-
Notifications
You must be signed in to change notification settings - Fork 58
/
sample.py
703 lines (571 loc) · 27.7 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
# -*- coding: utf-8 -*-
"""Helper classes and functions to sample grasps for a given object mesh."""
from __future__ import print_function
import argparse
from collections import OrderedDict
import errno
import json
import os
import numpy as np
from tqdm import tqdm
import trimesh
import trimesh.transformations as tra
class Object(object):
"""Represents a graspable object."""
def __init__(self, filename):
"""Constructor.
:param filename: Mesh to load
:param scale: Scaling factor
"""
self.mesh = trimesh.load(filename)
self.scale = 1.0
# print(filename)
self.filename = filename
if isinstance(self.mesh, list):
# this is fixed in a newer trimesh version:
# https://github.com/mikedh/trimesh/issues/69
print("Warning: Will do a concatenation")
self.mesh = trimesh.util.concatenate(self.mesh)
self.collision_manager = trimesh.collision.CollisionManager()
self.collision_manager.add_object('object', self.mesh)
def rescale(self, scale=1.0):
"""Set scale of object mesh.
:param scale
"""
self.scale = scale
self.mesh.apply_scale(self.scale)
def resize(self, size=1.0):
"""Set longest of all three lengths in Cartesian space.
:param size
"""
self.scale = size / np.max(self.mesh.extents)
self.mesh.apply_scale(self.scale)
def in_collision_with(self, mesh, transform):
"""Check whether the object is in collision with the provided mesh.
:param mesh:
:param transform:
:return: boolean value
"""
return self.collision_manager.in_collision_single(mesh, transform=transform)
class PandaGripper(object):
"""An object representing a Franka Panda gripper."""
def __init__(self, q=None, num_contact_points_per_finger=10, root_folder=''):
"""Create a Franka Panda parallel-yaw gripper object.
Keyword Arguments:
q {list of int} -- configuration (default: {None})
num_contact_points_per_finger {int} -- contact points per finger (default: {10})
root_folder {str} -- base folder for model files (default: {''})
"""
self.joint_limits = [0.0, 0.04]
self.default_pregrasp_configuration = 0.04
if q is None:
q = self.default_pregrasp_configuration
self.q = q
fn_base = root_folder + 'gripper_models/panda_gripper/hand.stl'
fn_finger = root_folder + 'gripper_models/panda_gripper/finger.stl'
self.base = trimesh.load(fn_base)
self.finger_l = trimesh.load(fn_finger)
self.finger_r = self.finger_l.copy()
# transform fingers relative to the base
self.finger_l.apply_transform(tra.euler_matrix(0, 0, np.pi))
self.finger_l.apply_translation([+q, 0, 0.0584])
self.finger_r.apply_translation([-q, 0, 0.0584])
self.fingers = trimesh.util.concatenate([self.finger_l, self.finger_r])
self.hand = trimesh.util.concatenate([self.fingers, self.base])
self.ray_origins = []
self.ray_directions = []
for i in np.linspace(-0.01, 0.02, num_contact_points_per_finger):
self.ray_origins.append(
np.r_[self.finger_l.bounding_box.centroid + [0, 0, i], 1])
self.ray_origins.append(
np.r_[self.finger_r.bounding_box.centroid + [0, 0, i], 1])
self.ray_directions.append(
np.r_[-self.finger_l.bounding_box.primitive.transform[:3, 0]])
self.ray_directions.append(
np.r_[+self.finger_r.bounding_box.primitive.transform[:3, 0]])
self.ray_origins = np.array(self.ray_origins)
self.ray_directions = np.array(self.ray_directions)
self.standoff_range = np.array([max(self.finger_l.bounding_box.bounds[0, 2],
self.base.bounding_box.bounds[1, 2]),
self.finger_l.bounding_box.bounds[1, 2]])
self.standoff_range[0] += 0.001
def get_obbs(self):
"""Get list of obstacle meshes.
