forked from KhronosGroup/SPIRV-LLVM-Translator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SPIRVRegularizeLLVM.cpp
853 lines (788 loc) · 35.2 KB
/
SPIRVRegularizeLLVM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
//===- SPIRVRegularizeLLVM.cpp - Regularize LLVM for SPIR-V ------- C++ -*-===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements regularization of LLVM module for SPIR-V.
//
//===----------------------------------------------------------------------===//
#include "SPIRVRegularizeLLVM.h"
#include "OCLUtil.h"
#include "SPIRVInternal.h"
#include "SPIRVMDWalker.h"
#include "libSPIRV/SPIRVDebug.h"
#include "llvm/ADT/StringExtras.h" // llvm::isDigit
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h" // expandMemSetAsLoop()
#include <set>
#include <vector>
#define DEBUG_TYPE "spvregular"
using namespace llvm;
using namespace SPIRV;
using namespace OCLUtil;
namespace SPIRV {
static bool SPIRVDbgSaveRegularizedModule = false;
static std::string RegularizedModuleTmpFile = "regularized.bc";
char SPIRVRegularizeLLVMLegacy::ID = 0;
bool SPIRVRegularizeLLVMLegacy::runOnModule(Module &Module) {
return runRegularizeLLVM(Module);
}
std::string SPIRVRegularizeLLVMBase::lowerLLVMIntrinsicName(IntrinsicInst *II) {
Function *IntrinsicFunc = II->getCalledFunction();
assert(IntrinsicFunc && "Missing function");
std::string FuncName = IntrinsicFunc->getName().str();
std::replace(FuncName.begin(), FuncName.end(), '.', '_');
FuncName = "spirv." + FuncName;
return FuncName;
}
void SPIRVRegularizeLLVMBase::lowerIntrinsicToFunction(
IntrinsicInst *Intrinsic) {
// For @llvm.memset.* intrinsic cases with constant value and length arguments
// are emulated via "storing" a constant array to the destination. For other
// cases we wrap the intrinsic in @spirv.llvm_memset_* function and expand the
// intrinsic to a loop via expandMemSetAsLoop() from
// llvm/Transforms/Utils/LowerMemIntrinsics.h
if (auto *MSI = dyn_cast<MemSetInst>(Intrinsic))
if (isa<Constant>(MSI->getValue()) && isa<ConstantInt>(MSI->getLength()))
return; // To be handled in LLVMToSPIRV::transIntrinsicInst
std::string FuncName = lowerLLVMIntrinsicName(Intrinsic);
if (Intrinsic->isVolatile())
FuncName += ".volatile";
// Redirect @llvm.intrinsic.* call to @spirv.llvm_intrinsic_*
Function *F = M->getFunction(FuncName);
if (F) {
// This function is already linked in.
Intrinsic->setCalledFunction(F);
return;
}
// TODO copy arguments attributes: nocapture writeonly.
FunctionCallee FC =
M->getOrInsertFunction(FuncName, Intrinsic->getFunctionType());
auto IntrinsicID = Intrinsic->getIntrinsicID();
Intrinsic->setCalledFunction(FC);
F = dyn_cast<Function>(FC.getCallee());
assert(F && "must be a function!");
switch (IntrinsicID) {
case Intrinsic::memset: {
auto *MSI = static_cast<MemSetInst *>(Intrinsic);
Argument *Dest = F->getArg(0);
Argument *Val = F->getArg(1);
Argument *Len = F->getArg(2);
Argument *IsVolatile = F->getArg(3);
Dest->setName("dest");
Val->setName("val");
Len->setName("len");
IsVolatile->setName("isvolatile");
IsVolatile->addAttr(Attribute::ImmArg);
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *MemSet = IRB.CreateMemSet(Dest, Val, Len, MSI->getDestAlign(),
MSI->isVolatile());
IRB.CreateRetVoid();
expandMemSetAsLoop(cast<MemSetInst>(MemSet));
MemSet->eraseFromParent();
break;
}
case Intrinsic::bswap: {
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *BSwap = IRB.CreateIntrinsic(Intrinsic::bswap, Intrinsic->getType(),
F->getArg(0));
IRB.CreateRet(BSwap);
IntrinsicLowering IL(M->getDataLayout());
IL.LowerIntrinsicCall(BSwap);
break;
}
default:
break; // do nothing
}
return;
}
void SPIRVRegularizeLLVMBase::lowerFunnelShift(IntrinsicInst *FSHIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
// Expected LLVM IR for the function: i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i*
// %c)
FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType();
Type *FSHRetTy = FSHFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic);
Function *FSHFunc =
getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName);
if (!FSHFunc->empty()) {
FSHIntrinsic->setCalledFunction(FSHFunc);
return;
}
auto *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc);
IRBuilder<> Builder(RotateBB);
Type *Ty = FSHFunc->getReturnType();
// Build the actual funnel shift rotate logic.
