diff --git a/src/microglia_analyzer/_widget_annotations_helper.py b/src/microglia_analyzer/_widget_annotations_helper.py new file mode 100644 index 0000000..24d80f2 --- /dev/null +++ b/src/microglia_analyzer/_widget_annotations_helper.py @@ -0,0 +1,702 @@ +from qtpy.QtWidgets import (QWidget, QVBoxLayout, QLineEdit, + QHBoxLayout, QPushButton, QLabel, + QFileDialog, QComboBox, QGroupBox) + +from napari.utils.notifications import show_info + +import tifffile +import skimage + +import numpy as np +import os + +""" +Prefix of a layer name to be considered as a YOLO class. +Any layer starting with this prefix will be considered as a class. +The name of the class is the suffix of the layer name. +""" +_CLASS_PREFIX = "class." + +""" +Name of the layer containing the current image. +This will be the backdrop for adding YOLO annotations or draw masks. +""" +_IMAGE_LAYER = "ยต-glia-image" + +""" +Layer containing the manual annotations (masks) of microglia. +""" +_MASKS_LAYER = "ยต-glia-mask" + +""" +Colors assigned to each YOLO class. +This array can be overriden if needed. +""" +_COLORS = [ + "#FF4D4D", + "#4DFF4D", + "#4D4DFF", + "#FFD700", + "#FF66FF", + "#66FFFF", + "#FF9900", + "#9933FF", + "#3399FF", + "#99FF33", + "#FF3399", + "#33FF99", + "#B20000", + "#006600", + "#800080", + "#808000" +] + +""" +Function used to read images. +We want to be able to read both TIFF and PNG/JPG images. +skimage is very bad at reading correctly TIFF images, and tifffile can't open PNG/JPG. +So we use tifffile for TIFF and skimage for PNG/JPG. +""" +imread = tifffile.imread + +""" +Indices to have the width and height from an image shape. +Depending on the library that reads the image, the order of the dimensions can change. +This tuple is used to get the right dimensions of the image. +""" +_WIDTH_HEIGHT = (0, 2) + +""" +Arguments to pass to the imread function. +The imread of skimage opens images as RGB by default, even if they are grayscale. +So we used the 'as_gray' argument to force the image to be read as grayscale. +""" +ARGS = {} + +# A YOLO bounding-box == a tuple of 5 elements: +# - (int) The class to which this box belongs. +# - (float) x component of the box's center (between 0.0 and 1.0) in percentage of image width. +# - (float) y component of the box's center (between 0.0 and 1.0) in percentage of image height. +# - (float) width of the box (between 0.0 and 1.0) in percentage of image width. +# - (float) height of the box (between 0.0 and 1.0) in percentage of image height. + +class AnnotationsWidget(QWidget): + + def __init__(self, napari_viewer): + super().__init__() + # Active Napari viewer. + self.viewer = napari_viewer + # Folder in which are located the 'images', 'annotations' and potentially 'masks' folders. + self.root_directory = None + # Name of the folder in which images are located. + self.sources_directory = None + # Name of the folder in which annotations are located. + self.annotations_directory = None + # Name of the folder in which masks are located. + self.masks_directory = None + # List of images ('.tif', '.png', ...) in the 'images' folder. + self.images_list = [] + + self.layout = QVBoxLayout() + self.init_ui() + self.setLayout(self.layout) + + # -------- UI: ---------------------------------- + + def add_media_management_group_ui(self): + box = QGroupBox("Media management") + layout = QVBoxLayout() + box.setLayout(layout) + + # Label + button to select the source directory: + self.select_root_directory_button = QPushButton("๐ Root directory") + self.select_root_directory_button.clicked.connect(self.select_root_directory) + layout.addWidget(self.select_root_directory_button) + + # Label + text box for the inputs sub-folder's name: + inputs_name_label = QLabel("Inputs sub-folder:") + self.inputs_name = QComboBox() + self.inputs_name.currentIndexChanged.connect(self.set_sources_directory) + self.inputs_name.setEnabled(False) + self.inputs_name.addItem("---") + h_layout = QHBoxLayout() + h_layout.addWidget(inputs_name_label) + h_layout.addWidget(self.inputs_name) + layout.addLayout(h_layout) + + # Label + text box for the annotations sub-folder's name: + annotations_name_label = QLabel("Annotations sub-folder:") + self.annotations_name = QLabel() + self.annotations_name.setText("---") + self.annotations_name.setMaximumHeight(20) + font = self.annotations_name.font() + font.setBold(True) + self.annotations_name.setFont(font) + h_layout = QHBoxLayout() + h_layout.addWidget(annotations_name_label) + h_layout.addWidget(self.annotations_name) + layout.addLayout(h_layout) + + self.layout.addWidget(box) + + def add_classes_management_group_ui(self): + box = QGroupBox("Classes management") + layout = QVBoxLayout() + box.setLayout(layout) + + # Adds a new class with the current name in the text box: + h_laytout = QHBoxLayout() + self.new_name = QLineEdit() + h_laytout.addWidget(self.new_name) + self.add_yolo_class_button = QPushButton("๐ฏ New class") + self.add_yolo_class_button.clicked.connect(self.add_yolo_class) + h_laytout.addWidget(self.add_yolo_class_button) + layout.addLayout(h_laytout) + + # Label showing the number of boxes in each class + self.count_display_label = QLabel("") + layout.addWidget(self.count_display_label) + + self.layout.addWidget(box) + + def add_annotations_management_group_ui(self): + box = QGroupBox("YOLO annotations") + layout = QVBoxLayout() + box.setLayout(layout) + + # Label + combobox containing inputs list: + self.image_selector = QComboBox() + self.image_selector.currentIndexChanged.connect(self.open_image) + self.image_selector.addItem("---") + layout.addWidget(self.image_selector) + + # Button to save the annotations: + self.save_button = QPushButton("๐พ Save annotations") + self.save_button.clicked.connect(self.save_state) + layout.addWidget(self.save_button) + + self.layout.addWidget(box) + + def add_masks_group_ui(self): + box = QGroupBox("Masks") + layout = QVBoxLayout() + box.setLayout(layout) + + # Button to add a new mask layer. + self.add_mask_button = QPushButton("๐ญ Add mask") + self.add_mask_button.clicked.connect(self.add_mask_layer) + layout.addWidget(self.add_mask_button) + + # Button to save the masks. + self.save_masks_button = QPushButton("๐พ Save masks") + self.save_masks_button.clicked.connect(self.save_masks) + layout.addWidget(self.save_masks_button) + + self.layout.addWidget(box) + + def init_ui(self): + self.add_media_management_group_ui() + self.add_classes_management_group_ui() + self.add_annotations_management_group_ui() + self.add_masks_group_ui() + + # ----------------- CALLBACKS ------------------------------------------- + + def select_root_directory(self): + """ + Select the folder containing the "images" and "labels" sub-folders. + """ + directory = QFileDialog.getExistingDirectory(self, "Select root directory") + if not os.path.isdir(directory): + show_info("Invalid directory.") + return + self.set_root_directory(directory) + + def set_sources_directory(self): + """ + Whenever the user selects a new source directory, the content of the 'sources' folder is probed. + This function also checks if the 'annotations' folder exists, and creates it if not. + """ + source_folder = self.inputs_name.currentText() + annotations_folder = source_folder + "-labels" + masks_folder = source_folder + "-masks" + if (source_folder is None) or (source_folder == "---") or (source_folder == ""): + return + inputs_path = os.path.join(self.root_directory, source_folder) + annotations_path = os.path.join(self.root_directory, annotations_folder) + masks_path = os.path.join(self.root_directory, masks_folder) + if not os.path.isdir(inputs_path): + return False + if not os.path.isdir(annotations_path): + os.makedirs(annotations_path) + if not os.path.isdir(masks_path): + os.makedirs(masks_path) + self.sources_directory = source_folder + self.annotations_directory = annotations_folder + self.masks_directory = masks_path + self.annotations_name.setText(annotations_folder) + self.open_sources_directory() + + def