-
Notifications
You must be signed in to change notification settings - Fork 0
/
TIMESTEPv9.r
445 lines (385 loc) · 31.2 KB
/
TIMESTEPv9.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
########## TB XPERT DIAGNOSTIC MODEL 2012 ##########
########## TIMESTEP FILE ##########
## NOTES
# a. This is the workhorse function, calculating each new month of the model.
# b. This is a single function, taking as its arguments (i) a state vector and (ii) a subset of variables (all the time varying ones), and (iii) a partially filled model matrix.
# c. New entrants are added to state vector, deaths removed
# d. Variables are retransformed and dynamic functions calculated (TB force of infection)
# e. Static model matrix is updated with time-varying values, diagonal elements calculated so that rowsums = 1
# f. Matrix multiplication to update state vector
# g. Results calculated
# h. State vector and results vector outputed
# NOTE: The difference between v6 and v5 is that the former does not have a local RateMat inside the timestep function, instead modifying the global RateMatStat.
# NOTE: The difference between v7 and v6 is that the former does not have a loop over z inside the timestep function, instead using explicit linear combinations.
# NOTE: The difference between v8 and v7 is that the former does not have an explicitly constructed temporary copy of the rate matrix with a zeroed-out diagonal.
######## EXTRA INDICES ##########
i1 <- j1 <- rep(0,0); for(j in 0:6) { for (i in Vtemp1[1:10+j*10]+2) { i1[i]<-i; j1[i]<-j } }
i1 <- as.numeric(na.omit(i1)); j1 <- as.numeric(na.omit(j1))+1
a1 <- cbind(i1,i1+1); a2 <- cbind(i1,i1+2); a3 <- cbind(i1+1,i1+2)
a4 <- cbind(i1+1,i1); a5 <- cbind(i1+2,i1); a6 <- cbind(1:72+72,1:72+216)
a7 <- cbind(1:72+216,1:72+360); a8 <- cbind(73:504,rep(505,432))
i2 <- rep(Vtemp4[1:35],8)+rep(c(5:8,5:8+36),each=35)
a9 <- cbind(i2,rep(Vtemp4[1:35],8)+2+36)
a10 <- cbind(1,i2); a11 <- cbind(2,i2)
a12 <- cbind(i2,rep(Vtemp4[1:35],8)+rep(c(5:8+36,5:8+36),each=35))
a13 <- cbind(i2,rep(Vtemp4[1:35],8)+rep(c(3,3,4,4,3,3,4,4)+36,each=35))
a14 <- matrix(NA,7*6*8*5,7)
i3 <- Vtemp4[rep(rep(1:5,7*6),each=8)+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(5:8,5:8+36),5*6*7)
a14[,1] <- Vtemp4[rep(rep(1:5,7*6),each=8)+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(5:8,5:8+36),5*6*7)
a14[,2] <- Vtemp4[2+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
a14[,3] <- Vtemp4[3+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
a14[,4] <- Vtemp4[4+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
a14[,5] <- Vtemp4[4+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
a14[,6] <- Vtemp4[4+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
a14[,7] <- Vtemp4[5+rep(rep(rep(0:6*5,each=5),6),each=8)]+rep(c(3,3,4,4,3,3,4,4)+36,5*6*7)
i4 <- rep(0:6,each=10)+1; i5 <- rep(0:6,each=2*5*5)+1
a15 <- cbind(rep(rep(c(1,37),each=5),7)+(i4-1)*72,rep(rep(c(1,37),each=5),7)+(i4-1)*72+1+rep(0:4,14)*7)
a16 <- cbind(rep(rep(c(1,37),each=5),7)+(i4-1)*72,rep(rep(c(1,37),each=5),7)+(i4-1)*72+2+rep(0:4,14)*7)
a17 <- cbind(rep(rep(c(1,37),each=5),7)+(i4-1)*72,rep(rep(c(1,37),each=5),7)+(i4-1)*72+3+rep(0:4,14)*7)
a18 <- cbind(rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+rep(0:4*7,7*2*5),rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+0+rep(rep(0:4,each=5),7*2)*7)
a19 <- cbind(rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+rep(0:4*7,7*2*5),rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+1+rep(rep(0:4,each=5),7*2)*7)
a20 <- cbind(rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+rep(0:4*7,7*2*5),rep(rep(c(2,38),each=5*5),7)+(i5-1)*72+2+rep(rep(0:4,each=5),7*2)*7)
a21 <- cbind(Vtemp1[1:70]+3,Vtemp1[1:70]+5); a22 <- cbind(Vtemp1[1:70]+3,Vtemp1[1:70]+6)
a23 <- cbind(Vtemp1[1:70]+4,Vtemp1[1:70]+7); a24 <- cbind(Vtemp1[1:70]+4,Vtemp1[1:70]+8)
a25 <- cbind(1:72,1:72+72); a26 <- cbind(1:72+360,1:72+432); a27 <- cbind(1:72+216,1:72+288)
i6 <- rep(0:13*36,each=35)+1; a28 <- cbind(rep(0:13*36,each=35)+1,rep(0:13*36,each=35)+rep(2:36,14))
i7 <- rep(0:13*36,each=30*6)+rep(rep(c(1,2,9,16,23,30),each=30),14); a29 <- cbind(rep(0:13*36,each=30*6)+rep(rep(c(1,2,9,16,23,30),each=30),14),rep(Vtemp7[1:30],6*14)+rep(0:13*36,each=30*6))
i8 <- rep(0:1*36,each=30)+1; a30 <- cbind(rep(0:1*36,each=30)+1,rep(Vtemp7[1:30],2)+rep(0:1*36,each=30))
