Skip to content

Latest commit

 

History

History
94 lines (70 loc) · 2.54 KB

readme.md

File metadata and controls

94 lines (70 loc) · 2.54 KB

Heterogeneity-aware Twitter Bot Detection with Relational Graph Transformers


├── cresci-15
│   ├── Heterobot.py  # train model on cresci-2015
|   ├── Dataset.py
|   └── layer.py
├── Twibot-20    
│   ├── Heterobot.py  # train model on Twibot-20
|   ├── Dataset.py
|   └── layer.py
└── Twibot-22
    ├── Heterobot_sample.py  # train model on Twibot-22
    └── layer.py
  • Requirements
CUDA==10.2
pytorch-lightning==1.4.9
torch==1.9.1
torch-geometric==2.0.2
torch-cluster==1.5.9
torch-scatter==2.0.9
torch-sparse==0.6.12
torch-spline-conv==1.2.1
sklearn
argparse
  • implement details:
  1. The input features of our implementation is the same as BotRGCN, for more details about preprocessing please refer to BotRGCN.

  2. To enable the training on large-scale graph such as Twibot-22, we adopt the NeighborLoader in torch geometric with num_neighbors set to 20 and sample for 2 iterations.

How to reproduce:

  1. run the preprocess code to get following files
cat_properties_tensor.pt
des_tensor.pt
edge_index.pt
edge_type.pt
label.pt
num_properties_tensor.pt
test_idx.pt
train_idx.pt
val_idx.pt
test_idx.pt
  1. train the model

Please change the path to proprocess file in the following commands

  • on Twibot-20 & cresci-2015
CUDA_VISIBLE_DEVICES=0 python Heterobot.py --batch_size 128 --epochs 200 --path /path/to/preprocessed/file
  • on Twibot-22
CUDA_VISIBLE_DEVICES=0 python Heterobot_sample.py --batch_size 256 --epochs 200 --path /path/to/preprocessed/file

Results:

dataset acc precison recall f1
Cresci-2015 mean 0.9715 0.9638 0.9923 0.9778
Cresci-2015 std 0.0032 0.0059 0.0015 0.0024
Twibot-20 mean 0.8657 0.8515 0.9106 0.8801
Twibot-20 std 0.0041 0.0028 0.0080 0.0041
Twibot-22 mean 0.7647 0.7503 0.3010 0.4294
Twibot-22 std 0.0045 0.0085 0.0017 0.0049
baseline acc on Twibot-22 f1 on Twibot-22 type tags
RGT 0.7647 0.4294 F T G Graph Neural Networks