Skip to content

Latest commit

 

History

History
361 lines (276 loc) · 10 KB

README.md

File metadata and controls

361 lines (276 loc) · 10 KB

SimpleGeneExpression

Programs to quantify expression of transcripts from public datasets

Project team

  • Jose V Die
  • Moamen Elmassry
  • Ben Busby

Cited by

  • Die JV, Castro P, Millán T, Gil J. Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes 2018, 9, 568.
  • Die JV, Elmassry M, LeBlanc KH, Awe OI, Dillman A, Busby B. geneHummus: an R package to define gene families and their expression in legumes and beyond. BMC Genomics 2019 volume 20: 591
  • Carmona R, Jimenez-Lopez JC, Caballo C, Gil J, Millan T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants 2021, 10, 2429.

Tutorial

This tutorial is based on the analysis of the Magic-BLAST table output. Please, read the documentation to understand how Magic-BLAST works.

The first three rows of the typical magic-BLAST output file contains some info related to the software version, the command line used and the fields description:


We may want to remove those rows with the command line :
tail -n +3 my_magic > my_magic

Here, the starting point is a dataset made of 24 auxin receptor factors (ARF) genes from the chickpea genome. Code to identify those accessions is available from the GeneHummus repository. We will study the frequency of the 24 ARF genes in root tissues of two genotypes under drought stress and control conditions across 4 SRA libraries:

First, load the functions needed for the analysis.

source("functions/expression.R")

Then, we load the my.table.rda object. This table is the magic-BLAST output file, which has been cut to show the first 500,000 lines of the original output for illustrative purposes. After loading the object into the environment, the df dataset is available.

load("data/my.table.rda")

Having cleaned the first three lines from the magic-BLAST output (as said above), next we want to name the columns

names(df) <- c("query.acc", "reference.acc", "identity", "not.used", "not.used.1",
              "not.used.2", "query.start", "query.end", "reference.start", 
              "reference.end", "not.used.3", "not.used.4", "score", "query.strand",
              "reference.strand", "query.length", "BTOP", "num.placements", 
              "not.used.5", "compartment", "left.overhang", "right.overhang", 
              "mate.reference", "mate.ref..start", "composite.score")    

Check the dataset dimensions.

dim(df)
## [1] 1516497      25

Before analyzing the data, we have to apply a number of filters to tidy the dataset.

Filter

Filter 1: Keep 1 hit per match.

Otherwise a single hit with two matches in the seq would be counted twice.

df = one_match(df)
dim(df)

Filter 2 : alignment length score

First, check the query lengths (length reads )

table(df$query.length)

This means that the whole reads dataset is 125 bp length. Now, we check the alignement length scores and see the scores of the alignements:

plot(density(df$score))

Filter2 involves filtering by high alignment length score. Here we use at least 120 bp as an argument for the function by_score.

df_filtered <- by_score(df, 120) 
plot(density(df_filtered$score), col = "red")

Filter 3 : identity

We want high scores for the alignements but also with high identities. See the distribution of the identities for the filteres data :

plot(density(df_filtered$identity))

Filter3 involves filtering by high identities. Here we use at least 99% as an argument for the function by_identity

df_filtered <- by_identity(df_filtered, 99)
plot(density(df_filtered$identity), col = "red")

The function getCounts creates a new dataset with the number of sequence counts from the filtered data.

df_counts <- getCounts(df_filtered)
# Create a tibble object
df_counts <- as_data_frame(df_counts)

Plot of Counts

hist(df_counts$Count)

Plot Counts ~ SRA run

boxplot(df_filtered$Count ~ df_filtered$Query, 
        outline = FALSE, 
        main = "Sequence Counts per run", 
        col = c("grey80", "grey50", "grey80", "grey50"))

Optional filter:

Genes with presence at least in n SRA libraries

df_counts %>% 
  count(Reference) %>% 
  arrange(n)
## # A tibble: 24 x 2
##    Reference    Total
##    <fct>        <int>
##  1 LOC101514738     1
##  2 LOC101489666     4
##  3 LOC101491204     4
##  4 LOC101492112     4
##  5 LOC101492136     4
##  6 LOC101492451     4
##  7 LOC101492916     4
##  8 LOC101493974     4
##  9 LOC101496441     4
## 10 LOC101498188     4
## # ... with 14 more rows

Filter by genes present in all 4 libraries.

