-
Notifications
You must be signed in to change notification settings - Fork 28
/
Sph.cpp
2291 lines (2167 loc) · 81.9 KB
/
Sph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Routines to implement SPH.
* Main author: James Wadsley, as first implemented in GASOLINE.
* See Wadsley, J.~W., Stadel, J., Quinn, T.\ 2004.\ Gasoline: a flexible,
* parallel implementation of TreeSPH.\ New Astronomy 9, 137-158.
*/
#include "ParallelGravity.h"
#include "DataManager.h"
#include "smooth.h"
#include "Sph.h"
#include "SphUtils.h"
#include "physconst.h"
#include "formatted_string.h"
#include <float.h>
///
/// @brief initialize SPH quantities
///
/// Initial calculation of densities and internal energies, and cooling rates.
///
void
Main::initSph()
{
if(param.bDoGas) {
ckout << "Calculating densities/divv ...";
// The following smooths all GAS, and also marks neighbors of
// actives, and those who have actives as neighbors
// Starting is true
DenDvDxSmoothParams pDen(TYPE_GAS, 0, param.csm, dTime, 0,
param.bConstantDiffusion, 1, bHaveAlpha,
param.dConstAlphaMax);
double startTime = CkWallTimer();
double dfBall2OverSoft2 = 4.0*param.dhMinOverSoft*param.dhMinOverSoft;
treeProxy.startSmooth(&pDen, 1, param.nSmooth, dfBall2OverSoft2,
CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
if(verbosity > 1 && !param.bConcurrentSph)
memoryStatsCache();
double dTuFac = param.dGasConst/(param.dConstGamma-1)
/param.dMeanMolWeight;
double z = 1.0/csmTime2Exp(param.csm, dTime) - 1.0;
double a = csmTime2Exp(param.csm, dTime);
if(param.bGasCooling) {
// Update cooling on the datamanager
dMProxy.CoolingSetTime(z, dTime, CkCallbackResumeThread());
if(!bIsRestarting) // Energy is already OK from checkpoint.
treeProxy.InitEnergy(dTuFac, z, dTime, (param.dConstGamma-1), CkCallbackResumeThread());
}
if(verbosity) CkPrintf("Initializing SPH forces\n");
nActiveSPH = nTotalSPH;
doSph(0, 0);
double duDelta[MAXRUNG+1];
double dStartTime[MAXRUNG+1];
for(int iRung = 0; iRung <= MAXRUNG; iRung++) {
duDelta[iRung] = 0.5e-7*param.dDelta;
dStartTime[iRung] = dTime;
}
treeProxy.updateuDot(0, duDelta, dStartTime, param.bGasCooling, 0, 1,
(param.dConstGamma-1), param.dResolveJeans/a, CkCallbackResumeThread());
}
}
// see below for definition.
bool arrayFileExists(const std::string filename, const int64_t count) ;
#include <sys/stat.h>
///
/// @brief Initialize cooling constants and integration data structures.
///
void Main::initCooling()
{
#ifndef COOLING_NONE
dMProxy.initCooling(param.dGmPerCcUnit, param.dComovingGmPerCcUnit,
param.dErgPerGmUnit, param.dSecUnit, param.dKpcUnit,
param.CoolParam, CkCallbackResumeThread());
/* Read in tables from files as necessary */
int cntTable = 0;
int nTableRows;
int nTableColumns;
char TableFileSuffix[20];
for (;;) {
CoolTableReadInfo(¶m.CoolParam, cntTable, &nTableColumns,
TableFileSuffix);
if (!nTableColumns) break;
cntTable++;
nTableRows = ReadASCII(TableFileSuffix, nTableColumns, NULL);
if (nTableRows) {
CkAssert(sizeof(double)*nTableRows*nTableColumns <= CL_NMAXBYTETABLE );
double *dTableData = (double *)malloc(sizeof(double)*nTableRows*nTableColumns);
CkAssert( dTableData != NULL );
nTableRows = ReadASCII(TableFileSuffix, nTableColumns, dTableData);
dMProxy.dmCoolTableRead(dTableData,nTableRows*nTableColumns,
CkCallbackResumeThread());
free(dTableData);
}
}
treeProxy.initCoolingData(CkCallbackResumeThread());
if(!bIsRestarting) { // meaning not restarting from a checkpoint.
struct stat s;
int err = stat(basefilename.c_str(), &s);
if(err != -1 && S_ISDIR(s.st_mode)) {
// The file is a directory; assume NChilada
int64_t nGas = 0;
nGas = ncGetCount(basefilename + "/gas/coolontime");
if(nGas == nTotalSPH) {
CkPrintf("Reading coolontime\n");
coolontimeOutputParams pCoolOnOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pCoolOnOut, param.bParaRead,
CkCallbackResumeThread());
}
}
else {
if(arrayFileExists(basefilename + ".coolontime", nTotalParticles)) {
CkPrintf("Reading coolontime\n");
coolontimeOutputParams pCoolOnOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pCoolOnOut, CkCallbackResumeThread());
}
}
}
#endif
}
/**
* Initialized Cooling Read-only data on the DataManager, which
* doesn't migrate.
