Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Qwen2 Recipe #10974

Merged
merged 7 commits into from
Oct 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion nemo/collections/llm/gpt/model/qwen2.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,7 @@ def _import_qkv_bias(ctx: io.TransformCTX, q, k, v):
k = k.view(*new_kv_tensor_shape)
v = v.view(*new_kv_tensor_shape)

qkv_bias = torch.empty((0, head_size))
qkv_bias = torch.empty((0, head_size)).type_as(q)
for i in range(num_query_groups):
qkv_bias = torch.cat((qkv_bias, q[i * heads_per_group : (i + 1) * heads_per_group, :]))
qkv_bias = torch.cat((qkv_bias, k[i : i + 1, :]))
Expand Down
10 changes: 10 additions & 0 deletions nemo/collections/llm/recipes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,11 @@
nemotron4_22b_16k,
nemotron4_22b_64k,
nemotron4_340b,
qwen2,
qwen2_1p5b,
qwen2_7b,
qwen2_72b,
qwen2_500m,
)
from nemo.collections.llm.recipes.log.default import default_log, default_resume
from nemo.collections.llm.recipes.optim import adam
Expand Down Expand Up @@ -90,6 +95,11 @@
"nemotron4_22b_16k",
"nemotron4_22b_64k",
"nemotron4_340b",
"qwen2",
"qwen2_500m",
"qwen2_1p5b",
"qwen2_7b",
"qwen2_72b",
"gpt3_175b",
"adam",
"default_log",
Expand Down
139 changes: 139 additions & 0 deletions nemo/collections/llm/recipes/qwen2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import nemo_run as run
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks.callback import Callback

from nemo import lightning as nl
from nemo.collections.llm.gpt.model.qwen2 import (
Qwen2Config1P5B,
Qwen2Config7B,
Qwen2Config72B,
Qwen2Config500M,
Qwen2Model,
)
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed, fp16_mixed


def qwen2_model(version: str) -> run.Config[pl.LightningModule]:
"""
A function to create a qwen2 models.

Args:
version (str): The version of the qwen2 model to create. one of ["qwen2_500m", "qwen2_1p5b",
"qwen2_7b", "qwen2_72b"].

Returns:
run.Config[pl.LightningModule]: Configuration for the qwen2 model.
"""
config = None
if version == "qwen2_500m":
config = run.Config(Qwen2Config500M)
elif version == "qwen2_1p5b":
config = run.Config(Qwen2Config1P5B)
elif version == "qwen2_7b":
config = run.Config(Qwen2Config7B)
elif version == "qwen2_72b":
config = run.Config(Qwen2Config72B)

assert config is not None, f"Invalid version: {version}"
return run.Config(Qwen2Model, config=config)


def qwen2_trainer(
tensor_parallelism: int = 2,
pipeline_parallelism: int = 1,
pipeline_parallelism_type: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
max_steps: int = 1168251,
precision: str = "bf16-mixed",
accumulate_grad_batches: int = 1,
limit_test_batches: int = 32,
limit_val_batches: int = 32,
log_every_n_steps: int = 10,
val_check_interval: int = 2000,
callbacks: Optional[list[run.Config[Callback]]] = None,
) -> run.Config[nl.Trainer]:
"""
Configure the NeMo Lightning Trainer for qwen2 models.

This function sets up the distributed training strategy and other training parameters.

Args:
tensor_parallelism (int): Degree of tensor model parallelism.
pipeline_parallelism (int): Degree of pipeline model parallelism.
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
context_parallelism (int): Degree of context parallelism.
sequence_parallelism (bool): Whether to use sequence parallelism.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
max_steps (int): Maximum number of training steps.
precision (str): Precision configuration, one of fp32, 16-mixed or bf16-mixed.
accumulate_grad_batches (int): Number of steps per gradient accumulation.
limit_test_batches (int): Limit the number of test batches.
limit_val_batches (int): Limit the number of validation batches.
log_every_n_steps (int): Log every n steps.
val_check_interval (int): Run validation every N steps.
callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations.

