num_bit_stream:13,num_bits_per_batch:24,num_bits_per_symbol:[9,14,15,16,17,18,20,22,24,25,26,27,30,31,32,33,34,35,36,38,39,40,42,45,46,47,48,49],num_bitstream:13,num_block_error:24,num_bp_it:[17,27,33],num_bp_iter_per_idd_it:33,num_bs_ant:[34,47,48],num_cb:17,num_cdm_groups_without_data:[17,25,42],num_cells_i:19,num_cells_x:19,num_channel:[35,48],num_clust:3,num_cn:9,num_coded_bit:17,num_codeword:[17,30],num_col:[3,19,25,34,35,39,41,42,44,47,48],num_cols_per_panel:[3,33,36],num_conv_channel:35,num_conv_enc:13,num_cw:24,num_data_symbol:[17,18,29,30,34,35,36,39,47,48],num_dim:22,num_displac:43,num_dmrs_per_prb:17,num_dmrs_port:17,num_edg:9,num_effective_subcarri:[17,18],num_guard_carri:[18,29,34,35],num_idd_it:33,num_interfer:3,num_interfering_streams_per_rx:16,num_it:[9,11,13,14,16,18,24,27,30,31,33,36,45,49],num_iter:36,num_lay:[17,25,42],num_layers0:17,num_layers1:17,num_of_symbol:35,num_ofdm:18,num_ofdm_symbol:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,47,48],num_ov:17,num_panel:3,num_panels_:3,num_path:[3,16,19,28,29,34,42,47],num_pilot:[18,25],num_pilot_symbol:[17,18,30,33],num_point:[15,16,18],num_prb:17,num_repetit:24,num_res_per_prb:17,num_resource_block:17,num_resource_el:[18,30],num_row:[3,19,25,34,35,39,41,42,44,47,48],num_rows_per_panel:[3,33,36],num_run:42,num_rx:[3,16,17,18,19,25,28,29,33,34,41,42,47,48],num_rx_ant:[3,17,18,19,25,28,29,33,34,36,40,42,47],num_rx_per_tx:16,num_sampl:[2,19,41,42,43,44,45],num_sinusoid:3,num_slots_per_fram:[17,25],num_slots_per_subfram:[17,25],num_step:33,num_stream:[12,16,18,25,34,42],num_streams_per_rx:[16,18],num_streams_per_tx:[16,17,18,25,28,29,30,34,35,39,47,48],num_subcarri:[3,17,25,28,43],num_symbol:[20,38,45],num_symbols_per_codeword:26,num_symbols_per_slot:[17,25],num_target_bit_error:[22,27,49],num_target_block_error:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,45,46,47,48],num_target_error:30,num_time_sampl:[3,17,18,25,34,39,47],num_time_step:[3,19,28,29,34,42,43,47],num_training_iter:[35,46,48],num_training_iterations_convent:26,num_training_iterations_rl_alt:26,num_training_iterations_rl_finetun:26,num_tru:42,num_tx:[3,16,17,18,19,25,28,29,30,33,34,35,36,39,42,47,48],num_tx_ant:[3,17,18,19,25,28,29,33,34,40,42,47],num_tx_per_rx:16,num_ue_loc:29,num_us:[30,45],num_using_object:19,num_ut:[3,34,39,47,48],num_ut_:[34,47,48],num_vn:9,num_zero_symbol:18,number:[2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50],numcdmgroupswithoutdata:25,numer:[2,9,11,14,16,17,18,33,36,53],numerolog:17,numlay:17,numpi:[8,11,14,15,16,17,19,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49],nun_ant:3,nunber:45,nvidia:[30,45,50,51,52,53],nvlab:[25,39,42,45],nyquist:34,o1:29,o1_60:29,o2i:3,o2i_model:[3,25,33,36,39],o:[10,24,26,29,33,35,36],obj:19,object:[3,6,9,13,15,17,18,21,22,24,27,28,29,30,31,34,35,39,41,42,45,46,47,48,49,50],object_id:19,observ:[3,9,14,16,17,18,19,23,27,33,34,37,39,41,43,44,49],obtain:[2,3,13,15,16,18,19,20,23,25,29,34,38,41,42,43,44],obviou:27,obvious:[30,45],occup:11,occupi:[18,25],occur:[1,13,22,24,27,29,33,34,35,36,45,46,47,48,49],oct:[23,33],octal:6,odbl:19,odd:[3,18,20,23,25,38],odot:[18,23],ofdm:[0,17,19,21,22,25,29,30,33,42,43,46,48,51,53,55],ofdm_channel:[28,29,34,39],ofdm_symbol_dur:[18,34,39,43,47],ofdmchannel:[0,18,21,25,29,30,33,34,35,36,39,42,47,48],ofdmdemodul:[3,17,21,25,29,34,39],ofdmdetector:[17,21,25],ofdmdetectorwithprior:21,ofdmequ:21,ofdmmodul:[3,17,21,25,29,34,39],ofdmsystem:[47,48],ofdmsystemneuralreceiv:48,off:[17,18,20,24,30,38,42,45],offer:53,offic:3,offici:[45,46,47,48,50],offset:[18,19,20,27,34,43,53],often:[6,10,11,13,27,30,34,42,55],old:42,olmo:16,omega:[19,23],omega_n:19,omit:[18,19,23,27],omni:[3,25,33,36,39,47,48],omnidirect:[33,36],omnipres:30,onc:[3,18,19,24,26,30,34,35,42,45,47,52,53],one:[2,3,11,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,30,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,55],one_ring_corr_mat:[0,21],ones:[3,11,14,18,22,25,29,33,36,42,50],ones_lik:[41,49],onli:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53],onlin:[11,46,50,51],ons:19,onto:[11,16,17,18,25,27,30,34,39,47,48],oom:30,op:[4,30,34,36,39,45,47,48],open:[19,23,26,27,30,35,41,42,43,44,46,48,51,53],openstreetmap:[19,42,53],oper:[2,3,7,9,12,14,16,17,18,20,22,24,27,30,36,45,46,48,49],operatornam:[1,9,13,14,24,27],opportun:53,opposit:23,optic:[0,21,23,41,44,51,55],optim:[6,8,9,10,11,13,14,16,19,26,27,35,46,48,49,51,53],optimizer_rx:26,optimizer_tx:26,optimum:6,option:[2,3,8,11,16,17,18,19,20,22,25,27,29,34,35,36,42],orang:31,order:[8,9,10,11,12,14,16,17,18,19,24,25,26,27,29,30,34,36,37,38,43,44,45,46,47,48,49,51,52,53],ore:16,org:[9,11,14,15,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,49,51],orient:[3,19,23,34,41,42,44,47,53],origin:[3,8,12,14,17,23,25,27,33,37,44,49],orthogon:[14,19,21,23,25,34,47,51],os:[10,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],osd:[10,24,53],osdecod:[5,21,24],osm:[19,42],otf:[19,34],other:[3,5,9,10,11,16,18,19,20,23,24,25,27,29,33,35,36,39,41,42,43,44,45,46,47,48,49,51,53],otherwis:[1,2,3,8,9,10,12,14,15,17,18,19,20,24,27,30,31,34,35,37,42,46,49],otim:3,ouput:25,our:[23,25,27,30,32,34,36,37,38,39,41,43,44,45,46,47,49,53,55],out:[2,3,17,18,19,20,23,24,25,27,28,30,33,36,38,41,42,44,52],out_int:9,out_int_inv:9,outcom:11,outdat:34,outdoor:3,outer:[11,22,24,26,27,30,35,45,48,49],outgo:[9,14,19,23,43,44,49],outlin:53,outperform:[33,36,53],output:[1,2,3,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,29,30,31,33,34,35,36,37,40,42,45,46,47,48,49,50,51,53],output_domain:[17,25,42],output_dtyp:[6,7,9,11,13,17],output_perm_inv:17,output_shap:14,outsid:33,over:[2,3,11,14,15,17,18,19,20,22,23,24,25,26,27,28,30,31,32,33,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50,51,53,55],overal:[41,42,43,49],overcom:41,overhead:[9,17,19,22,30,34,42],overlai:[19,24,41],overlap:[18,20,34,38],overrul:12,oversampl:[20,38],overview:[11,17,24,30,42,45],overwrit:[19,24],own:[17,19,25,27,34,36,41,42,47,49,55],p2:30,p8:[30,45],p:[1,2,3,9,12,13,14,15,16,18,19,23,24,25,26,27,49],p_0:[15,25,37],p_1:25,p_2:25,p_3:25,p_:[1,2,15,18,19,20,23,37],p_b:1,p_c:15,p_i:18,p_k:15,p_link:42,p_r:44,pack:34,packag:[5,6,10,13,14,22,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52],pad:[8,13,14,17,19,20,35,41,48],page:29,pair:[8,12,14,18,19,24,25,42],pam1:15,pam2:15,pam2qam:[16,21],pam:[16,18,21,22,45],pam_grai:21,pamsourc:21,panel:3,panel_horizontal_spac:3,panel_vertical_spac:3,panelarrai:[0,21,33,36],paper:[19,42,53],parabol:37,paradigm:[51,53],parallel:[5,9,13,14,16,17,19,22,23,25,27,30,31,33,42,44,45,46,47,48],parallel_iter:33,param:30,paramat:48,paramet:[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,29,30,31,34,37,39,40,42,43,44,45,46,47,49,53],parameter:33,parametr:[2,23,37,53],paranmet:3,parent:17,pari:19,pariti:[5,7,10,11,12,13,14,17,21,24,27,45,49,51,53],parizi:[10,11],parlanc:18,pars:[28,29],part:[2,3,8,10,11,13,14,16,17,19,23,24,25,26,27,31,32,34,35,39,43,44,49,50,51,55],partial:[2,19],particular:[3,11,17,19,23,24,25,31,34,39,43,44,47,49],particularli:[9,33],partnership:3,pass:[8,12,14,18,24,26,27,29,33,34,35,41,42,43,44,45,46,48,49,53],passband:[19,38],path2cir:42,path:[3,6,10,11,14,16,18,21,22,28,29,30,34,41,43,44,47,51],path_idx:42,path_ind:16,path_sym:16,pathloss:[3,53],pathstmpdata:19,pattern:[3,5,8,9,10,13,17,19,21,25,31,33,35,36,39,41,42,47,48,53],payload:[17,25],pb:1,pc:[25,42],pcm2gm:[5,10,21],pcm:[9,10,11,14,27,49],pcm_id:[10,14,27,49],pdf:[11,27,49],pdp:3,pdsch:[12,17],peak:[37,38,43,44],pedram:53,pefect:35,penros:22,per:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,36,38,40,42,45,46,47,48,49,50],percentag:[19,23],percolumnmodel:[0,21],perez:16,perf:[25,30,33,34,36,39,42,45],perf_count:[24,30,45],perf_csi:[36,42],perfect:[3,12,17,18,23,25,26,33,34,35,36,39,40,41,42,44,47,48],perfect_csi:[25,34,39,42,47,48],perfect_csi_rayleigh:33,perfectli:[23,34,38,41,44,51],perform:[3,5,7,8,9,10,11,12,13,14,16,17,18,20,25,26,27,30,31,33,35,36,37,39,42,44,45,46,48,49,51,53],performac:39,period:[26,35,43,46,48],perm_seq:[8,9],perm_seq_inv:[8,9],permeabl:[19,23,42],permitt:[19,23,41,42],permut:[8,9,10,11,14],perp:23,perpendicular:23,persist:[30,45],person:19,perspect:[9,24,25,27],perturb:[26,53],perturbation_vari:26,peter:37,pfister03:12,pfister:[9,10,12,27,49],pharr:23,phase:[2,18,19,23,26,27,34,37,41,42,44],phase_inc:2,phasor:23,phd:27,phenomea:42,phenomena:19,phenomenon:[23,41],phi:[9,17,19,23,27,41,45],phi_:23,phi_deg:[3,41],phi_hat:21,phi_n:19,phi_r:[19,42],phi_t:[19,42,43],photodiod:37,phy:[2,30,53],physic:[2,5,12,15,17,23,25,26,41,42,43,51,53],pi2bpsk:17,pi:[3,8,18,19,20,23,27,37,41,43,44],pic:[18,21,33,36],pick:[25,29,34,42],pickl:[26,29,34,35,36,39,46,48],pico:2,pictur:3,pid:[30,45],pie:41,piec:18,pilot:[17,21,22,25,30,33,35,36,39,47],pilot_ofdm_symbol_indic:[18,29,30,33,34,35,36,39,47,48],pilot_pattern:[17,18,25,29,30,33,34,35,36,39,47,48],pilotless:[35,46,48],pilotpattern:[17,21,34,47],pimrc:19,pinto:2,pip:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],pipelin:33,pistoriu:[23,41],pitch:[23,42],pixel:19,pl_avg:42,place:[14,19,22,27,41,42,43,44],placehold:42,plai:[34,40,41,44,45],plan:[3,53],planar:[19,33,41,51],planararrai:[21,41,42,43,44],planck:[2,37],plane:[19,23,34,41,42,44,47,48],planungsmethoden:23,platform:[11,24],plausibl:41,pleas:[1,2,5,8,9,10,11,13,14,19,24,25,26,27,29,31,33,34,35,42,44,45,47,48,49,51,52,53],plot:[3,14,15,20,22,24,27,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,50],plot_ber:[21,30],plot_exit_chart:[5,21,27],plot_surfac:43,plot_trajectori:[5,21,27],plotber:[21,24,27,31,40,42,45,46,47,48,49],plots_to_show:24,plt:[3,14,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],plu:[18,34,47],plug:23,pm:[15,16,19,20,23],pmatrix:[16,23],pmnet:53,pmp:53,png:[19,22,42],po:41,podcast:51,point:[15,16,18,19,20,22,23,24,26,27,29,30,31,34,40,41,42,43,44,45,46,47,48],pol:23,polar5gdecod:[5,21,24,31,45],polar5gencod:[5,10,21,24,31,45],polar:[2,3,5,9,10,19,21,23,25,31,33,34,35,36,39,41,42,44,45,47,48,51,55],polar_dec:11,polarbpdecod:[5,21,45],polarencod:[5,21,24,45],polarizarion:19,polarization_model:19,polarization_model_1:21,polarization_model_2:21,polarization_typ:[3,25,33,34,35,36,39,47,48],polarscdecod:[5,21,24,45],polarscldecod:[5,10,21,24,45],poles:53,polynomi:[6,7,11,13,30],polynomial_selector:[5,21],pool:1,poor:[35,46],popular:42,port:[17,42,52],port_set:17,portion:44,pose:53,posit:[1,3,8,9,10,11,13,15,17,18,19,22,23,24,27,41,42,44,45,46,53],positv:11,possibl:[1,3,10,11,15,16,17,18,19,20,22,24,25,26,27,29,30,41,42,43,44,45,47,49,53,55],post:[16,34,35,50,52,53],posterior:6,posteriori:[1,27,33],postfix:19,potenti:[11,14,49,53],pow:36,power:[2,3,9,11,15,16,18,19,20,22,23,24,26,30,34,35,37,38,41,42,44,45,47,48,49],poynt:23,pp:[2,3,11,14,16,18,23,24,26,27,33,35,37,44,46,48,49],pr:[15,16],practic:[3,11,24,27,37,49,53],prb:[17,25,33,36],pre:[16,18,24,27,28,41,42,53],pre_computed_result:35,preambl:53,precis:[3,9,11,15,16,18,19,20,36,42,44,45,53],precod:[17,19,21,25,29,34,40,42,47],precoding_ind:16,precoding_matric:17,precoding_matrix:[17,25],precoding_vec:[19,42],preconfigur:[19,41],predefin:19,predetermin:16,predict:[14,23,27,41,43,44,53],predictionju:53,prefac:27,prefer:[30,45],prefix:[2,3,17,18,19,22,25,30,37,47],preform:36,prepend:18,preprint:[1,24,51],preprocess:28,present:[2,3,23,33,37,41,53],preserv:[30,45],press:[3,23,24],pretti:49,pretty_printed_concrete_signatur:45,prevent:[23,37,44,55],preview:[21,41,42,43,44,52],previou:[19,23,24,25,27,34,36,37,42,43,45,47,49,53],previous:[3,19,24,26,27,28,30,31,37,42,46,48,50],primarili:[6,13],primer:[19,42,44,51],primit:[19,41,42],principl:[14,24,27,30,42,45,46,47,48,49],print:[11,14,17,19,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52],prior:[15,16,18,33,34,36,40,42],prior_shap:36,priori:[1,6,14,33],prng:17,probabilist:[1,24,35],probabl:[1,3,12,15,16,19,27],problem:[23,24,25,41,46,48],proc:[14,19,23,27,29,41],proce:[34,39],procedur:[3,9,11,17,24],proceed:[35,48],process:[2,3,5,9,10,11,16,17,18,19,22,23,25,26,28,30,33,35,36,37,42,43,44,45,46,47,48,49,53],prod:45,prod_:[9,15,16,19],produc:[3,6,13,16,24,27,34,39,47,48],product:[11,19,20,38,41],profil:[3,14,18,47],program:51,programmat:[4,53],progress:[22,26,35,42,46,48],prohibit:[19,34,41,53],project:[3,14,23,25,30,43,48,53],prolong:41,promis:53,prone:36,propabl:27,propag:[2,9,11,16,19,24,33,37,41,43,44,51,53,55],proper:16,properli:[24,30,49],properrv:16,properti:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,34,38,41,42,43,45,47,53],propgat:44,proport:[19,41,44],proportion:44,propos:[9,10,11,14,16,33,49,53],proprietari:51,protect:[17,30],protocol:[12,17],prototyp:[26,51],provid:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,34,35,37,38,39,40,43,45,46,47,48,49,50,51],prune:11,prune_pcm:9,ps:[2,37],psd:[20,38],pseudo:[8,12,17,22,27],psi:19,psk:27,publish:[53,55],pujarareleas:53,puls:[3,20,37,55],pun:24,punct_pattern:13,punctur:[9,13,24],puncture_pattern:[5,21],puntur:9,pure:[23,44],purpos:[2,3,13,34,37],pusch:[12,21,42,55],pusch_config:[17,25,42],pusch_config_1:25,pusch_config_2:25,pusch_config_3:25,pusch_config_ext:25,pusch_dmrs_config:17,pusch_receiv:[17,25,42],pusch_sim:25,pusch_transmitt:[17,25,42],pusch_transmitter_multi:25,puschcarrierconfig:25,puschconfig:[21,25,42],puschdmrsconfig:[21,25],puschlschannelestim:[21,25],puschpilotpattern:21,puschprecod:[21,25],puschreceiv:[21,42],puschtransmitt:[21,42],put:[23,35,42,48],pwr:[30,45],py:[25,30,33,34,36,39,45,47,48],py_funct:[11,24],pyct:[25,33],pylint:45,pyplot:[19,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],python3:[25,30,33,34,36,39,45,47,48],python:[14,22,25,29,30,33,34,36,39,45,46,47,48,52,53],pythonmanoj:53,q:[16,23,27],q_d:23,q_m:17,qam16:[15,16,18,22,45],qam2pam:21,qam:[9,14,16,17,18,20,21,22,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,45,46,47,48,50],qam_sourc:[36,39,40],qamsourc:[20,21,33,36,38,39,40],qc:9,qpsk:[14,18,24,30,31,34,35,36,39,45,47,48,49],qquad:[1,9,19,23,43],qr:16,quad:[1,3,16,18,20,23,24],quadrat:44,quadratur:26,qualiti:[27,41,42,43,44],quantiti:[18,19,23,33,53],quantitii:37,quantiz:[6,17,19,24,42,53],quantum:53,quasi:9,question:53,quick:52,quicker:25,quickli:[3,18,27,34,51,53],quickstart:51,quit:39,r:[1,2,3,5,6,9,11,13,16,17,18,19,22,23,24,26,27,28,29,31,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48],r_:[23,24,44],r_hat:[21,41,43,44],r_i:[23,44],r_rx:[3,40],r_rx_hat:40,r_tx:[3,40],r_tx_hat:40,ra:3,rad:[2,19,23,42],rad_2_deg:[0,21],radial:23,radian:[3,18],radiat:[3,19,23,34,44,47],radio:[8,9,11,12,13,17,21,23,24,25,44,53],radio_materi:[19,41,42,44],radio_material_cal:19,radiomateri:[21,41,42,44],radiowav:[19,23],radiu:[23,42],radpili:41,rag:9,ragged_tensor:9,raggedtensor:9,rai:[21,23,29,41,43,44,51,52,53],rais:[7,8,9,10,11,12,14,15,19,20,22,33,38,42,43,44],raisedcosinefilt:21,raman:[2,37],ramp:55,random:[3,8,12,13,14,16,17,19,20,22,23,24,25,26,27,28,30,31,32,34,35,36,39,40,41,42,43,44,45,46,47,48,49,53],randominterleav:[5,21,27],randomli:[1,2,3,12,15,17,18,19,25,26,29,34,35,36,39,44,46,47,48],rang:[2,3,12,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,41,42,43,45,46,48,49,53],range_max:42,ranjan:3,rank:[3,7,8,9,10,11,14,16,19,22,24,33,35,36,45],rapdili:42,rapid:51,rapidli:[25,41,51],rare:42,rasmussen:14,rate:[5,6,9,11,13,14,17,22,26,27,33,34,35,36,38,39,45,46,48,49,50,51,53,55],rather:[6,23,25,39,42,44],ratio:[1,2,9,11,13,15,16,17,20,22,23,25,26,33,35,36,38,42,45,47,53],ration:20,raviv:6,raw:3,rayleigh:[0,21,25,27,33,37,40,47],rayleighblockfad:[3,25,33,34,42,47],rb:[26,35,46,48],rceil:[3,13,19],re:[10,11,12,14,16,17,19,23,27,30,36,39,45,50,52,55],reach:[19,22,23,24,25,26,27,29,30,33,34,35,36,39,40,42,43,44,45,46,47,48,49],react:41,read:[14,17,19,29,53],readabl:27,reader:[17,24,27,34],readi:[42,47,53],real2complex_channel:21,real2complex_covari:21,real2complex_matrix:21,real2complex_vector:21,real:[3,10,12,14,15,16,18,19,20,23,26,27,32,34,35,36,38,39,40,41,45,46,47,48,49,50,53],real_dtyp:[3,16,19,37],realist:[25,34,36,47,51,55],realistic_multiuser_mimo_simul:47,realiti:53,realiz:[3,8,11,12,24,29,30,33,34,35,36,39,40,42,47,55],realli:[34,41],rearrang:9,reason:[3,4,11,34,39,41,44,53],rebuild:7,recal:27,receiv:[1,3,6,8,9,10,14,15,16,17,18,20,21,22,24,25,26,27,29,30,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,53,55],received_pow:44,recent:[33,52],recept:38,reciproc:[29,42],recognit:[35,48],recomend:23,recommend:[3,10,11,16,18,19,23,34,39,41,42,43,44,52],recomput:[19,41,43],reconfigur:53,reconstruct:[8,12,17,26,35,46,48],record:[9,27],recov:[9,11,16,17,20,25,42],recoveri:[9,11,31],rectangl:19,rectangular:[19,27,41,44],recurs:[6,11,13,15,24],red:[9,19],redefin:24,reduc:[9,10,11,14,16,19,23,24,25,26,30,33,34,35,38,41,42,48,49,53],reduce_dim:14,reduce_mean:[14,26,27,35,36,40,42,49],reduce_sum:[41,44,45],reduct:[23,53],redund:[5,21],reed:[11,24],ref:19,ref_boundari:41,refer:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,25,30,39,42,45,50,51,52],reflect:[2,19,41,42,43,44,51],reflector:[41,43,44],refract:[44,51],regard:37,regim:[14,27],region:[18,41,44,53],regist:[7,11],regular:[14,36],regularli:19,reinforc:26,rel:[17,19,23,24,27,33,41,42,53],relat:[9,12,14,15,17,19,22,23,27,30,34,42,45,46,48,53],relationship:23,relative_perm:[19,42],relative_permitt:[19,42],releas:[3,53],relev:[11,17,19,20,24,25,34,35,43,47],reli:[10,34,42,43,53],reliabl:[1,10,24,27,30,45],reloc:3,relocate_ut:[0,21],relu:[26,35,46,48,50],rema:25,remain:[3,5,6,9,10,11,16,24,41,44,45,53],remark:[2,3,5,10,11,14,18,24,30,36,42,45,46,47,48,49],rememb:30,remov:[3,7,8,9,11,14,18,19,22,24,25,30,31,33,34,36,39,42,47,48],remove_nulled_sc:[34,39],removenulledsubcarri:[21,29,33,34,35,39],ren:[35,48],render:[21,23,41,42,43,44,53],render_to_fil:[21,42],renesreleas:53,reparameter:1,reparametr:19,repeat:27,repetit:[24,30,45],replac:[8,12,15,19,23,24,27,31,42,44,45,49,50,53],repons:[23,34,42,47,48],report:51,repositori:[52,53],repres:[6,13,16,18,23,27,30,33,41,42,53],represen:15,represent:[3,7,14,15,16,18,22,23,25,44,53],reproduc:[24,26,41,42,43,44,46,48,51,55],reproduct:24,request:[7,15,16,17,18,29,42],requir:[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,29,31,34,35,36,37,38,39,40,41,42,45,46,47,48,49,50,51,52,53],requiremen:34,reradi:44,resdiual:16,research:[14,30,42,49,51,53,55],reserv:[18,19,25,34],reset:[22,33,49],reset_st:49,reshap:[16,18,22,25,26,27,29,34,35,36,39,40,43,45,46,48,50],residu:[16,35,48,53],residualblock:[35,48],resili:53,resolut:[19,41,42,43,44],resolv:23,resouc:18,resour:25,resourc:[3,17,19,21,22,25,26,28,29,30,35,36,39,43,48],resource_grid:[3,17,18,22,25,28,33,35,36,42,47,48],resourcegrid:[3,17,21,22,28,29,30,33,34,35,36,39,43,47,48],resourcegriddemapp:[21,35,48],resourcegridmapp:[17,21,25,29,30,33,34,35,36,39,47,48],respect:[1,2,3,5,6,9,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,34,36,37,38,40,41,42,43,44,45,46,47,53],respons:[3,18,19,20,28,29,36,38,41,43,47,51,53],ressourc:30,rest:[13,25],restart:52,restor:17,restrict:30,resul:25,result:[2,3,5,7,9,10,11,12,14,16,17,18,19,22,23,24,25,26,27,29,30,33,34,36,37,38,39,40,41,42,44,45,53,55],results_filenam:[26,35],retain:[20,42,53],retrac:43,retriev:19,return_:16,return_bit:[17,22,25],return_channel:[3,25,33,34,35,36,39,40,42,47,48],return_crc_statu:11,return_effective_channel:[18,29,34],return_indic:[15,22,36],return_infobit:[9,33,45],return_llr:1,return_precoding_matric:16,return_precoding_matrix:16,return_tb_crc_statu:17,reus:[3,18,19],reveal:[25,53],revers:[18,23,42,44],reverse_direct:[19,42],revert:8,review:2,rewrit:23,rewritten:19,rg:[3,18,30,33,34,35,36,39,43],rg_demapp:[35,48],rg_mapper:[30,34,35,36,39,47,48],rgb:19,rho_:[2,37],rho_hat:19,richardson:[9,24],rician:3,right:[1,2,3,6,9,13,14,15,16,18,19,20,22,23,25,26,31,34,35,36,37,42,43,44,47,54],ring:3,rise:3,risk:53,rl_based_train:26,rl_perturbation_var:26,rm:[3,11,24,44],rma:[0,21,25,34,39,47],rmse:53,rng:[17,22],rnti:[11,12,17],road:[16,53],robert:24,robust:[18,27,45,53],rodrigu:[19,23],role:[34,39,41,44,47,48],roll:[20,23,38,42],root:[20,22,38,52],rootraisedcosinefilt:[21,38],rot_mat_from_unit_vec:21,rotat:[2,3,21,41,42,43,51],rotated_posit:19,rotation_matrix:21,rough:19,rougher:44,roughli:41,round:[17,23,45],row:[3,8,9,14,16,18,19,22,29,32,38],row_depth:[8,30],rowcolumninterleav:[5,21,30],rrcf:38,rrcf_hann:20,rrcf_short:38,rrcf_short_blackman:38,rsb:41,rsc:[6,13],rt:[19,41,44,53,55],rule:[9,17,22,27,36,45,49],run:[1,2,3,6,7,8,9,10,11,12,13,14,19,22,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],run_ber:27,run_ber_ga:27,run_eag:30,run_functions_eagerli:33,run_graph:[30,45],run_graph_xla:30,run_idd_sim:33,run_sim:36,rune:27,runtim:[8,12,24,25,26,27,29,30,33,34,35,36,39,40,45,46,47,48,49],runtimeerror:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,49],rural:[0,21],rvert:[16,18,19,23,25],rvert_2:16,rvert_:18,rx:[3,19,26,34,35,39,41,42,43,44,47,48],rx_arrai:[3,19,41,42,43,44],rx_corr_mat:3,rx_dist:41,rx_loss:26,rx_orient:19,rx_po:41,rx_stream_id:16,rx_tx_associ:[16,25,30,33,34,39,42,47,48],rx_veloc:[19,42,43],ryan:[9,17],s:[2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,22,23,24,25,26,27,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,53],s_0:25,s_1:25,s_2:25,s_:18,s_hat:22,s_min:8,s_min_stop:8,sai:[45,51],sake:24,same:[1,2,3,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,30,33,34,35,36,37,38,40,41,42,43,45,48,49,53],sampl:[2,3,8,12,17,18,19,20,22,24,25,26,27,28,30,33,35,36,37,38,39,42,44,45,46,47,48],sample_channel:36,sample_dur:[2,37],sample_points_on_hemispher:21,sample_posit:[19,42],samples_per_symbol:[20,38],sampling_frequ:[3,19,34,39,42,43,47],sampling_tim:20,san:29,sandberg:[11,24],sanguinetti:3,satisfi:[16,23],satur:[34,39],save:[19,22,24,25,26,31,34,35,36,39,42,46,48],save_fig:22,save_weight:26,sc:[11,24,45],scalabl:[5,31,53],scalar:[1,3,9,14,15,19,22,26,35,49],scale:[3,9,16,17,18,19,20,22,23,24,26,27,30,33,34,35,37,38,39,40,42,48,49,53],scat_keep_prob:[19,44],scat_path:19,scat_paths_tmp:19,scat_random_phas:19,scatter:[13,15,18,19,29,32,37,38,40,41,42,43,45,46,51,53,55],scattering_coeffici:[19,42,44],scattering_pattern:[19,44],scattering_pattern_cal:19,scatteringpattern:21,scenario:[3,11,16,25,27,29,33,34,36,39,42,45,47,49,53],scenario_param:29,scene:[21,23,41,44,53],scene_geometry_upd:19,scene_object:43,sceneobject:[21,42,43],sceneparamet:19,schedul:[14,25],schemat:[34,38,40],scheme:[5,9,10,11,12,17,25,27,30,31,33,45,53,55],schrannenhal:19,schreckenbach:27,scid:17,scipi:9,scl32:11,scl8:11,scl:[11,24,45],scope:27,scrambl:[5,10,11,17,21,24,25,27,30,45],scrambler:[5,17,21],scratch:35,screen:[23,41],script:30,scroll:[19,42],seamless:[5,53],seamlessli:53,search:[6,24],sebastian:[11,51,53],sec:[7,9,11,12,17,27],second:[1,2,3,9,12,13,14,15,16,17,18,19,23,24,25,29,41,42,43,49],section:[3,15,16,17,19,23,24,25,27,33,34,36,37,39,43,49],sector:[3,39],sector_id:3,see:[1,3,9,11,14,16,17,18,19,22,23,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53],seed:[8,12,17,18,22,26,41,42,43,44,46,48],seem:[25,49],seen:[14,18,24,26,27,34,37,42,43,45,46,49],seet:42,seethal:[16,33],segment:[11,17,23,24,25,41],select:[6,9,14,17,18,19,24,25,26,29,36,39,42,49],select_mc:21,selector:13,self:[3,16,19,24,25,26,27,28,29,30,31,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50],semi:[3,22],semilog:[24,25,26,29,31,33,34,35,36,39],seminar:27,send:[16,18,25,32,40,53],sens:[8,23,24,27,53],sensibl:[33,53],sensit:53,sent:[17,25,27],sep:[9,12,19,23],separ:[3,17,18,19,23,25,27,31,41],separt:17,sept:26,septemb:16,seq_length:8,sequel:16,sequenc:[1,3,6,7,8,9,11,12,13,14,17,18,19,20,25,27,34,43],ser:[22,36,40],ser_ep:36,ser_kbest:36,ser_lmms:36,ser_mmse_p:36,seri:[2,24],serv:[3,15,18],serval:14,servic:51,set:[1,2,3,4,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,31,34,35,36,37,39,40,41,42,43,44,45,48,49,50,51,53],set_3gpp_scenario_paramet:[0,21],set_aspect:[32,40,45,46],set_memory_growth:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,49],set_se:[3,26,39,41,42,43,44,46,48],set_size_inch:24,set_titl:[31,33,36,43],set_topolog:[3,25,33,36,39],set_visible_devic:30,set_weight:[26,35,46,48,49],set_xlabel:[31,33,36,37,43],set_xlim:[31,37],set_ylabel:[24,31,33,36,37,43],set_ylim:[31,33,36],set_zlabel:43,setlevel:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],setminu:9,setup:[2,3,8,9,11,12,16,18,19,25,27,29,33,35,36,40,42,45,46,47,48,49,51,52],sever:[5,9,11,14,16,19,23,24,25,27,30,33,37,42,45,53],seyi:11,sf:17,sgd:[26,35,46,48,49],sgn:23,shadow:[3,19,23,41],shall:[8,12,19,22,37,45],shannon:13,shaoq:[35,48],shape:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,39,40,42,44,45,46,47,48,49,50,55],share:[3,17,19,25,27,35,41,42,49],shea:26,shift:[7,9,11,17,18,19,23,37,42,45],shixiang:1,shoot:[19,42,44],shortcom:[23,41],shorten:[9,24],shorter:[20,38,41],shortest:16,shorthand:18,shot:[2,19,37,42,44],should:[3,8,9,12,14,16,17,18,19,20,22,24,25,27,29,31,34,35,36,37,41,42,43,44,46],show:[2,3,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,43,45,46,47,48,49,50,51,53],show_ber:[22,24,31,42],show_bler:[22,24,31,42],show_devic:[19,42],show_direct:19,show_element_radiation_pattern:[3,34,47],show_fig:[22,24,27,31,40,42,45,46,47,48],show_orient:19,show_path:[19,42],show_pilot_ind:[17,18],show_topolog:[3,39],show_tx:19,show_weight:[9,49],showcas:53,shown:[2,3,9,17,18,19,23,24,25,26,27,29,32,35,37,41,42,43,44,45,47,48,53],shrunk:25,shuffl:29,siam:2,side:[3,16,18,20,23,26,35,37,40],siegel:[9,12,27],sight:[18,19,34,41,42,44,55],sigma:[3,16,18,19,23,25],sigma_:[2,3,14,27],sigma_phi_deg:3,sigmoid:[15,16],sigmoid_cross_entropy_with_logit:[26,35],sign:[9,12,14,15,27],signal:[2,3,9,10,11,16,17,18,19,21,25,27,30,32,33,34,36,37,38,41,42,44,45,46,49,51,53],signatur:[22,45],signific:[3,14,16,18,19,37,38,41,44,53],significantli:[2,3,5,10,19,24,25,27,33,34,35,37,39,41,42,48,49,53],sim:[2,3,6,13,23,24,27,31,37,39,42,49],sim_ber:[21,25,26,27,29,30,33,34,35,36,39],sim_esno:[24,31],sim_param:29,similar:[3,17,18,23,24,30,41,44,45,49],similarli:[13,18,19,23,37],simo:[3,42,47,55],simpl:[3,16,18,19,22,23,25,26,30,33,34,39,43,44,45,46,47,48,49,51,55],simple_reflector:[21,43,44],simple_sim:33,simple_street_canyon:[21,41,44],simple_street_canyon_with_car:[21,43],simple_wedg:[21,41],simpler:[30,45],simpli:[16,19,20,23,25,30,34,38,39,41,42,45,47,48,49,50],simplic:[6,11,13,18,24,27,38],simplif:49,simplifi:[8,10,11,12,14,16,22,23,24,27,30,37,42,44,45,49],simualt:31,simul:[2,3,5,10,12,14,16,17,18,19,22,24,37,41,43,45,46,50,51,53,55],simulate_transmiss:2,simultan:[25,42],sin:[3,19,20,23],sinc:[3,18,20,23,25,41,53],sincfilt:21,singl:[2,3,9,13,17,18,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51],sinlg:36,sinusoid:3,sionna:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,44,46,47,48,49,52,54,55],siso:[19,33,47],site:[3,36,45],situat:[5,27],six:[17,18,25],size:[2,3,6,9,10,11,13,14,15,17,18,19,20,22,23,24,25,26,28,30,31,33,34,35,36,42,44,45,46,47,48,49,53],skip:[17,24,25,34,35,39,48,55],slant:19,slant_angl:19,slice:41,slight:[22,46],slightli:[6,8,13,14,17,33,37,38,41,42,44],slot:[17,18,34,42,47],slot_numb:[17,25],slower:[8,11,34,42],slowli:36,sm:[3,16,30,33,34,36,39],small:[3,10,13,19,23,24,25,27,28,34,41,43,44,49],smaller:[3,8,10,11,17,18,19,22,24,31,39,41,44,49],smallest:[3,17,18,24],smapling_frequ:28,smf:[2,37],smi:[30,45],smooth:[16,18,36],smoothin:36,sn:[28,45,46,47,48],snapshot:43,snell:23,snippet:[2,3,6,7,8,9,11,12,13,14,16,17,18,19,20,25,34,39],snmk:35,snr:[2,14,22,24,25,26,27,30,31,33,34,35,36,39,42,45,46,48,49,50,53],snr_db:[22,24,36],snr_idx:22,snr_rang:33,snr_range_cest:33,snr_range_perf_csi:33,so:[3,9,10,12,14,16,17,18,19,22,23,25,27,30,37,38,39,40,41,42,44,45,53],societi:[23,41],soft:[1,6,9,10,11,12,13,15,16,18,24,33,34,36,39,40,45,47,48,49,51,53],soft_estim:[22,24,27,31,36,42,45,46,47,48,49],soft_llr:[6,24,31],softmax:1,softwar:51,solid:[16,33,41,44],soliton:[2,37],solut:[2,14,16,18,23,25,27,53],solv:[2,19,46,48],solver:19,solver_cm:19,solver_path:19,solvercoveragemap:19,solverpath:19,some:[3,4,9,10,17,18,19,23,24,25,26,27,28,34,35,36,39,41,42,43,44,45,49,51],someth:[30,48],sometim:[22,23,55],son:[6,19,23],song:53,sophist:[2,24,31,49],sort:[10,11,16],sound:55,sounder:53,sourc:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,30,31,34,37,38,39,42,44,45,46,47,48,49,51,53],sp:[2,9,19],spa:9,space:[3,17,18,19,23,25,34,36,41,43,47],space_cov_mat:36,space_cov_mat_:36,span:[2,18,20,25,34,37,38,43,47],span_cd:37,span_in_symbol:[20,38],span_nl:37,span_ssfm:37,spars:[9,11,18,53],sparser:25,spatial:[3,18,25,53],spatial_corr:[3,40],spatial_corr_mat:3,spatialcorrel:[0,21,40],spawn:44,speak:[25,27],spec:15,spec_path:19,spec_paths_tmp:19,specfi:18,special:3,specif:[3,5,7,8,10,14,16,17,18,19,23,24,25,28,34,35,41,42,43,44,45,47,53],specifc:45,specifi:[3,9,10,11,12,13,17,18,19,20,22,28,35,36,37,42,53],specified_by_mi:14,spectral:[2,3,17,20,22,26,36,37,38,45,47],spectrum:[20,34,37,47],specular:[19,23,41,43,44],specularli:[19,23,44],speed:[3,18,19,23,25,33,34,35,36,40,42,45,46,47,48],speed_of_light:[41,43,44],sphere:[19,23,42],spheric:[19,23],spirit:27,split:[0,9,13,17,19,21,22,25,51],split_dim:21,spontan:2,spread:[3,18,25,29,34,41,47,48],springer:23,sqrt:[2,15,18,19,20,23,26,27,28,37,40,43,44],squar:[16,17,18,19,20,22,23,26,33,35,36,38,41,44],squeez:[3,34,35,39,41,42,43,44,48],ss:23,ssfm:[2,37],stabil:[2,9,16,18,33],stabl:[9,14,16,17,18,49],stack:[16,26,35,42,45,46,48,50],stage:[24,36,47,53],stahl:[11,24],stai:37,standard:[3,5,7,8,13,15,17,23,24,25,27,30,33,37,53],stapl:53,star:[3,18],stark:[1,26],start:[3,16,17,18,19,22,25,33,34,36,37,38,39,41,42,46,47,48,51,52,54,55],state:[2,3,6,8,9,12,13,14,16,17,18,33,34,35,36,45,46,47,48,49,51,53],stateful:33,stateless:[8,12],statement:[25,33,45],static_analysi:[25,33],station:[3,16,33,34,35,36,39,47,53],stationari:3,statist:[10,24,27,36,49,53],statu:[11,17,24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49],steep:24,stem:[2,19,34,38,41,42,47],step:[0,3,10,16,17,18,19,21,22,25,26,27,28,34,35,36,39,40,42,43,46,51],stephan:[11,53],still:[19,22,23,25,27,30,41,45,48,52],stim:[10,11],stimming_llr:11,stimming_llr_osd:10,stochast:[26,28,35,42,46,49],stop:[8,9,11,22,24,26,27,29,30,31,33,34,35,36,45,46,47,48,49],stop_gradi:26,store:[8,14,19,22,24,26,27,28,31,35,36,45,49],str:[3,6,7,9,11,12,13,14,15,16,17,18,19,20,22,24,25,27,31,34,35,42,45],straight:[41,43],straightforward:[46,53],strategi:22,stream:[12,13,17,18,21,22,25,27,29,30,35,36,39,40,48],stream_associ:16,stream_ind:[16,17,18,25],stream_manag:[17,18,25,33,35,42,47,48],streammanag:[3,16,17,18,25,29,30,33,34,35,36,39,42,47,48],street:[3,43],strength:[6,13,23,24,41,44],strict:53,strictli:27,string:[6,7,9,13,14,17,18,19,20,22,24,27,31,42],strong:[11,41,42,44],stronger:[36,44,49],strongli:[24,27,36,41,42,43,44],structur:[6,11,14,18,19,23,25,28,29,30,36,45,46,47,48,53],stuck:53,studer:[16,33],studerreleas:53,studi:[3,19,44,53],style:[34,50],sub:[6,8,12,13,14,16,18,19,22,24,30,34,36,45,53],sub_frame_dur:[17,25],subblock_interleav:11,subcarri:[3,17,18,25,34,35,39,42,43,47,48],subcarrier_frequ:[0,21,29,34,39,42,43],subcarrier_spac:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,47,48],subclass:45,subdivd:19,subfram:17,submodul:3,subplot:[24,31,33,36,37,43],subplots_adjust:36,subscript:23,subsequ:43,subset:[3,17,24,25],substanti:[16,18,34,39,53],substitut:[19,35,48],success:[7,10,11,24,27,37,45],suddenli:41,sudo:52,suffer:23,suffici:[10,19,27,34],suit:[11,27,34,42,51],suitabl:[11,34,39,47,48],sum:[3,14,16,17,18,19,25,34,39,41,42,43,44,49],sum_:[3,9,15,16,18,19,20,23,35,36,41,43],summar:[24,30],summari:30,sun:[33,35,48],supervis:53,support:[1,4,6,8,9,10,11,13,14,16,17,18,24,25,30,31,34,36,37,41,42,43,44,45,47,51,52,53,55],suppos:[16,25],suptitl:[26,33,36],sure:[24,30,52],surf:43,surfac:[19,23,41,44,53],surfaceintegr:19,surprisingli:53,surrog:27,survei:[11,16,24],swap:[8,14,19],swap_memori:2,sweep:24,sy:[16,40,41,44],sym:19,symb:17,symbol:[2,3,6,8,9,13,15,16,17,18,20,22,23,24,26,27,28,30,31,32,33,34,35,36,39,40,42,43,45,46,47,48,49,50],symbol_alloc:17,symbol_demapp:40,symbol_indic:22,symbold:38,symboldemapp:[21,40],symboldemapperwithprior:21,symbolinds2bit:21,symbollogits2llr:21,symbollogits2llrswithprior:21,symbollogits2mo:21,symbolsourc:21,symmetr:[1,2,6,10,11,24,27,49],symmetri:[14,16,27],symp:[14,16],symposium:9,synchron:[34,42,53],syndrom:14,synthet:[19,43,53],synthetic_arrai:[19,42],sys_param:30,syst:33,system:[2,3,8,9,12,16,17,18,19,24,25,28,29,30,32,33,36,37,38,40,41,42,43,44,47,48,49,50,51,52,53,55],system_model:[24,31],systemat:[6,10,13,14,24],systemsreinhard:53,szczecinski:27,t:[1,2,3,6,9,10,14,16,18,19,20,23,24,25,26,27,33,34,35,36,37,38,39,41,42,43,44,47,49],t_0:37,t_:[2,17,23,25,37],t_c:[17,25],t_norm:[2,37],t_sim:37,t_start:[24,30,45],t_stop:[24,30,45],ta:3,tab:[11,17,45],tabl:[3,5,19],table_index:17,tabul:6,tag:14,tail:44,tailor:34,take:[3,6,9,11,13,15,17,18,19,22,23,24,25,27,29,34,35,36,39,42,44,45,46,47],taken:[7,10,14,18,20,22,34,47],tal:[11,24],tal_scl:11,tangent:23,tangenti:23,tanh:9,tap:[0,18,21,34],tape:[26,35,46,48,49,50],tappert:2,target:[17,19,22,24,25,26,27,29,30,33,34,35,36,39,40,42,45,46,47,48,49,53],target_b:22,target_bl:[22,24],target_coder:[17,25],target_num_cir:42,target_r:17,target_rank:22,target_tb_s:17,taricco:27,task:[11,19,24,27,30,45,46,47,48],tau:[3,19,23,28,34,39,41,42,43,44,47],tau_:[3,18,19,42],tau_i:[19,23,41],tau_m:3,taylor:19,tb5gscrambler:[5,21],tb:[17,25,42],tb_config:17,tb_crc_encod:17,tb_crc_length:17,tb_crc_statu:17,tb_decod:17,tb_scale:[17,25],tb_size:[17,25,42],tbconfig:[21,25],tbdecod:[21,25],tbencod:[21,25],tccn:26,tcm:27,tcomm:26,tdl:[0,18,21,30,34,47],tdl_freq_cov_mat:21,tdl_model:30,tdl_time_cov_mat:21,te:23,teach:49,tech:27,technic:24,techniqu:[2,24,34,42,53],technolog:[2,11,24,37,53],tell:25,temp:[30,45],temperatur:1,templat:25,tempor:[18,37],temporari:[12,17],ten:[9,11,14,24,26,27,33,53],tenbrink:14,tenbrinkexit:14,tend:[24,49],tensor:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,27,31,32,34,35,39,40,42,45,46,49,50,51],tensor_scatter_upd:11,tensorboard:[30,48],tensorflow:[4,9,11,14,19,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],tensorshap:[22,40],term:[2,6,13,16,19,23,36,41,53],term_bit:13,term_bits1:13,term_bits2:13,term_bits_turbo2conv:13,termbits_conv2turbo:13,termin:[3,6,13,16,24,31,33,34,35,36,39,47],terminolog:[11,25,27,34,47],ternari:1,terrestri:[8,13],test:[3,7,17,19,24,25,40,51,52,53],testolina:53,text:[1,2,3,14,15,16,17,18,19,20,22,23,24,25,27,37,41,43,44],textbf:16,textbook:[15,16],textcolor:9,textfil:14,textrm:[2,6],textsf:[23,25],texttt:[19,35],tf:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],tf_cpp_min_log_level:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],tf_rag:9,th:[3,15,16,18,19,35,43],than:[3,5,6,8,9,10,11,13,16,17,18,19,20,22,23,24,33,34,36,39,41,42,43,44,49],thank:[40,41,42,44,51],thei:[3,6,13,19,23,25,27,28,33,34,35,36,37,38,41,42,44,48,53],them:[3,6,17,18,19,25,30,34,36,38,39,40,41,42,46,52,53],theo_pow:44,theorem:23,theoret:[38,41,42,44],theori:[2,6,9,10,11,12,14,19,23,24,27,29,40,41,49],ther:27,therebi:[10,24,27,45],therefor:[3,13,19,26,29,33,34,35,36,42,46,47,48,53],thereof:42,thesi:27,thet:25,theta:[19,23,41,44],theta_1:23,theta_2:23,theta_:[19,23,44],theta_hat:21,theta_i:[23,44],theta_phi_from_unit_vec:21,theta_r:[19,42],theta_t:[19,42,43],thi:[0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55],thing:[24,27,32,34,44,45,46,47,48,53],think:[30,41,44],third:[23,25,29,34,41,46],thitimajshima:13,thompson:16,those:[18,25,29,37],though:[44,53],three:[3,4,18,19,20,23,25,26,29,35,36,41,46,48,53],threshold:[19,24,27],through:[2,3,15,16,17,18,19,20,23,26,29,30,34,35,36,39,40,41,42,44,45,47,48,50,51,52,53],throughout:[19,36,45],throughput:[9,11,27,31,45,51],throughput_eag:45,throughput_graph:45,thrown:19,thu:[7,8,9,10,11,12,13,14,17,19,24,27,30,37,41,42,43,44,45,49,53],thumb:[36,49],thz:[37,44],tick:24,tick_param:[24,31],tight_layout:[26,35,37,41,43,45],tild:[16,18,19],tile:[26,35,41,44,48],time:[0,2,6,11,14,16,17,18,19,20,21,22,24,25,27,28,29,30,31,33,35,37,38,39,42,44,45,47,48,49,51,53,55],time_avg:18,time_channel:34,time_cov_mat:36,time_cov_mat_:36,time_eag:30,time_frequency_vector:[0,21,37],time_graph:30,time_graph_xla:30,time_lag_discrete_time_channel:[0,21,25,29,34],time_to_ofdm_channel:[0,21],timechannel:[0,18,21,25,29,34,47],timeit:30,timestep:43,tip:[30,45],titl:[14,22,24,25,27,32,34,38,39,41,42,44,45,47,51],tl:53,tm:23,to_dict:19,toa:53,todai:30,todd:6,togeth:[13,16,17,18,19,23,24,27,34,39,42,47,48],tommaso:53,too:[25,30,34,41,42,44,45,49],tool:[14,27,36,51,53],toolkit:52,top:[3,16,19,23,41,42],topic:[49,53],topolog:[3,25,33,36,39],tot:3,total:[3,9,13,17,18,20,22,23,25,27,30,33,35,36,38,41,42,44,45,49],toward:[3,19,23,27,34,42,44,45,46,47,55],tp:17,tpmi:[17,25,42],tr38901:[3,19,23,25,29,30,33,34,35,36,39,42,43,47,48],tr38901_pattern:21,tr38:30,tr:[3,16,19,47],trace:[6,21,23,29,41,43,44,45,51,52,53],trace_path:21,traced_path:19,tracer:[19,42,52,53],tracingjakob:53,track:[9,14],track_exit:[9,14,27],trade:24,tradeoff:[11,36,45],tradition:13,trail:[18,24,30],train:[9,30,45,47,50,53],train_it:49,train_rx:26,train_tx:26,trainabl:[9,14,15,16,17,18,19,20,27,45,46,47,48,49,50,53],trainable_vari:49,trainable_weight:[26,35,46,48,49],training_batch_s:[26,35],trajectori:[14,19,27,43],tran:[3,6,9,10,11,12,14,16,23,27,33,41,44],transact:[3,14,24,26,27,35,46,48,49],transceiv:[42,45],transfer:[3,23,27,37,47,53],transform:[2,3,11,13,14,15,16,17,18,19,20,22,23,25,34,35,37,38,42,44,53],transform_precod:17,transit:[1,6,13,41],translat:[23,34],transmiss:[1,2,7,10,12,14,16,17,18,22,23,25,30,31,33,35,42,45,46,48,49,50,53,55],transmit:[1,3