*/
void
DataManager::initCooling(double dGmPerCcUnit, double dComovingGmPerCcUnit,
double dErgPerGmUnit, double dSecUnit, double dKpcUnit,
COOLPARAM inParam, const CkCallback& cb)
{
#ifndef COOLING_NONE
clInitConstants(Cool, dGmPerCcUnit, dComovingGmPerCcUnit, dErgPerGmUnit,
dSecUnit, dKpcUnit, inParam);
CoolInitRatesTable(Cool,inParam);
#endif
contribute(cb);
}
/**
* Per thread initialization
*/
void
TreePiece::initCoolingData(const CkCallback& cb)
{
#ifndef COOLING_NONE
bGasCooling = 1;
dm = (DataManager*)CkLocalNodeBranch(dataManagerID);
CoolData = CoolDerivsInit(dm->Cool);
#endif
contribute(cb);
}
void
DataManager::dmCoolTableRead(double *dTableData, int nData, const CkCallback& cb)
{
#ifndef COOLING_NONE
CoolTableRead(Cool, nData*sizeof(double), (void *) dTableData);
#endif
contribute(cb);
}
///
/// @brief function from PKDGRAV to read an ASCII table
///
/// @param extension Appended to outName to determine file name to
/// read.
/// @param nDataPerLine Number of columns in the table.
/// @param dDataOut pointer to array in which to store the table.
/// Note if dDataOut is NULL it just counts the number of valid input
/// lines.
///
int Main::ReadASCII(char *extension, int nDataPerLine, double *dDataOut)
{
FILE *fp;
int i,ret;
char achIn[160];
double *dData;
if (dDataOut == NULL)
dData = (double *)malloc(sizeof(double)*nDataPerLine);
else
dData = dDataOut;
CkAssert(nDataPerLine > 0 && nDataPerLine <= 10);
auto file_name = make_formatted_string("%s.%s", param.achOutName, extension);
char const* achFile = file_name.c_str();
fp = fopen(achFile,"r");
if (!fp) {
CkPrintf("WARNING: Could not open .%s input file:%s\n",
extension,achFile);
return 0;
}
i = 0;
while (1) {
if (!fgets(achIn,160,fp)) goto Done;
switch (nDataPerLine) {
case 1:
ret = sscanf(achIn,"%lf",dData);
break;
case 2:
ret = sscanf(achIn,"%lf %lf",dData,dData+1);
break;
case 3:
ret = sscanf(achIn,"%lf %lf %lf",dData,dData+1,dData+2);
break;
case 4:
ret = sscanf(achIn,"%lf %lf %lf %lf",dData,dData+1,dData+2,dData+3);
break;
case 5:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf",dData,dData+1,dData+2,dData+3,dData+4);
break;
case 6:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf %lf",dData,dData+1,dData+2,dData+3,dData+4,dData+5);
break;
case 7:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf %lf %lf",
dData,dData+1,dData+2,dData+3,dData+4,dData+5,dData+6);
break;
case 8:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf %lf %lf %lf",
dData,dData+1,dData+2,dData+3,dData+4,dData+5,dData+6,dData+7);
break;
case 9:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf %lf %lf %lf %lf",
dData,dData+1,dData+2,dData+3,dData+4,dData+5,dData+6,dData+7,dData+8);
break;
case 10:
ret = sscanf(achIn,"%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
dData,dData+1,dData+2,dData+3,dData+4,dData+5,dData+6,dData+7,dData+8,dData+9);
break;
default:
ret = EOF;
CkAssert(0);
}
if (ret != nDataPerLine) goto Done;
++i;
if (dDataOut != NULL) dData += nDataPerLine;
}
Done:
fclose(fp);
if (dDataOut != NULL && verbosity)
printf("Read %i lines from %s\n",i,achFile);
if (dDataOut == NULL) free(dData);
return i;
}
/*
* Update the cooling functions to the current time.
* This is on the DataManager to avoid duplication of effort.