i9 <- rep(2:13*36,each=30)+1; a31 <- cbind(rep(2:13*36,each=30)+1,rep(Vtemp7[1:30],12)+rep(2:13*36,each=30))
i10 <- rep(0:1*36,each=30*5)+rep(rep(c(2,9,16,23,30),each=30),2); a32 <- cbind(rep(0:1*36,each=30*5)+rep(rep(c(2,9,16,23,30),each=30),2),rep(Vtemp7[1:30],2*5)+rep(0:1*36,each=30*5))
i11 <- rep(2:13*36,each=30*5)+rep(rep(c(2,9,16,23,30),each=30),12); a33 <- cbind(rep(2:13*36,each=30*5)+rep(rep(c(2,9,16,23,30),each=30),12),rep(Vtemp7[1:30],12*5)+rep(2:13*36,each=30*5))
i12 <- rep(0:13*36,each=11*5)+rep(rep(c(1,2,3,9,10,16,17,23,24,30,31),each=5),14); a34 <- cbind(rep(0:13*36,each=11*5)+rep(rep(c(1,2,3,9,10,16,17,23,24,30,31),each=5),14),rep(c(4,11,18,25,32),11*14)+rep(0:13*36,each=11*5))
i13 <- rep(2:13*36,each=11*5)+rep(rep(c(1,2,3,9,10,16,17,23,24,30,31),each=5),12); a35 <- cbind(rep(2:13*36,each=11*5)+rep(rep(c(1,2,3,9,10,16,17,23,24,30,31),each=5),12),rep(c(4,11,18,25,32),11*12)+rep(2:13*36,each=11*5))
i14 <- rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14); a36 <- cbind(rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14),rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14)+3)
i15 <- rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14); a37 <- cbind(rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14),rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14)+2)
i16 <- rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14); a38 <- cbind(rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14),rep(0:13*36,each=5)+rep(c(4,11,18,25,32),14)+4)
i17 <- rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14); a39 <- cbind(rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14),rep(0:13*36,each=5)+rep(c(3,10,17,24,31),14)+3)
i18 <- rep(0:6*72,each=8*16)+rep(rep(c(10:11,17:18,24:25,31:32),each=16),7); a40 <- cbind(rep(0:6*72,each=8*16)+rep(rep(c(10:11,17:18,24:25,31:32),each=16),7),rep(c(12:15,19:22,26:29,33:36),8*7)+rep(0:6*72,each=8*16))
i19 <- rep(0:6*72,each=4*8)+rep(rep(c(24:25,31:32),each=8),7); a41 <- cbind(rep(0:6*72,each=4*8)+rep(rep(c(24:25,31:32),each=8),7),rep(c(26:29,33:36),4*7)+rep(0:6*72,each=4*8))
i20 <- rep(0:6*72,each=2*4)+rep(rep(31:32,each=4),7); a42 <- cbind(rep(0:6*72,each=2*4)+rep(rep(31:32,each=4),7),rep(33:36,2*7)+rep(0:6*72,each=2*4))
i21 <- rep(0:6*72+36,each=8*16)+rep(rep(c(10:11,17:18,24:25,31:32),each=16),7); a43 <- cbind(rep(0:6*72+36,each=8*16)+rep(rep(c(10:11,17:18,24:25,31:32),each=16),7),rep(c(12:15,19:22,26:29,33:36),8*7)+rep(0:6*72+36,each=8*16))
i22 <- rep(0:6*72+36,each=4*8)+rep(rep(c(24:25,31:32),each=8),7); a44 <- cbind(rep(0:6*72+36,each=4*8)+rep(rep(c(24:25,31:32),each=8),7),rep(c(26:29,33:36),4*7)+rep(0:6*72+36,each=4*8))
i23 <- rep(0:6*72+36,each=2*4)+rep(rep(31:32,each=4),7); a45 <- cbind(rep(0:6*72+36,each=2*4)+rep(rep(31:32,each=4),7),rep(33:36,2*7)+rep(0:6*72+36,each=2*4))
a46 <- cbind(1:505,1:505)
########################################################
########################################################
### B. SETTING UP STATIC PARTS OF RATE MATRIX (FOR SPEED OF TIMESTEP FUNCTION)
RateMatStat<- matrix(0,nrow=505,ncol=505); rownames(RateMatStat) <- StatNam; colnames(RateMatStat) <- StatNam
### B1. BREAKDOWN TO ACTIVE DISEASE (Stay in HIV / Resistance / Treatment subdivisions)
RateMatStat[a1] <- VrBreakD[j1]*(1-VpToIp[j1]); RateMatStat[a2] <- VrBreakD[j1]*VpToIp[j1]
### B2. SMEAR NEG CONVERT TO SMEAR POS (Stay in HIV / Resistance / Treatment subdivisions)
RateMatStat[a3] <- rNtoP
### B3. SPONTANEOUS CURE (Stay in HIV / Resistance / Treatment subdivisions)
RateMatStat[a4] <- VrIToLs[j1]; RateMatStat[a5] <- VrIToLs[j1]
### B4. HIV Progression
RateMatStat[a6] <- H1toH2; RateMatStat[a7] <- H2toH3
### B5. POPULATE MORTALITY RATES
RateMatStat[a8] <- rep(VmuHIV,each=72) # HIV mortality
Vtemp1shift3 = Vtemp1 + 3
Vtemp1shift4 = Vtemp1 + 4
RateMatStat[Vtemp1shift3,505] <- RateMatStat[Vtemp1shift3,505] + muIn # Untreated Smear-neg TB mortality
RateMatStat[Vtemp1shift4,505] <- RateMatStat[Vtemp1shift4,505] + muIp # Untreated Smear-pos TB mortality
VTrStatz <- rep(0,504) # Creates a vector for contact rates
VTrStatz[Vtemp1shift3] <- rep(TrIn*RelFit,14) # Contact rates for smear neg
VTrStatz[Vtemp1shift4] <- rep(RelFit,14) # Contact rates for smear pos
#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%
#%#%
timestep <- function(Vcurrent,t,ArtNdCov11,DIAG,OutMat1) { # Start of function!