Returns:
list of trimesh -- bounding boxes used for collision checking
"""
return [self.finger_l.bounding_box, self.finger_r.bounding_box, self.base.bounding_box]
def get_meshes(self):
"""Get list of meshes that this gripper consists of.
Returns:
list of trimesh -- visual meshes
"""
return [self.finger_l, self.finger_r, self.base]
def get_closing_rays(self, transform):
"""Get an array of rays defining the contact locations and directions on the hand.
Arguments:
transform {[nump.array]} -- a 4x4 homogeneous matrix
Returns:
numpy.array -- transformed rays (origin and direction)
"""
return transform[:3, :].dot(
self.ray_origins.T).T, transform[:3, :3].dot(self.ray_directions.T).T
def get_available_grippers():
"""Get list of names of all available grippers.
Returns:
list of str -- a list of names for the gripper factory
"""
available_grippers = OrderedDict({
'panda': PandaGripper,
})
return available_grippers
def create_gripper(name, configuration=None, root_folder=''):
"""Create a gripper object.
Arguments:
name {str} -- name of the gripper
Keyword Arguments:
configuration {list of float} -- configuration (default: {None})
root_folder {str} -- base folder for model files (default: {''})
Raises:
Exception: If the gripper name is unknown.
Returns:
[type] -- gripper object
"""
if name.lower() == 'panda':
return PandaGripper(q=configuration, root_folder=root_folder)
else:
raise Exception("Unknown gripper: {}".format(name))
def in_collision_with_gripper(object_mesh, gripper_transforms, gripper_name, silent=False):
"""Check collision of object with gripper.
Arguments:
object_mesh {trimesh} -- mesh of object
gripper_transforms {list of numpy.array} -- homogeneous matrices of gripper
gripper_name {str} -- name of gripper
Keyword Arguments:
silent {bool} -- verbosity (default: {False})
Returns:
[list of bool] -- Which gripper poses are in collision with object mesh
"""
manager = trimesh.collision.CollisionManager()
manager.add_object('object', object_mesh)
gripper_meshes = [create_gripper(gripper_name).hand]
min_distance = []
for tf in tqdm(gripper_transforms, disable=silent):
min_distance.append(np.min([manager.min_distance_single(
gripper_mesh, transform=tf) for gripper_mesh in gripper_meshes]))
return [d == 0 for d in min_distance], min_distance
def grasp_quality_point_contacts(transforms, collisions, object_mesh, gripper_name='panda', silent=False):
"""Grasp quality function
Arguments:
transforms {[type]} -- grasp poses
collisions {[type]} -- collision information
object_mesh {trimesh} -- object mesh
Keyword Arguments:
gripper_name {str} -- name of gripper (default: {'panda'})
silent {bool} -- verbosity (default: {False})
Returns:
list of float -- quality of grasps [0..1]
"""
res = []
gripper = create_gripper(gripper_name)
if trimesh.ray.has_embree:
intersector = trimesh.ray.ray_pyembree.RayMeshIntersector(
object_mesh, scale_to_box=True)
else:
intersector = trimesh.ray.ray_triangle.RayMeshIntersector(object_mesh)
for p, colliding in tqdm(zip(transforms, collisions), total=len(transforms), disable=silent):
if colliding:
res.append(-1)
else:
ray_origins, ray_directions = gripper.get_closing_rays(p)
locations, index_ray, index_tri = intersector.intersects_location(
ray_origins, ray_directions, multiple_hits=False)
if len(locations) == 0:
res.append(0)
else:
# this depends on the width of the gripper
valid_locations = np.linalg.norm(
ray_origins[index_ray]-locations, axis=1) < 2.0*gripper.q
if sum(valid_locations) == 0:
res.append(0)
else:
contact_normals = object_mesh.face_normals[index_tri[valid_locations]]
motion_normals = ray_directions[index_ray[valid_locations]]
dot_prods = (motion_normals * contact_normals).sum(axis=1)
res.append(np.cos(dot_prods).sum() / len(ray_origins))
return res
def grasp_quality_antipodal(transforms, collisions, object_mesh, gripper_name='panda', silent=False):
"""Grasp quality function.
