-
Notifications
You must be signed in to change notification settings - Fork 2
/
recurrent_decoder.py
596 lines (547 loc) · 27.6 KB
/
recurrent_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import numpy as np
from keras import backend as K
from keras import activations, initializers, regularizers, constraints
from keras.engine import Layer, InputSpec
from keras.legacy import interfaces
import rnn_decoder
def _time_distributed_dense(x, w, b=None, dropout=None,
input_dim=None, output_dim=None,
timesteps=None, training=None):
"""Apply `y . w + b` for every temporal slice y of x.
# Arguments
x: input tensor.
w: weight matrix.
b: optional bias vector.
dropout: wether to apply dropout (same dropout mask
for every temporal slice of the input).
input_dim: integer; optional dimensionality of the input.
output_dim: integer; optional dimensionality of the output.
timesteps: integer; optional number of timesteps.
training: training phase tensor or boolean.
# Returns
Output tensor.
"""
if not input_dim:
input_dim = K.shape(x)[2]
if not timesteps:
timesteps = K.shape(x)[1]
if not output_dim:
output_dim = K.shape(w)[1]
if dropout is not None and 0. < dropout < 1.:
# apply the same dropout pattern at every timestep
ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
dropout_matrix = K.dropout(ones, dropout)
expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training)
# collapse time dimension and batch dimension together
x = K.reshape(x, (-1, input_dim))
x = K.dot(x, w)
if b is not None:
x = K.bias_add(x, b)
# reshape to 3D tensor
if K.backend() == 'tensorflow':
x = K.reshape(x, K.stack([-1, timesteps, output_dim]))
x.set_shape([None, None, output_dim])
else:
x = K.reshape(x, (-1, timesteps, output_dim))
return x
class RecurrentDecoder(Layer):
"""Abstract base class for recurrent layers.
Do not use in a model -- it's not a valid layer!
Use its children classes `LSTM`, `GRU` and `SimpleRNN` instead.
All recurrent layers (`LSTM`, `GRU`, `SimpleRNN`) also
follow the specifications of this class and accept
the keyword arguments listed below.
# Example
```python
# as the first layer in a Sequential model
model = Sequential()
model.add(LSTM(32, input_shape=(10, 64)))
# now model.output_shape == (None, 32)
# note: `None` is the batch dimension.
# for subsequent layers, no need to specify the input size:
model.add(LSTM(16))
# to stack recurrent layers, you must use return_sequences=True
# on any recurrent layer that feeds into another recurrent layer.
# note that you only need to specify the input size on the first layer.
model = Sequential()
model.add(LSTM(64, input_dim=64, input_length=10, return_sequences=True))
model.add(LSTM(32, return_sequences=True))
model.add(LSTM(10))
```
# Arguments
weights: list of Numpy arrays to set as initial weights.
The list should have 3 elements, of shapes:
`[(input_dim, output_dim), (output_dim, output_dim), (output_dim,)]`.
return_sequences: Boolean. Whether to return the last output
in the output sequence, or the full sequence.
go_backwards: Boolean (default False).
If True, process the input sequence backwards and return the
reversed sequence.
stateful: Boolean (default False). If True, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
unroll: Boolean (default False).
If True, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
implementation: one of {0, 1, or 2}.
If set to 0, the RNN will use
an implementation that uses fewer, larger matrix products,
thus running faster on CPU but consuming more memory.
If set to 1, the RNN will use more matrix products,
but smaller ones, thus running slower
(may actually be faster on GPU) while consuming less memory.
If set to 2 (LSTM/GRU only),
the RNN will combine the input gate,
the forget gate and the output gate into a single matrix,
enabling more time-efficient parallelization on the GPU.
Note: RNN dropout must be shared for all gates,
resulting in a slightly reduced regularization.
input_dim: dimensionality of the input (integer).
This argument (or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
input_length: Length of input sequences, to be specified
when it is constant.
This argument is required if you are going to connect
`Flatten` then `Dense` layers upstream
(without it, the shape of the dense outputs cannot be computed).