Returns:
run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer.
"""
strategy = run.Config(
nl.MegatronStrategy,
tensor_model_parallel_size=tensor_parallelism,
pipeline_model_parallel_size=pipeline_parallelism,
pipeline_dtype=pipeline_parallelism_type,
virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism,
context_parallel_size=context_parallelism,
sequence_parallel=sequence_parallelism,
gradient_as_bucket_view=True,
ckpt_include_optimizer=True,
ckpt_async_save=True,
ckpt_parallel_load=True,
)

precision_plugin = None
if precision == "16-mixed":
precision_plugin = fp16_mixed()
elif precision == "bf16-mixed":
precision_plugin = bf16_mixed()

trainer = run.Config(
nl.Trainer,
accelerator="gpu",
callbacks=callbacks,
devices=num_gpus_per_node,
accumulate_grad_batches=accumulate_grad_batches,
limit_test_batches=limit_test_batches,
limit_val_batches=limit_val_batches,
log_every_n_steps=log_every_n_steps,
max_steps=max_steps,
num_nodes=num_nodes,
plugins=precision_plugin,
strategy=strategy,
use_distributed_sampler=False,
val_check_interval=val_check_interval,
)

return trainer
222 changes: 222 additions & 0 deletions nemo/collections/llm/recipes/qwen2_1p5b.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import nemo_run as run
import pytorch_lightning as pl
import torch

from nemo.collections.llm.api import finetune, pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.peft.lora import LoRA
from nemo.collections.llm.recipes.finetune_default import default_finetune_recipe
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing
from nemo.collections.llm.recipes.qwen2 import qwen2_model, qwen2_trainer
from nemo.utils.exp_manager import TimingCallback

NAME = "qwen2_1p5b"


@run.cli.factory(name=NAME)
def model() -> run.Config[pl.LightningModule]:
"""
Factory function to create a Qwen2 1.5b model configuration.

Returns:
run.Config[pl.LightningModule]: Configuration for the Qwen2 1.5b model.

Examples:
CLI usage:
$ nemo llm pretrain model=qwen2_1p5b ...

Python API usage:
>>> model_config = model()
>>> print(model_config)
"""

return qwen2_model(version=NAME)


@run.cli.factory(target=pretrain, name=NAME)
def pretrain_recipe(
# General
dir: Optional[str] = None,
name: str = "default",
# Trainer
tensor_parallelism: int = 1,
pipeline_parallelism: int = 1,
pipeline_parallelism_type: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
max_steps: int = 300000,
precision: str = "bf16-mixed",
accumulate_grad_batches: int = 1,
gradient_clip_val: float = 1.0,
limit_test_batches: int = 32,
limit_val_batches: int = 32,
log_every_n_steps: int = 10,
val_check_interval: int = 500,
# Data
global_batch_size=32,
micro_batch_size=2,
seq_length=4096,
# Optimizer
warmup_steps=500,
constant_steps=0,
min_lr=3e-5,
max_lr=3e-4,
# Training function
fn=pretrain,
) -> run.Partial:
"""
Create a pre-training recipe for Qwen2 1.5b model.

This function sets up a complete configuration for pre-training, including
model, trainer, data, logging, optimization, and resumption settings.

Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the pre-training run.
tensor_parallelism (int): Degree of tensor model parallelism.
pipeline_parallelism (int): Degree of pipeline model parallelism.
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
context_parallelism (int): Degree of context parallelism.
sequence_parallelism (bool): Whether to use sequence parallelism.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
max_steps (int): Maximum number of training steps.
precision (str): Precision configuration, one of fp32, 16-mixed or bf16-mixed.
accumulate_grad_batches (int): Number of steps per gradient accumulation.
gradient_clip_val (float): Value for gradient clipping.
limit_test_batches (int): Limit the number of test batches.
limit_val_batches (int): Limit the number of validation batches.
log_every_n_steps (int): Log every n steps.
val_check_interval (int): Run validation every N steps.
global_batch_size (int): Global batch size.
micro_batch_size (int): Micro batch size.
seq_length (int): Sequence length.
warmup_steps (int): Number of warmup steps.
constant_steps (int): Number of constant steps.
min_lr (float): Minimum learning rate.
max_lr (float): Maximum learning rate.
fn (Callable): The pre-training function to use.