Arguments:
transforms {numpy.array} -- grasps
collisions {list of bool} -- collision information
object_mesh {trimesh} -- object mesh
Keyword Arguments:
gripper_name {str} -- name of gripper (default: {'panda'})
silent {bool} -- verbosity (default: {False})
Returns:
list of float -- quality of grasps [0..1]
"""
res = []
gripper = create_gripper(gripper_name)
if trimesh.ray.has_embree:
intersector = trimesh.ray.ray_pyembree.RayMeshIntersector(
object_mesh, scale_to_box=True)
else:
intersector = trimesh.ray.ray_triangle.RayMeshIntersector(object_mesh)
for p, colliding in tqdm(zip(transforms, collisions), total=len(transforms), disable=silent):
if colliding:
res.append(0)
else:
ray_origins, ray_directions = gripper.get_closing_rays(p)
locations, index_ray, index_tri = intersector.intersects_location(
ray_origins, ray_directions, multiple_hits=False)
if locations.size == 0:
res.append(0)
else:
# chose contact points for each finger [they are stored in an alternating fashion]
index_ray_left = np.array([i for i, num in enumerate(
index_ray) if num % 2 == 0 and np.linalg.norm(ray_origins[num]-locations[i]) < 2.0*gripper.q])
index_ray_right = np.array([i for i, num in enumerate(
index_ray) if num % 2 == 1 and np.linalg.norm(ray_origins[num]-locations[i]) < 2.0*gripper.q])
if index_ray_left.size == 0 or index_ray_right.size == 0:
res.append(0)
else:
# select the contact point closest to the finger (which would be hit first during closing)
left_contact_idx = np.linalg.norm(
ray_origins[index_ray[index_ray_left]] - locations[index_ray_left], axis=1).argmin()
right_contact_idx = np.linalg.norm(
ray_origins[index_ray[index_ray_right]] - locations[index_ray_right], axis=1).argmin()
left_contact_point = locations[index_ray_left[left_contact_idx]]
right_contact_point = locations[index_ray_right[right_contact_idx]]
left_contact_normal = object_mesh.face_normals[index_tri[index_ray_left[left_contact_idx]]]
right_contact_normal = object_mesh.face_normals[
index_tri[index_ray_right[right_contact_idx]]]
l_to_r = (right_contact_point - left_contact_point) / \
np.linalg.norm(right_contact_point -
left_contact_point)
r_to_l = (left_contact_point - right_contact_point) / \
np.linalg.norm(left_contact_point -
right_contact_point)
qual_left = np.dot(left_contact_normal, r_to_l)
qual_right = np.dot(right_contact_normal, l_to_r)
if qual_left < 0 or qual_right < 0:
qual = 0
else:
# qual = qual_left * qual_right
qual = min(qual_left, qual_right)
# math.cos(math.atan(friction_coefficient))
res.append(qual)
return res
def raycast_collisioncheck(origins, expected_hit_points, object_mesh):
""" Check whether a set of ray casts turn out as expected.
:param origins: ray origins and directions as Nx4x4 homogenous matrices (use last two columns)
:param expected_hit_points: 3d points Nx3
:param object_mesh: trimesh mesh instance
:return: boolean array of size N
"""
assert len(origins) == len(expected_hit_points)
if trimesh.ray.has_embree:
intersector = trimesh.ray.ray_pyembree.RayMeshIntersector(
object_mesh, scale_to_box=True)
else:
intersector = trimesh.ray.ray_triangle.RayMeshIntersector(object_mesh)
locations, index_rays, _ = intersector.intersects_location(
origins[:, :3, 3], origins[:, :3, 2], multiple_hits=False)
res = np.array([False] * len(origins))
res[index_rays] = np.all(np.isclose(
locations, expected_hit_points[index_rays]), axis=1)
return res
def sample_multiple_grasps(number_of_candidates, mesh, gripper_name, systematic_sampling,
surface_density=0.005*0.005, standoff_density=0.01, roll_density=15,
type_of_quality='antipodal',
min_quality=-1.0,
silent=False):
"""Sample a set of grasps for an object.