add_yolo_class(self): + """ + Adds a new layer representing a YOLO class. + """ + class_name = self.get_new_class_name() + if _IMAGE_LAYER not in self.viewer.layers: + show_info("No image loaded.") + return + n_classes = len(self.get_classes()) + color = _COLORS[n_classes % len(_COLORS)] + l = self.viewer.layers.selection.active + if class_name is None: + return + # Clears the selection of the current layer. + if (l is not None) and (l.name.startswith(_CLASS_PREFIX)): + l.selected_data = set() + self.viewer.add_shapes( + name=class_name, + edge_color=color, + face_color="transparent", + opacity=0.8, + edge_width=3 + ) + + def open_image(self): + """ + Uses the value contained in the `self.image_selector` to find and open an image. + Reloads the annotations if some were already made for this image. + """ + current_image = self.image_selector.currentText() + self.clear_mask() + if (self.root_directory is None) or (current_image is None) or (current_image == "---") or (current_image == ""): + return + image_path = os.path.join(self.root_directory, self.sources_directory, current_image) + name, _ = os.path.splitext(current_image) + current_as_txt = name + ".txt" + current_as_tif = name + ".tif" + labels_path = os.path.join(self.root_directory, self.annotations_directory, current_as_txt) + masks_path = os.path.join(self.root_directory, self.masks_directory, current_as_tif) + if not os.path.isfile(image_path): + print(f"The image: '{current_image}' doesn't exist.") + return + print(image_path, ARGS, imread, current_image) + image_path = os.fsencode(image_path).decode('utf-8') + data = imread(image_path, **ARGS) + if _IMAGE_LAYER in self.viewer.layers: + self.viewer.layers[_IMAGE_LAYER].data = data + self.viewer.layers[_IMAGE_LAYER].contrast_limits = (np.min(data), np.max(data)) + self.viewer.layers[_IMAGE_LAYER].reset_contrast_limits_range() + else: + self.viewer.add_image(data, name=_IMAGE_LAYER) + self.deselect_all() + self.restore_classes_layers() + self.clear_classes_layers() + if os.path.isfile(labels_path): # If some annotations already exist for this image. + self.load_annotations(labels_path) + self.count_boxes() + if os.path.isfile(masks_path): + self.restore_mask_layer(masks_path) + + def restore_mask_layer(self, masks_path): + data = tifffile.imread(masks_path) + if _MASKS_LAYER in self.viewer.layers: + self.viewer.layers[_MASKS_LAYER].data = data + else: + self.viewer.add_labels(data, name=_MASKS_LAYER) + + def save_state(self): + """ + Saves the current annotations (bounding-boxes) in a '.txt' file. + The class index corresponds to the rank of the layers in the Napari stack. + """ + count = 0 + lines = [] + for l in self.viewer.layers: + if not l.name.startswith(_CLASS_PREFIX): + continue + lines += self.layer2yolo(l.name, count) + count += 1 + self.write_annotations(lines) + self.count_boxes() + + def add_mask_layer(self): + if not self.is_image_opened(): + return + shape = self.viewer.layers[_IMAGE_LAYER].data.shape[_WIDTH_HEIGHT[0]:_WIDTH_HEIGHT[1]] + self.viewer.add_labels(np.zeros(shape, dtype=np.uint8), name=_MASKS_LAYER) + + def save_masks(self): + name, _ = os.path.splitext(self.image_selector.currentText()) + current_as_tif = name + ".tif" + mask_path = os.path.join(self.masks_directory, current_as_tif) + if _MASKS_LAYER in self.viewer.layers: + tifffile.imwrite(mask_path, self.viewer.layers[_MASKS_LAYER].data) + show_info("Masks saved.") + + # ----------------- METHODS ------------------------------------------- + + def is_image_opened(self): + """ + Checks if an image is currently opened in the Napari viewer. + """ + return (_IMAGE_LAYER in self.viewer.layers) and \ + (self.viewer.layers[_IMAGE_LAYER].data is not None) + + def clear_mask(self): + """ + Clears the mask layer. + """ + if _MASKS_LAYER in self.viewer.layers: + self.viewer.layers[_MASKS_LAYER].data = np.zeros_like(self.viewer.layers[_MASKS_LAYER].data) + + def upper_corner(self, box): + """ + Locates the upper-right