-
Notifications
You must be signed in to change notification settings - Fork 0
/
qt.py
562 lines (458 loc) · 20.5 KB
/
qt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp
from einops import rearrange, repeat
# import flashy
import torch
from torch import nn, einsum
import torch.nn.functional as F
import math
import typing as tp
from dataclasses import dataclass, field
import torch
def exists(val: tp.Optional[tp.Any]) -> bool:
return val is not None
def default(val: tp.Any, d: tp.Any) -> tp.Any:
return val if exists(val) else d
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
diffs = rearrange(samples, "n d -> n () d") - rearrange(
means, "c d -> () c d"
)
dists = -(diffs ** 2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
n = t.shape[0]
normed_codes = l2norm(t)
identity = torch.eye(n, device=t.device)
cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes)
return ((cosine_sim - identity) ** 2).sum() / (n ** 2)
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.8,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
# flashy.distrib.broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
# flashy.distrib.broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
# pre-process
x = self.preprocess(x)
# quantize
embed_ind = self.quantize(x)
# post-process
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int):
channels_last (bool): Channels are the last dimension in the input tensors.
commitment_weight (float): Weight for commitment loss.
orthogonal_reg_weight (float): Orthogonal regularization weights.
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider
for orthogonal regularization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim: tp.Optional[int] = None,
decay: float = 0.8,
epsilon: float = 1e-5,
kmeans_init: bool = False,
kmeans_iters: int = 10,
threshold_ema_dead_code: int = 2,
channels_last: bool = False,
commitment_weight: float = 1.,
orthogonal_reg_weight: float = 0.0,
orthogonal_reg_active_codes_only: bool = False,
orthogonal_reg_max_codes: tp.Optional[int] = None,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
decay=decay, epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code)
self.codebook_size = codebook_size
self.channels_last = channels_last
@property
def codebook(self):
return self._codebook.embed
@property
def inited(self):
return self._codebook.inited
def _preprocess(self, x):
if not self.channels_last:
x = rearrange(x, "b d n -> b n d")
return x
def _postprocess(self, quantize):
if not self.channels_last:
quantize = rearrange(quantize, "b n d -> b d n")
return quantize
def encode(self, x):
x = self._preprocess(x)
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind):
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
quantize = self._postprocess(quantize)
return quantize
def forward(self, x, mask):
device = x.device
x = self._preprocess(x)
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x, reduction='none')
commit_loss = (commit_loss * mask.unsqueeze(2)).sum()
non_zero_elements = mask.sum()
commit_loss = commit_loss / non_zero_elements
loss = loss + commit_loss * self.commitment_weight
# embed_loss = F.mse_loss(quantize, x.detach(), reduction='none')
# embed_loss = (embed_loss * mask.unsqueeze(2)).sum()
# non_zero_elements = mask.sum()
# embed_loss = embed_loss / non_zero_elements
# loss = loss + embed_loss * self.commitment_weight
if self.orthogonal_reg_weight > 0:
codebook = self.codebook
if self.orthogonal_reg_active_codes_only:
# only calculate orthogonal loss for the activated codes for this batch
unique_code_ids = torch.unique(embed_ind)
codebook = codebook[unique_code_ids]
num_codes = codebook.shape[0]
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes]
codebook = codebook[rand_ids]
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
quantize = self.project_out(quantize)
quantize = self._postprocess(quantize)
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(self, x, mask, n_q: tp.Optional[int] = None):
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
n_q = n_q or len(self.layers)
for i, layer in enumerate(self.layers[:n_q]):
quantized, indices, loss = layer(residual, mask)
residual = residual - quantized
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
return quantized_out, out_indices, out_losses
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor:
residual = x
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, q_indices: torch.Tensor) -> torch.Tensor:
quantized_out = torch.tensor(0.0, device=q_indices.device)
for i, indices in enumerate(q_indices):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out
@dataclass
class QuantizedResult:
x: torch.Tensor
codes: torch.Tensor
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
penalty: tp.Optional[torch.Tensor] = None
metrics: dict = field(default_factory=dict)
class ResidualVectorQuantizer(nn.Module):
"""Residual Vector Quantizer.
