forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.py
251 lines (214 loc) · 10.1 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import itertools
class FAT_DeepFFMLayer(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field, layer_sizes):
super(FAT_DeepFFMLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.sparse_num_field = sparse_num_field
self.layer_sizes = layer_sizes
self.num_fields = sparse_num_field + dense_feature_dim
self.cen = CENLayer(
sparse_feature_number,
dense_feature_dim,
self.num_fields,
sparse_feature_dim,
reduction=1)
self.dnn = DNNLayer(sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field, layer_sizes)
self.deepffm = DeepFFM(sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field)
self.bias = paddle.create_parameter(
shape=[1],
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(value=0.0))
def forward(self, sparse_inputs, dense_inputs):
# CENLayer
cen_out = self.cen(sparse_inputs, dense_inputs)
# DeepFFMLayer
y_first_order, dnn_input = self.deepffm(cen_out)
# DNNLayer
y_dnn = self.dnn(dnn_input)
# PredictionLayer
predict = F.sigmoid(y_first_order + y_dnn + self.bias)
return predict
class CENLayer(nn.Layer):
def __init__(self,
sparse_feature_number,
dense_feature_dim,
num_fields,
sparse_feature_dim,
reduction=8,
activation=nn.ReLU()):
super(CENLayer, self).__init__()
self.feature_dim = sparse_feature_dim
self.num_fields = num_fields
self.sparse_feature_number = sparse_feature_number
self.dense_feature_dim = dense_feature_dim
self.init_value_ = 0.1
# sparse embedding
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.feature_dim * self.num_fields,
sparse=True,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(
mean=0.0,
std=self.init_value_ /
math.sqrt(float(self.feature_dim)))))
# dense part coding
self.dense_w = paddle.create_parameter(
shape=[
1, self.dense_feature_dim, self.feature_dim * self.num_fields
],
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(value=1.0))
inputs_num_fields = num_fields * num_fields
reduced_num_fields = inputs_num_fields // reduction
self.pooling = nn.layer.AdaptiveMaxPool1D(output_size=1)
self.fc = nn.Sequential(('ReductionLinear', paddle.nn.Linear(
inputs_num_fields,
reduced_num_fields)), ('ReductionActivation', activation), (
'AdditionLinear', paddle.nn.Linear(reduced_num_fields,
inputs_num_fields)),
('AdditionActivation', activation))
def forward(self, sparse_inputs, dense_inputs):
# Embedding
sparse_inputs_concat = paddle.concat(
sparse_inputs, axis=1) # [batch_size, sparse_feature_number]
sparse_embeddings = self.embedding(
sparse_inputs_concat
) # [batch_size, sparse_feature_number, sparse_feature_dim]
dense_inputs_re = paddle.unsqueeze(dense_inputs, axis=2)
dense_embeddings = paddle.multiply(dense_inputs_re, self.dense_w)
feat_embeddings = paddle.concat(
[sparse_embeddings, dense_embeddings], 1
) # [batch_size, dense_feature_number + feature_number, dense_feature_dim]
feat_embeddings = paddle.reshape(
feat_embeddings,
[-1, self.num_fields * self.num_fields, self.feature_dim])
# inputs: emb_inputs, shape = (B, N^2, E) if squared else (B, N, E)
# output: pooled_inputs, shape = (B, N^2, 1)
pooled_inputs = self.pooling(feat_embeddings)
# Flatten pooled_inputs
# inputs: pooled_inputs, shape = (B, N^2, 1)
# output: pooled_inputs, shape = (B, N^2)
pooled_inputs = paddle.flatten(
pooled_inputs, start_axis=1, stop_axis=-1, name=None)
# Calculate attention weight with dense layer forwardly
# inputs: pooled_inputs, shape = (B, N^2)
# output: attn_w, shape = (B, N^2)
attn_w = self.fc(pooled_inputs)
# Unflatten attention weights and apply it to emb_inputs
# inputs: attn_w, shape = (B, N^2)
# inputs: emb_inputs, shape = (B, N^2, E)
# output: outputs, shape = (B, N^2, E)
attn_w = paddle.tile(attn_w, repeat_times=[self.feature_dim])
attn_w = paddle.split(attn_w, num_or_sections=self.feature_dim, axis=1)
attn_w = paddle.stack(attn_w, axis=2)
# Multiply attentional weights on field embedding tensors
outputs = paddle.multiply(feat_embeddings, attn_w) # (B, N^2, E)
return outputs
class DNNLayer(paddle.nn.Layer):
def __init__(self,
sparse_feature_number,
sparse_feature_dim,
dense_feature_dim,
sparse_num_field,
layer_sizes,
dropout_rate=0.5,
is_H=True):
super(DNNLayer, self).__init__()
# self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.num_field = dense_feature_dim + sparse_num_field
self.layer_sizes = layer_sizes
self.sparse_num_field = sparse_num_field
self.is_H = is_H
if self.is_H:
self.input_size = int(sparse_feature_dim * self.num_field *
(self.num_field - 1) / 2)
else:
self.input_size = int(self.num_field * (self.num_field - 1) / 2)
self.drop_out = paddle.nn.Dropout(p=dropout_rate)
sizes = [self.input_size] + self.layer_sizes + [1]
acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
self._mlp_layers = []
for i in range(len(layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=sizes[i],
out_features=sizes[i + 1],
weight_attr=paddle.ParamAttr(
regularizer=paddle.regularizer.L2Decay(1e-7),
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._mlp_layers.append(act)
def forward(self, feat_embeddings):
y_dnn = paddle.reshape(feat_embeddings, [feat_embeddings.shape[0], -1])
for n_layer in self._mlp_layers:
y_dnn = n_layer(y_dnn)
y_dnn = self.drop_out(y_dnn)
return y_dnn
class DeepFFM(nn.Layer):
def __init__(self,
sparse_feature_number,
sparse_feature_dim,
dense_feature_dim,
sparse_num_field,
is_H=True):
super(DeepFFM, self).__init__()
self.num_field = sparse_num_field + dense_feature_dim # sparse_num_field
self.sparse_feature_dim = sparse_feature_dim
self.is_H = is_H
def forward(self, feat_embedding):
# -------------------- first order term --------------------
feat_embedding_ = paddle.sum(feat_embedding, 2)
y_first_order = paddle.sum(feat_embedding_, 1, keepdim=True)
# -------------------Field-aware second order term --------------------
# feat_embedding [bacth_size,num_field*num_field,feature_dim]
field_aware_feat_embedding = paddle.reshape(
feat_embedding,
[-1, self.num_field, self.num_field, self.sparse_feature_dim])
field_aware_interaction_list = []
for i in range(self.num_field):
for j in range(i + 1, self.num_field):
if self.is_H:
field_aware_out = field_aware_feat_embedding[:, i,
j, :] * field_aware_feat_embedding[:,
j,
i, :]
else:
field_aware_out = paddle.sum(
field_aware_feat_embedding[:, i, j, :] *
field_aware_feat_embedding[:, j, i, :],
1,
keepdim=True)
field_aware_interaction_list.append(field_aware_out)
# Iner_product shape: [batch_size, num_fields*(num_fields-1)/2]
# Hadamard product shape: [batch_size, num_fields*(num_fields-1)/2 * embedding_size]
y_field_aware_out = paddle.concat(field_aware_interaction_list, axis=1)
return y_first_order, y_field_aware_out