// In the comments, "int" is used interchangeably with "vector of int
// elements".
FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty);
Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty;
unsigned BitWidth = IntTy->getIntegerBitWidth();
ConstantInt *BitWidthConstant = Builder.getInt({BitWidth, BitWidth});
Value *BitWidthForInsts =
VectorTy ? Builder.CreateVectorSplat(VectorTy->getNumElements(),
BitWidthConstant)
: BitWidthConstant;
auto *RotateModVal =
Builder.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts);
Value *FirstShift = nullptr, *SecShift = nullptr;
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr)
// Shift the less significant number right, the "rotate" number of bits
// will be 0-filled on the left as a result of this regular shift.
FirstShift = Builder.CreateLShr(FSHFunc->getArg(1), RotateModVal);
else
// Shift the more significant number left, the "rotate" number of bits
// will be 0-filled on the right as a result of this regular shift.
FirstShift = Builder.CreateShl(FSHFunc->getArg(0), RotateModVal);
// We want the "rotate" number of the more significant int's LSBs (MSBs) to
// occupy the leftmost (rightmost) "0 space" left by the previous operation.
// Therefore, subtract the "rotate" number from the integer bitsize...
auto *SubRotateVal = Builder.CreateSub(BitWidthForInsts, RotateModVal);
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr)
// ...and left-shift the more significant int by this number, zero-filling
// the LSBs.
SecShift = Builder.CreateShl(FSHFunc->getArg(0), SubRotateVal);
else
// ...and right-shift the less significant int by this number, zero-filling
// the MSBs.
SecShift = Builder.CreateLShr(FSHFunc->getArg(1), SubRotateVal);
// A simple binary addition of the shifted ints yields the final result.
auto *FunnelShiftRes = Builder.CreateOr(FirstShift, SecShift);
Builder.CreateRet(FunnelShiftRes);
FSHIntrinsic->setCalledFunction(FSHFunc);
}
void SPIRVRegularizeLLVMBase::buildUMulWithOverflowFunc(Function *UMulFunc) {
if (!UMulFunc->empty())
return;
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", UMulFunc);
IRBuilder<> Builder(EntryBB);
// Build the actual unsigned multiplication logic with the overflow
// indication.
auto *FirstArg = UMulFunc->getArg(0);
auto *SecondArg = UMulFunc->getArg(1);
// Do unsigned multiplication Mul = A * B.
// Then check if unsigned division Div = Mul / A is not equal to B.
// If so, then overflow has happened.
auto *Mul = Builder.CreateNUWMul(FirstArg, SecondArg);
auto *Div = Builder.CreateUDiv(Mul, FirstArg);
auto *Overflow = Builder.CreateICmpNE(FirstArg, Div);
// umul.with.overflow intrinsic return a structure, where the first element
// is the multiplication result, and the second is an overflow bit.