,9,14,15,16,17,18,19,20,22,24,25,26,27,30,31,34,35,37,38,39,40,42,43,44,45,46,47,48,49,51],transmitt:[3,16,17,18,21,22,25,26,29,30,33,34,35,36,37,39,40,41,42,43,44,47,48,50,53],transpar:[2,37,45],transport:[21,42],transportblock:25,transpos:[3,18,29,34,35,36,39,42,48],transvers:23,trap:53,travel:[23,34,43,47,48],treat:[24,27,46],tree:[11,19],trelli:[5,13,21,27],tremend:40,trend:[3,41],trial:[24,30,33],triangl:[41,42],triangleq:23,triangular:[11,16],trick:[1,10,27,49],tricki:55,trigger:[7,19],triomph:19,triple_reflector:21,truncat:[3,34,38],truth:[26,27,35,39],ts38141:3,ts:[3,7,8,9,11,12,13,15,17,24,27,42],tse:[3,23],tucker:2,tue:45,tune:[26,33],tunnel:27,tupl:[1,3,6,7,8,9,12,13,14,15,16,17,18,19,20,22,24,27,30,31,45,49],turbo3gppinterleav:[5,21],turbo:[5,8,14,21,24,31,33,51],turbo_coder:13,turbo_term_sym:13,turbodecod:[13,24,31],turboencod:[13,24,31],turbotermin:[5,21],turn:[17,18,27,33,41,42],tutori:[2,6,11,13,16,17,19,24,26,30,31,35,38,42,43,45,46,47,48,50,51,52,54],twc:[3,35,46,48],twelfth:34,twelv:25,twice:45,twin:53,twinx:24,two:[1,3,5,6,7,8,11,12,13,15,16,17,18,19,22,23,24,25,26,27,29,30,31,34,35,36,37,40,41,43,44,45,47,49],tx:[3,19,25,26,34,39,41,42,43,44,47,48],tx_angl:41,tx_arrai:[3,19,41,42,43,44],tx_corr_mat:3,tx_dist:41,tx_ind:[17,18],tx_loss:26,tx_po:[41,42],tx_stream_id:16,tx_stream_ind:18,tx_veloc:[19,42,43],type:[3,4,9,11,14,15,16,17,18,19,20,22,23,25,27,28,30,34,36,41,42,43,44,45,47],type_a_posit:[17,25],typeerror:[11,12,14],typic:[3,12,19,23,25,37,45,46],u2220:37,u:[3,6,7,9,10,11,13,14,18,19,24,27,30,31,37,45,49,50],u_0:37,u_hat:[6,7,9,11,13,24,27,30,31,49],ubiquit:53,ubuntu:52,uci:[11,24],ue:[29,33,42],ue_antenna:29,ue_idx:29,ue_po:42,ueng:33,ufmc:34,uint8:[9,11],uk:14,ul:33,ul_sim:34,ula:3,ultra:24,uma:[0,21,25,33,34,39,47],umi:[0,21,25,34,36,39,42,47],umt:31,un:[25,34],uncod:[27,30,31,36,45,46,53],uncodedsystemawgn:45,uncom:[34,36,39],uncorr:[30,45],uncorrel:[3,40],und:6,under:[19,23,25,34,36,49,53],underbrac:23,undergo:[19,23,43],underli:[11,13,16,17,18,27],underset:[16,18],understand:[16,19,23,24,29,37,41,43,44,45],understood:[16,51],undesir:[16,23],unequ:12,unfold:[33,53],unfortun:49,uni:14,unifi:55,uniform:[1,3,8,12,19,23,26,28,29,33,35,41,45,46,48],uniform_candidate_sampl:42,uniformli:[3,16,19,23,28,41],unikl:14,uniqu:[8,19,23,36,41,42,49,53],unit:[2,3,15,16,18,19,20,23,26,37,44],unitari:[16,19],unittest:30,univ:27,univers:[3,8,10,13,23],unknown:[27,36],unleash:45,unless:42,unnecessari:14,unnorm:[15,16,19],unpatch:52,unpolar:2,unprecod:17,unreadvari:35,unrol:11,unsupport:[25,42],unsurprisingli:36,until:[17,19,22,23,27,43,45,46,47,48],untrain:[46,49],unus:17,unusu:27,up:[1,2,3,5,6,8,10,12,13,14,19,20,24,25,27,36,38,40,41,42,45,47,48,51,55],upa:33,updat:[8,9,11,12,16,17,18,19,25,27,30,33,34,36,39,41,42,43,44,46,47,48,49,50,52,53],upgrad:52,uplink:[3,11,16,17,24,25,29,33,35,36,42,48,53],upper:[16,20,31,41,45],upsampl:[21,38],upward:[19,23],urban:[0,21,23],urllc:24,us:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,50,53,55],usag:[8,12,30,37,45],use_allzero:27,use_count:19,use_fast_scl:11,use_hybrid_sc:11,use_ldpc_output_interleav:27,use_real_rep:[16,18],use_scatt:11,use_scrambl:[17,27],useabl:[30,45],useless:[35,43],user:[3,16,17,19,25,30,33,34,35,36,39,42,45,47,51,52,53],user_row_first:29,user_row_last:29,usermod:52,using_object:19,usr:[25,30,33,34,39,47,48],usual:[8,11,12,14,17,24,26,27,31,37,45],ut:[3,33,34,35,36,39,47,48],ut_antenna:[33,35,36],ut_arrai:[3,25,33,34,36,39,47,48],ut_loc:3,ut_orient:3,ut_veloc:3,utd:[23,41],util:[0,5,8,21,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53],v0:53,v16:15,v:[3,7,8,9,11,12,13,14,16,18,19,23,24,27,33,35,36,39,41,42,43,44,47,48],v_:[16,19,23],v_i:16,v_j:16,va:41,vacuum:[19,23,41],vae:53,valid:[3,6,7,8,10,13,14,17,19,20,23,27,30,34,36,39,40,41,47,48,53],validate_indic:[30,34,36,39,47,48],valu:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,33,34,35,36,37,38,41,42,44,45,46,47,48,49],valueerror:[7,8,9,11],van:53,vanish:[23,35,41,48,49],vardi:[11,24],varepsilon:23,varepsilon_0:23,varepsilon_r:[19,23],vari:[2,5,18,19,30,34,42,43,44,47],variabl:[2,4,9,14,15,16,18,19,20,22,27,33,35,46,49],varianc:[3,14,15,16,17,18,22,24,25,26,27,30,31,34,35,39,40,42,47,48,50],variant:[3,46,48],variat:53,varieti:[16,45],variou:[6,13,16,19,25,34,36,38,41,42,44,53],varphi:[3,19,23],varphi_:[19,23],vdot:18,vector:[2,3,6,9,13,15,16,17,18,19,20,22,25,26,30,32,37,38,40,41,42,43,51,53],vehicular:[11,24],veloc:[2,3,19,37,42,43],velocity_vec:43,vem:51,verbos:[11,14,17,22,27,30,49],veri:[3,14,18,19,25,28,34,35,36,40,41,43,44,45,46,49],verif:[7,38],verifi:[7,14,23,25,27,30,38,41,42,44,49],verify_gm_pcm:[5,21],verify_input:14,verify_result:14,versa:14,version:[9,11,14,16,17,22,23,27,30,34,36,39,40,41,42,43,44,45,47,48,49,52],versu:[23,41],vert:23,vertial:[33,36],vertic:[3,19,23,34,41,47],vertical_spac:[3,19,41,42,44],vetor:19,vh:[3,19,35,39],via:[6,8,11,19,22,23,24,25,27,30,31,42,45,49,52],vice:14,video:[19,42,51,53],view:[19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],view_init:43,viewer:[19,42],viewpoint:[19,27,42],vii:16,viridi:43,virtual:[23,27,52],visibl:[34,41],vision:[35,48],visual:[3,14,17,18,21,24,25,27,30,32,34,36,37,38,39,41,42,43,44,45,46,47],visualis:19,viswanath:[3,23],vital:41,viterbi:[5,21,24,31,45],viterbidecod:[6,10,24,31],vittorio:[23,44],vmax:[19,36],vmin:[19,36],vn:[9,14,27,49],vol:[2,3,10,11,14,16,23,24,26,27,33,35,41,44,46,48,49],volatil:[30,45],voltag:[23,37],vq:53,vs:[5,31,55],w:[1,2,3,9,16,17,19,23,24,27,28,33,37,38,41,49],w_:[3,9,18],w_b:[3,18],w_f:[17,25],w_n:20,w_t:[17,25],wa:[3,7,11,14,17,18,19,20,23,24,25,27,33,34,37,41,42,45,46,51],wai:[2,3,4,6,16,17,19,25,28,34,36,41,42,43,44,49],wait:30,walk:[34,39,40],wall:19,want:[3,16,18,22,24,25,30,32,34,35,39,41,42,43,45,53],warn:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],warren:11,watch:50,watched_vari:[46,50],waterfal:24,wave:[2,19,29,41,42,44,51,53],waveform:[0,18,21,25,27,34,35,36,38,51],wavelength:[3,19,34,41,43,44,47],wb:[26,35,46,48],wcncw:24,we:[6,7,9,10,11,12,13,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,55],weak:[41,44],weaker:41,wed:30,wedg:[19,23],weight:[9,17,26,27,35,46,48,53,55],weightedbp5g:49,weightedbp:49,weights_bp:49,weights_damp:49,weightsin:[46,48],weiss:49,well:[2,3,5,11,14,17,18,19,22,23,24,25,27,30,33,34,36,38,39,41,42,43,44,47,49,51,53],well_defin:19,wenzel:23,were:[3,18,23,30,34],what:[20,23,24,25,26,27,34,35,37,40,41,44,46,48,49],wheel:[19,42],when:[3,6,7,8,9,11,12,13,15,16,18,19,23,25,26,29,30,33,34,35,36,37,39,41,42,43,44,45,46,47,49],whenev:[10,23,30,34,41,42,43,44,45],where:[1,2,3,6,7,9,12,13,14,15,16,17,18,19,20,22,23,25,26,27,33,35,36,37,38,41,42,43,44,46,53],wherea:3,wherein:53,whether:[6,9,12,13,16,18,34,36,47],which:[1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53],while_loop:33,white:[3,16,19,26,34,35],whiten:[16,18],whiten_channel:21,whiten_interfer:[16,18],whitepap:50,whole:[24,30,42,50],whose:[2,3,16,18,19,23,29,53],why:[24,27,34,39,41,44],wide:[3,6,16,18,24,27,29,30,45,51,53],widehat:3,wider:24,widetild:23,widget:45,width:[2,3,15,19,23,37],wiesbeck:23,wiesmayr:[33,53],wiffen2018:19,wiffen:19,wikipedia:[16,19,23],wikipedia_rodrigu:23,wilei:[2,6,19,23],window:[2,6,18,21,34,37,47,51],winzer:[2,37],wirel:16,wireless:[0,5,13,21,23,24,33,35,41,42,46,48,51,53],wise:[9,11,16,18,20,22,24,27,38,43,49],with_amplif:[2,37],with_attenu:[2,37],with_dispers:[2,37],with_dual_polar:2,with_manakov:2,with_nonlinear:[2,37],with_prior:[15,16],within:[3,5,10,15,16,17,18,19,22,23,24,25,27,34,35,37,41,42,45,46,47,48,52],without:[3,7,10,11,14,16,17,18,19,24,25,27,30,34,38,41,42,44,45,46,48,49,52],wkshp:1,wmc1991:2,wood:41,word:[18,19,22,44],work:[3,4,10,14,16,18,19,24,25,30,33,35,41,42,43,44,45,49,52,53],workflow:53,workhors:31,workload:22,workshop:[1,24,29,49],world:[42,51,52,53,54],wors:39,worst:39,worth:27,would:[3,9,11,12,18,19,20,24,25,27,28,31,37,41,44,49],wrap:[3,18,19,40,45],wrap_angle_0_360:[0,21],wrapper:[8,9,11],write:[2,23,45,46,47,48,50],written:[2,14,45],wrong:[27,45],wrongli:45,wu:33,www:[9,14,15,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,49],x4:53,x5:53,x:[1,2,3,7,8,9,12,13,14,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,50],x_0:3,x_1:13,x_2:[13,25],x_:[3,9,16,18,38],x_angl:37,x_crc:7,x_end:43,x_grid:43,x_hat:[16,18,20,29,30,34,35,36,38,39,40,47,48],x_i:13,x_ind:[36,40],x_ind_hat:40,x_j:16,x_k:16,x_m:20,x_mf:[20,38],x_n:20,x_p:26,x_precod:[16,18],x_rg:[29,30,33,34,35,36,39,47,48],x_rrcf:[20,38],x_start:43,x_tick_label:24,x_time:[25,34],x_u:[20,38],xi:18,xiangyu:[35,48],xiao:3,xla:[3,4,8,10,11,12,16,18,22,24,25,30,31,36,42,45],xla_compat:[3,4,16,18,22,25,30,34,36,39,40,42],xlabel:[3,24,25,26,27,29,32,34,35,36,38,39,41,42,44,45,47],xlim:[22,24,25,31,34,38,39,41,42],xml:[19,42],xpd:[23,42],xpd_coeffici:[19,42],xpol:23,xr:53,xtick:[24,27],xy:19,y:[1,2,3,6,9,11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,37,39,40,41,42,43,45,46,47,48,49,50],y_:[3,9],y_angl:37,y_b:[3,18],y_end:43,y_grid:43,y_i:50,y_pilot:18,y_rg:[36,47],y_start:43,y_time:34,yang:[16,33],yaw:[23,42],year:[16,51,53],yedidia:49,yh2015:16,yield:[3,9,14,22,24,27,28,30,31,42],ylabel:[3,22,24,25,26,27,29,30,31,32,34,35,36,38,39,41,42,44,45,47],ylim:[20,22,24,25,26,31,34,35,38,39,41,42],ymax:41,ymin:41,york:2,you:[3,6,13,16,17,18,19,22,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,55],your:[17,19,25,28,30,33,34,36,41,42,44,45,47,49,51,52,53,55],yourself:[25,34,39,41,44],ytick:[24,27],z:[1,2,9,15,16,18,19,23,26,29,34,35,43,46,47,48],z_0:23,z_1:13,z_2:13,z_:[15,23],z_c:15,z_grid:43,z_i:13,z_norm:37,zaxi:43,zehavi:27,zehnder:37,zenith:[19,23,42],zero:[1,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,30,33,34,36,37,38,39,41,42,43,44,49],zero_forcing_precod:[18,21],zeros_lik:[24,44],zeta:19,zf:[16,18,34],zf_equal:[18,21],zf_precod:34,zfequal:21,zfprecod:[16,21,29,34,39],zhang:[35,48],zheng:3,zip:[15,26,28,29,35,46,48,49],zoom:[19,42],zurich:27},titles:["Channel","Discrete","Optical","Wireless","Configuration","Forward Error Correction (FEC)","Convolutional Codes","Cyclic Redundancy Check (CRC)","Interleaving","Low-Density Parity-Check (LDPC)","Linear Codes","Polar Codes","Scrambling","Turbo Codes","Utility Functions","Mapping","Multiple-Input Multiple-Output (MIMO)","5G NR","Orthogonal Frequency-Division Multiplexing (OFDM)","Ray Tracing","Signal","API Documentation","Utility Functions","Primer on Electromagnetics","5G Channel Coding and Rate-Matching: Polar vs.\u00a0LDPC Codes","5G NR PUSCH Tutorial","End-to-end Learning with Autoencoders","Bit-Interleaved Coded Modulation (BICM)","Channel Models from Datasets","Using the DeepMIMO Dataset with Sionna","Discover Sionna","From GSM to 5G - The Evolution of Forward Error Correction","\u201cHello, world!\u201d","Introduction to Iterative Detection and Decoding","MIMO OFDM Transmissions over the CDL Channel Model","Neural Receiver for OFDM SIMO Systems","OFDM MIMO Channel Estimation and Detection","Optical Channel with Lumped Amplification","Pulse-shaping Basics","Realistic Multiuser MIMO OFDM Simulations","Basic MIMO Simulations","Tutorial on Diffraction","Introduction to Sionna RT","Mobility in Sionna RT","Tutorial on Scattering","Part 1: Getting Started with Sionna","Part 2: Differentiable Communication Systems","Part 3: Advanced Link-level Simulations","Part 4: Toward Learned Receivers","Weighted Belief Propagation Decoding","\u201cHello, Sionna!\u201d","Sionna","Installation","\u201cMade with Sionna\u201d","Quickstart","Tutorials"],titleterms:{"1":[17,45],"2":[17,46],"3":[17,47],"38":3,"3gpp":3,"3gpp38214":17,"4":[17,48],"5":17,"5g":[17,24,25,31,49],"901":3,"final":31,"function":[2,3,6,11,13,14,15,16,19,20,22],"import":[24,25,26,27,28,29,31,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49],A:[24,25,27],For:55,The:[27,30,31,51],With:44,aclr:38,actual:39,ad:40,advanc:[47,48],advantag:27,against:44,alist2mat:14,all:27,allzeroencod:10,amplif:37,amplifi:[2,37],an:[34,48],analysi:14,antenna:[3,19,23,34,47],antennaarrai:[3,19],api:21,applyflatfadingchannel:3,applyofdmchannel:3,applytimechannel:3,approxim:[27,44],arrai:[19,34,47],attenu:37,autoencod:26,automat:50,avail:25,awgn:3,background:[41,42,43],base:[26,43,52],basechannelestim:18,basechannelinterpol:18,baselin:35,basic:[38,40,44,45],batch:30,bch:49,bcjr:6,befor:49,beginn:55,belief:49,benchmark:[33,48],benefit:51,ber:[24,27,30,39,40,42,49],between:[34,39],bicm:27,bin2int:14,bin2int_tf:14,binari:14,binaryerasurechannel:1,binarymemorylesschannel:1,binarysourc:22,binarysymmetricchannel:1,binaryzchannel:1,bit:[27,30],biterrorr:22,bitwisemutualinform:22,blackmanwindow:20,block:[3,17,25,27],box:19,bp:49,bpsk:27,calculate_tb_s:17,camera:19,carlo:30,carrier:[17,25],carrierconfig:17,cdl:[3,34],channel:[0,3,18,24,27,28,29,34,36,37,39,40,42,43,44,47],chart:27,check:[7,9],chromat:37,cir:34,cir_to_ofdm_channel:3,cir_to_time_channel:3,citat:[29,51],cluster:3,code:[6,10,11,13,14,24,27,40,49],codeword:[27,31],comment:33,commun:[45,46],compar:[34,39],comparison:[36,43],complex2real_channel:16,complex2real_covari:16,complex2real_matrix:16,complex2real_vector:16,complex:24,complex_norm:22,compon:[25,34],comput:[35,46,50],compute_b:22,compute_bl:22,compute_field:19,compute_gain:19,compute_path:19,compute_s:22,conclus:[30,42,48],configur:[4,24,25,26,27,28,29,31,33,34,35,36,37,38,39,40,41,42,43,44,49],constel:[15,26,27],content:[24,25,27,29,31,33,34,36,37,38,39,40,41,42,43,44,49],control:[25,43],convent:26,convolut:6,convolv:20,coordin:23,correct:[5,31,45],correl:40,count_block_error:22,count_error:22,covari:36,coverag:[19,41,42,44],coverage_map:19,coveragemap:19,crc:7,crcdecod:7,crcencod:7,creat:[28,34,46],cross:19,custom:46,customfilt:20,customwindow:20,cyclic:[7,34],damp:49,data:[30,45],dataset:[3,28,29],de:27,decod:[6,9,10,11,13,24,27,33,49],deeper:24,deepmimo:29,deg_2_rad:3,deinterleav:8,delai:[3,43],demap:[15,27],demapp:[15,26],demapperwithprior:15,demodul:18,densiti:9,depth:42,descrambl:12,design:[30,45],detail:51,detect:[16,18,33,36],detector:36,devic:19,diagram:27,differ:[34,39],differenti:46,diffract:[23,41],dimension:30,dipole_pattern:19,discov:30,discret:[1,34],discuss:33,dispers:37,distribut:27,divis:18,dmr:25,docker:52,document:21,domain:[3,34,39,47],dope:2,doppler:43,dot:19,double_reflector:19,downlink:34,downsampl:[20,38],drop_uts_in_sector:3,eager:[30,45],ebnodb2no:22,edg:41,electromagnet:23,emiss:37,empirical_aclr:20,empirical_psd:20,emptypilotpattern:18,encod:[6,9,10,11,13,27],end:[25,26,30,34,35,36,46],epdetector:[16,18],equal:[16,18],equat:23,erbium:2,error:[5,30,31,45],estim:[18,36,39],etoil:19,evalu:[26,34,35,42],evolut:[31,43],exampl:[19,23,25,43],exercis:45,exit:[14,27],exp_corr_mat:3,expand_to_rank:22,experi:[41,49],expert:55,extens:40,extern:3,fade:3,far:[23,44],fec:[5,45],fft:20,fiber:2,field:23,figur:31,filter:[20,38],find:51,first:30,flat:3,flatfadingchannel:3,flatten_dim:22,flatten_last_dim:22,floor_wal:19,flow:[30,45],forward:[5,31,45],fourier:[2,37],frequenc:[18,23,34,36,39,47],frii:23,from:[28,31,42,52],further:49,gaussianpriorsourc:14,gen_single_sector_topolog:3,gen_single_sector_topology_interfer:3,gener:[23,28,34,37],generate_5g_rank:11,generate_dense_polar:11,generate_polar_transform_mat:11,generate_prng_seq:17,generate_reg_ldpc:14,generate_rm_cod:11,generateflatfadingchannel:3,generateofdmchannel:3,generatetimechannel:3,get:[30,45],get_exit_analyt:14,gm2pcm:14,gpu:[24,25,26,27,28,29,31,33,34,35,36,38,39,40,41,42,43,44,49],gradient:[46,50],graph:[30,45],grid:[18,34,47],gsm:31,hammingwindow:20,hannwindow:20,hard_decis:22,harmon:23,hello:[25,32,45,50],how:25,hw_dipole_pattern:19,idd:33,ifft:20,impact:[34,44],implement:48,impuls:[23,34,37,42,44],index:17,inform:[41,42,43,51],input:16,insert_dim:22,instal:52,insuffici:34,int2bin:14,int2bin_tf:14,int_mod_2:14,interfac:3,interleav:[8,27],introduct:[33,42],investig:38,iso_pattern:19,iter:33,j_fun:14,j_fun_inv:14,j_fun_inv_tf:14,j_fun_tf:14,kbestdetector:[16,18],kera:[33,34,35,39,40,45],kerr:37,kroneckermodel:3,kroneckerpilotpattern:18,layer:[17,25,30,34,46],layerdemapp:17,layermapp:17,ldpc5gdecod:9,ldpc5gencod:9,ldpc:[9,24,49],ldpcbpdecod:9,learn:[26,33,48,49],length:34,let:30,level:[29,30,42,47],licens:[29,51],line:3,linear:[10,14],lineardetector:[16,18],linearencod:10,linearinterpol:18,link:[29,30,42,47],list2llr:16,list2llrsimpl:16,list:33,llr2mi:14,llr:27,llrs2symbollogit:15,lmmse_equ:16,lmmseequal:18,lmmseinterpol:18,load:[30,36,42],load_alist:14,load_parity_check_exampl:14,load_scen:19,log10:22,log2:22,longer:[24,31],look:[24,25],loop:46,low:9,lschannelestim:18,lump:37,machin:33,macrocel:3,made:53,make_systemat:14,manag:[16,34,47],map:[15,17,19,27,41,42,44],mapper:15,match:[24,38],materi:19,matric:36,matrix_inv:22,matrix_pinv:22,matrix_sqrt:22,matrix_sqrt_inv:22,maximumlikelihooddetector:[16,18],maximumlikelihooddetectorwithprior:[16,18],mc:[17,25],method:[2,37],metric:22,mf_equal:16,mfequal:18,microcel:3,mimo:[16,34,36,39,40],min:27,miscellan:[14,22],mismatch:27,mmse:16,mmsepicdetector:18,mobil:[34,43],mode:[30,45],model:[3,23,28,30,31,33,34,35,36,39,40,45,47],modul:[18,24,27],mont:30,multi:[29,30],multipl:[16,25],multiplex:18,multius:39,munich:19,nearestneighborinterpol:18,neural:[26,35,48],nois:37,non:33,nonlinear:37,normal:[19,23],nr:[17,25],number:25,object:[19,43],ofdm:[3,18,28,34,35,36,39,47],ofdmchannel:3,ofdmdemodul:18,ofdmdetector:18,ofdmdetectorwithprior:18,ofdmequ:18,ofdmmodul:18,one_ring_corr_mat:3,optic:[2,37],optim:[24,33],orient:43,orthogon:18,osdecod:10,other:34,outlook:42,output:16,over:34,packag:30,pam2qam:15,pam:15,pam_grai:15,pamsourc:22,panelarrai:3,paradigm:[30,45],paramet:[26,28,33,35,36,48],pariti:9,part:[45,46,47,48],path:[19,23,42],pattern:[18,23,34,44],pcm2gm:14,percolumnmodel:3,perform:[24,34],phi_hat:19,physic:34,pic:16,pilot:[18,34],pilotpattern:18,pip:52,planar:23,planararrai:19,plot_ber:22,plot_exit_chart:14,plot_trajectori:14,plotber:22,polar5gdecod:11,polar5gencod:11,polar:[11,24],polarbpdecod:11,polarencod:11,polarization_model_1:19,polarization_model_2:19,polarscdecod:11,polarscldecod:11,polynomial_selector:[6,13],port:25,posit:43,pre:35,precod:[16,18],prefix:34,preview:19,primer:23,process:34,propag:[23,42,49],puls:38,puncture_pattern:13,pusch:[17,25],puschconfig:17,puschdmrsconfig:17,puschlschannelestim:17,puschpilotpattern:17,puschprecod:17,puschreceiv:[17,25],puschtransmitt:[17,25],qam2pam:15,qam:[15,38],qamsourc:22,qpsk:27,quickstart:54,r_hat:19,rad_2_deg:3,radio:[19,42],radiomateri:19,rai:[19,42,55],raisedcosinefilt:20,random:29,randominterleav:8,rate:[24,30,31],rayleigh:3,real2complex_channel:16,real2complex_covari:16,real2complex_matrix:16,real2complex_vector:16,realist:39,receiv:[19,23,35,48],recov:[23,38],recoveri:24,redund:7,refer:[24,26,27,33,35,37,41,44,48,49],reflect:23,refract:23,relocate_ut:3,remov:27,removenulledsubcarri:18,render:19,render_to_fil:19,requir:30,resourc:[18,34,47],resourcegrid:18,resourcegriddemapp:18,resourcegridmapp:18,respons:[23,34,39,42,44],result:[31,35,49],rl:26,rma:3,role:27,rootraisedcosinefilt:20,rot_mat_from_unit_vec:19,rotat:[19,23],rotation_matrix:19,rowcolumninterleav:8,rt:[42,43],run:30,runtim:42,rural:3,s:30,sampl:[29,34],sample_points_on_hemispher:19,scatter:[23,44],scatteringpattern:19,scene:[19,42,43],sceneobject:19,scheme:24,scrambl:12,scrambler:[12,27],select_mc:17,sequenc:38,set:[30,33,46],set_3gpp_scenario_paramet:3,setup:[34,37,39],shape:38,shift:43,signal:20,sim_ber:22,simo:35,simpl:[27,28,40,41],simple_reflector:19,simple_street_canyon:19,simple_street_canyon_with_car:19,simple_wedg:19,simul:[25,26,27,28,29,30,31,33,34,35,36,39,40,42,47,48,49],sincfilt:20,sionna:[29,30,42,43,45,50,51,53],site:42,slot:25,some:30,sourc:52,spatial:[36,40],spatialcorrel:3,specifc:42,spectrum:43,split:[2,37],split_dim:22,spontan:37,start:[30,45],step:[2,37],stream:[16,34,47],subcarrier_frequ:3,sum:27,summari:[43,44],symbol:[25,38],symboldemapp:15,symboldemapperwithprior:15,symbolinds2bit:15,symbollogits2llr:15,symbollogits2llrswithprior:15,symbollogits2mo:15,symbolsourc:22,system:[23,26,27,31,34,35,39,45,46],tabl:[17,24,25,27,29,31,33,34,36,37,38,39,40,41,42,43,44,49],tap:3,tb5gscrambler:12,tbconfig:17,tbdecod:17,tbencod:17,tdl:3,tdl_freq_cov_mat:18,tdl_time_cov_mat:18,tensor:[22,30],test:30,theta_hat:19,theta_phi_from_unit_vec:19,through:[38,46],throughput:[24,30],time:[3,23,34,36,43],time_frequency_vector:2,time_lag_discrete_time_channel:3,time_to_ofdm_channel:3,timechannel:3,toward:48,tr38901_pattern:19,trace:[19,42,55],trace_path:19,train:[26,35,46,48,49],trainabl:26,transmiss:[27,28,34,37,39,40,47],transmit:23,transmitt:19,transport:[17,25],trelli:6,triple_reflector:19,turbo3gppinterleav:8,turbo:13,turbotermin:13,tutori:[25,41,44,55],uma:3,umi:3,uncod:40,under:24,understand:[25,34,39],up:[30,33,46],uplink:[34,39,47],upsampl:20,urban:3,us:[28,29,40,51,52],user:29,util:[2,3,6,11,13,14,15,16,17,19,20,22],valid:44,vector:23,verify_gm_pcm:14,versu:33,via:43,visual:[19,26,29],viterbi:6,vs:[24,41,42,43,45],wall:44,wave:23,waveform:3,wedg:41,weight:49,where:51,whiten_channel:16,window:[20,38],wireless:3,world:[25,32],wrap_angle_0_360:3,zero:27,zero_forcing_precod:16,zf_equal:16,zfequal:18,zfprecod:18}})
\ No newline at end of file
+Search.setIndex({docnames:["api/channel","api/channel.discrete","api/channel.optical","api/channel.wireless","api/config","api/fec","api/fec.conv","api/fec.crc","api/fec.interleaving","api/fec.ldpc","api/fec.linear","api/fec.polar","api/fec.scrambling","api/fec.turbo","api/fec.utils","api/mapping","api/mimo","api/nr","api/ofdm","api/rt","api/signal","api/sionna","api/utils","em_primer","examples/5G_Channel_Coding_Polar_vs_LDPC_Codes","examples/5G_NR_PUSCH","examples/Autoencoder","examples/Bit_Interleaved_Coded_Modulation","examples/CIR_Dataset","examples/DeepMIMO","examples/Discover_Sionna","examples/Evolution_of_FEC","examples/Hello_World","examples/Introduction_to_Iterative_Detection_and_Decoding","examples/MIMO_OFDM_Transmissions_over_CDL","examples/Neural_Receiver","examples/OFDM_MIMO_Detection","examples/Optical_Lumped_Amplification_Channel","examples/Pulse_shaping_basics","examples/Realistic_Multiuser_MIMO_Simulations","examples/Simple_MIMO_Simulation","examples/Sionna_Ray_Tracing_Diffraction","examples/Sionna_Ray_Tracing_Introduction","examples/Sionna_Ray_Tracing_Mobility","examples/Sionna_Ray_Tracing_RIS","examples/Sionna_Ray_Tracing_Scattering","examples/Sionna_tutorial_part1","examples/Sionna_tutorial_part2","examples/Sionna_tutorial_part3","examples/Sionna_tutorial_part4","examples/Weighted_BP_Algorithm","examples/dev_blog_example","index","installation","made_with_sionna","quickstart","tutorials"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1,nbsphinx:3,sphinx:56},filenames:["api/channel.rst","api/channel.discrete.rst","api/channel.optical.rst","api/channel.wireless.rst","api/config.rst","api/fec.rst","api/fec.conv.rst","api/fec.crc.rst","api/fec.interleaving.rst","api/fec.ldpc.rst","api/fec.linear.rst","api/fec.polar.rst","api/fec.scrambling.rst","api/fec.turbo.rst","api/fec.utils.rst","api/mapping.rst","api/mimo.rst","api/nr.rst","api/ofdm.rst","api/rt.rst","api/signal.rst","api/sionna.rst","api/utils.rst","em_primer.rst","examples/5G_Channel_Coding_Polar_vs_LDPC_Codes.ipynb","examples/5G_NR_PUSCH.ipynb","examples/Autoencoder.ipynb","examples/Bit_Interleaved_Coded_Modulation.ipynb","examples/CIR_Dataset.ipynb","examples/DeepMIMO.ipynb","examples/Discover_Sionna.ipynb","examples/Evolution_of_FEC.ipynb","examples/Hello_World.ipynb","examples/Introduction_to_Iterative_Detection_and_Decoding.ipynb","examples/MIMO_OFDM_Transmissions_over_CDL.ipynb","examples/Neural_Receiver.ipynb","examples/OFDM_MIMO_Detection.ipynb","examples/Optical_Lumped_Amplification_Channel.ipynb","examples/Pulse_shaping_basics.ipynb","examples/Realistic_Multiuser_MIMO_Simulations.ipynb","examples/Simple_MIMO_Simulation.ipynb","examples/Sionna_Ray_Tracing_Diffraction.ipynb","examples/Sionna_Ray_Tracing_Introduction.ipynb","examples/Sionna_Ray_Tracing_Mobility.ipynb","examples/Sionna_Ray_Tracing_RIS.ipynb","examples/Sionna_Ray_Tracing_Scattering.ipynb","examples/Sionna_tutorial_part1.ipynb","examples/Sionna_tutorial_part2.ipynb","examples/Sionna_tutorial_part3.ipynb","examples/Sionna_tutorial_part4.ipynb","examples/Weighted_BP_Algorithm.ipynb","examples/dev_blog_example.ipynb","index.rst","installation.rst","made_with_sionna.rst","quickstart.rst","tutorials.rst"],objects:{"sionna.Config":{xla_compat:[4,1,1,""]},"sionna.channel":{AWGN:[3,0,1,""],ApplyFlatFadingChannel:[3,0,1,""],ApplyOFDMChannel:[3,0,1,""],ApplyTimeChannel:[3,0,1,""],BinaryErasureChannel:[1,0,1,""],BinaryMemorylessChannel:[1,0,1,""],BinarySymmetricChannel:[1,0,1,""],BinaryZChannel:[1,0,1,""],CIRDataset:[3,0,1,""],ChannelModel:[3,0,1,""],EDFA:[2,0,1,""],FlatFadingChannel:[3,0,1,""],GenerateFlatFadingChannel:[3,0,1,""],GenerateOFDMChannel:[3,0,1,""],GenerateTimeChannel:[3,0,1,""],KroneckerModel:[3,0,1,""],OFDMChannel:[3,0,1,""],PerColumnModel:[3,0,1,""],RayleighBlockFading:[3,0,1,""],SSFM:[2,0,1,""],SpatialCorrelation:[3,0,1,""],TimeChannel:[3,0,1,""],cir_to_ofdm_channel:[3,2,1,""],cir_to_time_channel:[3,2,1,""],deg_2_rad:[3,2,1,""],drop_uts_in_sector:[3,2,1,""],exp_corr_mat:[3,2,1,""],gen_single_sector_topology:[3,2,1,""],gen_single_sector_topology_interferers:[3,2,1,""],one_ring_corr_mat:[3,2,1,""],rad_2_deg:[3,2,1,""],relocate_uts:[3,2,1,""],set_3gpp_scenario_parameters:[3,2,1,""],subcarrier_frequencies:[3,2,1,""],time_lag_discrete_time_channel:[3,2,1,""],time_to_ofdm_channel:[3,2,1,""],wrap_angle_0_360:[3,2,1,""]},"sionna.channel.BinaryMemorylessChannel":{llr_max:[1,1,1,""],temperature:[1,1,1,""]},"sionna.channel.CIRDataset":{batch_size:[3,1,1,""]},"sionna.channel.FlatFadingChannel":{apply:[3,1,1,""],generate:[3,1,1,""],spatial_corr:[3,1,1,""]},"sionna.channel.GenerateFlatFadingChannel":{spatial_corr:[3,1,1,""]},"sionna.channel.KroneckerModel":{r_rx:[3,1,1,""],r_tx:[3,1,1,""]},"sionna.channel.PerColumnModel":{r_rx:[3,1,1,""]},"sionna.channel.tr38901":{Antenna:[3,0,1,""],AntennaArray:[3,0,1,""],CDL:[3,0,1,""],PanelArray:[3,0,1,""],RMa:[3,0,1,""],TDL:[3,0,1,""],UMa:[3,0,1,""],UMi:[3,0,1,""]},"sionna.channel.tr38901.CDL":{delay_spread:[3,1,1,""],delays:[3,1,1,""],k_factor:[3,1,1,""],los:[3,1,1,""],num_clusters:[3,1,1,""],powers:[3,1,1,""]},"sionna.channel.tr38901.PanelArray":{ant_ind_pol1:[3,1,1,""],ant_ind_pol2:[3,1,1,""],ant_pol1:[3,1,1,""],ant_pol2:[3,1,1,""],ant_pos:[3,1,1,""],ant_pos_pol1:[3,1,1,""],ant_pos_pol2:[3,1,1,""],element_horizontal_spacing:[3,1,1,""],element_vertical_spacing:[3,1,1,""],num_ant:[3,1,1,""],num_cols:[3,1,1,""],num_cols_per_panel:[3,1,1,""],num_panels:[3,1,1,""],num_panels_ant:[3,1,1,""],num_rows:[3,1,1,""],num_rows_per_panel:[3,1,1,""],panel_horizontal_spacing:[3,1,1,""],panel_vertical_spacing:[3,1,1,""],polarization:[3,1,1,""],polarization_type:[3,1,1,""],show:[3,3,1,""],show_element_radiation_pattern:[3,3,1,""]},"sionna.channel.tr38901.RMa":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.tr38901.TDL":{delay_spread:[3,1,1,""],delays:[3,1,1,""],k_factor:[3,1,1,""],los:[3,1,1,""],mean_power_los:[3,1,1,""],mean_powers:[3,1,1,""],num_clusters:[3,1,1,""]},"sionna.channel.tr38901.UMa":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.tr38901.UMi":{set_topology:[3,3,1,""],show_topology:[3,3,1,""]},"sionna.channel.utils":{time_frequency_vector:[2,2,1,""]},"sionna.fec.conv":{BCJRDecoder:[6,0,1,""],ConvEncoder:[6,0,1,""],ViterbiDecoder:[6,0,1,""]},"sionna.fec.conv.BCJRDecoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.ConvEncoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.ViterbiDecoder":{coderate:[6,1,1,""],gen_poly:[6,1,1,""],k:[6,1,1,""],n:[6,1,1,""],terminate:[6,1,1,""],trellis:[6,1,1,""]},"sionna.fec.conv.utils":{Trellis:[6,2,1,""],polynomial_selector:[6,2,1,""]},"sionna.fec.crc":{CRCDecoder:[7,0,1,""],CRCEncoder:[7,0,1,""]},"sionna.fec.crc.CRCDecoder":{crc_degree:[7,1,1,""],encoder:[7,1,1,""]},"sionna.fec.crc.CRCEncoder":{crc_degree:[7,1,1,""],crc_length:[7,1,1,""],crc_pol:[7,1,1,""],k:[7,1,1,""],n:[7,1,1,""]},"sionna.fec.interleaving":{Deinterleaver:[8,0,1,""],RandomInterleaver:[8,0,1,""],RowColumnInterleaver:[8,0,1,""],Turbo3GPPInterleaver:[8,0,1,""]},"sionna.fec.interleaving.Deinterleaver":{interleaver:[8,1,1,""]},"sionna.fec.interleaving.RandomInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],find_s_min:[8,3,1,""],keep_state:[8,1,1,""],seed:[8,1,1,""]},"sionna.fec.interleaving.RowColumnInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],keep_state:[8,1,1,""],perm_seq:[8,1,1,""],perm_seq_inv:[8,1,1,""],row_depth:[8,1,1,""]},"sionna.fec.interleaving.Turbo3GPPInterleaver":{axis:[8,1,1,""],call_inverse:[8,3,1,""],find_s_min:[8,3,1,""]},"sionna.fec.ldpc.decoding":{LDPC5GDecoder:[9,0,1,""],LDPCBPDecoder:[9,0,1,""]},"sionna.fec.ldpc.decoding.LDPC5GDecoder":{encoder:[9,1,1,""]},"sionna.fec.ldpc.decoding.LDPCBPDecoder":{edge_weights:[9,1,1,""],has_weights:[9,1,1,""],ie_c:[9,1,1,""],ie_v:[9,1,1,""],llr_max:[9,1,1,""],num_cns:[9,1,1,""],num_edges:[9,1,1,""],num_iter:[9,1,1,""],num_vns:[9,1,1,""],output_dtype:[9,1,1,""],pcm:[9,1,1,""],show_weights:[9,3,1,""]},"sionna.fec.ldpc.encoding":{LDPC5GEncoder:[9,0,1,""]},"sionna.fec.ldpc.encoding.LDPC5GEncoder":{coderate:[9,1,1,""],generate_out_int:[9,3,1,""],k:[9,1,1,""],k_ldpc:[9,1,1,""],n:[9,1,1,""],n_ldpc:[9,1,1,""],num_bits_per_symbol:[9,1,1,""],out_int:[9,1,1,""],out_int_inv:[9,1,1,""],pcm:[9,1,1,""],z:[9,1,1,""]},"sionna.fec.linear":{AllZeroEncoder:[10,0,1,""],LinearEncoder:[10,0,1,""],OSDecoder:[10,0,1,""]},"sionna.fec.linear.AllZeroEncoder":{coderate:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""]},"sionna.fec.linear.LinearEncoder":{coderate:[10,1,1,""],gm:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""]},"sionna.fec.linear.OSDecoder":{gm:[10,1,1,""],k:[10,1,1,""],n:[10,1,1,""],t:[10,1,1,""]},"sionna.fec.polar.decoding":{Polar5GDecoder:[11,0,1,""],PolarBPDecoder:[11,0,1,""],PolarSCDecoder:[11,0,1,""],PolarSCLDecoder:[11,0,1,""]},"sionna.fec.polar.decoding.Polar5GDecoder":{dec_type:[11,1,1,""],frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k_polar:[11,1,1,""],k_target:[11,1,1,""],llr_max:[11,1,1,""],n_polar:[11,1,1,""],n_target:[11,1,1,""],output_dtype:[11,1,1,""],polar_dec:[11,1,1,""]},"sionna.fec.polar.decoding.PolarBPDecoder":{frozen_pos:[11,1,1,""],hard_out:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],num_iter:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.decoding.PolarSCDecoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.decoding.PolarSCLDecoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],k_crc:[11,1,1,""],list_size:[11,1,1,""],llr_max:[11,1,1,""],n:[11,1,1,""],output_dtype:[11,1,1,""]},"sionna.fec.polar.encoding":{Polar5GEncoder:[11,0,1,""],PolarEncoder:[11,0,1,""]},"sionna.fec.polar.encoding.Polar5GEncoder":{channel_interleaver:[11,3,1,""],enc_crc:[11,1,1,""],input_interleaver:[11,3,1,""],k:[11,1,1,""],k_polar:[11,1,1,""],k_target:[11,1,1,""],n:[11,1,1,""],n_polar:[11,1,1,""],n_target:[11,1,1,""],subblock_interleaving:[11,3,1,""]},"sionna.fec.polar.encoding.PolarEncoder":{frozen_pos:[11,1,1,""],info_pos:[11,1,1,""],k:[11,1,1,""],n:[11,1,1,""]},"sionna.fec.polar.utils":{generate_5g_ranking:[11,2,1,""],generate_dense_polar:[11,2,1,""],generate_polar_transform_mat:[11,2,1,""],generate_rm_code:[11,2,1,""]},"sionna.fec.scrambling":{Descrambler:[12,0,1,""],Scrambler:[12,0,1,""],TB5GScrambler:[12,0,1,""]},"sionna.fec.scrambling.Descrambler":{scrambler:[12,1,1,""]},"sionna.fec.scrambling.Scrambler":{keep_state:[12,1,1,""],seed:[12,1,1,""],sequence:[12,1,1,""]},"sionna.fec.scrambling.TB5GScrambler":{keep_state:[12,1,1,""]},"sionna.fec.turbo":{TurboDecoder:[13,0,1,""],TurboEncoder:[13,0,1,""],TurboTermination:[13,0,1,""]},"sionna.fec.turbo.TurboDecoder":{coderate:[13,1,1,""],constraint_length:[13,1,1,""],depuncture:[13,3,1,""],gen_poly:[13,1,1,""],k:[13,1,1,""],n:[13,1,1,""],trellis:[13,1,1,""]},"sionna.fec.turbo.TurboEncoder":{coderate:[13,1,1,""],constraint_length:[13,1,1,""],gen_poly:[13,1,1,""],k:[13,1,1,""],n:[13,1,1,""],punct_pattern:[13,1,1,""],terminate:[13,1,1,""],trellis:[13,1,1,""]},"sionna.fec.turbo.TurboTermination":{get_num_term_syms:[13,3,1,""],term_bits_turbo2conv:[13,3,1,""],termbits_conv2turbo:[13,3,1,""]},"sionna.fec.turbo.utils":{polynomial_selector:[13,2,1,""],puncture_pattern:[13,2,1,""]},"sionna.fec.utils":{GaussianPriorSource:[14,0,1,""],alist2mat:[14,2,1,""],bin2int:[14,2,1,""],bin2int_tf:[14,2,1,""],generate_reg_ldpc:[14,2,1,""],get_exit_analytic:[14,2,1,""],gm2pcm:[14,2,1,""],int2bin:[14,2,1,""],int2bin_tf:[14,2,1,""],int_mod_2:[14,2,1,""],j_fun:[14,2,1,""],j_fun_inv:[14,2,1,""],j_fun_inv_tf:[14,2,1,""],j_fun_tf:[14,2,1,""],llr2mi:[14,2,1,""],load_alist:[14,2,1,""],load_parity_check_examples:[14,2,1,""],make_systematic:[14,2,1,""],pcm2gm:[14,2,1,""],plot_exit_chart:[14,2,1,""],plot_trajectory:[14,2,1,""],verify_gm_pcm:[14,2,1,""]},"sionna.mapping":{Constellation:[15,0,1,""],Demapper:[15,0,1,""],DemapperWithPrior:[15,0,1,""],LLRs2SymbolLogits:[15,0,1,""],Mapper:[15,0,1,""],PAM2QAM:[15,0,1,""],QAM2PAM:[15,0,1,""],SymbolDemapper:[15,0,1,""],SymbolDemapperWithPrior:[15,0,1,""],SymbolInds2Bits:[15,0,1,""],SymbolLogits2LLRs:[15,0,1,""],SymbolLogits2LLRsWithPrior:[15,0,1,""],SymbolLogits2Moments:[15,0,1,""],pam:[15,2,1,""],pam_gray:[15,2,1,""],qam:[15,2,1,""]},"sionna.mapping.Constellation":{center:[15,1,1,""],create_or_check_constellation:[15,3,1,""],normalize:[15,1,1,""],num_bits_per_symbol:[15,1,1,""],points:[15,1,1,""],show:[15,3,1,""]},"sionna.mapping.Mapper":{constellation:[15,1,1,""]},"sionna.mimo":{EPDetector:[16,0,1,""],KBestDetector:[16,0,1,""],LinearDetector:[16,0,1,""],List2LLR:[16,0,1,""],List2LLRSimple:[16,0,1,""],MMSEPICDetector:[16,0,1,""],MaximumLikelihoodDetector:[16,0,1,""],MaximumLikelihoodDetectorWithPrior:[16,0,1,""],StreamManagement:[16,0,1,""],complex2real_channel:[16,2,1,""],complex2real_covariance:[16,2,1,""],complex2real_matrix:[16,2,1,""],complex2real_vector:[16,2,1,""],lmmse_equalizer:[16,2,1,""],mf_equalizer:[16,2,1,""],real2complex_channel:[16,2,1,""],real2complex_covariance:[16,2,1,""],real2complex_matrix:[16,2,1,""],real2complex_vector:[16,2,1,""],whiten_channel:[16,2,1,""],zero_forcing_precoder:[16,2,1,""],zf_equalizer:[16,2,1,""]},"sionna.mimo.StreamManagement":{detection_desired_ind:[16,1,1,""],detection_undesired_ind:[16,1,1,""],num_interfering_streams_per_rx:[16,1,1,""],num_rx:[16,1,1,""],num_rx_per_tx:[16,1,1,""],num_streams_per_rx:[16,1,1,""],num_streams_per_tx:[16,1,1,""],num_tx:[16,1,1,""],num_tx_per_rx:[16,1,1,""],precoding_ind:[16,1,1,""],rx_stream_ids:[16,1,1,""],rx_tx_association:[16,1,1,""],stream_association:[16,1,1,""],stream_ind:[16,1,1,""],tx_stream_ids:[16,1,1,""]},"sionna.nr":{CarrierConfig:[17,0,1,""],LayerDemapper:[17,0,1,""],LayerMapper:[17,0,1,""],PUSCHConfig:[17,0,1,""],PUSCHDMRSConfig:[17,0,1,""],PUSCHLSChannelEstimator:[17,0,1,""],PUSCHPilotPattern:[17,0,1,""],PUSCHPrecoder:[17,0,1,""],PUSCHReceiver:[17,0,1,""],PUSCHTransmitter:[17,0,1,""],TBConfig:[17,0,1,""],TBDecoder:[17,0,1,""],TBEncoder:[17,0,1,""]},"sionna.nr.CarrierConfig":{cyclic_prefix:[17,1,1,""],cyclic_prefix_length:[17,1,1,""],frame_duration:[17,1,1,""],frame_number:[17,1,1,""],kappa:[17,1,1,""],mu:[17,1,1,""],n_cell_id:[17,1,1,""],n_size_grid:[17,1,1,""],n_start_grid:[17,1,1,""],num_slots_per_frame:[17,1,1,""],num_slots_per_subframe:[17,1,1,""],num_symbols_per_slot:[17,1,1,""],slot_number:[17,1,1,""],sub_frame_duration:[17,1,1,""],subcarrier_spacing:[17,1,1,""],t_c:[17,1,1,""],t_s:[17,1,1,""]},"sionna.nr.LayerMapper":{num_codewords:[17,1,1,""],num_layers0:[17,1,1,""],num_layers1:[17,1,1,""],num_layers:[17,1,1,""]},"sionna.nr.PUSCHConfig":{c_init:[17,3,1,""],carrier:[17,1,1,""],dmrs:[17,1,1,""],dmrs_grid:[17,1,1,""],dmrs_mask:[17,1,1,""],dmrs_symbol_indices:[17,1,1,""],frequency_hopping:[17,1,1,""],l_bar:[17,1,1,""],mapping_type:[17,1,1,""],n_rnti:[17,1,1,""],n_size_bwp:[17,1,1,""],n_start_bwp:[17,1,1,""],num_antenna_ports:[17,1,1,""],num_coded_bits:[17,1,1,""],num_layers:[17,1,1,""],num_ov:[17,1,1,""],num_res_per_prb:[17,1,1,""],num_resource_blocks:[17,1,1,""],num_subcarriers:[17,1,1,""],precoding:[17,1,1,""],precoding_matrix:[17,1,1,""],show:[17,3,1,""],symbol_allocation:[17,1,1,""],tb:[17,1,1,""],tb_size:[17,1,1,""],tpmi:[17,1,1,""],transform_precoding:[17,1,1,""]},"sionna.nr.PUSCHDMRSConfig":{additional_position:[17,1,1,""],allowed_dmrs_ports:[17,1,1,""],beta:[17,1,1,""],cdm_groups:[17,1,1,""],config_type:[17,1,1,""],deltas:[17,1,1,""],dmrs_port_set:[17,1,1,""],length:[17,1,1,""],n_id:[17,1,1,""],n_scid:[17,1,1,""],num_cdm_groups_without_data:[17,1,1,""],type_a_position:[17,1,1,""],w_f:[17,1,1,""],w_t:[17,1,1,""]},"sionna.nr.PUSCHPilotPattern":{mask:[17,1,1,""],normalize:[17,1,1,""],num_data_symbols:[17,1,1,""],num_effective_subcarriers:[17,1,1,""],num_ofdm_symbols:[17,1,1,""],num_pilot_symbols:[17,1,1,""],num_streams_per_tx:[17,1,1,""],num_tx:[17,1,1,""],pilots:[17,1,1,""],show:[17,3,1,""],trainable:[17,1,1,""]},"sionna.nr.PUSCHReceiver":{resource_grid:[17,1,1,""]},"sionna.nr.PUSCHTransmitter":{pilot_pattern:[17,1,1,""],resource_grid:[17,1,1,""],show:[17,3,1,""]},"sionna.nr.TBConfig":{channel_type:[17,1,1,""],check_config:[17,3,1,""],mcs_index:[17,1,1,""],mcs_table:[17,1,1,""],n_id:[17,1,1,""],num_bits_per_symbol:[17,1,1,""],target_coderate:[17,1,1,""],tb_scaling:[17,1,1,""]},"sionna.nr.TBDecoder":{k:[17,1,1,""],n:[17,1,1,""],tb_size:[17,1,1,""]},"sionna.nr.TBEncoder":{cb_crc_encoder:[17,1,1,""],coderate:[17,1,1,""],cw_lengths:[17,1,1,""],k