#%#%
#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%
### C1. ADD NEW ENTRANTS TO STATE VECTOR
Vnext <- Vcurrent # Initializes new vector
Vnext[505] <- 0 # Clears out deaths
Vnext[1] <- Vnext[1] + NewEntt[t]*1000000 # Adds new entrants to NU0Su based on birth rate
### Compute the relative weights of each diacgnostic
coeff1 = (1 - PhaseIn1[t]) * (1 - PhaseIn2[t])
coeff2 = PhaseIn1[t] * (1 - PhaseIn2[t])
coeff3 = 0
if (DIAG == 1) {
coeff1 = coeff1 + PhaseIn2[t]
}
else if (DIAG == 2) {
coeff2 = coeff2 + PhaseIn2[t]
}
else { # DIAG = 3
coeff3 = coeff3 + PhaseIn2[t]
}
### TREATMENT TRANSITIONS, BY ALGORITHM
### B5. POPULATE MORTALITY RATES
RateMatStat[Vtemp6,505] <- RateMatStat[Vtemp6,505] + (coeff1/TxMatAlg1[1,Vtemp6] + coeff2/TxMatAlg2[1,Vtemp6] + coeff3/TxMatAlg3[1,Vtemp6]) *2*rep(c(muIn,muIn,muIp,muIp),70)*TunTxMort # Treatment TB mortality
RateMatStat[Vtemp9[101:120],505] <- muTBH # TB-HIV mortality for CD4 350
# Vector of current contact rates...
VTrStatz[Vtemp6] = (1 - (coeff1 * TxMatAlg1[2,Vtemp6] + coeff2 * TxMatAlg2[2,Vtemp6] + coeff3 * TxMatAlg3[2,Vtemp6]) * TxEft[t]) * rep(rep(c(TrIn, TrIn, 1, 1), 5) * rep(RelFit, each=4), 14)
# Contact rates for individuals on treatment
### B5. TREATMENT OUTCOMES (Stay in HIV / Resistance subdivisions)
RateMatStat[a9] <- RateMatStat[a9] + (coeff1*TxMatAlg1[a11]/TxMatAlg1[a10] + coeff2*TxMatAlg2[a11]/TxMatAlg2[a10] + coeff3*TxMatAlg3[a11]/TxMatAlg3[a10])*(12*TxEft[t]) # Cures back to Ls state, treatment experienced subdivision
RateMatStat[a12] <- RateMatStat[a12] + (coeff1*(1-TxEft[t]*TxMatAlg1[a11])/TxMatAlg1[a10] +coeff2*(1-TxEft[t]*TxMatAlg2[a11])/TxMatAlg2[a10] + coeff3*(1-TxEft[t]*TxMatAlg3[a11]) / TxMatAlg3[a10]) * (12*pReTx) # Failures identified and reinitiated on treatment, treatment experienced subdivision
vec1 = apply(cbind(0, 12 / TxMatAlg1[a10] * (rep(rep(c(pDeft[t], pDefND), each=35), 4) + (1 - TxEft[t] * TxMatAlg1[a11]) * (1-pReTx)) - colSums(TxMatAlg1[3:8, i2])), 1, max)
vec2 = apply(cbind(0, 12 / TxMatAlg2[a10] * (rep(rep(c(pDeft[t], pDefND), each=35), 4) + (1 - TxEft[t] * TxMatAlg2[a11]) * (1-pReTx)) - colSums(TxMatAlg2[3:8, i2])), 1, max)
vec3 = apply(cbind(0, 12 / TxMatAlg3[a10] * (rep(rep(c(pDeft[t], pDefND), each=35), 4) + (1 - TxEft[t] * TxMatAlg3[a11]) * (1-pReTx)) - colSums(TxMatAlg3[3:8, i2])), 1, max)
RateMatStat[a13] <- RateMatStat[a13] + (coeff1 * vec1 + coeff2 * vec2 + coeff3 * vec3) # Defaulters and failures to active disease
for(k in 1:6) {
RateMatStat[a14[,c(1,k+1)]] <- RateMatStat[a14[,c(1,k+1)]] + coeff1 * TxMatAlg1[k+2,i3] + coeff2 * TxMatAlg2[k+2,i3] + coeff3 * TxMatAlg3[k+2,i3]
} # Defaulters and failures to active disease with Acquired Resistance
### C3. UPDATE MORTALITY RATES WITH BACKGROUND MORTALITY
RateMatStat[-505,505] <- RateMatStat[-505,505]+mubt[t]
### C4. TB INCIDENCE (Can change strain subdivision, stay in HIV / treatment subd.)
VInf <- Vnext[1:504]/sum(Vnext[1:504])*VTrStatz*CRt[t] # P(meet carrier)*CR|carrier, homogeneous mixing
m <- c(sum(VInf[Vtemp2+0*7]),sum(VInf[Vtemp2+1*7]),sum(VInf[Vtemp2+2*7]),sum(VInf[Vtemp2+3*7]),sum(VInf[Vtemp2+4*7])); m <- rep(m,14)
RateMatStat[a15] <- RateMatStat[a15]+m*(1-Vpfast[i4])
RateMatStat[a16] <- RateMatStat[a16]+m*Vpfast[i4]*(1-VpToIp[i4])
RateMatStat[a17] <- RateMatStat[a17]+m*Vpfast[i4]*VpToIp[i4]