auto *StructTy = UMulFunc->getReturnType();
auto *Agg = Builder.CreateInsertValue(UndefValue::get(StructTy), Mul, {0});
auto *Res = Builder.CreateInsertValue(Agg, Overflow, {1});
Builder.CreateRet(Res);
}
void SPIRVRegularizeLLVMBase::lowerUMulWithOverflow(
IntrinsicInst *UMulIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
FunctionType *UMulFuncTy = UMulIntrinsic->getFunctionType();
Type *FSHLRetTy = UMulFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(UMulIntrinsic);
Function *UMulFunc =
getOrCreateFunction(M, FSHLRetTy, UMulFuncTy->params(), FuncName);
buildUMulWithOverflowFunc(UMulFunc);
UMulIntrinsic->setCalledFunction(UMulFunc);
}
void SPIRVRegularizeLLVMBase::expandVEDWithSYCLTypeSRetArg(Function *F) {
auto Attrs = F->getAttributes();
StructType *SRetTy = cast<StructType>(Attrs.getParamStructRetType(0));
Attrs = Attrs.removeParamAttribute(F->getContext(), 0, Attribute::StructRet);
std::string Name = F->getName().str();
CallInst *OldCall = nullptr;
mutateFunction(
F,
[=, &OldCall](CallInst *CI, std::vector<Value *> &Args, Type *&RetTy) {
Args.erase(Args.begin());
RetTy = SRetTy->getElementType(0);
OldCall = CI;
return Name;
},
[=, &OldCall](CallInst *NewCI) {
IRBuilder<> Builder(OldCall);
Value *Target =
Builder.CreateStructGEP(SRetTy, OldCall->getOperand(0), 0);
return Builder.CreateStore(NewCI, Target);
},
nullptr, &Attrs, true);
}
void SPIRVRegularizeLLVMBase::expandVIDWithSYCLTypeByValComp(Function *F) {
auto Attrs = F->getAttributes();
auto *CompPtrTy = cast<StructType>(Attrs.getParamByValType(1));
Attrs = Attrs.removeParamAttribute(F->getContext(), 1, Attribute::ByVal);
std::string Name = F->getName().str();
mutateFunction(
F,
[=](CallInst *CI, std::vector<Value *> &Args) {
Type *HalfTy = CompPtrTy->getElementType(0);
IRBuilder<> Builder(CI);
auto *Target = Builder.CreateStructGEP(CompPtrTy, CI->getOperand(1), 0);
Args[1] = Builder.CreateLoad(HalfTy, Target);
return Name;
},
nullptr, &Attrs, true);
}
void SPIRVRegularizeLLVMBase::expandSYCLTypeUsing(Module *M) {
std::vector<Function *> ToExpandVEDWithSYCLTypeSRetArg;
std::vector<Function *> ToExpandVIDWithSYCLTypeByValComp;
for (auto &F : *M) {
if (F.getName().starts_with("_Z28__spirv_VectorExtractDynamic") &&
F.hasStructRetAttr()) {
auto *SRetTy = F.getParamStructRetType(0);
if (isSYCLHalfType(SRetTy) || isSYCLBfloat16Type(SRetTy))
ToExpandVEDWithSYCLTypeSRetArg.push_back(&F);
else
llvm_unreachable("The return type of the VectorExtractDynamic "
"instruction cannot be a structure other than SYCL "
"half.");
}
if (F.getName().starts_with("_Z27__spirv_VectorInsertDynamic") &&
F.getArg(1)->getType()->isPointerTy()) {
auto *ET = F.getParamByValType(1);
if (isSYCLHalfType(ET) || isSYCLBfloat16Type(ET))
ToExpandVIDWithSYCLTypeByValComp.push_back(&F);
else
llvm_unreachable("The component argument type of an "
"VectorInsertDynamic instruction can't be a "
"structure other than SYCL half.");
}
}
for (auto *F : ToExpandVEDWithSYCLTypeSRetArg)
expandVEDWithSYCLTypeSRetArg(F);
for (auto *F : ToExpandVIDWithSYCLTypeByValComp)
expandVIDWithSYCLTypeByValComp(F);
}
// In this function, we handle two conversion operations
// 1. fptoui.sat.iX.fY (X is not 8,16,32,64; Y is 32 or 64)
// 2. fptosi.sat.iX.fY (X is not 8,16,32,64; Y is 32 or 64)
// Such non-standard integer types cannot be handled in SPIR-V. Hence, they
// will be promoted to
// 1. fptoui.sat.i64.fY (Y is 32 or 64)
// 2. fptosi.sat.i64.fY (Y is 32 or 64)
// However, LLVM documentation requires the following rules to be obeyed.
// Rule 1: If the argument is any NaN, zero is returned.
// Rule 2: If the argument is smaller than the smallest representable
// (un)signed integer of the result type, the smallest representable
// (un)signed integer is returned.
// Rule 3: If the argument is larger than the largest representable (un)signed
// integer of the result type, the largest representable (un)signed integer is
// returned.
// Rule 4: Otherwise, the result of rounding the argument towards zero is
// returned.