:[17,1,1,""],k_padding:[17,1,1,""],ldpc_encoder:[17,1,1,""],n:[17,1,1,""],num_cbs:[17,1,1,""],num_tx:[17,1,1,""],output_perm_inv:[17,1,1,""],scrambler:[17,1,1,""],tb_crc_encoder:[17,1,1,""],tb_size:[17,1,1,""]},"sionna.nr.utils":{calculate_tb_size:[17,2,1,""],generate_prng_seq:[17,2,1,""],select_mcs:[17,2,1,""]},"sionna.ofdm":{BaseChannelEstimator:[18,0,1,""],BaseChannelInterpolator:[18,0,1,""],EPDetector:[18,0,1,""],EmptyPilotPattern:[18,0,1,""],KBestDetector:[18,0,1,""],KroneckerPilotPattern:[18,0,1,""],LMMSEEqualizer:[18,0,1,""],LMMSEInterpolator:[18,0,1,""],LSChannelEstimator:[18,0,1,""],LinearDetector:[18,0,1,""],LinearInterpolator:[18,0,1,""],MFEqualizer:[18,0,1,""],MMSEPICDetector:[18,0,1,""],MaximumLikelihoodDetector:[18,0,1,""],MaximumLikelihoodDetectorWithPrior:[18,0,1,""],NearestNeighborInterpolator:[18,0,1,""],OFDMDemodulator:[18,0,1,""],OFDMDetector:[18,0,1,""],OFDMDetectorWithPrior:[18,0,1,""],OFDMEqualizer:[18,0,1,""],OFDMModulator:[18,0,1,""],PilotPattern:[18,0,1,""],RemoveNulledSubcarriers:[18,0,1,""],ResourceGrid:[18,0,1,""],ResourceGridDemapper:[18,0,1,""],ResourceGridMapper:[18,0,1,""],ZFEqualizer:[18,0,1,""],ZFPrecoder:[18,0,1,""],tdl_freq_cov_mat:[18,2,1,""],tdl_time_cov_mat:[18,2,1,""]},"sionna.ofdm.BaseChannelEstimator":{estimate_at_pilot_locations:[18,3,1,""]},"sionna.ofdm.PilotPattern":{mask:[18,1,1,""],normalize:[18,1,1,""],num_data_symbols:[18,1,1,""],num_effective_subcarriers:[18,1,1,""],num_ofdm_symbols:[18,1,1,""],num_pilot_symbols:[18,1,1,""],num_streams_per_tx:[18,1,1,""],num_tx:[18,1,1,""],pilots:[18,1,1,""],show:[18,3,1,""],trainable:[18,1,1,""]},"sionna.ofdm.ResourceGrid":{bandwidth:[18,1,1,""],build_type_grid:[18,3,1,""],cyclic_prefix_length:[18,1,1,""],dc_ind:[18,1,1,""],dc_null:[18,1,1,""],effective_subcarrier_ind:[18,1,1,""],fft_size:[18,1,1,""],num_data_symbols:[18,1,1,""],num_effective_subcarriers:[18,1,1,""],num_guard_carriers:[18,1,1,""],num_ofdm_symbols:[18,1,1,""],num_pilot_symbols:[18,1,1,""],num_resource_elements:[18,1,1,""],num_streams_per_tx:[18,1,1,""],num_time_samples:[18,1,1,""],num_tx:[18,1,1,""],num_zero_symbols:[18,1,1,""],ofdm_symbol_duration:[18,1,1,""],pilot_pattern:[18,1,1,""],show:[18,3,1,""],subcarrier_spacing:[18,1,1,""]},"sionna.rt":{AmplitudeProfile:[19,0,1,""],Antenna:[19,0,1,""],AntennaArray:[19,0,1,""],BackscatteringPattern:[19,0,1,""],Camera:[19,0,1,""],CellGrid:[19,0,1,""],CoverageMap:[19,0,1,""],DirectivePattern:[19,0,1,""],DiscreteAmplitudeProfile:[19,0,1,""],DiscretePhaseProfile:[19,0,1,""],LagrangeProfileInterpolator:[19,0,1,""],LambertianPattern:[19,0,1,""],Paths:[19,0,1,""],PhaseProfile:[19,0,1,""],PlanarArray:[19,0,1,""],ProfileInterpolator:[19,0,1,""],RIS:[19,0,1,""],RadioMaterial:[19,0,1,""],Receiver:[19,0,1,""],Scene:[19,0,1,""],SceneObject:[19,0,1,""],Transmitter:[19,0,1,""],cross:[19,2,1,""],dot:[19,2,1,""],load_scene:[19,2,1,""],normalize:[19,2,1,""],outer:[19,2,1,""],phi_hat:[19,2,1,""],r_hat:[19,2,1,""],rot_mat_from_unit_vecs:[19,2,1,""],rotate:[19,2,1,""],rotation_matrix:[19,2,1,""],sample_points_on_hemisphere:[19,2,1,""],theta_hat:[19,2,1,""],theta_phi_from_unit_vec:[19,2,1,""]},"sionna.rt.AmplitudeProfile":{mode_powers:[19,1,1,""],num_modes:[19,1,1,""]},"sionna.rt.Antenna":{patterns:[19,1,1,""]},"sionna.rt.AntennaArray":{antenna:[19,1,1,""],array_size:[19,1,1,""],num_ant:[19,1,1,""],positions:[19,1,1,""],rotated_positions:[19,3,1,""]},"sionna.rt.BackscatteringPattern":{alpha_i:[19,1,1,""],alpha_r:[19,1,1,""],lambda_:[19,1,1,""],visualize:[19,3,1,""]},"sionna.rt.Camera":{look_at:[19,3,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.CellGrid":{cell_positions:[19,1,1,""],cell_y_positions:[19,1,1,""],cell_z_positions:[19,1,1,""],num_cells:[19,1,1,""],num_cols:[19,1,1,""],num_rows:[19,1,1,""]},"sionna.rt.CoverageMap":{as_tensor:[19,3,1,""],cell_centers:[19,1,1,""],cell_size:[19,1,1,""],center:[19,1,1,""],num_cells_x:[19,1,1,""],num_cells_y:[19,1,1,""],num_tx:[19,1,1,""],orientation:[19,1,1,""],sample_positions:[19,3,1,""],show:[19,3,1,""],size:[19,1,1,""]},"sionna.rt.DirectivePattern":{alpha_r:[19,1,1,""],visualize:[19,3,1,""]},"sionna.rt.DiscreteAmplitudeProfile":{cell_grid:[19,1,1,""],mode_powers:[19,1,1,""],num_modes:[19,1,1,""],shape:[19,1,1,""],show:[19,3,1,""],spacing:[19,1,1,""],values:[19,1,1,""]},"sionna.rt.DiscretePhaseProfile":{cell_grid:[19,1,1,""],num_modes:[19,1,1,""],shape:[19,1,1,""],show:[19,3,1,""],spacing:[19,1,1,""],values:[19,1,1,""]},"sionna.rt.LagrangeProfileInterpolator":{lagrange_polynomials:[19,3,1,""],spacing:[19,1,1,""]},"sionna.rt.LambertianPattern":{visualize:[19,3,1,""]},"sionna.rt.Paths":{"export":[19,3,1,""],a:[19,1,1,""],apply_doppler:[19,3,1,""],cir:[19,3,1,""],doppler:[19,1,1,""],from_dict:[19,3,1,""],mask:[19,1,1,""],normalize_delays:[19,1,1,""],phi_r:[19,1,1,""],phi_t:[19,1,1,""],reverse_direction:[19,1,1,""],tau:[19,1,1,""],theta_r:[19,1,1,""],theta_t:[19,1,1,""],to_dict:[19,3,1,""],types:[19,1,1,""]},"sionna.rt.PhaseProfile":{num_modes:[19,1,1,""]},"sionna.rt.PlanarArray":{antenna:[19,1,1,""],array_size:[19,1,1,""],num_ant:[19,1,1,""],positions:[19,1,1,""],rotated_positions:[19,3,1,""],show:[19,3,1,""]},"sionna.rt.ProfileInterpolator":{spacing:[19,1,1,""]},"sionna.rt.RIS":{amplitude_profile:[19,1,1,""],cell_grid:[19,1,1,""],cell_positions:[19,1,1,""],cell_world_positions:[19,1,1,""],color:[19,1,1,""],focusing_lens:[19,3,1,""],look_at:[19,3,1,""],name:[19,1,1,""],num_cells:[19,1,1,""],num_cols:[19,1,1,""],num_modes:[19,1,1,""],num_rows:[19,1,1,""],orientation:[19,1,1,""],phase_gradient_reflector:[19,3,1,""],phase_profile:[19,1,1,""],position:[19,1,1,""],size:[19,1,1,""],spacing:[19,1,1,""],velocity:[19,1,1,""],world_normal:[19,1,1,""]},"sionna.rt.RadioMaterial":{complex_relative_permittivity:[19,1,1,""],conductivity:[19,1,1,""],frequency_update_callback:[19,1,1,""],is_used:[19,1,1,""],name:[19,1,1,""],relative_permeability:[19,1,1,""],relative_permittivity:[19,1,1,""],scattering_coefficient:[19,1,1,""],scattering_pattern:[19,1,1,""],use_counter:[19,1,1,""],using_objects:[19,1,1,""],well_defined:[19,1,1,""],xpd_coefficient:[19,1,1,""]},"sionna.rt.Receiver":{color:[19,1,1,""],look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.Scene":{add:[19,3,1,""],cameras:[19,1,1,""],center:[19,1,1,""],compute_fields:[19,2,1,""],compute_paths:[19,2,1,""],coverage_map:[19,2,1,""],dtype:[19,1,1,""],frequency:[19,1,1,""],get:[19,3,1,""],mi_scene_params:[19,1,1,""],objects:[19,1,1,""],preview:[19,2,1,""],radio_material_callable:[19,1,1,""],radio_materials:[19,1,1,""],receivers:[19,1,1,""],remove:[19,3,1,""],render:[19,2,1,""],render_to_file:[19,2,1,""],ris:[19,1,1,""],rx_array:[19,1,1,""],scattering_pattern_callable:[19,1,1,""],scene_geometry_updated:[19,3,1,""],size:[19,1,1,""],solver_cm:[19,1,1,""],solver_paths:[19,1,1,""],synthetic_array:[19,1,1,""],trace_paths:[19,2,1,""],transmitters:[19,1,1,""],tx_array:[19,1,1,""],wavelength:[19,1,1,""],wavenumber:[19,1,1,""]},"sionna.rt.SceneObject":{look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""],radio_material:[19,1,1,""],velocity:[19,1,1,""]},"sionna.rt.Transmitter":{color:[19,1,1,""],look_at:[19,3,1,""],name:[19,1,1,""],orientation:[19,1,1,""],position:[19,1,1,""]},"sionna.rt.antenna":{compute_gain:[19,2,1,""],dipole_pattern:[19,2,1,""],hw_dipole_pattern:[19,2,1,""],iso_pattern:[19,2,1,""],polarization_model_1:[19,2,1,""],polarization_model_2:[19,2,1,""],tr38901_pattern:[19,2,1,""],visualize:[19,2,1,""]},"sionna.rt.scene":{box:[19,4,1,""],double_reflector:[19,4,1,""],etoile:[19,4,1,""],floor_wall:[19,4,1,""],munich:[19,4,1,""],simple_reflector:[19,4,1,""],simple_street_canyon:[19,4,1,""],simple_street_canyon_with_cars:[19,4,1,""],simple_wedge:[19,4,1,""],triple_reflector:[19,4,1,""]},"sionna.signal":{BlackmanWindow:[20,0,1,""],CustomFilter:[20,0,1,""],CustomWindow:[20,0,1,""],Downsampling:[20,0,1,""],Filter:[20,0,1,""],HammingWindow:[20,0,1,""],HannWindow:[20,0,1,""],RaisedCosineFilter:[20,0,1,""],RootRaisedCosineFilter:[20,0,1,""],SincFilter:[20,0,1,""],Upsampling:[20,0,1,""],Window:[20,0,1,""],convolve:[20,2,1,""],empirical_aclr:[20,2,1,""],empirical_psd:[20,2,1,""],fft:[20,2,1,""],ifft:[20,2,1,""]},"sionna.signal.BlackmanWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.CustomFilter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.CustomWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.Filter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.HammingWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.HannWindow":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.signal.RaisedCosineFilter":{aclr:[20,1,1,""],beta:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.RootRaisedCosineFilter":{aclr:[20,1,1,""],beta:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.SincFilter":{aclr:[20,1,1,""],coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],sampling_times:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""],window:[20,1,1,""]},"sionna.signal.Window":{coefficients:[20,1,1,""],length:[20,1,1,""],normalize:[20,1,1,""],show:[20,3,1,""],trainable:[20,1,1,""]},"sionna.utils":{BinarySource:[22,0,1,""],BitErrorRate:[22,0,1,""],BitwiseMutualInformation:[22,0,1,""],PAMSource:[22,0,1,""],QAMSource:[22,0,1,""],SymbolSource:[22,0,1,""],complex_normal:[22,2,1,""],compute_ber:[22,2,1,""],compute_bler:[22,2,1,""],compute_ser:[22,2,1,""],count_block_errors:[22,2,1,""],count_errors:[22,2,1,""],ebnodb2no:[22,2,1,""],expand_to_rank:[22,2,1,""],flatten_dims:[22,2,1,""],flatten_last_dims:[22,2,1,""],hard_decisions:[22,2,1,""],insert_dims:[22,2,1,""],log10:[22,2,1,""],log2:[22,2,1,""],matrix_inv:[22,2,1,""],matrix_pinv:[22,2,1,""],matrix_sqrt:[22,2,1,""],matrix_sqrt_inv:[22,2,1,""],sim_ber:[22,2,1,""],split_dim:[22,2,1,""]},"sionna.utils.plotting":{PlotBER:[22,0,1,""],plot_ber:[22,2,1,""]},"sionna.utils.plotting.PlotBER":{add:[22,3,1,""],ber:[22,1,1,""],is_bler:[22,1,1,""],legend:[22,1,1,""],remove:[22,3,1,""],reset:[22,3,1,""],simulate:[22,3,1,""],snr:[22,1,1,""],title:[22,1,1,""]},sionna:{Config:[4,0,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","property","Python property"],"2":["py","function","Python function"],"3":["py","method","Python method"],"4":["py","data","Python data"]},objtypes:{"0":"py:class","1":"py:property","2":"py:function","3":"py:method","4":"py:data"},terms:{"0":[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],"00":[24,26,27,29,30,33,34,35,36,39,42,46,47,48,49,50],"000":[30,51],"00000000":[30,46],"0000e":[24,26,27,29,30,33,34,35,36,39,42,46,47,48,49,50],"0001015052548609674":47,"00010455576578776041":39,"00010481770833333334":34,"000107421875":[25,34],"000109375":34,"00011207682291666667":34,"00011341145833333334":34,"0001171875":34,"000125":34,"00012890001138051352":25,"000130859375":39,"00013986518306116904":25,"00014040694277510683":34,"0001484375":35,"00015":19,"000154296875":39,"00016032155354817708":39,"000166015625":34,"00016822318007662836":34,"000171875":35,"00017363823784722222":34,"00017578125":34,"00018594996134440104":39,"000189453125":25,"00018975482723577235":34,"00019383680555555555":34,"0002002495659722222":34,"000203125":35,"00021171875":34,"00021787":51,"00021878598441540356":25,"0002265625":[34,35],"000234375":34,"000236328125":39,"00025":34,"0002836583455403646":39,"0002842496236165365":39,"0002859627328267912":25,"0002903820264457476":25,"000291015625":39,"000298828125":25,"00031632105509440104":39,"000322265625":34,"00034796381644684255":34,"00036102":51,"0003671875":35,"0003685031467013889":34,"00037141927083333336":34,"00039453125":39,"0004":19,"0004007025824652778":34,"00040878831294544955":39,"0004105794270833333":34,"0004375":35,"00046706814236111113":34,"0004711371527777778":34,"0004936694871486797":39,"0004983015045593167":39,"0005078125":34,"000513251788663255":39,"000522487214110478":34,"00052734375":34,"000537109375":39,"0005442922765558416":25,"000556640625":34,"0005703125":34,"000576171875":34,"000609375":34,"0006104324281090033":34,"000610752203525641":34,"0006171875":[34,35],"0006175756209935898":34,"00063671875":39,"0006721880008012821":34,"0006736387408842243":39,"0006881306568781534":25,"0007145616319444444":34,"0007226888020833333":34,"0007239105504587156":25,"0007274208566108007":25,"00073293":51,"00074452":51,"0008359375":35,"0008500541736877042":39,"0008716690492438504":39,"0008862955729166666":34,"0008864811488560267":39,"0008932291666666666":34,"0008932893926447088":25,"0008977457682291666":34,"0009102860117346291":39,"0009150437801932367":34,"0009155009900555915":39,"00092697":51,"0009830457899305555":34,"0009838684538653367":25,"000984375":35,"001":[14,19,25,45],"0010078125":39,"0010234375":34,"001028917273696588":39,"0010344430083840252":39,"0010432377567997685":39,"0010703125":39,"001083984375":34,"0011":19,"001123528113731971":39,"001171875":34,"0011800130208333333":25,"0012659071180555555":34,"0012970784505208334":34,"0013081868489583333":39,"0013986585930973266":34,"0013e":36,"0014250651041666667":34,"0014438384618514623":39,"0014839694274598686":39,"0015677095994417248":39,"0015692459909539473":25,"0015725519627700617":34,"00157427":51,"0015751008064516128":25,"00158195":51,"0015e":34,"0016104890352813088":34,"0016146116805757136":34,"001625":39,"0016827532040175571":39,"001748046875":39,"0017822608351707458":25,"0017890625":35,"0018911941496331237":39,"0018940899107191297":25,"0019156403011745876":39,"001916015625":39,"001927071604235419":25,"0019609375":34,"00197416":51,"0019759736530521373":39,"002038750155218716":25,"002067384265718006":39,"0020746665425819925":39,"00207564":51,"002078125":35,"0020e":24,"0021562364366319443":34,"002158962763272799":25,"0021640625":35,"0021730139552350023":39,"0021742226420969203":39,"002197265625":40,"0021e":46,"002203125":34,"00220703125":34,"0022606077648344492":39,"0022843567251461987":39,"0023060985233472743":25,"00231561":51,"002356225794011896":25,"002383282310084293":25,"002402254330214634":39,"0024296875":34,"002434003298685431":39,"002463582466684675":34,"00248046875":34,"002491552599862259":34,"002527833716269651":39,"0025576324126052015":39,"0025938579014369418":25,"002616008663393743":39,"0026281823645104897":34,"002695751694775132":34,"0026965757616523173":39,"00270201943137429":25,"0027163238447260626":34,"0027629886053304755":39,"0027646346830985913":25,"0027969644134477824":39,"0027e":34,"0029":19,"0029088469112620633":25,"0029e":36,"0030405569595645414":39,"003129789240790991":39,"0031916920731707315":25,"00322376":51,"0032421875":34,"003267002566425121":34,"00329827":51,"0033478243597622574":39,"003375189644949777":39,"00339787":51,"0034094621080139375":39,"0034728119338768115":34,"003497385589670746":34,"003527675356183733":25,"0035807291666666665":39,"0036":19,"00363045":51,"00370962642928929":39,"0037109375":34,"0037265625":34,"003813561333550347":39,"003845776165569867":39,"0038869121287128713":25,"0038e":27,"003994941711425781":25,"0039e":34,"004016548428705441":34,"004091796875":34,"004094309277004666":25,"00412695":51,"004137017877252252":34,"0041796875":34,"004231770833333333":39,"00423828125":34,"004243488387664524":34,"0042660244551720895":39,"004354306629725865":25,"0044":19,"0044257":51,"004440556877759382":34,"004458076408844189":34,"00455021":51,"00466044":51,"0046953125":34,"0047":19,"004715737951807229":39,"0048e":39,"004930473776424632":39,"0049e":33,"0050665537516276045":39,"005103715945512821":34,"00513376":51,"00516200065612793":25,"0051e":33,"005208117621285575":25,"0052e":[36,39],"0053125":34,"005330264568328857":25,"00536264":51,"00536535":51,"005400390625":34,"00541865":51,"00547640931372549":39,"0055":19,"00550126":51,"0055e":[34,36],"005684130119554924":39,"0056e":[24,36],"005744590415610923":39,"0057531419143178105":34,"00579527":51,"006009458884214744":39,"0060276442307692305":39,"0060546875":34,"006234":30,"006649925595238095":39,"006675488753019323":34,"00674398":51,"006755871242947049":39,"0068515625":34,"006892088627304434":34,"00692451":51,"0071e":46,"0072280695408950615":34,"007244318181818182":25,"007266274813948007":39,"007286241319444445":34,"007302355410447761":39,"007306861877441406":25,"00733877":51,"0073e":36,"00740625":35,"0074375":34,"007462130248091603":39,"007512019230769231":39,"007593437477394387":39,"007724609375":34,"00784375":39,"0078e":[24,39],"00797399":51,"0080e":48,"00814517":51,"00815982288784451":39,"0081787109375":25,"008189432548754143":39,"008275953389830509":34,"008390893240343348":39,"0083e":35,"00840893126370614":34,"0085":19,"008695991960152116":34,"008697916666666666":39,"00873":24,"00879211":51,"0087e":24,"008838085418051861":39,"008847415447235107":25,"009239894087596606":39,"009787991515591614":39,"0097e":34,"009874105453491211":25,"009994818239795918":39,"01":[24,25,26,27,29,30,33,34,35,36,39,40,42,44,46,47,48,49,50],"010":30,"0100e":40,"01010792525773196":34,"01011981865284974":39,"01016029792746114":39,"01019287109375":39,"010201009114583333":34,"010203043619791666":34,"010329062478584155":39,"010409740691489361":34,"010500672043010752":39,"01058502197265625":34,"010646654211956522":34,"0107":50,"0107e":46,"010815988179125817":34,"010883246527777777":34,"011":6,"011013454861111112":34,"0110234375":35,"011118797019675926":34,"0111273555":42,"011337403130032207":34,"01134":35,"01144":1,"0114e":46,"0116":50,"0116162":51,"011625744047619048":34,"0116e":36,"0117e":36,"011899021693638392":39,"0119":50,"011945026676829269":39,"0120":50,"012090203220858896":39,"012147801143483709":34,"012176890432098766":34,"0122":50,"012251420454545454":25,"01235750786163522":39,"0124":50,"012451171875":25,"0125":50,"0125e":24,"0126":50,"012662074554294975":34,"0126e":36,"012703033186431624":34,"0128":50,"012939049586776859":34,"0129e":39,"0130":50,"013012210264900662":39,"0130e":47,"013199090957641602":25,"0133":50,"0133107503255209e":39,"01331313775510204":39,"013366284013605442":39,"013377568493150685":39,"0134":50,"01351276625934829":34,"01357635":51,"013622879981994629":25,"013671875":[25,34],"013739224137931034":25,"0138e":39,"0139":50,"014048549107142858":39,"014152748564369658":34,"0142":50,"014243278974368249":39,"014265790397738233":39,"01474389097744361":34,"014757650869864004":39,"0147e":35,"014954079198473283":39,"015":37,"015027618408203125":39,"015064206897702992":34,"0150e":[24,33],"01532451923076923":25,"015516493055555556":39,"015562996031746032":34,"015564680099487305":25,"0155e":42,"0156e":[33,34,36,47],"0157e":39,"015814012096774195":39,"0158e":24,"015960693359375":25,"016":24,"016199555652680653":34,"016286409818209134":39,"0165e":46,"016684469":40,"0166e":39,"016722694":40,"016904633620689655":39,"016959404550827423":34,"016983695652173912":34,"0169e":50,"017":24,"017085597826086957":39,"0170e":24,"017314453125":34,"017377266589506172":34,"017422566371681415":39,"017550057":42,"017578125":25,"017648507882882882":39,"017681360244750977":39,"018019153225806453":34,"018199747258966618":39,"0182e":33,"018300805910669193":34,"0183e":27,"018465909090909092":25,"01862839033018868":34,"018694196428571428":25,"0189e":27,"019152002427184466":39,"0192e":24,"0193958849009901":39,"0195e":25,"01961605j":30,"02":[24,25,26,27,29,30,33,34,35,36,39,40,42,46,47,48,49,50],"020":24,"0200e":24,"0201e":48,"02025612113402062":39,"0202e":39,"0203":50,"0204":50,"0205":50,"02055921052631579":25,"0206":50,"0208":50,"0209":50,"021073190789473683":25,"0211":50,"021114864864864864":34,"021193258807588076":34,"0211e":34,"0212":50,"021271128713348766":34,"021399456521739132":39,"021505604619565216":34,"021543560606060608":34,"0217":19,"021739130434782608":34,"0217667818069458":25,"0219":50,"0219e":27,"0220":50,"022064606348673504":39,"0220e":24,"0221":50,"0223":50,"022349964488636364":34,"0224":50,"02249379743609512":39,"022494612068965518":34,"0225":50,"022894965277777776":25,"023092830882352942":25,"023115808823529413":39,"0234e":[34,36],"023676058021336554":34,"0238":19,"02383753765060241":39,"023890053353658538":34,"0242e":[24,40],"0247e":34,"024936834971110027":39,"0250e":24,"02517761752136752":34,"02548694577991453":34,"0254e":34,"02562223161969866":39,"025895074503311258":34,"025933353484623015":34,"0259e":27,"026328125":39,"026551942567567568":39,"026970704396565754":39,"0273":17,"027770973104990583":34,"027840169270833333":34,"0279e":34,"028":29,"0280e":24,"028158723021582732":34,"0281e":24,"02837611607142857":39,"0285078125":35,"0286998781383547":34,"028878348214285716":25,"028894761029411766":34,"029":[19,24],"0292e":27,"0293":17,"0298e":42,"02e":47,"03":[7,9,11,24,25,26,27,29,30,33,34,35,36,39,40,42,46,47,48,49,50],"030048076923076924":39,"03009588068181818":39,"0306e":39,"0312e":[25,26,27,35,39,46,47],"0313e":24,"032366275787353516":25,"03264973958333333":39,"0327e":24,"0329127311706543":39,"03308937766335227":39,"0333e":50,"03380926724137931":39,"0339e":39,"03400135869565218":34,"034078663793103446":39,"0344e":25,"0348e":36,"035":19,"035006009615384616":25,"035026493778935186":34,"03506866591928251":34,"0351e":39,"035385449727376304":39,"0354e":33,"0359039306640624e":39,"0359e":48,"036205150462962965":34,"036322832107543945":25,"036498360339506174":34,"037109375":25,"03722222222222222":34,"0374e":34,"037556287977430554":34,"0376e":39,"0379e":35,"03807645631067961":34,"03808736801147461":39,"03808903694152832":25,"0380e":40,"038147865853658536":34,"03822603202160494":34,"0382e":47,"0385e":24,"0388e":25,"03906005859375":34,"0390e":24,"039197":27,"0391e":24,"039274":27,"0395e":34,"03db":44,"04":[24,25,26,27,29,30,33,34,35,36,39,40,42,46,47,48,49,50,53],"0400e":[24,39],"040529":50,"0406e":[39,50],"04071949146412037":39,"0407421875":34,"040905":50,"0409e":33,"041056315104166664":39,"0412e":34,"041335":50,"041555851063829786":39,"041801":50,"041838":50,"0421e":27,"04232830471462674":39,"0425e":24,"042754":50,"043059":50,"0430e":36,"043392":50,"043501602564102564":34,"043619791666666664":25,"043627":50,"043680429458618164":25,"0436e":[24,35],"04389":11,"0438e":39,"0439e":34,"044397":50,"04469992897727273":39,"0450e":24,"045135":50,"045256":50,"0455e":42,"04578732221554487":34,"046":[2,37],"0460e":42,"0462":19,"0464409722222224e":34,"0466e":40,"04682849702380952":34,"0469e":[33,39],"047":24,"047115184642650465":39,"04732923j":30,"047477":50,"047521":50,"04783954326923077":34,"04793":50,"0480e":49,"048251139322916664":34,"0484e":24,"048708":50,"0489e":26,"0494e":24,"0498e":33,"05":[24,25,26,27,29,30,33,34,35,36,39,40,42,46,47,49,50],"0502e":36,"05034939448038737":39,"050380608974358976":39,"0503e":49,"050638":50,"0508e":[34,39],"0510e":24,"0511e":36,"05126953125":25,"0512e":42,"0513e":24,"051650":50,"05171542697482639":34,"0517e":27,"05180921052631579":39,"051859085648148145":34,"0518e":33,"0519e":35,"05217441340488215":34,"052293":50,"0523e":33,"05242598684210526":34,"052485826280381946":34,"0525e":24,"0527e":34,"0528e":35,"0529e":39,"053":[46,47,48,49],"05356038411458333":34,"0537e":39,"05387931034482758":34,"05396792763157895":34,"0540e":33,"054314":50,"0545e":24,"0546875e":39,"05490451388888889":34,"05495876736111111":39,"0550e":34,"055182658450704226":34,"05524":43,"0558841228485107":42,"0559e":25,"0560e":36,"05613839285714286":39,"0562e":36,"05672554347826087":34,"056919642857142856":25,"0574e":34,"0581e":33,"058506":50,"0586":17,"05891682330827068":34,"0589e":39,"0595e":34,"05962775735294118":34,"0596e":[33,36],"06":[3,24,25,26,27,29,33,34,35,36,39,40,47,49,50],"0601e":34,"0605e":27,"0613e":24,"0615e":24,"0616e":36,"0621e":26,"06243896484375":34,"0625e":[24,33],"0626e":27,"0628e":35,"0630e":[27,36],"0637600806451613":39,"0650e":27,"06517052283653846":34,"06542392306857639":34,"06556919642857142":25,"06557798032407407":34,"06609598795572917":39,"06611466407775879":25,"0664e":[34,39],"0665e":33,"0667e":27,"0669e":33,"06702995300292969":39,"0670e":40,"06746260325113933":39,"0675e":34,"0676e":42,"0677e":39,"0678e":48,"0679e":39,"0681504143608941":39,"0686e":24,"06876168536324787":34,"06897718641493056":34,"06929166666666667":34,"0696557791435366e":34,"0696e":26,"0697e":33,"07":[12,24,26,27,29,33,34,35,39,42,47,49,50],"0700e":[24,27],"0703125":25,"0706e":24,"0710e":36,"0712e":26,"07155566745334202":39,"0718":19,"0723e":33,"07241030092592593":39,"0724e":36,"0730e":50,"0732e":24,"074":[19,42],"0742e":25,"0743e":50,"07458043981481481":39,"0750":19,"0751953125":39,"07575":42,"0759e":24,"0760e":24,"07624737774884259":34,"0763e":39,"07647235576923077":34,"0768e":[46,47],"077881":27,"078":19,"0781":17,"078234":27,"0787e":49,"0788e":[34,42],"07905292510986328":39,"0791e":36,"07j":42,"08":[24,25,27,36,39,46,47,50],"0800e":[24,50],"0809461805555556e":34,"0812e":24,"081484375":39,"0816061000631313":34,"0818e":27,"0819e":35,"0820e":24,"082763671875":34,"0828e":34,"0833e":26,"08352726063829788":34,"08406575520833333":34,"0840e":36,"08414149284362793":25,"08418807983398438":39,"08457483362268518":34,"0850e":27,"0855e":36,"0857e":[24,50],"0858e":27,"086263020833334e":25,"0863e":34,"08697916666666666":34,"0875":34,"08780924479166667":34,"0882e":24,"08891149450231481":34,"08907222747802734":25,"08939985795454546":34,"0895e":24,"0897e":46,"08984375":25,"0898e":34,"08e":35,"08it":29,"09":[8,13,25,33,34,39],"0900e":[24,27],"090132594j":42,"09064275568181818":34,"090927124023438e":39,"091":46,"0912e":24,"0913e":36,"09145228068033855":39,"0916e":24,"09259588068181818":39,"09346512j":42,"09424036792200854":34,"0942e":33,"0943e":[25,39],"0946e":27,"0960e":27,"0961e":47,"0965e":39,"0968e":24,"0971e":40,"0972e":36,"0973e":35,"0977":17,"0980e":24,"0982e":27,"0990e":24,"0e":2,"0s":[11,12,17,24,27,31,46,50],"0x7effa863f0d0":36,"0x7f10cd1182e0":43,"0x7f10f2195c90":43,"0x7f10f21962c0":43,"0x7f10f2196fb0":43,"0x7f10f21979d0":43,"0x7f10f2197a30":43,"0x7f10f2197a60":43,"0x7f10f2197b20":43,"0x7f10f2197c10":43,"0x7f10f2197e20":43,"0x7f10f2197e50":43,"0x7f10f2197f40":43,"0x7f10f2197f70":43,"0x7f10f2197fa0":43,"0x7f10f2197fd0":43,"0x7f734c251900":44,"0x7f734c2519c0":44,"0x7f81f00ef0a0":19,"0x7f83d0555d30":19,"0x7f86f28c72b0":25,"0x7fe0b00c13a0":29,"0x7fee100c3e20":24,"1":[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,53,56],"10":[2,3,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],"100":[1,2,3,6,9,11,14,19,23,24,26,27,28,29,30,31,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50],"1000":[3,19,20,24,25,26,27,28,30,31,32,34,36,37,38,39,40,41,42,46,50,51],"10000":[14,24,26,27,31,50],"100000":[24,27,49,50],"1000000":[19,24,40],"10000000":24,"100000000":24,"10006385216346154":34,"1000e":[24,27,50],"1000m":42,"1001":[24,26,34,39],"10011":[6,13],"10016025641025642":35,"1002":[24,27,34,39,47],"100260":27,"100289":27,"1003":[24,34,39],"100352":34,"1004":[24,34,39],"100415":40,"1005":[24,27,34,39],"1006":[24,26,34,39],"100654":27,"1007":[17,27,34,39],"100736000":24,"1008":[24,26,34,39],"1008000":50,"1008e":42,"1009":[24,27,34,39],"1009e":36,"100e":[3,30,34,35,48,49],"100e9":41,"100n":3,"101":[6,36,40,44,47,48,49],"1010":[26,34,39],"1010102":30,"1010475093482906":34,"10106":26,"1011":[24,34,39],"1013":[34,39],"1014":[26,39],"101406":27,"101449728":39,"1015":34,"1016":34,"10168":24,"1016e":[24,34,39,48],"1017":[34,39],"101788":24,"1018":39,"10182":36,"1018e":36,"1019":[33,34,39],"102":[35,47],"1020":39,"1021":[24,26,27,34],"1022":[26,33,34],"10223616":39,"102236160":39,"102272000":24,"1023":[12,17,24,34],"102322048611111e":34,"1023e":47,"1024":[3,5,11,17,20,24,25,26,31,33,34,36,39,40,43,46,51],"10240":39,"102400":34,"1024000":24,"1025":[24,34,39],"1026":[24,39],"1027":27,"10274":34,"1027e":36,"1028":34,"1029":27,"102912":39,"10296":36,"103":[30,36,46,47,49],"1030":34,"1032":[24,39],"1032192":36,"10321920":36,"1033":34,"10335":24,"1034":34,"103421":33,"103424":39,"10343790054321289":25,"1035":[24,34,39],"103515625e":39,"103558":34,"1035e":33,"1036":[24,34,35,39],"1037":[26,34,39],"103733":24,"1038":24,"103809024":39,"10383360":[34,42],"1038e":34,"1039":24,"103936":26,"104":[6,34,40,47],"1040":34,"10400000":50,"104000000":24,"1040187392":25,"1040e":24,"1041":27,"1041e":48,"1042":39,"10439":24,"1044":34,"10442":24,"104439":34,"1045":[26,34],"10459":24,"1046":39,"10468":36,"1048":[24,27,39],"1049":[24,34,47],"10496":36,"105":[34,39,42,47,48],"1050":34,"105252":27,"105255":27,"1053":24,"10546875":39,"1055":36,"1055e":24,"1056":[26,34],"10565":49,"1057":39,"106":[14,24,29,35],"1060":39,"106028":33,"106057":34,"1061":[24,26],"106168320":39,"1062":24,"1063":47,"1064":[14,24],"10645":24,"1065":[27,34],"106537":46,"1066e":24,"1067":34,"1068":24,"10682":24,"107":[27,49],"1070":24,"107031":24,"1073":[26,39],"10739712":48,"1073e":25,"1074":39,"1075":34,"10752":25,"1076e":36,"10778331756591797":39,"10789":40,"1078e":50,"1079":34,"1079e":24,"108":[41,47],"1080":34,"10800":42,"108007":27,"1080e":24,"1081":34,"108163":34,"1082":[30,34,39,48,49],"10825":24,"1084":[24,36],"1086":34,"1087":42,"1088":11,"10880":47,"10880000":24,"108859":27,"108885":33,"1089":34,"10894097222222222":39,"109":[27,31,47],"109051904":25,"10911744":33,"1091e":33,"1092":39,"1093":34,"1094e":[24,35],"1096":34,"10965":49,"109673":27,"1096972":42,"1096e":39,"1097e":34,"10985":36,"1098e":24,"1099":[24,29],"109961":27,"1099776000":30,"109994":34,"10e":17,"10e6":[19,41,42,43,44,45],"10e9":41,"10m":43,"11":[3,16,17,18,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54],"110":[24,26],"1100":39,"11000":50,"110000":24,"1100177":30,"110045":24,"11008":[36,50],"1100e":[42,50],"11010048":39,"1102186":24,"1103377904647436":34,"1103e":36,"110457":27,"110592":39,"110622720":42,"1107":34,"1109":[3,26,35,47,49],"110914":24,"1109e":24,"111":[6,32,43,47,49],"1111":39,"1112":[27,39],"1113e":40,"1114e":24,"1115249":42,"1115e":50,"111616":39,"1117":27,"1118":24,"112":[24,26,27,36,48,49],"112238":34,"11225088":35,"112459776":39,"11264":[25,34,39],"1127":24,"112758":25,"11285":27,"1128702":42,"113":[24,40,47],"1130":24,"1133":34,"1133715":42,"113390":30,"1134":39,"1135206":42,"11354":26,"113664":39,"1136e":34,"1137e":35,"11400000":27,"1140e":48,"1142":34,"114277":25,"1145":[24,34],"1146965579710145":34,"1146e":39,"1148":3,"114830":27,"115":[24,29,49],"11501568":36,"1150e":24,"1151":24,"1151e":24,"1152":[17,26,29],"1152000":24,"115234375":[25,34,40],"115414":39,"1154e":34,"1156":39,"115747":33,"1157e":42,"11581440":42,"1158854166666666e":34,"115961":27,"1159905":42,"116":42,"116180":27,"11620":27,"11626561482747395":39,"11636797587076823":39,"11648000":24,"1164e":33,"11661":34,"1167":26,"116736":[48,49],"11673600":[29,47,48,49],"116858":27,"117280":40,"1172e":[36,39],"1174e":33,"1176":36,"11760":42,"11771":40,"11776":[25,33,39,48],"11787":24,"1178870":30,"1179":[24,42],"1179648":[33,36],"11796480":39,"117980":27,"1180":27,"1181":39,"1181043":42,"1184":50,"1185":[24,34],"118503":33,"11854":52,"1188e":33,"1189":39,"119":[27,30,35,50],"1190":27,"11926":26,"119296":39,"1193":34,"119396":39,"1195":27,"1196":[24,34],"1199":34,"11n":[14,27],"12":[2,3,11,13,14,17,18,19,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50],"120":[17,26,44],"1200":[27,30,47],"12000":[24,50],"1200000":27,"120021":33,"1200e":[27,50],"1204":34,"12052":36,"1207258":42,"12076":24,"1208":34,"12083":24,"12091392":36,"12093":48,"121":[24,25,42,43,47,49],"1211":39,"1212758":42,"1213032":25,"12139423076923077":34,"1214":27,"1215565":42,"1216":34,"12163461538461538":34,"121634816":25,"12168":36,"1217":[24,39],"1217e":36,"1218893527985":34,"1218e":39,"1219482421875":40,"122":47,"12202":24,"122160":24,"12231":46,"1225":24,"122527":27,"122598":34,"122701":39,"1227e":46,"1228":24,"12288":[34,36],"1228800":30,"1228800000":30,"123":[27,29,48],"123013":25,"123302":34,"1233286":42,"12337239583333333":34,"1234":[8,12],"12345678":[8,12],"1235e":34,"1236":34,"123628":27,"123642":25,"1236e":24,"1237":[36,39],"1237e":50,"124":47,"1240e":50,"1241e":34,"124245":25,"1243":34,"1244":42,"124664":25,"1246e":46,"1247":24,"124717":46,"1247232":35,"124781":34,"124910":27,"12498":36,"125":[24,30,47],"1250":17,"125056":25,"1250e":[24,26,29,34,35,36],"125123":34,"12524":[24,34],"12533760":34,"1254":24,"12544":36,"1255":[24,35],"125561":25,"1256":34,"12560":42,"125674":27,"125677":34,"1257377":42,"125808":33,"12582912":25,"1259148":30,"125935":33,"1259765625":39,"1259e":48,"125e":35,"126":[36,47,48],"126000":50,"126033":34,"1260e":39,"1261e":36,"126615552":39,"12672000":24,"1267e":27,"1269":24,"126953125e":34,"126976":25,"127":[14,35,53],"127000":24,"12702298164367676":25,"1270929":42,"1270e":[25,33,34],"127197265625":39,"1271e":34,"127238":34,"127691":33,"1276e":39,"1277":36,"127843":25,"1279296875":39,"1279e":36,"128":[1,20,24,25,26,29,33,34,35,36,38,39,43,46,47,48,49],"1280":[33,36],"12800":[35,39,47,48,49],"128000":[24,26],"1280000":24,"12800000":24,"128000000":24,"1281":[40,50],"1282e":39,"1283":24,"128662109375":39,"12869":40,"1287":47,"12872":24,"128802":27,"1289e":34,"129":[2,3,33,35,38,40],"129083":27,"1293432":42,"1294e":34,"1295":27,"1296e":46,"129737":29,"129906":25,"12993":29,"13":[17,23,24,25,26,27,28,30,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,53],"130":[27,42,43,44],"13000":24,"13000000":24,"1300e":[24,50],"13017":24,"1303":27,"130307":25,"13049":36,"13056":36,"13056000":47,"130566":[25,34],"1306e":39,"1308":39,"1308632":42,"130957":27,"131":50,"131179":27,"1315":34,"13159":24,"1315e":34,"1316":24,"1316718":42,"13200000":27,"13225":24,"1323":34,"132505":25,"1326185":42,"1326e":36,"13271040":34,"1329026":42,"132907008":39,"133":24,"13312":[25,34],"133424":34,"13369344":39,"133695":27,"1337e":35,"133888":25,"1339":39,"134":[24,34],"1340042372881356":34,"1340e":33,"134100":27,"13411458333333334":25,"1341259":42,"1341e":24,"134217728":25,"1342604":42,"134358":33,"13440000":24,"1345":24,"1346":34,"135":[34,47],"135062":27,"135065":33,"1350e":24,"1352":17,"135214":39,"135220":34,"1355":49,"13565952":33,"135694":34,"135754":25,"135762":34,"135862":24,"136":33,"136338":33,"1363969":42,"13640":36,"1367e":25,"136878":34,"1369":50,"136932":27,"13708":36,"1371e":39,"1375e":24,"137625600":39,"1378e":36,"138":[33,34],"1384":34,"138412032":25,"1384e":33,"1385":34,"138539":25,"1386e":34,"1387":24,"139":29,"139048":27,"1392":35,"139211":39,"139273":27,"1392e":34,"1394e":24,"1396":40,"139721":27,"1398e":24,"139996":34,"13a":24,"13w":30,"14":[17,18,19,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54],"140":[11,24,33,44],"140000":24,"14008320":34,"1400e":[24,27],"140175":34,"14020647321428573":39,"1403":24,"14070":24,"1408":[39,47],"14080":33,"1408000":24,"1409024":40,"1409286144":25,"141":[3,49],"141111":25,"141124":34,"1411e":33,"1412":47,"141380":34,"14155776":[36,39],"141584":34,"141643":34,"142":36,"1420e":24,"1422":24,"142266":34,"14240":42,"142565":27,"1426e":47,"142999":25,"143":[23,45,46],"1430":[20,34],"1431e":36,"143222":46,"143387":34,"143464":27,"143489":33,"14363":24,"143698":34,"1437":34,"14372":46,"143744":42,"143784":34,"143816":27,"1438e":24,"144":35,"14400":30,"1440000":26,"144029":27,"14403":24,"144242":34,"1442840576":40,"1442e":36,"1443":34,"14450688":36,"1446634928385416e":39,"1446e":36,"144737":27,"144779":34,"1447e":36,"14512":36,"1452e":36,"145327":34,"14547797309027777":34,"145486":25,"145489920":39,"1455e":39,"1456":24,"145610":34,"1457":27,"145861":34,"1458e":[26,47],"146":36,"1461009307822678e":42,"1462e":39,"1463":34,"1464194":42,"146532":34,"1466e":35,"1467e":27,"146939":34,"147":[42,49],"147192":25,"147456":[36,40],"1474560":[33,34,36],"147458":34,"147528":25,"14763176j":30,"147692":34,"147729":27,"14807788":30,"148162560":42,"148254":27,"1484":34,"148407":27,"148435":25,"14848":[25,36,39],"1484e":39,"148504":34,"148558":34,"148671":34,"148704":34,"148935":27,"1489e":[34,42],"14931":36,"14960":39,"1496e":[27,39],"1499":34,"14e9":42,"14ghz":42,"15":[2,3,8,13,17,19,23,24,25,26,27,30,32,33,34,35,36,37,39,40,41,42,44,45,46,47,48,49,50,53,54],"150":[24,34,37,41,42,44],"1500":26,"15000":[27,34],"1500000":24,"150000000":27,"1500e":24,"1501":34,"1502e":39,"15031":40,"15040512":36,"1504e":33,"150564":27,"1507e":24,"15084":24,"151":33,"1511":34,"1512000":50,"1514e":[27,29],"1515":34,"15165":39,"15169959435096153":34,"1517568":49,"15175680":42,"152":[24,36],"152113":34,"1523":17,"1523014":42,"152316":27,"152321":27,"152349":25,"1523e":25,"15248":35,"152526":34,"152911":25,"153":[3,19,23,24,25,36,45],"153046":34,"153236":25,"15337":24,"1536":[25,33,36,39],"153600":47,"1536000":[24,26],"15360000":47,"1536e":30,"1537":24,"1539":24,"154":[3,47],"15400":27,"15402":24,"154555":25,"15457589285714285":34,"1546e":33,"15482880":34,"155":47,"1550e":[27,40],"155136":39,"15517663955688477":25,"1553":35,"1554":48,"1556e":50,"1557e":39,"155883":46,"1558e":33,"155954":27,"15599834735576923":34,"1561":34,"1562e":26,"1563e":50,"156465":34,"15661":50,"1567":24,"156722":33,"1567e":24,"156805":34,"1569e":34,"157":[17,33,47],"157010":27,"157277":24,"1572864":39,"15728640":39,"15734931098090277":34,"15740831163194444":34,"1575000":50,"1575e":33,"1578e":24,"158":[46,47,49],"158046":27,"158072832":39,"1582":24,"158451":27,"1584e":39,"1586":40,"158859264":39,"158880":34,"15899":24,"1590e":25,"159218":24,"15948":36,"15974":36,"1597440":34,"159757":25,"1598e":42,"15995":39,"15e3":[3,28,34,42],"15khz":17,"16":[2,3,7,9,11,12,17,19,20,23,24,25,26,27,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,51,54],"160":[2,17,19,24,37,47],"16000":[24,50],"16000000":24,"16006485376602564":34,"160091":34,"1600e":[24,27],"1602":17,"1605":24,"1607":50,"1607e":49,"16080593532986112":34,"160973":27,"160n":43,"1610":24,"1611":1,"1611e":24,"16121":49,"1613":35,"16134":36,"161742":34,"1618e":42,"161938":27,"162":[27,36],"1620e":25,"162159":39,"1622":34,"1622016":36,"16220160":33,"162301":34,"16250":24,"16256000":24,"16276041666