-
Notifications
You must be signed in to change notification settings - Fork 3
/
routines.py
444 lines (370 loc) · 17.2 KB
/
routines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from __future__ import division
import numpy as np
from numpy import pi, sqrt, log, log10, power, exp
from scipy.integrate import trapz
import constants as ct
import particle as pt
import ska as sk
import astro as ap
import echo as ec
# Default Quantities
def_D = 1. # [kpc]
def_A = 4.*pi*(def_D*ct._kpc_over_cm_)**2. # [cm^2] area
def_S0 = 1. # [Jy]
# [erg * s^-1 * Hz^-1] spectral luminosity
def_L0 = (def_S0*ct._Jy_over_cgs_irrad_)*def_A
def_t0 = 1000. # [years]
def_tt = 10. # [years]
def_tpk = 100. # [days]
def_tmin = def_tpk/365. # [years]
def_alpha = 0.5
def_nu_pivot = 1. # [GHz]
def_l = 0. # [deg] galactic center longitude
def_b = 0. # [deg] galactic center latitude
# Deefault Dictionaries
# source_input:
default_source_input = {'longitude': def_l, # [deg]
'latitude': def_b, # [deg]
'distance': def_D, # [kpc]
'force_Omega_disp_compute': True, # compute DM dispersion angle
't_age': def_t0, # [years]
'alpha': def_alpha,
'nu_pivot': def_nu_pivot,
# Sedov-Taylor analytic formula
'gamma': ap.gamma_from_alpha(def_alpha),
'model': 'eff',
'L_today': def_L0, # [erg * s^-1 * Hz^-1]
'use_free_expansion': True, # include free expansion
't_trans': def_tt, # [years]
't_peak': def_tpk # [days]
}
# axion_input:
def ax_in(ma, ga):
"""
Returns a dictionary with axion parameters.
Parameters
----------
ma : axion mass [eV]
ga : axion-photon coupling [GeV^-1]
"""
axion_input = {'ma': ma, 'ga': ga}
return axion_input
# data:
default_data = {'deltaE_over_E': ct._deltaE_over_E_,
'f_Delta': ct._f_Delta_,
'exper': 'SKA',
'total_observing_time': 100.,
'average': True,
'DM_profile': 'NFW',
'correlation_mode': 'interferometry',
'verbose': 0
}
# I'm not setting 'correlation_mode' for now to expose and update all old code through Exceptions.
# TODO: After the code stabilizes we can set it to "single dish" or "interferometry".
# Snu_echo_kwargs:
age_steps = abs(int(1000*(log10(def_t0) - log10(def_tpk/365.)) + 1))
max_steps = 1000001
default_Snu_echo_kwargs = {'tmin_default': None,
# for a fine enough array
'Nt': min(age_steps, max_steps),
'xmin': ct._au_over_kpc_,
'xmax_default': 100.,
'use_quad': False,
'lin_space': False,
# for a fine enough array
'Nint': min(age_steps, max_steps),
't_extra_old': 0.
}
# check default dictionaries
ec.check_source(default_source_input)
ec.check_data(default_data)
# Update source_input with:
# Omega_dispersion
Omdisp_kwargs = {key: value
for key, value in default_Snu_echo_kwargs.items()
if key in ['tmin_default', 'xmax_default', 't_extra_old']}
ec.Omega_dispersion(default_source_input, default_data, **Omdisp_kwargs)
# Routine Functions
def fixed_axion_routine(ga_ref, output,
source_input=default_source_input,
data=default_data,
Snu_echo_kwargs=default_Snu_echo_kwargs
):
"""
Computes the full echo routine of both source and echo for a fixed reference axion-photon coupling ga [GeV^-1] and a fixed reference axion mass ma [eV] corresponding to nu_pivot [GHz].