// Rules 1 & 4 are preserved when promoting iX to i64. For preserving Rule 2
// and Rule 3, we saturate the result of the promoted instruction based on
// original integer type (iX)
// Example:
// Input:
// %0 = call i2 @llvm.fptosi.sat.i2.f32(float %input)
// %1 = sext i32 %0
// Output:
// %0 = call i32 @_Z17convert_long_satf(float %input)
// %1 = icmp sge i32 %0, 1 <Largest 2-bit signed integer>
// %2 = icmp sle i32 %0, -2 <Smallest 2-bit signed integer>
// %3 = select i1 %1, i32 1, i32 %0
// %4 = select i1 %2, i32 -2, i32 %3
// Replace uses of %1 in Input with %4 in Output
void SPIRVRegularizeLLVMBase::cleanupConversionToNonStdIntegers(Module *M) {
for (auto FI = M->begin(), FE = M->end(); FI != FE;) {
Function *F = &(*FI++);
std::vector<Instruction *> ToErase;
auto IID = F->getIntrinsicID();
if (IID != Intrinsic::fptosi_sat && IID != Intrinsic::fptoui_sat)
continue;
for (auto *I : F->users()) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// TODO: Vector type not supported yet.
if (isa<VectorType>(II->getType()))
continue;
auto IID = II->getIntrinsicID();
auto IntBitWidth = II->getType()->getScalarSizeInBits();
if (IntBitWidth == 8 || IntBitWidth == 16 || IntBitWidth == 32 ||
IntBitWidth == 64)
continue;
if (IID == Intrinsic::fptosi_sat) {
// Identify sext (user of II). Make sure that's the only use of II.
auto *User = II->getUniqueUndroppableUser();
if (!User || !isa<SExtInst>(User))
continue;
auto *SExtI = dyn_cast<SExtInst>(User);
auto *NewIType = SExtI->getType();
IRBuilder<> IRB(II);
auto *NewII = IRB.CreateIntrinsic(
IID, {NewIType, II->getOperand(0)->getType()}, II->getOperand(0));
Constant *MaxVal = ConstantInt::get(
NewIType, APInt::getSignedMaxValue(IntBitWidth).getSExtValue());
Constant *MinVal = ConstantInt::get(
NewIType, APInt::getSignedMinValue(IntBitWidth).getSExtValue());
auto *GTMax = IRB.CreateICmp(CmpInst::ICMP_SGE, NewII, MaxVal);
auto *LTMin = IRB.CreateICmp(CmpInst::ICMP_SLE, NewII, MinVal);
auto *SatMax = IRB.CreateSelect(GTMax, MaxVal, NewII);
auto *SatMin = IRB.CreateSelect(LTMin, MinVal, SatMax);
SExtI->replaceAllUsesWith(SatMin);
ToErase.push_back(SExtI);
ToErase.push_back(II);
}
if (IID == Intrinsic::fptoui_sat) {
// Identify zext (user of II). Make sure that's the only use of II.
auto *User = II->getUniqueUndroppableUser();
if (!User || !isa<ZExtInst>(User))
continue;
auto *ZExtI = dyn_cast<ZExtInst>(User);
auto *NewIType = ZExtI->getType();
IRBuilder<> IRB(II);
auto *NewII = IRB.CreateIntrinsic(
IID, {NewIType, II->getOperand(0)->getType()}, II->getOperand(0));
Constant *MaxVal = ConstantInt::get(
NewIType, APInt::getMaxValue(IntBitWidth).getZExtValue());
auto *GTMax = IRB.CreateICmp(CmpInst::ICMP_UGE, NewII, MaxVal);
auto *SatMax = IRB.CreateSelect(GTMax, MaxVal, NewII);
ZExtI->replaceAllUsesWith(SatMax);
ToErase.push_back(ZExtI);
ToErase.push_back(II);
}
}
}
for (Instruction *V : ToErase) {
assert(V->user_empty());
V->dropAllReferences();
V->eraseFromParent();
}
}
}
bool SPIRVRegularizeLLVMBase::runRegularizeLLVM(Module &Module) {
M = &Module;
Ctx = &M->getContext();
LLVM_DEBUG(dbgs() << "Enter SPIRVRegularizeLLVM:\n");
regularize();
LLVM_DEBUG(dbgs() << "After SPIRVRegularizeLLVM:\n" << *M);
verifyRegularizationPass(*M, "SPIRVRegularizeLLVM");
return true;
}
namespace {
void regularizeWithOverflowInstrinsics(StringRef MangledName, CallInst *Call,
Module *M,
std::vector<Instruction *> &ToErase) {
IRBuilder Builder(Call);
Function *Builtin = Call->getModule()->getFunction(MangledName);
AllocaInst *A;
StructType *StructBuiltinTy;
if (Builtin) {
StructBuiltinTy = cast<StructType>(Builtin->getParamStructRetType(0));
{
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPointPastAllocas(Call->getParent()->getParent());
