-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
75 lines (70 loc) · 2.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import cv2
import mediapipe as mp
import sys
import os
import random
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For static images:
root = 'D:\CVlabortory\hand_detection'
path = os.path.join(root, 'pics')
filenames = os.listdir(path)
file_list = [os.path.join(path, filename) for filename in filenames]
hands = mp_hands.Hands(
static_image_mode=True,
max_num_hands=2,
min_detection_confidence=0.5)
for idx, file in enumerate(file_list):
# Read an image, flip it around y-axis for correct handedness output (see
# above).
image = cv2.flip(cv2.imread(file), 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Print handedness and draw hand landmarks on the image.
print('Handedness:', results.multi_handedness)
if not results.multi_hand_landmarks:
continue
image_hight, image_width, _ = image.shape
annotated_image = image.copy()
print(results.multi_hand_landmarks)
# for hand_landmarks in results.multi_hand_landmarks:
# print('hand_landmarks:', hand_landmarks)
# print(
# f'Index finger tip coordinates: (',
# f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * image_width}, '
# f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * image_hight})'
# )
# mp_drawing.draw_landmarks(
# annotated_image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
# cv2.imwrite(
# 'annotated_image' + str(idx) + '.png', cv2.flip(annotated_image, 1))
hands.close()
# # For webcam input:
# hands = mp_hands.Hands(
# min_detection_confidence=0.5, min_tracking_confidence=0.5)
# cap = cv2.VideoCapture(0)
# while cap.isOpened():
# success, image = cap.read()
# if not success:
# print("Ignoring empty camera frame.")
# # If loading a video, use 'break' instead of 'continue'.
# continue
# # Flip the image horizontally for a later selfie-view display, and convert
# # the BGR image to RGB.
# image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# # To improve performance, optionally mark the image as not writeable to
# # pass by reference.
# image.flags.writeable = False
# results = hands.process(image)
# # Draw the hand annotations on the image.
# image.flags.writeable = True
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# if results.multi_hand_landmarks:
# for hand_landmarks in results.multi_hand_landmarks:
# mp_drawing.draw_landmarks(
# image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
# cv2.imshow('MediaPipe Hands', image)
# if cv2.waitKey(5) & 0xFF == 27:
# break
# hands.close()
# cap.release()