-
Notifications
You must be signed in to change notification settings - Fork 0
/
Maximum Sum Circular Subarray.py
69 lines (50 loc) · 2.11 KB
/
Maximum Sum Circular Subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
# Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
# Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
# Example 1:
# Input: [1,-2,3,-2]
# Output: 3
# Explanation: Subarray [3] has maximum sum 3
# Example 2:
# Input: [5,-3,5]
# Output: 10
# Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
# Example 3:
# Input: [3,-1,2,-1]
# Output: 4
# Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
# Example 4:
# Input: [3,-2,2,-3]
# Output: 3
# Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
# Example 5:
# Input: [-2,-3,-1]
# Output: -1
# Explanation: Subarray [-1] has maximum sum -1
# Note:
# -30000 <= A[i] <= 30000
# 1 <= A.length <= 30000
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max_so_far = min_so_far = min_ending_here = max_ending_here = A[0]
for x in A[1:]:
max_ending_here = max(x, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
min_ending_here = min(x, min_ending_here + x)
min_so_far = min(min_so_far, min_ending_here)
print(min_so_far,max_so_far, sum(A))
if min_so_far == sum(A):
return max_so_far
else:
return max(max_so_far,sum(A)-min_so_far)
# ans = -30001
# for i in range(len(A)):
# a = []
# a = A[i:]+A[:i]
# max_so_far =a[0]
# curr_max = a[0]
# for i in range(1,len(a)):
# curr_max = a[i] if (a[i] >= curr_max + a[i]) else (curr_max + a[i])
# max_so_far = max_so_far if max_so_far>=curr_max else curr_max
# ans = max_so_far if (ans < max_so_far) else ans
# return anss