A = Builder.CreateAlloca(StructBuiltinTy);
}
CallInst *C = Builder.CreateCall(
Builtin, {A, Call->getArgOperand(0), Call->getArgOperand(1)});
auto SretAttr = Attribute::get(
Builder.getContext(), Attribute::AttrKind::StructRet, StructBuiltinTy);
C->addParamAttr(0, SretAttr);
} else {
StructBuiltinTy = StructType::create(
Call->getContext(),
{Call->getArgOperand(0)->getType(), Call->getArgOperand(1)->getType()});
{
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPointPastAllocas(Call->getParent()->getParent());
A = Builder.CreateAlloca(StructBuiltinTy);
}
FunctionType *FT =
FunctionType::get(Builder.getVoidTy(),
{A->getType(), Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
false);
Builtin =
Function::Create(FT, GlobalValue::ExternalLinkage, MangledName, M);
Builtin->setCallingConv(CallingConv::SPIR_FUNC);
Builtin->addFnAttr(Attribute::NoUnwind);
auto SretAttr = Attribute::get(
Builder.getContext(), Attribute::AttrKind::StructRet, StructBuiltinTy);
Builtin->addParamAttr(0, SretAttr);
CallInst *C = Builder.CreateCall(
Builtin, {A, Call->getArgOperand(0), Call->getArgOperand(1)});
C->addParamAttr(0, SretAttr);
}
Type *RetTy = Call->getArgOperand(0)->getType();
Constant *ConstZero = ConstantInt::get(RetTy, 0);
Value *L = Builder.CreateLoad(StructBuiltinTy, A);
Value *V0 = Builder.CreateExtractValue(L, {0});
Value *V1 = Builder.CreateExtractValue(L, {1});
Value *V2 = Builder.CreateICmpNE(V1, ConstZero);
Type *StructI32I1Ty =
StructType::create(Call->getContext(), {RetTy, V2->getType()});
Value *Undef = UndefValue::get(StructI32I1Ty);
Value *V3 = Builder.CreateInsertValue(Undef, V0, {0});
Value *V4 = Builder.CreateInsertValue(V3, V2, {1});
SmallVector<User *> Users(Call->users());
for (User *U : Users) {
U->replaceUsesOfWith(Call, V4);
}
ToErase.push_back(Call);
}
// CacheControls(Load/Store)INTEL decorations can be represented as metadata
// placed on memory accessing instruction with the following form:
// !spirv.DecorationCacheControlINTEL !X
// !X = !{i32 %decoration_kind%, i32 %level%, i32 %control%,
// i32 %operand of the instruction to decorate%}
// This function creates a dummy GEP accessing pointer operand of the
// instruction and creates !spirv.Decorations metadata attached to it.
void prepareCacheControlsTranslation(Metadata *MD, Instruction *Inst) {
if (!Inst->mayReadOrWriteMemory())
return;
auto *ArgDecoMD = dyn_cast<MDNode>(MD);
assert(ArgDecoMD && "Decoration list must be a metadata node");
std::vector<Instruction *> CreatedGeps;
for (unsigned I = 0, E = ArgDecoMD->getNumOperands(); I != E; ++I) {
auto *DecoMD = dyn_cast<MDNode>(ArgDecoMD->getOperand(I));
if (!DecoMD) {
assert(!"Decoration does not name metadata");
return;
}
constexpr size_t CacheControlsNumOps = 4;
if (DecoMD->getNumOperands() != CacheControlsNumOps) {
assert(!"Cache controls metadata on instruction must have 4 operands");
return;
}
auto *const KindMD = cast<ConstantAsMetadata>(DecoMD->getOperand(0));
auto *const LevelMD = cast<ConstantAsMetadata>(DecoMD->getOperand(1));
auto *const ControlMD = cast<ConstantAsMetadata>(DecoMD->getOperand(2));
const size_t TargetArgNo =
mdconst::dyn_extract<ConstantInt>(DecoMD->getOperand(3))
->getZExtValue();
Value *PtrInstOp = Inst->getOperand(TargetArgNo);
if (!PtrInstOp->getType()->isPointerTy()) {
assert(!"Cache controls must decorate a pointer");
return;
}
// Create dummy GEP for SSA copy of the pointer operand. Lets do our best
// to guess pointee type here, but if we won't - just pointer is also fine,
// if necessary TypeScavenger will adjust types and create bitcasts. If
// memory instruction operand is already created zero GEP - create nothing
// and use the old GEP.
