-
Notifications
You must be signed in to change notification settings - Fork 47
/
test.py
89 lines (74 loc) · 2.73 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os, torch
from collections import OrderedDict
import data
# change config file for ablation study...
from options.config_hifacegan import TestOptions
from models.pix2pix_model import Pix2PixModel
from util.visualizer import Visualizer
from util import html
import numpy as np
import cv2
from tqdm import tqdm
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
torch.backends.cudnn.benchmark = True
opt = TestOptions()
dataloader = data.create_dataloader(opt)
model = Pix2PixModel(opt)
### 20200218 Critical Bug
# When model is set to eval mode, the generated image
# is not enhanced whatsoever, with almost 0 residual
# when turned to training mode, it behaves as expected.
###
#model.eval()
#model.netG.eval()
model.netG.train()
visualizer = Visualizer(opt)
# create a webpage that summarizes the all results
'''
web_dir = os.path.join(opt.results_dir, opt.name,
'%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir,
'Experiment = %s, Phase = %s, Epoch = %s' %
(opt.name, opt.phase, opt.which_epoch))
'''
save_path = os.path.join(opt.results_dir, opt.name)
#save_path = os.path.join(opt.results_dir, 'debug_mixed_train')
os.makedirs(save_path, exist_ok=True)
# test
for i, data_i in tqdm(enumerate(dataloader)):
if i * opt.batchSize >= opt.how_many:
break
generated = model(data_i, mode='inference2')
img_path = data_i['path']
for b in range(generated.shape[0]):
#print('process image... %s' % img_path[b])
#print('absolute error:', (data_i['label'][b] - generated[b]).abs().mean())
# 20200218 debug code: residual map
#res = (data_i['label'][b] - generated[b] + 1.) / 2.
visuals = OrderedDict([('input_label', data_i['label'][b]),
('synthesized_image', generated[b]),
#('residual_input_fake', res),
('ground_truth', data_i['image'][b])
])
visuals_rgb = visualizer.convert_visuals_to_numpy(visuals)
name = os.path.splitext(os.path.basename(img_path[b]))[0]
im1=visuals_rgb['input_label']
im2=visuals_rgb['synthesized_image']
im3=visuals_rgb['ground_truth']
#res_rgb = visuals_rgb['residual_input_fake']
h = im1.shape[0]
im = np.zeros((h, h*3, 3))
im[:,:h] = im1
im[:,h:2*h] = im2
im[:,2*h:] = im3
'''
h = im1.shape[0]
im = np.zeros((h, h*4, 3))
im[:,:h] = im1
im[:,h:2*h] = im2
im[:,2*h:3*h] = res_rgb
im[:,3*h:] = im3
'''
cv2.imwrite(os.path.join(save_path, name+'.jpg'), im[:,:,::-1])
#print('a')
#webpage.save()