### C5. SUPERINFECTION (Can change strain subdivision, stay in HIV / treatment subd.)
VSupInf <- VInf*(1-rep(VPartIm,each=72)) # As above, with partial immunity, homogeneous mixing
v <- c(sum(VSupInf[Vtemp2+0*7]),sum(VSupInf[Vtemp2+1*7]),sum(VSupInf[Vtemp2+2*7]),sum(VSupInf[Vtemp2+3*7]),sum(VSupInf[Vtemp2+4*7])); v <- v[rep(rep(1:5,each=5),7*2)]
RateMatStat[a18] <- RateMatStat[a18]+v*(1-Vpfast[i5])
RateMatStat[a19] <- RateMatStat[a19]+v*Vpfast[i5]*(1-VpToIp[i5])
RateMatStat[a20] <- RateMatStat[a20]+v*Vpfast[i5]*VpToIp[i5]
### C6. DIAGNOSIS AND TREATMENT STRATEGY (Stay in HIV / Resistance / Treatment subdivisions)
# C6a. Specifying diagnosis and treatment as a result of algorithm
TxMat = coeff1 * TxMatAlg1 + coeff2 * TxMatAlg2 + coeff3 * TxMatAlg3
TruPosD = coeff1 * TruPosDAlg1 + coeff2 * TruPosDAlg2 + coeff3 * TruPosDAlg3
FalsPosD = coeff1 * FalsPosDAlg1 + coeff2 * FalsPosDAlg2 + coeff3 * FalsPosDAlg3
TruPosDB = coeff1 * TruPosDAlgB1 + coeff2 * TruPosDAlgB2 + coeff3 * TruPosDAlgB3
FalsPosDB = coeff1 * FalsPosDAlgB1 + coeff2 * FalsPosDAlgB2 + coeff3 * FalsPosDAlgB3
VTestCostD= coeff1 * VTestCostD1 + coeff2 * VTestCostD2 + coeff3 * VTestCostD3
VTxCost = coeff1 * VTxCost1 + coeff2 * VTxCost2 + coeff3 * VTxCost3
GetXpt = coeff1 * GetXpt1 + coeff2 * GetXpt2 + coeff3 * GetXpt3
# C6b. Diagnosis and tx initiation
RateMatStat[a21] <- DTestt[t]*TruPosD[1:70*2-1]*rTstIn # From In to Tn1
RateMatStat[a22] <- NDTestt[t]*TruPosND[1:70*2-1]*rTstIn # From In to Tn2
RateMatStat[a23] <- DTestt[t]*TruPosD[1:70*2] # From Ip to Tp1
RateMatStat[a24] <- NDTestt[t]*TruPosND[1:70*2] # From Ip to Tp2
### C8. HIV INCIDENCE and ART ENROLLMENT
# HIV incidence
RateMatStat[a25] <- rHIVt[t]
firstInds = 217:288
secondInds = 361:432
RMDiag = RateMatStat[a46]
RMDiag1 = RMDiag[firstInds]
RMtemp1 = RateMatStat[firstInds, ]
RMDiag2 = RMDiag[secondInds]
RMtemp2 = RateMatStat[secondInds, ]
RMrowsum = c(rowSums(RMtemp1), rowSums(RMtemp2)) - c(RMDiag1, RMDiag2)
HAARTInds = c(145:216, 289:360, 433:504)
OnTx = sum(Vnext[HAARTInds]) - sum(Vnext[HAARTInds] %*% RateMatStat[HAARTInds, -HAARTInds]/12)
firstNext = Vnext[firstInds]
TxNeed350 = sum(firstNext) - (sum(firstNext %*% RMtemp1) - sum(firstNext * RMDiag1)) / 12
secondNext = Vnext[secondInds]
TxNeed200 = sum(secondNext) - (sum(secondNext %*% RMtemp2) - sum(secondNext * RMDiag2)) / 12
##### ART Enrollment up to end 2011
if(t<(12*61+1)) {
# Below assumes preferential uptake from CD4<200
VH3toT3A <- max(0,min(1,(ArtHistt[t]-OnTx)/(TxNeed200+10^-6)))*(12-RMrowsum[73:144])
VH2toT2A <- max(0,min(1,(ArtHistt[t]-OnTx-TxNeed200)/(TxNeed350+10^-6)))*(12-RMrowsum[1:72])
# Below assumes equal probability of uptake from CD4<200 and 200-350
VH3toT3B <- max(0,min(1,(ArtHistt[t]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[73:144])
VH2toT2B <- max(0,min(1,(ArtHistt[t]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[1:72]) } else {
##### ART Enrollment post 2011
# ART enrollment under demand constraint
if(ARTConstr==1) {
# Below assumes preferential uptake from CD4<200
VH3toT3A <- max(0,min(1,(ARTVolt[t-732]-OnTx)/(TxNeed200+10^-6)))*(12-RMrowsum[73:144])
VH2toT2A <- max(0,min(1,(ARTVolt[t-732]-OnTx-TxNeed200)/(TxNeed350+10^-6)))*(12-RMrowsum[1:72])
# Below assumes equal probability of uptake from CD4<200 and 200-350
VH3toT3B <- max(0,min(1,(ARTVolt[t-732]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[73:144])
VH2toT2B <- max(0,min(1,(ARTVolt[t-732]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[1:72]) }
##### ART enrollment without demand constraint
if(ARTConstr==0|(ARTConstr==2&DIAG==2)) {
PctCov <- c(seq(ArtNdCov11,ArtFutCov,length.out=10*12),rep(ArtFutCov,21*12))[t-732]
VH3toT3A <- max(0,min(1,(PctCov*sum(Vnext[217:504])-OnTx)/(TxNeed200+10^-6)))*(12-RMrowsum[73:144])
VH2toT2A <- max(0,min(1,(PctCov*sum(Vnext[217:504])-OnTx-TxNeed200)/(TxNeed350+10^-6)))*(12-RMrowsum[1:72])
# Below assumes equal probability of uptake from CD4<200 and 200-350
VH3toT3B <- max(0,min(1,(PctCov*sum(Vnext[217:504])-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[73:144])
