forked from KanishkGar/FaceAnalyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.js
176 lines (151 loc) · 5.58 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// SDK Needs to create video and canvas nodes in the DOM in order to function
// Here we are adding those nodes a predefined div.
var divRoot = $("#affdex_elements")[0];
var width = 640;
var height = 480;
var faceMode = affdex.FaceDetectorMode.LARGE_FACES;
//Audio
var audio = new Audio('https://www.soundhelix.com/examples/mp3/SoundHelix-Song-4.mp3');
//Construct a CameraDetector and specify the image width / height and face detector mode.
var detector = new affdex.CameraDetector(divRoot, width, height, faceMode);
//Enable detection of all Expressions, Emotions and Emojis classifiers.
detector.detectAllEmotions();
detector.detectAllExpressions();
//Add a callback to notify when the detector is initialized and ready for runing.
detector.addEventListener("onInitializeSuccess", function() {
log('#logs', "The detector reports initialized");
//Display canvas instead of video feed because we want to draw the feature points on it
$("#face_video_canvas").css("display", "block");
$("#face_video").css("display", "none");
});
function log(node_name, msg) {
$(node_name).append("<span>" + msg + "</span><br />")
}
function playAudio() {
audio.play();
}
function pauseAudio() {
audio.pause();
}
//function executes when Start button is pushed.
function onStart() {
if (detector && !detector.isRunning) {
$("#logs").html("");
detector.start();
//var audio = new Audio('https://www.soundhelix.com/examples/mp3/SoundHelix-Song-1.mp3');
//audio.play();
}
log('#logs', "Clicked the start button");
}
//function executes when the Stop button is pushed.
function onStop() {
log('#logs', "Clicked the stop button");
log('#logs', "Attention: " + Math.round(totalAttention/counter) + "%");
log('#logs', "Mood: " + Math.round(totalMood/counter) + "%");
pauseAudio();
if (detector && detector.isRunning) {
detector.removeEventListener();
pauseAudio();
detector.stop();
}
};
//function executes when the Reset button is pushed.
function onReset() {
log('#logs', "Clicked the reset button");
if (detector && detector.isRunning) {
detector.reset();
pauseAudio();
$('#results').html("");
}
};
//Add a callback to notify when camera access is allowed
detector.addEventListener("onWebcamConnectSuccess", function() {
log('#logs', "Webcam access allowed");
});
//Add a callback to notify when camera access is denied
detector.addEventListener("onWebcamConnectFailure", function() {
log('#logs', "webcam denied");
console.log("Webcam access denied");
});
//Add a callback to notify when detector is stopped
detector.addEventListener("onStopSuccess", function() {
log('#logs', "The detector reports stopped");
$("#results").html("");
});
//Add a callback to receive the results from processing an image.
//The faces object contains the list of the faces detected in an image.
//Faces object contains probabilities for all the different expressions, emotions and appearance metrics
//var audio = new Audio('https://www.soundhelix.com/examples/mp3/SoundHelix-Song-4.mp3');
var currentDistractionTime = 0;
var timesPlayed = 0;
var totalDistractionTime = 0;
var timeLastUpdated = 0;
var totalAttention = 0;
var counter = 0;
var totalMood = 0;
detector.addEventListener("onImageResultsSuccess", function(faces, image, timestamp) {
$('#results').html("");
var mod = timestamp % 60;
log('#results', "Timestamp: " + Math.floor(timestamp / 60) + ":" + Math.floor(mod));
log('#results', "Distraction Time: " + (Math.floor(currentDistractionTime / 60 )) + ":" + Math.floor(currentDistractionTime % 60));
log('#results', "Times Played: " + timesPlayed);
log('#results', "Totoal Distraction Time: " + (Math.floor(totalDistractionTime / 60 )) + ":" + Math.floor(totalDistractionTime % 60));
var currentTime = timestamp;
if (faces.length == 0)
{
if(timestamp-timeLastUpdated > 0.99)
{
currentDistractionTime = currentDistractionTime + 1;
totalDistractionTime = totalDistractionTime + 1;
timeLastUpdated = timestamp;
}
if(currentDistractionTime == 5)
{
audio.play();
timesPlayed = timesPlayed +1;
currentDistractionTime = currentDistractionTime + .0000000001;
}
log('#results', "FACE NOT DETECTED");
}
if (faces.length > 0) {
//totalDistractionTime = totalDistractionTime + currentDistractionTime;
currentDistractionTime = 0;
audio.pause();
log('#results', "Face Detected!");
log('#results', "Mood: " + JSON.stringify(faces[0].emotions, function(key, val) {
totalMood = totalMood + (100-val.sadness);
if (val.sadness < 20)
return 'Happy!';
else if (val.sadness < 50)
return "Meh";
else
return "Sad!";
//return "Mood: " + Math.round(val.joy);
//val.toFixed ? Number(val.toFixed(0)) : val;
}));
log('#results', "Expressions: " + JSON.stringify(faces[0].expressions, function(key, val) {
totalAttention = totalAttention + val.attention;
counter = counter + 1;
if (val.attention < 20) {
return "Pay Attention!";
} else if (val.attention < 50)
return "Chipper up";
else
return "Attentive!";
}));
}
});
//Draw the detected facial feature points on the image
function drawFeaturePoints(img, featurePoints) {
var contxt = $('#face_video_canvas')[0].getContext('2d');
var hRatio = contxt.canvas.width / img.width;
var vRatio = contxt.canvas.height / img.height;
var ratio = Math.min(hRatio, vRatio);
contxt.strokeStyle = "#FFFFFF";
for (var id in featurePoints) {
contxt.beginPath();
contxt.arc(featurePoints[id].x,
featurePoints[id].y, 2, 0, 2 * Math.PI);
contxt.stroke();
}
}