666666":34,"162964":34,"162975":42,"163":[27,33],"1630":34,"1630952623155382":39,"1633e":46,"1635":34,"16351":26,"163760":34,"16384":[25,40],"16384000":24,"163931":24,"164":33,"164137":39,"164177":46,"1641e":36,"16431":50,"16438802083333334":34,"164486":34,"1644965277777777e":34,"164506":34,"16453":34,"164788":27,"1649":34,"164979":27,"165":[24,33],"16500":24,"1650e":46,"16536458333333334":25,"165701":27,"165718":34,"16591":34,"166":43,"166083":25,"1664":49,"1664000":24,"1666":24,"166666666666667e":25,"166733":34,"1667e":[26,47],"16682":24,"16690":24,"1672":24,"16768000":30,"16777216":25,"167772160":40,"167896":27,"168":33,"1681915904":25,"1681e":40,"16820":36,"168200":27,"16822":42,"1687e":34,"16880":42,"16896":[25,39],"1689600":47,"169":33,"169054":39,"16923":46,"1692e":24,"1695e":49,"16972468449519232":34,"169761":34,"169869312":39,"169921875":39,"16db":41,"16qam":[25,27,38,40,51],"17":[3,16,17,24,25,26,27,30,34,35,36,37,38,40,41,42,43,44,45,46,47],"1700":34,"170000":24,"17003":34,"1700e":50,"17031":33,"17067":27,"1707":35,"171":[24,25],"17104896":36,"171168":27,"1711e":24,"171442176":39,"171574":34,"171605":34,"1717":[27,45],"1718":50,"171821":33,"171853":27,"171875e":39,"1719e":39,"172032":25,"172110":27,"172124160":42,"17214":36,"1723":34,"1723e":39,"1725e":24,"1727":[14,27],"1727e":36,"1728":45,"172801":24,"173":[27,47],"17301504":39,"1730e":50,"1731":49,"17312":24,"17338":49,"1733e":36,"17363":24,"1737":[14,27],"17371mib":30,"1738e":40,"174":25,"17408":[34,39],"1741e":39,"17426":29,"1742e":40,"17447916666666666":34,"1745":[34,39],"17451":27,"174587904":39,"1748":34,"17483605278862846":39,"175004":27,"175069":39,"1750e":[33,42],"1751736111111111":34,"1753":[24,42],"1753e":34,"1754":[16,33],"1756":36,"175723":27,"1758":17,"1758e":39,"175910":33,"17604166666666668":34,"1760e":24,"17642795":30,"1765":[16,33],"17664":33,"176640":39,"1767e":25,"1769472":[33,36],"177027":34,"1771e":26,"17728":36,"1773e":39,"1775e":36,"1776e":24,"1777e":36,"17783":24,"1778e":50,"178038":[27,34],"17806":36,"178176":35,"17817600":35,"1781e":50,"178324":27,"17844460227272727":39,"1784e":34,"1787e":25,"178854":25,"178883":27,"178884":33,"179000":30,"17906":27,"1792":[36,47],"17920":[36,39],"17950481838650173":39,"1796875e":39,"1797e":34,"18":[3,17,23,24,25,26,27,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,47,50,53],"180":[33,41,47],"18000":24,"1800000":27,"1800e":[24,25],"1804":11,"1806e":[34,39],"18087936":39,"180883407593":25,"181":29,"181313":27,"18131510416666666":34,"181657":25,"1819e":39,"182000000":24,"182138":34,"1822e":24,"1824":48,"182453":34,"18247":36,"182593":25,"1826e":27,"183":[24,49],"1830e":35,"183209":25,"183238656":39,"1832e":39,"1833":46,"1836e":34,"18370560":42,"18392":39,"184":33,"18432":34,"18432000":34,"18435":48,"184362":46,"1844e":40,"1846":24,"185":23,"1851":47,"1853e":34,"1855e":34,"18572":49,"1857e":36,"186":43,"18600000":27,"18608":20,"1861e":24,"1862e":34,"1863e":27,"1864":34,"18646":24,"1866e":35,"1868e":34,"18692":24,"1870e":34,"1871e":48,"1874e":24,"1875e":[35,36,47,50],"18775770399305555":34,"1878":42,"1878e":42,"1879e":25,"188":36,"1884e":27,"1885102":42,"1889":29,"188979":27,"1889e":24,"189000":50,"189090":34,"1892e":34,"18937":35,"189406":33,"18944":39,"189644":34,"1897":[24,27],"1897e":34,"189928":25,"18999":42,"19":[6,11,16,17,23,24,25,26,27,30,31,34,35,36,37,40,41,42,44,46,47],"19000":27,"190784":34,"19091796875":34,"1909e":30,"191298":39,"1912e":47,"1914e":36,"191532":34,"1916":34,"191610":34,"1916928":36,"19169280":42,"1917e":25,"1918e":39,"191916":34,"192":[29,30],"1920":26,"192000":24,"1920000":24,"19269":40,"1927e":47,"1928":36,"193":[2,17,36,37],"19302435980902777":34,"1930e":27,"193157":34,"193264":34,"1933e":24,"1934":17,"193689600":42,"1941":16,"194114":24,"1941e":39,"1944":23,"1944e":27,"19456":34,"1949813":42,"195":25,"1950":27,"1951":23,"19525":33,"1953e":39,"1955e":33,"19577":26,"1960":41,"19600":44,"1960e":24,"1962":[23,41],"1963":24,"19660800":39,"196644":24,"1966e":49,"1967":6,"197":39,"1970":34,"1970e":40,"19718":36,"1973":2,"1973e":33,"1974":[6,23,27,41],"1976":2,"197837":24,"1978e":34,"1979e":30,"19800000":27,"1981":46,"1982":27,"1982150607638889":34,"1982e":24,"19832":24,"1984":[23,41],"1987e":[42,49],"1988":[16,34],"199":24,"1990":[23,41],"19906560":34,"1991":2,"199126":34,"1992":27,"1992e":25,"1993":13,"1993e":29,"1995":[10,24],"19968":[36,39],"19968000":34,"199680000":42,"1997":[19,34,46],"1998":[23,27],"1998e":24,"1d":[9,11,22],"1e":[2,17,24,25,26,31,33,34,35,36,37,39,40,41,42,43,47,48,50],"1e1":33,"1e3":37,"1e4":37,"1e6":[19,24,27,30,41,42,45,46],"1e7":19,"1e9":[41,42,45],"1f":[24,30],"1ghz":41,"1j":[18,28],"1s":[11,12,17,24,27,31,46,50],"1x1":3,"2":[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,56],"20":[3,9,11,14,16,17,19,23,24,25,27,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],"200":[2,9,11,19,25,30,31,36,40,44,45,46,50],"2000":[2,24,27,31,34,42,46,50],"20000":24,"200000":[30,46],"2000000":[19,24],"200000000":24,"2000e":[24,27,42,50],"2001":[11,14,27,42],"200192":39,"2002":[14,42],"20023":27,"2003":[9,12,27,33,42],"20034":24,"2004":[9,14,27,45],"2005":[3,14,23,42,50],"2006":[3,42],"2007":[23,27,42,45],"200704":39,"20078":48,"2008":[11,24],"2009":[2,11,24,27,50],"2009e":39,"200e6":45,"201":[25,33,36,40],"2010":[2,11,37,50],"2011":[16,23,33],"2012":23,"2012e":34,"2013":42,"201326592":25,"2014":[16,50],"2014e":[29,39],"2015":[10,11,16,23,24,33],"2016":[1,9,11,24,35,42,49,50],"2016000":50,"2017":[3,11,24,26,35,42],"2017e":39,"2018":[3,8,9,11,13,19,24,27,50],"2019":[1,11,23,26,29,42],"202":[25,35,36],"2020":[6,11,12,15,23,24,26],"2020e":46,"2021":[7,9,11,23,24,27,35,47,49],"2022":[16,23,30,33,44,46,47,52,54],"2023":[19,23,25,33,50,54],"2024":[23,44,54],"2026":42,"2027":[40,42],"2028":42,"2029e":27,"203":[25,36,40],"2032e":50,"2033e":[24,39],"20348928":33,"2038e":30,"204":[24,25,36],"2040":[19,23],"2040e":50,"2041":42,"2042e":39,"20451":24,"2047":42,"2048":[25,26,31,34,36,39,46],"2048000":46,"204800000":46,"205":[25,36],"2050":50,"2050e":50,"2051e":47,"2052":50,"205312":25,"20566":24,"2058":49,"206":[25,33,36],"2063":50,"2063e":34,"2064384":36,"20643840":34,"2064e":33,"20652":26,"2066e":34,"206992":46,"207":[25,36],"2070e":34,"2071":27,"207146":25,"2072":50,"2074":42,"207410":25,"2075e":36,"2077e":29,"2078":42,"2079":27,"20799":24,"208":[25,33,36],"2080":42,"2081":34,"2081e":25,"2082e":40,"208333333333334e":25,"2083e":[24,36,47,49],"2085":27,"208544":34,"208w":30,"209":[25,27,41],"2091":50,"20926":49,"2095":50,"2096":24,"209674":34,"2096e":30,"20971520":25,"20e6":[42,45],"20m":[3,19],"21":[2,17,19,23,24,25,27,33,34,36,37,39,40,41,42,46,47,49],"210":[24,25,34,36,39,42],"21000":24,"210000":24,"21000000":27,"2100e":[24,27],"2101248":29,"2101e":26,"2103":27,"2103e":36,"21076633j":30,"2108e":34,"211":[12,15,17,25,36,46,47,48,49],"211149":25,"2112e":36,"2114e":33,"2116":50,"21193":24,"21193033854166668":34,"212":[7,8,9,11,13,17,24,25,27,36,46],"212304":39,"21248":36,"2124e":36,"2125e":46,"21268":49,"2129":17,"213":36,"21318":24,"21366":29,"21381120":34,"214":[17,25,27,34],"2141":[27,50],"21427":27,"2142e":27,"2143e":39,"2147":40,"214857":39,"215":36,"21504":[34,39],"2150400":47,"215368":34,"2155":27,"215510":33,"2156e":26,"216":[25,36],"21624":24,"2165":50,"2168e":39,"217":[34,36],"217305":24,"2174":[27,50],"217420":25,"2176e":34,"217828":25,"21785":36,"217898":33,"2178e":24,"2179e":34,"218":[24,33,34,36],"218155":33,"2181e":26,"2185546875":34,"21863":24,"2186e":39,"218982":33,"2189e":39,"219":36,"2195e":24,"219804":42,"219878":33,"2199":17,"22":[17,19,20,23,25,27,33,34,36,37,38,41,42,43,44,46,50,53],"220":[19,24,35,36],"22000":[24,27],"22000000":24,"220084":33,"2203":52,"220451":34,"220608":39,"2207e":33,"220m":19,"221":[3,36],"2211840":[34,36],"22118400":[30,34],"22120":24,"221203":34,"2214e":42,"22160":42,"2217984":49,"222":[2,29,36,40],"22200520833333334":39,"22218640645345053":39,"2221e":24,"2222e":50,"2223e":34,"2224":36,"222415":34,"222467":25,"2227e":34,"223":36,"2230e":39,"22315":49,"2231e":34,"223264":39,"223649":39,"2236e":33,"224":36,"224061":40,"2242e":24,"22448":24,"2246":50,"224817":34,"2249e":40,"225":36,"2251":24,"2251e":[25,49],"2252":[45,50],"2252341248":25,"22556":24,"22563":45,"2256e":27,"2258e":24,"2260e":49,"2261":50,"2261e":39,"2265625":39,"2266":17,"2269492j":30,"227037":39,"227077":39,"227161":40,"22729":34,"227307":34,"2277e":30,"228":[3,36],"22806528":39,"2280e":34,"2282e":27,"22833":24,"228468":25,"2285895680":25,"2286":36,"22890":35,"228982":34,"229":[24,36,42],"2293e":34,"2294e":34,"22961112780448717":34,"2296581268310547":39,"22992":46,"23":[17,23,25,33,34,36,37,42,46],"230":[24,25],"2300e":[24,27,34],"2302e":50,"2303047":42,"230320":46,"2304":[33,36],"2304000":24,"2305e":[36,39],"2306":50,"230686720":25,"23069":36,"2309":27,"231":[24,36],"2310":50,"231337":46,"23144":49,"2315998077392578":39,"2316":24,"2316e":34,"2319e":39,"232":27,"2320":42,"2320e":24,"23232108j":30,"2323e":46,"2324e":33,"233":25,"2331":33,"2333e":27,"233472":[29,48,49],"2336e":50,"2339":40,"2339e":24,"234":[33,40],"234375":25,"234399":25,"2344":17,"2346e":24,"2347e":35,"234809":34,"2348090277777778":39,"234862":34,"235":[19,25],"235015":39,"2350e":27,"23511":24,"2352e":49,"2353e":36,"235431":24,"235439":25,"2356e":24,"2358":36,"23582":48,"2359296":[36,39],"23592960":34,"2359e":24,"236":[24,25],"236218":39,"236328125":25,"2364e":26,"2366e":[25,34],"23671":24,"237258":34,"237390":34,"2375e":[34,36],"2377":50,"237890625":34,"2379e":[34,36],"238":[36,42],"2380e":34,"238284":34,"238288896":39,"2383e":36,"238431":39,"239":36,"23907":49,"23910984848484848":34,"2391e":25,"239211":25,"2392578125":34,"2396160":34,"239622":34,"2396e":29,"23w":46,"24":[3,17,18,19,24,25,27,30,34,37,39,41,42,46,48,50],"240":[17,24,25,36],"24000":50,"2400000":[27,50],"24000000":27,"2400e":[24,50],"2401e":35,"240466":39,"240503":39,"24076704545454544":34,"241":36,"2412109375":25,"2413e":24,"2416":47,"2416449652777776e":34,"242":[3,25,34],"2423":43,"24265mib":46,"24267mib":30,"24268mib":[30,46],"242769":39,"243":36,"2431243":42,"2432":49,"24320000":24,"24375":36,"24388":42,"2439":50,"244":36,"24405":24,"2443e":25,"24477696":36,"244874":39,"245":36,"2450":[23,33],"24505":24,"2451e":25,"2455078125":34,"245625":39,"24563":48,"24576":[25,39],"2458":24,"24588":24,"246":36,"246000":24,"2460e":49,"2461e":[25,34],"24625":24,"246337890625":34,"2467":36,"247":25,"2470e":50,"2473":47,"247983":25,"248":47,"248046875":34,"248078":39,"2480888171073718":34,"24832":33,"248794":33,"2489e":34,"249":[3,36],"2493":27,"24957":24,"249660":33,"249662":33,"249776":33,"2498e":24,"249945":33,"24w":46,"25":[17,20,23,24,25,27,29,31,33,34,36,40,42,43,44,46,50],"250":[27,30,36,37,42],"25000":[24,50],"250000":[27,30],"25001":24,"2500e":[24,27,34,49,50],"2502e":36,"2503":26,"250368":39,"2503e":24,"250538":39,"2505e":26,"2508e":34,"250m":19,"251":[17,34],"2510e":[24,27],"2511e":50,"2512":33,"2516":26,"25165824":[25,40],"2516e":24,"252":36,"2522":33,"252373":46,"25244140625":39,"2525":23,"2525e":48,"253":36,"2531e":24,"25326":49,"253302":39,"2533e":[24,39],"25374190938511326":35,"2539e":25,"254":[25,36,39],"2544":50,"2545e":34,"2548e":47,"255":[36,47],"2552083333333335e":25,"25544":33,"256":[24,30,34,35,36,43,47,48,49],"2560":[25,33,36,39],"25600":[34,39],"256000":24,"2560000":24,"25600000":24,"2563e":24,"256990":3,"257":[24,25,36],"2570e":27,"257647":39,"2577709j":30,"25779":49,"2577e":50,"2578":17,"257937":34,"258":27,"258170":34,"25823":24,"2583":34,"25848482572115383":34,"258655":34,"2589":29,"2591":24,"25920":24,"25929497612847224":34,"2594e":36,"2595":36,"25952256":39,"2596":49,"2598809136284722":34,"25e":39,"26":[3,17,19,24,25,34,36,42,46],"26000":[24,50],"2600e":33,"2603e":34,"260hz":43,"261":[27,43],"2610134548611112e":34,"2612e":39,"2613e":24,"2614e":39,"26160":24,"262":36,"2620e":27,"26219":49,"262275":24,"2624000":24,"2627":24,"2627e":27,"2628":50,"263":[25,47,48,50],"263243":39,"2632e":46,"2639e":42,"264134":39,"2642e":35,"264557":39,"2647e":36,"26495":48,"265":36,"2650e":42,"265100":39,"26513671875":34,"2654208":[33,36],"26553":24,"26566":24,"2656e":26,"266":[3,25,36],"2660":36,"2661628723144531":39,"26624":39,"26654":50,"266602":33,"2667e":24,"2669e":34,"26728":24,"2672e":24,"2673":[23,44],"26738688":39,"267553":30,"2675e":34,"267822265625":39,"26806640625":39,"268220":39,"26829":34,"26843706766764325":39,"2685":[23,44],"2687e":[46,48],"26880":33,"2688000":24,"2689e":24,"269":25,"269403":33,"2697e":48,"2698":36,"26a":19,"26db":[38,44],"27":[2,3,17,19,24,25,34,35,36,37,39,42,43,45],"270":41,"2700e":24,"2701497395833333":34,"2701e":24,"2702e":25,"2704e":34,"2705e":34,"2706e":24,"270849609375":34,"271":36,"2712268829345703":39,"271319040":39,"2713e":33,"2715657552083333e":39,"2717":50,"272":50,"272025":39,"272511":33,"2725e":33,"2728":25,"272823":39,"273":[25,46],"2734e":[33,39],"273507":39,"273565":33,"27360":36,"2736e":24,"2737e":33,"273984":33,"27417":50,"2742e":25,"2748e":24,"274944":25,"275":17,"2750e":24,"275132":24,"27525120":39,"27531":33,"275310":34,"27543":34,"27565479767628204":34,"2757e":36,"2758370":26,"2763e":24,"27645":39,"27648":[34,39],"277":27,"277061":46,"277305":25,"2773e":[24,36],"2777":26,"27778":24,"277872":34,"2779":24,"27792":36,"2784":35,"2786e":42,"278990":39,"279":36,"279040":25,"279074":39,"2791e":39,"279730902777778e":34,"28":[2,3,17,19,23,24,25,27,33,34,35,37,39,42],"28003":25,"280064":39,"2800e":[24,27],"2802":26,"28027":33,"2802734375":25,"2805e":34,"28083":48,"2810":50,"28107":49,"2812e":[26,34,47,49],"2814":50,"2816":36,"28160":25,"281639":39,"2818048":40,"2818e":50,"28192":24,"28196":29,"2820":26,"28202":24,"2822e":27,"28233":36,"28242":33,"282469":34,"28294":33,"2832e":[29,34,49],"2833":24,"2834e":36,"2835011017628205":34,"2838e":33,"2840":16,"284333":34,"2844e":50,"2847e":35,"2849":16,"285471":34,"2854e":27,"285749":39,"2857e":27,"286":[36,46],"28606464":33,"2861e":40,"28636":24,"2865e":34,"2866e":33,"28672":34,"287":[25,36],"287202":39,"287353515625":34,"28737":36,"2873e":35,"28753920":34,"28777":24,"2878e":39,"28790":48,"287993":24,"28800000":27,"2880e":50,"28829":33,"288389":34,"28853":35,"28895":33,"2890e":25,"2892e":39,"28937":33,"2895e":25,"289820":39,"28c":30,"28d":23,"29":[23,25,30,33,34,36,42,43],"290":35,"2900":26,"29000":24,"2900114059448242e":25,"290063":39,"290097":39,"2900e":[25,27],"29014":24,"2901e":39,"29097984":39,"291":3,"2910e":39,"291203":30,"2914e":30,"2919e":36,"292209201388889e":34,"29248792860243056":34,"292515":39,"29261":26,"2927":24,"29272":24,"293":3,"2930":24,"2930e":[33,42],"293242":39,"2932e":33,"2933891":26,"2935e":27,"29360128":25,"2936e":33,"293844":39,"294":24,"29400000":27,"2942e":36,"2947":27,"294912":36,"2949120":[33,34],"29491200":36,"295":27,"2950e":50,"2953":24,"295455":39,"29563":39,"29584":33,"2959":39,"296":34,"2960069444444444":34,"2960662841796875":39,"296091":39,"2963e":49,"2964e":26,"296647":30,"2967e":50,"29680":42,"29695":33,"29696":34,"2969e":[35,36],"297":3,"2970e":[24,40],"29719797770182294":39,"29741":34,"29768":24,"2978e":[39,48],"2979132334391276":39,"298":33,"298073":30,"2988":36,"2988e":39,"298907":39,"29894":33,"2989e":39,"299":24,"29900":47,"299052":39,"2990e":40,"2997":34,"29it":29,"2_":[3,16],"2_0":16,"2_i":18,"2_k":16,"2d":[13,19,29,35,42,49],"2e":[35,42,47,49],"2e6":[19,45],"2f":[24,25,30,34,42,44],"2g":5,"2hf_c":2,"2hf_cw":2,"2i":15,"2j":23,"2k":16,"2m":16,"2n":23,"2nd":19,"2t":37,"2w":23,"2x":23,"2x2":[3,23,25],"2z_0":23,"3":[2,3,5,6,8,9,10,11,12,13,14,15,16,18,19,20,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,53,56],"30":[3,17,19,20,23,25,33,34,39,41,42,43,44,45,46],"300":[3,24,41,45],"3000":[24,26,27,50],"30000":[24,35,46,47],"3000000":27,"30000000":27,"300000000":27,"3000e":[24,27],"30012":35,"30026":24,"3002915":26,"3004e":39,"300799":46,"3008e":34,"30097":36,"300e":[3,34],"300n":3,"301":3,"3017e":26,"3019e":24,"302":[3,36],"30208":39,"3021e":47,"303":36,"3030":36,"303240":25,"304":47,"3040":42,"3040e":36,"30456":36,"30458":24,"30479":49,"3047e":26,"305395":39,"3053e":34,"3054520":[35,49],"30565":46,"30589":27,"306":47,"3061":24,"3061e":25,"306236":30,"3062e":34,"3063e":24,"3065":24,"3066":17,"306640625":34,"30670848":39,"30676472981770836":34,"3067e":42,"3069e":25,"307":3,"3071":50,"3072":[25,30,33,34,36,39],"30720":34,"307200":47,"30720000":46,"3073":14,"307449":39,"30747767857142855":39,"307494912":39,"307761":39,"307901":39,"308":17,"3080e":24,"308281344":39,"30855":48,"30883":48,"3093e":25,"309443":39,"3094e":34,"3095527":19,"3096576":36,"30965760":33,"309751":33,"3097956730769231":34,"3097e":36,"30993":36,"30e3":[18,25,30,33,35,36,39,42,43,48,49],"30e9":[41,45],"30khz":43,"30n":3,"30th":52,"31":[17,19,23,25,34,42],"31000":[24,27],"3100e":[24,27],"310120":34,"3101364":[35,47,49],"3101e":[33,36],"310272":39,"3104":24,"3105e":33,"3107e":36,"3108":24,"310801":39,"310886400":30,"311505":39,"311521":39,"312":[27,42],"312037":33,"31223":33,"312285":39,"312320":39,"3125e":24,"312623":39,"3127e":39,"312820":39,"3128e":27,"3130":40,"313232":39,"313263":34,"3136e":42,"3139":50,"313944":39,"314046":33,"3142e":26,"3143e":33,"3145728":39,"3145e":34,"31488000":24,"315":34,"3150":29,"315000":50,"315114":39,"315191":39,"315385":39,"3153e":34,"31579":34,"315993":33,"316":[3,46,47,49],"31600":[33,35],"316219":39,"3162278":32,"3162278j":32,"3162e":39,"3166e":34,"3167e":24,"317":36,"3170e":36,"31742":34,"3175e":27,"317651":33,"318254":39,"3184e":[34,39],"318566":39,"319":36,"3190":47,"3190e":[33,39],"3194880":34,"31954":36,"31983":36,"3199e":25,"32":[3,11,17,20,23,24,25,30,31,34,38,39,40,41,42,43,44,45],"320":[17,29,41,42,43,44,45],"3200":47,"32000":50,"320000":24,"3200000":24,"32007":36,"3200e":[27,50],"3203e":[34,36,39],"3207e":34,"321":[24,25],"3212e":27,"3213e":49,"3218e":34,"32215":36,"3223":17,"3226e":33,"32344":24,"32348160":42,"323995":24,"324":[14,24,27],"3240":36,"324000":24,"324099":46,"3241e":36,"3242e":36,"3244032":36,"32440320":34,"32501":49,"3252e":36,"3255e":42,"3262":17,"3262e":39,"326507":34,"3266e":24,"3268608":49,"326920":39,"32714":33,"3274e":36,"32768":[33,34],"327680":40,"3281":17,"3281e":24,"32823":24,"328462":39,"3287e":[27,50],"3291":47,"3291e":34,"3293":24,"3293e":27,"329507":39,"32969":48,"329960":39,"33":[19,23,24,25,34,39,41,42,45,46],"33000":[24,27],"3300e":[24,27,50],"3301":17,"33024":36,"33030":33,"33030144":39,"3303e":25,"330547":39,"3305e":49,"330990":39,"331083":39,"3310e":36,"331412":39,"33146880":42,"33177600":34,"33187":26,"332":50,"3320":17,"3320e":[24,25],"3321e":39,"3328":36,"33280":39,"3328000":24,"333":[24,36],"3331":34,"3333e":[39,47],"333508":39,"3339":40,"33394":24,"3341e":30,"33449":36,"3350":48,"33509":29,"3352":24,"335327":39,"3353600":30,"3354":14,"33546240":42,"33554432":25,"335544320":40,"3356e":24,"33582":48,"336":36,"3364":14,"3366e":34,"3372e":[27,36],"3377":24,"3378e":34,"3379e":[34,36],"338":[27,36],"33809":36,"3383":36,"3385e":36,"33873":24,"3387e":39,"339":36,"3390":35,"339141":39,"33914880":34,"3394":19,"3395e":33,"3397":49,"33c":46,"34":[23,24,25,34,42,46],"340":[17,34,49],"34000":24,"3400e":[24,27],"340262":39,"34072":36,"34091":34,"341":[24,50],"3411e":25,"3413":36,"342106103897095":38,"34255":49,"34256":26,"3427e":39,"342848557692308e":34,"34298":36,"3429e":36,"3431e":36,"3433":35,"3433e":50,"34375e":35,"3437e":[24,29,35],"3438e":[24,25,36],"344":33,"34480":42,"3448e":36,"3450e":24,"3456":47,"346":50,"3460e":50,"346477":46,"34652160":34,"34682":36,"3470052083333333":34,"3470e":36,"3473e":24,"34753":33,"34755":35,"3477e":[33,39],"34818":33,"349":46,"34931":24,"3498e":34,"35":[23,24,25,34,42,46],"350":43,"35000":27,"3500000":24,"3500e":24,"350208":[29,49],"3503e":39,"35082":33,"3509e":36,"350hz":43,"350w":[30,46],"351106":39,"351316":46,"3515":19,"3516e":34,"352":36,"3520e":36,"352387":39,"3524e":39,"352682":39,"3528e":46,"352900":39,"352915":25,"3529e":[24,33],"3530e":34,"35314":36,"35328":39,"3535e":39,"3537068684895833":34,"353711":33,"3538944":[33,36],"354":[24,35],"3543e":25,"354491":33,"354712":39,"35491":36,"3550e":[27,46],"35543040":42,"355662":33,"355731":33,"356":42,"3562e":25,"356352":35,"3570e":42,"3572":36,"3575e":34,"35812":48,"3584":[25,30,36,39,49],"35840":39,"358464":39,"3586e":24,"3588e":24,"35911":33,"3592e":35,"35940":49,"35942400":34,"3594e":[34,47],"35db":44,"36":[8,13,23,24,25,30,33,34,36,39,42,46],"360":3,"3600":[25,30,34],"360059":39,"360064":33,"3600e":36,"36018":36,"36096":36,"3611":36,"36110":27,"3611e":36,"361239":39,"3612e":24,"361558675766":34,"3616":34,"36183":36,"3620e":25,"362117":34,"362196180555556e":34,"3623e":25,"363":3,"36337":36,"3633e":[25,34],"364":46,"36433":24,"3643484115600584e":25,"3643e":25,"3644e":35,"3645833333333333":39,"3645e":[24,36],"36463":24,"3652":50,"36560":35,"3660e":34,"3667":3,"3671875e":39,"3672e":[25,39],"3673e":27,"36741120":34,"367634":39,"3676e":39,"3679":3,"368":[24,46,47,48,49],"3680":42,"3680e":25,"3682":50,"368467":39,"36864":39,"3686400":[30,34],"36918":24,"3697e":35,"3698e":39,"36db":44,"37":[3,16,19,24,25,26,34,36,42,50],"370":27,"3700e":27,"3701e":34,"3702":36,"37073863636363635":34,"3708e":34,"370n":43,"371":25,"3711e":33,"3712":35,"3712000":24,"37181":36,"371853298611111e":34,"372":[43,50],"37223714192708335":34,"3723e":29,"3725":36,"373596":25,"3735e":34,"37369":35,"37376":39,"3739e":25,"3745":50,"374645169220823e":25,"3746e":25,"3747":24,"375":[19,34,36],"3750e":[26,34,36,48],"37511":33,"3756510416666667":34,"37576":27,"3757e":24,"375e":35,"376":[23,50],"3761e":27,"37659":49,"3766e":39,"3767e":40,"3770":17,"377212":39,"37748736":[25,33,39],"37763":50,"3777e":24,"3779e":34,"378":17,"378000":50,"3781e":39,"37826":24,"3783e":39,"378535":39,"37877":27,"3789":35,"3789e":[26,47],"379":17,"37944":36,"3795e":24,"38":[0,7,9,11,12,15,17,19,21,23,24,25,27,33,34,35,36,39,40,42,46,48,49],"3800":24,"380000":24,"3800e":[24,27],"38013":36,"3803759":30,"3804":24,"38043648":36,"3804e":33,"3807e":[24,34],"381":36,"3810e":[24,49],"38158":48,"3815e":34,"38204":27,"38211":15,"3823e":27,"38243":24,"38248":35,"3824e":34,"3825":24,"3825e":42,"3828e":33,"383":50,"38306":36,"3831e":34,"3833856":36,"3833e":[25,50],"3834635416666667":39,"3839":34,"38392":24,"384":[47,49,50],"3840":[36,42],"38400":36,"384000":24,"3840000":[24,47],"3843000":50,"38454":50,"384565248":39,"38541":24,"3854e":34,"3855":24,"3857e":27,"3859e":46,"38609":24,"38645":40,"3867e":39,"3868e":39,"3871e":34,"3873e":24,"3874e":24,"38771":49,"3878":50,"38786":34,"38800":42,"3881e":36,"3885362413194444":34,"38858":36,"389":[33,42],"38912":39,"3896":35,"38_seri":15,"39":[3,19,23,24,28,30,34,35,41,42,43],"3900e":50,"390294":34,"390625":34,"3907e":39,"3911e":27,"3913e":39,"3914e":24,"39152":27,"39173":36,"3921e":34,"3925":[35,49],"392578125":39,"392623":27,"3930e":49,"3932160":39,"39321600":39,"3936e":36,"3940":[35,49],"39424":39,"394240":39,"394421":40,"3949e":36,"395":34,"3953":24,"3954e":24,"39588":46,"3961":36,"3968000":24,"3968e":29,"3969000":50,"3969e":27,"3972e":34,"3975e":34,"39788":33,"3979e":39,"3981e":40,"3982e":27,"3984e":[27,39],"3987223307291666e":39,"3987e":25,"399":33,"3992e":42,"39936":34,"3993600":34,"39937":36,"3993e":39,"399413":39,"3996e":36,"3d":[19,23,42,43,44,45,54],"3db":25,"3e":[3,37],"3e9":44,"3f":[24,30,46,50,51],"3ghz":44,"3gpp":[0,7,8,9,11,12,13,15,17,19,21,24,25,27,30,33,34,35,36,39,42,46,47,48,49,52,54],"3gpp38211":17,"3gpp38212":17,"3gppts36212_i":8,"3gppts36212_turbo":13,"3gppts38211":15,"3gppts38211_scr":12,"3gppts38212":11,"3gppts38212_crc":7,"3gppts38212_ldpc":9,"3k":13,"3r":13,"3rd":3,"3u":3,"3x3":19,"4":[2,3,6,9,10,11,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,53,56],"40":[17,19,24,25,27,31,33,34,39,44,46],"400":[24,29,41,42,50],"4000":[24,27,38],"40000":[24,27,42],"400000":50,"4000000":24,"40000000":50,"400000000":24,"4000e":[24,27,50],"4002":24,"4005e":27,"4007e":39,"4008":47,"4008e":36,"400m":42,"4010e":26,"401178":39,"4011e":[34,39],"4012e":39,"40135":48,"401371":34,"4017e":34,"402":24,"4023e":36,"402460":42,"4026e":24,"4028e":30,"40305":49,"40343":35,"4035":36,"404":34,"4040":[34,39],"40416":24,"4045":24,"4051":48,"4052e":42,"4057e":[36,48],"4059e":42,"406":34,"40625":39,"4063":17,"4066e":34,"4071e":47,"4072516025641026e":34,"40773":36,"4077e":49,"4079e":50,"408":24,"4088e":24,"40894464":39,"4089e":39,"4096":[25,33,34,39,40],"40970":30,"41":[3,10,17,19,24,25],"410":[34,50],"41000":24,"4100e":[24,27],"4101e":42,"41110":24,"4113e":47,"4114e":40,"4118e":27,"4119":36,"41193":46,"4121e":25,"4123e":27,"4126e":40,"41287680":34,"4128e":24,"413":[39,42],"41312575j":30,"4131e":34,"4132e":39,"4136":47,"41376":24,"414":42,"4141e":[25,34,36],"4142795138888887e":34,"4142e":35,"4144e":29,"4147200":47,"41472000":24,"4148e":36,"414940":39,"414991":39,"415":34,"415090":42,"4150e":24,"4157e":30,"41582592":36,"415988":46,"4164":24,"4165e":34,"4167":40,"4167e":26,"417":[29,43],"4171e":24,"41794":36,"41799":49,"4181":50,"41819661458333335":34,"4181e":36,"41822":36,"4193e":47,"4194304":25,"4194304000":25,"4198e":27,"42":[19,34,36,47,49],"4200000":27,"420009":39,"4200e":[24,42],"4209e":34,"421":[47,48],"42128":35,"4213":24,"421407063802083e":39,"421458":40,"4217":36,"4219e":[34,35,36],"422":47,"42223":35,"4224000":24,"42253":48,"423":[2,40],"42309":33,"423624704":25,"4245e":[27,42],"42467328":39,"4246e":33,"4247":23,"425335":46,"4256":23,"425811":39,"4258e":33,"426":39,"4263":24,"4264e":24,"4272":24,"4273":36,"42741012573242":38,"4277e":34,"4282e":40,"4286e":27,"429":46,"4292819552951389":34,"4296e":[33,34,36],"4297":24,"429878":34,"43":[3,25,27,30,42,47],"43008":39,"4300e":39,"430178304":39,"4303e":49,"4304e":46,"4305e":34,"43069":49,"4307e":36,"430909":39,"4312e":50,"43130880":34,"4318e":26,"432":50,"4320e":27,"43273":24,"4328e":[34,39],"4334147401800328e":34,"433850":25,"43387":35,"434":17,"4343e":33,"4348958333333333":34,"43499520":34,"435":25,"4351e":[35,42],"43520":39,"4352000":24,"4362":35,"4365e":50,"4375e":[34,36,47],"43777":36,"438":17,"4381e":48,"4387e":24,"439008":30,"43913898992976e":25,"4391e":25,"4398e":24,"4399":25,"44":[23,27,42],"4400e":[24,50],"44044":36,"4408e":50,"441":27,"44146":48,"4414e":[33,36],"4416e":34,"442368":36,"4423680":[34,36],"44236800":[34,36],"44256":36,"4428e":36,"4429e":25,"443":25,"443911":24,"444":29,"445":47,"4453e":[33,36,39,47],"44545":36,"447":[11,24],"4470e":48,"44721":36,"4477e":24,"4480e":36,"4481e":35,"4482e":[36,39],"449":[11,17,24],"4492e":[34,36],"44it":29,"45":[3,14,19,27,41,42,45,46,50],"450":[19,24,29],"4500e":[24,50],"45056":[34,36],"4505e":36,"4506":45,"4512e":34,"45158":35,"4516e":26,"4524e":[39,50],"4527e":49,"4531e":[36,49],"4533":24,"45340":48,"4535":34,"4536000":50,"454427083333334e":34,"4550e":24,"455168":39,"45607":24,"4560e":24,"4565e":33,"4567e":24,"45711":35,"4574e":34,"4575e":24,"4580e":24,"45824":36,"4583e":26,"459000":24,"4590e":39,"45916":36,"4598e":42,"45db":44,"45deg":45,"46":[6,16,20,24,33,39],"460":[24,27],"46001":42,"4600e":27,"4608":[25,39],"46080":[34,39],"460800":47,"46080000":26,"4609e":[36,39],"4611e":36,"46130":27,"46137344":25,"4615e":33,"4621e":27,"46267":36,"46314":35,"4631e":34,"4635e":[36,47],"46370":36,"46399488":39,"4640e":26,"46436":42,"464636":46,"4648e":34,"4652e":24,"46598":36,"466":17,"466249":39,"4662e":48,"4667":50,"4667e":[27,50],"4668e":42,"4671e":34,"4676e":39,"46788":48,"4678e":36,"4687e":46,"4688e":[26,35],"469":24,"4690":3,"46988":36,"47":[3,11,24,33,46],"470":[30,46],"4700e":24,"470184":39,"4701e":34,"4703e":39,"4705":3,"470643":42,"4706e":42,"4707e":39,"4709e":27,"471":[25,34],"4710":24,"47104":34,"4712e":33,"471791":39,"4718592":[33,39],"4735e":27,"4736":40,"474":[24,46,47,48,49],"4740":27,"4740e":24,"47498":27,"4749e":27,"4751e":34,"4760e":24,"4763e":30,"476577792":39,"4766":17,"4766e":36,"4767":34,"47706":36,"4774":24,"4774e":36,"4783e":46,"478515625":34,"4788411458333333":34,"4789e":34,"4792320":34,"47923200":34,"4792e":[27,34,47],"4793e":42,"4795":24,"4796e":34,"48":[17,19,24,25,27,42,46],"480":[17,24,41,42,43,44,45],"48000":27,"48000000":24,"4800e":27,"48025":48,"4803e":39,"4805e":34,"48069":33,"48079":33,"480khz":17,"481":6,"4811197916666667e":34,"48128":34,"4814":50,"48146":34,"4816e":33,"482301":46,"4823e":27,"4826e":39,"4828e":49,"4833e":24,"4834":24,"4836":42,"4842e":24,"4844e":[35,36],"4845e":36,"4852e":49,"4853e":34,"4855e":34,"4864e":50,"4878":36,"48878":48,"48936":24,"4896000":26,"49":[14,24,27],"490":17,"49000":27,"4900e":24,"4902":17,"4903e":33,"4907e":[34,40],"4912e":[33,36],"49152":[39,40],"4918e":48,"4922e":49,"4924e":46,"4926":24,"4932e":33,"49342":50,"49368":35,"4940897623697916e":39,"4941e":24,"495":24,"4950e":50,"4954e":33,"496":50,"49609375":39,"4961e":25,"4962e":42,"4964192708333333":34,"4965e":50,"4967e":24,"4968e":39,"4970":50,"49703":26,"49720":36,"49731":36,"49775":46,"498":[25,33],"4980e":24,"4982e":34,"4984e":36,"49867":33,"49880":50,"4988e":34,"49966":24,"4c":[30,46],"4f":[26,35,42,50],"4g":[11,18,24,34,48],"4prb":25,"4t":20,"4th":2,"4x4":3,"4x8":39,"5":[1,3,6,7,9,10,11,13,14,15,16,18,19,20,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],"50":[14,17,19,24,27,29,37,41,43,44,45,54],"500":[19,24,27,30,31,37,42,44,46,51],"5000":[24,27,42,50],"50000":[24,27],"500000":[24,27],"50000000":24,"5000e":[24,27,36,39,42,50],"5003e":39,"5006e":25,"500m":44,"501":24,"5014e":36,"5016e":36,"50171":48,"501953125":25,"502":[19,24],"5023":24,"503":24,"5034e":34,"5039e":36,"504":24,"5046e":39,"5049e":34,"505":[24,30],"50564":33,"5059e":24,"506":24,"50600":30,"5065e":34,"5071":24,"5074":34,"507546":46,"50796":39,"508":30,"5082e":36,"5083e":34,"509":25,"5094e":27,"5098e":36,"509e":17,"50ghz":42,"50m":44,"51":[14,24,29,30,33,34],"510":24,"5102e":27,"51046":36,"5104e":47,"5108":36,"5109e":42,"511":24,"51118080":39,"51127":34,"5115":36,"5117e":[33,36],"512":[19,24,25,30,31,35,36,40,42,43,44,46,47],"5120":34,"51200":36,"512000":[24,25,39],"51200000":24,"5120e":34,"5125":24,"5126e":34,"5132e":33,"513671875":25,"5147e":42,"515":[24,35],"515098":42,"5152e":39,"515625e":39,"5156e":[36,39],"5157":42,"51586":36,"515899392":25,"5159e":39,"5160e":39,"51632":40,"5164e":[24,33,36],"5166e":40,"5167104":35,"517":[17,50],"51712":25,"5171e":39,"5174e":34,"5180e":27,"5185546875":39,"51904512":36,"519446":34,"5195":49,"5195e":[35,39],"5198e":33,"51c":46,"52":[14,19,23,27,36,39,41,44,45],"520":11,"5200e":[24,27,50],"5205e":34,"5207mib":30,"5214e":24,"5215e":27,"5217e":34,"52193":34,"5225":24,"5227e":[24,34],"5228e":47,"5234":17,"5234e":47,"5238e":27,"524":30,"5248000":24,"525":[24,50],"5250e":24,"525390625":25,"5253e":27,"526":[17,23,47,48],"5260e":24,"526141826923077e":34,"5269e":24,"527":24,"52701":39,"5274e":36,"5276e":24,"5277e":25,"52789248":36,"5278e":30,"528":[24,27,35],"5280000":26,"5286e":36,"52875":35,"5290":24,"5292e":39,"5297e":39,"5298629981884056e":34,"52992000":26,"53":[3,19,24,36,38,39,43],"530":24,"53000":24,"5300e":24,"531":27,"5313e":24,"531422":46,"5314e":40,"5316e":49,"53173828125":39,"5320":40,"5322265625":34,"5325e":25,"532773":25,"533":[24,34],"533203125":25,"5338e":24,"5345e":[34,35],"5346e":34,"5350e":42,"5352e":34,"53582":34,"536":[35,49],"5364e":34,"5365e":[36,39],"5367080479452054":35,"5368":42,"5370e":24,"5373":24,"5373e":24,"5376":36,"5376000":24,"53821440":34,"5385e":24,"5386e":27,"5387e":27,"5390625e":39,"5390e":24,"539113362630208e":39,"53913600":42,"539174":46,"5391e":[24,39],"53mib":46,"54":[19,25],"5400000":27,"5400390625":25,"5400e":27,"54013":36,"5405e":35,"540727":30,"54107":25,"54108":36,"5412":46,"5415e":39,"54171":24,"5417e":50,"542":33,"54212":34,"54216":24,"5424e":24,"54263808":39,"5428e":36,"5430e":34,"5436808268229167e":39,"5437e":27,"5439":24,"5441e":24,"544473":24,"5447e":24,"5449e":[33,34],"545":46,"54525952":25,"546":24,"5462":24,"547":24,"5471e":33,"5472e":26,"5474":24,"548":11,"5489":26,"549":50,"54922":36,"5495e":36,"5498e":40,"55":[3,23,25,44,45],"55000":24,"5500e":[24,50],"5503":26,"5505024":39,"55050240":39,"5505e":36,"5508e":[33,39],"5518e":25,"552":50,"55296":[34,39],"5529e":34,"552e":17,"553":[17,25],"5530e":36,"5538e":36,"5539e":36,"5540e":35,"5547":17,"55478":35,"5547e":[24,36],"5550e":24,"55517578125":39,"5551e":48,"55536":33,"55542":27,"5555":34,"5556e":27,"55583185":30,"556":34,"5564":17,"5565e":25,"5566e":34,"5569e":25,"55703":36,"55742":26,"5578e":35,"558":34,"55808":39,"5582e":39,"5584e":36,"5593e":[33,42],"55db":44,"55e12":[2,37],"56":[9,24,36],"560":50,"5606e":39,"56089":[25,33],"5614e":24,"5619e":39,"5622e":34,"5625e":[24,26,29,35,36,39,47,49],"5626e":36,"56279":36,"563":26,"5630e":24,"5632":25,"56365":24,"5638":50,"5646e":24,"5651e":29,"56547":27,"5655e":35,"566":24,"56623104":39,"5664":17,"5667e":27,"567":17,"567000":50,"5675e":24,"5676e":49,"5677e":27,"56783":36,"5684356689453124e":39,"568628":42,"5687e":34,"5691":50,"5692e":25,"5693":24,"5697":[24,49],"57":[27,36,44],"5700e":[24,27],"57026":36,"5703":17,"5703125":34,"5703e":36,"5707e":27,"5708":24,"5708e":24,"571":[24,46],"5712e":27,"571312":46,"5714e":27,"5716":50,"571845":46,"5718e":36,"572":30,"572892":24,"5729e":47,"57344":34,"574":39,"57409536":39,"57424":27,"5746e":50,"575":26,"57507840":34,"5750e":50,"5751e":25,"5757e":36,"576":27,"577":46,"5775e":36,"5778e":50,"5781e":[24,47],"578531901041666e":39,"579":[46,47,49],"5792e":48,"57939":36,"5796e":42,"58":[19,24,27,34],"5800e":27,"5806e":49,"5808e":27,"5816":40,"5816e":34,"5818e":40,"5820e":39,"5825e":46,"5832e":39,"58368":39,"583680":29,"5837e":36,"5839":24,"584":33,"5849e":39,"5855e":36,"5856e":33,"58572":35,"58578":36,"5859e":36,"586":34,"5862e":34,"58705920":42,"58720256":25,"58752000":24,"5878e":30,"588":24,"5888":[33,36],"5889e":50,"5895e":33,"589824":36,"5898240":34,"58982400":[34,36],"5898e":33,"58db":44,"59":[3,23,36,41],"590":47,"59000":24,"5900e":24,"5908e":34,"5909e":49,"5916e":[34,49],"59199":36,"5922e":24,"5930e":[24,39],"59344482421875e":39,"59375e":34,"5937e":36,"5938e":[24,26,29,49],"59392":39,"5939e":25,"594":30,"5944":39,"59455":50,"5947e":24,"59489":27,"5948e":46,"5951e":33,"595591168":25,"596":24,"5960e":24,"59619140625":39,"5961e":25,"5962e":36,"596547444661459e":39,"5971e":39,"59768832":39,"59858":50,"599":25,"5992e":27,"5993e":35,"5996e":34,"5999994":43,"5db":39,"5e6":24,"5e9":[3,19,25,30,33,35,36,39,42,45],"5f":42,"5g":[5,7,8,9,11,12,14,15,18,21,26,27,30,33,34,35,36,39,42,46,47,48,49,52,54,56],"5j":25,"5m":[3,19,43,44],"6":[2,3,11,12,13,14,15,17,18,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54],"60":[3,17,19,24,25,27,29,44],"600":[19,24,27,30],"6000":[24,34,50],"60000":24,"600000":27,"6000000":27,"6000e":[27,30,50],"60089":26,"6016":17,"6016e":[36,42],"602":17,"6020":24,"6023":27,"6030e":34,"6031e":39,"6036e":39,"60416":[34,39],"6042e":36,"6043e":24,"6049":36,"6050e":34,"6051e":42,"6053e":39,"60555264":39,"605552640":39,"6056e":33,"606070":40,"6063e":34,"606758":19,"6068e":40,"608":[24,50],"6082e":33,"60833":35,"6088":40,"60928":39,"6094":17,"6094e":[29,47,48],"6099e":34,"60e3":29,"61":3,"610":24,"61000":50,"6100e":[27,47],"61016":24,"6109e":[34,49],"611":29,"6110e":34,"61135":27,"6115e":[25,34,46],"612":50,"6125e":42,"6133e":39,"6134e":24,"6135e":50,"61390":33,"614":24,"6144":[8,30,31,34,36,39],"61440":[26,34],"614400":47,"6146e":[27,47],"6147e":34,"615":50,"6150e":24,"6152e":33,"61554":27,"6156":[5,31],"61586":46,"616":[3,17],"6160e":34,"6161e":34,"6162e":24,"6165e":39,"6168e":27,"6174e":36,"6175":27,"6177e":24,"6187":27,"6187e":24,"6191e":34,"6192e":34,"6193152":36,"6194e":35,"6195e":48,"61j":46,"62":[16,23,27,33,41,46],"6200e":24,"6205e":24,"6208e":24,"621":27,"6211e":[24,36],"6213e":[26,34],"62155":36,"6221e":34,"6225e":27,"623":46,"6232":24,"6233e":[24,27],"62353515625":39,"6236e":33,"6239e":34,"624":50,"624131441116333":38,"6249e":34,"6250e":[24,35,47],"6257e":39,"6258e":33,"6263e":33,"6267e":49,"6268":40,"62699520":42,"627":[24,50],"6276e":[35,36],"6278e":39,"628":27,"6291456":39,"6292e":26,"62937":34,"6294e":33,"62976":25,"6298e":42,"63":[14,19,27,39,50],"63000":50,"6300000":50,"6300e":27,"6302e":36,"6306e":34,"631049":27,"6315e":33,"63161":36,"6316e":27,"63171":36,"632":[46,47,48,49],"63203":36,"6323e":25,"6327e":46,"6328":24,"6331e":33,"63324":35,"6333e":27,"634":3,"6340608":36,"6341e":[27,34],"6342e":36,"6343e":34,"6350e":39,"6359e":[24,39],"636":46,"6362e":39,"6365e":50,"6367e":47,"637":27,"6370e":39,"6371e":33,"63753":27,"63783":27,"638":24,"6383e":39,"6389e":34,"639":29,"63902":27,"63db":44,"63j":46,"64":[17,18,24,25,26,27,28,29,30,33,34,35,36,42,46,47],"640":[17,47],"6400":29,"64000":24,"640000":24,"6400000":24,"64000000":24,"6400e":50,"6406e":[24,49],"6409e":27,"641":24,"6413e":50,"6414e":42,"6419e":24,"6426e":27,"6427e":36,"6431e":48,"644":50,"6440e":35,"645":42,"6451e":27,"6452e":33,"6455e":[34,48],"6458":24,"6463e":24,"6469e":34,"6471e":36,"6476":24,"648":[14,27],"6480":42,"6484375":34,"6486e":34,"649":34,"6491e":33,"65":[3,31,44,46],"650":42,"6501e":39,"6506e":27,"650858":25,"65180":35,"65196":39,"6520e":[47,49],"6523e":25,"6527e":34,"6528":26,"6528e":33,"653":50,"6531e":24,"65335":[12,17],"6535e":33,"6536e":25,"654":33,"6541e":33,"6544234752655":34,"6544e":39,"6545e":24,"6546e":33,"655":[3,19],"6550":24,"65535":17,"655360":40,"6555":[24,35],"6555e":36,"6556e":36,"65617920":34,"6562e":36,"65631":34,"65678275":19,"6568e":50,"657":40,"6571e":33,"6572265625":34,"6579":24,"6579e":39,"658":[17,19,24],"6580e":27,"6582e":35,"65869140625":34,"6593e":47,"6594e":[34,36],"6595e":27,"6596e":[33,39],"65c":30,"66":[3,19,42],"6600e":[24,50],"6602e":[34,36,47],"6603e":50,"66048":39,"6605e":24,"66060288":39,"661":39,"662":37,"6622e":33,"66273":50,"6635520":34,"6635e":50,"66396":34,"664":50,"6640":42,"6641e":[24,34,