VH2toT2B <- max(0,min(1,(PctCov*sum(Vnext[217:504])-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[1:72]) }
##### ART enrollment with constraint formed by Status Quo
if(ARTConstr==2&DIAG==3) {
xxx <- OutMat1[,"NArt"]
VH3toT3A <- max(0,min(1,(xxx[t]-OnTx)/(TxNeed200+10^-6)))*(12-RMrowsum[73:144])
VH2toT2A <- max(0,min(1,(xxx[t]-OnTx-TxNeed200)/(TxNeed350+10^-6)))*(12-RMrowsum[1:72])
# Below assumes equal probability of uptake from CD4<200 and 200-350
VH3toT3B <- max(0,min(1,(xxx[t]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[73:144])
VH2toT2B <- max(0,min(1,(xxx[t]-OnTx)/(TxNeed200+TxNeed350+10^-6)))*(12-RMrowsum[1:72]) } }
RateMatStat[a26] <- VH3toT3A*PriCD4200t[t] + VH3toT3B*(1-PriCD4200t[t])
RateMatStat[a27] <- VH2toT2A*PriCD4200t[t] + VH2toT2B*(1-PriCD4200t[t])
# C9. CONSTRUCT TRANSITION MATRIX
TransMat <- RateMatStat/12 # uses the rates to approximate the probabilities (means that probabilities are independent)
TransMat[a46] <- 1-(rowSums(TransMat)-TransMat[a46])
# C10. Calculate costs etc
CostTxD <- sum(Vnext[Vtemp1+5]*VTxCost[Vtemp1+5]+Vnext[Vtemp1+7]*VTxCost[Vtemp1+7])
CostTxND <- sum(Vnext[Vtemp1+6]*VTxCost[Vtemp1+6]+Vnext[Vtemp1+8]*VTxCost[Vtemp1+8])
CostRegD <- sum(Vnext[Vtemp1+5]*TxMat[9,Vtemp1+5]+Vnext[Vtemp1+7]*TxMat[9,Vtemp1+7])
CostRegND <- sum(Vnext[Vtemp1+6]*TxMat[9,Vtemp1+6]+Vnext[Vtemp1+8]*TxMat[9,Vtemp1+8])
CostFalsTxD <- sum(Vnext[Vtemp8]*rTstSL*DTestt[t]/12*FalsPosD*VTxCost[5]*1/(2+pDeft[t])*12)
CostFalsRegD <- sum(Vnext[Vtemp8]*rTstSL*DTestt[t]/12*FalsPosD*TxMat[9,5]*1/(2+pDeft[t])*12)
CostFalsTxND <- sum(Vnext[Vtemp8]*rTstSL*NDTestt[t]/12*FalsPosND*VTxCost[6]*1/(2+pDefND)*12)
CostFalsRegND <- sum(Vnext[Vtemp8]*rTstSL*NDTestt[t]/12*FalsPosND*TxMat[9,6]*1/(2+pDefND)*12)
CostART <- sum(Vnext[c(145:216,289:360,433:504)])*CArt
CostTestD <- sum(Vnext[-505]*Vtestfreq*DTestt[t]/12*VTestCostD)
CostTestND <- sum(Vnext[-505]*Vtestfreq*NDTestt[t]/12*VTestCostND)
# C10. MATRIX MULTIPLY TO UPDATE STATE VECTOR
Vnext <- Vnext%*%TransMat
# C11. OUTPUTS
# State Membership
Dead = Vnext[505]
Alive = Vnext[-505]
NAlive = sum(Alive)
Vout["NAll"] <- NAlive # Total N
Vout["Ndaly"] <- Alive%*%(1-VDwt) # Total N, adjusted for YLD from HIV and TB
Vout["NAnyTb"] <- NAlive - sum(Vnext[1+0:13*36]) # Any TB, incl latent infection and on treatment
Vout["NActDis"] <- sum(Vnext[Vtemp7]) # Active TB, incl those on treatment
Vout["NUnTx"] <- sum(Vnext[Vtemp9]) # Active TB, excl those on treatment
Vout["NUnTxH"] <- sum(Vnext[Vtemp9[21:140]]) # Active TB with HIV, excl those on treatment
smearPositiveInds = c(Vtemp1+4,Vtemp1+7,Vtemp1+8)
Vout["NSmP"] <- sum(Vnext[smearPositiveInds]) # Smear positive, incl those on treatment
indexVector1 = rep(3:4,7)+rep(0:6*72,each=2)
Vout["NStr1n"] <- sum(Vnext[indexVector1]) # Active TB not on tx, Pansensitive strain, tx naive
Vout["NStr2n"] <- sum(Vnext[indexVector1+7]) # Active TB not on tx, INH monores strain, tx naive
Vout["NStr3n"] <- sum(Vnext[indexVector1+14]) # Active TB not on tx, RIF monores strain, tx naive
Vout["NStr4n"] <- sum(Vnext[indexVector1+21]) # Active TB not on tx, MDR-TB strain, tx naive
Vout["NStr5n"] <- sum(Vnext[indexVector1+28]) # Active TB not on tx, MDR+ / XDR-TB strain, tx naive
indexVector2 = rep(39:40,7)+rep(0:6*72,each=2)
Vout["NStr1e"] <- sum(Vnext[indexVector2]) # Active TB not on tx, Pansensitive strain, tx experienced
Vout["NStr2e"] <- sum(Vnext[indexVector2+7]) # Active TB not on tx, INH monores strain, tx experienced
Vout["NStr3e"] <- sum(Vnext[indexVector2+14]) # Active TB not on tx, RIF monores strain, tx experienced
Vout["NStr4e"] <- sum(Vnext[indexVector2+21]) # Active TB not on tx, MDR-TB strain, tx experienced
Vout["NStr5e"] <- sum(Vnext[indexVector2+28]) # Active TB not on tx, MDR+ / XDR-TB strain, tx experienced
Vout["NTxD"] <- sum(Vnext[Vtemp1+5])+sum(Vnext[Vtemp1+7]) # DOTS Treatment
Vout["NTxND"] <- sum(Vnext[Vtemp1+6])+sum(Vnext[Vtemp1+8]) # Non-DOTS Treatment
Vout["NHiv"] <- sum(Vnext[73:504]) # HIV
Vout["NHiv350"] <- sum(Vnext[217:504]) # HIV CD4 <350
Vout["NArt"] <- sum(Vnext[HAARTInds]) # On HAART