Returns:
run.Partial: Partial configuration for pre-training.

Examples:
CLI usage:
$ nemo llm pretrain --factory qwen2_1p5b
$ nemo llm pretrain --factory "qwen2_1p5b(num_nodes=1, name='my_qwen2_pretrain')"

Python API usage:
>>> recipe = pretrain_recipe(name="qwen2_pretrain", num_nodes=1)
>>> print(recipe)

Note:
This recipe uses a mock dataset, look for the finetune examples to see how to change the dataset.
"""
return run.Partial(
fn,
model=model(),
trainer=qwen2_trainer(
tensor_parallelism=tensor_parallelism,
pipeline_parallelism=pipeline_parallelism,
pipeline_parallelism_type=pipeline_parallelism_type,
virtual_pipeline_parallelism=virtual_pipeline_parallelism,
context_parallelism=context_parallelism,
sequence_parallelism=sequence_parallelism,
num_nodes=num_nodes,
num_gpus_per_node=num_gpus_per_node,
max_steps=max_steps,
precision=precision,
accumulate_grad_batches=accumulate_grad_batches,
limit_test_batches=limit_test_batches,
limit_val_batches=limit_val_batches,
log_every_n_steps=log_every_n_steps,
val_check_interval=val_check_interval,
callbacks=[run.Config(TimingCallback)],
),
data=run.Config(
MockDataModule,
seq_length=seq_length,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
),
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
optim=distributed_fused_adam_with_cosine_annealing(
precision=precision,
warmup_steps=warmup_steps,
constant_steps=constant_steps,
min_lr=min_lr,
max_lr=max_lr,
clip_grad=gradient_clip_val,
),
resume=default_resume(),
)


@run.cli.factory(target=finetune, name=NAME)
def finetune_recipe(
dir: Optional[str] = None,
name: str = "default",
num_nodes: int = 1,
num_gpus_per_node: int = 8,
peft_scheme: Optional[str] = 'lora',
) -> run.Partial:
"""
Create a fine-tuning recipe for Qwen2 1.5b model.

This function sets up a complete configuration for fine-tuning, including
model, trainer, data, logging, optimization, and resumption settings.
The recipe uses LoRA (Low-Rank Adaptation) for efficient fine-tuning, unless peft_scheme is set to None.

Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the fine-tuning run.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
peft_scheme (Optional[str]): Name of the peft scheme to use for fine-tuning. Allowed values: 'lora', 'none'/None.

Returns:
run.Partial: Partial configuration for fine-tuning.

Examples:
CLI usage:
$ nemo llm finetune --factory qwen2_1p5b

Python API usage:
>>> recipe = finetune_recipe(name="qwen2_1p5b_finetune", num_nodes=2)
>>> print(recipe)

Note:
This recipe uses the SQuAD dataset for fine-tuning. For more information
on fine-tuning LLMs with NeMo, see the fine-tuning guide in the
`examples/llm/finetune/` directory.
"""
recipe = default_finetune_recipe(model(), "Qwen/Qwen2-1.5B", dir, name, num_nodes, num_gpus_per_node)
if peft_scheme is None or peft_scheme.lower() == 'none':
recipe.optim.config.lr = 5e-6
elif peft_scheme.lower() == 'lora':
recipe.peft = run.Config(LoRA)
recipe.optim.config.lr = 1e-4
else:
raise ValueError(f"Unrecognized peft scheme: {peft_scheme}")
return recipe
Loading
Loading