Parameters
----------
ga_ref : reference axion-photon coupling [GeV^-1]
output : dictionary in which output will be saved
source_input : dictionary with source input parameters (default: default_source_input)
data : dictionary with environmental, experimental, and observational data (default: default_data)
Snu_echo_kwargs : Snu_echo() keyword arguments (default: default_Snu_echo_kwargs)
"""
# reference axion properties:
nu_ref = source_input['nu_pivot'] # [GHz] reference frequency
ma_ref = pt.ma_from_nu(nu_ref) # [eV] reference axion mass
axion_input = ax_in(ma_ref, ga_ref) # axion input
# source spectral irradiance
ec.Snu_source(ap.t_arr_default, nu_ref, source_input, output=output)
# echo spectral irradiance
ec.Snu_echo(source_input, axion_input, data,
recycle_output=(True, output), **Snu_echo_kwargs)
# echo signal
ec.signal(source_input, axion_input, data,
recycle_output=(True, output), **Snu_echo_kwargs)
# noise
Omdisp_kwargs = {key: value
for key, value in Snu_echo_kwargs.items()
if key in ['tmin_default', 'xmax_default', 't_extra_old']}
ec.noise(source_input, axion_input, data,
recycle_output=(True, output), **Omdisp_kwargs)
# S/N ratio
signal_power = output['signal_power']
noise_power = output['noise_power']
ec.sn_ratio(signal_power, noise_power, output=output, verbose=0)
return ma_ref, ga_ref, output
def Snu_rescale_axion(ma, ga, ma_ref, ga_ref, source_input=default_source_input):
"""
Computes the rescale factor for different axion parameters.
Parameters
----------
ma : axion mass [eV]
ga : axion-photon coupling [GeV^-1]
ma_ref : reference axion mass [eV]
ga_ref : reference axion-photon coupling [GeV^-1]
source_input : dictionary with source input parameters (default: default_source_input)
"""
nu = pt.nu_from_ma(ma) # [GHz] new frequency
nu_ref = pt.nu_from_ma(ma_ref) # [GHz] pivot frequency
alpha = source_input['alpha'] # spectral index
ax_pref = ec.axion_pref(ma, ga)/ec.axion_pref(ma_ref,
ga_ref) # axion prefactors
nu_fac = ap.nu_factor(nu, nu_ref, alpha) # frequency-dependence
return nu_fac * ax_pref
def SKA_rescaled_specs(ma, data=default_data, theta_sig=None, source_input=None):
"""
Returns the SKA specs for the rescaled axion parameters.
Parameters
----------
ma : axion mass [eV]
ma_ref : reference axion mass [eV]
data : dictionary with environmental, experimental, and observational data (default: default_data)
theta_sig: signal size [radian]
"""
nu = pt.nu_from_ma(ma) # [GHz] new frequency
nu = np.array(nu) # converting into array for handling
if nu.ndim == 0:
nu = nu[None]
exper = data['exper'] # requested experiment
correlation_mode = data['correlation_mode']
# computing the collecting area and the frequency sensitivity window of the experiment mode
if exper == 'SKA': # in case the range is frequency-dependent
nu_flat = nu.flatten()
area, window, Tr, eta, Omega_res, number_of_dishes, number_of_measurements = [
], [], [], [], [], [], []
for nn in nu_flat:
exper_mode = sk.SKA_exper_nu(nn)
aa, ww, tr, et, od, nd, nm = sk.SKA_specs(
nn, exper_mode, correlation_mode=correlation_mode, theta_sig=theta_sig)
area.append(aa)
window.append(ww)
Tr.append(tr)
eta.append(et)
Omega_res.append(od)
number_of_dishes.append(nd)
number_of_measurements.append(nm)
(area,
window,
Tr,
eta,
Omega_res,
number_of_dishes,
number_of_measurements) = (np.array(area),
np.array(window),
np.array(Tr),
np.array(eta),
np.array(Omega_res),
np.array(number_of_dishes),
np.array(number_of_measurements))
(area,
window,
Tr,
eta,
Omega_res,
number_of_dishes,
number_of_measurements) = (np.reshape(area, nu.shape),
np.reshape(window, nu.shape),
np.reshape(Tr, nu.shape),
np.reshape(eta, nu.shape),
np.reshape(Omega_res, nu.shape),
np.reshape(number_of_dishes, nu.shape),
np.reshape(number_of_measurements, nu.shape))
(area,
window,
Tr,
eta,
Omega_res,
number_of_dishes,
number_of_measurements) = (np.squeeze(area),
np.squeeze(window),
np.squeeze(Tr),
np.squeeze(eta),
np.squeeze(Omega_res),
np.squeeze(number_of_dishes),
np.squeeze(number_of_measurements))
elif exper in ['SKA low', 'SKA mid']: # in case the range was fixed by hand
exper_mode = exper
(area,
window,
Tr,
eta,
Omega_res,
number_of_dishes,
number_of_measurements) = sk.SKA_specs(nu,
exper_mode,
correlation_mode=correlation_mode,
theta_sig=theta_sig)
else:
raise ValueError(
"data['exper'] must be either 'SKA', 'SKA low', or 'SKA mid'. Please update accordingly.")
