forked from vprover/vampire
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimizingSolver.cpp
287 lines (241 loc) · 7.01 KB
/
MinimizingSolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/**
* @file MinimizingSolver.cpp
* Implements class MinimizingSolver.
*/
#include "SAT/SATClause.hpp"
#include "MinimizingSolver.hpp"
namespace SAT
{
MinimizingSolver::MinimizingSolver(SATSolver* inner)
: _varCnt(0), _inner(inner),
_assignmentValid(false)
{
CALL("MinimizingSolver::MinimizingSolver");
_assignmentValid = false;
}
void MinimizingSolver::ensureVarCnt(unsigned newVarCnt)
{
CALL("MinimizingSolver::ensureVarCnt");
_varCnt = std::max(_varCnt, newVarCnt);
_inner->ensureVarCnt(newVarCnt);
_asgn.expand(newVarCnt);
_watcher.expand(newVarCnt);
unsigned vc2 = newVarCnt*2;
_unsClCnt.expand(vc2, 0);
_clIdx.expand(vc2);
_assignmentValid = false;
}
bool MinimizingSolver::isNonEmptyClause(SATClause* cl)
{
return cl->length()!=0;
}
void MinimizingSolver::addClauses(SATClauseIterator cit, bool onlyPropagate)
{
CALL("MinimizingSolver::addClauses");
static SATClauseStack newClauses;
newClauses.reset();
newClauses.loadFromIterator(cit);
//we need to filter out the empty clause -- it won't have any influence on our algorithm
//(as it will make the problem unsat and we process only satisfiale assignment), but it'd
//is a corner case that needs to be handled
_unprocessed.loadFromIterator(
getFilteredIterator(SATClauseStack::BottomFirstIterator(newClauses), isNonEmptyClause));
_inner->addClauses(pvi(SATClauseStack::BottomFirstIterator(newClauses)), onlyPropagate);
_assignmentValid = false;
}
SATSolver::VarAssignment MinimizingSolver::getAssignment(unsigned var)
{
CALL("MinimizingSolver::getAssignment");
ASS_EQ(_inner->getStatus(), SATISFIABLE);
if(!_assignmentValid) {
updateAssignment();
}
if(!_assumptions.isEmpty() && _assumptions.find(var)) {
return _assumptions.get(var) ? SATSolver::TRUE : SATSolver::FALSE;
}
if(_watcher[var].isEmpty()) {
return SATSolver::DONT_CARE;
}
return _asgn[var] ? SATSolver::TRUE : SATSolver::FALSE;
}
bool MinimizingSolver::isZeroImplied(unsigned var)
{
CALL("MinimizingSolver::isZeroImplied");
bool res = _inner->isZeroImplied(var);
ASS(!res || getAssignment(var)!=DONT_CARE); //zero-implied variables cannot become a don't care
return res;
}
/**
* Return a true SATLiteral that will satisfy the most unsatisfied
* clauses, or SATLiteral::dummy() if there isn't any literal that
* satisfies unsatisfied clauses.
*/
SATLiteral MinimizingSolver::getMostSatisfyingTrueLiteral()
{
CALL("MinimizingSolver::getMostSatisfyingTrueLiteral");
//TODO:use a heap for this
unsigned best=0;
SATLiteral bestLit = SATLiteral::dummy();
unsigned ctrSz = _varCnt*2;
for(unsigned i=0; i<ctrSz; i++) {
SATLiteral lit(i);
if(_asgn[lit.var()]!=lit.polarity()) {
continue;
}
if(_unsClCnt[i]>best) {
best = _unsClCnt[i];
bestLit = lit;
}
}
COND_LOG("sat_min_sel", best!=0, "selected literal "<<bestLit<<" satisfying "<<best<<" clauses");
return bestLit;
}
/**
* Add a literal into the resulting assignment
*/
void MinimizingSolver::selectLiteral(SATLiteral lit)
{
CALL("MinimizingSolver::selectLiteral");
ASS_EQ(lit.polarity(), _asgn[lit.var()]); //literal is true in the inner assignment
unsigned var = lit.var();
SATClauseStack& satisfied = _clIdx[lit.content()];
SATClauseStack& watch = _watcher[var];
while(satisfied.isNonEmpty()) {