Arguments:
number_of_candidates {int} -- Number of grasps to sample
mesh {trimesh} -- Object mesh
gripper_name {str} -- Name of gripper model
systematic_sampling {bool} -- Whether to use grid sampling for roll
Keyword Arguments:
surface_density {float} -- surface density, in m^2 (default: {0.005*0.005})
standoff_density {float} -- density for standoff, in m (default: {0.01})
roll_density {float} -- roll density, in deg (default: {15})
type_of_quality {str} -- quality metric (default: {'antipodal'})
min_quality {float} -- minimum grasp quality (default: {-1})
silent {bool} -- verbosity (default: {False})
Raises:
Exception: Unknown quality metric
Returns:
[type] -- points, normals, transforms, roll_angles, standoffs, collisions, quality
"""
origins = []
orientations = []
transforms = []
standoffs = []
roll_angles = []
gripper = create_gripper(gripper_name)
if systematic_sampling:
# systematic sampling. input:
# - Surface density:
# - Standoff density:
# - Rotation density:
# Resulting number of samples:
# (Area/Surface Density) * (Finger length/Standoff density) * (360/Rotation Density)
surface_samples = int(np.ceil(mesh.area / surface_density))
standoff_samples = np.linspace(gripper.standoff_range[0], gripper.standoff_range[1], max(
1, (gripper.standoff_range[1] - gripper.standoff_range[0]) / standoff_density))
rotation_samples = np.arange(0, 1 * np.pi, np.deg2rad(roll_density))
number_of_candidates = surface_samples * \
len(standoff_samples) * len(rotation_samples)
tmp_points, face_indices = mesh.sample(
surface_samples, return_index=True)
tmp_normals = mesh.face_normals[face_indices]
number_of_candidates = len(tmp_points) * \
len(standoff_samples) * len(rotation_samples)
print("Number of samples ", number_of_candidates, "(", len(tmp_points), " x ", len(standoff_samples), " x ",
len(rotation_samples), ")")
points = []
normals = []
position_idx = []
pos_cnt = 0
cnt = 0
batch_position_idx = []
batch_points = []
batch_normals = []
batch_roll_angles = []
batch_standoffs = []
batch_transforms = []
for point, normal in tqdm(zip(tmp_points, tmp_normals), total=len(tmp_points), disable=silent):
for roll in rotation_samples:
for standoff in standoff_samples:
batch_position_idx.append(pos_cnt)
batch_points.append(point)
batch_normals.append(normal)
batch_roll_angles.append(roll)
batch_standoffs.append(standoff)
orientation = tra.quaternion_matrix(
tra.quaternion_about_axis(roll, [0, 0, 1]))
origin = point + normal * standoff
batch_transforms.append(
np.dot(np.dot(tra.translation_matrix(origin), trimesh.geometry.align_vectors([0, 0, -1], normal)),
orientation))
cnt += 1
pos_cnt += 1
if cnt % 1000 == 0 or cnt == len(tmp_points):
valid = raycast_collisioncheck(np.asarray(
batch_transforms), np.asarray(batch_points), mesh)
transforms.extend(np.array(batch_transforms)[valid])
position_idx.extend(np.array(batch_position_idx)[valid])
points.extend(np.array(batch_points)[valid])
normals.extend(np.array(batch_normals)[valid])
roll_angles.extend(np.array(batch_roll_angles)[valid])
standoffs.extend(np.array(batch_standoffs)[valid])
batch_position_idx = []
batch_points = []
batch_normals = []
batch_roll_angles = []
batch_standoffs = []
batch_transforms = []
points = np.array(points)
normals = np.array(normals)
position_idx = np.array(position_idx)
else:
points, face_indices = mesh.sample(
number_of_candidates, return_index=True)
normals = mesh.face_normals[face_indices]
# generate transformations
for point, normal in tqdm(zip(points, normals), total=len(points), disable=silent):
# roll along approach vector
angle = np.random.rand() * 2 * np.pi
roll_angles.append(angle)
orientations.append(tra.quaternion_matrix(
tra.quaternion_about_axis(angle, [0, 0, 1])))
# standoff from surface
standoff = (gripper.standoff_range[1] - gripper.standoff_range[0]) * np.random.rand() \
+ gripper.standoff_range[0]
standoffs.append(standoff)
origins.append(point + normal * standoff)
transforms.append(
np.dot(np.dot(tra.translation_matrix(origins[-1]),
trimesh.geometry.align_vectors([0, 0, -1], normal)),
orientations[-1]))
verboseprint("Checking collisions...")