Args:
dimension (int): Dimension of the codebooks.
n_q (int): Number of residual vector quantizers used.
q_dropout (bool): Random quantizer drop out at train time.
bins (int): Codebook size.
decay (float): Decay for exponential moving average over the codebooks.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
orthogonal_reg_weight (float): Orthogonal regularization weights.
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider.
for orthogonal regularization.
"""
def __init__(
self,
dimension: int = 256,
n_q: int = 8,
q_dropout: bool = False,
bins: int = 1024,
decay: float = 0.99,
kmeans_init: bool = True,
kmeans_iters: int = 10,
threshold_ema_dead_code: int = 2,
orthogonal_reg_weight: float = 0.0,
orthogonal_reg_active_codes_only: bool = False,
orthogonal_reg_max_codes: tp.Optional[int] = None,
):
super().__init__()
self.max_n_q = n_q
self.n_q = n_q
self.q_dropout = q_dropout
self.dimension = dimension
self.bins = bins
self.decay = decay
self.kmeans_init = kmeans_init
self.kmeans_iters = kmeans_iters
self.threshold_ema_dead_code = threshold_ema_dead_code
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
self.vq = ResidualVectorQuantization(
dim=self.dimension,
codebook_size=self.bins,
num_quantizers=self.n_q,
decay=self.decay,
kmeans_init=self.kmeans_init,
kmeans_iters=self.kmeans_iters,
threshold_ema_dead_code=self.threshold_ema_dead_code,
orthogonal_reg_weight=self.orthogonal_reg_weight,
orthogonal_reg_active_codes_only=self.orthogonal_reg_active_codes_only,
orthogonal_reg_max_codes=self.orthogonal_reg_max_codes,
channels_last=True #CHANGED: TODO CHANGE BACK
)
def forward(self, x: torch.Tensor, mask, frame_rate: int):
n_q = self.n_q
if self.training and self.q_dropout:
n_q = int(torch.randint(1, self.n_q + 1, (1,)).item())
bw_per_q = math.log2(self.bins) * frame_rate / 1000
quantized, codes, commit_loss = self.vq(x, mask=mask, n_q=n_q)
codes = codes.transpose(0, 1)
# codes is [B, K, T], with T frames, K nb of codebooks.
bw = torch.tensor(n_q * bw_per_q).to(x)
return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss))
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Encode a given input tensor with the specified frame rate at the given bandwidth.
The RVQ encode method sets the appropriate number of quantizer to use
and returns indices for each quantizer.
"""
n_q = self.n_q
codes = self.vq.encode(x, n_q=n_q)
codes = codes.transpose(0, 1)
# codes is [B, K, T], with T frames, K nb of codebooks.
return codes
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes to the quantized representation."""
# codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
codes = codes.transpose(0, 1)
quantized = self.vq.decode(codes)
return quantized
@property
def total_codebooks(self):
return self.max_n_q
@property
def num_codebooks(self):
return self.n_q
def set_num_codebooks(self, n: int):
assert n > 0 and n <= self.max_n_q
self.n_q = n
class DummyQuantizer(nn.Module):
"""Fake quantizer that actually does not perform any quantization.
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor, frame_rate: int):
q = x.unsqueeze(1)
return QuantizedResult(x, q, torch.tensor(q.numel() * 32 * frame_rate / 1000 / len(x)).to(x))
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
In the case of the DummyQuantizer, the codes are actually identical
to the input and resulting quantized representation as no quantization is done.
"""
return x.unsqueeze(1)
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes to the quantized representation.
In the case of the DummyQuantizer, the codes are actually identical
to the input and resulting quantized representation as no quantization is done.
"""
return codes.squeeze(1)
@property
def total_codebooks(self):
"""Total number of codebooks."""
return 1
@property
def num_codebooks(self):
"""Total number of codebooks."""
return self.total_codebooks
def set_num_codebooks(self, n: int):
"""Set the number of active codebooks."""
raise AttributeError("Cannot override the number of codebooks for the dummy quantizer")