-
Notifications
You must be signed in to change notification settings - Fork 28
/
limo_glm_boot.m
776 lines (671 loc) · 37 KB
/
limo_glm_boot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
function model = limo_glm_boot(varargin)
% Boostrap under the null for limo_glm
% Importantly call this works for one channel only, runing N bootstraps
% to obtain the distributon of F and associated p values under H0.
%
% H0 is obtained by centered data (categorical designs) and resampling them
% but leaving X intact, i.e. breaking the link between Y and X (centering
% is a little over-kill but that way we can make sure that even if random
% sampling end-up recreating conditions the null is true).
%
% For WLS and IRLS, Weights are passed along and used - at each bootsrap
% associating W and X. This turns out to be the closest option to be at the
% nominal alpha level. During the estimation X reduces the variances of
% residuals and thus we keep that correction. Recomputing breaking the link
% between X and Y leads to W that doesn't reduce the variance in the
% observed data, nor does it estimates properly the null of WY.
%
% FORMAT:
% model = limo_glm_boot(Y,LIMO,boot_table,channel)
% model = limo_glm_boot(Y,X,Weights,nb_conditions,nb_interactions,nb_continuous,method,analysis,boot_table)
%
% INPUTS
% Y = 2D matrix of EEG data with format trials x time frames
% LIMO is a structure that contains information below
% - LIMO.design.X = 2 dimensional design matrix
% - LIMO.Weights = a vector or matrix of Weights for X and Y (typically LIMO.design.weights(channel,:))
% - LIMO.design.nb_conditions = a vector indicating the number of conditions per factor
% - LIMO.design.nb_interactions = a vector indicating number of columns per interactions
% - LIMO.design.nb_continuous = number of covariates
% - LIMO.design.method = 'OLS', 'WLS', 'IRLS'
% boot_table is an optional argument - this is the resampling table
% if one calls limo_glm_boot to loop throughout channels,
% this might a good idea to provide such table so that
% the same resampling applies to each channel
%
% NOTE
% - Unlike limo_glm this function doesn't handle Time-Frequency data
% meaning that a frequency loop should be created outside the function
% to iterate - allowing the save directly 5D H0 data.
% - For IRLS/WLS, weights are also passed so that resmapling is performed
% fitting resampled data to the non resampled WX; otherwise use a matrix of ones.
%
% See also
% LIMO_GLM_HANDLING, LIMO_GLM, LIMO_WLS, LIMO_IRLS
%
% Cyril Pernet
% ------------------------------
% Copyright (C) LIMO Team 2020
%% varagin
if nargin == 2 || nargin == 3
y = varargin{1};
X = varargin{2}.design.X;
nb_conditions = varargin{2}.design.nb_conditions;
nb_interactions = varargin{2}.design.nb_interactions;
nb_continuous = varargin{2}.design.nb_continuous;
method = varargin{2}.design.method;
Weights = varargin{2}.Weights;
if nargin == 2
nboot = 800;
boot_table = randi(size(y,1),size(y,1),nboot);
elseif nargin ==3
boot_table = varargin{3};
nboot = size(boot_table,2);
end
elseif nargin == 8 || nargin == 9
y = varargin{1};
X = varargin{2};
Weights = varargin{3};
nb_conditions = varargin{4};
nb_interactions = varargin{5};
nb_continuous = varargin{6};
method = varargin{7};
if nargin == 8
nboot = 800;
boot_table = randi(size(y,1),size(y,1),nboot);
elseif nargin == 9
boot_table = varargin{9};
nboot = size(boot_table,2);
end
else
error('varargin error in limo_glm_boot')
end
if isempty(nb_conditions); nb_conditions = 0; end
if isempty(nb_interactions); nb_interactions = 0; end
if isempty(nb_continuous); nb_continuous = 0; end
nb_factors = numel(nb_conditions);
if nb_factors == 1 && nb_conditions == 0
nb_factors = 0;
end
% -----------
%% Data check
% -----------
if ndims(y) > 2 %#ok<ISMAT>
error('limo_glm_boot runs only on 2D data')
end
if size(y,1)~=size(X,1)
error('The number of events in Y and the design matrix are different')
end
if nb_interactions == 0
nb_interactions = [];
end
clear varargin
% ---------------
%% Get null data
% ---------------
centered_y = limo_glm_null(y,X,nb_conditions,nb_interactions);
% compute for each bootstrap
% ---------------------------
BETASB = cell(1,nboot);
MODELR2 = cell(1,nboot);
MODELF = cell(1,nboot);
MODELp = cell(1,nboot);
if nb_factors ~= 0
F_CONDVALUES = cell(1,nboot);
p_CONDVALUES = cell(1,nboot);
end
if ~isempty(nb_interactions)
F_INTERVALUES = cell(1,nboot);
p_INTERVALUES = cell(1,nboot);
end
if nb_continuous ~=0
F_CONTVALUES = cell(1,nboot);
p_CONTVALUES = cell(1,nboot);
end
switch method
% same results as calling iteratively
% model = limo_glm(Y,varargin{2});
% -----------------------------------------------------------------
case {'OLS','WLS'}
parfor B = 1:nboot
%% Compute model parameters
% ------------------------------
% random sample Y only
Y = centered_y(boot_table(:,B),:); %#ok<PFBNS> % resample Y