collisions = in_collision_with_gripper(
mesh, transforms, gripper_name=gripper_name, silent=silent)
verboseprint("Labelling grasps...")
quality = {}
quality_key = 'quality_' + type_of_quality
if type_of_quality == 'antipodal':
quality[quality_key] = grasp_quality_antipodal(
transforms, collisions, object_mesh=mesh, gripper_name=gripper_name, silent=silent)
elif type_of_quality == 'number_of_contacts':
quality[quality_key] = grasp_quality_point_contacts(
transforms, collisions, object_mesh=mesh, gripper_name=gripper_name, silent=silent)
else:
raise Exception("Quality metric unknown: ", quality)
# Filter out by quality
quality_np = np.array(quality[quality_key])
collisions = np.array(collisions)
f_points = []
f_normals = []
f_transforms = []
f_roll_angles = []
f_standoffs = []
f_collisions = []
f_quality = []
for i, _ in enumerate(transforms):
if quality_np[i] >= min_quality:
f_points.append(points[i])
f_normals.append(normals[i])
f_transforms.append(transforms[i])
f_roll_angles.append(roll_angles[i])
f_standoffs.append(standoffs[i])
f_collisions.append(int(collisions[i]))
f_quality.append(quality_np[i])
points = np.array(f_points)
normals = np.array(f_normals)
transforms = np.array(f_transforms)
roll_angles = np.array(f_roll_angles)
standoffs = np.array(f_standoffs)
collisions = f_collisions
quality[quality_key] = f_quality
return points, normals, transforms, roll_angles, standoffs, collisions, quality
def make_parser():
"""Create program arguments and default values.
Returns:
argparse.ArgumentParser -- an argument parser
"""
parser = argparse.ArgumentParser(description='Sample grasps for an object.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--object_file', type=str,
default='/home/arsalan/data/models_selected/03797390/1be6b2c84cdab826c043c2d07bb83fc8/model.obj',
help='Number of samples.')
parser.add_argument('--dataset', type=str, default='UNKNOWN',
help='Metadata about the origin of the file.')
parser.add_argument('--classname', type=str, default='UNKNOWN',
help='Metadata about the class of the object.')
parser.add_argument('--scale', type=float, default=1.0,
help='Scale the object.')
parser.add_argument('--resize', type=float,
help="""Resize the object, such that the longest of its \
bounding box dimensions is of length --resize.""")
parser.add_argument('--use_stl', action='store_true',
help='Use STL instead of obj.')
parser.add_argument('--gripper', choices=get_available_grippers().keys(), default='panda',
help='Type of gripper.')
parser.add_argument('--quality', choices=['number_of_contacts', 'antipodal'],
default='number_of_contacts',
help='Which type of quality metric to evaluate.')
parser.add_argument('--single_standoff', action='store_true',
help='Use the closest possible standoff.')
parser.add_argument('--systematic_sampling', action='store_true',
help='Systematically sample stuff.')
parser.add_argument('--systematic_surface_density', type=float, default=0.005*0.005,
help='Surface density used for systematic sampling (in square meters).')