# total number of occurrences for each gene
mydf <- df_counts %>% 
  filter(Reference != "LOC101514738" )

mydf
## # A tibble: 92 x 3
##    Query      Reference    Count
##    <chr>      <fct>        <int>
##  1 SRR5927129 LOC101489666  3671
##  2 SRR5927129 LOC101491204 10345
##  3 SRR5927129 LOC101492112  3407
##  4 SRR5927129 LOC101492136  2189
##  5 SRR5927129 LOC101492451   249
##  6 SRR5927129 LOC101492916   514
##  7 SRR5927129 LOC101493974   823
##  8 SRR5927129 LOC101496441   686
##  9 SRR5927129 LOC101498188 10933
## 10 SRR5927129 LOC101498659  3634
## # ... with 82 more rows

Now, add a new column showing the SRA run size using the gatherSize function

mydf <- mutate(mydf, Runsize = gatherSize(mydf))

Look at head and tail of mydf

mydf %>% head()
## # A tibble: 6 x 4
##   Query      Reference    Count Runsize
##   <chr>      <fct>        <int>   <dbl>
## 1 SRR5927129 LOC101489666  3671   9964.
## 2 SRR5927129 LOC101491204 10345   9964.
## 3 SRR5927129 LOC101492112  3407   9964.
## 4 SRR5927129 LOC101492136  2189   9964.
## 5 SRR5927129 LOC101492451   249   9964.
## 6 SRR5927129 LOC101492916   514   9964.
mydf %>% tail()
## # A tibble: 6 x 4
##   Query      Reference    Count Runsize
##   <chr>      <fct>        <int>   <dbl>
## 1 SRR5927134 LOC101505543   621   8987.
## 2 SRR5927134 LOC101509304   443   8987.
## 3 SRR5927134 LOC101509547    52   8987.
## 4 SRR5927134 LOC101513952  1654   8987.
## 5 SRR5927134 LOC101514889   428   8987.
## 6 SRR5927134 LOC101515039  2819   8987.

Normalized counts

mydf_norm <- mydf %>% 
  mutate(norm_Counts = Count*mean(Runsize)/Runsize) %>%
  select(Query, Reference, norm_Counts)

mydf_norm
## # A tibble: 92 x 3
##    Query      Reference    norm_Counts
##    <chr>      <fct>              <dbl>
##  1 SRR5927129 LOC101489666       3497.
##  2 SRR5927129 LOC101491204       9854.
##  3 SRR5927129 LOC101492112       3245.
##  4 SRR5927129 LOC101492136       2085.
##  5 SRR5927129 LOC101492451        237.
##  6 SRR5927129 LOC101492916        490.
##  7 SRR5927129 LOC101493974        784.
##  8 SRR5927129 LOC101496441        653.
##  9 SRR5927129 LOC101498188      10414.
## 10 SRR5927129 LOC101498659       3461.
## # ... with 82 more rows

Analysis of normalized counts

Boxplot of gene counts distribution

library(ggplot2)
mydf_norm %>% 
  ggplot(aes(x =  reorder(Reference, norm_Counts), y = norm_Counts)) + 
  geom_boxplot() + 
  xlab("") +
  scale_y_log10()

Dataset of normalized counts per gene and SRA library

library(tidyr)
bySRA <-  spread(mydf_norm, Query, norm_Counts)
bySRA
## # A tibble: 23 x 5
##    Reference    SRR5927129 SRR5927130 SRR5927133 SRR5927134
##    <fct>             <dbl>      <dbl>      <dbl>      <dbl>
##  1 LOC101489666      3497.      4785.       667.      6254.
##  2 LOC101491204      9854.      2430.      5779.       894.
##  3 LOC101492112      3245.      4491.      3442.      5101.
##  4 LOC101492136      2085.      1511.      1698.      1745.
##  5 LOC101492451       237.       267.       205.       361.
##  6 LOC101492916       490.       753.      1416.       926.
##  7 LOC101493974       784.       553.       903.      1429.
##  8 LOC101496441       653.       457.       397.       626.
##  9 LOC101498188     10414.     10952.     11552.     12380.
## 10 LOC101498659      3461.      1704.      2617.      2130.
## # ... with 13 more rows

Density plots of normalized counts

plot(density(bySRA$SRR5927129), col = 1, main = 'Counts', ylim = c(0, 0.0004))
lines(density(bySRA$SRR5927130), col = 2)
lines(density(bySRA$SRR5927133), col = 3)
lines(density(bySRA$SRR5927134), col = 4)

Scatter-plot, comparing counts of two samples to each other

Example1

ggplot(bySRA, aes(x = SRR5927129, y = SRR5927133)) +
  geom_point() +
  ggtitle("Control roots") + 
  xlab("Tolerant plants") + 
  ylab("Susceptible plants") + 
  geom_smooth(method = "lm")

Example2

ggplot(bySRA, aes(x = SRR5927134, y = SRR5927133)) +
  geom_point() +
  ggtitle("Roots", "Tolerant plants") + 
  xlab("Control") + 
  ylab("Drought") + 
  geom_smooth(method = "lm")