Skip to content

Latest commit

 

History

History

SGBot

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Scalable and Generalizable Social Bot Detection through Data Selection


├── train.py  # train model on cresci-2015
└── preprocess.py # convert raw dataset into standard format and extract features
  • implement details:

The features are divided into user metadata and derived features. We ignore some feature for lack of basic data in the datasets. The screen name likelihood feature is inspired by the work of Beskow and Carley (2019). We constructed the likelihood of all 3,969 possible bigrams. The likelihood of a screen name is defined by the geometric-mean likelihood of all bigrams in it. Screen name likelihood is a real value which describes the likelihood of the screen name.

How to reproduce:

  1. Specify the dataset you want to reproduce ;

  2. Extract features and convert the raw dataset into standard format by running

    python preprocess.py --dataset DATASETNAME

    This command will create related features in corresponding directory.

  3. Using random forest model to train by running:

    python train.py --dataset DATASETNAME

Result:

dataset acc precison recall f1
Cresci-2015 mean 0.7708 0.9945 0.6367 0.7791
Cresci-2015 std 0.0021 0.0020 0.0131 0.0013
Twibot-20 mean 0.8164 0.7640 0.9491 0.8490
Twibot-20 std 0.0046 0.0040 0.0069 0.0042
Twibot-22 mean 0.7508 0.7311 0.2432 0.3659
Twibot-22 std 0.0005 0.0018 0.0009 0.0018
midterm-2018 mean 0.9919 0.9935 0.9966 0.9952
midterm-2018 std 0.0004 0.0022 0.0020 0.0002
gilani-2017 mean 0.7860 0.8268 0.6362 0.7210
gilani-2017 std 0.0077 0.0188 0.0217 0.0119
c-s-2018 mean 0.8128 0.8390 0.8103 0.8234
c-s-2018 std 0.0006 0.0029 0.0090 0.0011
c-r-2019 mean 0.8088 0.8308 0.8162 0.8226
c-r-2019 std 0.0147 0.0260 0.0226 0.0173
Cresci-2017 mean 0.9212 0.9826 0.9086 0.9461
Cresci-2017 std 0.0027 0.0017 0.0039 0.0019
b-f-2019 mean 0.7547 0.5970 0.4533 0.4960
b-f-2019 std 0.0189 0.0391 0.0298 0.0343
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Varol et al. 0.7508 0.3659 F T random forest