Skip to content

Latest commit

 

History

History
71 lines (47 loc) · 2.98 KB

README.md

File metadata and controls

71 lines (47 loc) · 2.98 KB

I. CPP-Align

II. Face Mask Renderer

We provide a simple tool to add masks on face images automatically.

We can use this tool to do data augmentation while training our face recognition models.

Face Image OP Mask Image Out
face +F mask mask
face +F mask mask
face +H mask mask

F means FULL while H means HALF.

Prepare

  • insightface package library

    pip install -U insightface

  • insightface model pack

    bash> insightface-cli model.download antelope

  • BFM models

    Please follow the tutorial of https://github.com/YadiraF/face3d/tree/master/examples/Data/BFM to generate BFM.mat and BFM_UV.mat. Put them into the insightface model pack directory, such as ~/.insightface/models/antelope/

  • mask images

    some mask images are included in insightface package, such as 'mask_blue', 'mask_white', 'mask_black' and 'mask_green'.

Add Mask to Face Image

Please refer to make_renderer.py for detail example.

(1) init renderer:

import insightface
from insightface.app import MaskRenderer
tool = MaskRenderer()
tool.prepare(ctx_id=0, det_size=(128,128)) #use gpu

(2) load face and mask images

from insightface.data import get_image as ins_get_image
image = ins_get_image('Tom_Hanks_54745')
mask_image  = "mask_blue"

(3) build necessary params for face image, this can be done in offline.

params = tool.build_params(image)

(4) do mask render, it costs about 10ms on 224x224 UV size, CPU single thread.

mask_out = tool.render_mask(image, mask_image, params)

(5) do half mask render.

mask_half_out = tool.render_mask(image, mask_image, params, positions=[0.1, 0.5, 0.9, 0.7])