*/
void
DataManager::CoolingSetTime(double z, // redshift
double dTime, // Time
const CkCallback& cb)
{
#ifndef COOLING_NONE
CoolSetTime( Cool, dTime, z );
#endif
contribute(cb);
}
/**
* @brief DataManager::SetStarCM saves the total mass and center of mass of the
* star(s) to the COOL struct Cool, making them available to the cool particles
* @param dCenterOfMass Array(length 4) which contains the star(s) center of
* mass as the first 3 entries and the total star mass as the final entry
* @param cb Callback
*/
void DataManager::SetStarCM(double dCenterOfMass[4], const CkCallback& cb) {
#ifndef COOLING_NONE
#ifdef COOLING_PLANET
CoolSetStarCM(Cool, dCenterOfMass);
#endif
#endif
contribute(cb);
}
/**
* @brief utility for checking array files
*/
bool
arrayFileExists(const std::string filename, const int64_t count)
{
FILE *fp = CmiFopen(filename.c_str(), "r");
if(fp != NULL) {
// Check if its a binary file
unsigned int iDum;
XDR xdrs;
xdrstdio_create(&xdrs, fp, XDR_DECODE);
xdr_u_int(&xdrs,&iDum);
xdr_destroy(&xdrs);
if(iDum == count) { // Assume a valid binary array file
fclose(fp);
return true;
}
fseek(fp, 0, SEEK_SET);
int nread;
int64_t nIOrd;
nread = fscanf(fp, "%ld", &nIOrd);
CkAssert(nread == 1);
CkAssert(nIOrd == count); // Valid ASCII file.
fclose(fp);
return true;
}
return false;
}
/// @brief Set total metals based on Ox and Fe mass fractions
void
TreePiece::resetMetals(const CkCallback& cb)
{
for(unsigned int i = 1; i <= myNumParticles; ++i) {
GravityParticle *p = &myParticles[i];
// Use total metals to Fe and O based on Asplund et al 2009
if (p->isGas())
p->fMetals() = 1.06*p->fMFracIron() + 2.09*p->fMFracOxygen();
if (p->isStar())
p->fStarMetals() = 1.06*p->fStarMFracIron()
+ 2.09*p->fStarMFracOxygen();
}
contribute(cb);
}
#include <sys/stat.h>
/**
* @brief Read in array files for complete gas information.
*/
void
Main::restartGas()
{
if(verbosity)
CkPrintf("Restarting Gas Simulation with array files.\n");
struct stat s;
int err = stat(basefilename.c_str(), &s);
if(err != -1 && S_ISDIR(s.st_mode)) {
// The file is a directory; assume NChilada
int64_t nGas = 0;
int64_t nDark = 0;
int64_t nStar = 0;
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/iord");
if(nTotalDark > 0)
nDark = ncGetCount(basefilename + "/dark/iord");
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/iord");
if(nGas + nDark + nStar == nTotalParticles) {
IOrderOutputParams pIOrdOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pIOrdOut, param.bParaRead,
CkCallbackResumeThread());
CkReductionMsg *msg;
treeProxy.getMaxIOrds(CkCallbackResumeThread((void*&)msg));
CmiInt8 *maxIOrds = (CmiInt8 *)msg->getData();
nMaxOrderGas = maxIOrds[0];
nMaxOrderDark = maxIOrds[1];
nMaxOrder = maxIOrds[2];
delete msg;
}
else
CkError("WARNING: no iorder file, or wrong format for restart\n");
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/igasorder");
if(nStar == nTotalStar) {
IGasOrderOutputParams pIOrdOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pIOrdOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no igasorder file, or wrong format for restart\n");
if(param.bFeedback) {
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/ESNRate");
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/ESNRate");
if(nGas + nStar == nTotalSPH + nTotalStar) {
ESNRateOutputParams pESNROut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pESNROut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no ESNRate file, or wrong format for restart\n");
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/OxMassFrac");
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/OxMassFrac");
if(nGas + nStar == nTotalSPH + nTotalStar) {
OxOutputParams pOxOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pOxOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no OxMassFrac file, or wrong format for restart\n");
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/FeMassFrac");
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/FeMassFrac");
if(nGas + nStar == nTotalSPH + nTotalStar) {
FeOutputParams pFeOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pFeOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no FeMassFrac file, or wrong format for restart\n");
treeProxy.resetMetals(CkCallbackResumeThread());
if(nTotalStar > 0)
