forked from TuitaTeam/Knapsack-MPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knapsackBB_mpi.cpp
328 lines (278 loc) · 9.79 KB
/
knapsackBB_mpi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// C++ program to solve knapsack problem using
// branch and bound
/* Copyright 2017 Meritxell Jordana Gavieiro
* Copyright 2017 Albert Merino Pulido
* Copyright 2017 Marc Sánchez Fauste
**/
#include <iostream> // std::cout
#include <algorithm> // std::sort
#include <vector> // std::vector
#include <queue> // std::queue
#include <sys/time.h>
#include <mpi.h>
#include <stddef.h>
using namespace std;
// Stucture for Item which store weight and corresponding
// value of Item
struct Item {
float weight;
int value;
};
typedef enum TAG {
WORK_REQ,
NODE,
NEW_MAX_PROFIT,
END,
CONTINUE,
HELLO
} TAG;
// Node structure to store information of decision
// tree
struct Node {
// level --> Level of node in decision tree (or index
// in arr[]
// profit --> Profit of nodes on path from root to this
// node (including this node)
// bound ---> Upper bound of maximum profit in subtree
// of this node/
int level, profit, bound;
float weight;
};
typedef struct Work {
queue<Node> q;
int maxProfit;
Work(queue<Node> q, int maxProfit) : q(q), maxProfit(maxProfit) {};
} Work;
MPI_Datatype mpiNodeStructType;
MPI_Datatype mpiItemStructType;
// Comparison function to sort Item according to
// val/weight ratio
bool cmp(Item a, Item b) {
double r1 = (double) a.value / a.weight;
double r2 = (double) b.value / b.weight;
return r1 > r2;
}
// Returns bound of profit in subtree rooted with u.
// This function mainly uses Greedy solution to find
// an upper bound on maximum profit.
int bound(Node u, int n, int W, Item arr[]) {
// if weight overcomes the knapsack capacity, return
// 0 as expected bound
if (u.weight >= W)
return 0;
// initialize bound on profit by current profit
int profit_bound = u.profit;
// start including items from index 1 more to current
// item index
int j = u.level + 1;
int totweight = u.weight;
// checking index condition and knapsack capacity
// condition
while ((j < n) && (totweight + arr[j].weight <= W)) {
totweight += arr[j].weight;
profit_bound += arr[j].value;
j++;
}
// If k is not n, include last item partially for
// upper bound on profit
if (j < n)
profit_bound += (W - totweight) * arr[j].value /
arr[j].weight;
return profit_bound;
}
Work getWork(int W, Item arr[], int n, Node rootNode, int currentMaxProfit,
unsigned int numberOfNodes) {
queue<Node> Q;
Node u, v;
Q.push(rootNode);
int maxProfit = currentMaxProfit;
while (!Q.empty() && Q.size() < numberOfNodes) {
u = Q.front();
Q.pop();
if (u.level == n - 1) continue;
v.level = u.level + 1;
v.weight = u.weight + arr[v.level].weight;
v.profit = u.profit + arr[v.level].value;
if (v.weight <= W && v.profit > maxProfit) maxProfit = v.profit;
v.bound = bound(v, n, W, arr);
if (v.bound > maxProfit) Q.push(v);
v.weight = u.weight;
v.profit = u.profit;
v.bound = bound(v, n, W, arr);
if (v.bound > maxProfit) Q.push(v);
}
return Work(Q, maxProfit);
}
// Returns maximum profit we can get with capacity W
int knapsack(int W, Item arr[], int n, int currentMaxProfit, queue<Node> Q) {
Node u, v;
// One by one extract an item from decision tree
// compute profit of all children of extracted item
// and keep saving maxProfit
int maxProfit = currentMaxProfit;
while (!Q.empty()) {
// Dequeue a node
u = Q.front();
Q.pop();
// If there is nothing on next level
if (u.level == n - 1)
continue;
// Else if not last node, then increment level,
// and compute profit of children nodes.
v.level = u.level + 1;
// Taking current level's item add current
// level's weight and value to node u's
// weight and value
v.weight = u.weight + arr[v.level].weight;
v.profit = u.profit + arr[v.level].value;
// If cumulated weight is less than W and
// profit is greater than previous profit,
// update maxprofit
if (v.weight <= W && v.profit > maxProfit)
maxProfit = v.profit;
// Get the upper bound on profit to decide
// whether to add v to Q or not.