return area, window, Tr, eta, Omega_res, number_of_dishes, number_of_measurements
def rescale_routine(ma, ga, ma_ref, ga_ref, ref_dict,
source_input=default_source_input,
data=default_data,
Snu_echo_kwargs=default_Snu_echo_kwargs,
beta=ct._MW_spectral_beta_):
"""
Compute the rescaling echo routine for any axion parameters (ma, ga) based on pre-computed reference echo quantities. The idea is to make as few integrations as possible: only the single theory point with ma_ref and ga_ref is integrated and the rest signal from (ma, ga) can be computed through the rescaling of prefactor.
Parameters
----------
ma : axion mass [eV]
ga : axion-photon coupling [GeV^-1]
ma_ref : reference axion mass [eV]
ga_ref : reference axion-photon coupling [GeV^-1]
ref_dict : dictionary with output results from reference values
source_input : dictionary with source input parameters (default: default_source_input)
data : dictionary with environmental, experimental, and observational data (default: default_data)
Snu_echo_kwargs : Snu_echo() keyword arguments (default: default_Snu_echo_kwargs)
beta: the index for the Milky (default: -2.55)
"""
# reference frequency:
nu_ref = pt.nu_from_ma(ma_ref)
# new frequency:
nu = pt.nu_from_ma(ma)
# sanity check:
if (np.abs(nu_ref/ref_dict['signal_nu'] - 1.) > 1.e-10):
raise ValueError("There seems to be an inconsistency in the value of nu_ref ={} GHz. It should ne the same as nu_pivot and ref_dict['signal_nu'] = {} GHz.".format(
nu_ref, ref_dict['signal_nu']))
# computing rescale factors
nu_rescale = (nu/nu_ref) # frequency rescale
# for echo's spectral irradiance
factors = Snu_rescale_axion(
ma, ga, ma_ref, ga_ref, source_input=source_input)
# dealing with resolution and max observable angle
theta_sig = ct.solid_angle_to_angle(ref_dict['signal_Omega'])
# area_ref, window_ref, Tr_ref, Omega_res_ref, number_of_dishes_ref, number_of_measurements_ref = SKA_rescaled_specs(
# ma_ref, data=data, theta_sig=theta_sig) # SKA specs
area, window, Tr, eta, Omega_res, number_of_dishes, number_of_measurements = SKA_rescaled_specs(
ma, data=data, theta_sig=theta_sig, source_input=source_input) # SKA specs
# area of a single dish
area_dish = area/number_of_dishes
# factor_of_signal = area / area_ref
# factor_of_noise = area / area_ref * \
# np.sqrt(number_of_measurements_ref / number_of_measurements)
# echo's location
l_echo = source_input['longitude'] + \
180. # [deg] galactic longitude of echo
b_echo = -source_input['latitude'] # [deg] galactic latitude of echo
# data
f_Delta = data['f_Delta'] # fraction of signal that falls in bandwidth
obs_time = data['total_observing_time'] # total observation time [hr]
correlation_mode = data['correlation_mode'] # single dish vs interf mode
# rescaled output
new_output = {}
# signal:
new_output['echo_Snu'] = ref_dict['echo_Snu']*factors
new_output['signal_nu'] = ref_dict['signal_nu']*nu_rescale
new_output['signal_delnu'] = ref_dict['signal_delnu']*nu_rescale
new_output['signal_Omega'] = ref_dict['signal_Omega']
new_output['signal_Snu'] = ref_dict['signal_Snu']*factors
new_output['signal_S_echo'] = ref_dict['signal_S_echo']*factors*nu_rescale