Vout["NTbH"] <- sum(Vnext[Vtemp7[-(1:60)]]) # TB-HIV (HIV) incl those on treatment
Vout["NTxSp"] <- sum(Vnext[Vtemp1+7])+sum(Vnext[Vtemp1+8]) # Smear Positive on Treatment
Vout["NMDR"] <- sum(Vnext[rep(c(24,25,31,32),7)+rep(0:13*36,each=4)])# MDR, Active disease, not on treatment
# State Transitions
Vout["NMort"] <- Dead # All cause mortality
allMortality = Vnext * TransMat[,505]
Vout["NHivMort"] <- sum(allMortality[73:504]) # Mortality in HIV +ve
Vout["NTbMort"] <- sum(allMortality[Vtemp7]) # Mortality in Active TB / on treatment
Vout["NSmPMort"] <- sum(allMortality[smearPositiveInds]) # Mortality in Sm Pos Active TB / on treatment
Vout["NTbHMort"] <- sum(allMortality[Vtemp7[61:420]]) # Mortality in TB-HIV
Vout["NInf"] <- sum(Vnext[i6]*TransMat[a28]) # New infections (ignores superinfection)
Vout["NCase"] <- sum(Vnext[i7]*TransMat[a29]) # New TB Cases (active disease)
Vout["NCaseNF"] <- sum(Vnext[i8]*TransMat[a30]) # New TB Cases, HIV-Neg, Fast (active disease)
Vout["NCaseHF"] <- sum(Vnext[i9]*TransMat[a31]) # New TB Cases, HIV-Pos, Fast (active disease)
Vout["NCaseNS"] <- sum(Vnext[i10]*TransMat[a32]) # New TB Cases, HIV-Neg, Slow (active disease)
Vout["NCaseHS"] <- sum(Vnext[i11]*TransMat[a33]) # New TB Cases, HIV-Pos, Slow (active disease)
Vout["NCaseIp"] <- sum(Vnext[i12]*TransMat[a34]) # New Smear-positive TB Cases (from Su,Ls and In)
Vout["NCaseIpHiv"] <- sum(Vnext[i13]*TransMat[a35]) # New Smear-positive TB Cases in HIV CD4<500 (from Su,Ls and In)
Vout["SuspctD"] <- sum(Alive*Vtestfreq*DTestt[t]/12) # No suspects, DOTS programs
Vout["SuspctDTB"] <- sum((Alive*Vtestfreq*DTestt[t]/12)[Vtemp9])# No suspects, DOTS programs
Vout["SuspctND"] <- sum(Alive*Vtestfreq*NDTestt[t]/12) # No suspects, Non-DOTS programs
Vout["NCdIpD"] <- sum(Vnext[i14]*TransMat[a36]) # TB Case detections, Smear Pos, DOTS,(minus losses before tx init)
Vout["NCdInD"] <- sum(Vnext[i15]*TransMat[a37]) # TB Case detections, Smear Neg, DOTS,(minus losses before tx init)
Vout["NCdIpND"] <- sum(Vnext[i16]*TransMat[a38]) # TB Case detections, Smear Pos, NonDOTS,(minus losses before tx init)
Vout["NCdInND"] <- sum(Vnext[i17]*TransMat[a39]) # TB Case detections, Smear Neg, NonDOTS,(minus losses before tx init)
Vout["NCdFalsD"] <- sum(Vnext[Vtemp8]*rTstSL*DTestt[t]/12*FalsPosD) # False-positive diagnoses, DOTS ,(minus losses before tx init)
Vout["NCdFalsND"] <- sum(Vnext[Vtemp8]*rTstSL*NDTestt[t]/12*FalsPosND) # False-positive diagnoses, Non-DOTS ,(minus losses before tx init)
Vout["NTxResU"] <- sum(Vnext[i18]*TransMat[a40]) # Any resistance starting treatment (tx naive)
Vout["NTxMdrU"] <- sum(Vnext[i19]*TransMat[a41]) # MDR starting treatment (incl XDR) (tx naive)
Vout["NTxXdrU"] <- sum(Vnext[i20]*TransMat[a42]) # MDR+/XDR starting treatment (tx naive)
Vout["NTxResR"] <- sum(Vnext[i21]*TransMat[a43]) # Any resistance starting treatment (tx experienced)
Vout["NTxMdrR"] <- sum(Vnext[i22]*TransMat[a44]) # MDR starting treatment (incl XDR) (tx experienced)
Vout["NTxXdrR"] <- sum(Vnext[i23]*TransMat[a45]) # MDR+/XDR starting treatment (tx experienced)
# Costs
Vout["CostTxD"] <- CostTxD # Non-drug cost for treatment in DOTS programs
Vout["CostTxND"] <- CostTxND # Non-drug cost for treatment in Non-DOTS programs
Vout["CostRegD"] <- CostRegD # Drug cost for treatment in DOTS programs
Vout["CostRegND"] <- CostRegND # Drug cost for treatment in Non-DOTS programs
Vout["CostFalsTxD"] <- CostFalsTxD # Non-drug cost for treatment in DOTS programs
Vout["CostFalsTxND"] <- CostFalsTxND # Non-drug cost for treatment in Non-DOTS programs
Vout["CostFalsRegD"] <- CostFalsRegD # Drug cost for treatment in DOTS programs
Vout["CostFalsRegND"] <- CostFalsRegND # Drug cost for treatment in Non-DOTS programs
Vout["CostART"] <- CostART # HAART costs
Vout["CostTestD"] <- CostTestD # Diagnosis costs in DOTS programs
Vout["CostTestND"]<- CostTestND # Diagnosis costs in Non-DOTS programs
Vout["TC"] <- CostTxD+CostTxND+CostRegD+CostRegND+CostFalsTxD+CostFalsTxND+CostFalsRegD+CostFalsRegND+CostART+CostTestD+CostTestND # Vectorize?