36],"66421":36,"6655e":24,"6656":[25,39],"66560":[34,39],"6657e":33,"666":17,"6660e":[34,50],"66640":50,"6667e":27,"6669e":39,"667":36,"6680e":36,"66846720":39,"6686e":46,"6689e":39,"669":24,"6691e":24,"6694e":36,"67":[2,31,33,34,37],"670":[14,27],"6703e":39,"670690":40,"6708":40,"6708e":36,"6710e":[27,36,40],"6715e":27,"6719e":[24,36,49],"6720":42,"6721e":36,"672475961538461e":34,"6724e":24,"673":50,"6732e":36,"6734e":39,"6736e":39,"675":39,"6750e":27,"67512":36,"67584":39,"676":24,"6762e":33,"676435470581055e":25,"6764e":25,"676615":30,"677454630533854e":39,"67756":35,"6776e":27,"6777e":34,"6778e":34,"678":[14,27],"6782976":[33,36],"6784000":24,"6786e":24,"6787e":33,"67891200":34,"679":[17,34],"67936":24,"68":[26,42,44],"6800e":24,"6802e":40,"6817e":34,"682":[17,19],"682281494140625e":39,"6824e":39,"6829e":27,"683":50,"683176676432292e":39,"6833":36,"6837e":35,"6839e":34,"684":[47,48],"6844e":35,"685":35,"6851e":42,"6852e":34,"6855e":39,"6856e":34,"686":34,"6863e":36,"686740451388889e":34,"687378":30,"6875e":[25,35,47],"688":47,"68832":43,"6883602142333983e":25,"6883e":27,"6884e":25,"68859":24,"6894e":49,"6898":24,"69":[25,27,39,44],"6900":26,"6900e":24,"6901e":27,"690425":50,"6909e":33,"691":50,"69120":39,"6914e":24,"6916e":24,"6918e":46,"6920e":[25,36],"6927083333333335e":25,"6927e":[36,47],"6928e":[33,36],"692947":50,"6929e":39,"693000":50,"69368":24,"6936e":33,"6946":24,"695":42,"6950e":42,"6953":17,"6954e":36,"6956":24,"695638020833333e":34,"696":[36,50],"6964e":34,"69659":35,"6971e":42,"6973e":[30,34],"6974":24,"69788":33,"698":3,"698124":42,"69865":24,"6987e":34,"6989e":24,"699":50,"6990e":27,"699138048":39,"6992e":34,"69j":46,"6e":31,"6e9":[34,48,49],"6g":[52,54],"7":[2,3,9,12,14,15,16,17,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],"70":[3,23,33,34,44],"7000":[24,26,27],"7000e":[24,27],"7006":36,"7006e":39,"7007":42,"701":[27,37],"7013e":39,"7019e":[34,40],"7020e":25,"703":50,"7031e":24,"7034e":36,"703924":50,"7039e":36,"704":50,"7040":26,"7040000":24,"704675":50,"705":34,"7050e":50,"705274":50,"7057e":[36,39],"706":24,"7060e":42,"7064":39,"70656":26,"7066e":42,"706761":50,"707":27,"7070e":34,"7071":19,"7072e":39,"707712":50,"7077888":39,"70778880":39,"7078e":26,"7079e":39,"7080e":40,"7083e":[36,47],"708751":50,"708984375":34,"709":24,"7090":24,"70918":36,"7091e":24,"71":[19,24,27,44,46],"7100e":24,"7103e":39,"7104000":26,"7106e":49,"71086080":42,"7109e":25,"711":[17,27],"7114e":39,"711995":50,"712":50,"7120":42,"7120e":47,"71223":34,"71240234375":34,"712704":35,"7127e":39,"71302":27,"71303168":25,"7133e":27,"714":[46,50],"71487":36,"7150e":46,"71533203125":34,"7154e":46,"7156e":39,"7158e":40,"7161e":35,"71630859375":34,"7167e":36,"7168":[25,39],"7168e":34,"7169e":33,"717423":50,"7174e":39,"7175e":[42,50],"7188e":[34,36],"719":17,"719159":50,"719171":42,"7193e":34,"7195e":24,"7199e":48,"71j":46,"72":[23,30,34,44],"720":[3,24,33],"72000":50,"7200e":24,"72041":36,"721420288":40,"7217e":47,"722":36,"7227e":34,"7232":35,"7235e":39,"72376":47,"7239":36,"7239e":36,"724":50,"7242e":24,"724549":50,"724609375":25,"7246e":36,"7248e":36,"725":19,"7250e":42,"72525":47,"7257e":47,"72586":47,"7263e":36,"72658":47,"7266e":[24,25,33,36,47],"72676":47,"72682":47,"72704":25,"72721":47,"7273e":27,"72771":47,"72773":47,"72783":47,"7278e":34,"728":[24,25],"7280":24,"728023":50,"728399":50,"72899":47,"729":27,"72913":47,"729707":50,"7298":48,"72999":47,"72j":46,"73":[19,23,25,27,42],"730":33,"7300e":24,"73027":47,"7303e":47,"7305":17,"73135":47,"7315e":47,"7319e":47,"732":[24,50],"7320508075688772":25,"7320e":36,"73216":39,"73242":47,"7325e":33,"73268":47,"7329e":34,"733":[24,27],"7330e":24,"73329":47,"7334e":34,"73405":36,"7341e":34,"7343e":24,"7344e":[36,47],"7351e":48,"73521":47,"7354368":48,"7354e":36,"73585":47,"7358e":34,"73643":24,"7364e":36,"737":[46,47,49],"7370e":36,"737280":[34,36],"7372800":30,"73728000":34,"7374e":34,"7375e":42,"7377e":47,"7378e":47,"7383e":36,"7385e":47,"739":49,"739189e":42,"7395e":34,"7396e":[24,39],"739966":50,"74":[3,24],"7400e":[24,27],"7401e":30,"7402":17,"7413":24,"741312":50,"74280960":34,"7431e":24,"743640":50,"743661":50,"74400":33,"7442e":39,"7444":34,"745":24,"745474":50,"74550":34,"7460e":47,"7464e":39,"7465e":27,"7466e":36,"7469e":47,"7474e":[36,47],"74752":34,"74755859375":34,"7478e":35,"74796":36,"7481":24,"74907":26,"7497e":[27,34],"74db":44,"75":[3,24,27,40,42,43,44,50],"750":37,"750000":24,"7500001":43,"7500e":[24,26,27,49],"7505952380952381":35,"7507e":34,"7510e":34,"75132":46,"752":26,"7525e":47,"7527e":26,"7529e":24,"7530e":24,"7535e":26,"754":[17,27],"7542e":27,"7544e":[46,47],"7545":36,"7546e":36,"75497472":[25,39,40],"7551":24,"7552000":24,"756000":50,"757":27,"75718":27,"7571e":34,"7578e":[25,34,47],"758":50,"7587e":39,"7588e":42,"759":50,"7590e":39,"7591e":39,"7594e":34,"75db":44,"75it":29,"76":[3,28,29,30,34,48,49],"7600e":[27,50],"76118":42,"7614e":47,"7617e":[27,46],"7619e":[24,39],"7624e":34,"7625e":27,"7626e":39,"7627e":34,"763":27,"7630e":39,"7646e":25,"7649739583333334":39,"7651e":36,"7654e":39,"765625e":[34,39],"7656e":[34,36,39,47],"7658":27,"766":34,"7660e":24,"76677120":34,"7667e":[24,27,30],"7668e":33,"768":[24,36],"7680":39,"768000":[24,26,47],"7683e":24,"7684e":[24,47],"7685e":34,"7691e":34,"7695e":[34,36],"7696e":36,"770":[35,49],"7700":49,"7701e":47,"7707e":35,"771":[27,33],"77123":27,"7712e":50,"7713e":39,"772":[17,24],"7723e":34,"7726e":36,"773":24,"7735e":35,"7740e":47,"7753e":34,"7754e":34,"7767":35,"7778":34,"778":[35,49,50],"7780e":39,"7790e":[24,34],"77952000":26,"78":[3,17,27,33],"7800":19,"7800e":50,"781":42,"7817e":48,"78205838616122":43,"7822":19,"7822e":[33,34],"7823e":25,"7824e":24,"78274560":34,"78294":36,"7838":24,"784":24,"7841e":49,"7844e":24,"785":[26,34],"78508":36,"7851e":39,"7853981633974483":18,"786":3,"786432000":39,"7865e":[36,47],"787000":24,"78701":34,"78785":36,"7879e":34,"7883e":40,"7889e":27,"789":[46,47,48,49],"7891":36,"7891e":[24,34],"7896e":46,"79":[19,24],"7900e":24,"7902e":34,"7904e":[34,39],"7907e":47,"791":50,"7913e":33,"7918":24,"7922e":46,"7926e":49,"7933e":30,"7937":24,"7938":20,"7939":17,"7943e":33,"7946e":36,"7950e":[24,50],"79532":36,"7955e":27,"7959e":24,"79691776":25,"797":[17,50],"797270":42,"7974e":42,"7976":27,"7983e":27,"79872":34,"798720":34,"79872000":34,"799000":24,"7994e":34,"7995e":[36,47],"7m":44,"8":[2,6,11,15,16,17,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],"80":[2,3,17,19,24,36,37,43,44],"800":[24,27,34,50],"8000":[24,46],"800000":[24,50],"8000000":24,"800000000":24,"8000e":[24,27,30,42,50],"80018":24,"8001e":27,"8008e":39,"801279067993164":38,"8015":34,"802":[14,27],"8027e":[25,33],"8028e":35,"80334":36,"8033e":27,"805":17,"80553":26,"805673122406006":38,"8057e":39,"806":29,"8063e":42,"8064":[35,48],"8067e":39,"807":36,"8070e":24,"8072e":34,"8074":24,"8075e":50,"808":24,"8086e":34,"8089e":25,"809":35,"8094e":36,"81":39,"8100e":[24,27],"8108e":36,"811":50,"8110080":34,"8120e":[33,42],"812407":30,"8125e":[34,35,36,46,47,49],"81298":27,"813":50,"8139e":39,"814":39,"8141e":24,"8143e":27,"81450":29,"8145e":[34,35,39],"8154":17,"8155e":42,"8159":24,"8164":17,"8167e":50,"8168e":[24,33],"8170e":24,"8175e":34,"81793":24,"818":46,"8181e":49,"8182e":24,"8186e":40,"81876":36,"819":33,"8192":[34,40],"81920":34,"8192000":46,"82":24,"820":[33,50],"82000":24,"8200e":27,"8208e":34,"821":34,"82149":26,"8215e":24,"821776886070438e":42,"8219e":49,"822":[17,33],"8222e":24,"823":[24,33],"8242e":48,"82432":39,"826":33,"8263":24,"8271e":35,"8272e":42,"8274e":39,"8278e":39,"8279e":27,"8281e":[39,47,49],"8288e":34,"8292e":39,"82941":27,"83":[24,25,33,36,42,46],"830":24,"830286741256714":42,"8306e":35,"8308":29,"831":34,"8312e":34,"8315e":36,"832000":24,"8320e":34,"8322e":24,"8327e":27,"833":[24,29,50],"8333e":[26,27],"8349":24,"8359375e":34,"8359e":34,"8363e":34,"8371e":33,"8380e":24,"8387e":25,"8388608":[25,40],"83894":27,"839044":27,"8392e":24,"8395":34,"8395e":35,"8399":34,"84":[19,26],"840":[27,50],"8400e":[24,50],"8401":49,"841":[3,17],"8410e":[27,36],"8411e":47,"8413e":42,"8416e":36,"842":[47,48],"8422e":24,"84264960":42,"843":33,"8438e":[36,47,48],"84423828125":34,"8442e":36,"8445e":[27,35],"844701522435897e":34,"8448":[24,36],"8459e":34,"8463e":24,"8466e":25,"8471":27,"8471e":33,"8474e":25,"84765625":34,"8477e":[39,42],"8480e":36,"8483e":27,"8487e":24,"8488e":33,"84934656":39,"8493e":33,"8495":50,"849609375":25,"85":[3,36],"851":33,"8515625":34,"8516e":36,"85186":27,"8528e":27,"853":[17,24],"8533e":24,"8538e":24,"8543e":50,"8546e":[40,42],"8550e":24,"8555e":36,"8563e":33,"856935":42,"857":46,"85721088":39,"8587e":34,"859375e":39,"8594e":[34,39,47],"8596":24,"8596e":25,"86":[29,31,42,46],"8607":35,"861":33,"8617e":27,"8619e":27,"862":19,"86328125":39,"8639e":33,"864000":26,"8642e":27,"8646e":30,"865":33,"865234375":25,"86528":39,"8657e":33,"866":[24,33],"8662":17,"8665e":33,"8667e":[24,50],"8672e":24,"8673e":36,"8674e":39,"8685e":27,"8691":[23,44],"869339227676":39,"8694e":25,"87":[31,42],"8704":[25,39],"87040":34,"8706":[23,44],"8714e":36,"8724e":34,"8729e":36,"873":17,"8730e":34,"8735e":40,"8741e":25,"8742e":39,"8746e":50,"8750e":[36,39],"8767e":48,"877":33,"8770":17,"878217911185171e":25,"8782e":25,"8785920":34,"8786":35,"8796e":34,"88":30,"880":[24,42],"8800e":[24,27],"8807e":34,"88080384":25,"8808e":27,"881":24,"8813e":25,"8814e":30,"8816":50,"88232421875":34,"8828e":[34,36],"8833e":24,"8840e":48,"8841e":39,"8845e":33,"884736":36,"8847360":34,"88473600":30,"88497":27,"885":17,"8852113":30,"88566":36,"8858e":[24,39],"886359":24,"8868":40,"8869e":25,"8870e":42,"8878e":25,"8881e":40,"8887e":24,"8888":53,"8888e":36,"8889e":50,"89":36,"890":33,"8904e":35,"8905e":27,"8906":17,"8906e":34,"891":24,"8912760416666666":39,"8923e":36,"893":24,"8932e":34,"8933":24,"8935":14,"8935e":47,"89382":36,"894":33,"8941e":25,"8945e":25,"895":[46,47,49],"89501953125":25,"895528157552083e":39,"8958e":47,"896":35,"89600":39,"896000":24,"8960000":24,"8960e":50,"89653248":39,"8970e":24,"8971e":47,"8976e":24,"8977e":36,"898":[24,50],"8980e":24,"89823":46,"8984e":36,"8992e":24,"8995e":24,"89961":36,"8mib":46,"8x16":25,"8x4":34,"9":[2,3,14,16,17,18,19,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],"90":[19,24,41,42,43,44,45],"900":17,"9000":[24,27,50],"9000000":27,"9000e":[24,27,30,42],"9004e":34,"901":[0,19,21,24,25,30,33,34,35,36,39,42,48,49],"9010e":36,"9016e":34,"9018068":30,"9023":17,"9026e":35,"9030e":[27,34],"9038e":25,"9041e":39,"9045e":34,"9050e":[26,46],"9053e":34,"906":42,"9060":36,"90611":27,"90615":36,"90625e":39,"9062e":[33,36],"9063e":[24,26,34,36,39],"9066e":24,"907":24,"9072":24,"9072e":25,"908":50,"9083e":24,"9085e":27,"9087e":24,"9088e":25,"9093e":36,"9096e":35,"91":[19,24,36,50],"910":17,"91000":24,"9100e":50,"9103e":24,"9104e":40,"91079":27,"911":[24,39],"9112e":36,"91136":34,"911512586805555e":34,"9116e":49,"9117e":27,"912":[27,48],"9121e":[24,34],"91226112":39,"9126e":[34,49],"912849":30,"9138e":27,"914":24,"9141":17,"9141e":39,"9143":27,"9148e":27,"9150e":24,"9152e":50,"9153e":34,"916":17,"9163e":27,"9164e":34,"91650":36,"9167e":27,"917":50,"918":50,"9180e":[24,36],"9185e":36,"9188e":50,"919":50,"9192e":33,"919921875":25,"9199448529411764":35,"92":36,"920":50,"921":50,"92138671875":34,"9215e":24,"9216":[25,34,39],"9219e":[34,35,36],"922":50,"9223e":24,"92274688":25,"923":[24,27,50],"9231":29,"9234e":24,"924":50,"9240":20,"925":50,"9262":19,"9270e":24,"9271e":25,"92798976":39,"928":[27,33,50],"9283e":[34,39],"9287e":27,"929":33,"92913818359375e":39,"9292":34,"9296875e":34,"9297e":[34,36,39],"93":[3,26],"9300e":24,"9308e":24,"931":50,"9312e":36,"9314e":36,"932":24,"9320":27,"9320e":40,"932264":40,"9327e":27,"9329e":25,"933":24,"93302":36,"9330e":[24,46],"9333e":27,"9338e":33,"934":[27,50],"9344e":49,"9346e":24,"935":50,"9351e":40,"93585408":39,"93600030352536":43,"9360e":34,"9362e":24,"9363e":27,"9367e":27,"9368e":33,"937":50,"9370e":[24,33],"9375e":24,"9377":24,"938":50,"939":50,"9395":[19,36],"9398e":34,"940":[24,50],"94061":27,"9408e":34,"941":27,"9414e":[25,39],"942":[24,50],"9423e":24,"9424e":39,"9429e":39,"943":46,"9437184":39,"9438e":24,"944":[24,47,50],"9444e":50,"945":50,"9453e":[34,36],"946":50,"9461e":24,"947":[47,48,50],"9472":[26,33],"94720":39,"9475e":42,"9476e":27,"948":[17,27],"9486833":32,"9486833j":32,"949":50,"9492e":[34,39,50],"9494e":34,"94957":26,"95":[27,35,36],"950":27,"9500e":[24,27,42,50],"9502e":36,"9506e":35,"9512e":33,"9513e":34,"95168":33,"9516e":24,"952":[36,50],"9520263671875e":39,"95232":34,"9525e":42,"9526":24,"9529e":42,"953125e":[34,39],"9531e":[24,34,36],"954":36,"9545e":27,"9547e":26,"955":3,"9550":24,"9556e":39,"9558e":34,"9560e":24,"956139087677002":42,"9570e":39,"9583e":[27,34],"9584640":34,"96":[27,46],"960":[17,24],"9600000":50,"96000000":26,"9600e":[27,50],"9608":24,"9609e":[36,39,47],"961":27,"9611e":34,"9621e":36,"9627e":36,"962890625":34,"96337890625":34,"9633e":33,"9634e":35,"9637e":24,"9638671875":34,"9643e":39,"96468992":25,"9646e":36,"9648e":34,"96541":34,"96628":36,"9663e":27,"9667e":[27,50],"9670e":42,"9673e":27,"9676":24,"9676e":35,"96770":36,"9683e":34,"968532986111111e":34,"9688":39,"9688e":[34,35,36],"96905":36,"96962":36,"97":25,"9700e":50,"97071":34,"9707e":26,"9709e":33,"971":24,"9712e":42,"9714e":[27,42],"9716796875":34,"9719":40,"9721e":27,"9722e":[27,46],"9724":24,"97265625":25,"9727e":36,"9728":[25,47],"9732096":36,"97348":27,"9744e":33,"975":27,"9750e":24,"976":[24,27,50],"9762e":42,"9765625":[34,39],"9769e":50,"9779e":24,"978":[33,50],"97819":34,"9781e":36,"979":24,"98":[24,27],"980":50,"9800e":[24,27,50],"98046875":34,"9805e":[26,33,34],"9808e":24,"981":[24,27],"9814e":27,"98168":24,"982":[27,33],"9823e":39,"9825e":50,"9826e":49,"982985019683838":38,"983":24,"98304":34,"9837e":[39,50],"9838":24,"984":50,"9843e":27,"9844e":[25,30,33],"9849e":39,"9850e":46,"98558":27,"9857e":39,"9862e":39,"986328125":34,"9868e":35,"9869e":36,"98705":27,"9874e":39,"9877e":50,"988":27,"9883e":[25,36],"9885e":42,"9887e":24,"9893e":39,"9897e":39,"9899e":29,"99":[17,19,44],"990":27,"9900":26,"99000":24,"9900e":[24,27,50],"9902e":34,"9903":27,"990347":27,"9904e":42,"991":50,"9915e":36,"9916930379746836":35,"99201":39,"99274":24,"9927e":42,"993":24,"9930e":27,"9931640625":34,"9932725694444446e":34,"9932e":24,"9933e":[34,46],"994140625":[25,39],"9942e":39,"9949e":25,"995":50,"9951171875":39,"9951572":44,"9952e":40,"99566":33,"996":[27,33,50],"9966e":40,"997":50,"9970703125":34,"9978e":36,"9979e":24,"998":[24,27],"9981e":39,"9982e":42,"9984000":42,"9984177215189873":35,"9984e":33,"999":[14,27,50],"9990234375":34,"9993":27,"9996e":39,"9998022151898734":35,"99db":44,"\u00aa":52,"\u00b2":52,"\u00b3":52,"\u00b5":52,"\u00b9":52,"\u00ba":52,"\u00bc":52,"\u00bd":52,"\u00be":52,"\u03c9":52,"\u215b":52,"\u215c":52,"\u215d":52,"\u215e":52,"a\u00eft":54,"abstract":[3,16,17,18,19],"b\u00f6cherer":[27,35,47],"bj\u00f6rnson":3,"boolean":[6,7,8,9,13,14,22,24,25,27,31,47,48],"break":[24,26,27,28],"c\u00e9spede":16,"case":[1,2,3,6,8,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,34,38,42,43,45,46,50],"catch":22,"class":[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51],"d\u00f6rner":26,"default":[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,29,30,31,33,34,35,36,41,42,43,44,45,46,48],"do":[3,13,16,18,19,25,27,28,30,34,35,39,41,42,43,44,45,46,47,48,52,53,54],"export":[19,42],"f\u00fcr":23,"fay\u00e7al":[52,54],"fern\u00e1ndez":16,"final":[16,17,18,19,23,24,25,33,34,35,36,42,44,46,47,48,50],"float":[1,2,3,6,8,9,12,13,14,15,16,17,18,19,20,22,24,25,27,30,31,34,35,36,42,46,50],"function":[0,1,4,5,8,9,12,17,18,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54],"h\u00e4ger":50,"import":[4,10,14,16,18,19,23,30,32,37,51,53],"int":[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,41,42,43,44,46,48,49,50],"iotfay\u00e7":54,"long":[3,10,11,19,23,24,25,27,34,37,41,46],"m\u00b2":23,"new":[2,3,8,9,11,12,17,18,19,23,24,25,27,30,31,33,35,36,39,41,42,43,44,45,46,50,54],"null":[18,26,34,35,39,48],"ren\u00e9":37,"return":[1,2,3,6,9,11,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,42,44,46,47,48,49,50,51],"s\u00e1nchez":16,"schr\u00f6dinger":[2,37],"short":[3,5,11,14,19,24,25,27,31,38,43,45,50,52,54,55],"static":[3,15,19,22,25,34,48],"super":[19,24,25,26,27,29,30,31,33,34,35,36,39,40,42,46,47,48,49,50,52],"switch":34,"throw":18,"true":[1,2,3,4,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],"try":[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],"ungerb\u00f6ck":27,"var":[15,16,22,27,38,40],"while":[2,6,11,17,18,23,25,27,33,34,35,36,41,42,43,44,45,50,52,54],A:[2,3,6,7,8,9,10,11,13,14,15,16,17,18,19,22,23,26,28,29,30,31,33,34,35,36,37,41,44,45,46,47,48,49,50,54],ASE:[2,37],And:[24,30,31,40,42,43,49,50],As:[4,9,10,11,12,14,17,18,23,24,25,26,27,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,54],At:[2,19,24,34,35,43,47,49],Be:[9,50],But:30,By:[3,19,23,25,34,37,41,43,45,48,54],For:[2,3,4,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54],If:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,38,39,42,44,45,49,50,52,54],In:[1,3,6,8,13,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,53,54],It:[1,2,3,4,6,7,9,10,13,14,15,16,17,18,19,20,22,23,24,25,27,29,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,52,54],Its:[43,48,54],NOT:[8,10,17],Near:13,No:[2,3,18,22,26,27,30,32,33,34,35,36,44,45,46],Not:[3,4,17,33],On:[11,20,26,53],One:[9,13,15,16,17,18,22,23,25,26,27,28,34,35,38,40,41,42,43,44,45,46,47,51],Or:[19,42],Such:3,That:[19,23,25],The:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,28,29,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,56],Their:19,Then:[13,16,17,25,34,36,42],There:[25,41,42,43,44,45],These:[1,3,16,18,19,23,24,25,29,30,35,36,41,42,44,46,50],To:[2,3,6,8,9,10,12,19,23,24,25,26,27,28,29,30,34,35,37,41,42,43,45,46,47,48,49,53],Will:3,With:[3,15,16,17,23,25,30,33,34,40,41,44,47,56],_0:[19,23,25,43],_1:[18,23,25],_2:[2,23],_:[2,3,9,15,16,17,18,19,23,24,25,26,27,30,33,34,35,36,37,42,43,45,46,52],__:46,__call:46,__call__:[3,28,42,46,47,48,49],__init__:[4,24,25,26,27,28,29,30,31,33,34,35,36,39,40,42,46,47,48,49,50],__version__:53,_a:42,_atanh_clip_valu:9,_batch_siz:29,_bce:[26,50],_ber:[24,31],_bg:9,_binary_bas:46,_binary_sourc:[26,29,33,34,35,39],_bm:9,_bs_arrai:[25,34,39],_carrier_frequ:[25,29,34,39],_cdl:34,_cdl_model:34,_cest_typ:33,_channel:[25,26,33,35,42],_channel_freq:[29,34],_channel_model:[25,33,39,42],_channel_tim:34,_check_input:9,_cir:29,_cn_con:9,_cn_mask_tf:9,_cn_row_split:9,_cn_type:9,_cn_updat:9,_coder:[29,34,39,50],_constel:46,_conv_1:[35,49],_conv_2:[35,49],_cyclic_prefix_length:[29,34,39],_dataset_s:42,_dc_null:[29,34],_decod:[26,29,33,34,35,39],_delay_spread:34,_demapp:[26,29,34,35,39],_demodul:34,_dense1:51,_dense2:51,_dense_1:26,_dense_2:26,_dense_3:26,_detector:33,_direct:34,_domain:[25,34,42],_dtype:46,_edge_weight:9,_encod:[26,29,33,34,35,39],_fft_size:[29,34,39],_frequenc:[29,34],_hard_out:9,_i:[18,19,23,43],_i_l:9,_ie:23,_ind_cn:9,_ind_cn_inv:9,_init_:[25,42],_input_conv:[35,49],_interp:33,_is_bler:31,_j:[16,19],_k:[3,15,16,22,29,34,36,39],_k_b:9,_l_max:[25,34],_l_min:[25,34],_l_tot:34,_layer_norm_1:[35,49],_layer_norm_2:[35,49],_legend:[24,31],_lmmse_equ:[29,34,35,39],_ls_est:[29,33,34,35,39],_m:[16,18],_mapper:[26,29,33,34,35,39],_mcs_index:[25,42],_mcs_tabl:[25,42],_mimo_detector:25,_modul:34,_n:[13,18,19,23,29,34,39,43],_neural_receiv:35,_num_bits_per_symbol:[25,29,34,39,42],_num_bp_it:33,_num_bs_ant:[34,39],_num_guard_carri:[29,34],_num_idd_it:33,_num_it:50,_num_lay:[25,42],_num_ofdm_symbol:[29,34,39],_num_prb:[25,42],_num_rx_ant:25,_num_streams_per_tx:[29,34,39],_num_tx:[25,39,42],_num_tx_ant:[25,42],_num_ut:39,_num_ut_:[34,39],_ofdm_channel:[29,39],_output:36,_output_conv:[35,49],_pcm:9,_perfect_csi:[25,34,39,42],_perfect_csi_rayleigh:33,_pilot_ofdm_symbol_indic:[29,34,39],_pilot_pattern:[29,34],_pusch_receiv:[25,42],_pusch_transmitt:[25,42],_qam_sourc:39,_r:[19,23],_remove_nulled_sc:[29,34],_remove_nulled_subcarri:39,_removed_null_subc:35,_removenulledsc:33,_render_traceback_:[41,42,43,44,45],_res_block_1:[35,49],_res_block_2:[35,49],_res_block_3:[35,49],_res_block_4:[35,49],_rg:[29,34,39],_rg_demapp:35,_rg_mapper:[29,33,34,35,39],_rx_tx_associ:39,_s:[16,23],_scenario:[25,39],_siso_decod:33,_siso_detector:33,_sm:[29,34,39],_snr:31,_speed:[25,34],_subcarrier_spac:[25,29,34,39,42],_system:35,_t:23,_target_coder:[25,42],_tau:42,_train:[26,35],_ut_arrai:[25,34,39],_valu:44,_vn_con:9,_vn_mask_tf:9,_vn_row_split:9,_x:23,_y:23,_z:[2,9,23],_zf_precod:[29,34],a1:44,a2012:2,a2:44,a30:3,a_0:20,a_1:20,a_2:20,a_:[3,19,23,42],a_ab:42,a_freq:34,a_i:[19,23,41],a_it:44,a_len:44,a_m:[3,19,23],a_max:42,a_n:19,a_shap:28,aabb:19,ab:[25,34,36,37,38,41,42,43,44,45,48,52],abil:54,abl:[23,25,34],about:[14,19,23,24,25,27,29,30,33,34,38,42,44,45,48,49,50,52],abov:[6,13,18,19,23,24,25,26,27,29,30,32,34,35,38,39,41,42,43,44,45,46],abruptli:[23,41],absolt:44,absolut:[3,16,19,20,23,37,38,44],absorb:23,abtract:20,abus:23,acceler:[30,46,52,54],accept:[6,13,16],access:[3,4,5,8,10,13,16,17,19,23,25,27,31,34,42,43,46,50,54],accord:[2,3,9,10,15,16,17,18,19,22,23,32,33,36,41,52],accordingli:[18,27],account:[2,3,9,16,17,18,22,23,34,42,43,44,48],accross:[17,18],accur:[2,14,18,23,24,27,31,36,39,42,43,54],accuraci:[27,36,37,54],achiev:[3,11,22,23,24,26,33,35,36,39,44,47,49,50,54],aclr:20,aclr_db:38,acount:34,acquir:[23,54],across:[14,17,18,19,22,23,36,41,45,54],act:[6,42,44],action:52,activ:[1,11,14,17,24,26,27,29,30,35,37,40,42,44,46,47,49,51],active_b:29,active_bs_idx:29,actual:[10,16,17,18,19,23,24,25,27,34,42,44,45],ad:[3,7,13,14,19,20,22,23,24,25,26,27,31,34,37,38,42,48],adam:[26,35,44,47,49,50],adapt:[2,5,12,16,24,25,27,29,31,33,52],add:[2,3,7,14,19,22,23,24,25,27,30,34,36,37,38,40,41,42,43,44,45,46,49,50],add_awgn:[3,25,29,30,33,34,39,40,42,48,49],add_ax:36,add_ber:[22,24],add_bler:[22,24,31,42],add_result:[22,50],add_subplot:[32,43],addit:[1,3,6,8,11,12,14,15,16,17,19,22,23,24,25,26,27,29,34,35,40,42,43,44,46,47,48,49,50],addition:[2,11,15,18,19,22],additional_posit:[17,25,42],adjac:[3,17,20,25,38],adjoint_a:40,adjoint_b:[36,40],adjust:[24,31,32,46,50],adopt:[23,27],advanc:[8,12,18,22,23,26,27,30,34,39,45,46,47,55,56],advantag:[10,16,19,51],affect:[34,37,48],affin:11,afmhot:44,after:[2,3,8,9,10,11,12,17,18,19,20,22,23,24,25,26,27,28,30,31,33,34,35,37,38,42,43,46,47,49,50,54],afterburn:24,afterward:[24,42],ag:[3,34,48,53],again:[2,12,37,44,45,46,50],against:[26,27,40,43,44,46,47,49,52,54],againt:33,aggreg:[17,43],agraw:2,agre:11,agreement:23,ahead:[23,26],ahumada:27,ai:54,aid:[11,24],aim:[24,30,35,47,56],air:23,ait:[1,26,35,47,49,52],akin:54,al:[10,14,19,23,44,45,50],alexand:[11,24,52,54],alexio:11,algorithm:[2,3,5,6,9,10,11,13,14,15,16,18,24,26,27,30,31,33,36,42,47,50,52,54],ali:11,align:[3,15,16,18,19,23,25,29,38,41,43],alist2mat:[5,10,21],alist:[10,14],alkhateeb:29,all:[1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],allclos:40,allerton:[9,11,50],allevi:23,alloc:[17,18,19,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,50],allow:[1,2,3,6,7,8,9,12,14,17,18,19,22,23,24,25,27,29,30,31,34,38,40,41,42,43,44,45,46,50,52,54],allow_flex_len:14,allowed_dmrs_port:[17,25],allzeroencod:[5,21],almost:[25,36,38,41,42,44,45,50],alon:41,along:[3,18,19,20,23,29,35,42,43,44,49],alpha:[2,19,23,37],alpha_:[9,18,23],alpha_i:19,alpha_r:[19,45],alphabet:1,alreadi:[8,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],also:[3,5,6,9,11,13,14,16,18,19,20,22,23,24,25,27,28,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54],altern:[6,8,16,18,19,20,22,24,26,33,34,42,43,48,53,54],altes_rathau:42,although:[5,10,11,16,23,25,34,42,48,50,53,56],alvarado:27,alwai:[1,2,3,8,10,12,17,20,27,30,34,36,37,38,39,41,44,46,48,49],always_generate_lsp:3,america:[23,41],among:[19,25,33,44],amount:[38,39,41,54],amplif:[2,56],amplifi:[0,21,34,44],amplifier_cd:37,amplifier_nl:37,amplifier_ssfm:37,amplitud:[19,23,25,26,34,37,41,44,45],amplitude_profil:[19,44],amplitudeprofil:21,an:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,54],analys:27,analysi:[3,5,16,19,21,23],analyt:[14,27],analyz:[8,24,25,27,33,50,54],andersson:[11,24],andrea:[11,54],angl:[3,18,19,23,29,37,41,42,44,45,48],angular:[3,23],ani:[1,3,6,7,10,11,14,18,19,22,23,24,25,27,28,30,34,38,39,41,42,44,45,47,48,49,50],annex:3,annot:[19,56],annual:[9,11,50],anomal:[23,44],anoth:[6,19,27,28,30,39,41,43,44],ant_ind_pol1:3,ant_ind_pol2:3,ant_po:3,ant_pol1:3,ant_pol2:3,ant_pos_pol1:3,ant_pos_pol2:3,antenna:[0,16,17,18,21,25,29,33,35,36,39,40,41,42,43,44,45,46,49,52,54],antenna_pattern:[3,25,33,34,35,36,39,48,49],antennaarrai:[0,21,25,29,34,35,39,48,49],anymor:27,anyth:[23,44],aoa:19,aod:19,aoudia:[1,26,35,47,49,52,54],apach:52,apart:[3,14,16,34,44,45,48,52],apertur:23,api:[4,19,23,24,25,30,34,36,39,41,42,44,45,46,48,51,52],app:[9,14,15,16,17,18,24,26,27,29,30,31,34,35,36,39,40,46,47,48,49,51],appear:[22,41,42,43,45],append:[22,24,25,27,31,34,36,39,42],appenix:23,appl:[2,14,23],appli:[2,3,9,10,11,14,16,17,18,19,20,22,24,26,27,29,33,34,35,37,38,40,41,42,43,44,46,47,48,49,50,51,54],applic:[2,3,5,17,27,29,30,31,37,42,43,46,47,52,53,54],apply_channel:3,apply_dopp:43,apply_doppl:[19,42,43],apply_gradi:[26,35,44,47,49,50],applyflatfadingchannel:[0,21],applyofdmchannel:[0,21,29,34,39,42],applytimechannel:[0,21,29,34,39],approach:[6,9,12,19,23,27,34,36,41,43,44,45,54],appropri:[19,23,36],approx:[2,14,15,16,19,23,36],approxim:[2,3,6,9,10,13,14,15,16,17,18,19,24,26,41,43,44,50],apr:[14,23,27],apriori:6,apt:53,ar:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55],arang:[24,26,27,29,30,31,34,35,39,40,42,43,45,48,50],arbitrari:[3,7,8,9,10,12,14,16,17,18,19,20,22,23,24,25,27,30,31,42,44,46,50],arc:19,architectur:[3,35,46,49,52,54],archiv:15,area:[19,23,26,41,42,44,45],arg:[23,46],argmax:16,argmin:18,argument:[6,8,13,17,19,23,24,25,27,28,30,31,34,36,39,45,48,49],ari:15,arikan:[11,24],arikan_bp:11,arikan_polar:11,aris:16,around:[19,23,38,40,41,42,43,44,45],arr:14,arrai:[3,11,12,14,15,16,21,22,24,25,29,30,32,33,35,36,39,41,42,43,45,46,49,50,54],arrang:[14,19],array_equ:25,array_lik:19,array_op:[30,34,36,39,48,49],array_s:19,arriv:[3,18,19,23,29,42,43,44,54],art:[14,33,46,47,48,49,50,52],artech:[23,41],artefact:42,articl:52,arxiv:[1,11,24,35,50,52,54],as_list:[42,46],as_tensor:19,ashikhmin:[14,27],asic:[16,33],asilomar:33,aspect:31,assert:[15,25,36,40,42,46],assert_greater_equ:46,assertionerror:[7,8,9,10,11,12,14,22],assig:16,assign:[16,18,19,42,43,44],assist:54,associ:[7,8,12,14,16,17,19,23,24,34,35,39,48,49],assum:[1,3,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,39,41,42,43,44,46,47,48,49,50],assumpt:[3,18,19,27,42],asticmat:23,astigmat:23,astyp:24,asymmetr:1,asymptot:[6,14,23,27],atan2:23,atanh:9,atmospher:2,atol:40,attain:13,attempt:54,attent:54,attenu:[2,38],attribut:[8,9,17],aug:16,augment:54,author:[23,52,54],auto:[30,46],autoencod:[54,56],autograph:[25,33],autom:24,automat:[9,17,18,19,22,24,25,30,33,34,42,44,46,48,54],avail:[2,3,6,7,9,10,11,14,15,16,17,18,19,20,22,23,24,27,29,30,33,34,35,36,39,41,42,46,47,49,51,52,55],availab:11,averag:[3,17,18,19,20,22,23,24,25,26,27,30,34,36,39,40,41,42,44,45,46,50],average_street_width:3,avergar:26,avinash:52,avoid:[2,9,14,16,18,24,25,26,27,28,29,30,31,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],awai:[18,41,42,44,45,55],awgn:[0,14,17,18,21,24,25,26,27,30,31,32,34,35,40,42,46,47,48,50,51],awgn_autoencoder_result:26,awgn_autoencoder_weights_conventional_train:26,awgn_autoencoder_weights_rl_train:26,awgn_channel:[3,46,47],awng:[14,27],ax1:[31,37],ax2:[24,31,37],ax:[19,22,23,24,29,32,33,36,40,41,43,46,47],axi:[2,3,8,12,19,20,22,23,24,25,26,27,29,31,32,35,36,41,42,43,44,46,47,49,51],axvlin:41,azim:43,azimuth:[3,19,23,42],b100:3,b5g:54,b:[1,2,3,6,9,13,15,16,17,18,19,22,23,24,25,26,27,29,30,31,32,33,34,35,36,39,40,41,42,44,48,49,50,51],b_:[16,19,35],b_hat:[11,17,18,22,25,26,27,29,30,33,34,35,36,39,40,42,50,51],b_i:[15,27],b_k:15,back:[6,16,23,25,40,41,43,54],backend:53,background:[19,23,24,52],backpropag:[26,35,52],backscatt:[19,23],backscatteringpattern:[19,23,45],backward:22,bad:41,badli:[18,36],bahl:6,balanc:23,balani:[19,23],balanis97:19,balatsouka:[10,11],ball:41,band:[20,35,38],bandwidth:[2,3,9,12,17,18,25,27,34,37,38,45,54],bandwith:[3,34],banei:2,bar:[3,16,17,18,19,34,49],barrier:[50,56],barycent:45,base:[1,3,7,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,27,28,29,33,34,35,36,38,39,42,46,47,48,50,52,54],baseband:[3,17,19,20,23,26,41,44,45,49],basechannelestim:[17,21],basechannelinterpol:[17,21],basegraph:9,baselin:[18,26,27,33,47,49,50],baseline_l:49,baseline_pcsi:49,basest:[29,42,46],baset:46,bash:[30,46],basi:[10,23],basic:[11,17,24,30,42,47,48,49,50,56],bastani:11,batch:[3,8,9,12,13,15,17,18,19,20,22,24,25,26,27,28,31,32,33,34,35,36,38,39,40,42,44,46,47,48,49,51,52],batch_dim:19,batch_index:3,batch_siz:[3,9,14,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,40,42,44,46,47,48,49,50,51],batch_size_cir:42,batch_size_freq:25,batch_size_tim:25,batch_sizeus:30,batchsiz:42,bbox:41,bce:[26,35,47,49,54],bch:[14,27,54],bcjr:[5,13,21,24],bcjrdecod:[6,13,24,31],beam:2,beamform:34,beat:2,beaulieu:3,bec:1,becau:33,becaus:[3,19,25,33,35,36,44,45,53],becom:[3,11,14,18,19,23,25,27,33,34,37,41,43,44,45,54],been:[15,16,17,18,19,22,23,24,27,31,34,42,54],befor:[9,11,13,16,17,18,19,24,25,26,27,30,34,37,39,40,42,46,47],begin:[1,3,15,16,18,19,20,23,25,34,35,36,37,43],beginn:[26,35,52],behav:[23,27,28,45],behavior:[5,14,17,18,19,27,29,30,31,42,45],behaviour:44,behind:[19,41,42],being:[6,13,19,36,41,54],belief:[9,11,24,54,56],belong:[17,25,53],below:[3,13,18,19,23,24,25,26,27,29,35,36,37,38,42,43,44,46,48,54],ben:1,benchmark:[18,24,26,35,36,47,52],bend:23,benedikt:11,benefici:[33,50],benefit:[10,50],ber:[10,17,22,25,26,29,31,33,34,35,36,46,47,48,49,51,52],ber_cod:30,ber_ep:[33,36],ber_idd2:33,ber_idd3:33,ber_kbest:[33,36],ber_lmms:[33,36],ber_mc:30,ber_mmse_p:36,ber_per_bit:27,ber_plot128:24,ber_plot:[31,40,42,46,47,48,49,50],ber_plot_5g:50,ber_plot_allzero16qam:27,ber_plot_allzero:27,ber_plot_ldpc:24,ber_plot_long:31,ber_plot_polar:24,ber_uncod:30,bernhard:37,bernoulli:19,berplot:46,berrou:13,besid:[5,9,11,24,37],bessel:18,best:[5,6,16,17,18,19,25,27,33,36,42,46],beta:[16,17,18,19,20,23,25,36,38],beta_0:[23,41],beta_2:[2,37],better:[19,25,29,33,34,36,37,39,41,44,50,54],between:[3,6,9,13,16,19,20,22,23,24,25,26,27,29,33,36,37,38,40,41,42,43,44,45,46,48,50,54],beyond:[27,41],bfloat16:14,bg1:9,bg2:9,bgt2000:2,bhs2017:[3,16],bi:14,bias:27,bicm:[9,30,35,46,56],bidirect:23,bigg:19,biglieri:27,bil:33,bin2int:[5,21],bin2int_tf:[5,21],bin:[19,27,34,39],binari:[1,5,6,7,9,10,11,12,13,15,16,21,22,24,26,27,30,34,35,39,46,47,48,49,50,54],binary_repr:15,binary_sourc:[30,32,34,35,36,39,40,46,47,48,49],binarycrossentropi:[26,47,49,50,51],binaryerasurechannel:[0,21],binarymemorylesschannel:[0,21],binarysourc:[14,21,24,26,27,29,30,31,32,33,34,35,36,39,40,46,47,48,49,51],binarysymmetricchannel:[0,21],binaryzchannel:[0,21],binder:[52,54],binom:23,bioglio:[11,24],bioglio_design:11,bipolar:1,bipolar_input:1,bird:44,bird_cam:42,bird_po:42,birds_view:42,birefring:2,bisect:24,bit:[1,6,7,8,9,10,11,12,13,14,15,16,17,18,22,24,25,26,29,31,32,33,34,35,36,39,40,42,45,46,47,48,49,50,51,52,54,56],bit_channel:27,bit_error:22,bit_error_r:22,biterrorr:21,bits_hat:[46,48,49],bits_shap:36,bitwis:[22,27],bitwise_mutual_inform:22,bitwisemutualinform:[21,50],black:[19,41],blackman:[20,38],blackmanwindow:21,blank:41,blankenship:[11,24],blender:[19,42,54],bler:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,46,47,48,49,50],bler_ep:33,bler_idd2:33,bler_idd3:33,bler_kbest:33,bler_lmms:33,block:[0,10,11,19,21,22,24,26,29,30,33,34,35,36,39,40,42,46,47,48,49,50,52,54],block_error:22,block_length:46,blocklength:[11,46,47],blog:51,blown:36,blue:[19,31,41],blueprint:56,bmatrix:[18,19,23],bmd:[26,35,47],bmi:50,boilerpl:25,boldsymbol:[16,19,23],bologna:19,bool:[1,2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,31,34,35,42,44],border:20,boston:54,bostontwin:54,both:[2,16,17,18,19,20,23,24,25,26,27,29,31,32,34,35,36,39,41,42,43,44,45,47,48,49,54],bottom:19,bounc:[19,42],bound:[6,19,43],boundari:[2,23,34,41],box:[21,23,32,36,43],boxplu:[9,14,17,27,30,46,50],bp:[9,11,14,17,24,27,30,54],bp_iter:30,bpsk:[10,14,22,50],bracket:23,brannstrom:14,brdf:23,breviti:23,brick:19,bring:[10,14,24,40,43,44],brink:[9,11,14,24,26,27,33,54],broadcast:[1,3,12,15,18,19,42],broaden:[37,38],brown:23,brows:53,browser:53,bs:[3,23,29,33,34,35,39,48,49],bs_antenna:29,bs_arrai:[3,25,33,34,35,36,39,48,49],bs_height:3,bs_idx:29,bs_index:3,bs_loc:3,bs_orient:3,bs_ut_associ:39,bsc:[1,6],bss:[3,34,48,49],bu:[30,46],bug:42,build:[3,9,11,19,23,24,30,34,35,36,39,40,41,42,45,46,47,49,51,52,53,54],build_type_grid:18,building_1:43,building_2:43,building_3:43,building_4:43,building_5:43,building_6:43,built:[18,30,35,42,46,49],burg:[10,11],burgeon:54,burshtein:[9,50],bwp:17,c0:[26,29,33,35,36],c1:[26,29,33,35,36],c2:[26,29,33,35],c300:3,c:[2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,44,46,48,49,50,51],c_0:[15,23],c_:[15,17,19,23],c_deint:8,c_descr:12,c_hat:[10,14,30,50],c_i:23,c_init:17,c_int:[8,27,30],c_n:15,c_phi:19,c_scr:12,c_theta:19,c_tilde_theta:19,ca:29,cach:46,cair:27,calc:[24,31,50],calcul:[1,2,3,7,8,9,10,11,12,14,17,18,19,24,27,30,31,35,42,50,51],calculate_tb_s:21,calibr:[19,54],call:[3,8,9,10,12,14,16,18,19,22,23,24,25,26,27,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,54],call_invers:8,call_no_xla:31,callabl:[16,18,19,22,24,27,28,31],callback:[19,22],callback_continu:22,callback_next_snr:22,callback_stop:22,cam:[19,41,42,43,44],cambridg:[3,23,24],camera:[21,41,42,43,44,45],cammer:[9,11,24,26,52,54],cammerer_hybrid_scl:11,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56],cancel:[10,11,16,24,33,46],candid:[10,16,18,19,36,54],candit:25,cannot:[2,8,10,11,12,16,17,18,19,23,24,25,28,31,34,41,44,45],canon:16,canyon:[3,43],cap:[30,46],capabl:[24,25,54],capac:[2,9,11,12,24,27,33,37,54],captur:[27,34,37,45],car:[19,43],car_1:43,car_2:43,car_3:43,car_4:43,car_5:43,car_6:43,car_7:43,car_8:43,car_:43,care:[3,34,48],carefulli:[23,54],carlo:[11,19,22,24,27,31,33,34,36,40,42,46,47,48,49,50,52],carri:[17,18,23,25,26,28,35,36,42,45,49],carrier:[2,3,18,19,21,29,30,33,34,35,36,37,41,42,44,45,48,49,52,54],carrier_config:17,carrier_freq:29,carrier_frequ:[3,18,25,29,30,33,34,35,36,39,48,49],carrierconfig:[21,25],cartesian:23,cascad:23,cast:[2,14,22,27,30,36,37,40,44,46],categor:1,caus:[9,11,14,16,22,24,27,43,54],causal:3,cax:36,cb:[17,44],cb_crc_encod:17,cb_crc_length:17,cb_size:17,cbar_ax:36,cd:37,cdf:[34,39],cdl:[0,21,29,33,35,39,42,48,49,56],cdl_model:[34,35,39,48,49],cdm:[17,25],cdm_group:[17,25],cdot:[2,3,9,14,16,17,19,23,24,35,37],ceil:42,cell:[3,12,16,17,18,19,23,24,25,26,28,29,30,34,35,36,38,39,41,42,43,44,45,46,47,48,49],cell_cent:19,cell_grid:19,cell_loc:3,cell_posit:19,cell_siz:19,cell_world_posit:19,cell_y_posit:19,cell_z_posit:19,cellgrid:21,cellular:54,center:[3,15,19,20,23,41,42,43,44,45],center_po:19,certain:[3,10,14,22,27,42,44,45],cest_typ:33,cf:[9,10,14,24,27,30],cfo:54,ch:[14,23,24,27,33,36],chain:[5,11,19],challeng:54,chan_est_var:33,chang:[3,5,7,8,9,10,11,12,15,16,17,19,23,25,27,28,30,34,38,39,41,42,43,44,45,46,47,48,49,50],channel:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,31,32,33,35,38,41,44,46,47,49,50,51,52,54,56],channel_estim:[17,25,36,42],channel_freq:[34,39],channel_interleav:11,channel_model:[3,28,33,36,39,42],channel_model_rayleigh:33,channel_model_uma:33,channel_sampl:36,channel_tim:34,channel_typ:[11,12,17,25],channelmodel:[3,34,42,48],character:[19,54],characterist:[9,14,27,38,54],chart:14,check:[5,10,11,12,14,15,17,19,21,24,25,27,29,30,33,42,45,46,50,52,53,54],check_config:17,check_scen:19,chen:2,chi:[23,44],chi_1:23,chi_2:23,chi_i:23,chi_m:[19,23],children:17,choic:[5,13,17,23,30,37,47,49,50,54],choos:[10,25,27,29,34,42,48,49],chose:34,chosen:[3,6,15,16,17,19,20,22,23,25,29,34,37,48,49],choss:25,chri:54,christoph:54,chromat:2,chronicl:2,ci:[30,46],cir:[3,19,23,39,41,42,43,44,45,48,49,54],cir_gener:[3,42],cir_to_ofdm_channel:[0,19,21,29,34,39,42,43],cir_to_time_channel:[0,18,19,21,29,34,39,42,45],circ:[19,41],circl:[27,41],circuit:[16,23,33],circumv:39,cirdataset:[3,19,28,29,42],cirgener:42,cite:52,citi:54,clariti:[18,19],classic:[24,33,50,51,54],classif:[47,49],clear:23,cleari:40,clip:[1,9,14,16,19,50],clip_at:19,clip_by_valu:[44,50],clip_plane_orient:19,clip_value_grad:50,clone:[25,42,53],close:[10,15,18,19,23,24,27,28,41,43,44,45,47,49],closer:[24,27,44,45,56],closest:[19,23,44],cloud:52,cluster:[0,19,21],cluster_ris_path:19,cm:[19,41,42,43,44,45],cm_cell_siz:[19,41,42,43,44,45],cm_center:[19,43,44],cm_db_scale:19,cm_diff:41,cm_no_ri:44,cm_orient:[19,43,44],cm_ri:44,cm_scale:19,cm_scat:45,cm_show_color_bar:19,cm_size:[19,43,44],cm_tx:19,cm_vmax:[19,45],cm_vmin:[19,45],cmap:[43,44],cn:[3,9,14,17,27,30,50],cn_type:[9,14,17,27,30,33,46,50],co:[3,18,19,20,23,45],cock:6,code:[2,3,5,7,8,9,12,16,17,18,19,20,21,22,25,26,28,29,30,31,33,34,35,36,38,39,42,44,45,46,47,48,49,51,52,54,56],code_length:[9,24],code_typ:24,codebook:[17,25,42],codedsystemawgn:46,coder:[5,6,9,10,11,13,14,17,22,24,25,26,27,30,31,32,33,34,35,36,39,40,46,47,48,49,50],codes_under_test:[24,31],codesanqi:54,codeword:[5,6,7,9,10,11,12,13,14,17,24,26,29,30,33,35,36,40,46,48,49,50,51],codeword_index:[12,17],coeff:2,coefffici:3,coeffic:23,coeffici:[2,3,16,18,19,20,23,25,28,37,38,42,43,45],cognit:26,coher:19,coincid:[27,42],colab:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],colab_compat:[41,42,43