v.bound = bound(v, n, W, arr);
// If bound value is greater than profit,
// then only push into queue for further
// consideration
if (v.bound > maxProfit)
Q.push(v);
// Do the same thing, but Without taking
// the item in knapsack
v.weight = u.weight;
v.profit = u.profit;
v.bound = bound(v, n, W, arr);
if (v.bound > maxProfit)
Q.push(v);
}
return maxProfit;
}
void master(char *filename) {
double tpivot1 = 0, tpivot2 = 0, tpivot3 = 0; //time counting
struct timeval tim;
Item temp, *items;
int cont;
long int Nitems; // Number of items
long int Width; // Max. load to carry
FILE *test_file;
if (!(test_file = fopen(filename, "r"))) {
printf("Error opening Value file: %s\n", filename);
exit(1);
}
//Reading number of items and Maximum width
fscanf(test_file, "%ld %ld\n", &Nitems, &Width);
items = (Item *) malloc(Nitems * sizeof (Item));
//Capture first token time - init execution
gettimeofday(&tim, NULL);
tpivot1 = tim.tv_sec + (tim.tv_usec / 1000000.0);
//Reading value and width for each element
for (cont = 0; cont < Nitems; cont++) {
fscanf(test_file, "%d,%f\n", &temp.value, &temp.weight);
items[cont] = temp;
}
MPI_Bcast(&Nitems, 1, MPI_LONG, 0, MPI_COMM_WORLD);
MPI_Bcast(&Width, 1, MPI_LONG, 0, MPI_COMM_WORLD);
sort(items, items + Nitems, cmp);
MPI_Bcast(items, Nitems, mpiItemStructType, 0, MPI_COMM_WORLD);
gettimeofday(&tim, NULL);
tpivot2 = (tim.tv_sec + (tim.tv_usec / 1000000.0));
/********************************************************************/
int nWorkers;
MPI_Comm_size(MPI_COMM_WORLD, &nWorkers);
nWorkers -= 1;
Node u;
// dummy node at starting
Node node;
node.level = -1;
node.profit = node.weight = 0;
Work work = getWork(Width, items, Nitems, node, 0, nWorkers + 1);
int maxProfit = work.maxProfit;
queue<Node> Q = work.q;
MPI_Bcast(&maxProfit, 1, MPI_INT, 0, MPI_COMM_WORLD);
for (int i = 1; i < nWorkers + 1; i += 1) {
if (!Q.empty()) {
u = Q.front();
Q.pop();
MPI_Send(&u, 1, mpiNodeStructType, i,
NODE, MPI_COMM_WORLD);
} else {
MPI_Send(&u, 1, mpiNodeStructType, i,
END, MPI_COMM_WORLD);
}
}
maxProfit = knapsack(Width, items, Nitems, maxProfit, Q);
MPI_Status status;
for (int i = 1; i < nWorkers + 1; i += 1) {
MPI_Recv(&u, 1, mpiNodeStructType, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
if (u.profit > maxProfit) {
maxProfit = u.profit;
}
}
/********************************************************************/
cout << Width << ":" << Nitems << ":" << maxProfit;
gettimeofday(&tim, NULL);
tpivot3 = (tim.tv_sec + (tim.tv_usec / 1000000.0));
cout << ":" << tpivot3 - tpivot2 << ":" << tpivot3 - tpivot1 << endl;
}
void worker() {
long int n; // Number of items
long int W; // Max. load to carry
Item *arr;
MPI_Bcast(&n, 1, MPI_LONG, 0, MPI_COMM_WORLD);
MPI_Bcast(&W, 1, MPI_LONG, 0, MPI_COMM_WORLD);
arr = (Item *) malloc(n * sizeof (Item));
MPI_Bcast(arr, n, mpiItemStructType, 0, MPI_COMM_WORLD);
queue<Node> Q;
Node u, v;
MPI_Status status;
int maxProfit = 0;
MPI_Bcast(&maxProfit, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Recv(&u, 1, mpiNodeStructType, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == NODE) {
Q.push(u);
}
v.profit = knapsack(W, arr, n, maxProfit, Q);
MPI_Send(&v, 1, mpiNodeStructType, 0, NEW_MAX_PROFIT, MPI_COMM_WORLD);
}
// driver program to test above function
int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
/********************* Declare Node Struct *********************/
int nodeStructBlockLengths[4] = {1, 1, 1, 1};
MPI_Datatype nodeStructTypes[4] = {MPI_INT, MPI_INT, MPI_INT, MPI_FLOAT};
MPI_Aint nodeStructOffsets[4];
nodeStructOffsets[0] = offsetof(Node, level);
nodeStructOffsets[1] = offsetof(Node, profit);
nodeStructOffsets[2] = offsetof(Node, bound);
nodeStructOffsets[3] = offsetof(Node, weight);
MPI_Type_create_struct(4, nodeStructBlockLengths, nodeStructOffsets,
nodeStructTypes, &mpiNodeStructType);
MPI_Type_commit(&mpiNodeStructType);
/********************* Declare Item Struct *********************/
int itemStructBlockLengths[2] = {1, 1};
MPI_Datatype itemStructTypes[2] = {MPI_FLOAT, MPI_INT};
MPI_Aint itemStructOffsets[2];
itemStructOffsets[0] = offsetof(Item, weight);
itemStructOffsets[1] = offsetof(Item, value);
MPI_Type_create_struct(2, itemStructBlockLengths, itemStructOffsets,
itemStructTypes, &mpiItemStructType);
MPI_Type_commit(&mpiItemStructType);
/***************************************************************/
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {
master(argv[1]);
} else {
worker();
}
/*********************** Free Node Struct **********************/
MPI_Type_free(&mpiNodeStructType);
/***************************************************************/
/*********************** Free Item Struct **********************/
MPI_Type_free(&mpiItemStructType);
/***************************************************************/
MPI_Finalize();
return 0;
}