-
Notifications
You must be signed in to change notification settings - Fork 0
/
Implementation.tex
604 lines (505 loc) · 20 KB
/
Implementation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
\chapter{Implementation}
\section{Initialization}
People usually oversimplify data integration by assuming it involves only extract, transform and load (ETL) tools. Though critical, an ETL tool is just one piece of a complex puzzle.
The data integration framework (DIF) encompasses two categories of processes. Before transforming our data into information that businesspeople can use to analyze and make decisions, we need to start by gathering our data physically from its sources and preparing our metadata.
\vskip0.2cm
Thus, we start our project by establishing our databases connection, whether input resources or output destinations.
\vskip0.2cm
Figure \ref{fig:ssmsDB} shows our initial database in local sql server
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/ssmsDB.PNG}}
\caption{sql server database}
\label{fig:ssmsDB}
\end{figure}
\vskip0.2cm
\clearpage
Figure \ref{fig:csvDB} shows our csv files for more data
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/csvDB.PNG}}
\caption{csv files}
\label{fig:csvDB}
\end{figure}
\vskip0.2cm
As in Figure \ref{fig:psqlDB} we created our exporting database in PostgreSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/psqlDB.PNG}}
\caption{PostgreSQL database created}
\label{fig:psqlDB}
\end{figure}
\vskip0.2cm
We need to connect to multiple databases, then we want to centralize the connection information details in the Metadata folder in the Repository tree view as given in figure\ref{fig:metadata}.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.3\columnwidth]{img/Implementation/Initialization/metadata.PNG}}
\caption{Talend Metadata}
\label{fig:metadata}
\end{figure}
\vskip0.2cm
This setup procedure is made of two separate but closely related major tasks:
\vskip0.2cm
\quad\quad\quad 1- Set up our database connections,
\quad\quad\quad 2- Retrieve the tables schemas.
\quad\quad\quad 3- Set up our delmitied csv files.
1- As shown in Figures \ref{fig:sqlConec} and \ref{fig:psqlConec} we configured our database connections
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/sqlConec.PNG}}
\caption{Microsoft sql server DB connection}
\label{fig:sqlConec}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/psqlConec.PNG}}
\caption{PostgreSQL DB connection}
\label{fig:psqlConec}
\end{figure}
\vskip0.2cm
\clearpage
2- To retrieve table schemas from the database connection you have just set up, right-click the connection item from the Repository tree view, and select Retrieve schema from the contextual menu.Then we simply follow the wizards.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/schemas.PNG}}
\caption{retrieving schemas}
\label{fig:psqlConec}
\end{figure}
3- We finally import our csv files by following the delimited files wizards
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.5\columnwidth]{img/Implementation/Initialization/filedelimited.PNG}}
\caption{importing csv files}
\label{fig:psqlConec}
\end{figure}
\clearpage
\section{Data Integration with Talend}
% Une sous section
\subsection{Table : Assure}
To implement our first table "Assure", we start by setting up our input component, Microsoft SQL server Database. We define the needed table, its schema ... etc.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/0.PNG}}
\end{figure}
\vskip0.2cm
Then, we set up our data importing job, to import all rows from MS SQL to our output database PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.0.PNG}}
\end{figure}
\vskip0.2cm
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.1.PNG}}
\end{figure}
\vskip0.2cm
\clearpage
Next, we explore our Assure.csv file where we notice we have 2 new columns that we need to include.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.4\columnwidth]{img/Implementation/talend/assure/1.2.PNG}}
\end{figure}
\vskip0.2cm
We setup our components to merge the csv data, we do that by using TMap, configured as following
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.3.0.PNG}}
\end{figure}
\vskip0.2cm
An expected error occured, which is about not finding the 2 new columns in the PSQL Assure table.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.3.PNG}}
\end{figure}
\vskip0.2cm
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.4.PNG}}
\end{figure}
\vskip0.2cm
We fix that by manually creating the new columns
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.5.PNG}}
\end{figure}
\vskip0.2cm
Then as seen in the next we figure the job should be done correctly : we update 12795 out or 25934 rows from MS SQL with new columns from csv file
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.6.PNG}}
\end{figure}
\vskip0.2cm
Even though the exportation is completed we notice these errors in TLog, which implies that we have some outliers to fix in our data.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.7.PNG}}
\end{figure}
\vskip0.2cm
Now we add the remaining data from our csv.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.8.PNG}}
\end{figure}
The outliers errors are shown again in csv data
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.9.PNG}}
\end{figure}
Our data is ready to explore in PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.10.PNG}}
\end{figure}
We noticed a lot of NULL values, which is completely normal since the csv files updated only 25000 files while our initial database from MS SQL had more than 1M rows