,44,45],colabsionna:54,colabw:54,collect:19,color:[18,19,31,41,42],colorbar:[36,44],colormap:19,column:[3,8,9,10,14,16,18,19,22,23],column_swap:14,com:[25,33,46,54],combin:[2,3,5,11,13,16,17,19,22,23,24,25,29,31,33,36,41,42,43,45,47,50],combining_vec:[19,42],come:[23,25,27,30,41,42,43],command:[19,25,30,41,45,46],comment:[25,34,36,50],commerci:54,common:[3,7,17,19,41,45,52],commonli:[11,24,54],commun:[0,2,3,5,9,11,14,15,16,19,23,24,26,27,28,30,33,34,35,39,41,48,49,50,52,54,56],communicationreinhard:54,communicationsju:54,compar:[16,24,25,26,27,30,31,33,36,37,38,40,41,43,44,45,46,47,50,54],comparison:[11,19,24,27,31,34,39,40,44,45,50],compat:[4,9,10,13,19,22],compens:[37,54],compet:30,competit:54,compil:[24,25,30,37,42,46],complement:54,complementari:11,complet:[18,19,20,24,37,46,50,52],complex128:[2,3,15,16,17,18,19,22,36,37,46],complex2real_channel:21,complex2real_covari:21,complex2real_matrix:21,complex2real_vector:21,complex64:[2,3,15,16,17,18,19,22,28,30,32,36,42,44,46],complex:[2,3,5,10,11,15,16,17,18,19,20,22,23,25,26,27,30,31,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49,50,52,54],complex_norm:21,complex_relative_permitt:[19,42],compliant:[5,9,11,12,17,18,24,25,29,30,42,46,47,48,49,52],complic:[18,27,39],compon:[2,3,13,14,15,17,18,19,20,23,24,26,27,29,30,31,33,35,37,38,39,40,41,42,44,46,47,48,49,50,51,52,54],compos:[13,19,25,34,42,48,54],compress:[31,37],compuat:23,comput:[2,3,6,9,10,11,13,15,16,17,18,19,20,22,23,24,25,26,30,33,34,36,38,39,40,41,42,43,44,45,46,48,49,50,54],computation:[3,37,43],compute_b:[17,21,25,29,30,34,35,39,40,42,50,51],compute_bl:21,compute_conduct:19,compute_field:21,compute_gain:[21,41],compute_path:[21,23,41,42,43,44,45],compute_relative_permitt:19,compute_s:[21,36,40],concat:[35,36,43,44,49],concaten:[11,13,14,16,17,24,27,42,43,46],concentr:[23,45],concept:[9,26,27,41,50,55,56],concis:23,conclus:[41,45,52],concret:[18,23],cond:[34,39],cond_hist:39,conda:53,condit:[8,14,18,22,23,25,27,31,34,36,39,46],condo:[11,24],conduct:[3,19,23,41,42,44],conductor:41,cone:[19,23,41],conf:33,confer:[9,11,24,35,49,50],config:[3,4,16,18,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,50],config_typ:[17,25,42],configur:[1,3,12,16,17,18,19,21,23,30,48,49,52,53],configurabel:34,confirm:40,conform:3,conftel:2,conj:25,conjug:[20,23],conjunct:3,connect:[8,9,11,12,19,27,30,35,38,42,45,46,49,52,53],consecut:[17,54],consequ:24,conserv:23,consid:[2,3,10,11,16,19,22,23,24,26,29,33,34,35,36,37,40,41,42,43,48,49],consider:[23,33,41],consist:[1,2,3,9,10,11,15,18,19,23,24,25,26,29,34,35,36,37,41,43,44,47,48,50,54],consit:44,consortium:11,constant:[2,3,12,17,19,24,25,26,27,28,30,33,35,36,37,39,41,42,43,44,45,46,47,48,49,50],constel:[1,16,17,18,21,22,24,25,30,31,32,33,34,38,39,40,46,47,48,49,51],constellation_typ:[15,16,18,22,25,33,36,42,46],constitu:13,constitut:27,constrain:44,constraint:[6,10,11,13,16,19,24,44,54],constraint_length:[6,13,24,31],construct:[11,14,18,24,41,44,45,50],consum:[11,34,56],contain:[3,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,27,29,30,31,34,37,41,42,44,45,46,48,50,53],contamin:25,content:5,context:23,contin:41,continu:[19,22,24,27,30,31,34,41,44,48,50,52],continuum:41,contrari:42,contrast:[23,34,37],contribut:[19,41],control:[3,9,11,17,18,19,23,24,33,36,37,42,50],conv2d:[35,49],conv:[6,13,24,26,31,35,49],conv_coder:13,conv_n:13,convencod:[6,13,24,31],conveni:[3,16,17,22,27,30,34,38,40,41,42,45,46,49,50],convent:[3,23,30,47],conventional_train:26,converg:[14,27,33,44,50,54],convers:16,convert:[3,10,14,16,18,19,34,42,43,44,46],convient:15,convini:35,convolut:[5,10,13,20,21,24,31,34,35,38,46,49,52,54],convolv:21,coordin:[3,19,42,44,52],copi:[14,24,42,50,54],core:54,corner:[19,23],corr:3,correct:[6,9,11,13,16,21,24,27,30,33,38,40,42,43,52,54],correctli:[1,11,17,23],correl:[3,27,36],correpsond:[34,39],correspond:[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,39,41,42,43,44,46,47,48,49],correspondingli:14,cosin:[20,23,38],cost:[19,36,43,44],cot:23,could:[19,27,28,34,36,39,42,44,46,48,49,50,51],count:[19,22,50],count_block_error:[21,24],count_error:21,counter:[16,25],coupl:[41,43,45],cours:24,cov:36,cov_mat:18,cov_mat_freq:18,cov_mat_spac:18,cov_mat_tim:18,cov_time_spac:18,covar:36,covari:[3,16,18,40],cover:[19,25],coverag:[21,23,43],coverage_map:[21,23,41,42,43,44,45],coveragemap:21,covproperrv:16,cp:[3,17,34],cp_sim:34,cpu:[2,11,14,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],cpu_onli:11,crb:17,crc11:[7,11],crc16:[7,11],crc24a:[7,11,30],crc24b:[7,11],crc24c:[7,11],crc6:[7,11],crc:[5,9,11,17,21,24,27,30,31,46],crc_degre:[7,11],crc_encod:7,crc_length:7,crc_pol:7,crc_statu:11,crc_valid:[7,30],crcdecod:[5,21,30],crcencod:[5,21,30],creas:34,creat:[3,7,9,11,15,17,18,19,20,23,24,25,26,27,30,32,35,36,38,39,40,41,42,44,46,48,49,54],create_dataset:28,create_or_check_constel:15,creation:[23,28,34,42,48],criteria:5,criterion:47,crop:19,cross:[3,21,23,25,26,33,34,35,36,39,42,47,48,49,50,54],crucial:54,crunch:[30,46],cruz:16,csc_matrix:9,csi:[18,25,26,33,34,35,36,39,42,48,49],csr_matrix:9,cst2011:16,cubic:41,cuda:[30,46],cuda_visible_devic:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],cummul:[34,39],cumsum:[34,39],curli:23,current:[2,3,4,6,8,11,14,19,22,24,25,27,31,41,42,43,44,45,50],curv:[10,11,14,19,22,24,27,29,31,34,39,46,50],curvatur:23,custom:[15,16,18,19,20,22,24,25,27,42,46,48,49,51],custom_materi:19,customfilt:21,customwindow:21,cut:[18,19],cve:53,cvpr:[35,49],cw:[9,24,50],cw_estiamt:24,cw_estim:24,cw_length:17,cycl:[11,14,54],cyclic:[3,5,9,17,18,21,22,25,30,48],cyclic_prefix:[17,25],cyclic_prefix_length:[17,18,25,29,30,34,35,39,48,49],d1:23,d:[2,3,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,27,28,33,34,35,36,40,41,42,45,46,47,48,49,50],d_1:23,d_2:23,d_3:23,d_4:23,d_:3,d_h:3,d_j:16,d_k:16,d_min:[11,24],da:[23,45],damp:54,damping_factor:50,dash:[17,22],data:[3,14,17,18,19,22,24,25,27,28,29,31,33,34,35,36,39,40,47,48,49,50,52,54],data_dict:19,data_dim:18,data_gener:42,databas:19,databit:35,dataflow:[30,46],datascrambl:12,dataset:[0,19,21,22,42,54,56],dataset_fold:29,dataset_s:28,datatyp:[1,2,3,6,7,8,9,10,11,12,13,14,17,18,19,22,30,46],david:54,db:[14,19,20,22,24,25,26,27,29,30,31,32,33,34,35,36,38,39,40,41,42,44,45,46,47,48,49,50],dc:[18,33,34,35,48],dc_ind:18,dc_null:[18,29,34,35],dci:11,de:[6,13,14,15,19,34],deactiv:[17,22,25,30,41,42,43,44,45],deal:[23,37,44],debug:[30,33,46,49],dec:[24,26,30,31,33],dec_typ:[11,24,31,46],decai:[23,36,41],decemb:[3,54],decibel:20,decid:[6,9,10,11,13,14,15,16,17,18,27,30,50],decim:6,decis:[6,10,11,13,15,16,18,22,24,27,34,36,39,40,48,49],decod:[5,7,14,16,17,21,25,26,29,30,31,34,35,36,39,40,42,46,48,49,52,54,56],decoder2:24,decoder_crc:30,decoder_exit:27,decoder_typ:27,decodingsebastian:54,decompos:23,decomposit:[16,18],decor:[3,16,18,22,30,37,40,46],decreas:[2,24,25,38,44,45],dedic:[34,42],deep:[9,11,26,29,30,33,35,41,46,49,50,54],deepen:[41,44],deepmimo:56,deepmimo_dataset:29,deepmimo_param:29,deepmimo_sionna_adapt:29,deepmimosionnaadapt:29,deeprx:[35,49],def:[2,3,4,19,24,25,26,27,28,29,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50,51],default_param:29,defin:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,29,30,31,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],definit:[3,9,13,14,15,16,19,22,23,27,37,46],defintit:23,deg:[3,41],deg_2_rad:[0,21],degli:[19,23,44,45],degrad:[8,9,24,34],degre:[3,7,9,14,19,41,43,44,45,50],deinterleav:[5,21,27,30],del:42,delai:[0,18,19,21,23,25,28,34,38,41,42,45,48,49],delay_bin:43,delay_resolut:43,delay_spread:[3,18,30,34,35,48,49],delet:42,delic:24,deliver:23,delta:[3,17,19,23,25,43],delta_f:[3,18],delta_t:[2,18,37],delta_z:2,demand:3,demap:[9,16,17,18,21,24,26,30,31,35,36,40,46,50,52],demapp:[9,10,11,14,16,17,18,21,24,27,29,30,31,34,35,39,40,46,47,48,49,51],demapperwithprior:21,demapping_method:[15,16,18,24,25,27,30,31,33,42],demodul:[17,21,25,27,34],demonstr:[13,24,28,34,37,44,54],denomin:6,denot:[1,2,6,7,9,13,14,17,18,19,22,23,24,25,27,31,33,34,37,38,41,42,43,44,45],dens:[11,26,47,51],dense_1:47,dense_2:47,dense_3:47,densif:54,densiti:[2,5,12,14,17,20,21,22,23,24,26,27,37,38,46,48,52,54],departur:[19,29,42],depend:[1,2,3,4,5,9,16,17,18,19,20,23,24,25,27,28,30,31,34,35,36,37,39,42,48,49],depict:[3,19,34,37,48],deploy:[30,54],deprec:[15,16,25,30,33,34,36,39,48,49],depth:[8,16,19],depunctur:13,deriv:[2,14,17,19,23,25,27,54],deriv_1st:19,deriv_2nd:19,descend:16,descent:[11,26,35,44,47,50,54],descrambl:[5,21,27],descret:3,describ:[1,11,14,16,17,18,19,22,23,25,27,37,41,42,44,45],descript:[23,34],design:[5,9,11,13,14,18,19,24,27,44,52,54],desir:[3,4,6,9,10,11,13,14,16,17,18,19,20,22,24,25,28,31,32,38,40,42,43,44,46,52],desired_properti:4,desktop:53,despit:[2,38,40],destruct:[41,45],desurvir:2,det:[25,33,42],det_method:36,det_out:36,det_param:36,detail:[1,2,3,9,10,11,14,17,19,22,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,48,50,51,54,56],detect:[7,14,17,21,22,24,25,27,31,35,40,41,42,43,44,45,54,56],detection_desired_ind:16,detection_undesired_ind:16,detector:[2,16,17,18,25,33,42,54],determin:[4,9,13,15,16,17,19,23,25,34,36,39,41,42,43,44,45,48,49,54],determininist:42,determinist:44,detriment:34,develop:[18,30,36,41,44,45,46,52],deviat:[3,8,34],devic:[8,12,21,22,23,44,54],deweight:54,df:23,dft:[3,20,35],di:23,diag:[16,18],diagon:[16,18],diagram:[34,36,38,40],diagramm:39,dick:[33,54],dict:[19,30,41],dictionari:[19,26,30,35,36],did:[24,56],die:23,diego:29,dielectr:23,diff:19,diff_path:19,diff_paths_tmp:19,differ:[1,2,3,4,5,6,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,35,37,38,40,41,42,43,44,45,46,48,49,50],differenti:[1,9,11,15,19,26,30,35,42,46,48,49,52,54,56],differr:42,difficult:[11,24],diffract:[19,42,43,44,52,56],diffus:[19,23,42,43,45],digit:[6,27,54],digon:18,dim:[9,11,17,18,24],dimens:[1,2,3,7,8,9,10,13,14,15,16,18,19,20,22,25,27,30,35,36,41,42,43,44,46,47,49],dimension:[16,18,19,20,23,26,46,52],diminish:41,dipol:[19,42],dipole_pattern:21,dirac:3,direct:[3,19,23,25,33,34,36,39,41,42,43,44,45,48,49,54],directivepattern:[19,23,45],directli:[1,6,10,14,19,24,27,30,37,39,42,46,50,51,53,54,56],directori:53,disabl:[19,24,27,31,36,37,42,44,46],disappear:41,discard:[10,35,49],discov:[17,42,45,49,52],discret:[0,3,17,18,19,20,21,23,27,35,37,44,45],discrete_profil:19,discreteamplitudeprofil:[21,44],discretephaseprofil:[21,44],discreteprofil:19,discrimin:[19,23],discuss:[23,27,42,43,52],disp:[30,46],dispatch:[30,34,36,39,48,49],dispers:2,displac:[19,43],displacement_vec:43,displai:[19,25,42],diss:43,dissip:23,dist:[16,25,30,33,34,39,45,48,49],distanc:[2,3,6,8,10,11,16,19,23,24,36,37,41,42,43,44,45],distinct:[19,25,41],distinguish:[23,41,45],distort:37,distribut:[2,3,8,12,14,16,19,20,22,23,28,34,37,39,41,44,46,50,54],dive:[37,41,43,45],divid:[44,45,46],divis:[13,21,25,30,52],dl_sim:34,dmc:27,dmr:[17,42],dmrs_additional_posit:17,dmrs_config:17,dmrs_grid:17,dmrs_length:17,dmrs_mask:17,dmrs_port_set:[17,25,42],dmrs_symbol_indic:17,doc:30,docstr:46,document:[2,3,19,22,23,25,30,34,36,39,41,42,43,44,45,46,47,48,49,51,52],doe:[3,8,10,11,12,14,16,17,18,19,22,23,24,25,26,27,30,33,34,36,37,39,41,42,43,44,45,46],doesn:3,doi:[3,26,35,47,49],domain:[0,2,6,12,13,16,17,18,20,21,24,25,29,33,35,36,37,38,42,43,49,52],domin:[34,37,41,44,45],don:[33,35,45],done:[2,3,9,11,13,16,17,18,19,23,24,25,26,27,29,31,34,35,37,39,40,42,46,47,49,50],dong:54,donwlink:34,dope:[0,21,37],doppler:[18,19,34,42,44],doppler_bin:43,doppler_lo:43,doppler_ref:43,doppler_resolut:43,doppler_tx_lo:43,doppler_tx_ref:43,dot:[3,15,16,18,20,21,23,41,42],doubl:[17,36,37],double_reflector:21,down:[33,38],downlink:[3,11,16,29,39,42,48,49],download:[19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],downsampl:[21,34],dr:42,drastic:50,draw:[8,19,42,46],drawn:[14,15,16,18,19,29,30,42],drive:[43,52],driven:54,driver:[30,46,53],drjit:53,drm:25,drop:[2,3,18,39,41,45],drop_uts_in_sector:[0,21],ds:[19,20,38],dt:[2,23,37],dtype:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,28,30,32,33,35,36,37,40,42,44,46,51],dual:[2,3,17,19,23,25,33,34,35,36,39,42,48,49],due:[2,3,11,14,17,18,19,23,24,25,27,30,34,37,38,39,41,42,43,44,48],duidd:[33,54],dummi:[3,10,19,24,30,42],dump:[26,35,47,49],duplic:11,durat:[2,3,6,17,18,20,25,34,37,38,39,43,48],dure:[2,6,8,9,12,13,14,17,19,22,25,27,34,37,43,48,50],dx:19,dy:19,dynam:[23,24,41],dz:2,e2:[30,36],e2e_model:[30,42],e2esystem:35,e2esystemconventionaltrain:26,e2esystemrltrain:26,e:[1,2,3,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54],e_:[16,22,23,24],e_b:[22,24,26,29,31,33,34,35,36,39,46,47,48,49],e_i:2,e_j:16,e_k:16,e_x:2,each:[1,2,3,6,8,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49,50,51],eager:[4,25,34,52],eagerli:33,earli:[8,9,11,22,24,27,30,50],earlier:[25,30,53],early_stop:[22,24,27,31,42],easi:[30,34,40,44,47,48,49],easier:39,easiest:3,easili:[17,19,23,36,40,46,47,52],eb:[22,27,30,32,34,46,47,48,49],ebada:[9,11],ebada_design:11,ebn0_db:[36,47],ebn0_db_max:[46,47,48,49],ebn0_db_min:[46,47,48,49],ebno:[14,22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,46,47,48,49,50],ebno_db:[14,22,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,46,47,48,49,50],ebno_db_max:[26,35],ebno_db_max_cest:33,ebno_db_max_perf_csi:33,ebno_db_min:[26,35],ebno_db_min_cest:33,ebno_db_min_perf_csi:33,ebnodb2no:[14,21,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,46,47,48,49,50],ecc:[30,46],eceiv:16,ed:2,edfa:[2,37],edg:[9,19,23,42,44,50,54],edge_diffract:[19,41],edge_weight:9,edgecolor:[41,43],edit:[19,42],effect:[3,11,13,16,17,18,19,23,24,25,27,30,34,36,37,39,40,41,42,43,44,45,48,49,50,54],effectic:18,effective_subcarrier_ind:18,effectvi:[17,18],efficaci:54,effici:[1,3,9,10,11,12,14,16,17,18,19,23,24,27,30,31,34,40,42,44,46,47,49,54],efficienli:[35,49],effort:54,eigen:3,eigenvalu:23,eigenvector:23,either:[1,3,6,8,9,10,12,15,16,17,18,19,20,22,24,25,26,27,31,33,34,36,42,43,44,48],ekwfg2010:2,electr:[23,37,41,44],electro:[19,23,44],electromagnet:[19,41,42,45,52,54],eleg:27,element:[1,3,8,11,12,13,14,15,16,17,18,19,20,22,23,25,29,30,33,34,35,36,38,42,45,46,48,49],element_horizontal_spac:3,element_vertical_spac:3,elev:[3,19,43],eleventh:18,elif:[24,25,33,34,35,36,39,42],elkelesh:[9,11],ell:[1,2,3,15,18,19,27,34],ell_0:15,ell_:[15,19,24,27,37],ell_i:15,ell_j:19,ell_n:[15,19],els:[24,25,26,27,31,33,34,35,36,39,42,44,46,47,48,49],em:[19,42,44,45],em_prim:44,email:54,embed:[11,54],emil:3,emiss:2,emit:19,emphas:24,empir:[20,24,34,38,39,40,50],empirical_aclr:[21,38],empirical_psd:[21,38],emploi:54,empow:23,empti:[14,16,17,18,19,44],emptypilotpattern:21,emul:42,en:[14,24,52],enabl:[2,3,8,12,15,16,17,18,19,22,24,25,26,27,29,30,31,34,35,36,37,39,40,41,42,45,46,47,48,52,54],enable_pathloss:[3,25,33,36,39],enable_shadow_fad:[3,25,33,36,39],enable_xla_for_tensorflow_model:30,enc:[10,24,27,31],enc_crc:11,enc_mat:10,enc_polar:11,encod:[5,7,14,17,21,24,25,26,29,30,31,34,35,36,39,40,46,48,49,50,54],encoder_crc:30,encoder_polar:24,encourag:[41,44],end2endsystem:47,end:[1,3,13,14,15,16,17,18,19,20,22,23,29,42,43,45,46,48,49,52,54,56],endless:41,endpoint:42,energi:[2,3,17,18,19,22,23,34,38,41,42,44,45,46,48,50],engin:[2,23,27],enhanc:[7,24,30,54],enjoi:[25,41,42,43,44,45],enough:[3,24,27,39,42],enrico:[23,44],ensur:[1,3,4,10,12,15,16,18,19,23,24,27,30,33,41,42,43,44,53],entail:13,entir:[15,16,17,18,19,34,35,41,45,49,52,54],entiti:27,entri:[9,14,15,16,17,22,24,42,46,50,56],entropi:[26,35,47,49,50,54],enumer:[24,27,31,34,41,43,44,45],enviro:23,environ:[19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54],ep2014:16,ep:[16,18,33,36],epdetector:[21,33,36],episod:52,epr:17,epsilon:26,epsilon_i:26,epsilon_r:26,eq:[2,3,16,19,23],equal:[1,3,6,7,8,9,10,11,12,13,14,15,17,19,20,21,22,23,24,25,27,30,32,34,35,36,37,39,40,41,42,44,45,48,49,50,52],equat:[2,14,19,35,36,37,41,43,44],equip:[3,19,25,29,33,35,36,42,43,48,49],equival:[3,11,15,16,18,19,23,26,34,36,38,44,45,48,50],er:19,er_ep:36,er_kbest:36,er_lmms:36,er_mmse_p:36,eras:1,erasur:[1,24],erbium:[0,21,37],eri:[9,50],err_var:[17,18,29,30,34,35,36,39,48,49],erron:[27,46],error:[1,3,6,7,10,13,14,16,17,18,19,21,22,24,25,26,27,28,29,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,54],esno:[22,24],esno_db:24,esno_db_max:24,esno_db_min:24,esno_interv:24,especi:[16,18,34,39,41,52],esposti07:[19,23],esposti11:[19,23],esposti22:[19,23],esposti:[23,44,45],essenti:[27,45,54],essiambr:[2,37],est:[33,36],est_label:36,estim:[6,9,10,11,13,15,16,17,19,21,22,24,25,26,27,30,31,33,34,35,40,42,43,46,47,48,49,50,52,54,56],estimate_at_pilot_loc:18,estimate_covariance_matric:36,estimatior:17,et:[19,23,44,45,50],eta:[19,23],eta_0:41,eta_1:23,eta_2:23,eta_:[19,23],eta_n:41,eta_rad:19,etc:[3,15,19,27,29,34,42,50],etoil:[21,42],etsi:[7,8,9,11,12,13,15,24,27],euchner:54,eutra:[8,13],eval:[25,34,35,39],evalaut:30,evalu:[10,11,19,20,22,23,24,27,29,30,33,36,44,46,47,48,49,50,52],evaluate_ms:36,even:[3,18,20,23,24,25,27,30,38,42,46,54],event:3,ever:56,everi:[3,9,12,15,16,17,18,19,25,26,27,30,33,34,35,36,38,39,41,42,43,44,45,46,50,52],everyth:[19,23,30,40,50],everywher:19,evolut:[5,19,34,42,48,54],evolv:[8,13,19,44],exact:[2,5,6,8,13,17,24,27,34,39,43,46],exactli:[11,19,27,45],exampl:[2,3,6,10,13,14,17,18,21,24,26,27,28,29,30,34,35,36,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56],exce:25,exceed:3,excel:24,except:[3,7,10,14,17,19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],excess:45,exchang:[24,33,42,54],excit:[30,49,54],exectu:44,execut:[4,8,12,14,19,22,24,30,31,34,35,36,37,40,41,42,43,44,45,46,47,48,49,53,56],exercis:34,exhaust:[19,30],exhibit:41,exist:[10,15,16,18,19,22,24,30,37,41,42,44,46,52,54,56],exit:[5,9,21,41,42,43,44,45],exitcel:[41,42,43,44,45],exp:[2,3,14,15,16,20,27,37],exp_corr_mat:[0,21,40],expand:22,expand_dim:[8,22,42],expand_to_rank:[21,26,33,35,41,45],expans:19,expect:[1,6,10,12,16,17,18,19,24,26,27,33,35,37,40,41,43,44,45,49],expedit:54,experi:[19,25,27,37,44,45],experienc:43,experiment:[22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,50],expert:52,explain:[18,19,23,24,25,34,36,43,55],explan:[24,41,44,45],explanatori:34,explicit:[7,8,12,14,22,23,24,27,50],explicitli:[6,8,9,12,13,18,19,24,27,31,42],exploit:10,explor:[5,26,41,43,44,52],exponenti:[3,40],exponeti:40,express:[9,15,16,18,19,22,23,27,50],extend:[17,19,23,25,30,36,40,41,49,52,54],extens:[22,23,24,31,41,42,46],exterior:[23,41],extern:[0,10,14,21,42],extra:13,extract:[14,18,25,29,35,49],extrem:24,extrins:[9,14,27,33],extrud:54,ey:[40,44],f:[1,2,3,6,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],f_:[2,19,23,37,43,45],f_c:[2,18,37],f_edfa:37,f_hz:19,f_max:20,f_min:20,face:[23,41],facecolor:41,fact:[14,19,23,24,27,38,42],facto:27,factor:[2,3,9,15,16,17,18,20,23,24,25,34,38,41,50],fade:[0,21,25,33,34,40,41,45,48],fail:[23,24],fair:[24,31,36],fairli:[34,39,40,48,49],fake:[14,27,50],fall:23,fals:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50],famili:[10,48],familiar:[34,39,41,45,50],fan:[30,46],far:[19,27,37,40,41,44,46,50,52],fascin:50,fashion:9,fast:[11,24,30,41,43,45,46,52],faster:[25,27,30,33,34,41,43,46,52,54],fastfadingchannel:40,fateh:[16,33],favor:23,favorit:50,faycal:36,fbmc:34,feasibl:[10,24],featur:[17,19,26,30,34,36,40,42,46,47,54],feb:[11,23,29,41,47],februari:[37,54],fec:[6,7,8,9,10,11,12,13,14,17,21,24,26,27,29,30,31,33,34,35,36,39,40,48,49,50,51,52],fed:[23,25,26,35,49],feed:[6,35,49],feedback:[6,26,54],feel:[34,45,50],feick:27,feit:2,ferreira:2,few:[10,17,19,24,27,30,34,38,40,42,43,45,46,48,50,54],fewer:54,ffffff:19,fft:[3,18,21,37,43,48],fft_size:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,48,49],fftshift:[37,43],fiber:[0,21,37,52],fibonacci:[19,42],fidel:54,field:[3,18,19,41,42,44,45,52,54],field_at_point:44,fifti:16,fig:[9,11,17,19,22,23,24,26,31,32,33,36,37,41,43,44,47],fig_3d:19,fig_h:19,fig_v:19,figsiz:[15,24,26,27,29,31,32,33,35,36,38,43,44,46,47],figur:[2,3,5,9,14,15,17,18,19,20,22,23,24,25,26,27,29,32,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49],file:[14,19,22,28,29,35,42,46,47,49,52],filenam:[10,14,19,26,28,42],fill:[9,13,17,22,25,26,33,35,49],filler:[8,9],filter:[3,16,18,21,34,35,36,37,49,52],find:[6,8,10,13,14,19,23,24,30,42,46,54],find_s_min:8,find_threshold:24,fine:[18,24,26,41,45],finer:[44,45],finit:[3,18,23,34,38,41],first:[1,2,3,6,7,8,9,11,13,14,15,16,17,18,19,20,22,23,24,25,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,52,53,56],fit:[17,19,25,29,34,35,49],five:18,fix:[7,8,12,23,24,26,34,42,48,49,50],flag:[6,15,16,17,18,19,25,40],flat:[0,21,34,40],flatfadingchannel:[0,21,40],flatten:[16,22,37],flatten_dim:21,flatten_last_dim:[21,35],fleck:2,flexibl:[5,11,24,30,31],flip:[1,12,14,27],float16:[9,11,14],float32:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,26,27,28,30,31,32,33,34,35,36,42,44,45,46,47,49,50,51],float64:[9,11,14,15,16,17,18,20,22,40,46],flood:9,floor:[5,14,27,29,31,43,54],floor_wal:[21,41],floot:19,florian:54,flow:[11,14,24,52],fluctuat:41,fluctut:41,flux:23,fmf1976:2,foc:44,focal:23,focu:[23,24,27,36,37,42,50,52],focus:[19,36,44,45],focusing_len:[19,44],folder:[14,29,53],folllw:25,follow:[2,3,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56],follw:14,fontsiz:[24,27,31,47],footprint:[9,50],foral:24,forc:[3,16,18,34],forget:45,form:[3,6,10,13,14,15,16,19,23,26,27,29,35,41,42,44,45,47],format:[6,10,13,14,19,24,25,26,27,30,34,35,39,40,41,42,46,50,54],former:[2,3,16,19,23,26,37,41,43,54],formul:19,formula:[19,23],fornei:11,forney_graph:11,fortun:43,forward:[6,16,21,22,24,26,27,33,35,42,47,49,52,54],forward_keyboard_interrupt:[22,24,27,31,42,46,50],foschini:[2,37],fossori:[10,24],found:[3,5,14,15,19,23,24,31,42,46,52],foundat:[3,54],four:[16,17,18,25,32,34,38,46,47,48,49],fourier:[0,3,18,20,21,23,34,35,38,52],fourth:[29,34],fov:19,frac12:[3,16,23],frac:[1,2,3,6,9,13,14,15,16,18,19,20,22,23,24,25,27,35,36,37,41,43,45],fraction:[19,23,45],frame:[17,18,22,25,30,33,46],frame_dur:[17,25],frame_numb:[17,25],frame_s:8,framework:[9,13,54,56],frauenkirch:[19,42],free:[6,14,22,23,25,26,27,34,42,50,54],freedom:[34,50],freeli:[19,34,44],freeman:50,freq:[17,20,25,33,34,36,42],freq_cov_mat:36,freq_cov_mat_:36,freq_respons:39,frequenc:[2,3,17,19,20,21,25,28,29,35,37,38,41,42,43,44,45,49,52,54],frequency_hop:17,frequency_update_callback:19,frequeni:42,fresnel:23,from:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,54,56],from_dict:19,from_logit:[26,47,49,50,51],front:[17,23,43],frozen:[11,24],frozen_po:[11,24],ft2015:16,ftp:15,ftt:18,fu:16,fuction:[25,33],fugihara:2,fulfil:[14,19],full:[6,9,10,11,14,16,17,18,20,22,25,27,33,34,36,37,43,46],fulli:[9,11,15,35,49,54],fun:[34,47],func:4,fundament:[3,23,46],furnitur:19,further:[1,2,5,6,9,10,11,12,13,14,17,18,19,22,23,24,25,27,30,37,38,40,42,44,46,51,54],furthermor:[54,56],futur:[30,34,36,39,48,49,52],fwhm:37,g:[1,2,3,6,8,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,34,35,37,38,39,40,41,42,44,46,47,53,54],g_0:37,g_:[23,37],g_db:41,g_dif_db:41,g_edfa:37,g_los_db:41,g_ref_db:41,g_tot_db:41,ga:[27,50],ga_sourc:27,gabri:24,gain:[2,11,19,23,24,27,33,34,37,41,42,44,45,48,50],gallag:24,gallion:2,gamma:[2,3,19,23,37,45],gamma_:18,gap:[9,24],gastpar:11,gather:[16,18,30,34,36,39,42,46,48,49],gaudio:24,gaussian:[3,14,16,18,20,26,27,28,30,34,35,37,50],gaussianpriorsourc:[5,21,27,50],gc:[1,19,23],gca:[24,29],gcf:24,gd1991:2,ge:23,geforc:[30,46],gen_poli:[6,13,24,31],gen_single_sector_topolog:[0,21,25,33,36,39],gen_single_sector_topology_interfer:[0,21],gen_topolog:[25,39],gener:[2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,27,29,30,31,32,35,36,38,39,40,41,42,43,44,45,47,48,49,50,52,54],generaliz:54,generate_5g_rank:[5,21,24],generate_channel:3,generate_data:29,generate_dense_polar:[5,21],generate_out_int:9,generate_polar_transform_mat:[5,21],generate_prng_seq:21,generate_reg_ldpc:[5,21],generate_rm_cod:[5,21,24],generateflatfadingchannel:[0,21],generateofdmchannel:[0,21,28,29,33,36],generatetimechannel:[0,21],geng:23,gentl:33,geograph:54,geometr:[1,15,19,23,41,45],geometri:[3,19,26,34,36,42,48,54],georg:47,geospati:54,geq:3,gerard:37,gerhard:37,germani:[27,42],get:[16,18,19,23,24,25,34,38,39,40,41,42,43,44,45,47,48,49,50,52,55,56],get_exit_analyt:[5,21,27],get_logg:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],get_num_term_sym:13,get_throughput:[24,30],get_weight:[26,35,47,49,50],geth:25,gf:14,ghz:[3,19,29,41,42],gi:[30,46],gian:54,gile:2,github:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],githubdigit:54,githubeven:54,githubin:54,githubit:54,githublarg:54,githubrai:54,githubrun:54,githubth:54,githubthi:54,githubw:54,give:[3,23,34,38,46],given:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,27,29,30,31,34,36,37,41,42,48,50,54],glavieux:13,global:[4,8,12,19,23,41,42,43,44,45],globecom:1,gm2pcm:[5,21],gm:[10,11,14],gnb:33,gnn:54,go:[23,25,27,30,41,45,50],goal:[23,27,39,44],goala_lp:11,goe:45,goebel:[2,37],goela:11,gold:17,gong:54,good:[18,19,23,30,34,36],googl:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54],gottfri:27,gp:2,gpu:[11,19,22,30,37,46,48,49,52,53,54],gpu_num:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],grad:[19,26,30,35,44,46,47,49,50,51],gradient:[11,19,23,26,35,42,49,50,52,54],gradienttap:[26,35,44,47,49,50,51],grai:[15,26,27],grain:18,grant:14,granular:[19,24],graph:[3,4,8,9,11,12,16,18,22,24,25,27,31,36,47,48,49,50,52,54],graph_mod:22,graphic:23,grasp:45,great:[11,23,24,36,56],greater:[3,9,11,17,20,22],green:[19,23,31,41],grei:18,grid:[3,17,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,39,42,43,44,46,47,49],grosjean:[11,24],gross:[11,50],gross_fast_scl:11,groud:48,ground:[19,26,27,35,39,41,43],group:[2,17,19,25,37,53],grown:41,gsm:5,gt:[24,25,28,29,32,35,36,40,43,44,46],gtd:[23,41],guarante:[14,19],guard:[18,33,34,35,48],guardcarri:18,guid:[9,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53],guillermo:[52,54],gumbel:1,gumbl:1,gumblesoftmax:1,gvd:37,h00:15,h5:28,h5py:28,h:[2,3,9,12,14,16,17,18,19,20,22,23,25,27,33,34,35,36,37,38,39,40,41,42,43,44,45,50],h_0:25,h_1:25,h_:[3,14,19,23],h_avg_pow:42,h_corr:3,h_delai:43,h_delay_doppl:43,h_dop:43,h_eff:18,h_est:[34,39],h_f:3,h_f_2:41,h_f_tot:41,h_freq:[3,28,29,34,36,39,42,48,49],h_freq_hat:3,h_hat:[18,29,30,33,34,35,36,39,48,49],h_l:[17,18],h_n:19,h_p:19,h_perf:[34,39],h_sampl:36,h_samples_:36,h_sim:43,h_t:3,h_time:[3,34],ha:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,27,30,31,32,34,36,37,38,39,41,42,43,44,45,47,48,49,50,52,54],habilit:27,had:[19,56],hagenau:14,half:[2,16,19,34,37,48],half_window_length:2,ham:[2,14,20],hammingwindow:21,hand:[41,44],handbook:9,handl:[9,10,13,14,15,18,22,24,26,31,42],hann:20,hannwindow:21,hanzo:16,haochuan:54,happen:[19,22,24,25,27,41,42,45,46,50],hard:[6,9,10,11,13,15,16,17,18,22,24,27,30,31,33,34,36,39,40,42,48,49,50],hard_decid:13,hard_decis:[21,27,31,50],hard_in_out:15,hard_out:[6,9,11,13,14,15,16,18,26,27,29,30,33,34,35,36,39,40,46,48,49,50],hardin:2,hardli:34,hardwar:[3,25,33,34,42],harmon:52,has_weight:9,hashemi:11,hashemi_sscl:11,hat:[2,3,16,18,19,23,25,43,45],have:[2,3,7,8,10,12,13,14,15,16,17,18,19,20,22,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56],hd5cirgen:28,hdf5:28,he:[10,23,24,35,49],heavili:54,height:[3,15,19,42,44],hello:[52,53,55],help:[3,9,17,19,23,25,26,30,34,35,44,45,46,49,50],helper:44,hemispher:[19,45],henc:[2,23,36,37,41],her:34,here:[2,13,18,19,23,25,26,28,29,34,37,39,40,42,44,46,47,48,52,54],herebi:[1,12],hermitian:22,hertz:3,hessian:[19,23],heurist:[23,41],hex:19,hf:28,hide:30,high:[2,3,10,16,17,19,24,25,34,39,40,41,42,43,46,52,54],higher:[10,12,17,24,27,30,34,36,37,41,42,43,44,45,50,54],highest:18,highli:10,highlight:[29,36],himself:34,hint:[14,27,37,46],hist:[34,39],histogram:[9,27,34,39],histori:27,hit:[23,41,45],hm:3,ho:54,hochwald:33,hold:[7,14,18,19,23,24,27,30,37,45],home:36,homogen:[19,23],honkala:[35,49],hood:25,hop:17,hope:[30,41,43,44,45,49,56],hopefulli:[25,42],horizon:43,horizont:[3,19,23,34,44,48],horizontal_spac:[3,19,41,42,45],hou:[9,12,27],hour:[24,42],hous:[23,41],how:[2,3,6,7,8,9,11,12,13,14,16,17,18,19,20,23,24,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,54],howev:[2,3,6,8,10,11,12,13,14,16,17,18,19,22,23,24,25,27,30,33,34,36,37,38,39,41,42,43,44,45,46,47,48,49,50,52,54],hoydi:[1,3,11,24,26,33,35,47,49,52,54],ht1973:2,html:[14,25,39,42,44],http:[9,11,14,15,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,50,52,53],hui:[11,24],hui_channelcod:11,humphrei:23,huttunen:[35,49],hw_dipol:19,hw_dipole_pattern:21,hybrid:[11,24],hybrid_sc:11,hybscl:[11,24,31],hyper:50,hyperparamet:[33,50,54],hypothesi:16,hyung:54,hz:[2,3,18,19,33,34,35,36,37,42,43,44,48,49],i:[1,3,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54],i_:17,i_bil:11,i_il:11,i_k:23,i_seq:11,ia:[14,27],ibm:24,icassp:[11,24],icc:13,ici:[3,48],id:[12,14,17,25,30,46],idd2:33,idd3:33,idd:54,idd_it:33,idd_stop:33,iddmodel:33,idea:[24,26,27,30,38,50,52,54,56],ideal:[2,3,19,23,34,37,39,44],ident:[13,14,16,17,19,25,27,34,40,42,44],identici:44,identifi:[12,17,19,25],idft:[3,20],ido:[11,24],idx:[22,24,27,31,42],ie_c:[9,14,27],ie_v:[9,14,27],iec:[14,27],ieee:[1,3,6,9,10,11,12,13,14,16,19,23,24,26,27,33,35,41,44,45,47,49,50],iev:[14,27],iff:[11,12,22,24],ifft:[21,43],ignor:[3,6,10,12,13,17,18,19,23,28,30,34,42,46,48],ii:[41,44,46,47,48,49],iid:33,iii:[41,46,47,48,49],illumin:44,illustr:[28,30,41,47],im:[16,28,36,51],imag:[3,19,26,32,34,35,36,38,39,40,42,46,47,48,49,51,53],imaginari:[15,16,26,32,34,35,39,46,47,48,49,51],immedi:[22,41,46,53,56],immers:54,impact:[19,23,25,26,36,37,39,40,41,43,46,50,52],impair:37,imped:23,imperf:[25,34,39,42],imperfect:[25,34,36,39],imping:[23,45],implement:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,35,36,37,40,41,42,45,46,47,48,50,51,56],impli:[6,13,19,25,34,50],implicit:15,implicitli:[6,14,34,42],implict:25,importantli:[23,41,42],importerror:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],impos:[10,14,16,23,34],imposs:4,impract:43,imprecis:36,improv:[9,10,27,33,34,36,38,44,45,50,54],impul:37,impuls:[3,18,19,20,28,29,38,41,43,44,48,49,52,54],imshow:[36,44],in_stat:3,inaccur:[14,27],inch:15,incid:[19,23,41,44],incl:[24,27,31],includ:[2,3,9,10,11,17,18,19,23,24,25,27,29,30,31,34,35,36,37,39,42,45,47,48,50,52,53],inclus:[6,13,22],incom:[9,19,23,41,42,44,45],incorpor:[23,54],incorrect:23,increas:[2,9,11,14,16,19,24,25,31,36,37,38,41,42,43,44,45,50,54],incred:30,ind_iil_inv:11,ind_pam1:15,ind_pam2:15,ind_qam:15,inde:[25,45],indent:45,independ:[4,10,12,16,17,19,22,23,25,27,30,34,40,46,47,52],index:[3,9,12,15,18,19,20,22,25,27,30,34,35,38,39,44],indic:[1,3,4,6,7,9,11,12,13,15,16,17,18,19,20,22,23,24,29,30,34,36,39,40,41,47,48,49],individu:[16,18,19,24,25,26,27,30,34,37,42,44,46,50],indoor:[3,19,54],indoor_prob:3,induc:[2,37],inf:[6,9,10,11,12,14],infer:[6,13,14,24,25,33,35,47,49],infinit:[2,23,27,37,41,42,44,45],infinitesim:[19,23,45],influenc:50,info:[9,17,24,25,27,30,42,46,50],info_bit_length:30,info_po:[11,24],inform:[6,7,9,10,11,13,14,15,16,17,18,22,23,24,25,26,27,29,30,31,33,34,35,36,39,40,46,47,48,49,50,51,54],infti:[1,3,23,24],inher:[30,46],inherit:[1,2,3,6,7,8,9,10,11,12,13,17,19,30,33,46,47,48,49],init:[2,8,12,14,17,24,27,30,31,42,46,50],initi:[8,9,10,11,12,13,14,15,17,19,22,24,25,27,30,31,33,34,35,36,37,42,44,46,47,48,49,50,51,54],initial_valu:15,initialis:42,inlin:[2,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],inner:[22,47,54],inp:20,input:[1,2,3,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,29,30,31,33,34,35,36,37,42,44,46,47,48,49,50,51,52,54],input_domain:[17,25,42],input_interleav:11,input_shap:[35,51],inputs_reshap:46,insensit:20,insert:[14,20,22,34,38],insert_dim:[21,26,35,49],insid:[42,46],insight:41,inspect:[25,34,38,41,42,43,44,45],inspir:[24,33],instal:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55],instanc:[3,7,8,9,11,12,15,16,17,18,19,20,22,25,26,29,34,38,40,42,46,48],instant:[3,34,48],instantan:[37,54],instanti:[3,4,10,13,17,19,20,25,26,29,30,34,35,36,37,38,39,40,42,44,46,47,48,49,51],instead:[1,3,7,9,11,14,15,16,17,18,19,22,23,24,25,30,42,47],instruct:[24,25,30,33,34,36,39,48,49,53],instrument:54,int2bin:[5,21],int2bin_tf:[5,21],int32:[8,12,13,15,16,18,22,24,26,30,36,45,46,47,49],int64:[22,35,42],int_0:23,int_:[3,19,23],int_method:36,int_mod_2:[5,21],int_rep:46,intanti:47,integ:[8,9,10,11,12,13,14,15,17,18,19,22,23,24,30,34,45,46],integr:[2,5,15,16,19,23,24,42,45,47,52,54],intellig:[21,52,54,56],intend:[18,34],intens:[19,23,43],intent:56,inter:[3,25,30,34,46],interact:[19,37,42,44,52,56],interc:18,intercarri:[3,48],interest:[17,23,24,27,31,32,34,37,39,41,44,45,48],interestingli:27,interf:[3,16],interfac:[0,21,23,27,52],interfer:[3,16,18,25,33,34,41,44,45,48],interfernc:34,interior:19,interleav:[5,7,9,11,12,13,17,21,24,26,30,33,46,47,49,50,54,56],interleaver_typ:13,intermedi:[22,27,37,44,50,54],intern:[1,2,3,7,8,9,10,11,12,13,14,16,17,18,19,22,24,27,31,39,42,46,50],internet:[24,54],interp:33,interpol:[17,18,19,23,30,33,34,35,36,39,44],interpolation_typ:[17,18,29,30,33,34,35,36,39,48,49],interpret:[1,2,10,14,16,22,27],interrupt:27,intersect:[19,23,42,43],intersymbol:3,interv:[3,19,24,38,42],interval:44,intrins:16,introduc:[2,8,23,27,37,41,47,49,54],introduct:[9,23,25,26,35,41,56],intuit:[24,27],invalid:[3,9,11],invalidargumenterror:[7,8,9,11,14],invari:3,invers:[3,8,9,11,12,14,16,17,18,19,20,22,23,35,37,42],invert:[9,29],invert_xaxi:29,investig:[34,37,39,42,50,52],invis:19,invok:19,involv:[19,24,34,48,49],io:[25,39,42,44,53],ioniz:19,iot:[24,54],ipykernel:53,ipython:[30,32,41,42,43,44,45,51],irregular:14,irrelev:[18,41],is_bler:[22,31],is_pcm:[10,14],is_us:19,isb:41,isd:3,isi:[3,34],isinst:33,isit:[9,11],isita:14,isn:50,iso:[19,23,41,42,43,44,45],iso_pattern:21,isol:37,isotrop:[19,23,41,44],issu:[25,33,52,54],iswc:16,ita:29,itali:19,item:[3,19,28],iter:[9,11,13,14,16,17,18,22,24,25,26,27,28,29,30,31,34,35,36,39,42,44,46,47,48,49,50,54,56],its:[1,4,5,6,10,11,13,14,15,16,17,18,19,20,22,23,27,28,30,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,53,54],itself:[2,6,13,24,27,42],itu:[19,23,41],itu_brick:[19,41],itu_ceiling_board:[19,41],itu_chipboard:[19,41],itu_concret:[19,41],itu_floorboard:[19,41],itu_glass:[19,41],itu_marbl:[19,41,42],itu_medium_dry_ground:[19,41],itu_met:[19,41],itu_plasterboard:[19,41],itu_plywood:[19,41],itu_very_dry_ground:[19,41],itu_wet_ground:[19,41],itu_wood:[19,41],itur_p2040_2:19,iturp20402:23,iturp52615:23,itw:[11,50],iv:[19,46,47,48,49],j2:[3,18,19,20,23,41,43],j:[1,2,3,6,8,9,11,12,14,16,18,19,23,24,25,26,27,30,33,34,35,37,39,41,43,44,47,48,49,50],j_0:18,j_fun:[5,21],j_fun_inv:[5,21],j_fun_inv_tf:[5,21],j_fun_tf:[5,21],jai:54,jakob:[3,11,52,54],jame:27,jan:[23,41,45],jang:1,januari:54,jc:23,jean:37,jelinek:6,jerkovit:24,jian:[35,49],jit:42,jit_compil:[3,4,11,16,18,22,24,25,26,30,31,33,34,36,39,40,42,46,47],jk:23,jk_0:23,jk_0r:23,johari:54,john:[6,19,23],joint:[1,26,27,37],jointli:[16,26,34,37,44,47,49,51],joohan:54,joseph:[23,41,54],joshireleas:54,journal:[2,16,23,26,33,37,41,50,52],jsac:26,jt:23,jul:[3,15,33,45],juli:16,jun:[11,19,23,24],june:[35,49],jupyt:[19,30,41,42,43,44,45,46,51,52,54,56],jupyterlab:53,just:[5,6,10,24,30,34,37,40,42,46,47,50,51],jx:23,k:[2,3,6,7,9,10,11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,33,34,35,36,38,39,40,42,43,44,45,46,48,49,50,51],k_0:[19,23],k_:19,k_best:[25,33,36],k_crc:[7,11],k_exit:27,k_factor:3,k_i:19,k_ldpc:[9,30],k_n:18,k_pad:17,k_polar:11,k_t_lo:43,k_t_ref:43,k_target:11,k_x:[19,23],kaim:[35,49],kappa:[17,25],kbest:[25,42],kbestdetector:[21,25,33,36,42],keep:[10,16,18,19,23,24,26,30,35,36,37,39,44,46,56],keep_batch_const:[8,12],keep_stat:[8,12],keepdim:[19,44],kei:[15,18,26,30,34,41,42,46,47,48,49,51,52,54,56],keirsbilck:54,keller62:23,keller:[23,41,52],kellerreleas:54,kept:[12,19,23,37],ker:20,kera:[1,2,3,6,7,8,9,10,11,12,13,17,19,22,24,25,26,27,29,30,31,36,42,44,47,48,49,50,51,52],kernel:[11,20,35],kernel_s:[35,49],kerr:2,keyboardinterrupt:22,keyword:[17,25,45],khz:17,kilo:2,kind:[18,37],kl:14,kline:23,km:[2,37],kn:3,knife:[23,41],know:[24,34,35,40,41,46],knowldg:15,knowledg:[3,14,15,16,18,19,27,33,34,35,36,40,54],known:[16,23,24,26,35,41,50,53,54],korada:11,korpi:[35,49],kouyoumjian74:23,kouyoumjian:[23,41],kramer:[2,14,27,37],kroneck:[3,11,18,29,30,33,34,35,36,39,40,48,49],kroneckermodel:[0,21,40],kroneckerpilotpattern:[21,34],ks:24,kth:3,kudekar:[9,24],kumar:54,kwarg:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,36,46],l:[1,3,6,9,11,12,14,16,17,18,19,23,24,27,31,33,36,38,42,50],l_:[2,3,18],l_a:1,l_bar:17,l_ch:27,l_i:19,l_m:18,l_max:[3,17,25,34],l_min:[3,17,18,25,34],l_tot:[3,34],label:[15,22,24,26,27,29,31,32,33,34,35,36,41,44,47],labelpad:43,labels:[24,31],lag:[3,17,18],lagrang:19,lagrange_polynomi:19,lagrangeprofileinterpol:[21,23],lai:3,lamba_check:[25,33],lambda:[17,19,23,25,33,41,43,44,45],lambda_:19,lambert:23,lambertian:[19,23,45],lambertianpattern:[19,23,45],land:[11,24],languag:[30,54],larg:[2,3,10,11,14,16,18,19,24,25,30,33,34,39,40,41,42,44,45,50,54],larger:[3,6,11,16,17,18,19,22,23,24,25,33,34,38,44,45],largest:[3,18,19,24,29],laser:2,last:[1,2,3,7,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,35,37,39,40,42,43,45,46,47,49,50],latenc:[5,6,24,31],later:[1,17,24,25,27,34,40,41,42,43,44,45,46,48,50],latest:[41,42,43,44,45,53,54,56],latter:[15,16,17,18,19,22,23,34,41,43,44,45,46],lattic:19,launch:[19,53],law:[23,41],layer:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,24,26,27,31,35,37,38,42,46,48,49,51,52,54],layer_mapp:17,layerdemapp:[21,25],layermapp:[21,25],layernorm:[35,49],layout:[24,29],lazi:24,lc:19,lceil:[3,13,19],ldpc5gdecod:[5,21,24,26,27,29,30,31,33,34,35,36,39,40,46,48,49,50,51],ldpc5gencod:[5,10,21,24,26,27,29,30,31,33,34,35,36,39,40,46,48,