parser.add_argument('--systematic_standoff_density', type=float, default=0.01,
help='Standoff density used for systematic sampling (in meters).')
parser.add_argument('--systematic_roll_density', type=float, default=15.,
help='Roll density used for systematic sampling (in degrees).')
parser.add_argument('--filter_best_per_position', action='store_true',
help='Only store one grasp (highest quality) if there are multiple per with the same position.')
parser.add_argument('--min_quality', type=float, default=0.0,
help="""Only store grasps whose quality is at least this value. \
Colliding grasps have quality -1, i.e. they are filtered out by default.""")
parser.add_argument('--num_samples', type=int, default=10,
help='Number of samples.')
parser.add_argument('--output', type=str, default="tmp.json",
help='File to store the results (json).')
parser.add_argument('--add_quality_metric', nargs=2, type=str, default="",
help='File (json) to calculate additional quality metric for.')
parser.add_argument('--silent', action='store_true',
help='No commandline output.')
parser.add_argument('--force', action='store_true',
help='Do things my way.')
return parser
if __name__ == "__main__":
parser = make_parser()
args = parser.parse_args()
verboseprint = print if not args.silent else lambda *a, **k: None
if args.add_quality_metric:
with open(args.add_quality_metric[1], 'r') as f:
grasps = json.load(f)
obj = Object(grasps['object'].replace('.obj', '.stl')
if args.use_stl else grasps['object'])
obj.rescale(grasps['object_scale'])
grasp_tfs = np.array(grasps['transforms'])
collisions = np.array(grasps['collisions'])
key = 'quality_{}'.format(args.add_quality_metric[0])
if key in grasps.keys() and not args.force:
raise Exception(
"Quality metric already part of json file! (Needs --force option) ", key)
if key == 'quality_number_of_contacts':
grasps[key] = grasp_quality_point_contacts(
grasp_tfs,
collisions,
object_mesh=obj.mesh,
gripper_name=grasps['gripper'],
silent=args.silent)
elif key == 'quality_antipodal':
grasps[key] = grasp_quality_antipodal(
grasp_tfs,
collisions,
object_mesh=obj.mesh,
gripper_name=grasps['gripper'],
silent=args.silent)
else:
raise Exception("Unknown quality metric: ", key)
with open(args.add_quality_metric[1], 'w') as f:
json.dump(grasps, f)
else:
if os.path.dirname(args.output) != '':
try:
os.makedirs(os.path.dirname(args.output))
except OSError as e:
if e.errno != errno.EEXIST:
raise
obj = Object(args.object_file.replace('.obj', '.stl')
if args.use_stl else args.object_file)
if args.resize:
obj.resize(args.resize)
else:
obj.rescale(args.scale)
gripper = create_gripper(args.gripper)
points, normals, transforms, roll_angles, standoffs, collisions, qualities\
= sample_multiple_grasps(args.num_samples,
obj.mesh,
gripper_name=args.gripper,
systematic_sampling=args.systematic_sampling,
roll_density=args.systematic_roll_density,
standoff_density=args.systematic_standoff_density,
surface_density=args.systematic_surface_density,
type_of_quality=args.quality,
filter_best_per_position=args.filter_best_per_position,
min_quality=args.min_quality,
silent=args.silent)
# save transforms
grasps = {
'object': obj.filename,
'object_scale': obj.scale,
'object_class': args.classname,
'object_dataset': args.dataset,
'gripper': args.gripper,
'gripper_configuration': [gripper.q],
'transforms': [t.tolist() for t in transforms],
'roll_angles': roll_angles.tolist(),
'standoffs': standoffs.tolist(),
'mesh_points': [p.tolist() for p in points],
'mesh_normals': [n.tolist() for n in normals],
'collisions': collisions,
}
grasps.update(qualities)
with open(args.output, 'w') as f:
verboseprint("Writing results to:", args.output)
json.dump(grasps, f)