nStar = ncGetCount(basefilename + "/star/massform");
if(nStar == nTotalStar) {
MFormOutputParams pMFOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pMFOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no massform file, or wrong format for restart\n");
#ifdef SUPERBUBBLE
// read hot mass
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/massHot");
if(nGas == nTotalSPH) {
MassHotOutputParams mHOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(mHOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no masshot file, or wrong format for restart\n");
// read hot energy
if(nTotalSPH > 0)
nGas = ncGetCount(basefilename + "/gas/uHot");
if(nGas == nTotalSPH) {
uHotOutputParams uHOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(uHOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no uHot file, or wrong format for restart\n");
#endif
}
#ifdef CULLENALPHA
if(nTotalSPH > 0) {
nGas = ncGetCount(basefilename + "/gas/alpha");
if(nGas == nTotalSPH) {
AlphaOutputParams pAlphaOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pAlphaOut, param.bParaRead,
CkCallbackResumeThread());
bHaveAlpha = 1;
}
else
CkError("WARNING: no alpha file, or wrong format for restart\n");
}
#endif
#ifndef COOLING_NONE
if(param.bGasCooling && nTotalSPH > 0) {
bool bFoundCoolArray = false;
// read ionization fractions
nGas = ncGetCount(basefilename + "/gas/" + COOL_ARRAY0_EXT);
if(nGas == nTotalSPH) {
Cool0OutputParams pCool0Out(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pCool0Out, param.bParaRead,
CkCallbackResumeThread());
bFoundCoolArray = true;
}
else
CkError("WARNING: no CoolArray0 file, or wrong format for restart\n");
nGas = ncGetCount(basefilename + "/gas/" + COOL_ARRAY1_EXT);
if(nGas == nTotalSPH) {
Cool1OutputParams pCool1Out(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pCool1Out, param.bParaRead,
CkCallbackResumeThread());
bFoundCoolArray = true;
}
else
CkError("WARNING: no CoolArray1 file, or wrong format for restart\n");
nGas = ncGetCount(basefilename + "/gas/" + COOL_ARRAY2_EXT);
if(nGas == nTotalSPH) {
Cool2OutputParams pCool2Out(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pCool2Out, param.bParaRead,
CkCallbackResumeThread());
bFoundCoolArray = true;
}
else
CkError("WARNING: no CoolArray2 file, or wrong format for restart\n");
nGas = ncGetCount(basefilename + "/gas/" + COOL_ARRAY3_EXT);
if(nGas == nTotalSPH) {
Cool3OutputParams pCool3Out(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pCool3Out, param.bParaRead,
CkCallbackResumeThread());
bFoundCoolArray = true;
}
else
CkError("WARNING: no CoolArray3 file, or wrong format for restart\n");
#ifdef COOLING_MOLECULARH
nGas = ncGetCount(basefilename + "/gas/lw");
if(nGas == nTotalSPH) {
LWOutputParams pLWOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pLWOut, param.bParaRead,
CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no Lyman Werner file for restart\n");
}
#endif
double dTuFac = param.dGasConst/(param.dConstGamma-1)
/param.dMeanMolWeight;
if(bFoundCoolArray) {
// reset thermal energy with ionization fractions
treeProxy.RestartEnergy(dTuFac, CkCallbackResumeThread());
}
else {
double z = 1.0/csmTime2Exp(param.csm, dTime) - 1.0;
dMProxy.CoolingSetTime(z, dTime, CkCallbackResumeThread());
treeProxy.InitEnergy(dTuFac, z, dTime, (param.dConstGamma-1), CkCallbackResumeThread());
}
}
#endif
} else {
// Assume TIPSY arrays
// read iOrder
if(arrayFileExists(basefilename + ".iord", nTotalParticles)) {
CkReductionMsg *msg;
IOrderOutputParams pIOrdOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pIOrdOut, CkCallbackResumeThread());
treeProxy.getMaxIOrds(CkCallbackResumeThread((void*&)msg));
CmiInt8 *maxIOrds = (CmiInt8 *)msg->getData();
nMaxOrderGas = maxIOrds[0];
nMaxOrderDark = maxIOrds[1];
nMaxOrder = maxIOrds[2];
delete msg;
}
else
CkError("WARNING: no iOrder file for restart\n");
// read iGasOrder
if(arrayFileExists(basefilename + ".igasorder", nTotalParticles)) {
IGasOrderOutputParams pIOrdOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pIOrdOut, CkCallbackResumeThread());
}
else {
CkError("WARNING: no igasorder file for restart\n");
}
if(param.bFeedback) {
if(arrayFileExists(basefilename + ".ESNRate", nTotalParticles)) {
ESNRateOutputParams pESNROut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pESNROut, CkCallbackResumeThread());
