diff --git a/src/eko/evolution_operator/__init__.py.patch b/src/eko/evolution_operator/__init__.py.patch index 47c6f252e..0b4a996a3 100644 --- a/src/eko/evolution_operator/__init__.py.patch +++ b/src/eko/evolution_operator/__init__.py.patch @@ -1,5 +1,5 @@ diff --git a/src/eko/evolution_operator/__init__.py b/src/eko/evolution_operator/__init__.py -index fe07ade9..0f58c9e5 100644 +index fe07ade9..20c4539d 100644 --- a/src/eko/evolution_operator/__init__.py +++ b/src/eko/evolution_operator/__init__.py @@ -3,16 +3,16 @@ r"""Contains the central operator classes. @@ -588,7 +588,7 @@ index fe07ade9..0f58c9e5 100644 def initialize_op_members(self): """Init all operators with the identity or zeros.""" eye = OpMember( -@@ -858,10 +317,13 @@ class Operator(sv.ScaleVariationModeMixin): +@@ -858,10 +317,14 @@ class Operator(sv.ScaleVariationModeMixin): else: self.op_members[n] = zero.copy() @@ -601,12 +601,13 @@ index fe07ade9..0f58c9e5 100644 + cfg.as1 = self.as_list[1] + cfg.as0 = self.as_list[0] + cfg.py = ekors.ffi.cast("void *", cb_quad_ker_qcd.address) ++ cfg.method_num = self.ev_method + + def run_op_integration(self, log_grid): """Run the integration for each grid point. Parameters -@@ -876,18 +332,54 @@ class Operator(sv.ScaleVariationModeMixin): +@@ -876,18 +339,53 @@ class Operator(sv.ScaleVariationModeMixin): """ column = [] k, logx = log_grid @@ -622,7 +623,6 @@ index fe07ade9..0f58c9e5 100644 + cfg.is_log = self.int_disp.log + cfg.logx = logx + cfg.Lsv = np.log(self.xif2) -+ cfg.method_num = 1 + cfg.ev_op_iterations = self.config["ev_op_iterations"] + cfg.ev_op_max_order_qcd = self.config["ev_op_max_order"][0] + cfg.sv_mode_num = self.sv_mode diff --git a/src/eko/evolution_operator/operator_matrix_element.py.patch b/src/eko/evolution_operator/operator_matrix_element.py.patch index 9b702557f..643440ced 100644 --- a/src/eko/evolution_operator/operator_matrix_element.py.patch +++ b/src/eko/evolution_operator/operator_matrix_element.py.patch @@ -1,5 +1,5 @@ diff --git a/src/eko/evolution_operator/operator_matrix_element.py b/src/eko/evolution_operator/operator_matrix_element.py -index 022f8073..017ec73d 100644 +index 022f8073..f6b3235d 100644 --- a/src/eko/evolution_operator/operator_matrix_element.py +++ b/src/eko/evolution_operator/operator_matrix_element.py @@ -2,11 +2,12 @@ @@ -142,7 +142,7 @@ index 022f8073..017ec73d 100644 class OperatorMatrixElement(Operator): r""" Internal representation of a single |OME|. -@@ -291,41 +191,14 @@ class OperatorMatrixElement(Operator): +@@ -291,41 +191,15 @@ class OperatorMatrixElement(Operator): ) return labels @@ -189,6 +189,7 @@ index 022f8073..017ec73d 100644 + cfg.as1 = self.a_s + cfg.as0 = 0.0 + cfg.Lsv = np.log(self.xif2) ++ cfg.method_num = self.backward_method @property def a_s(self): diff --git a/src/eko/evolution_operator/quad_ker.py b/src/eko/evolution_operator/quad_ker.py index c384eb1ed..374f07c4c 100644 --- a/src/eko/evolution_operator/quad_ker.py +++ b/src/eko/evolution_operator/quad_ker.py @@ -89,7 +89,7 @@ def cb_quad_ker_qcd( areas_x, areas_y, _L, - _method_num, + method_num, as1, as0, ev_op_iterations, @@ -105,8 +105,7 @@ def cb_quad_ker_qcd( # combute basis functions areas = nb.carray(areas_raw, (areas_x, areas_y)) pj = interpolation.evaluate_grid(n, is_log, logx, areas) - # TODO recover parameters - method = "iterate-exact" + method = method_num order = (order_qcd, 0) ev_op_max_order = (ev_op_max_order_qcd, 0) if is_singlet: @@ -235,7 +234,7 @@ def cb_quad_ker_ome( areas_x, areas_y, L, - _method_num, + method_num, as1, _as0, _ev_op_iterations, @@ -251,7 +250,7 @@ def cb_quad_ker_ome( # compute basis functions areas = nb.carray(areas_raw, (areas_x, areas_y)) pj = interpolation.evaluate_grid(n, is_log, logx, areas) - # TODO recover parameters + backward_method = method_num order = (order_qcd, 0) if is_singlet: indices = {21: 0, 100: 1, 90: 2} @@ -270,9 +269,6 @@ def cb_quad_ker_ome( if sv_mode == sv.Modes.exponentiated: A = sv.exponentiated.gamma_variation(A, order, nf, Lsv) - # TODO recover InversionMethod - backward_method = None - # build the expansion in alpha_s depending on the strategy ker = build_ome(A, order, as1, backward_method)