49,50,51],ldpc:[5,10,14,17,21,26,27,29,30,31,33,34,35,36,39,40,46,48,49,51,52,54,56],ldpc_cn_type:30,ldpc_encod:17,ldpc_qam_awgn:27,ldpcbpdecod:[5,11,14,21,27,50],le:[3,16,18,23],lead:[3,9,11,14,16,18,19,22,23,24,25,27,36,38,39,41,42,43,47,48,50],leakag:[20,38],leakga:20,learn:[1,9,11,15,24,25,27,28,29,30,34,35,37,38,39,40,41,42,43,44,45,46,47,48,52,54,56],learning_r:50,learningshap:1,least:[3,7,8,14,17,18,19,22,25,30,33,34,35,36,39,42,46,48,49],leav:34,led:47,lee:54,left:[1,2,3,6,9,14,15,16,18,19,20,22,23,25,26,34,35,36,37,41,42,43,45,48],leftrightarrow:14,leg_str:[24,27,50],legend:[3,14,22,24,25,26,27,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],leibl:[11,24],lemma:[11,16],len:[6,12,17,19,22,24,26,29,30,33,35,42,44,49],len_:14,length:[1,2,3,5,6,7,8,9,10,11,13,14,15,17,18,19,20,22,23,24,25,26,27,29,30,31,33,35,36,37,38,40,42,43,46,47,48,50,51],length_sp:37,lens:44,leq20:24,leq:[3,18,19,20,23,24,36],less:[1,11,13,22,27,30,33,39,41,42,43,46,54],lesser:22,let:[10,13,19,23,24,25,27,28,31,32,33,34,36,37,38,40,41,42,43,44,45,46,47,48,50,51,52,54],lett:[11,24],letter:[2,27],level:[3,5,16,17,19,24,31,45,46,47,49,52,54,56],leven:3,leverag:[35,36,49,50,54],li:[19,43],lian:50,lib:[25,30,33,34,36,39,46,48,49],librari:[22,30,34,52,54],licens:19,lie:23,lieu:3,lift:[9,11,24],light:[18,23,42],lightwav:[2,37],like:[4,10,11,12,15,16,17,19,23,28,42,44,45,54],likelihood:[1,6,9,10,11,13,15,16,18,24,26,33,35,46],limit:[2,3,11,13,20,22,34,37,41,54],lin:[10,17,18,20,24,33,36,38],lin_time_avg:[17,18,29],linalg:[34,39],line2d:[24,29],line:[0,17,18,19,21,23,24,26,29,34,39,40,41,42,43,44,45,46],linear:[2,3,5,6,9,11,16,17,18,19,20,21,22,23,24,27,29,33,35,36,37,38,39,43,50],lineardetector:[17,21,25,33,36,42],linearencod:[5,14,21],linearinterpol:[17,21],linearli:[19,22,23,24,44],linefmt:34,linestyl:[24,41],linewidth:[24,31],link:[2,3,16,19,33,34,35,37,44,45,46,47,49,52,54,56],linkmodel:29,linspac:[2,29,33,36,41,44,46,47,48,49],linux:53,list2llr:[18,21,36],list2llrsimpl:[18,21],list:[10,11,12,14,16,17,18,19,22,24,25,30,31,34,36,39,41,42,43,44,46,47,54,56],list_physical_devic:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,50],list_siz:[11,24,31],literatur:[3,6,13,23],littl:[11,30,42,54],liva:24,live:[25,33],ll:19,llr2mi:[5,21],llr:[1,6,9,10,11,12,13,14,15,16,17,18,22,24,25,26,29,30,31,33,34,35,36,39,40,46,47,48,49,50,51],llr_:16,llr_a:6,llr_b:27,llr_bin:27,llr_ch:[6,10,24,27,31,33],llr_clip_val:16,llr_dec:33,llr_deint:27,llr_dist:27,llr_hist:27,llr_int:30,llr_max:[1,9,11],llr_np:27,llr_p:16,llr_pred:27,llr_sourc:[14,27,50],llrs2symbollogit:21,llrs_ch:[9,10],llvm:53,lm:54,lmmse:[16,17,18,25,30,33,34,35,36,39,40,42,48,49],lmmse_equ:[18,21,30,34,39,40,48,49],lmmse_int_freq_first:36,lmmse_int_time_first:36,lmmse_ord:36,lmmseequal:[16,21,29,30,34,35,39,48,49],lmmseinterpol:[17,21,36],ln:[15,16],lo:[3,18,19,34,41,42,43,44,45],load:[9,10,14,17,19,24,25,26,27,28,29,31,34,35,39,41,43,44,45,46,47,49,50,52,53],load_alist:[5,10,21],load_parity_check_exampl:[5,10,21,27,50],load_scen:[21,41,42,43,44,45],load_weight:26,lobe:[19,23],loc:[31,41],local:[19,23,25,27,30,33,34,36,39,41,46,48,49,53,54],locat:[3,18,19,26,27,29,35,38,41,42,43,44,54],log10:[21,26,35,38,41,44,45,49],log2:[11,21,24],log:[1,6,9,11,13,15,16,22,24,26,27,30,33,35,44,46,53],log_2:14,log_:[19,23,26],logarithm:[19,24,38],login:53,logit:[9,10,11,13,15,16,17,18,22,27,35,47,49],longer:[11,18,20,30,34,36,38,43,50],look:[16,17,19,27,30,33,34,36,38,39,40,41,42,44,45,48,50,53,55,56],look_at:[19,41,42,43,44,45],loop:[2,22,24,26,30,31,35,36,42,44,46,49,50,51],los_angle_of_arriv:[3,18],los_boundari:41,loss:[3,11,13,23,24,26,27,35,39,41,42,44,47,49,50,51,54],lossless:23,lot:34,love:54,low:[3,5,10,12,14,21,24,25,27,33,34,36,39,40,46,52,54,56],lower:[3,6,13,20,22,24,33,36,41,44,50,54],lowest:18,lp:11,ls:[17,18,30,33,34,35,36,39,48,49],ls_est:[30,34,39,48,49],lschannelestim:[17,21,29,30,33,34,35,36,39,48,49],lsp:3,lt:[24,25,28,29,32,35,36,40,43,44,46],lte:[11,13,24,31],luca:3,luebber:[23,41],luebbers84:23,lugosch:50,lump:[2,56],lumped_amplification_channel:37,lumped_amplification_channel_cd:37,lumped_amplification_channel_nl:37,lumped_amplification_channel_ssfm:37,luneberg:23,lvert:[15,16,18,19,23,25],ly:41,m1:44,m2:44,m:[2,3,9,10,11,14,15,16,18,19,20,22,23,24,25,26,27,30,33,34,35,36,37,42,44,45,46,48,49,50,51,54],ma:[24,54],mach:37,machin:[29,30,50,52,53,54,56],mackai:14,maco:53,macrocel:[0,21],macroscop:[23,41,44],made:[9,15,19,23,26,33,35,41,44,47,51,52],magazin:[9,11,24],magic:[30,32,51],magnet:[19,23,44],magnitud:[19,20,26,37,38,43,52],mai:[2,8,9,11,14,18,19,24,27,29,30,37,43,50,53,54],main:[19,50],mainli:24,maintain:[11,41],major:[31,50],make:[16,17,18,19,23,25,32,34,37,38,39,40,41,42,44,45,46,47,52,53],make_systemat:[5,21],mal2018:3,malherb:[23,41],mallik:3,manag:[17,18,21,29,30,36,54],manakov:2,mani:[5,8,11,14,15,16,17,22,23,24,25,30,31,34,39,41,42,43,45,46,47,48,49,51,52,54,56],manipul:23,manual:24,map:[1,6,11,13,16,18,21,22,23,24,25,26,29,30,31,32,33,34,35,36,39,40,43,44,46,47,48,49,51,52,54],mapper:[13,14,17,21,24,25,26,27,29,30,31,32,33,34,35,36,39,40,46,47,48,49,51],mapping_typ:17,mapsto:19,mar:[23,30,33,44,46,52],march:[6,54],marciano:50,marco:23,marcu:[52,54],maria:[23,44],mark:27,marker:[19,29],markerfmt:34,marti:54,mask:[17,18,19,25],massei:27,massiv:[3,29],mat:[14,19],mat_si:14,match:[5,9,11,14,16,17,18,20,22,23,25,27,33,35,40,43,44,45,46,50,56],materi:[11,21,23,24,41,42,45,46,47,48,49,51,54],material_nam:19,math:[14,23,26,35,37,41,44,46,47,49,51],mathbb:[3,16,18,19,20,23,25,26,36,43],mathbf:[2,3,14,15,16,17,18,19,20,22,23,25,36,43,45],mathcal:[3,9,15,16,24,26,27],mathemat:[3,6,23,27,34],mathop:[16,23],mathrm:[2,18,33,36,37],mathsf:[16,19,23,25,43],matlab:[30,46],matmul:[36,40],matplot:[15,17,18],matplotlib:[9,14,15,17,18,19,22,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],matrci:36,matric:[3,6,9,14,16,17,18,19,22,23,25,40],matrix:[3,6,7,9,10,11,14,16,17,18,19,22,23,25,27,29,34,35,36,39,40,48,49,50],matrix_inv:21,matrix_pinv:21,matrix_sqrt:21,matrix_sqrt_inv:21,matter:[34,39,44],matthia:11,matthij:54,max:[3,6,9,13,18,22,24,25,26,27,29,30,33,34,35,36,37,39,41,42,46,47,48,49,50],max_:[15,16,23],max_batch_it:24,max_block_error:24,max_cn_degre:14,max_depth:[19,42,43,44,45],max_dist:[19,42],max_gain_db:[19,42],max_it:24,max_mc_it:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,46,47,48,49,50],max_num_dmrs_port:17,max_num_path:[19,41],max_spe:[3,30],max_ut_height:3,max_ut_veloc:[3,25,33,36,39],max_vn_degre:14,maxim:[26,35,44],maximim:3,maximum:[1,2,3,6,8,10,11,16,17,18,19,20,22,23,24,29,37,42,46,48,49],maximum_delay_spread:3,maximum_iter:33,maximumlikelihooddetector:21,maximumlikelihooddetectorwithprior:21,maxlog:[6,13,15,16,18,24,25,27,31,33,42,46],maxmimum:2,maxval:[8,12,26,35,49],maxwel:23,mb:30,mbit:[24,46],mc_fun:22,mc_ite:50,mc_iter:[22,50],mcnamara90:23,mcnamara:[23,41],mcs_index:[17,25,42],mcs_tabl:[17,25,42],me:23,mean:[2,3,14,15,16,18,19,23,24,25,27,30,34,35,36,38,39,40,46,48,49,50],mean_pow:3,mean_power_lo:3,meant:44,measur:[2,3,18,19,20,23,24,27,30,31,41,42,45,46,54],mech:50,mechan:24,media:37,medium:23,melodiareleas:54,membership:53,memori:[1,2,5,6,9,10,11,13,14,19,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,50],memory_growth:30,memoryless:[11,24,27],mention:[2,25,27,30],menyuk:2,merg:[13,54],merlin:54,mesh:[19,42,54],meshgrid:[43,44],messag:[9,11,13,30,33,46,50,54],met:47,metal:[19,41],metasurfac:23,method:[0,3,6,11,13,14,15,16,17,18,19,21,23,24,26,27,28,31,33,36,39,42,43,50,52,54],meti:23,metric:[6,10,16,21,24,27,29,30,34,35,38,39,50],mf:[16,18,38],mf_equal:[18,21],mfequal:21,mffp2009:2,mhz:[19,23],mi:[14,50],mi_a:14,mi_c:14,mi_ec:14,mi_ev:14,mi_scene_param:19,mi_v:14,michel:54,microcel:[0,21],microscop:41,microwav:2,middl:45,mig:[30,46],might:[15,16,17,19,25,33,34,36,41,44,45],millimet:29,millisecond:54,milstein:[9,12,27],mimic:[27,50],mimo:[3,17,18,21,23,25,29,30,33,35,42,48,49,52,54,56],mimo_detector:[17,25,42],mimo_ofdm_transmissions_over_cdl:48,mimoofdmlink:36,min:[3,9,17,18,20,26,33,35,50],min_:16,min_bs_ut_dist:3,min_dist:[19,42],min_gain_db:[19,42],min_spe:[3,30,34,35,48,49],min_ut_height:3,min_ut_veloc:[3,25,36,39],mind:[18,19,23,24,36,44],minim:[6,11,35,47,54],minima:54,minimum:[3,11,16,18,19,20,24,27,35,36,46,48,49],minor:50,minsum:[9,17,27,30,33,46],minut:25,minval:[8,12,26,35,49],mirror:44,mirroredstrategi:22,miscellan:[5,21],miso:29,miss:[24,30,42,49],mit:23,mitsuba:[19,42,54],ml:[10,16,18,24,54],mmse:[18,21,33,36],mmse_pic:36,mmsepicdetector:[16,21,33,36],mmwave:19,mn:20,mobil:[3,14,19,25,33,36,42,44,48,56],mobility_sim:34,mobilkommunik:23,mod:14,mode:[1,2,3,4,10,12,16,18,19,20,22,23,24,25,27,31,34,37,41,42,43,45,52],mode_pow:[19,44],model1:40,model2:40,model5g:50,model:[0,1,2,6,7,8,9,10,11,12,13,16,17,18,19,21,22,24,25,26,27,29,37,41,42,43,44,45,47,49,50,52,54,56],model_allzero:27,model_allzero_16_m:27,model_allzero_16_no:27,model_allzero_16_no_sc:27,model_allzero_16_sc:27,model_baselin:26,model_baseline_16:27,model_coded_awgn:46,model_convent:26,model_l:48,model_neuralrx:49,model_output_interleav:27,model_pcsi:48,model_rl:26,model_train:47,model_uncoded_awgn:46,model_weights_path:[26,35],model_weights_path_conventional_train:26,model_weights_path_rl_train:26,modelingjakob:54,modern:[23,24,27],modif:[30,34,46],modifi:[11,17,25,30,33,42,43,49,52,56],modu:24,modul:[0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,31,33,34,35,36,37,38,39,42,43,46,47,49,50,51,52,56],modulation_ord:[17,26],modulo:14,molischreleas:54,moment:[9,11,27],monoton:27,mont:[19,22,24,27,31,33,36,40,42,46,47,48,49,50,52],month:52,moon:6,moor:22,more:[2,3,5,7,9,10,11,15,16,17,18,19,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,55],moreov:[3,18,19,25,36,41,48,49,52],morpholog:54,morri:2,most:[3,4,10,11,14,17,19,23,24,25,30,34,35,36,37,41,42,43,44,45,46,50,52],mostli:5,mote:34,mother:[11,24],motiv:35,mous:[19,42],move:[19,41,42,43,44,45],movement:[18,19,43],msb:6,mse:[36,38,40],mse_:36,msg_vn:[9,33,50],mu:[3,6,13,14,15,16,17,19,23,25,27,33,42,52],mu_0:23,mu_:[14,17],mu_llr:27,mu_r:[19,23],much:[5,11,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,49,50],muga:2,muller:[11,24],multi:[16,18,22,39,42,46,48,49,50,52,54],multicarri:34,multicel:16,multilevel:27,multipl:[3,8,11,12,14,15,17,18,19,20,21,22,23,24,26,27,29,30,33,34,37,39,41,42,46,48,50,52,54],multiplex:[7,8,9,11,13,17,21,24,25,27,52],multipli:[16,18,19,20,23,25,27,38,41],multius:[25,56],munich:[21,27,42],must:[1,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,30,31,33,34,35,42,44,45,46,47,48,49,50],mutipl:[16,30,44],mutual:[9,14,22,25,27,50],my_cam:[41,42,45],my_dataset:28,my_gener:3,my_mat:19,my_materi:19,my_material_callback:19,my_object:19,my_rx:19,my_scen:19,my_tx:19,mycam:19,mygener:3,mzm:37,n0:[33,35,36,46,47,48,49],n1:17,n2:17,n:[1,2,3,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,33,34,35,36,39,40,41,42,43,46,48,49,50,51],n_0:[3,15,18,24,25,26,29,31,34,35,36,39,46,47,48,49],n_1:25,n_:[2,3,17,25],n_b:[3,18],n_cell_id:[17,25],n_exit:27,n_f:3,n_id:[12,17,25],n_k:3,n_ldpc:[9,30],n_lift:11,n_max:2,n_min:2,n_o:[3,15,22],n_polar:11,n_r:3,n_rnti:[12,17],n_scid:[17,25],n_sim:37,n_size_bwp:[17,25],n_size_grid:[17,25,42],n_sp:2,n_span:[2,37],n_ssfm:[2,37],n_start_bwp:17,n_start_grid:[17,25],n_t:3,n_target:11,n_ue:33,n_y:23,n_z:23,nabla:[19,23],nachmani:[9,50],naiv:11,name:[19,20,22,24,30,31,41,42,44,45,46,50],namespac:46,nan:42,narrow:23,narrowband:54,nativ:[30,46,52],natur:[16,42,47,49],nb:54,nb_bit:[22,30],nb_block:22,nd_arrai:17,ndarrai:[9,10,11,14,17,22,50],ne:19,nearest:[18,30,34,35,36,39],nearestneighborinterpol:[17,21],necessari:[19,23,24,25,34,43,53],necessarili:[11,13,19,44,52],need:[3,7,9,10,11,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,52,53],neg:[14,18,19,22,23,27,35,40,41,44],neglect:[2,11,27,37],neglig:14,neighbor:[18,34,35,36,39],neither:[3,17,23,24],neq:16,nest:14,network:[2,3,12,16,17,19,24,26,35,36,37,47,50,51,52,54],networkspaolo:54,neural:[19,42,46,47,48,50,51,52,54,56],neural_receiv:[35,49],neural_receiver_result:35,neural_receiver_weight:35,neuraldemapp:[26,47,51],neuralreceiv:[35,49],neuralrx:49,never:[23,30,34,36,39,44,48,49],nevertheless:37,new_shap:46,new_topolog:[25,33,39],newaxi:44,next:[3,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,52,54],nice:[38,41,45],nicer:[24,42],nikolau:[52,54],nimier:54,ninac:24,nlo:[3,18,34],nlse:2,nn:[17,18,26,30,34,35,36,39,48,49,54],nn_input:47,nned:[34,39],no_:[33,35],no_db:26,no_eff:[16,18,29,30,34,35,39,40,48,49],no_eff_:35,no_est:27,no_est_mismatch:27,no_llr:27,node:[9,11,14,17,27,30,33,50,54],nois:[2,3,14,15,16,17,18,22,24,25,26,27,30,31,34,35,36,39,40,42,46,48,49,51,54],noise_var:[14,27,50],noise_var_eff:40,noise_var_est:40,noise_vari:27,noisi:[6,9,13,17,27,30,34,46],nomin:[3,17,34,48,49],non:[1,2,3,6,11,14,16,17,18,19,22,23,24,25,26,27,34,35,36,38,41,42,46,47],non_xla:31,none:[3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,25,26,31,33,34,35,36,39,40,41,42,43,44,45,46,47,49,50],nonetheless:27,noniddmodel:33,nonlinear:2,nonneg:18,nonposit:22,nonzero:18,nor:[3,23],norm:[2,16,19,23,37],normal:[2,3,11,15,17,18,20,21,22,25,26,28,33,34,35,37,38,39,42,43,44,45,49],normalize_channel:[3,25,29,30,33,34,35,39,42,48,49],normalize_delai:[19,42,43],nornmal:44,not_equ:27,notat:[2,6,11,13,23],note:[1,2,3,4,5,6,8,9,10,11,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,37,40,41,42,44,45,46,48,50],notebook:[5,6,13,18,19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56],noth:22,notic:[34,41,43,45,47],notimplementederror:33,notion:23,nov:[23,26,41,50],novel:[3,54],now:[7,9,10,11,23,24,25,27,28,30,31,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,54],np:[3,15,16,18,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],nprach:54,npy:36,nr:[5,7,9,11,12,15,21,24,26,27,31,35,37,42,46,47,48,49,52,54,56],nradiomateri:42,nrun:24,ns:[3,24,34,41,42,43,45,48],nth:15,nu:[15,17,18,23],nu_:16,num:[14,24,25,26,27,29,30,33,34,35,36,39,40,41,42,46,47,48,49,50],num_ant:[3,19],num_antenna_port:[17,25,42],num_b:[3,34,48,49],num_basest:46,num_bit_stream:13,num_bits_per_batch:24,num_bits_per_symbol:[9,14,15,16,17,18,20,22,24,25,26,27,30,31,32,33,34,35,36,38,39,40,42,46,47,48,49,50],num_bitstream:13,num_block_error:24,num_bp_it:[17,27,33],num_bp_iter_per_idd_it:33,num_bs_ant:[34,48,49],num_cb:17,num_cdm_groups_without_data:[17,25,42],num_cel:[19,44],num_cells_i:19,num_cells_x:19,num_channel:[35,49],num_clust:3,num_cn:9,num_coded_bit:17,num_codeword:[17,30],num_col:[3,19,25,34,35,39,41,42,44,45,48,49],num_cols_per_panel:[3,33,36],num_conv_channel:35,num_conv_enc:13,num_cw:24,num_data_symbol:[17,18,29,30,34,35,36,39,48,49],num_dim:22,num_displac:43,num_dmrs_per_prb:17,num_dmrs_port:17,num_edg:9,num_effective_subcarri:[17,18],num_guard_carri:[18,29,34,35],num_idd_it:33,num_interfer:3,num_interfering_streams_per_rx:16,num_it:[9,11,13,14,16,18,24,27,30,31,33,36,46,50],num_iter:[36,44],num_lay:[17,25,42],num_layers0:17,num_layers1:17,num_mod:[19,44],num_of_symbol:35,num_ofdm:18,num_ofdm_symbol:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,48,49],num_ov:17,num_panel:3,num_panels_:3,num_path:[3,16,19,28,29,34,42,48],num_pilot:[18,25],num_pilot_symbol:[17,18,30,33],num_point:[15,16,18,44],num_prb:17,num_repetit:24,num_res_per_prb:17,num_resource_block:17,num_resource_el:[18,30],num_row:[3,19,25,34,35,39,41,42,44,45,48,49],num_rows_per_panel:[3,33,36],num_run:42,num_rx:[3,16,17,18,19,25,28,29,33,34,41,42,44,48,49],num_rx_ant:[3,17,18,19,25,28,29,33,34,36,40,42,48],num_rx_per_tx:16,num_sampl:[2,19,41,42,43,44,45,46],num_sinusoid:3,num_slots_per_fram:[17,25],num_slots_per_subfram:[17,25],num_step:[33,44],num_stream:[12,16,18,25,34,42],num_streams_per_rx:[16,18],num_streams_per_tx:[16,17,18,25,28,29,30,34,35,39,48,49],num_subcarri:[3,17,25,28,43],num_symbol:[20,38,46],num_symbols_per_codeword:26,num_symbols_per_slot:[17,25],num_target_bit_error:[22,27,50],num_target_block_error:[22,24,25,26,27,29,30,31,33,34,35,36,39,40,42,46,47,48,49],num_target_error:30,num_time_sampl:[3,17,18,25,34,39,48],num_time_step:[3,19,28,29,34,42,43,48],num_training_iter:[35,47,49],num_training_iterations_convent:26,num_training_iterations_rl_alt:26,num_training_iterations_rl_finetun:26,num_tru:42,num_tx:[3,16,17,18,19,25,28,29,30,33,34,35,36,39,42,44,48,49],num_tx_ant:[3,17,18,19,25,28,29,33,34,40,42,48],num_tx_per_rx:16,num_ue_loc:29,num_us:[30,46],num_using_object:19,num_ut:[3,34,39,48,49],num_ut_:[34,48,49],num_vn:9,num_zero_symbol:18,number:[2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51],numcdmgroupswithoutdata:25,numer:[2,9,11,14,16,17,18,33,36,54],numerolog:17,numlay:17,numpi:[8,11,14,15,16,17,19,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],nun_ant:3,nunber:46,nvidia:[30,46,51,52,53,54],nvlab:[25,39,42,44,46],nyquist:34,o1:29,o1_60:29,o2i:3,o2i_model:[3,25,33,36,39],o:[10,24,26,29,33,35,36],obj:19,object:[3,6,9,13,15,17,18,21,22,24,27,28,29,30,31,34,35,39,41,42,44,46,47,48,49,50,51],object_id:19,observ:[3,9,14,16,17,18,19,23,27,33,34,37,39,41,43,44,45,50],obtain:[2,3,13,15,16,18,19,20,23,25,29,34,38,41,42,43,44,45],obviou:27,obvious:[30,46],occup:11,occupi:[18,25],occur:[1,13,22,24,27,29,33,34,35,36,46,47,48,49,50],oct:[23,33,44],octal:6,odbl:19,odd:[3,18,20,23,25,38],odot:[18,23],ofdm:[0,17,19,21,22,25,29,30,33,42,43,47,49,52,54,56],ofdm_channel:[28,29,34,39],ofdm_symbol_dur:[18,34,39,43,48],ofdmchannel:[0,18,21,25,29,30,33,34,35,36,39,42,48,49],ofdmdemodul:[3,17,21,25,29,34,39],ofdmdetector:[17,21,25],ofdmdetectorwithprior:21,ofdmequ:21,ofdmmodul:[3,17,21,25,29,34,39],ofdmsystem:[48,49],ofdmsystemneuralreceiv:49,off:[17,18,20,24,30,38,42,46],offer:[44,54],offic:3,offici:[46,47,48,49,51],offset:[18,19,20,27,34,43,54],often:[6,10,11,13,27,30,34,42,56],old:42,olmo:16,omega:[19,23],omega_n:19,omit:[18,19,23,27],omni:[3,25,33,36,39,48,49],omnidirect:[33,36],omnipres:30,onc:[3,18,19,24,26,30,34,35,42,46,48,53,54],one:[2,3,11,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,30,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,50,52,56],one_ring_corr_mat:[0,21],ones:[3,11,14,18,22,23,25,29,33,36,42,44,51],ones_lik:[41,44,50],onli:[1,2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54],onlin:[11,47,51,52],ons:19,onto:[11,16,17,18,25,27,30,34,39,48,49],oom:30,op:[4,30,34,36,39,46,48,49],open:[19,23,26,27,30,35,41,42,43,44,45,47,49,52,54],openstreetmap:[19,42,54],oper:[2,3,7,9,12,14,16,17,18,20,22,24,27,30,36,46,47,49,50],operatornam:[1,9,13,14,24,27],opportun:54,opposit:23,optic:[0,21,23,41,45,52,56],optim:[6,8,9,10,11,13,14,16,19,26,27,35,47,49,50,52,54],optimizer_rx:26,optimizer_tx:26,optimum:6,option:[2,3,8,11,16,17,18,19,20,22,25,27,29,34,35,36,42,44],orang:31,order:[8,9,10,11,12,14,16,17,18,19,24,25,26,27,29,30,34,36,37,38,43,45,46,47,48,49,50,52,53,54],ore:16,org:[9,11,14,15,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,50,52],orient:[3,19,23,34,41,42,44,45,48,54],origin:[3,8,12,14,17,19,23,25,27,33,37,44,45,50],orthogon:[14,19,21,23,25,34,48,52],os:[10,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],osd:[10,24,54],osdecod:[5,21,24],osm:[19,42],otf:[19,34],other:[3,5,9,10,11,16,18,19,20,23,24,25,27,29,33,35,36,39,41,42,43,44,45,46,47,48,49,50,52,54],otherwis:[1,2,3,8,9,10,12,14,15,17,18,19,20,24,27,30,31,34,35,37,42,44,47,50],otim:3,ouput:25,our:[23,25,27,30,32,34,36,37,38,39,41,43,44,45,46,47,48,50,54,56],out:[2,3,17,18,19,20,23,24,25,27,28,30,33,36,38,41,42,44,45,53],out_int:9,out_int_inv:9,outcom:11,outdat:34,outdoor:3,outer:[11,21,22,24,26,27,30,35,46,49,50],outgo:[9,14,19,23,43,45,50],outlin:54,outperform:[33,36,54],output:[1,2,3,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,29,30,31,33,34,35,36,37,40,42,44,46,47,48,49,50,51,52,54],output_domain:[17,25,42],output_dtyp:[6,7,9,11,13,17],output_perm_inv:17,output_shap:14,outsid:33,over:[2,3,11,14,15,17,18,19,20,22,23,24,25,26,27,28,30,31,32,33,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,56],overal:[41,42,43,44,50],overcom:41,overhead:[9,17,19,22,30,34,42],overlai:[19,24,41],overlap:[18,20,34,38],overrul:12,oversampl:[20,38],overview:[11,17,24,30,42,46],overwrit:[19,24],own:[17,19,25,27,34,36,41,42,44,48,50,56],p2:30,p8:[30,46],p:[1,2,3,9,12,13,14,15,16,18,19,23,24,25,26,27,50],p_0:[15,25,37],p_1:25,p_2:25,p_3:25,p_:[1,2,15,18,19,20,23,37],p_b:1,p_c:15,p_i:18,p_k:15,p_link:42,p_m:[19,23],p_r:45,pack:34,packag:[5,6,10,13,14,22,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53],pad:[8,13,14,17,19,20,35,41,49],page:29,pair:[8,12,14,18,19,24,25,42,44],pam1:15,pam2:15,pam2qam:[16,21],pam:[16,18,21,22,46],pam_grai:21,pamsourc:21,panel:3,panel_horizontal_spac:3,panel_vertical_spac:3,panelarrai:[0,21,33,36],paper:[19,42,54],parabol:37,paradigm:[52,54],parallel:[5,9,13,14,16,17,19,22,23,25,27,30,31,33,42,45,46,47,48,49],parallel_iter:33,param:30,paramat:49,paramet:[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,29,30,31,34,37,39,40,42,43,44,45,46,47,48,50,54],parameter:33,parametr:[2,23,37,54],paranmet:3,parent:17,pari:19,pariti:[5,7,10,11,12,13,14,17,21,24,27,46,50,52,54],parizi:[10,11],parlanc:18,pars:[28,29],part:[2,3,8,10,11,13,14,16,17,19,23,24,25,26,27,31,32,34,35,39,43,45,50,51,52,56],partial:[2,19],particular:[3,11,17,19,23,24,25,31,34,39,43,44,45,48,50],particularli:[9,33],partnership:3,pass:[8,12,14,18,24,26,27,29,33,34,35,41,42,43,44,45,46,47,49,50,54],passband:[19,38],path2cir:42,path:[3,6,10,11,14,16,18,21,22,28,29,30,34,41,43,44,45,48,52],path_gain:44,path_gain_len:44,path_idx:42,path_ind:16,path_loss:44,path_sym:16,pathloss:[3,54],paths_len:44,pathstmpdata:19,pattern:[3,5,8,9,10,13,17,19,21,25,31,33,35,36,39,41,42,48,49,54],payload:[17,25],pb:1,pc:[25,42],pcm2gm:[5,10,21],pcm:[9,10,11,14,27,50],pcm_id:[10,14,27,50],pcolormesh:44,pdf:[11,27,50],pdp:3,pdsch:[12,17],peak:[37,38,43,45],pedram:54,pefect:35,penros:22,per:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,36,38,40,42,44,46,47,48,49,50,51],percentag:[19,23],percolumnmodel:[0,21],perez:16,perf:[25,30,33,34,36,39,42,46],perf_count:[24,30,46],perf_csi:[36,42],perfect:[3,12,17,18,23,25,26,33,34,35,36,39,40,41,42,44,45,48,49],perfect_csi:[25,34,39,42,48,49],perfect_csi_rayleigh:33,perfectli:[23,34,38,41,45,52],perform:[3,5,7,8,9,10,11,12,13,14,16,17,18,19,20,25,26,27,30,31,33,35,36,37,39,42,44,45,46,47,49,50,52,54],performac:39,period:[26,35,43,47,49],perm_seq:[8,9],perm_seq_inv:[8,9],permeabl:[19,23,42],permitt:[19,23,41,42],permut:[8,9,10,11,14],perp:23,perpendicular:23,persist:[30,46],person:19,perspect:[9,24,25,27],perturb:[26,54],perturbation_vari:26,peter:37,pfister03:12,pfister:[9,10,12,27,50],pharr:23,phase:[2,18,19,23,26,27,34,37,41,42,44,45],phase_gradient_reflector:[19,44],phase_inc:2,phase_profil:[19,44],phaseprofil:21,phasor:23,phd:27,phenomea:42,phenomena:19,phenomenon:[23,41],phi:[9,17,19,23,27,41,46],phi_:23,phi_deg:[3,41],phi_hat:21,phi_n:19,phi_r:[19,42],phi_t:[19,42,43],photodiod:37,phy:[2,30,54],physic:[2,5,12,15,17,19,23,25,26,41,42,43,52,54],pi2bpsk:17,pi:[3,8,18,19,20,23,27,37,41,43,44,45],pic:[18,21,33,36],pick:[25,29,34,42],pickl:[26,29,34,35,36,39,47,49],pico:2,pictur:3,pid:[30,46],pie:41,piec:18,pilot:[17,21,22,25,30,33,35,36,39,48],pilot_ofdm_symbol_indic:[18,29,30,33,34,35,36,39,48,49],pilot_pattern:[17,18,25,29,30,33,34,35,36,39,48,49],pilotless:[35,47,49],pilotpattern:[17,21,34,48],pimrc:19,pinto:2,pip:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],pipelin:33,pistoriu:[23,41],pitch:[23,42],pixel:19,pl:44,pl_avg:42,place:[14,19,22,27,41,42,43,44,45],placehold:42,plai:[34,40,41,45,46],plan:[3,54],planar:[19,33,41,44,52],planararrai:[21,41,42,43,44,45],planck:[2,37],plane:[19,23,34,41,42,44,45,48,49],planungsmethoden:23,platform:[11,24],plausibl:41,pleas:[1,2,5,8,9,10,11,13,14,19,24,25,26,27,29,31,33,34,35,42,45,46,48,49,50,52,53,54],plot:[3,14,15,19,20,22,24,27,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,50,51],plot_ber:[21,30],plot_exit_chart:[5,21,27],plot_surfac:43,plot_trajectori:[5,21,27],plotber:[21,24,27,31,40,42,46,47,48,49,50],plots_to_show:24,plt:[3,14,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],plu:[18,34,48],plug:23,pm:[15,16,19,20,23],pmatrix:[16,23],pmnet:54,pmp:54,png:[19,22,42],po:41,podcast:52,point:[15,16,18,19,20,22,23,24,26,27,29,30,31,34,40,41,42,43,44,45,46,47,48,49],pol:23,polar5gdecod:[5,21,24,31,46],polar5gencod:[5,10,21,24,31,46],polar:[2,3,5,9,10,19,21,23,25,31,33,34,35,36,39,41,42,44,45,46,48,49,52,56],polar_dec:11,polarbpdecod:[5,21,46],polarencod:[5,21,24,46],polarizarion:19,polarization_model:19,polarization_model_1:21,polarization_model_2:21,polarization_typ:[3,25,33,34,35,36,39,48,49],polarscdecod:[5,21,24,46],polarscldecod:[5,10,21,24,46],poles:54,polynomi:[6,7,11,13,19,30],polynomial_selector:[5,21],pool:1,poor:[35,47],popular:42,port:[17,42,53],port_set:17,portion:45,pose:54,posit:[1,3,8,9,10,11,13,15,17,18,19,22,23,24,27,41,42,44,45,46,47,54],positv:11,possibl:[1,3,10,11,15,16,17,18,19,20,22,24,25,26,27,29,30,41,42,43,44,45,46,48,50,54,56],post:[16,34,35,51,53,54],posterior:6,posteriori:[1,27,33],postfix:19,potenti:[11,14,50,54],pow:36,power:[2,3,9,11,15,16,18,19,20,22,23,24,26,30,34,35,37,38,41,42,44,45,46,48,49,50],poynt:23,pp:[2,3,11,14,16,18,23,24,26,27,33,35,37,44,45,47,49,50],pr:[15,16],practic:[3,11,24,27,37,44,50,54],prb:[17,25,33,36],pre:[16,18,24,27,28,41,42,54],pre_computed_result:35,preambl:54,precis:[3,9,11,15,16,18,19,20,36,42,45,46,54],precod:[17,19,21,25,29,34,40,42,48],precoding_ind:16,precoding_matric:17,precoding_matrix:[17,25],precoding_vec:[19,42],preconfigur:[19,41],predefin:19,predetermin:16,predict:[14,23,27,41,43,45,54],predictionju:54,prefac:27,prefer:[30,46],prefix:[2,3,17,18,19,22,25,30,37,48],preform:36,prepend:18,preprint:[1,24,52],preprocess:28,present:[2,3,23,33,37,41,54],preserv:[30,46],press:[3,23,24],pretti:50,pretty_printed_concrete_signatur:46,prevent:[23,37,45,56],preview:[21,41,42,43,44,45,53],previou:[19,23,24,25,27,34,36,37,42,43,44,46,48,50,54],previous:[3,19,24,26,27,28,30,31,37,42,47,49,51],primarili:[6,13],primer:[19,42,44,45,52],primit:[19,41,42],princip:23,principl:[14,24,27,30,42,46,47,48,49,50],print:[11,14,17,19,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53],prior:[15,16,18,33,34,36,40,42],prior_shap:36,priori:[1,6,14,33],prng:17,probabilist:[1,24,35],probabl:[1,3,12,15,16,19,27],problem:[23,24,25,41,47,49],proc:[14,19,23,27,29,41],proce:[34,39],procedur:[3,9,11,17,24],proceed:[35,49],process:[2,3,5,9,10,11,16,17,18,19,22,23,25,26,28,30,33,35,36,37,42,43,45,46,47,48,49,50,54],prod:46,prod_:[9,15,16,19],produc:[3,6,13,16,24,27,34,39,48,49],product:[11,19,20,38,41],profil:[3,14,18,19,23,44,48],profileinterpol:[21,23],program:52,programmat:[4,54],progress:[22,26,35,42,47,49],prohibit:[19,34,41,54],project:[3,14,23,25,30,43,49,54],prolong:41,promis:54,prone:36,propabl:27,propag:[2,9,11,16,19,24,33,37,41,43,44,45,52,54,56],proper:16,properli:[24,30,50],properrv:16,properti:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,34,38,41,42,43,44,46,48,54],propgat:45,proport:[19,41,45],proportion:45,propos:[9,10,11,14,16,23,33,50,54],proprietari:52,protect:[17,30],protocol:[12,17],prototyp:[26,52],provid:[0,1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,33,34,35,37,38,39,40,43,44,46,47,48,49,50,51,52],prune:11,prune_pcm:9,ps:[2,37],psd:[20,38],pseudo:[8,12,17,22,27],psi:19,psk:27,publish:[54,56],pujarareleas:54,puls:[3,20,37,56],pun:24,punct_pattern:13,punctur:[9,13,24],puncture_pattern:[5,21],puntur:9,pure:[23,45],purpos:[2,3,13,34,37],pusch:[12,21,42,56],pusch_config:[17,25,42],pusch_config_1:25,pusch_config_2:25,pusch_config_3:25,pusch_config_ext:25,pusch_dmrs_config:17,pusch_receiv:[17,25,42],pusch_sim:25,pusch_transmitt:[17,25,42],pusch_transmitter_multi:25,puschcarrierconfig:25,puschconfig:[21,25,42],puschdmrsconfig:[21,25],puschlschannelestim:[21,25],puschpilotpattern:21,puschprecod:[21,25],puschreceiv:[21,42],puschtransmitt:[21,42],put:[23,35,42,49],pwr:[30,46],py:[25,30,33,34,36,39,46,48,49],py_funct:[11,24],pyct:[25,33],pylint:46,pyplot:[19,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],python3:[25,30,33,34,36,39,46,48,49],python:[14,22,25,29,30,33,34,36,39,46,47,48,49,53,54],pythonmanoj:54,q:[16,23,27],q_d:23,q_m:17,qam16:[15,16,18,22,46],qam2pam:21,qam:[9,14,16,17,18,20,21,22,24,25,26,27,29,30,31,32,33,34,35,36,39,40,42,46,47,48,49,51],qam_sourc:[36,39,40],qamsourc:[20,21,33,36,38,39,40],qc:9,qpsk:[14,18,24,30,31,34,35,36,39,46,48,49,50],qquad:[1,9,19,23,43],qr:16,quad:[1,3,16,18,20,23,24],quadrat:45,quadratur:26,qualiti:[27,41,42,43,44,45],quantiti:[18,19,23,33,54],quantitii:37,quantiz:[6,17,19,24,42,54],quantum:54,quasi:9,question:54,quick:53,quickli:[3,18,27,34,52,54],quickstart:52,quit:39,r:[1,2,3,5,6,9,11,13,16,17,18,19,22,23,24,26,27,28,29,31,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49],r_:[23,24,45],r_hat:[21,41,43,44,45],r_i:[23,45],r_rx:[3,40],r_rx_hat:40,r_tx:[3,40],r_tx_hat:40,r_vec:44,ra:3,rad:[2,19,23,42,44],rad_2_deg:[0,21],radial:23,radian:[3,18],radiat:[3,19,23,34,44,45,48],radii:23,radio:[8,9,11,12,13,17,21,23,24,25,44,45,54],radio_materi:[19,41,42,45],radio_material_cal:19,radiomateri:[21,41,42,45],radiowav:[19,23],radiu:[23,42],radpili:41,rag:9,ragged_tensor:9,raggedtensor:9,rai:[21,23,29,41,43,44,45,52,53,54],rais:[7,8,9,10,11,12,14,15,19,20,22,33,38,42,43,44,45],raisedcosinefilt:21,raman:[2,37],ramp:56,random:[3,8,12,13,14,16,17,19,20,22,23,24,25,26,27,28,30,31,32,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,54],randominterleav:[5,21,27],randomli:[1,2,3,12,15,17,18,19,25,26,29,34,35,36,39,45,47,48,49],rang:[2,3,12,17,18,19,20,22,24,25,26,27,29,30,31,33,34,35,36,37,41,42,43,44,46,47,49,50,54],range_max:42,ranjan:3,rank:[3,7,8,9,10,11,14,16,19,22,24,33,35,36,46],rapdili:42,rapid:[44,52],rapidli:[25,41,52],rare:42,rasmussen:14,rate:[5,6,9,11,13,14,17,22,26,27,33,34,35,36,38,39,46,47,49,50,51,52,54,56],rather:[6,23,25,39,42,45],ratio:[1,2,9,11,13,15,16,17,20,22,23,25,26,33,35,36,38,42,46,48,54],ration:20,raviv:6,raw:3,rayleigh:[0,21,25,27,33,37,40,48],rayleighblockfad:[3,25,33,34,42,48],rb:[26,35,47,49],rceil:[3,13,19],re:[10,11,12,14,16,17,19,23,27,30,36,39,46,51,53,56],reach:[19,22,23,24,25,26,27,29,30,33,34,35,36,39,40,42,43,45,46,47,48,49,50],reachabl:44,react:41,read:[14,17,19,29,54],readabl:27,reader:[17,24,27,34],readi:[42,44,48,54],real2complex_channel:21,real2complex_covari:21,real2complex_matrix:21,real2complex_vector:21,real:[3,10,12,14,15,16,18,19,20,23,26,27,32,34,35,36,38,39,40,41,46,47,48,49,50,51,54],real_dtyp:[3,16,19,37],realist:[23,25,34,36,48,52,56],realistic_multiuser_mimo_simul:48,realiti:54,realiz:[3,8,11,12,23,24,29,30,33,34,35,36,39,40,42,44,48,56],realli:[34,41],rearrang:9,reason:[3,4,11,23,34,39,41,44,45,54],rebuild:7,recal:27,receiv:[1,3,6,8,9,10,14,15,16,17,18,20,21,22,24,25,26,27,29,30,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,54,56],received_pow:45,recent:[33,53],recept:38,reciproc:[29,42],recognit:[35,49],recomend:23,recommend:[3,10,11,16,18,19,23,34,39,41,42,43,44,45,53],recomput:[19,41,43],reconfigur:[21,52,54,56],reconstruct:[8,12,17,26,35,47,49],record:[9,27],recov:[9,11,16,17,20,25,42],recoveri:[9,11,31],rectangl:19,rectangular:[19,27,41,45],recurs:[6,11,13,15,24],red:[9,19],redefin:24,reduc:[9,10,11,14,16,19,23,24,25,26,30,33,34,35,38,41,42,49,50,54],reduce_dim:14,reduce_mean:[14,26,27,35,36,40,42,44,50],reduce_sum:[41,44,45,46],reduct:[23,54],redund:[5,21],reed:[11,24],ref:19,ref_boundari:41,refer:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,25,30,39,42,46,51,52,53],referenc:44,reflect:[2,19,41,42,43,44,45,52],reflector:[19,41,43,44,45],refract:[45,52],regard:37,regim:[14,27],region:[18,41,45,54],regist:[7,11],regular:[14,23,36,44],regularli:19,reinforc:26,rel:[17,19,23,24,27,33,41,42,54],relat:[9,12,14,15,17,19,22,23,27,30,34,42,46,47,49,54],relationship:23,relative_perm:[19,42],relative_permitt:[19,42],releas:[3,54],relev:[11,17,19,20,24,25,34,35,43,44,48],reli:[10,34,42,43,54],reliabl:[1,10,24,27,30,46],reloc:3,relocate_ut:[0,21],relu:[26,35,47,49,51],rema:25,remain:[3,5,6,9,10,11,16,24,41,45,46,54],remark:[2,3,5,10,11,14,18,24,30,36,42,46,47,48,49,50],rememb:30,remov:[3,7,8,9,11,14,18,19,22,24,25,30,31,33,34,36,39,42,48,49],remove_nulled_sc:[34,39],removenulledsubcarri:[21,29,33,34,35,39],ren:[35,49],render:[21,23,41,42,43,44,45,54],render_to_fil:[21,42],renesreleas:54,renzo20:23,renzo:23,reparameter:1,reparametr:19,repeat:27,repetit:[24,30,46],replac:[8,12,15,19,23,24,27,31,42,45,46,50,51,54],repons:[23,34,42,48,49],report:52,repositori:[53,54],repres:[6,13,16,18,23,27,30,33,41,42,54],represen:15,represent:[3,7,14,15,16,18,22,23,25,45,54],reproduc:[24,26,41,42,43,45,47,49,52,56],reproduct:24,request:[7,15,16,17,18,29,42],requir:[2,3,6,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,29,31,34,35,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54],requiremen:34,rerad:19,reradi:[19,23,45],reradit:19,resdiual:16,research:[14,23,30,42,44,50,52,54,56],reserv:[18,19,25,34],reset:[22,33,50],reset_st:50,reshap:[16,18,22,25,26,27,29,34,35,36,39,40,43,44,46,47,49,51],residu:[16,35,49,54],residualblock:[35,49],resili:54,resolut:[19,41,42,43,44,45],resolv:23,resouc:18,resour:25,resourc:[3,17,19,21,22,25,26,28,29,30,35,36,39,43,49],resource_grid:[3,17,18,22,25,28,33,35,36,42,48,49],resourcegrid:[3,17,21,22,28,29,30,33,34,35,36,39,43,48,49],resourcegriddemapp:[21,35,49],resourcegridmapp:[17,21,25,29,30,33,34,35,36,39,48,49],respect:[1,2,3,5,6,9,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,34,36,37,38,40,41,42,43,44,45,46,47,48,54],respons:[3,18,19,20,28,29,36,38,41,43,44,48,52,54],ressourc:30,rest:[13,25,44],restart:53,restor:17,restrict:[30,44],resul:25,result:[2,3,5,7,9,10,11,12,14,16,17,18,19,22,23,24,25,26,27,29,30,33,34,36,37,38,39,40,41,42,45,46,54,56],results_filenam:[26,35],retain:[20,42,54],retrac:43,retriev:19,return_:16,return_bit:[17,22,25],return_channel:[3,25,33,34,35,36,39,40,42,48,49],return_crc_statu:11,return_deriv:19,return_effective_channel:[18,29,34],return_grad:19,return_indic:[15,22,36],return_infobit:[9,33,46],return_llr:1,return_precoding_matric:16,return_precoding_matrix:16,return_tb_crc_statu:17,reus:[3,18,19],reveal:[25,54],revers:[18,23,42,45],reverse_direct:[19,42],revert:8,review:2,rewrit:23,rewritten:19,rg:[3,18,30,33,34,35,36,39,43],rg_demapp:[35,49],rg_mapper:[30,34,35,36,39,48,49],rgb:19,rho_1:23,rho_2:23,rho_:[2,37],rho_hat:19,ri:[21,52,56],richardson:[9,24],rician:3,rid:44,right:[1,2,3,6,9,13,14,15,16,18,19,20,22,23,25,26,31,34,35,36,37,42,43,45,48,55],ring:3,ris1:44,ris2:44,ris_path:19,ris_paths_tmp:19,rise:[3,23],risk:54,rl_based_train:26,rl_perturbation_var:26,rm:[3,11,24,45],rma:[0,21,25,34,39,48],rmse:54,rng:[17,22],rnti:[11,12,17],road:[16,23,54],robert:24,robust:[18,27,46,54],rodrigu:[19,23],role:[34,39,41,45,48,49],roll:[20,23,38,42],root:[20,22,38,53],rootraisedcosinefilt:[21,38],rot_mat_from_unit_vec:21,rotat:[2,3,21,41,42,43,52],rotated_posit:19,rotation_matrix:21,rough:19,rougher:45,roughli:41,round:[17,23,46],row:[3,8,9,14,16,18,19,22,23,29,32,38],row_depth:[8,30],rowcolumninterleav:[5,21,30],rrcf:38,rrcf_hann:20,rrcf_short:38,rrcf_short_blackman:38,rs:44,rsb:41,rsc:[6,13],rt:[19,23,41,44,45,54,56],rule:[9,17,22,27,36,46,50],run:[1,2,3,6,7,8,9,10,11,12,13,14,19,22,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54],run_ber:27,run_ber_ga:27,run_eag:30,run_functions_eagerli:33,run_graph:[30,46],run_graph_xla:30,run_idd_sim:33,run_sim:36,rune:27,runtim:[8,12,24,25,26,27,29,30,33,34,35,36,39,40,46,47,48,49,50],runtimeerror:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,50],rural:[0,21],rvert:[16,18,19,23,25],rvert_2:16,rvert_:18,rx1:44,rx2:44,rx:[3,19,26,34,35,39,41,42,43,44,45,48,49],rx_arrai:[3,19,41,42,43,44,45],rx_corr_mat:3,rx_dist:41,rx_loss:26,rx_orient:19,rx_path_gain:44,rx_path_gain_len:44,rx_po:41,rx_ris_path_gain:44,rx_ris_path_gain_len:44,rx_stream_id:16,rx_tx_associ:[16,25,30,33,34,39,42,48,49],rx_veloc:[19,42,43],ryan:[9,17],s:[2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,22,23,24,25,26,27,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,54],s_0:25,s_1:25,s_2:25,s_:18,s_hat:22,s_i:23,s_min:8,s_min_stop:8,s_r:23,sai:[46,52],sake:24,same:[1,2,3,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,30,33,34,35,36,37,38,40,41,42,43,46,49,50,54],sampl:[2,3,8,12,17,18,19,20,22,24,25,26,27,28,30,33,35,36,37,38,39,42,45,46,47,48,49],sample_channel:36,sample_dur:[2,37],sample_points_on_hemispher:21,sample_posit:[19,42],samples_per_symbol:[20,38],sampling_frequ:[3,19,34,39,42,43,48],sampling_tim:20,san:29,sandberg:[11,24],sanguinetti:3,satisfi:[16,23],satur:[34,39],save:[19,22,24,25,26,31,34,35,36,39,42,47,49],save_fig:22,save_weight:26,sc:[11,24,46],scalabl:[5,31,54],scalar:[1,3,9,14,15,19,22,26,35,50],scale:[3,9,16,17,18,19,20,22,23,24,26,27,30,33,34,35,37,38,39,40,42,44,49,50,54],scat_keep_prob:[19,45],scat_path:19,scat_paths_tmp:19,scat_random_phas:19,scatter:[13,15,18,19,29,32,37,38,40,41,42,43,44,46,47,52,54,56],scattering_coeffici:[19,42,45],scattering_pattern:[19,45],scattering_pattern_cal:19,scatteringpattern:21,scenario:[3,11,16,25,27,29,33,34,36,39,42,44,46,48,50,54],scenario_param:29,scene:[21,23,41,44,45,54],scene_geometry_upd:19,scene_object:43,sceneobject:[21,42,43],sceneparamet:19,schedul:[14,25],schemat:[34,38,40],scheme:[5,9,10,11,12,17,25,27,30,31,33,46,54,56],schrannenhal:19,schreckenbach:27,scid:17,scipi:9,scl32:11,scl8:11,scl:[11,24,46],scope:27,scrambl:[5,10,11,17,21,24,25,27,30,46],scrambler:[5,17,21],scratch:35,screen:[23,41],script:30,scroll:[19,42],seamless:[5,54],seamlessli:54,search