SATClause* cl = satisfied.pop();
if(!_satisfiedClauses.insert(cl)) {
continue;
}
LOG("sat_min_satisfied_clauses", "made sat: "<<(*cl));
watch.push(cl);
SATClause::Iterator cit(*cl);
while(cit.hasNext()) {
SATLiteral lit = cit.next();
ASS_G(_unsClCnt[lit.content()], 0);
_unsClCnt[lit.content()]--;
}
}
}
void MinimizingSolver::putIntoIndex(SATClause* cl)
{
CALL("MinimizingSolver::putIntoIndex");
SATClause::Iterator cit(*cl);
while(cit.hasNext()) {
SATLiteral lit = cit.next();
unsigned i = lit.content();
_clIdx[i].push(cl);
_unsClCnt[i]++;
}
}
bool MinimizingSolver::tryPuttingToAnExistingWatch(SATClause* cl)
{
CALL("MinimizingSolver::tryPuttingToAnExistingWatch");
SATClause::Iterator cit(*cl);
while(cit.hasNext()) {
SATLiteral lit = cit.next();
unsigned var = lit.var();
if(_asgn[var]==lit.polarity() && _watcher[var].isNonEmpty()) {
ALWAYS(_satisfiedClauses.insert(cl));
LOG("sat_min_satisfied_clauses", "made sat: "<<(*cl));
_watcher[var].push(cl);
return true;
}
}
return false;
}
/**
* Move satisfied unprocessed clauses into an appropriate watch, and
* unsatisfied unprocessed clauses into _clIdx
*/
void MinimizingSolver::processUnprocessed()
{
CALL("MinimizingSolver::processUnprocessed");
while(_unprocessed.isNonEmpty()) {
SATClause* cl = _unprocessed.pop();
ASS_G(cl->length(),0)
if(!tryPuttingToAnExistingWatch(cl)) {
putIntoIndex(cl);
}
}
}
/**
* Update the values in _asgn and move the clauses whose watch
* became unsatisfied to _unprocessed.
*/
void MinimizingSolver::processInnerAssignmentChanges()
{
CALL("MinimizingSolver::processInnerAssignmentChanges");
for(unsigned v=0; v<_varCnt; v++) {
VarAssignment va = _inner->getAssignment(v);
bool changed;
switch(va) {
case DONT_CARE:
changed = false;
break;
case TRUE:
changed = !_asgn[v];
_asgn[v] = true;
break;
case FALSE:
changed = _asgn[v];
_asgn[v] = false;
break;
case NOT_KNOWN:
default:
ASSERTION_VIOLATION;
break;
}
if(changed) {
SATClauseStack& watch = _watcher[v];
LOG("sat_min_mdl_chng", "assignment of "<<v<<" changed to "<<_asgn[v]<<" invalidating "<<watch.size()<<" clauses");
TRACE("sat_min_satisfied_clauses",
SATClauseStack::Iterator cit(watch);
while(cit.hasNext()) {
SATClause* cl = cit.next();
tout << "made unsat: " << (*cl) << endl;
}
);
_unprocessed.loadFromIterator(SATClauseStack::Iterator(watch));
_satisfiedClauses.removeIteratorElements(SATClauseStack::Iterator(watch));
watch.reset();
}
}
}
void MinimizingSolver::updateAssignment()
{
CALL("MinimizingSolver::updateAssignment");
LOG("sat_min_au","assignment update started");
processInnerAssignmentChanges();
processUnprocessed();
for(;;) {
SATLiteral lit = getMostSatisfyingTrueLiteral();
if(lit==SATLiteral::dummy()) {
break;
}
selectLiteral(lit);
}
_assignmentValid = true;
LOG("sat_min_au","assignment update done");
TRACE("sat_min_sz",
unsigned watchCnt = 0;
for(unsigned i=0; i<_varCnt; i++) {
if(_watcher[i].isNonEmpty()) {
watchCnt++;
}
}
tout << "minimized model size: "<<watchCnt<<" out of "<<(_varCnt-1)<<" variables"<<endl;
);
}
void MinimizingSolver::addAssumption(SATLiteral lit, bool onlyPropagate)
{
CALL("MinimizingSolver::addAssumption");
_assumptions.insert(lit.var(), lit.polarity());
_assignmentValid = false;
_inner->addAssumption(lit, onlyPropagate);
}
void MinimizingSolver::retractAllAssumptions()
{
CALL("MinimizingSolver::retractAllAssumptions");
_assumptions.reset();
_inner->retractAllAssumptions();
}
}