SmallVector<Metadata *, 4> MDs;
std::vector<Metadata *> OPs = {KindMD, LevelMD, ControlMD};
if (auto *const GEP = dyn_cast<GetElementPtrInst>(PtrInstOp)) {
if (GEP->hasAllZeroIndices() &&
(std::find(CreatedGeps.begin(), CreatedGeps.end(), GEP) !=
std::end(CreatedGeps))) {
MDs.push_back(MDNode::get(Inst->getContext(), OPs));
// If the existing GEP has SPIRV_MD_DECORATIONS metadata - copy it
if (auto *OldMD = GEP->getMetadata(SPIRV_MD_DECORATIONS))
for (unsigned I = 0, E = OldMD->getNumOperands(); I != E; ++I)
if (auto *DecoMD = dyn_cast<MDNode>(OldMD->getOperand(I)))
MDs.push_back(DecoMD);
MDNode *MDList = MDNode::get(Inst->getContext(), MDs);
GEP->setMetadata(SPIRV_MD_DECORATIONS, MDList);
return;
}
}
IRBuilder Builder(Inst);
Type *GEPTy = Builder.getInt8Ty();
if (auto *LI = dyn_cast<LoadInst>(Inst))
GEPTy = LI->getType();
else if (auto *SI = dyn_cast<StoreInst>(Inst))
GEPTy = SI->getValueOperand()->getType();
auto *GEP =
cast<Instruction>(Builder.CreateConstGEP1_32(GEPTy, PtrInstOp, 0));
CreatedGeps.push_back(GEP);
Inst->setOperand(TargetArgNo, GEP);
MDs.push_back(MDNode::get(Inst->getContext(), OPs));
MDNode *MDList = MDNode::get(Inst->getContext(), MDs);
GEP->setMetadata(SPIRV_MD_DECORATIONS, MDList);
}
}
} // namespace
/// Remove entities not representable by SPIR-V
bool SPIRVRegularizeLLVMBase::regularize() {
eraseUselessFunctions(M);
addKernelEntryPoint(M);
expandSYCLTypeUsing(M);
cleanupConversionToNonStdIntegers(M);
for (auto I = M->begin(), E = M->end(); I != E;) {
Function *F = &(*I++);
if (F->isDeclaration() && F->use_empty()) {
F->eraseFromParent();
continue;
}
// TODO: query intrinsic calls from their declarations
std::vector<Instruction *> ToErase;
for (BasicBlock &BB : *F) {
for (Instruction &II : BB) {
if (auto *MD = II.getMetadata(SPIRV_MD_INTEL_CACHE_DECORATIONS))
prepareCacheControlsTranslation(MD, &II);
if (auto *Call = dyn_cast<CallInst>(&II)) {
Call->setTailCall(false);
Function *CF = Call->getCalledFunction();
if (CF && CF->isIntrinsic()) {
removeFnAttr(Call, Attribute::NoUnwind);
auto *II = cast<IntrinsicInst>(Call);
if (II->getIntrinsicID() == Intrinsic::memset ||
II->getIntrinsicID() == Intrinsic::bswap)
lowerIntrinsicToFunction(II);
else if (II->getIntrinsicID() == Intrinsic::fshl ||
II->getIntrinsicID() == Intrinsic::fshr)
lowerFunnelShift(II);
else if (II->getIntrinsicID() == Intrinsic::umul_with_overflow)
lowerUMulWithOverflow(II);
else if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
BuiltinFuncMangleInfo Info;
std::string MangledName =
mangleBuiltin("__spirv_IAddCarry",
{Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
&Info);
regularizeWithOverflowInstrinsics(MangledName, Call, M, ToErase);
} else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow) {
BuiltinFuncMangleInfo Info;
std::string MangledName =
mangleBuiltin("__spirv_ISubBorrow",
{Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
&Info);
regularizeWithOverflowInstrinsics(MangledName, Call, M, ToErase);
}
}
}
if (II.isLogicalShift()) {
// Translator treats i1 as boolean, but bit instructions take
// a scalar/vector integers, so we have to extend such arguments.