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.4\columnwidth]{img/Implementation/talend/assure/1.11.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.4\columnwidth]{img/Implementation/talend/assure/1.12.PNG}}
\end{figure}
To fix that we start inspecting our first column to see how many NULL values does it contain.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.7\columnwidth]{img/Implementation/talend/assure/1.13.PNG}}
\end{figure}
In first column "NomPrenomRaisonSocial" we have 13139, we can generate random values for that column using this sql query
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.15.PNG}}
\end{figure}
The second column to inspect is "CodeTypePieceIdentite" which has a lot of null values
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.16.PNG}}
\end{figure}
\clearpage
from exploring the data we noticed that "CodeTypePieceIdentite" column should be containing either "1" or "2" as values, so we can replace those null values using this update with a subselect generator,
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.18.PNG}}
\end{figure}
This is what we get
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.19.PNG}}
\end{figure}
We can do that differently using the TRowGenerator
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.21.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.4\columnwidth]{img/Implementation/talend/assure/1.20.PNG}}
\end{figure}
The last column to inspect is "CodePostal", which contains also a lot of null variable, at first we didn't want to randomly generate values for this column because that can critically affect or analysis.
\vskip0.2cm
So we tried this query to retrieve randomly from NON-NULL existing values to complete the missing data
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.22.PNG}}
\end{figure}
This query couldn't do the job so we tried to optimize it, we tried first to use CTE
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.24.PNG}}
\end{figure}
Also we tried to use window functions as following
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.25.PNG}}
\end{figure}
All 3 tries stuck in executing and never do the job, even though we confirm that all 3 queries work perfectly for smaller dataset, we concluded that this fail is probably due to large data size table.
\vskip0.2cm
As alternative solution we decided to use the following query to generate the missing values
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.26.PNG}}
\end{figure}
This is the final ressult
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/1.27.PNG}}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Table : Police}
We start by exploring our data in SSMS.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/2.2.PNG}}
\end{figure}
A null column is noticed, we exclude that from our TMapping
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/2.3.PNG}}
\end{figure}
No new useful data in csv file.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/2.4.PNG}}
\end{figure}
So we simply run the following job:
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/2.0.PNG}}
\end{figure}
\subsection{Table : Vehicule, MarqueVehicule, UsageVehicule }
From SSMS we noticed 2 null columns, we remvoe that from out TMap component
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.0.PNG}}
\end{figure}
Then run the job to import data from MS SQL to PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.1.PNG}}
\end{figure}
Using same components but different configurations, we can import table "UsageVehicule"
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.3.0.PNG}}
\end{figure}
And "MarqueVehicule" Table
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.3.PNG}}
\end{figure}
"CodeUsage" column is missed from "Vehicule" Table, we can fix that by : first, creating the column manually
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.4.PNG}}
\end{figure}
Second, we can use the next query to randomly select values from "UsageVehicule" and fill the new column
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.5.PNG}}
\end{figure}
This is our final Vehicule table ready to be used
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/3.6.PNG}}
\end{figure}
\subsection{Table : Sinistre}
Most of our data is in our csv file, so we start by merging our data sources in TMap component, to ADD the in common rows
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.0.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.1.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.2.PNG}}
\end{figure}
Then we add the remaning data from our csv file to PSQL table
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.3.PNG}}
\end{figure}
We get this error due to date formatting issues,
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.4.PNG}}
\end{figure}
We can easily pass that error by configuring the column Date Pattern in TMap
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.5.PNG}}
\end{figure}
Exporting the final table in PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/7.6.PNG}}
\end{figure}
\subsection{Tables : ClassesBonusMalus, souscripteur, companies, typeinfo}
The remaining table were completely ready to be directly exported to PostgreSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/talend/assure/5.PNG}}
\end{figure}
\clearpage
\section{Data Integration with Python}
\subsection{Table: Assure}
We start by creating a new dataframe from our MS SQL table.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.1.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.2.PNG}}
\end{figure}
We also import our assure.csv file to a new dataframe.