}
if(arrayFileExists(basefilename + ".OxMassFrac", nTotalParticles)) {
OxOutputParams pOxOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pOxOut, CkCallbackResumeThread());
}
if(arrayFileExists(basefilename + ".FeMassFrac", nTotalParticles)) {
FeOutputParams pFeOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pFeOut, CkCallbackResumeThread());
}
treeProxy.resetMetals(CkCallbackResumeThread());
if(arrayFileExists(basefilename + ".massform", nTotalParticles)) {
MFormOutputParams pMFOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pMFOut, CkCallbackResumeThread());
}
#ifdef SUPERBUBBLE
// read hot mass
if(arrayFileExists(basefilename + ".massHot", nTotalParticles)) {
MassHotOutputParams mHOut(basefilename, 6, 0.0);
treeProxy.readTipsyArray(mHOut, CkCallbackResumeThread());
}
else
CkError("WARNING: no masshot file, or wrong format for restart\n");
// read hot energy
if(arrayFileExists(basefilename + ".uHot", nTotalParticles)) {
uHotOutputParams uHOut(basefilename, 6, 0.0);
treeProxy.readTipsyArray(uHOut, CkCallbackResumeThread());
}
else
CkError("WARNING: no uHot file, or wrong format for restart\n");
#endif
}
#ifdef CULLENALPHA
if(arrayFileExists(basefilename + ".alpha", nTotalParticles)) {
AlphaOutputParams pAlphaOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pAlphaOut, CkCallbackResumeThread());
bHaveAlpha = 1;
}
else
CkError("WARNING: no alpha file, or wrong format for restart\n");
#endif
#ifndef COOLING_NONE
if(param.bGasCooling) {
bool bFoundCoolArray = false;
// read ionization fractions
if(arrayFileExists(basefilename + "." + COOL_ARRAY0_EXT, nTotalParticles)) {
Cool0OutputParams pCool0Out(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pCool0Out, CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no CoolArray0 file for restart\n");
}
if(arrayFileExists(basefilename + "." + COOL_ARRAY1_EXT, nTotalParticles)) {
Cool1OutputParams pCool1Out(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pCool1Out, CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no CoolArray1 file for restart\n");
}
if(arrayFileExists(basefilename + "." + COOL_ARRAY2_EXT, nTotalParticles)) {
Cool2OutputParams pCool2Out(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pCool2Out, CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no CoolArray2 file for restart\n");
}
if(arrayFileExists(basefilename + "." + COOL_ARRAY3_EXT, nTotalParticles)) {
Cool3OutputParams pCool3Out(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pCool3Out, CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no CoolArray3 file for restart\n");
}
#ifdef COOLING_MOLECULARH
if(arrayFileExists(basefilename + ".lw", nTotalParticles)) {
LWOutputParams pLWOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pLWOut, CkCallbackResumeThread());
bFoundCoolArray = true;
}
else {
CkError("WARNING: no Lyman Werner file for restart\n");
}
#endif
double dTuFac = param.dGasConst/(param.dConstGamma-1)
/param.dMeanMolWeight;
if(bFoundCoolArray) {
// reset thermal energy with ionization fractions
treeProxy.RestartEnergy(dTuFac, CkCallbackResumeThread());
}
else {
double z = 1.0/csmTime2Exp(param.csm, dTime) - 1.0;
dMProxy.CoolingSetTime(z, dTime, CkCallbackResumeThread());
treeProxy.InitEnergy(dTuFac, z, dTime, (param.dConstGamma-1), CkCallbackResumeThread());
}
}
#endif
}
}
/*
* Initialize energy on restart
*/
void TreePiece::RestartEnergy(double dTuFac, // T to internal energy
const CkCallback& cb)
{
#ifndef COOLING_NONE
COOL *cl;
dm = (DataManager*)CkLocalNodeBranch(dataManagerID);
cl = dm->Cool;
#endif
for(unsigned int i = 1; i <= myNumParticles; ++i) {
GravityParticle *p = &myParticles[i];
if (p->isGas()) {
#ifndef COOLING_NONE
#ifndef COOLING_GRACKLE
double T;
T = p->u() / dTuFac;
PERBARYON Y;
#ifdef COOLING_METAL
CoolPARTICLEtoPERBARYON(cl, &Y, &p->CoolParticle(), p->fMetals());
#elif COOLING_MOLECULARH
CoolPARTICLEtoPERBARYON(cl, &Y, &p->CoolParticle(), p->fMetals());
#else
CoolPARTICLEtoPERBARYON(cl, &Y, &p->CoolParticle());
#endif
p->u() = clThermalEnergy(Y.Total,T)*cl->diErgPerGmUnit;
#endif
#endif
p->uPred() = p->u();
#ifdef SUPERBUBBLE
if(p->uHot() > 0) {
p->uHotPred() = p->uHot();
}
#endif
}
}
contribute(cb);
}
/**
* @brief Perform the SPH force calculation.