# Total Costs
# Additional outcomes
eps = 10^-6
Vout["Check1"] <- min(TransMat[a46]) # Check to see p(stay in state) doesnt become negative
specialInds = Vtemp6[1:140*2-1]
VSpecialInds = Vnext[specialInds]
term0 = sum(VSpecialInds * (12/TxMat[1,specialInds] * TxEft[t] * TxMat[2,specialInds]))
term1 = sum(VSpecialInds * RateMatStat[specialInds,505])
term2 = sum(VSpecialInds * 12/TxMat[1,specialInds])
denominator = term1 + term2 * (1 + pDeft[t]) + eps
Vout["PfailDtx"] <- (term2 - term0) / denominator # Average failure probability in DOTS programs
Vout["PcureDtx"] <- term0 / denominator # Average cure probability in DOTS programs
Vout["PdfltDtx"] <- term2 * pDeft[t] / denominator # Average default probability in DOTS programs
Vout["PmortDtx"] <- term1 / denominator # Average mortality probability in DOTS programs
Vtemp1shift3and4 = c(Vtemp1+3,Vtemp1+4)
rowSumProducts = Vnext * rowSums(TransMat[,c(Vtemp1+2,Vtemp6,505)])
Vout["DurInfSn"] <- (1/12)/((sum(rowSumProducts[Vtemp1shift3]) + eps) /(sum(Vnext[Vtemp1shift3]) + eps)) # Duration of infectiousness smear negative
Vout["DurInfSp"] <- (1/12)/((sum(rowSumProducts[Vtemp1shift4]) + eps) /(sum(Vnext[Vtemp1shift4]) + eps )) # Duration of infectiousness smear positive
Vout["DurInfAll"] <- (1/12)/((sum(rowSumProducts[Vtemp1shift3and4]) + eps)/(sum(Vnext[Vtemp1shift3and4]) + eps)) # Duration of infectiousness, all
Vout["EffContRate"] <- sum(Vnext[Vtemp1shift3and4]*VTrStatz[Vtemp1shift3and4])/(sum(Vnext[Vtemp1shift3and4])+eps)*CRt[t] # Effective contact rate, untreated active disease
Vtemp9prefix = Vtemp9[1:20]
subMat2 = TransMat[Vtemp9prefix,]
Vnext2 = Vnext[Vtemp9prefix]
Vout["ExTbC"] <- sum(Vnext2 * rowSums(subMat2[,Vtemp1+2]))
Vout["ExTbT"] <- sum(Vnext2 * rowSums(subMat2[,Vtemp6]))
Vout["ExTbD"] <- sum(Vnext2 * subMat2[,505]) # Non-HIV Exits from active TB, self-cure/treatment/death
Vtemp9suffix = Vtemp9[21:140]
subMat3 = TransMat[Vtemp9suffix,]
Vnext3 = Vnext[Vtemp9suffix]
Vout["ExTbCH"] <- sum(Vnext3 * rowSums(subMat3[,Vtemp1+2]))
Vout["ExTbTH"] <- sum(Vnext3 * rowSums(subMat3[,Vtemp6]))
Vout["ExTbDH"] <- sum(Vnext3 * subMat3[,505]) # HIV Exits from active TB, self-cure/treatment/death
# Test Characteristics
NotifTBD = sum(Vnext[Vtemp9]*Vtestfreq[Vtemp9]*DTestt[t]/12*TruPosDB)
Vout["NotifD"] <- NotifTBD + sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*FalsPosDB) # DOTS Notifications (true and false positive, ignoring LTFU)
Vout["NotifTBD"] <- NotifTBD # DOTS Notifications (true positive, ignoring LTFU)
Vout["NotifND"] <- sum(Vnext[Vtemp9]*Vtestfreq[Vtemp9]*NDTestt[t]/12*TruPosNDB) +
sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*NDTestt[t]/12*FalsPosNDB) # Non-DOTS Notifications (true and false positive, ignoring LTFU)
Vout["PPVTb"] <- (sum(Vnext[Vtemp1+3]*Vtestfreq[Vtemp1+3]*DTestt[t]/12*TruPosDB[1:70*2-1]) +
sum(Vnext[Vtemp1+4]*Vtestfreq[Vtemp1+4]*DTestt[t]/12*TruPosDB[1:70*2]))/(Vout["NotifD"]+eps)
# Positive predictive value, DOTS TB diagnosis
Vout["NPVTb"] <- sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*(1-FalsPosDB))/((Vout["SuspctD"]-Vout["NotifD"])+eps)
