-
Notifications
You must be signed in to change notification settings - Fork 6
/
show_text_tessellation.rs
150 lines (124 loc) · 6.92 KB
/
show_text_tessellation.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use flo_draw::*;
use flo_draw::canvas::*;
use flo_draw::render_canvas::*;
use ::desync::*;
use futures::prelude::*;
use futures::stream;
use futures::executor;
use std::mem;
use std::sync::*;
use std::collections::{HashMap};
///
/// Draws some text and then shows how it's tessellated
///
/// This is a more advanced version of show_tessellation that additionally demonstrates how to turn
/// font rendering instructions into normal vector instructions for post-processing (another example
/// that demonstrates this is 'Wibble')
///
pub fn main() {
with_2d_graphics(|| {
let lato = CanvasFontFace::from_slice(include_bytes!("Lato-Regular.ttf"));
// Create a drawing target. canvas is our renderer, and stream is where these instructions are sent to
let (canvas, canvas_stream) = DrawingTarget::new();
// Create a canvas renderer, and wrap it in a Desync.
// The canvas renderer generates instructions for a GPU-based renderer.
// Desync is a companion library; it provides a convenient API for many asynchronous tasks, in this case stream processing
let renderer = CanvasRenderer::new();
let renderer = Arc::new(Desync::new(renderer));
// Configure it to a viewport of 768x768 (want 'square pixels' so the rendering isn't squashed later on)
renderer.desync(|renderer| {
renderer.set_viewport(0.0..768.0, 0.0..768.0, 768.0, 768.0, 1.0);
});
// Render the text as vectors by processing the canvas stream
let canvas_stream = drawing_with_laid_out_text(canvas_stream);
let canvas_stream = drawing_with_text_as_paths(canvas_stream);
// Use Desync to process the rendering instructions on the stream (returning a stream of vecs, which we flatten to a stream of single instructions)
let canvas_stream = canvas_stream.ready_chunks(1000);
let mut gpu_instructions = pipe(renderer, canvas_stream, |renderer, drawing_instructions| {
async move {
renderer.draw(drawing_instructions.into_iter())
.collect::<Vec<_>>()
.await
}.boxed()
}).map(|as_vectors| stream::iter(as_vectors)).flatten();
// Say 'hello, world' on the canvas that we're processing
let hello_size = measure_text(&lato, "Hello, World", 100.0);
let (min, max) = hello_size.inner_bounds;
let x_pos = (1000.0 - (max.x()-min.x()))/2.0;
let y_pos = (1000.0 - (max.y()-min.y()))/2.0;
canvas.draw(|gc| {
// Set up the canvas
gc.canvas_height(1000.0);
gc.center_region(0.0, 0.0, 1000.0, 1000.0);
// Load a font
gc.define_font_data(FontId(1), Arc::clone(&lato));
gc.set_font_size(FontId(1), 100.0);
// Draw some text in our font
gc.fill_color(Color::Rgba(0.0, 0.0, 0.6, 1.0));
gc.draw_text(FontId(1), "Hello, World".to_string(), x_pos as _, y_pos as _);
});
// Dropping the canvas closes the stream so the list of drawing instructions ends
mem::drop(canvas);
// Create a window to render on
let tessellation_window = create_drawing_window("Hello, world tessellation");
// Run an executor to track the instructions that we would be sending to the GPU and render them to the tessellation window instead
executor::block_on(async {
// We to keep the vertex buffers around so we can render them once we get the index buffers
let mut vertex_buffers = HashMap::new();
let mut index_buffers = HashMap::new();
while let Some(gpu_instruction) = gpu_instructions.next().await {
// Render the tessellation to the tesselator window
match &gpu_instruction {
RenderAction::SetTransform(Matrix(t)) => {
// Set an approximate equivalent of the transform the 'draw' instruction generated
tessellation_window.draw(|gc| {
gc.canvas_height(2.0);
gc.center_region(0.0, 0.0, 2.0, 2.0);
gc.transform(Transform2D([
[t[0][0], t[0][1], t[0][2]],
[t[1][0], t[1][1], t[1][2]],
[t[2][0], t[2][1], t[2][2]]
]));
})
}
RenderAction::CreateVertex2DBuffer(buffer_id, vertices) => {
// Store the vertex buffer: we can render it when we get the corresponding index buffer
vertex_buffers.insert(*buffer_id, vertices.clone());
}
RenderAction::CreateIndexBuffer(buffer_id, indicies) => {
// Store the index buffer for when we receive the rendering instruction
index_buffers.insert(*buffer_id, indicies.clone());
}
RenderAction::DrawIndexedTriangles(vertex_buffer_id, index_buffer_id, num_vertices) => {
// Fetch the buffers
let vertices = vertex_buffers.get(&vertex_buffer_id).unwrap();
let indicies = index_buffers.get(&index_buffer_id).unwrap();
tessellation_window.draw(|gc| {
// Render triangles from the index buffer
for triangle_num in 0..(num_vertices/3) {
// Use the index buffer to look up the vertices for this triangle
let index = triangle_num * 3;
let i1: u16 = indicies[index+0];
let i2: u16 = indicies[index+1];
let i3: u16 = indicies[index+2];
let p1: &Vertex2D = &vertices[i1 as usize];
let p2: &Vertex2D = &vertices[i2 as usize];
let p3: &Vertex2D = &vertices[i3 as usize];
let colour = Color::Rgba(p1.color[0] as f32/255.0, p1.color[1] as f32/255.0, p1.color[2] as f32/255.0, p1.color[3] as f32/255.0);
// Render as lines
gc.new_path();
gc.move_to(p1.pos[0], p1.pos[1]);
gc.line_to(p2.pos[0], p2.pos[1]);
gc.line_to(p3.pos[0], p3.pos[1]);
gc.close_path();
gc.stroke_color(colour);
gc.stroke();
}
});
}
_ => {}
}
}
})
});
}