* @param activeRung Timestep rung (and above) on which to perform
* SPH
* @param bNeedDensity Does the density calculation need to be done?
* Defaults to 1
*/
void
Main::doSph(int activeRung, int bNeedDensity)
{
if(bNeedDensity) {
double dfBall2OverSoft2 = 4.0*param.dhMinOverSoft*param.dhMinOverSoft;
if (param.bFastGas && nActiveSPH < nTotalSPH*param.dFracFastGas) {
ckout << "Calculating densities/divv on Actives ...";
// This also marks neighbors of actives
DenDvDxSmoothParams pDen(TYPE_GAS, activeRung, param.csm, dTime, 1,
param.bConstantDiffusion, 0, 0,
param.dConstAlphaMax);
double startTime = CkWallTimer();
treeProxy.startSmooth(&pDen, 1, param.nSmooth, dfBall2OverSoft2,
CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
ckout << "Marking Neighbors ...";
// This marks particles with actives as neighbors
MarkSmoothParams pMark(TYPE_GAS, activeRung);
startTime = CkWallTimer();
treeProxy.startMarkSmooth(&pMark, CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
ckout << "Density of Neighbors ...";
// This does neighbors (but not actives), It also does no
// additional marking
DenDvDxNeighborSmParams pDenN(TYPE_GAS, activeRung, param.csm, dTime,
param.bConstantDiffusion,
param.dConstAlphaMax);
startTime = CkWallTimer();
treeProxy.startSmooth(&pDenN, 1, param.nSmooth, dfBall2OverSoft2,
CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
}
else {
ckout << "Calculating densities/divv ...";
// The following smooths all GAS, and also marks neighbors of
// actives, and those who have actives as neighbors.
DenDvDxSmoothParams pDen(TYPE_GAS, activeRung, param.csm, dTime, 0,
param.bConstantDiffusion, 0, 0,
param.dConstAlphaMax);
double startTime = CkWallTimer();
treeProxy.startSmooth(&pDen, 1, param.nSmooth, dfBall2OverSoft2,
CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
if(verbosity > 1 && !param.bConcurrentSph)
memoryStatsCache();
}
}
treeProxy.sphViscosityLimiter(param.iViscosityLimiter, activeRung,
CkCallbackResumeThread());
double a = csmTime2Exp(param.csm, dTime);
double dDtCourantFac = param.dEtaCourant*a*2.0/1.6;
double dTuFac = param.dGasConst/(param.dConstGamma-1)
/param.dMeanMolWeight;
if(param.bGasCooling)
treeProxy.getCoolingGasPressure(param.dConstGamma, param.dConstGamma-1,
param.dThermalCondCoeffCode*a, param.dThermalCond2CoeffCode*a,
param.dThermalCondSatCoeff/a, param.dThermalCond2SatCoeff/a,
param.dEvapMinTemp, dDtCourantFac,
param.dResolveJeans/a,
CkCallbackResumeThread());
else
treeProxy.getAdiabaticGasPressure(param.dConstGamma,
param.dConstGamma-1, dTuFac, param.dThermalCondCoeffCode*a, param.dThermalCond2CoeffCode*a,
param.dThermalCondSatCoeff/a, param.dThermalCond2SatCoeff/a,
param.dEvapMinTemp, dDtCourantFac, param.dResolveJeans/a, CkCallbackResumeThread());
ckout << "Calculating pressure gradients ...";
PressureSmoothParams pPressure(TYPE_GAS, activeRung, param.csm, dTime,
param.dConstAlpha, param.dConstBeta,
param.dThermalDiffusionCoeff, param.dMetalDiffusionCoeff,
param.dEtaCourant, param.dEtaDiffusion);
double startTime = CkWallTimer();
treeProxy.startReSmooth(&pPressure, CkCallbackResumeThread());
ckout << " took " << (CkWallTimer() - startTime) << " seconds."