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.3.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.4.PNG}}
\end{figure}
Merging both dataframes to one is executed using the following code:
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.5.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.6.PNG}}
\end{figure}
Replace NaN values from 'nomPrenomRaisonSocial' column with random strings of 5 characters
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.7.PNG}}
\end{figure}
Replace NaN values from 'codeTypePieceIdentite' column with either 1 or 2 randomly
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.8.PNG}}
\end{figure}
This is what we get after previous transformation
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.9.PNG}}
\end{figure}
Make a list of values from 'codePostal' and use it to randomly fill NaN fields
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.10.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.11.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.12.PNG}}
\end{figure}
Change dataframe columns types and push it to PostgreSQL table )
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.13.PNG}}
\end{figure}
This is what we get in PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.14.PNG}}
\end{figure}
We need to specify the primarykey manualy to remove to read only constraint
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.15.PNG}}
\end{figure}
Or we can do it in PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.16.PNG}}
\end{figure}
This is our final table in PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/1.17.PNG}}
\end{figure}
\subsection{Table: Police}
Create dataframe of Table Police from MS SQL data
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/2.0.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/2.1.PNG}}
\end{figure}
Delete the NULL column 'numPolice' also delete 'dateEcheancePolice' because it gives same data as 'dateEffetPolice'
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/2.2.PNG}}
\end{figure}
Verify column types and export to PSQL
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/2.4.PNG}}
\end{figure}
\subsection{Table: Vehicule, MarqueVehicule,UsageVehicule}
Import table 'vehicule'
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.0.PNG}}
\end{figure}
Delete useless Columns
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.1.PNG}}
\end{figure}
Import table 'MarqueVehicule'
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.3.PNG}}
\end{figure}
Import table 'UsageVehicule'
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.4.PNG}}
\end{figure}
'codeUsage' is missed from 'vehicule', we notice that 'codeUsage' is in a range of (1,17), so we can generate the needed it data randomly and add it to the missing fields
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.5.PNG}}
\end{figure}
Finally,persist our tables to PostgreSQL server
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/3.6.PNG}}
\end{figure}
\subsection{Table: Sinistre}
While working on Sinistre table we noticed that MS SQL table is just a sample of sinistre.csv file, therefor we decided to work directly on the csv file (transform and clean)
\vskip0.2cm
First we import our csv data to a dataframe
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.0.PNG}}
\end{figure}
Second we set up our dataframe's column names
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.1.PNG}}
\end{figure}
Then we drop all useless columns
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.2.PNG}}
\end{figure}
We notice we have outliers data in some needed columns
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.3.PNG}}
\end{figure}
Next step is filling 'heureSurvanceDuSinistre' with randomly picked "day\_times" value, and We assign a value in range of [1,24] to every "lieuDuSinistre" cell (every value will be assigned to a specific governorate of our country )
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.4.PNG}}
\end{figure}
This is our dataframe clean and ready to PSQL exporting
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.5.PNG}}
\end{figure}
We execute that using the following code
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/4.6.PNG}}
\end{figure}
\subsection{Tables : ClassesBonusMalus, souscripteur, companies, typeinfo}
We simply redo the same simple steps for the remaining tables (import from MS SQL / export to PSQL)
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/5.1.PNG}}
\end{figure}
\begin{figure}[H]
\centering
\frame{\includegraphics[width=0.8\columnwidth]{img/Implementation/python/5.2.PNG}}
\end{figure}