Note that if the recurrent layer is not the first layer
in your model, you would need to specify the input length
at the level of the first layer
(e.g. via the `input_shape` argument)
# Input shapes
3D tensor with shape `(batch_size, timesteps, input_dim)`,
(Optional) 2D tensors with shape `(batch_size, output_dim)`.
# Output shape
- if `return_sequences`: 3D tensor with shape
`(batch_size, timesteps, units)`.
- else, 2D tensor with shape `(batch_size, units)`.
# Masking
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.
# Note on using statefulness in RNNs
You can set RNN layers to be 'stateful', which means that the states
computed for the samples in one batch will be reused as initial states
for the samples in the next batch. This assumes a one-to-one mapping
between samples in different successive batches.
To enable statefulness:
- specify `stateful=True` in the layer constructor.
- specify a fixed batch size for your model, by passing
if sequential model:
`batch_input_shape=(...)` to the first layer in your model.
else for functional model with 1 or more Input layers:
`batch_shape=(...)` to all the first layers in your model.
This is the expected shape of your inputs
*including the batch size*.
It should be a tuple of integers, e.g. `(32, 10, 100)`.
- specify `shuffle=False` when calling fit().
To reset the states of your model, call `.reset_states()` on either
a specific layer, or on your entire model.
# Note on specifying initial states in RNNs
You can specify the initial state of RNN layers by calling them with
the keyword argument `initial_state`. The value of `initial_state`
should be a tensor or list of tensors representing the initial state
of the RNN layer.
"""
def __init__(self, max_time_steps,
return_sequences=False,
go_backwards=False,
stateful=False,
unroll=False,
implementation=0,
**kwargs):
super(RecurrentDecoder, self).__init__(**kwargs)
# Add for attention #
self.max_time_steps = max_time_steps
# Add for attention #
self.return_sequences = return_sequences
self.go_backwards = go_backwards
self.stateful = stateful
self.unroll = unroll
self.implementation = implementation
self.supports_masking = True
self.input_spec = InputSpec(ndim=3)
self.state_spec = None
self.dropout = 0
self.recurrent_dropout = 0
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
input_shape = input_shape[0]
if self.return_sequences:
### add for attention ###
return (input_shape[0], self.max_time_steps, self.units)
### add for attention ###
#return (input_shape[0], input_shape[1], self.units)
else:
return (input_shape[0], self.units)
def compute_mask(self, inputs, mask):
if self.return_sequences:
return mask
else:
return None
def step(self, inputs, states):
raise NotImplementedError
def get_constants(self, inputs, training=None):
return []
def get_initial_states(self, inputs):
# build an all-zero tensor of shape (samples, output_dim)
initial_state = K.zeros_like(inputs) # (samples, timesteps, input_dim)
initial_state = K.sum(initial_state, axis=(1, 2)) # (samples,)
initial_state = K.expand_dims(initial_state) # (samples, 1)
initial_state = K.tile(initial_state, [1, self.units]) # (samples, output_dim)
initial_states = [initial_state for _ in range(len(self.states))]
print("lalala hahaha you get it.")
return initial_states
def preprocess_input(self, inputs, training=None):
return inputs
def __call__(self, inputs, initial_state=None, **kwargs):
# If `initial_state` is specified,
# and if it a Keras tensor,
# then add it to the inputs and temporarily
# modify the input spec to include the state.
if initial_state is not None:
if hasattr(initial_state, '_keras_history'):
# Compute the full input spec, including state
input_spec = self.input_spec
state_spec = self.state_spec
if not isinstance(state_spec, list):
state_spec = [state_spec]
self.input_spec = [input_spec] + state_spec
# Compute the full inputs, including state
if not isinstance(initial_state, (list, tuple)):
initial_state = [initial_state]
inputs = [inputs] + list(initial_state)
# Perform the call
output = super(RecurrentDecoder, self).__call__(inputs, **kwargs)
# Restore original input spec
self.input_spec = input_spec
return output
else:
kwargs['initial_state'] = initial_state
return super(RecurrentDecoder, self).__call__(inputs, **kwargs)
def call(self, inputs, mask=None, initial_state=None, training=None):
# input shape: `(samples, time (padded with zeros), input_dim)`
# note that the .build() method of subclasses MUST define
# self.input_spec and self.state_spec with complete input shapes.
if initial_state is not None:
if not isinstance(initial_state, (list, tuple)):
initial_states = [initial_state]
else:
initial_states = list(initial_state)
if isinstance(inputs, list):
initial_states = inputs[1:]
inputs = inputs[0]
elif self.stateful:
initial_states = self.states
else:
initial_states = self.get_initial_states(inputs)
if len(initial_states) != len(self.states):
raise ValueError('Layer has ' + str(len(self.states)) +
' states but was passed ' +
str(len(initial_states)) +
' initial states.')
input_shape = K.int_shape(inputs)
if self.unroll and input_shape[1] is None:
raise ValueError('Cannot unroll a RNN if the '
'time dimension is undefined. \n'
'- If using a Sequential model, '
'specify the time dimension by passing '
'an `input_shape` or `batch_input_shape` '
'argument to your first layer. If your '
'first layer is an Embedding, you can '
'also use the `input_length` argument.\n'
'- If using the functional API, specify '
'the time dimension by passing a `shape` '
'or `batch_shape` argument to your Input layer.')
constants = self.get_constants(inputs, training=None)
preprocessed_input = self.preprocess_input(inputs, training=None)
last_output, outputs, states = rnn_decoder.rnn_decoder(self.step,
preprocessed_input,
initial_states,
self.max_time_steps,
go_backwards=self.go_backwards,
mask=mask,
constants=constants,
unroll=self.unroll,
input_length=input_shape[1])
if self.stateful:
updates = []
for i in range(len(states)):
updates.append((self.states[i], states[i]))
self.add_update(updates, inputs)
# Properly set learning phase
if 0 < self.dropout + self.recurrent_dropout:
last_output._uses_learning_phase = True
outputs._uses_learning_phase = True
if self.return_sequences:
return outputs
else:
return last_output
def reset_states(self, states_value=None):
if not self.stateful:
raise AttributeError('Layer must be stateful.')
if not self.input_spec:
raise RuntimeError('Layer has never been called '
'and thus has no states.')
batch_size = self.input_spec.shape[0]
if not batch_size:
raise ValueError('If a RNN is stateful, it needs to know '
'its batch size. Specify the batch size '
'of your input tensors: \n'
'- If using a Sequential model, '
'specify the batch size by passing '
'a `batch_input_shape` '
'argument to your first layer.\n'
'- If using the functional API, specify '
'the time dimension by passing a '
'`batch_shape` argument to your Input layer.')
if states_value is not None:
if not isinstance(states_value, (list, tuple)):
states_value = [states_value]
if len(states_value) != len(self.states):
raise ValueError('The layer has ' + str(len(self.states)) +
' states, but the `states_value` '
'argument passed '
'only has ' + str(len(states_value)) +
' entries')
if self.states[0] is None:
self.states = [K.zeros((batch_size, self.units))
for _ in self.states]
if not states_value:
return
for i, state in enumerate(self.states):
if states_value:
value = states_value[i]
if value.shape != (batch_size, self.units):
raise ValueError(
'Expected state #' + str(i) +
' to have shape ' + str((batch_size, self.units)) +
' but got array with shape ' + str(value.shape))
else:
value = np.zeros((batch_size, self.units))
K.set_value(state, value)
def get_config(self):
config = {'return_sequences': self.return_sequences,
'go_backwards': self.go_backwards,
'stateful': self.stateful,
'unroll': self.unroll,
'implementation': self.implementation}
base_config = super(RecurrentDecoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class SimpleRNNDecoder(RecurrentDecoder):
"""Fully-connected RNN where the output is to be fed back to input.
# Arguments
units: Positive integer, dimensionality of the output space.
activation: Activation function to use
(see [activations](../activations.md)).
If you pass None, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs.
(see [initializers](../initializers.md)).
recurrent_initializer: Initializer for the `recurrent_kernel`
weights matrix,
used for the linear transformation of the recurrent state.