// shl i1 %a %b and lshr i1 %a %b are now converted on:
// %0 = select i1 %a, i32 1, i32 0
// %1 = select i1 %b, i32 1, i32 0
// %2 = lshr i32 %0, %1
// if any other instruction other than zext was dependant:
// %3 = icmp ne i32 %2, 0
// which converts it back to i1 and replace original result with %3
// to dependant instructions.
if (II.getOperand(0)->getType()->isIntOrIntVectorTy(1)) {
IRBuilder<> Builder(&II);
Value *CmpNEInst = nullptr;
Constant *ConstZero = ConstantInt::get(Builder.getInt32Ty(), 0);
Constant *ConstOne = ConstantInt::get(Builder.getInt32Ty(), 1);
if (auto *VecTy =
dyn_cast<FixedVectorType>(II.getOperand(0)->getType())) {
const unsigned NumElements = VecTy->getNumElements();
ConstZero = ConstantVector::getSplat(
ElementCount::getFixed(NumElements), ConstZero);
ConstOne = ConstantVector::getSplat(
ElementCount::getFixed(NumElements), ConstOne);
}
Value *ExtendedBase =
Builder.CreateSelect(II.getOperand(0), ConstOne, ConstZero);
Value *ExtendedShift =
Builder.CreateSelect(II.getOperand(1), ConstOne, ConstZero);
Value *ExtendedShiftedVal =
Builder.CreateLShr(ExtendedBase, ExtendedShift);
SmallVector<User *, 8> Users(II.users());
for (User *U : Users) {
if (auto *UI = dyn_cast<Instruction>(U)) {
if (UI->getOpcode() == Instruction::ZExt) {
UI->dropAllReferences();
UI->replaceAllUsesWith(ExtendedShiftedVal);
ToErase.push_back(UI);
continue;
}
}
if (!CmpNEInst) {
CmpNEInst = Builder.CreateICmpNE(ExtendedShiftedVal, ConstZero);
}
U->replaceUsesOfWith(&II, CmpNEInst);
}
ToErase.push_back(&II);
}
}
// Remove optimization info not supported by SPIRV
if (auto *BO = dyn_cast<BinaryOperator>(&II)) {
if (isa<PossiblyExactOperator>(BO) && BO->isExact())
BO->setIsExact(false);
}
// FIXME: This is not valid handling for freeze instruction
if (auto *FI = dyn_cast<FreezeInst>(&II)) {
auto *V = FI->getOperand(0);
if (isa<UndefValue>(V))
V = Constant::getNullValue(V->getType());
FI->replaceAllUsesWith(V);
FI->dropAllReferences();
ToErase.push_back(FI);
}
// Remove metadata not supported by SPIRV
static const char *MDs[] = {
"tbaa",
"range",
};
for (auto &MDName : MDs) {
if (II.getMetadata(MDName)) {
II.setMetadata(MDName, nullptr);
}
}
if (auto *Cmpxchg = dyn_cast<AtomicCmpXchgInst>(&II)) {
// Transform:
// %1 = cmpxchg i32* %ptr, i32 %comparator, i32 %0 seq_cst acquire
// To:
// %cmpxchg.res = call spir_func
// i32 @_Z29__spirv_AtomicCompareExchangePiiiiii(
// i32* %ptr, i32 1, i32 16, i32 2, i32 %0, i32 %comparator)
// %cmpxchg.success = icmp eq i32 %cmpxchg.res, %comparator
// %1 = insertvalue { i32, i1 } undef, i32 %cmpxchg.res, 0
// %2 = insertvalue { i32, i1 } %1, i1 %cmpxchg.success, 1
// To get memory scope argument we use Cmpxchg->getSyncScopeID()
// but LLVM's cmpxchg instruction is not aware of OpenCL(or SPIR-V)
// memory scope enumeration. If the scope is not set and assuming the
// produced SPIR-V module will be consumed in an OpenCL environment,
// we can use the same memory scope as OpenCL atomic functions that do
// not have memory_scope argument, i.e. memory_scope_device. See the
// OpenCL C specification p6.13.11. Atomic Functions
// cmpxchg LLVM instruction returns a pair {i32, i1}: the original
// value and a flag indicating success (true) or failure (false).
// OpAtomicCompareExchange SPIR-V instruction returns only the
// original value. To keep the return type({i32, i1}) we construct
// a composite. The first element of the composite holds result of
// OpAtomicCompareExchange, i.e. the original value. The second
// element holds result of comparison of the returned value and the
// comparator, which matches with semantics of the flag returned by
// cmpxchg.