# Negative predictive value, TB diagnosis
Vout["PPVRif"] <- (sum(Vnext[Vtemp1+3]*Vtestfreq[Vtemp1+3]*DTestt[t]/12*TruPosDB[1:70*2-1]*GetXpt[Vtemp1+3]*rep(c(rep(0,2),rep(SensXpRIF,3)),14)) +
sum(Vnext[Vtemp1+4]*Vtestfreq[Vtemp1+4]*DTestt[t]/12*TruPosDB[1:70*2]*GetXpt[Vtemp1+4]*rep(c(rep(0,2),rep(SensXpRIF,3)),14)))/
((sum(Vnext[Vtemp1+3]*Vtestfreq[Vtemp1+3]*DTestt[t]/12*TruPosDB[1:70*2-1]*GetXpt[Vtemp1+3]*rep(c(rep((1-SpecXpRIF),2),rep(SensXpRIF,3)),14)) +
sum(Vnext[Vtemp1+4]*Vtestfreq[Vtemp1+4]*DTestt[t]/12*TruPosDB[1:70*2]*GetXpt[Vtemp1+4]*rep(c(rep((1-SpecXpRIF),2),rep(SensXpRIF,3)),14))+
sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*FalsPosDB*GetXpt[Vtemp8])*(1-SpecXpRIF))+eps)
# Positive predictive value, RIF resistant diagnosis (with Xpert for all scenario)
Vout["NPVRif"] <- (sum(Vnext[Vtemp1+3]*Vtestfreq[Vtemp1+3]*DTestt[t]/12*TruPosDB[1:70*2-1]*GetXpt[Vtemp1+3]*rep(c(rep(SpecXpRIF,2),rep(0,3)),14)) +
sum(Vnext[Vtemp1+4]*Vtestfreq[Vtemp1+4]*DTestt[t]/12*TruPosDB[1:70*2]*GetXpt[Vtemp1+4]*rep(c(rep(SpecXpRIF,2),rep(0,3)),14))+
sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*FalsPosDB*GetXpt[Vtemp8])*SpecXpRIF)/
((sum(Vnext[Vtemp1+3]*Vtestfreq[Vtemp1+3]*DTestt[t]/12*TruPosDB[1:70*2-1]*GetXpt[Vtemp1+3]*rep(c(rep(SpecXpRIF,2),rep((1-SensXpRIF),3)),14)) +
sum(Vnext[Vtemp1+4]*Vtestfreq[Vtemp1+4]*DTestt[t]/12*TruPosDB[1:70*2]*GetXpt[Vtemp1+4]*rep(c(rep(SpecXpRIF,2),rep((1-SensXpRIF),3)),14))+
sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*FalsPosDB*GetXpt[Vtemp8])*SpecXpRIF)+eps)
# Negative predictive value, RIF resistant diagnosis (with Xpert for all scenario)
Vout["PDst"] <- (sum(Vnext[Vtemp9]*Vtestfreq[Vtemp9]*DTestt[t]/12*TruPosDB*rep(c(rep(pDstU*PhaseIn1[t],10),rep(pDstR*PhaseIn1[t],10)),7))+
sum(Vnext[Vtemp8]*Vtestfreq[Vtemp8]*DTestt[t]/12*FalsPosDB*rep(c(rep(pDstU*PhaseIn1[t],6),rep(pDstR*PhaseIn1[t],6)),7)))/(Vout["NotifD"]+eps)
# No. getting a DST, UNDER BASECASE ALGORITHM
Vout["GetXpt"] <- sum(Alive*Vtestfreq*DTestt[t]/12*GetXpt)
Vout["ArtCov"] <- sum(Vnext[HAARTInds])/sum(Vnext[73:504])
Vout["ArtNdCov"] <- sum(Vnext[c(289:360,433:504)])/sum(Vnext[217:504])
Vout["Art200Cov"] <- sum(Vnext[433:504])/sum(Vnext[361:504])
### Added by Leonid Chindelevitch on October 23, 2012
# NumN0 = sum(Vnext[1:72 + 0 * 72])
# NumH1 = sum(Vnext[1:72 + 1 * 72])
# NumT1 = sum(Vnext[1:72 + 2 * 72])
# NumH2 = sum(Vnext[1:72 + 3 * 72])
# NumT2 = sum(Vnext[1:72 + 4 * 72])
# NumH3 = sum(Vnext[1:72 + 5 * 72])
# NumT3 = sum(Vnext[1:72 + 6 * 72])
# Nums = c(NumN0, NumH1, NumT1, NumH2, NumT2, NumH3, NumT3)
# Computing the distribution between HIV compartments
Nums = sapply(split(Alive, rep(0:6, each = 72)), sum)
# Normalization
Nums = Nums/sum(Nums)
# Naming the compartments
names(Nums) = c("NumN0", "NumH1", "NumT1", "NumH2", "NumT2", "NumH3", "NumT3")
# Random values for now, find right ones!
relInfect = c(0, 1, 0.05, 7, 0.05, 7, 0.05)
X = rHIVt[t] / sum(relInfect * Nums)
#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%
#%#%
return(list(Vnext=Vnext,Vout=Vout, X=X))
} # End of function!
#%#%
#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%#%
# sum(RateMateInit-RateMat);sum(VoutInit-Vout);sum(VnextInit-Vnext)