<< endl;
treeProxy.ballMax(activeRung, 1.0+param.ddHonHLimit,
CkCallbackResumeThread());
}
/*
* Initialize energy and ionization state for cooling particles
*/
void TreePiece::InitEnergy(double dTuFac, // T to internal energy
double z, // redshift
double dTime,
double gammam1,
const CkCallback& cb)
{
#ifndef COOLING_NONE
COOL *cl;
dm = (DataManager*)CkLocalNodeBranch(dataManagerID);
cl = dm->Cool;
#endif
for(unsigned int i = 1; i <= myNumParticles; ++i) {
GravityParticle *p = &myParticles[i];
if (TYPETest(p, TYPE_GAS) && p->rung >= activeRung) {
#ifndef COOLING_NONE
double T,E;
T = p->u() / dTuFac;
CoolInitEnergyAndParticleData(cl, &p->CoolParticle(), &E,
p->fDensity, T, p->fMetals() );
p->u() = E;
#endif
p->uPred() = p->u();
#ifdef SUPERBUBBLE
E = p->uHot();
if(E > 0) {
double frac = p->massHot()/p->mass;
double PoverRho = gammam1*(p->uHot()*frac+p->u()*(1-frac));
double fDensity = p->fDensity*PoverRho/(gammam1*p->uHot()); /* Density of bubble part of particle */
T = CoolCodeEnergyToTemperature(dm->Cool, &p->CoolParticle(), p->uHot(),
#ifdef COOLING_GRACKLE
fDensity, /* GRACKLE needs density */
#endif
p->fMetals());
CoolInitEnergyAndParticleData(dm->Cool, &p->CoolParticleHot(), &E, fDensity, T, p->fMetals());
p->cpHotInit() = 0;
}
p->uHotPred() = p->uHot();
#endif
}
}
// Use shadow array to avoid reduction conflict
smoothProxy[thisIndex].ckLocal()->contribute(cb);
}
/**
* @brief Update the cooling rate (uDot)
*
* @param activeRung (minimum) rung being updated
* @param duDelta array of timesteps of length MAXRUNG+1
* @param dStartTime array of start times of length MAXRUNG+1
* @param bCool Whether cooling is on
* @param bUpdateState Whether the ionization factions need updating
* @param bAll Do all rungs below activeRung
* @param gammam1 Isentropic expansion factor/adiabatic index - 1.
* @param dResolveJeans Fraction of Pressure to resolve Jeans mass (comoving)
* @param cb Callback.
*/
void TreePiece::updateuDot(int activeRung,
double duDelta[MAXRUNG+1], // timesteps
double dStartTime[MAXRUNG+1],
int bCool, // select equation of state
int bUpdateState, // update ionization fractions
int bAll, // update all rungs below activeRung
double gammam1, // adiabatic index gamma - 1.
double dResolveJeans, // Jeans Pressure floor constant
const CkCallback& cb)
{
#ifndef COOLING_NONE
double dt; // time in seconds
double fDensity;
double E;
double PoverRho;
double PoverRhoGas;
double PoverRhoJeans;
double cGas;
double ExternalHeating;
for(unsigned int i = 1; i <= myNumParticles; ++i) {
GravityParticle *p = &myParticles[i];
if (TYPETest(p, TYPE_GAS)
&& (p->rung == activeRung || (bAll && p->rung >= activeRung))) {
dt = CoolCodeTimeToSeconds(dm->Cool, duDelta[p->rung] );
fDensity = p->fDensity;
if (bCool) {
CoolCodePressureOnDensitySoundSpeed(dm->Cool, &p->CoolParticle(),
p->uPred(), fDensity,
gammam1+1, gammam1, &PoverRhoGas,
&cGas);
}
else {
PoverRhoGas = gammam1*p->uPred();
}
#ifdef SUPERBUBBLE
double frac = p->massHot()/p->mass;
PoverRhoGas = gammam1*(p->uHotPred()*frac+p->uPred()*(1-frac));
#endif
PoverRhoJeans = PoverRhoFloorJeans(dResolveJeans, p);
PoverRho = PoverRhoGas;
if(PoverRho < PoverRhoJeans) PoverRho = PoverRhoJeans;
ExternalHeating = p->uDotPdV()*PoverRhoGas/PoverRho + p->uDotAV() + p->uDotDiff() + p->fESNrate();
if ( bCool ) {
COOLPARTICLE cp = p->CoolParticle();
double r[3]; // For conversion to C
p->position.array_form(r);
CkAssert(p->u() < LIGHTSPEED*LIGHTSPEED/dm->Cool->dErgPerGmUnit);
CkAssert(p->uPred() < LIGHTSPEED*LIGHTSPEED/dm->Cool->dErgPerGmUnit);
#ifdef SUPERBUBBLE
#ifdef COOLING_MOLECULARH
double columnLHot = 0;
#endif
double fDensityHot;
double uMean = frac*p->uHot()+(1-frac)*p->u();
CkAssert(uMean > 0.0);
CkAssert(p->uHotPred() < LIGHTSPEED*LIGHTSPEED/dm->Cool->dErgPerGmUnit);
CkAssert(p->uHot() < LIGHTSPEED*LIGHTSPEED/dm->Cool->dErgPerGmUnit);
/*
* If we have mass in the hot phase, we need to cool it appropriately.