corner of a bounding-box having the Napari format. + Works only for rectangles. + The order of coordinates changes depending on the drawing direction of the rectangle!!! + Once transposed (.T), a Napari bounding box is composed of 2 arrays, one for Y and one for X. + + Args: + - box (np.array): A Napari bounding-box, as it can be found in the '.data' of a shape layer. + + Returns: + (np.array): A (Y, X) 2D representing the maximal coordinates on both axis. + """ + y, x = [np.max(axis) for axis in box.T] + height, width = self.viewer.layers[_IMAGE_LAYER].data.shape[_WIDTH_HEIGHT[0]:_WIDTH_HEIGHT[1]] + return [min(y, height-1), min(x, width-1)] + + def lower_corner(self, box): + """ + Locates the lower-left corner of a bounding-box having the Napari format. + Works only for rectangles. + The order of coordinates changes depending on the drawing direction of the rectangle!!! + Once transposed (.T), a Napari bounding box is composed of 2 arrays, one for Y and one for X. + + Args: + - box (np.array): A Napari bounding-box, as it can be found in the '.data' of a shape layer. + + Returns: + (np.array): A (Y, X) 2D representing the minimal coordinates on both axis. + """ + return [max(0, np.min(axis)) for axis in box.T] + + def yolo2bbox(self, bboxes): + """ + Takes a YOLO bounding-box and converts it to the Napari format. + The output can be used in a shape layer. + """ + xmin, ymin = bboxes[0]-bboxes[2]/2, bboxes[1]-bboxes[3]/2 + xmax, ymax = bboxes[0]+bboxes[2]/2, bboxes[1]+bboxes[3]/2 + return xmin, ymin, xmax, ymax + + def bbox2yolo(self, bbox): + """ + Converts a Napari bounding-box (from a shape layer) into a YOLO bounding-box. + Doesn't handle the class (int) by itself, only the coordinates. + + Args: + - bbox (np.array): Array containing coordinates of a bounding-box as in a shape layer. + + Returns: + (tuple): 4 floats representing the x-centroid, the y-centroid, the width and the height in YOLO format. + It means that all these coordinates are percentages of the image's dimensions. + """ + ymax, xmax = self.upper_corner(bbox) + ymin, xmin = self.lower_corner(bbox) + height, width = self.viewer.layers[_IMAGE_LAYER].data.shape[_WIDTH_HEIGHT[0]:_WIDTH_HEIGHT[1]] + x = (xmin + xmax) / 2 / width + y = (ymin + ymax) / 2 / height + w = (xmax - xmin) / width + h = (ymax - ymin) / height + return round(x, 3), round(y, 3), round(w, 3), round(h, 3) + + def layer2yolo(self, layer_name, index): + """ + Produces a list of tuples containing the bounding-boxes of a layer in YOLO format. + This list is only for one class (one layer). + Converts the bounding-boxes from the Napari format to the YOLO format. + + Args: + - layer_name (str): The name of the layer to convert. + - index (int): The class index of the layer. + + Returns: + (list): A list of tuples, each tuple containing the class index and the YOLO bounding-box. + """ + data = self.viewer.layers[layer_name].data + tuples = [] + for rectangle in data: + bbox = (index,) + self.bbox2yolo(rectangle) + tuples.append(bbox) + return tuples + + def write_annotations(self, tuples): + """ + Responsible for writing the annotations in a '.txt' file, and updating the '-classes.txt' file. + + Args: + - tuples (list): A list of tuples, each tuple containing the class index and the YOLO bounding-box. + """ + labels_folder = os.path.join(self.root_directory, self.annotations_directory) + name, _ = os.path.splitext(self.image_selector.currentText()) + current_as_txt = name + ".txt" + labels_path = os.path.join(labels_folder, current_as_txt) + with open(labels_path, "w") as f: + for row in tuples: + f.write(" ".join(map(str, row)) + "\n") + with open(os.path.join(self.root_directory, os.path.basename(self.sources_directory)+"-classes.txt"), "w") as f: + for c in self.get_classes(): + f.write(c + "\n") + show_info("Annotations saved.") + + def get_new_class_name(self): + """ + Probes the input text box and returns the name of the new class. + """ + name_candidate = self.new_name.text().lower().replace(" ", "-") + if