We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AIS_Kriging_S contrib method fails. It now removed from the end to end tests.
AIS_Kriging_S
How to reproduce:
scenario = Scenario(2, [0.25, 0.75], epoch_count=4, minibatch_count=2, dataset_name='mnist', contributivity_methods=["AIS_Kriging_S"], dataset_proportion=0.1) exp = Experiment(scenarios_list=[scenario]) exp.run()
Stacktrace:
--------------------------------------------------------------------------- LinAlgError Traceback (most recent call last) <ipython-input-5-8d35b47f50db> in <module> 2 contributivity_methods=["AIS_Kriging_S"], dataset_proportion=0.1) 3 exp = Experiment(scenarios_list=[scenario]) ----> 4 exp.run() ~/code/distributed-learning-contributivity/mplc/experiment.py in run(self) 162 else: 163 scenario = blank_scenario.copy(repeat_count=repeat_idx) --> 164 scenario.run() 165 166 # Save scenario results ~/code/distributed-learning-contributivity/mplc/scenario.py in run(self) 572 logger.info(f"{method}") 573 contrib = contributivity.Contributivity(scenario=self) --> 574 contrib.compute_contributivity(method) 575 self.append_contributivity(contrib) 576 logger.info(f"Evaluating contributivity with {method}: {contrib}") ~/code/distributed-learning-contributivity/mplc/contributivity.py in compute_contributivity(self, method_to_compute, sv_accuracy, alpha, truncation, update) 1165 elif method_to_compute == "AIS_Kriging_S": 1166 # Contributivity 7: Adaptative importance sampling with Kriging model -> 1167 self.AIS_Kriging(sv_accuracy=sv_accuracy, alpha=alpha, update=update) 1168 elif method_to_compute == "SMCS": 1169 # Contributivity 8: Stratified Monte Carlo ~/code/distributed-learning-contributivity/mplc/contributivity.py in AIS_Kriging(self, sv_accuracy, alpha, update) 669 if t % update == 0: # renew the importance density g 670 j = t // update --> 671 make_models() 672 # ## compute the renormalization constant of the new importance density for all datatsets 673 renorms = [] ~/code/distributed-learning-contributivity/mplc/contributivity.py in make_models() 642 for k in range(n): 643 model_k = KrigingModel(2, cov[k]) --> 644 model_k.fit(datasets[k], outputs[k]) 645 models.append(model_k) 646 all_models.append(models) ~/code/distributed-learning-contributivity/mplc/contributivity.py in fit(self, X, Y) 45 self.invK = np.linalg.inv(K) 46 Ht_invK_H = H.transpose().dot(self.invK).dot(H) ---> 47 self.beta = np.linalg.inv(Ht_invK_H).dot(H.transpose()).dot(self.invK).dot(self.Y) 48 49 def predict(self, x): <__array_function__ internals> in inv(*args, **kwargs) ~/Library/Python/3.8/lib/python/site-packages/numpy/linalg/linalg.py in inv(a) 544 signature = 'D->D' if isComplexType(t) else 'd->d' 545 extobj = get_linalg_error_extobj(_raise_linalgerror_singular) --> 546 ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) 547 return wrap(ainv.astype(result_t, copy=False)) 548 ~/Library/Python/3.8/lib/python/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_singular(err, flag) 86 87 def _raise_linalgerror_singular(err, flag): ---> 88 raise LinAlgError("Singular matrix") 89 90 def _raise_linalgerror_nonposdef(err, flag): LinAlgError: Singular matrix
@bowni @arthurPignet @Thomas-Galtier
The text was updated successfully, but these errors were encountered:
We have decided to remove this method. To be done by @RomainGoussault
Sorry, something went wrong.
RomainGoussault
No branches or pull requests
AIS_Kriging_S
contrib method fails.It now removed from the end to end tests.
How to reproduce:
Stacktrace:
@bowni @arthurPignet @Thomas-Galtier
The text was updated successfully, but these errors were encountered: