diff --git a/statistics/distance_incident_prediction.py b/statistics/distance_incident_prediction.py index 0781bb0..0249861 100644 --- a/statistics/distance_incident_prediction.py +++ b/statistics/distance_incident_prediction.py @@ -53,7 +53,7 @@ def calculate_distance(prediction): fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(111) -ax.set_ylabel('RMS (pixel)') +ax.set_ylabel('Distance (pixel)') ax.yaxis.grid(True) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) diff --git a/statistics/prediction_psf_mtf.py b/statistics/prediction_psf_mtf.py new file mode 100644 index 0000000..5e0ea61 --- /dev/null +++ b/statistics/prediction_psf_mtf.py @@ -0,0 +1,256 @@ +import os +import sys +import h5py +import numpy as np +import matplotlib.pyplot as plt +from matplotlib import ticker +from matplotlib.pyplot import cm +from scipy.optimize import curve_fit + +plt.rcParams.update({ + #"font.size": 15, + "font.family": 'sans-serif', + "svg.fonttype": 'none' +}) + +prediction_order = [ + 'Random', + 'Centroid', + 'Highest ToA', + 'Highest ToT', + 'CNN-ToT', + 'CNN-ToT-ToA' +] + +filename = sys.argv[1] +f = h5py.File(filename, 'r') + +incidents = f['incidents'][()] + +sensor_height = f.attrs.get("sensor_height", "N/A") +beam_energy = f.attrs.get("beam_energy", "N/A"), +sensor_material = f.attrs.get("sensor_material", "N/A") + +# Merge prediction order +prediction_order_complete = prediction_order +prediction_order_complete.extend(x for x in list(f['predictions']) if x not in prediction_order_complete) + + +def calculate_distance(prediction): + # Not sure this is the cleanest way, but it works to do sqrt( (x-x)^2 + (y - y)^2) on the whole matrix at once + diff = incidents - prediction + square = np.square(diff) + dist = np.sqrt(square[:, 0] + square[:, 1]) + + dist = np.linalg.norm(incidents - prediction, axis=1) + + return np.divide(dist, 55000) + + +distances = dict() + +for pred in f['predictions']: + distances[pred] = calculate_distance(f['predictions'][pred]) + +# Setup plots +fig = plt.figure(figsize=(10, 4)) + +ax = fig.add_subplot(321) +ax.set_ylabel('Distance (pixel)') +ax.yaxis.grid(True) +ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) + +# Build plots +boxes = [] +for pred in prediction_order_complete: + boxes.append(distances[pred]) + + print("Median %s: %f" % (pred, np.median(distances[pred]))) + print("Mean %s: %f" % (pred, np.mean(distances[pred]))) + print("RMSD %s: %f" % (pred, np.sqrt(np.mean(np.square(distances[pred]))))) + +ax.boxplot(boxes, labels=prediction_order_complete, showfliers=False) + +#method = 'CNN-ToT' # 4 +method = 'CNN-ToT-ToA' # 5 +ax = fig.add_subplot(322) +s = boxes[4] +print(prediction_order_complete[4]) +edges = np.linspace(0.0, 4.0, 100) + +H, edges = np.histogram(s, bins=edges) +bincenters = 0.5*(edges[1:]+edges[:-1]) +H = H / H.sum() +ax.plot(bincenters, H, '-', color='green') +ax.set_xlim(0, 4) +ax.set_title(method) +ax.set_xlabel('Distance (pixel)') +ax.set_ylabel('Occurence') + +def gauss_poly(x, *p): + lam, = p + return (2*x*lam**2)*np.exp(-(x**2)/(lam**2)) + +# p0 = [0.70,] +# coef, var_matrix = curve_fit(gauss_poly, edges[1:], H.transpose(), p0=p0) +# fit1 = gauss_poly(edges[1:], *p0) +# fit1 = fit1 / fit1.sum() +# print(coef) +# plt.plot(edges[1:], fit1, label="r exp(-(r)^2/(%.2f^2))" % (coef[0])) +# plt.legend() + +# distributie = np.random.choice(edges[:-1], 10000000, p=fit1) +# +# plt.text(1.5, 0.02, "Median %s: %0.2f" % ("", np.median(distributie))) +# plt.text(1.5, 0.01, "Mean %s: %0.2f" % ("", np.mean(distributie))) +# plt.text(1.5, 0.0, "RMSD %s: %0.2f" % ("", np.sqrt(np.mean(np.square((distributie)))))) + + +def calculate_distance_axis(prediction, axis): + # Not sure this is the cleanest way, but it works to do sqrt( (x-x)^2 + (y - y)^2) on the whole matrix at once + diff = incidents[:, axis] - prediction[:, axis] + + r = np.divide(diff, 