name_candidate == "": + show_info("Empty name.") + return None + if name_candidate.startswith(_CLASS_PREFIX): + full_name = name_candidate + else: + full_name = _CLASS_PREFIX + name_candidate + self.new_name.setText("") + return full_name + + def set_root_directory(self, directory): + """ + Sets the root directory (folder in which the 'sources' and 'annotations' folders are) of the application. + Probes the content of the 'sources' folder to find all sub-folders, to propose them in the GUI's dropdown. + No sub-folder is selected by default. + + Args: + - directory (str): The absolute path to the root directory. + """ + folders = sorted([f for f in os.listdir(directory) if (not f.endswith('-labels')) and os.path.isdir(os.path.join(directory, f))]) + folders = ["---"] + folders + self.inputs_name.clear() + self.inputs_name.addItems(folders) + self.inputs_name.setEnabled(len(folders) > 1) + self.root_directory = directory + + def update_reader_fx(self): + """ + Uses the first element of the images list to determine which library to use to read images. + In consequences: + - The imread function is set to the right library. + - The indices to get the width and height of an image are set. + - The arguments to pass to the imread function are set. + """ + global imread + global _WIDTH_HEIGHT + global ARGS + ARGS = {} + ext = self.images_list[0] + if (ext == "---") or (ext == ""): + return + ext = ext.split('.')[-1].lower() + if (ext == "tif") or (ext == "tiff"): + imread = tifffile.imread + _WIDTH_HEIGHT = (0, 2) + im = imread(os.path.join(self.root_directory, self.sources_directory, self.images_list[0])) + if len(im.shape) == 3: + _WIDTH_HEIGHT = (1, 3) + else: + imread = skimage.io.imread + _WIDTH_HEIGHT = (0, 2) + ARGS = {'as_gray': True} + + def open_sources_directory(self): + """ + Triggered when the user chooses a new source directory in the GUI's dropdown. + The content of the provided folder is probed to find all TIFF files. + If the folder is empty, a message is displayed, and the images list is set to ['---']. + The first item of the list is selected by default. + It gets opened automatically due to the signal 'currentIndexChanged'. + """ + inputs_path = os.path.join(self.root_directory, self.sources_directory) + self.images_list = sorted([f for f in os.listdir(inputs_path)]) + if len(self.images_list) == 0: # Didn't find any file in the folder. + show_info("Didn't find any image in the provided folder.") + self.images_list = ['---'] + else: + self.update_reader_fx() + self.image_selector.clear() + self.image_selector.addItems(self.images_list) + return True + + def get_classes(self): + """ + Probes the layers stack of Napari to find the classes layers. + These layers are found through the prefix '_CLASS_PREFIX'. + The order matters. + + Returns: + (list): A list of strings containing the name of the classes. + """ + classes = [] + for l in self.viewer.layers: + if l.name.startswith(_CLASS_PREFIX): + classes.append(l.name[len(_CLASS_PREFIX):]) + return classes + + def clear_classes_layers(self): + """ + Reset the data of each shape layer representing a YOLO class. + Used before loading the annotations of a new image. + """ + names = [l.name for l in self.viewer.layers] + for n in names: + if n.startswith(_CLASS_PREFIX): + self.viewer.layers[n].data = [] + + def restore_classes_layers(self): + """ + Parses the '-classes.txt' file to restore the classes layers. + The file contains the name of the classes, one per line and nothing else. + Creates the associated shape layers with the right colors. + """ + classes_path = os.path.join(self.root_directory, os.path.basename(self.sources_directory)+"-classes.txt") + if not os.path.isfile(classes_path): + show_info("No classes file found.") + return + classes = [] + with open(classes_path, "r") as f: + classes = [item for item in f.read().split('\n') if len(item.strip()) > 0] + for i, c in enumerate(classes): + basis = c.strip() + if len(basis) == 0: + continue + name = _CLASS_PREFIX + basis + if name in self.viewer.layers: + continue + color = _COLORS[i % len(_COLORS)] + self.viewer.add_shapes( + name=name, + edge_color=color, + face_color="transparent", + opacity=0.8, + edge_width=3 + ) + show_info(f"Classes restored: {classes}") + + def add_labels(self, data): + """ + Uses the dictionary of data to reset and refill shapes layers containing YOLO bounding-boxes. + The class index refers to the index in which shape layers appear in the layers stack of Napari. + """ + # Boxes are created according to the current image's size. + h, w = self.viewer.layers[_IMAGE_LAYER].data.shape[_WIDTH_HEIGHT[0]:_WIDTH_HEIGHT[1]] + class_layers = [l.name for l in self.viewer.layers if l.name.startswith(_CLASS_PREFIX)] + if max(data.keys()) >= len(class_layers): + show_info("Some classes are missing: Abort loading.") + return + for c, bbox_list in data.items(): + rectangles = [] + for bbox in bbox_list: + x1, y1, x2, y2 = self.yolo2bbox(bbox) + xmin = int(x1*w) + ymin = int(y1*h) + xmax = int(x2*w) + ymax = int(y2*h) + points = np.array([[ymin, xmin], [ymin, xmax], [ymax, xmax], [ymax, xmin]]) + rectangles.append(np.array(points)) + layer = self.viewer.layers[class_layers[c]] + layer.data = rectangles + layer.face_color='transparent' + layer.edge_color=_COLORS[c % len(_COLORS)] + layer.edge_width=3 + + def load_annotations(self, labels_path): + """ + Loads a file (.txt) containing annotations over the currently opened image. + Parses the file and expects for each line: + - (int) The box's class + - (float) The box's x component + - (float) The box's y component + - (float) The box's width + - (float) The box's height + All these values are separated with spaces. + The internal structure (a dictionary) makes a list of boxes per class index: + data[class_index] = [(x1, y1, w1, h1), (x2, y2, w2, h2)] + + Args: + - labels_path (str): The absolute path to the ".txt" file. + """ + lines = [] + with open(labels_path, "r") as f: + lines = f.read().split('\n') + if len(lines) == 0: + return + data = dict() + for line in lines: + if line == "": + continue + c, x, y, w, h = line.split(" ") + c, x, y, w, h = int(c), float(x), float(y), float(w), float(h) + data.setdefault(c, []).append((x, y, w, h)) + self.add_labels(data) + + def deselect_all(self): + """ + Deselects everything in a shape layer. + It is required when you flush the content of a shape layer when you open a new image. + If you flush with an active selection, you will get an "index out of range" right away. + Only targets shape layers representing YOLO classes. + """ + for l in self.viewer.layers: + if not l.name.startswith(_CLASS_PREFIX): + continue + l.mode = 'pan_zoom' + l.selected_data = set() + + def count_boxes(self): + """ + Counts the number of boxes in each class to make sure annotations are balanced. + No fix is provded, just a display of the current state. + The whole annotations folder is probed to count the boxes. + The current image is not taken into account. + """ + annotations_path = os.path.join(self.root_directory, self.annotations_directory) + counts = dict() + for f in os.listdir(annotations_path): + if not f.endswith(".txt"): + continue + with open(os.path.join(annotations_path, f), "r") as file: + lines = file.read().split('\n') + for line in lines: + if line == "": + continue + c, _, _, _, _ = line.split(" ") + c = int(c) + counts[c] = counts.get(c, 0) + 1 + self.update_count_display(counts) + + def update_count_display(self, counts): + """ + Updates the content of the table (in the GUI) displaying how many boxes are in each class. + Beyond 8 classes , the display could have an issue with the height of the QGroupBox. + + Args: + - counts (str): is a dictionary where the key is the class index and the value is the number of boxes. + """ + classes = self.get_classes() + total_count = sum(counts.values()) + text = '
+ {class_name} + | + ++ {count} ({round((count/total_count*100) if total_count > 0 else 0, 1)}%) + | +