Skip to content

Latest commit

 

History

History

Moghaddam

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Friendship Preference: Scalable and Robust Category of Features for Social Bot Detection


├── process.py # convert raw dataset into standard format
└── train.py # train model on every dataset
  • implement details: “Favorites count” is discarded since required information is not included in datasets.

How to reproduce:

  1. process data, get the features and specify the dataset by running;

    python process.py --datasets "dataset name"

    there will be a .npy file, which is the processed feature

  2. train random forest model and specify the dataset by running:

    python train.py --datasets "dataset name" > result.txt

    the final result will be saved into result.txt

Result:

random seed: 100, 200, 300, 400, 500

dataset acc precison recall f1
cresci-2015 mean 0.7361 0.9833 0.5923 0.7393
cresci-2015 std 0.0016 0.0026 0.0032 0.0021
Twibot-20 mean 0.7405 0.7229 0.8438 0.7787
Twibot-20 std 0.0080 0.0067 0.0103 0.0071
Twibot-22 mean 0.7378 0.6761 0.2102 0.3207
Twibot-22 std 0.0001 0.0010 0.0007 0.0003
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Moghaddam et al. 0.7378 0.3207 F G random forest