-
Notifications
You must be signed in to change notification settings - Fork 17
/
vid_predict.py
57 lines (42 loc) · 1.71 KB
/
vid_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import cv2
import numpy as np
from keras.models import model_from_json
from keras.preprocessing import image
# Parse the video file path argument
ap = argparse.ArgumentParser()
ap.add_argument('video', help='path to input video file')
args = vars(ap.parse_args())
# Loading JSON model
json_file = open('top_models\\fer.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# Loading weights
model.load_weights('top_models\\fer.h5')
face_haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(args['video'])
while True:
ret, img = cap.read()
if not ret:
break
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces_detected = face_haar_cascade.detectMultiScale(gray_img, 1.2, 6)
for (x, y, w, h) in faces_detected:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)
roi_gray = gray_img[y:y + w, x:x + h]
roi_gray = cv2.resize(roi_gray, (48, 48))
img_pixels = image.img_to_array(roi_gray)
img_pixels = np.expand_dims(img_pixels, axis=0)
img_pixels /= 255.0
predictions = model.predict(img_pixels)
max_index = int(np.argmax(predictions[0]))
emotions = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt']
predicted_emotion = emotions[max_index]
cv2.putText(img, predicted_emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 255, 255), 2)
resized_img = cv2.resize(img, (1024, 768))
cv2.imshow('Facial Emotion Recognition', resized_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()