new_output['signal_Tant'] = ap.T_signal(
new_output['signal_Snu'], area_dish, eta=eta, f_Delta=f_Delta)*window
new_output['signal_power'] = ap.P_signal(
new_output['signal_S_echo'], area, eta=eta, f_Delta=f_Delta)*window
# noise:
new_output['noise_nu'] = ref_dict['noise_nu']*nu_rescale
new_output['noise_delnu'] = ref_dict['noise_delnu']*nu_rescale
new_output['noise_Omega_res'] = Omega_res
Omega_obs = np.maximum.reduce(
[new_output['signal_Omega']*np.ones_like(new_output['noise_Omega_res']), new_output['noise_Omega_res']])
new_output['noise_Omega_obs'] = Omega_obs
new_output['noise_T408'] = ap.bg_408_temp(
l_echo, b_echo, size=new_output['noise_Omega_obs'], average=data['average'])
new_output['noise_Tsys'] = ap.T_sys(
nu, Tbg_at_408=new_output['noise_T408'], beta=beta, Tr=Tr)
new_output['noise_Trms'] = ap.T_noise(new_output['noise_Tsys'],
new_output['noise_delnu'],
tobs=obs_time,
Omega_obs=new_output['noise_Omega_obs'],
Omega_res=new_output['noise_Omega_res'],
nu=nu,
correlation_mode=correlation_mode)
new_output['noise_power'] = ap.P_noise(new_output['noise_Tsys'],
new_output['noise_delnu'],
tobs=obs_time,
Omega_obs=new_output['noise_Omega_obs'],
Omega_res=new_output['noise_Omega_res'],
nu=nu,
correlation_mode=correlation_mode)
# S/N:
# truncate the S/N due to extended objects. This is overly-cautious because when computing ref it's already truncated; and it's not a function of ma.
try:
verbose = data['verbose']
except KeyError:
verbose = 0
if verbose > 2:
print('routines.py::Omega_max:', Omega_max)
# is_visible = np.where(Omega_obs > Omega_max, 0., 1.)
new_output['S/N_power'] = new_output['signal_power'] / \
new_output['noise_power']
new_output['S/N_temp'] = new_output['signal_Tant'] / \
new_output['noise_Trms']
# axion:
new_output['ma'] = ma
new_output['ga'] = ga
# return final output
return new_output
def full_routine(ma, ga, ga_ref, output,
source_input=default_source_input,
data=default_data,
Snu_echo_kwargs=default_Snu_echo_kwargs,
beta=ct._MW_spectral_beta_):
"""
Compute the full echo routine for any axion parameters (ma, ga).
Parameters
----------
ma : axion mass [eV]
ga : axion-photon coupling [GeV^-1]
ga_ref : reference axion-photon coupling [GeV^-1]
output : dictionary in which useful output will be saved
source_input : dictionary with source input parameters (default: default_source_input)
data : dictionary with environmental, experimental, and observational data (default: default_data)
Snu_echo_kwargs : Snu_echo() keyword arguments (default: default_Snu_echo_kwargs)
beta: the index for the Milky (default: -2.55)
"""
# pre-computed reference quantities:
reference_quantities = fixed_axion_routine(ga_ref, output,
source_input=source_input,
data=data,
Snu_echo_kwargs=Snu_echo_kwargs)
# reference axion parameters and echo quantities:
ma_ref, ga_ref, ref_dict = reference_quantities
# rescaling results from the reference quantities
new_output = rescale_routine(ma, ga, ma_ref, ga_ref, ref_dict,
source_input=source_input,
data=data,
Snu_echo_kwargs=Snu_echo_kwargs,
beta=beta)
# return final output
return new_output