Value *Ptr = Cmpxchg->getPointerOperand();
SmallVector<StringRef> SSIDs;
Cmpxchg->getContext().getSyncScopeNames(SSIDs);
spv::Scope S;
// Fill unknown syncscope value to default Device scope.
if (!OCLStrMemScopeMap::find(SSIDs[Cmpxchg->getSyncScopeID()].str(),
&S)) {
S = ScopeDevice;
}
Value *MemoryScope = getInt32(M, S);
auto SuccessOrder = static_cast<OCLMemOrderKind>(
llvm::toCABI(Cmpxchg->getSuccessOrdering()));
auto FailureOrder = static_cast<OCLMemOrderKind>(
llvm::toCABI(Cmpxchg->getFailureOrdering()));
Value *EqualSem = getInt32(M, OCLMemOrderMap::map(SuccessOrder));
Value *UnequalSem = getInt32(M, OCLMemOrderMap::map(FailureOrder));
Value *Val = Cmpxchg->getNewValOperand();
Value *Comparator = Cmpxchg->getCompareOperand();
Type *MemType = Cmpxchg->getCompareOperand()->getType();
llvm::Value *Args[] = {Ptr, MemoryScope, EqualSem,
UnequalSem, Val, Comparator};
auto *Res =
addCallInstSPIRV(M, "__spirv_AtomicCompareExchange", MemType,
Args, nullptr, {MemType}, &II, "cmpxchg.res");
IRBuilder<> Builder(Cmpxchg);
auto *Cmp = Builder.CreateICmpEQ(Res, Comparator, "cmpxchg.success");
auto *V1 = Builder.CreateInsertValue(
UndefValue::get(Cmpxchg->getType()), Res, 0);
auto *V2 = Builder.CreateInsertValue(V1, Cmp, 1, Cmpxchg->getName());
Cmpxchg->replaceAllUsesWith(V2);
ToErase.push_back(Cmpxchg);
}
}
}
for (Instruction *V : ToErase) {
assert(V->user_empty());
V->eraseFromParent();
}
}
if (SPIRVDbgSaveRegularizedModule)
saveLLVMModule(M, RegularizedModuleTmpFile);
return true;
}
void SPIRVRegularizeLLVMBase::addKernelEntryPoint(Module *M) {
std::vector<Function *> Work;
// Get a list of all functions that have SPIR kernel calling conv
for (auto &F : *M) {
if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
Work.push_back(&F);
}
for (auto &F : Work) {
// for declarations just make them into SPIR functions.
F->setCallingConv(CallingConv::SPIR_FUNC);
if (F->isDeclaration())
continue;
// Otherwise add a wrapper around the function to act as an entry point.
FunctionType *FType = F->getFunctionType();
std::string WrapName =
kSPIRVName::EntrypointPrefix + static_cast<std::string>(F->getName());
Function *WrapFn =
getOrCreateFunction(M, F->getReturnType(), FType->params(), WrapName);
auto *CallBB = BasicBlock::Create(M->getContext(), "", WrapFn);
IRBuilder<> Builder(CallBB);
Function::arg_iterator DestI = WrapFn->arg_begin();
for (const Argument &I : F->args()) {
DestI->setName(I.getName());
DestI++;
}
SmallVector<Value *, 1> Args;
for (Argument &I : WrapFn->args()) {
Args.emplace_back(&I);
}
auto *CI = CallInst::Create(F, ArrayRef<Value *>(Args), "", CallBB);
CI->setCallingConv(F->getCallingConv());
CI->setAttributes(F->getAttributes());
// copy over all the metadata (should it be removed from F?)
SmallVector<std::pair<unsigned, MDNode *>> MDs;
F->getAllMetadata(MDs);
WrapFn->setAttributes(F->getAttributes());
for (auto MD = MDs.begin(), End = MDs.end(); MD != End; ++MD) {
WrapFn->addMetadata(MD->first, *MD->second);
}
WrapFn->setCallingConv(CallingConv::SPIR_KERNEL);
WrapFn->setLinkage(llvm::GlobalValue::InternalLinkage);
Builder.CreateRet(F->getReturnType()->isVoidTy() ? nullptr : CI);
// Have to find the spir-v metadata for execution mode and transfer it to
// the wrapper.
if (auto NMD = SPIRVMDWalker(*M).getNamedMD(kSPIRVMD::ExecutionMode)) {
while (!NMD.atEnd()) {
Function *MDF = nullptr;
auto N = NMD.nextOp(); /* execution mode MDNode */
N.get(MDF);
if (MDF == F)
N.M->replaceOperandWith(0, ValueAsMetadata::get(WrapFn));
}
}
}
}
} // namespace SPIRV
INITIALIZE_PASS(SPIRVRegularizeLLVMLegacy, "spvregular",
"Regularize LLVM for SPIR-V", false, false)
ModulePass *llvm::createSPIRVRegularizeLLVMLegacy() {
return new SPIRVRegularizeLLVMLegacy();
}