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
recurrent_regularizer: Regularizer function applied to
the `recurrent_kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
recurrent_constraint: Constraint function applied to
the `recurrent_kernel` weights matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
dropout: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the inputs.
recurrent_dropout: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the recurrent state.
# References
- [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
"""
@interfaces.legacy_recurrent_support
def __init__(self, units,
activation='tanh',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.,
recurrent_dropout=0.,
**kwargs):
super(SimpleRNNDecoder, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(recurrent_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.dropout = min(1., max(0., dropout))
self.recurrent_dropout = min(1., max(0., recurrent_dropout))
def build(self, input_shape):
if isinstance(input_shape, list):
input_shape = input_shape[0]
batch_size = input_shape[0] if self.stateful else None
# Add for Attend! #
self.input_time_steps = input_shape[1]
# Add for Attend! #
self.input_dim = input_shape[2]
self.input_spec = InputSpec(shape=(batch_size, None, self.input_dim))
self.state_spec = InputSpec(shape=(batch_size, self.units))
self.states = [None]
if self.stateful:
self.reset_states()
self.kernel = self.add_weight((self.input_dim, self.units),
name='kernel',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.recurrent_kernel = self.add_weight(
(self.units, self.units),
name='recurrent_kernel',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
if self.use_bias:
self.bias = self.add_weight((self.units,),
name='bias',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
# Add for Attend! #
self.attend_kernel_Wx = self.add_weight((self.input_dim, self.units),
name='attend_Wx',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.attend_kernel_Wy = self.add_weight((self.units, self.units),
name='attend_Wy',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.attend_kernel_b = self.add_weight((self.units,),
name='attend_b',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.attend_kernel_v = self.add_weight((self.units,),
name='attend_v',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
# Add for Attend! #
self.built = True
def preprocess_input(self, inputs, training=None):
#if self.implementation > 0:
return inputs
"""
else:
input_shape = K.int_shape(inputs)
input_dim = input_shape[2]
timesteps = input_shape[1]
return _time_distributed_dense(inputs,
self.kernel,
self.bias,
self.dropout,
input_dim,
self.units,
timesteps,
training=training)
"""
def step(self, time, inputs, states):
prev_output = states
### attend impl ###
e = K.dot(K.dot(inputs, self.attend_kernel_Wx) + K.dot(prev_output, self.attend_kernel_Wy) + self.attend_kernel_b, self.attend_kernel_v)
# [begin] softmax
tmp_exp = K.exp(e)
tmp_sum = K.sum(tmp_exp, axis=(0,))
alpha = tmp_exp / tmp_sum
# [endin] softmax
context = K.batch_dot(alpha.dimshuffle([1,0]), inputs.dimshuffle([1,0,2]), axes=1)
output = K.bias_add(K.dot(context, self.kernel), self.bias) + K.dot(prev_output, self.recurrent_kernel)
output = self.activation(output)
### attend impl ###
return output, [output]
def get_constants(self, inputs, training=None):
constants = []
if self.implementation != 0 and 0 < self.dropout < 1:
input_shape = K.int_shape(inputs)
input_dim = input_shape[-1]
ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, int(input_dim)))
def dropped_inputs():
return K.dropout(ones, self.dropout)
dp_mask = K.in_train_phase(dropped_inputs,
ones,
training=training)
constants.append(dp_mask)
else:
constants.append(K.cast_to_floatx(1.))
if 0 < self.recurrent_dropout < 1:
ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, self.units))
def dropped_inputs():
return K.dropout(ones, self.recurrent_dropout)
rec_dp_mask = K.in_train_phase(dropped_inputs,
ones,
training=training)
constants.append(rec_dp_mask)
else:
constants.append(K.cast_to_floatx(1.))
return constants
def get_config(self):
config = {'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'recurrent_initializer': initializers.serialize(self.recurrent_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'recurrent_constraint': constraints.serialize(self.recurrent_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'dropout': self.dropout,
'recurrent_dropout': self.recurrent_dropout}
base_config = super(SimpleRNNDecoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))