55000) + + return r + +ax = fig.add_subplot(323) + +# Calculate 1 axis +distance_axis = calculate_distance_axis(f['predictions'][method], 1) + +edges = np.arange(-10.0, 10.0, 0.1) + +H, edges = np.histogram(distance_axis, bins=edges) +bincenters = 0.5*(edges[1:]+edges[:-1]) +H = H / H.sum() +H_distance_axis = H +ax.plot(bincenters, H, '-', color='green') +ax.set_xlim(-4, 4) +ax.set_xlabel('x0-x') +ax.set_ylabel('Occurence') + + +def gauss(x, *p): + A, mu, sigma = p + return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + +def psf(x, *p): + lam, = p + return 1/(np.pi*lam**2)*np.exp(-(x)**2/(lam**2)) + +def psf_2d_fit(coor, *p): + X, Y = coor + x0, y0 = 0, 0 + lam, = p + r = 1/(np.pi*lam**2)*np.exp(-((X-x0)**2/(lam**2)+((Y+y0)**2/(lam**2)))) + + # Outputs needs to be 1D. What you can do is add a .ravel() onto the end of the last line, like this: + return r.ravel() + + +def psf_radial(r, *p): + lam, r0 = p + return 1/(np.pi*lam**2)*np.exp(-(r-r0)**2/(lam**2)) + + +def psf_radial2(r, *p): + lam, A, = p + return A*np.exp(-(r)**2/(lam**2)) + +def mtf_gauss(lam): + x = np.arange(0.01, 1.1, 0.01) + + y = np.exp(-np.pi**2*lam**2*x**2/4) + + return x, y + +def theoretical_mtf(): + x = np.arange(0.01, 1.1, 0.01) + + y = np.sin(np.pi * x / 2) / (np.pi * x / 2) + + return x, y + +def mtf_finite_pixel(lam): + x, mtf = theoretical_mtf() + + y = mtf*np.exp(-np.pi**2*lam**2*x**2/4) + + return x, y + +# Radial profile +def radial_profile(data, center): + y, x = np.indices((data.shape)) + r = np.sqrt((x - center[0])**2 + (y - center[1])**2) + r = r.astype(np.int) + + tbin = np.bincount(r.ravel(), data.ravel()) + nr = np.bincount(r.ravel()) + radialprofile = tbin / nr + return radialprofile + +p0 = [1., 0., 1.] +coef, var_matrix = curve_fit(gauss, edges[1:], H, p0=p0) +fit1 = gauss(edges[1:], *coef) +print(coef) +plt.plot(edges[1:], fit1, label="%.2f exp(-(x-%.2f)^2/(%.2f^2))" % (coef[0], coef[1], coef[2])) +plt.legend() +plt.text(1.5, 0.02, "Median %s: %0.2f" % ("", np.median(distance_axis))) +plt.text(1.5, 0.01, "Mean %s: %0.2f" % ("", np.mean(distance_axis))) +plt.text(1.5, 0.0, "RMSD %s: %0.2f" % ("", np.sqrt(np.mean(np.square((distance_axis)))))) + +# 2D histogram of projected distance +fig.add_subplot(324) + +distance_x = calculate_distance_axis(f['predictions'][method], 0) +distance_y = calculate_distance_axis(f['predictions'][method], 1) +H, _, _ = np.histogram2d(distance_x, distance_y, bins=[edges, edges]) +#H = H / H.sum() +plt.imshow(H, origin='low',extent=[edges[0], edges[-1], edges[0], edges[-1]]) +plt.xlim(-2, 2) +plt.ylim(-2, 2) + +# Radial fit +fig.add_subplot(325) + +# Calculate radial profile of normalized plot +rad_prof = radial_profile(H, [100, 100]) +sum_psf = np.concatenate((np.flip(rad_prof), rad_prof)) +sum_psf_norm = sum_psf / sum_psf.max() +s = np.sqrt(10**2+10**2) +r = np.arange(-s, s+0.1, 0.1) +plt.plot(r, sum_psf_norm, label='Radial PSF') +plt.xlim(-2, 2) +p0 = [.50, 1] +coef, var_matrix = curve_fit(psf_radial2, r, sum_psf_norm, p0=p0) +print(coef) +fit = psf_radial2(r, *p0) +lab = 0.50 +test = psf(r, *[lab]) +plt.plot(r, test/test.max(), label='PSFg (exp(-x^2/(%.2f^2)/pi*%.2f^2)' % (lab, lab)) +plt.plot(r, fit, label="%.2f exp(-(x)^2/(%.2f^2))" % (coef[1], coef[0])) +plt.legend() +plt.title("Radial plot of 2D plot") + +# MTF +fig.add_subplot(326) +mtf = np.abs(np.fft.fft(sum_psf_norm)) + +mtf_norm = mtf/mtf[0] +plt.title("MTF") +plt.plot(mtf_norm, label="FFT of fit") +x, y = mtf_gauss(lab) +plt.plot(x*s, y, label="Analytical MTFg (lambda=%0.2f)" % lab) +x, y = mtf_finite_pixel(lab) +plt.plot(x*s, y, label="MTF finite pixel (lambda=%0.2f)" % lab) +x, y = theoretical_mtf() +plt.plot(x*s, y, label="Theoretical MTF") +plt.xlim(0, s) +plt.ylim(0, 1) +plt.legend() +if len(sys.argv) > 2: + plt.savefig(sys.argv[2], dpi=300, bbox_inches='tight', pad_inches=0.1) + +plt.subplots_adjust(hspace=0.50) +plt.show()