*/
if (p->massHot() > 0) {
ExternalHeating = (p->uDotPdV()*PoverRhoGas/PoverRho + p->uDotAV() + p->uDotDiff())*p->uHot()/uMean + p->fESNrate();
if (p->uHot() > 0) {
E = p->uHot();
fDensityHot = p->fDensity*(p->uHot()*frac+p->u()*(1-frac))/p->uHot();
cp = p->CoolParticleHot();
#ifdef COOLING_MOLECULARH
// Assume the cold phase is a shell surrounding the hot phase,
// which is a sphere
columnLHot = pow((p->massHot()/fDensityHot)*(p->fDensity/p->mass), 1./3.)*(0.5*p->fBall);
#ifdef COOLDEBUG
dm->Cool->iOrder = p->iOrder; /*For debugging purposes */
#endif
CoolIntegrateEnergyCode(dm->Cool, CoolData, &cp, &E,
ExternalHeating, fDensityHot,
p->fMetals(), r, dt, columnLHot);
#else /*COOLING_MOLECULARH*/
CoolIntegrateEnergyCode(dm->Cool, CoolData, &cp, &E, ExternalHeating, fDensityHot,
p->fMetals(), r, dt);
#endif
p->uHotDot() = (E- p->uHot())/duDelta[p->rung];
if(bUpdateState) p->CoolParticleHot() = cp;
}
else if(p->cpHotInit() == 0) {
/* If we just got feedback, only set up the uDot */
/* If cpHotInit is still 1 at this point, we have recently
* gotten feedback, but the particle (presumably on a long
* timestep has yet to do a updateuDot() with it. Leave
* uDotHot() at its current value in that case. */
p->uHotDot() = ExternalHeating;
p->cpHotInit() = 1;
CkAssert(ExternalHeating >= 0.0);
}
ExternalHeating = (p->uDotPdV()*PoverRhoGas/PoverRho + p->uDotAV() + p->uDotDiff())*p->u()/uMean;
}
else { /* We have a single phase particle, treat it normally*/
p->uHotDot() = 0;
ExternalHeating = p->uDotPdV()*PoverRhoGas/PoverRho + p->uDotAV() + p->uDotDiff() + p->fESNrate();
}
fDensity = p->fDensity*PoverRho/(gammam1*p->u());
if (p->fDensityU() < p->fDensity) fDensity = p->fDensityU()*PoverRho/(gammam1*p->u());
CkAssert(fDensity > 0);
cp = p->CoolParticle();
#endif
E = p->u();
#ifdef COOLING_BOLEY
cp.mrho = pow(p->mass/p->fDensity, 1./3.);
#endif
double dtUse = dt;
if(dStartTime[p->rung] + 0.5*duDelta[p->rung]
< p->fTimeCoolIsOffUntil()) {
/* This flags cooling shutoff (e.g., from SNe) to
the cooling functions. */
dtUse = -dt;
p->uDot() = ExternalHeating;
}
#ifdef COOLING_MOLECULARH
/* cp.dLymanWerner = 52.0; for testing CC */
double columnL = sqrt(0.25)*p->fBall;
#ifdef SUPERBUBBLE
// Assume the cold phase is a shell surrounding the hot phase,
// which is a sphere
assert(columnL > columnLHot);
columnL = columnL - columnLHot;
#endif
#ifdef COOLDEBUG
dm->Cool->iOrder = p->iOrder; /*For debugging purposes */
#endif
CoolIntegrateEnergyCode(dm->Cool, CoolData, &cp, &E,
ExternalHeating, fDensity,
p->fMetals(), r, dtUse, columnL);
#else /*COOLING_MOLECULARH*/
CoolIntegrateEnergyCode(dm->Cool, CoolData, &cp, &E,
ExternalHeating, fDensity,
p->fMetals(), r, dtUse);
#endif /*COOLING_MOLECULARH*/
CkAssert(E > 0.0);
if(dtUse > 0 || ExternalHeating*duDelta[p->rung] + p->u() < 0)