:[6,24],sebastian:[11,52,54],sec:[7,9,11,12,17,19,27],second:[1,2,3,9,12,13,14,15,16,17,18,19,23,24,25,29,41,42,43,44,50],section:[3,15,16,17,19,23,24,25,27,33,34,36,37,39,43,44,50],sector:[3,39],sector_id:3,see:[1,3,9,11,14,16,17,18,19,22,23,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54],seed:[8,12,17,18,22,26,41,42,43,44,45,47,49],seem:[25,50],seen:[14,18,24,26,27,34,37,42,43,46,47,50],seet:42,seethal:[16,33],segment:[11,17,23,24,25,41],sel:23,select:[6,9,14,17,18,19,24,25,26,29,36,39,42,50],select_mc:21,selector:13,self:[3,16,19,24,25,26,27,28,29,30,31,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51],semi:[3,22],semilog:[24,25,26,29,31,33,34,35,36,39],seminar:27,send:[16,18,25,32,40,54],sens:[8,23,24,27,54],sensibl:[33,54],sensit:54,sent:[17,25,27],sep:[9,12,19,23],separ:[3,17,18,19,23,25,27,31,41],separt:17,sept:26,septemb:16,seq_length:8,sequel:16,sequenc:[1,3,6,7,8,9,11,12,13,14,17,18,19,20,25,27,34,43],ser:[22,36,40],ser_ep:36,ser_kbest:36,ser_lmms:36,ser_mmse_p:36,seri:[2,24],serv:[3,15,18,23,44],serval:14,servic:52,set:[1,2,3,4,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,29,31,34,35,36,37,39,40,41,42,43,44,45,46,49,50,51,52,54],set_3gpp_scenario_paramet:[0,21],set_aspect:[32,40,46,47],set_label:44,set_memory_growth:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,50],set_se:[3,26,39,41,42,43,44,45,47,49],set_size_inch:24,set_titl:[31,33,36,43],set_topolog:[3,25,33,36,39],set_visible_devic:30,set_weight:[26,35,47,49,50],set_xlabel:[31,33,36,37,43],set_xlim:[31,37],set_ylabel:[24,31,33,36,37,43],set_ylim:[31,33,36],set_zlabel:43,setlevel:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],setminu:9,setup:[2,3,8,9,11,12,16,18,19,25,27,29,33,35,36,40,42,44,46,47,48,49,50,52,53],sever:[5,9,11,14,16,19,23,24,25,27,30,33,37,42,46,54],seyi:11,sf:17,sgd:[26,35,47,49,50],sgn:23,shadow:[3,19,23,41],shall:[8,12,19,22,37,44,46],shannon:13,shaoq:[35,49],shape:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,39,40,42,44,45,46,47,48,49,50,51,56],share:[3,17,19,25,27,35,41,42,50],shea:26,shift:[7,9,11,17,18,19,23,37,42,44,46],shixiang:1,shoot:[19,42,45],shortcom:[23,41],shorten:[9,24],shorter:[20,38,41],shortest:16,shorthand:18,shot:[2,19,37,42,45],should:[3,8,9,12,14,16,17,18,19,20,22,24,25,27,29,31,34,35,36,37,41,42,43,44,45,47],show:[2,3,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,54],show_ber:[22,24,31,42],show_bler:[22,24,31,42],show_devic:[19,42],show_direct:19,show_element_radiation_pattern:[3,34,48],show_fig:[22,24,27,31,40,42,46,47,48,49],show_orient:[19,44],show_path:[19,42],show_pilot_ind:[17,18],show_ri:[19,44],show_rx:[19,44],show_topolog:[3,39],show_tx:19,show_weight:[9,50],showcas:54,shown:[2,3,9,17,18,19,23,24,25,26,27,29,32,35,37,41,42,43,44,45,46,48,49,54],shrunk:25,shuffl:29,siam:2,side:[3,16,18,20,23,26,35,37,40],siegel:[9,12,27],sight:[18,19,34,41,42,44,45,56],sigma:[3,16,18,19,23,25],sigma_:[2,3,14,27],sigma_phi_deg:3,sigmoid:[15,16],sigmoid_cross_entropy_with_logit:[26,35],sign:[9,12,14,15,27],signal:[2,3,9,10,11,16,17,18,19,21,25,27,30,32,33,34,36,37,38,41,42,44,45,46,47,50,52,54],signatur:[22,46],signific:[3,14,16,18,19,37,38,41,45,54],significantli:[2,3,5,10,19,24,25,27,33,34,35,37,39,41,42,44,49,50,54],sim:[2,3,6,13,23,24,27,31,37,39,42,50],sim_ber:[21,25,26,27,29,30,33,34,35,36,39],sim_esno:[24,31],sim_param:29,similar:[3,17,18,23,24,30,41,45,46,50],similarli:[13,18,19,23,37],simo:[3,42,48,56],simpl:[3,16,18,19,22,23,25,26,30,33,34,39,43,44,45,46,47,48,49,50,52,56],simple_reflector:[21,43,45],simple_sim:33,simple_street_canyon:[21,41,44,45],simple_street_canyon_with_car:[21,43],simple_wedg:[21,41,44],simpler:[30,46],simpli:[16,19,20,23,25,30,34,38,39,41,42,44,46,48,49,50,51],simplic:[6,11,13,18,19,24,27,38],simplif:50,simplifi:[8,10,11,12,14,16,22,23,24,27,30,37,42,45,46,50],simualt:31,simul:[2,3,5,10,12,14,16,17,18,19,22,24,37,41,43,44,46,47,51,52,54,56],simulate_transmiss:2,simultan:[25,42,44],sin:[3,19,20,23],sinc:[3,18,20,23,25,41,44,54],sincfilt:21,singl:[2,3,9,13,17,18,19,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52],sinlg:36,sinusoid:3,sionna:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,44,45,47,48,49,50,53,55,56],siso:[19,33,48],site:[3,36,46],situat:[5,27],six:[17,18,25],size:[2,3,6,9,10,11,13,14,15,17,18,19,20,22,23,24,25,26,28,30,31,33,34,35,36,42,44,45,46,47,48,49,50,54],skip:[17,24,25,34,35,39,49,56],slant:19,slant_angl:19,slice:41,slight:[22,23,47],slightli:[6,8,13,14,17,33,37,38,41,42,45],slot:[17,18,34,42,48],slot_numb:[17,25],slower:[8,11,34,42],slowli:36,sm:[3,16,30,33,34,36,39],small:[3,10,13,19,23,24,25,27,28,34,41,43,44,45,50],smaller:[3,8,10,11,17,18,19,22,24,31,39,41,44,45,50],smallest:[3,17,18,24],smapling_frequ:28,smart:23,smf:[2,37],smi:[30,46],smooth:[16,18,36],smoothin:36,sn:[28,46,47,48,49],snapshot:43,snell:23,snippet:[2,3,6,7,8,9,11,12,13,14,16,17,18,19,20,25,34,39],snmk:35,snr:[2,14,22,24,25,26,27,30,31,33,34,35,36,39,42,46,47,49,50,51,54],snr_db:[22,24,36],snr_idx:22,snr_rang:33,snr_range_cest:33,snr_range_perf_csi:33,so:[3,9,10,12,14,16,17,18,19,22,23,25,27,30,37,38,39,40,41,42,44,45,46,54],societi:[23,41],soft:[1,6,9,10,11,12,13,15,16,18,24,33,34,36,39,40,46,48,49,50,52,54],soft_estim:[22,24,27,31,36,42,46,47,48,49,50],soft_llr:[6,24,31],softmax:1,softwar:52,solid:[16,33,41,45],soliton:[2,37],solut:[2,14,16,18,23,25,27,54],solv:[2,19,47,49],solver:19,solver_cm:19,solver_path:19,solvercoveragemap:19,solverpath:19,some:[3,4,9,10,17,18,19,23,24,25,26,27,28,34,35,36,39,41,42,43,44,45,46,50,52],someth:[30,49],sometim:[22,23,56],son:[6,19,23],song:54,sophist:[2,24,31,50],sort:[10,11,16],sound:56,sounder:54,sourc:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,30,31,34,37,38,39,42,44,45,46,47,48,49,50,52,54],sp:[2,9,19],spa:9,space:[3,17,18,19,23,25,34,36,41,43,44,48],space_cov_mat:36,space_cov_mat_:36,span:[2,18,20,25,34,37,38,43,48],span_cd:37,span_in_symbol:[20,38],span_nl:37,span_ssfm:37,spars:[9,11,18,54],sparser:25,spatial:[3,18,19,23,25,54],spatial_corr:[3,40],spatial_corr_mat:3,spatialcorrel:[0,21,40],spawn:45,speak:[25,27],spec:15,spec_path:19,spec_paths_tmp:19,specfi:18,special:[3,23],specif:[3,5,7,8,10,14,16,17,18,19,23,24,25,28,34,35,41,42,43,44,45,46,48,54],specifc:46,specifi:[3,9,10,11,12,13,17,18,19,20,22,28,35,36,37,42,54],specified_by_mi:14,spectral:[2,3,17,20,22,26,36,37,38,46,48],spectrum:[20,34,37,48],specular:[19,23,41,43,45],specularli:[19,23,45],speed:[3,18,19,23,25,33,34,35,36,40,42,46,47,48,49],speed_of_light:[41,43,45],sphere:[19,23,42],spheric:[19,23],spirit:27,split:[0,9,13,17,19,21,22,25,52],split_dim:21,spontan:2,spread:[3,18,25,29,34,41,48,49],springer:23,sqrt:[2,15,18,19,20,23,26,27,28,37,40,43,44,45],squar:[16,17,18,19,20,22,23,26,33,35,36,38,41,45],squeez:[3,34,35,39,41,42,43,44,45,49],ss:23,ssfm:[2,37],stabil:[2,9,16,18,33],stabl:[9,14,16,17,18,50],stack:[16,26,35,42,44,46,47,49,51],stage:[24,36,48,54],stahl:[11,24],stai:37,standard:[3,5,7,8,13,15,17,23,24,25,27,30,33,37,54],stapl:54,star:[3,18],stark:[1,26],start:[3,16,17,18,19,22,25,33,34,36,37,38,39,41,42,44,47,48,49,52,53,55,56],state:[2,3,6,8,9,12,13,14,16,17,18,23,33,34,35,36,46,47,48,49,50,52,54],stateful:33,stateless:[8,12],statement:[25,33,46],static_analysi:[25,33],station:[3,16,33,34,35,36,39,48,54],stationari:3,statist:[10,24,27,36,50,54],statu:[11,17,24,25,26,27,29,30,33,34,35,36,39,40,42,46,47,48,49,50],steep:24,steer:44,stem:[2,19,34,38,41,42,48],stength:44,step:[0,3,10,16,17,18,19,21,22,25,26,27,28,34,35,36,39,40,42,43,44,47,52],stephan:[11,54],still:[19,22,23,25,27,30,41,46,49,53],stim:[10,11],stimming_llr:11,stimming_llr_osd:10,stochast:[26,28,35,42,47,50],stop:[8,9,11,22,24,26,27,29,30,31,33,34,35,36,46,47,48,49,50],stop_gradi:26,storag:44,store:[8,14,19,22,24,26,27,28,31,35,36,46,50],str:[3,6,7,9,11,12,13,14,15,16,17,18,19,20,22,24,25,27,31,34,35,42,46],straight:[41,43],straightforward:[47,54],strategi:22,stream:[12,13,17,18,21,22,25,27,29,30,35,36,39,40,49],stream_associ:16,stream_ind:[16,17,18,25],stream_manag:[17,18,25,33,35,42,48,49],streammanag:[3,16,17,18,25,29,30,33,34,35,36,39,42,48,49],street:[3,43],strength:[6,13,23,24,41,44,45],strict:54,strictli:27,string:[6,7,9,13,14,17,18,19,20,22,24,27,31,42],strong:[11,41,42,45],stronger:[36,45,50],strongli:[24,27,36,41,42,43,44,45],structur:[6,11,14,18,19,23,25,28,29,30,36,46,47,48,49,54],stuck:54,studer:[16,33],studerreleas:54,studi:[3,19,45,54],style:[34,51],sub:[6,8,12,13,14,16,18,19,22,24,30,34,36,46,54],sub_frame_dur:[17,25],subblock_interleav:11,subcarri:[3,17,18,25,34,35,39,42,43,48,49],subcarrier_frequ:[0,21,29,34,39,42,43],subcarrier_spac:[3,17,18,25,28,29,30,33,34,35,36,39,42,43,48,49],subclass:46,subdivd:19,subfram:17,submodul:3,subplot:[24,31,33,36,37,43],subplots_adjust:36,subscript:23,subsequ:43,subset:[3,17,24,25],substack:19,substanti:[16,18,34,39,54],substitut:[19,35,49],success:[7,10,11,24,27,37,46],suddenli:41,sudo:53,suffer:23,suffici:[10,19,27,34],suit:[11,27,34,42,52],suitabl:[11,34,39,48,49],sum:[3,14,16,17,18,19,25,34,39,41,42,43,45,50],sum_:[3,9,15,16,18,19,20,23,35,36,41,43],summar:[24,30],summari:30,sun:[33,35,49],supervis:54,support:[1,4,6,8,9,10,11,13,14,16,17,18,19,24,25,30,31,34,36,37,41,42,43,44,45,46,48,52,53,54,56],suppos:[16,25],suptitl:[26,33,36],sure:[24,30,53],surf:43,surfac:[21,41,45,52,54,56],surfaceintegr:19,surprisingli:54,surrog:27,survei:[11,16,24],swap:[8,14,19],swap_memori:2,sweep:24,sy:[16,40,41,45],sym:19,symb:17,symbol:[2,3,6,8,9,13,15,16,17,18,20,22,23,24,26,27,28,30,31,32,33,34,35,36,39,40,42,43,46,47,48,49,50,51],symbol_alloc:17,symbol_demapp:40,symbol_indic:22,symbold:38,symboldemapp:[21,40],symboldemapperwithprior:21,symbolinds2bit:21,symbollogits2llr:21,symbollogits2llrswithprior:21,symbollogits2mo:21,symbolsourc:21,symmetr:[1,2,6,10,11,24,27,50],symmetri:[14,16,27,44],symp:[14,16],symposium:9,synchron:[34,42,54],syndrom:14,synthet:[19,43,54],synthetic_arrai:[19,42],sys_param:30,syst:33,system:[2,3,8,9,12,16,17,18,19,24,25,28,29,30,32,33,36,37,38,40,41,42,43,44,45,48,49,50,51,52,53,54,56],system_model:[24,31],systemat:[6,10,13,14,24],systemsreinhard:54,szczecinski:27,t:[1,2,3,6,9,10,14,16,18,19,20,23,24,25,26,27,33,34,35,36,37,38,39,41,42,43,45,48,50],t_0:37,t_:[2,17,23,25,37],t_c:[17,25],t_norm:[2,37],t_sim:37,t_start:[24,30,46],t_stop:[24,30,46],ta:3,tab:[11,17,46],tabl:[3,5,19],table_index:17,tabul:6,tag:14,tail:45,tailor:34,take:[3,6,9,11,13,15,17,18,19,22,23,24,25,27,29,34,35,36,39,42,44,45,46,47,48],taken:[7,10,14,18,20,22,34,44,48],tal:[11,24],tal_scl:11,tangent:23,tangenti:23,tanh:9,tap:[0,18,21,34],tape:[26,35,44,47,49,50,51],tappert:2,target:[17,19,22,24,25,26,27,29,30,33,34,35,36,39,40,42,44,46,47,48,49,50,54],target_b:22,target_bl:[22,24],target_coder:[17,25],target_num_cir:42,target_r:17,target_rank:22,target_tb_s:17,taricco:27,task:[11,19,24,27,30,46,47,48,49],tau:[3,19,23,28,34,39,41,42,43,45,48],tau_:[3,18,19,42],tau_i:[19,23,41],tau_m:3,taylor:19,tb5gscrambler:[5,21],tb:[17,25,42],tb_config:17,tb_crc_encod:17,tb_crc_length:17,tb_crc_statu:17,tb_decod:17,tb_scale:[17,25],tb_size:[17,25,42],tbconfig:[21,25],tbdecod:[21,25],tbencod:[21,25],tccn:26,tcm:27,tcomm:26,tdl:[0,18,21,30,34,48],tdl_freq_cov_mat:21,tdl_model:30,tdl_time_cov_mat:21,te:23,teach:50,tech:27,technic:24,techniqu:[2,24,34,42,54],technolog:[2,11,24,37,54],tell:25,temp:[30,46],temperatur:1,templat:25,tempor:[18,37],temporari:[12,17],ten:[9,11,14,24,26,27,33,54],tenbrink:14,tenbrinkexit:14,tend:[24,50],tensor:[1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,27,31,32,34,35,39,40,42,44,46,47,50,51,52],tensor_scatter_upd:11,tensorboard:[30,49],tensorflow:[4,9,11,14,19,22,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54],tensorshap:[19,22,40],term:[2,6,13,16,19,23,36,41,54],term_bit:13,term_bits1:13,term_bits2:13,term_bits_turbo2conv:13,termbits_conv2turbo:13,termin:[3,6,13,16,24,31,33,34,35,36,39,48],terminolog:[11,25,27,34,48],ternari:1,terrestri:[8,13],test:[3,7,17,19,24,25,40,52,53,54],testolina:54,text:[1,2,3,14,15,16,17,18,19,20,22,23,24,25,27,37,41,43,45],textbf:16,textbook:[15,16],textcolor:9,textfil:14,textrm:[2,6],textsf:[19,23,25],texttt:[19,35],tf:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],tf_cpp_min_log_level:[24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],tf_rag:9,th:[3,15,16,18,19,23,35,43],than:[3,5,6,8,9,10,11,13,16,17,18,19,20,22,23,24,33,34,36,39,41,42,43,45,50],thank:[40,41,42,44,45,52],thei:[3,6,13,19,23,25,27,28,33,34,35,36,37,38,41,42,44,45,49,54],them:[3,6,17,18,19,25,30,34,36,38,39,40,41,42,44,47,53,54],theo_pow:45,theorem:23,theoret:[38,41,42,45],theori:[2,6,9,10,11,12,14,19,23,24,27,29,40,41,50],ther:27,therebi:[10,24,27,46],therefor:[3,13,19,26,29,33,34,35,36,42,47,48,49,54],thereof:42,thesi:27,theta:[19,23,41,45],theta_1:23,theta_2:23,theta_:[19,23,45],theta_hat:21,theta_i:[23,45],theta_phi_from_unit_vec:21,theta_r:[19,23,42,44],theta_t:[19,42,43],thi:[0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56],thing:[24,27,32,34,45,46,47,48,49,54],think:[30,41,45],third:[23,25,29,34,41,47],thitimajshima:13,thompson:16,those:[18,25,29,37],though:[45,54],three:[3,4,18,19,20,23,25,26,29,35,36,41,47,49,54],threshold:[19,24,27],through:[2,3,15,16,17,18,19,20,23,26,29,30,34,35,36,39,40,41,42,45,46,48,49,51,52,53,54],throughout:[19,36,46],throughput:[9,11,27,31,46,52],throughput_eag:46,throughput_graph:46,thrown:19,thu:[7,8,9,10,11,12,13,14,17,19,24,27,30,37,41,42,43,44,45,46,50,54],thumb:[36,50],thz:[37,45],tick:24,tick_param:[24,31],tight_layout:[26,35,37,41,43,46],tild:[16,18,19],tile:[26,35,41,45,49],time:[0,2,6,11,14,16,17,18,19,20,21,22,24,25,27,28,29,30,31,33,35,37,38,39,42,44,45,46,48,49,50,52,54,56],time_avg:18,time_channel:34,time_cov_mat:36,time_cov_mat_:36,time_eag:30,time_frequency_vector:[0,21,37],time_graph:30,time_graph_xla:30,time_lag_discrete_time_channel:[0,21,25,29,34],time_to_ofdm_channel:[0,21],timechannel:[0,18,21,25,29,34,48],timeit:30,timestep:43,tip:[30,46],titl:[14,22,24,25,27,32,34,38,39,41,42,44,45,46,48,52],tl:54,tm:23,to_db:44,to_dict:19,toa:54,todai:30,todd:6,togeth:[13,16,17,18,19,23,24,27,34,39,42,44,48,49],tommaso:54,too:[25,30,34,41,42,45,46,50],tool:[14,27,36,52,54],toolkit:53,top:[3,16,19,23,41,42],topic:[50,54],topolog:[3,25,33,36,39],tot:3,total:[3,9,13,17,18,19,20,22,23,25,27,30,33,35,36,38,41,42,44,45,46,50],toward:[3,19,23,27,34,42,44,45,46,47,48,56],tp:17,tpmi:[17,25,42],tr38901:[3,19,23,25,29,30,33,34,35,36,39,42,43,48,49],tr38901_pattern:21,tr38:30,tr:[3,16,19,48],trace:[6,21,23,29,41,43,44,45,46,52,53,54],trace_path:21,traced_path:19,tracer:[19,42,53,54],tracingjakob:54,track:[9,14],track_exit:[9,14,27],trade:24,tradeoff:[11,36,46],tradit:23,tradition:13,trail:[18,24,30],train:[9,30,44,46,48,51,54],train_it:50,train_rx:26,train_step:44,train_tx:26,trainabl:[9,14,15,16,17,18,19,20,27,44,46,47,48,49,50,51,54],trainable_vari:50,trainable_weight:[26,35,47,49,50],training_batch_s:[26,35],trajectori:[14,19,27,43],tran:[3,6,9,10,11,12,14,16,23,27,33,41,44,45],transact:[3,14,24,26,27,35,47,49,50],transceiv:[42,46],transfer:[3,23,27,37,48,54],transform:[2,3,11,13,14,15,16,17,18,19,20,22,23,25,34,35,37,38,42,45,54],transform_precod:17,transit:[1,6,13,41],translat:[23,34],transmiss:[1,2,7,10,12,14,16,17,18,22,23,25,30,31,33,35,42,46,47,49,50,51,54,56],transmit:[1,3,9,14,15,16,17,18,19,20,22,24,25,26,27,30,31,34,35,37,38,39,40,42,43,45,46,47,48,49,50,52],transmitt:[3,16,17,18,21,22,25,26,29,30,33,34,35,36,37,39,40,41,42,43,44,45,48,49,51,54],transpar:[2,37,46],transport:[21,42],transportblock:25,transpos:[3,18,19,29,34,35,36,39,42,49],transvers:23,trap:54,travel:[23,34,43,48,49],treat:[24,27,47],tree:[11,19],trelli:[5,13,21,27],tremend:40,trend:[3,41],trial:[24,30,33],triangl:[41,42],triangleq:23,triangular:[11,16],trick:[1,10,27,50],tricki:56,trigger:[7,19],triomph:19,triple_reflector:21,truncat:[3,34,38],truth:[26,27,35,39],ts38141:3,ts:[3,7,8,9,11,12,13,15,17,24,27,42],tse:[3,23],tube:23,tucker:2,tue:46,tune:[26,33],tunnel:27,tupl:[1,3,6,7,8,9,12,13,14,15,16,17,18,19,20,22,24,27,30,31,46,50],turbo3gppinterleav:[5,21],turbo:[5,8,14,21,24,31,33,52],turbo_coder:13,turbo_term_sym:13,turbodecod:[13,24,31],turboencod:[13,24,31],turbotermin:[5,21],turn:[17,18,23,27,33,41,42],tutori:[2,6,11,13,16,17,19,24,26,30,31,35,38,42,43,46,47,48,49,51,52,53,55],twc:[3,35,47,49],twelfth:34,twelv:25,twice:46,twin:54,twinx:24,two:[1,3,5,6,7,8,11,12,13,15,16,17,18,19,22,23,24,25,26,27,29,30,31,34,35,36,37,40,41,43,44,45,46,48,50],tx:[3,19,25,26,34,39,41,42,43,44,45,48,49],tx_angl:41,tx_arrai:[3,19,41,42,43,44,45],tx_corr_mat:3,tx_dist:41,tx_ind:[17,18],tx_loss:26,tx_po:[41,42],tx_stream_id:16,tx_stream_ind:18,tx_veloc:[19,42,43],type:[3,4,9,11,14,15,16,17,18,19,20,22,23,25,27,28,30,34,36,41,42,43,45,46,48],type_a_posit:[17,25],typeerror:[11,12,14],typic:[3,12,19,23,25,37,46,47],u2220:37,u:[3,6,7,9,10,11,13,14,18,19,23,24,27,30,31,37,46,50,51],u_0:37,u_hat:[6,7,9,11,13,24,27,30,31,50],ubiquit:54,ubuntu:53,uci:[11,24],ue:[29,33,42],ue_antenna:29,ue_idx:29,ue_po:42,ueng:33,ufmc:34,uint8:[9,11],uk:14,ul:33,ul_sim:34,ula:3,ultra:24,uma:[0,21,25,33,34,39,48],umi:[0,21,25,34,36,39,42,48],umt:31,un:[25,34],uncod:[27,30,31,36,46,47,54],uncodedsystemawgn:46,uncom:[34,36,39,44],uncorr:[30,46],uncorrel:[3,40],und:6,under:[19,23,25,34,36,50,54],underbrac:23,undergo:[19,23,43],underli:[11,13,16,17,18,19,27,44],underset:[16,18],understand:[16,19,23,24,29,37,41,43,44,45,46],understood:[16,52],undesir:[16,23],undo:[19,44],unequ:12,unfold:[33,54],unfortun:50,uni:14,unifi:56,uniform:[1,3,8,12,19,23,26,28,29,33,35,41,46,47,49],uniform_candidate_sampl:42,uniformli:[3,16,19,23,28,41],unikl:14,uniqu:[8,19,23,36,41,42,44,50,54],unit:[2,3,15,16,18,19,20,23,26,37,44,45],unitari:[16,19],unittest:30,univ:27,univers:[3,8,10,13,23],unknown:[27,36],unleash:46,unless:42,unnecessari:14,unnorm:[15,16,19],unpatch:53,unpolar:2,unprecod:17,unreadvari:35,unrol:11,unsupport:[25,42],unsurprisingli:36,until:[17,19,22,23,27,43,44,46,47,48,49],untrain:[47,50],unus:[17,44],unusu:27,up:[1,2,3,5,6,8,10,12,13,14,19,20,24,25,27,36,38,40,41,42,44,46,48,49,52,56],upa:33,updat:[8,9,11,12,16,17,18,19,25,27,30,33,34,36,39,41,42,43,44,45,47,48,49,50,51,53,54],upgrad:53,uplink:[3,11,16,17,24,25,29,33,35,36,42,49,54],upper:[16,20,31,41,46],upsampl:[21,38],upward:[19,23],urban:[0,21,23],urllc:24,us:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,50,51,54,56],usag:[8,12,30,37,46],use_allzero:27,use_count:19,use_fast_scl:11,use_hybrid_sc:11,use_ldpc_output_interleav:27,use_real_rep:[16,18],use_scatt:11,use_scrambl:[17,27],useabl:[30,46],useless:[35,43],user:[3,16,17,19,25,30,33,34,35,36,39,42,46,48,52,53,54],user_row_first:29,user_row_last:29,usermod:53,using_object:19,usr:[25,30,33,34,39,48,49],usual:[8,11,12,14,17,24,26,27,31,37,46],ut:[3,33,34,35,36,39,48,49],ut_antenna:[33,35,36],ut_arrai:[3,25,33,34,36,39,48,49],ut_loc:3,ut_orient:3,ut_veloc:3,utd:[23,41],util:[0,5,8,21,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,54],v0:54,v16:15,v:[3,7,8,9,11,12,13,14,16,18,19,23,24,27,33,35,36,39,41,42,43,44,45,48,49],v_:[16,19,23],v_i:16,v_j:16,va:41,vacuum:[19,23,41],vae:54,valid:[3,6,7,8,10,13,14,17,19,20,23,27,30,34,36,39,40,41,48,49,54],validate_indic:[30,34,36,39,48,49],valu:[1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,33,34,35,36,37,38,41,42,44,45,46,47,48,49,50],valueerror:[7,8,9,11],van:54,vanish:[23,35,41,49,50],vardi:[11,24],varepsilon:23,varepsilon_0:23,varepsilon_r:[19,23],vari:[2,5,18,19,23,30,34,42,43,45,48],variabl:[2,4,9,14,15,16,18,19,20,22,27,33,35,44,47,50],varianc:[3,14,15,16,17,18,22,24,25,26,27,30,31,34,35,39,40,42,48,49,51],variant:[3,47,49],variat:54,varieti:[16,46],variou:[6,13,16,19,25,34,36,38,41,42,44,45,54],varphi:[3,19,23],varphi_:[19,23],vdot:18,vector:[2,3,6,9,13,15,16,17,18,19,20,22,25,26,30,32,37,38,40,41,42,43,44,52,54],vehicular:[11,24],veloc:[2,3,19,37,42,43,44],velocity_vec:43,vem:52,verbos:[11,14,17,22,27,30,50],veri:[3,14,18,19,25,28,34,35,36,40,41,43,44,45,46,47,50],verif:[7,38],verifi:[7,14,23,25,27,30,38,41,42,45,50],verify_gm_pcm:[5,21],verify_input:14,verify_result:14,versa:14,version:[9,11,14,16,17,22,23,27,30,34,36,39,40,41,42,43,44,45,46,48,49,50,53],versu:[23,41],vert:23,vertial:[33,36],vertic:[3,19,23,34,41,48],vertical_spac:[3,19,41,42,45],vetor:19,vh:[3,19,35,39],via:[6,8,11,19,22,23,24,25,27,30,31,42,44,46,50,53],vice:14,video:[19,42,52,54],view:[19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54],view_init:43,viewer:[19,42],viewpoint:[19,27,42],vii:16,viridi:43,virtual:[23,27,53],visibl:[34,41],vision:[35,49],visual:[3,14,17,18,21,24,25,27,30,32,34,36,37,38,39,41,42,43,44,45,46,47,48],visualis:19,viswanath:[3,23],vital:41,viterbi:[5,21,24,31,46],viterbidecod:[6,10,24,31],vittorio:[23,44,45],vittuci:[23,44],vitucci24:[19,23],vmax:[19,36,44],vmin:[19,36,44],vn:[9,14,27,50],vol:[2,3,10,11,14,16,23,24,26,27,33,35,41,44,45,47,49,50],volatil:[30,46],voltag:[23,37],vq:54,vs:[5,31,56],w:[1,2,3,9,16,17,19,23,24,27,28,33,37,38,41,50],w_:[3,9,18],w_b:[3,18],w_f:[17,25],w_n:20,w_t:[17,25],wa:[3,7,11,14,17,18,19,20,23,24,25,27,33,34,37,41,42,46,47,52],wai:[2,3,4,6,16,17,19,23,25,28,34,36,41,42,43,44,45,50],wait:30,walk:[34,39,40],wall:19,want:[3,16,18,22,24,25,30,32,34,35,39,41,42,43,46,54],warn:[24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51],warren:11,watch:51,watched_vari:[44,47,51],waterfal:24,wave:[2,19,29,41,42,44,45,52,54],waveform:[0,18,21,25,27,34,35,36,38,52],wavefront:23,wavelength:[3,19,23,34,41,43,44,45,48],wavenumb:19,wb:[26,35,47,49],wcncw:24,we:[6,7,9,10,11,12,13,14,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,56],weak:[41,45],weaker:[41,44],wed:30,wedg:[19,23,44],weight:[9,17,26,27,35,47,49,54,56],weightedbp5g:50,weightedbp:50,weights_bp:50,weights_damp:50,weightsin:[47,49],weiss:50,well:[2,3,5,11,14,17,18,19,22,23,24,25,27,30,33,34,36,38,39,41,42,43,44,45,48,50,52,54],well_defin:19,wenzel:23,were:[3,18,23,30,34],what:[20,23,24,25,26,27,34,35,37,40,41,45,47,49,50],wheel:[19,42],when:[3,6,7,8,9,11,12,13,15,16,18,19,23,25,26,29,30,33,34,35,36,37,39,41,42,43,44,45,46,47,48,50],whenev:[10,23,30,34,41,42,43,44,45,46],where:[1,2,3,6,7,9,12,13,14,15,16,17,18,19,20,22,23,25,26,27,33,35,36,37,38,41,42,43,44,45,47,54],wherea:3,wherein:54,whether:[6,9,12,13,16,18,34,36,48],which:[1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54],while_loop:33,white:[3,16,19,26,34,35],whiten:[16,18],whiten_channel:21,whiten_interfer:[16,18],whitepap:51,whole:[24,30,42,51],whose:[2,3,16,18,19,23,29,54],why:[24,27,34,39,41,45],wide:[3,6,16,18,24,27,29,30,46,52,54],widehat:3,wider:24,widetild:23,widget:46,width:[2,3,15,19,23,37,44],wiesbeck:23,wiesmayr:[33,54],wiffen2018:19,wiffen:19,wikipedia:[16,19,23],wikipedia_rodrigu:23,wilei:[2,6,19,23],window:[2,6,18,21,34,37,48,52],winzer:[2,37],wirel:16,wireless:[0,5,13,21,23,24,33,35,41,42,47,49,52,54],wise:[9,11,16,18,20,22,24,27,38,43,50],with_amplif:[2,37],with_attenu:[2,37],with_dispers:[2,37],with_dual_polar:2,with_manakov:2,with_nonlinear:[2,37],with_prior:[15,16],within:[3,5,10,15,16,17,18,19,22,23,24,25,27,34,35,37,41,42,46,47,48,49,53],without:[3,7,10,11,14,16,17,18,19,24,25,27,30,34,38,41,42,44,45,46,47,49,50,53],wkshp:1,wmc1991:2,wood:41,word:[18,19,22,45],work:[3,4,10,14,16,18,19,23,24,25,30,33,35,41,42,43,44,45,46,50,53,54],workflow:54,workhors:31,workload:22,workshop:[1,24,29,50],world:[42,44,52,53,54,55],world_norm:19,wors:39,worst:39,worth:27,would:[3,9,11,12,18,19,20,24,25,27,28,31,37,41,44,45,50],wrap:[3,18,19,40,44,46],wrap_angle_0_360:[0,21],wrapper:[8,9,11],write:[2,23,46,47,48,49,51],written:[2,14,23,46],wrong:[27,46],wrongli:46,wu:33,www:[9,14,15,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,50],x4:54,x5:54,x:[1,2,3,7,8,9,12,13,14,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,51],x_0:3,x_1:13,x_2:[13,25],x_:[3,9,16,18,38],x_angl:37,x_crc:7,x_end:43,x_grid:[43,44],x_hat:[16,18,20,29,30,34,35,36,38,39,40,48,49],x_i:[13,19],x_ind:[36,40],x_ind_hat:40,x_j:[16,19],x_k:16,x_m:20,x_max:44,x_mf:[20,38],x_min:44,x_n:20,x_p:26,x_precod:[16,18],x_rg:[29,30,33,34,35,36,39,48,49],x_rrcf:[20,38],x_start:43,x_tick_label:24,x_time:[25,34],x_u:[20,38],xi:18,xiangyu:[35,49],xiao:3,xla:[3,4,8,10,11,12,16,18,22,24,25,30,31,36,42,46],xla_compat:[3,4,16,18,22,25,30,34,36,39,40,42],xlabel:[3,24,25,26,27,29,32,34,35,36,38,39,41,42,44,45,46,48],xlim:[22,24,25,31,34,38,39,41,42],xml:[19,42],xpd:[23,42],xpd_coeffici:[19,42],xpol:23,xr:54,xtick:[24,27],xy:19,y:[1,2,3,6,9,11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,34,35,37,39,40,41,42,43,44,46,47,48,49,50,51],y_:[3,9],y_angl:37,y_b:[3,18],y_end:43,y_grid:[43,44],y_i:[19,51],y_j:19,y_pilot:18,y_rg:[36,48],y_start:43,y_time:34,y_u:23,yang:[16,33],yaw:[23,42],year:[16,52,54],yedidia:50,yh2015:16,yield:[3,9,14,22,24,27,28,30,31,42],ylabel:[3,22,24,25,26,27,29,30,31,32,34,35,36,38,39,41,42,44,45,46,48],ylim:[20,22,24,25,26,31,34,35,38,39,41,42,44],ymax:41,ymin:41,york:2,you:[3,6,13,16,17,18,19,22,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,56],your:[17,19,25,28,30,33,34,36,41,42,44,45,46,48,50,52,53,54,56],yourself:[25,34,39,41,45],ytick:[24,27],z:[1,2,9,15,16,18,19,23,26,29,34,35,43,44,47,48,49],z_0:23,z_1:13,z_2:13,z_:[15,23],z_c:15,z_grid:[43,44],z_i:[13,19],z_j:19,z_norm:37,z_target:44,z_v:23,zaxi:43,zehavi:27,zehnder:37,zenith:[19,23,42,44],zero:[1,3,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,30,33,34,36,37,38,39,41,42,43,44,45,50],zero_forcing_precod:[18,21],zeros_lik:[24,44,45],zeta:19,zf:[16,18,34],zf_equal:[18,21],zf_precod:34,zfequal:21,zfprecod:[16,21,29,34,39],zhang:[35,49],zheng:3,zip:[15,26,28,29,35,44,47,49,50],zone:44,zoom:[19,42],zurich:27},titles:["Channel","Discrete","Optical","Wireless","Configuration","Forward Error Correction (FEC)","Convolutional Codes","Cyclic Redundancy Check (CRC)","Interleaving","Low-Density Parity-Check (LDPC)","Linear Codes","Polar Codes","Scrambling","Turbo Codes","Utility Functions","Mapping","Multiple-Input Multiple-Output (MIMO)","5G NR","Orthogonal Frequency-Division Multiplexing (OFDM)","Ray Tracing","Signal","API Documentation","Utility Functions","Primer on Electromagnetics","5G Channel Coding and Rate-Matching: Polar vs.\u00a0LDPC Codes","5G NR PUSCH Tutorial","End-to-end Learning with Autoencoders","Bit-Interleaved Coded Modulation (BICM)","Channel Models from Datasets","Using the DeepMIMO Dataset with Sionna","Discover Sionna","From GSM to 5G - The Evolution of Forward Error Correction","\u201cHello, world!\u201d","Introduction to Iterative Detection and Decoding","MIMO OFDM Transmissions over the CDL Channel Model","Neural Receiver for OFDM SIMO Systems","OFDM MIMO Channel Estimation and Detection","Optical Channel with Lumped Amplification","Pulse-shaping Basics","Realistic Multiuser MIMO OFDM Simulations","Basic MIMO Simulations","Tutorial on Diffraction","Introduction to Sionna RT","Mobility in Sionna RT","Tutorial on Reconfigurable Intelligent Surfaces (RIS)","Tutorial on Scattering","Part 1: Getting Started with Sionna","Part 2: Differentiable Communication Systems","Part 3: Advanced Link-level Simulations","Part 4: Toward Learned Receivers","Weighted Belief Propagation Decoding","\u201cHello, Sionna!\u201d","Sionna","Installation","\u201cMade with Sionna\u201d","Quickstart","Tutorials"],titleterms:{"1":[17,46],"2":[17,47],"3":[17,48],"38":3,"3gpp":3,"3gpp38214":17,"4":[17,49],"5":17,"5g":[17,24,25,31,50],"901":3,"final":31,"function":[2,3,6,11,13,14,15,16,19,20,22],"import":[24,25,26,27,28,29,31,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50],A:[24,25,27],For:56,The:[27,30,31,52],With:45,aclr:38,actual:39,ad:40,advanc:[48,49],advantag:27,against:45,alist2mat:14,all:27,allzeroencod:10,amplif:37,amplifi:[2,37],amplitudeprofil:19,an:[34,49],analysi:14,antenna:[3,19,23,34,48],antennaarrai:[3,19],api:21,applyflatfadingchannel:3,applyofdmchannel:3,applytimechannel:3,approxim:[27,45],arrai:[19,34,48],attenu:37,autoencod:26,automat:51,avail:25,awgn:3,background:[41,42,43,44],base:[26,43,44,53],basechannelestim:18,basechannelinterpol:18,baselin:35,basic:[38,40,45,46],batch:30,bch:50,bcjr:6,befor:50,beginn:56,belief:50,benchmark:[33,49],benefit:52,ber:[24,27,30,39,40,42,50],between:[34,39],bicm:27,bin2int:14,bin2int_tf:14,binari:14,binaryerasurechannel:1,binarymemorylesschannel:1,binarysourc:22,binarysymmetricchannel:1,binaryzchannel:1,bit:[27,30],biterrorr:22,bitwisemutualinform:22,blackmanwindow:20,block:[3,17,25,27],box:19,bp:50,bpsk:27,calculate_tb_s:17,camera:19,carlo:30,carrier:[17,25],carrierconfig:17,cdl:[3,34],cellgrid:19,channel:[0,3,18,24,27,28,29,34,36,37,39,40,42,43,45,48],chart:27,check:[7,9],chromat:37,cir:34,cir_to_ofdm_channel:3,cir_to_time_channel:3,citat:[29,52],cluster:3,code:[6,10,11,13,14,24,27,40,50],codeword:[27,31],comment:33,commun:[46,47],compar:[34,39],comparison:[36,43],complex2real_channel:16,complex2real_covari:16,complex2real_matrix:16,complex2real_vector:16,complex:24,complex_norm:22,compon:[25,34],comput:[35,47,51],compute_b:22,compute_bl:22,compute_field:19,compute_gain:19,compute_path:19,compute_s:22,conclus:[30,42,49],configur:[4,24,25,26,27,28,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,50],constel:[15,26,27],content:[24,25,27,29,31,33,34,36,37,38,39,40,41,42,43,44,45,50],control:[25,43],convent:26,convolut:6,convolv:20,coordin:23,correct:[5,31,46],correl:40,count_block_error:22,count_error:22,covari:36,coverag:[19,41,42,44,45],coverage_map:19,coveragemap:19,crc:7,crcdecod:7,crcencod:7,creat:[28,34,47],cross:19,custom:47,customfilt:20,customwindow:20,cyclic:[7,34],damp:50,data:[30,46],dataset:[3,28,29],de:27,decod:[6,9,10,11,13,24,27,33,50],deeper:24,deepmimo:29,deg_2_rad:3,deinterleav:8,delai:[3,43],demap:[15,27],demapp:[15,26],demapperwithprior:15,demodul:18,densiti:9,depth:42,descrambl:12,design:[30,46],detail:52,detect:[16,18,33,36],detector:36,devic:19,diagram:27,differ:[34,39],differenti:47,diffract:[23,41],dimension:30,dipole_pattern:19,discov:30,discret:[1,34],discreteamplitudeprofil:19,discretephaseprofil:19,discuss:33,dispers:37,distribut:27,divis:18,dmr:25,docker:53,document:21,domain:[3,34,39,48],dope:2,doppler:43,dot:19,double_reflector:19,downlink:34,downsampl:[20,38],drop_uts_in_sector:3,eager:[30,46],ebnodb2no:22,edg:41,electromagnet:23,emiss:37,empirical_aclr:20,empirical_psd:20,emptypilotpattern:18,encod:[6,9,10,11,13,27],end:[25,26,30,34,35,36,47],enhanc:44,epdetector:[16,18],equal:[16,18],equat:23,erbium:2,error:[5,30,31,46],estim:[18,36,39],etoil:19,evalu:[26,34,35,42],evolut:[31,43],exampl:[19,23,25,43],exercis:46,exit:[14,27],exp_corr_mat:3,expand_to_rank:22,experi:[41,50],expert:56,extens:40,extern:3,fade:3,far:[23,45],fec:[5,46],fft:20,fiber:2,field:23,figur:31,filter:[20,38],find:52,first:30,flat:3,flatfadingchannel:3,flatten_dim:22,flatten_last_dim:22,floor_wal:19,flow:[30,46],forward:[5,31,46],fourier:[2,37],frequenc:[18,23,34,36,39,48],frii:23,from:[28,31,42,44,53],further:50,gaussianpriorsourc:14,gen_single_sector_topolog:3,gen_single_sector_topology_interfer:3,gener:[23,28,34,37],generate_5g_rank:11,generate_dense_polar:11,generate_polar_transform_mat:11,generate_prng_seq:17,generate_reg_ldpc:14,generate_rm_cod:11,generateflatfadingchannel:3,generateofdmchannel:3,generatetimechannel:3,get:[30,46],get_exit_analyt:14,gm2pcm:14,gpu:[24,25,26,27,28,29,31,33,34,35,36,38,39,40,41,42,43,44,45,50],gradient:[44,47,51],graph:[30,46],grid:[18,34,48],gsm:31,hammingwindow:20,hannwindow:20,hard_decis:22,harmon:23,hello:[25,32,46,51],how:25,hw_dipole_pattern:19,idd:33,ifft:20,impact:[34,45],implement:49,impuls:[23,34,37,42,45],index:17,inform:[41,42,43,44,52],input:16,insert_dim:22,instal:53,insuffici:34,int2bin:14,int2bin_tf:14,int_mod_2:14,intellig:[19,23,44],interfac:3,interleav:[8,27],introduct:[33,42],investig:38,iso_pattern:19,iter:33,j_fun:14,j_fun_inv:14,j_fun_inv_tf:14,j_fun_tf:14,kbestdetector:[16,18],kera:[33,34,35,39,40,46],kerr:37,kroneckermodel:3,kroneckerpilotpattern:18,lagrangeprofileinterpol:19,layer:[17,25,30,34,47],layerdemapp:17,layermapp:17,ldpc5gdecod:9,ldpc5gencod:9,ldpc:[9,24,50],ldpcbpdecod:9,learn:[26,33,49,50],length:34,let:30,level:[29,30,42,48],licens:[29,52],line:3,linear:[10,14],lineardetector:[16,18],linearencod:10,linearinterpol:18,link:[29,30,42,48],list2llr:16,list2llrsimpl:16,list:33,literatur:44,llr2mi:14,llr:27,llrs2symbollogit:15,lmmse_equ:16,lmmseequal:18,lmmseinterpol:18,load:[30,36,42],load_alist:14,load_parity_check_exampl:14,load_scen:19,log10:22,log2:22,longer:[24,31],look:[24,25],loop:47,low:9,lschannelestim:18,lump:37,machin:33,macrocel:3,made:54,make_systemat:14,manag:[16,34,48],map:[15,17,19,27,41,42,45],mapper:15,match:[24,38],materi:19,matric:36,matrix_inv:22,matrix_pinv:22,matrix_sqrt:22,matrix_sqrt_inv:22,maximumlikelihooddetector:[16,18],maximumlikelihooddetectorwithprior:[16,18],mc:[17,25],method:[2,37],metric:22,mf_equal:16,mfequal:18,microcel:3,mimo:[16,34,36,39,40],min:27,miscellan:[14,22],mismatch:27,mmse:16,mmsepicdetector:18,mobil:[34,43],mode:[30,44,46],model:[3,23,28,30,31,33,34,35,36,39,40,46,48],modul:[18,24,27],mont:30,multi:[29,30],multipl:[16,25,44],multiplex:18,multius:39,munich:19,nearestneighborinterpol:18,neural:[26,35,49],nois:37,non:33,nonlinear:37,normal:[19,23],nr:[17,25],number:25,object:[19,43],ofdm:[3,18,28,34,35,36,39,48],ofdmchannel:3,ofdmdemodul:18,ofdmdetector:18,ofdmdetectorwithprior:18,ofdmequ:18,ofdmmodul:18,one_ring_corr_mat:3,optic:[2,37],optim:[24,33,44],orient:43,orthogon:18,osdecod:10,other:34,outer:19,outlook:42,output:16,over:34,packag:30,pam2qam:15,pam:15,pam_grai:15,pamsourc:22,panelarrai:3,paradigm:[30,46],paramet:[26,28,33,35,36,49],pariti:9,part:[46,47,48,49],path:[19,23,42],pattern:[18,23,34,45],pcm2gm:14,percolumnmodel:3,perform:[24,34],phaseprofil:19,phi_hat:19,physic:34,pic:16,pilot:[18,34],pilotpattern:18,pip:53,planar:23,planararrai:19,plot_ber:22,plot_exit_chart:14,plot_trajectori:14,plotber:22,polar5gdecod:11,polar5gencod:11,polar:[11,24],polarbpdecod:11,polarencod:11,polarization_model_1:19,polarization_model_2:19,polarscdecod:11,polarscldecod:11,polynomial_selector:[6,13],port:25,posit:43,pre:35,precod:[16,18],prefix:34,preview:19,primer:23,process:34,profileinterpol:19,propag:[23,42,50],puls:38,puncture_pattern:13,pusch:[17,25],puschconfig:17,puschdmrsconfig:17,puschlschannelestim:17,puschpilotpattern:17,puschprecod:17,puschreceiv:[17,25],puschtransmitt:[17,25],qam2pam:15,qam:[15,38],qamsourc:22,qpsk:27,quickstart:55,r_hat:19,rad_2_deg:3,radio:[19,42],radiomateri:19,rai:[19,42,56],raisedcosinefilt:20,random:29,randominterleav:8,rate:[24,30,31],rayleigh:3,real2complex_channel:16,real2complex_covari:16,real2complex_matrix:16,real2complex_vector:16,realist:39,receiv:[19,23,35,49],reconfigur:[19,23,44],recov:[23,38],recoveri:24,redund:7,refer:[24,26,27,33,35,37,41,44,45,49,50],reflect:23,refract:23,relocate_ut:3,remov:27,removenulledsubcarri:18,render:19,render_to_fil:19,reproduc:44,requir:30,reradi:44,resourc:[18,34,48],resourcegrid:18,resourcegriddemapp:18,resourcegridmapp:18,respons:[23,34,39,42,45],result:[31,35,44,50],ri:[19,23,44],rl:26,rma:3,role:27,rootraisedcosinefilt:20,rot_mat_from_unit_vec:19,rotat:[19,23],rotation_matrix:19,rowcolumninterleav:8,rt:[42,43],run:30,runtim:42,rural:3,s:30,sampl:[29,34],sample_points_on_hemispher:19,scatter:[23,45],scatteringpattern:19,scene:[19,42,43],sceneobject:19,scheme:24,scrambl:12,scrambler:[12,27],select_mc:17,sequenc:38,set:[30,33,47],set_3gpp_scenario_paramet:3,setup:[34,37,39],shape:38,shift:43,signal:20,sim_ber:22,simo:35,simpl:[27,28,40,41],simple_reflector:19,simple_street_canyon:19,simple_street_canyon_with_car:19,simple_wedg:19,simul:[25,26,27,28,29,30,31,33,34,35,36,39,40,42,48,49,50],sincfilt:20,sionna:[29,30,42,43,46,51,52,54],site:42,slot:25,some:30,sourc:53,spatial:[36,40],spatialcorrel:3,specifc:42,spectrum:43,split:[2,37],split_dim:22,spontan:37,start:[30,46],step:[2,37],stream:[16,34,48],subcarrier_frequ:3,sum:27,summari:[43,44,45],surfac:[19,23,44],symbol:[25,38],symboldemapp:15,symboldemapperwithprior:15,symbolinds2bit:15,symbollogits2llr:15,symbollogits2llrswithprior:15,symbollogits2mo:15,symbolsourc:22,system:[23,26,27,31,34,35,39,46,47],tabl:[17,24,25,27,29,31,33,34,36,37,38,39,40,41,42,43,44,45,50],tap:3,tb5gscrambler:12,tbconfig:17,tbdecod:17,tbencod:17,tdl:3,tdl_freq_cov_mat:18,tdl_time_cov_mat:18,tensor:[22,30],test:30,theta_hat:19,theta_phi_from_unit_vec:19,through:[38,47],throughput:[24,30],time:[3,23,34,36,43],time_frequency_vector:2,time_lag_discrete_time_channel:3,time_to_ofdm_channel:3,timechannel:3,toward:49,tr38901_pattern:19,trace:[19,42,56],trace_path:19,train:[26,35,47,49,50],trainabl:26,transmiss:[27,28,34,37,39,40,48],transmit:23,transmitt:19,transport:[17,25],trelli:6,triple_reflector:19,turbo3gppinterleav:8,turbo:13,turbotermin:13,tutori:[25,41,44,45,56],uma:3,umi:3,uncod:40,under:24,understand:[25,34,39],up:[30,33,47],uplink:[34,39,48],upsampl:20,urban:3,us:[28,29,40,52,53],user:29,util:[2,3,6,11,13,14,15,16,17,19,20,22],valid:45,vector:23,verify_gm_pcm:14,versu:33,via:43,visual:[19,26,29],viterbi:6,vs:[24,41,42,43,46],wall:45,wave:23,waveform:3,wedg:41,weight:50,where:52,whiten_channel:16,window:[20,38],wireless:3,world:[25,32],wrap_angle_0_360:3,zero:27,zero_forcing_precod:16,zf_equal:16,zfequal:18,zfprecod:18}})
\ No newline at end of file
diff --git a/docs/tutorials.html b/docs/tutorials.html
index 9583b47a..2e95e035 100644
--- a/docs/tutorials.html
+++ b/docs/tutorials.html
@@ -3,7 +3,7 @@
- Tutorials — Sionna 0.17.0 documentation
+ Tutorials — Sionna 0.18.0 documentation
@@ -396,6 +396,18 @@