% compute Beta parameters
if strcmp(method,'OLS')
W = ones(size(centered_y,1),1);
WX = X;
if nb_continuous ~=0 && nb_factors == 0
Betas = X\Y; % numerically more stable than pinv
else
Betas = pinv(X)*Y;
end
elseif strcmp(method,'WLS')
W = Weights(boot_table(:,B)); %#ok<PFBNS> apply same sampling as Y
WY = Y .* repmat(W,1,size(Y,2));
WX = X .* repmat(W,1,size(X,2));
Betas = pinv(WX)*WY;
end
% Betas bootstap
BETASB{B} = Betas';
%% Compute model statistics
% ------------------------------
% total sum of squares, projection matrix for errors, residuals
% --------------------------------------------------------------
T = (Y-repmat(mean(Y),size(Y,1),1))'*(Y-repmat(mean(Y),size(Y,1),1)); % SS Total (the data)
R = eye(size(Y,1)) - WX*pinv(WX); % Projection onto E
E = Y'*R*Y; % SS Error
% degrees of freedom
% -------------------
df = rank(WX)-1;
if strcmp(method,'OLS')
dfe = size(Y,1)-rank(WX);
else
HM = WX*pinv(WX); % Hat matrix, projection onto X
dfe = trace((eye(size(HM))-HM)'*(eye(size(HM))-HM)); % in most cases same as OLS
end
% model R^2
% -----------
C = eye(size(X,2));
C(:,size(X,2)) = 0; % all columns but the constant
C0 = eye(size(X,2)) - C*pinv(C); % only the constant
X0 = WX*C0; % Reduced model design matrix
R0 = eye(size(Y,1)) - (X0*pinv(X0)); % Projection onto error
M = R0 - R; % Projection matrix onto Xc
H = (Betas'*X'*M*X*Betas); % SS Effects
Rsquare = diag(H)./diag(T); % Variance explained
F_Rsquare = (diag(H)./df) ./ (diag(E)/dfe);
p_Rsquare = 1 - fcdf(F_Rsquare, df, dfe);
% ----------------------------
%% update the model structure
% ----------------------------
MODELR2{B} = Rsquare;
MODELF{B} = F_Rsquare;
MODELp{B} = p_Rsquare;
%% Compute effects
% ------------------
% -------------------------
if nb_factors == 1 % 1-way ANOVA
% -------------------------
% compute F for categorical variables
% -----------------------------------
if nb_conditions ~= 0 && nb_continuous == 0
F_conditions = F_Rsquare;
pval_conditions = p_Rsquare;
elseif nb_conditions ~= 0 && nb_continuous ~= 0
C = eye(size(X,2));
C(:,(nb_conditions+1):size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % here the reduced model includes the covariates
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for all categorical regressors (1 factor)
H = (Betas'*X'*M*X*Betas);
df_conditions = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS; same as tr(M)?
F_conditions = (diag(H)/df) ./ (diag(E)/dfe);
pval_conditions = 1 - fcdf(F_conditions(:), df_conditions, dfe);
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && isempty(nb_interactions) % N-ways ANOVA without interactions
% ------------------------------------------------
% --------------------------------------
% compute F and p values of each factor
% --------------------------------------
df_conditions = NaN(1,length(nb_conditions));
F_conditions = NaN(length(nb_conditions),size(Y,2));
pval_conditions = NaN(length(nb_conditions),size(Y,2));
% define the effect of interest (eoi)
eoi = zeros(1,size(X,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(X,2));
C(:,eoni) = 0; % set all but factor of interest to 0
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % the reduced model include all but the factor f
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for factor f
H = (Betas'*X'*M*X*Betas);
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (diag(H)/df_conditions(f)) ./ (diag(E)/dfe);
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(X,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
end
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
% ------------------------------------------------
% ---------------------------------------------------
% start by ANOVA without interaction for main effects
% ---------------------------------------------------
H = NaN(length(nb_conditions),size(Y,2));
df_conditions = NaN(1,length(nb_conditions));
F_conditions = NaN(length(nb_conditions),size(Y,2));
pval_conditions = NaN(length(nb_conditions),size(Y,2));
HI = NaN(length(nb_interactions),size(Y,2));
df_interactions = NaN(1,length(nb_interactions));
F_interactions = NaN(length(nb_interactions),size(Y,2));
pval_interactions = NaN(length(nb_interactions),size(Y,2));
% covariates
covariate_columns = (sum(nb_conditions)+sum(nb_interactions)+1):(size(X,2)-1);
% main effects
dummy_columns = 1:sum(nb_conditions);
% re-define X
x = [X(:,dummy_columns) X(:,covariate_columns) ones(size(X,1),1)];
% run same model as above with re-defined model x and
% using the weights from the full model
wx = x.*repmat(W,1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W,1,size(Y,2)));
R = eye(size(Y,1)) - wx*pinv(wx);
eoi = zeros(1,size(x,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H(f,:) = diag((betas'*x'*M*x*betas));
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (H(f,:)./df_conditions(f)) ./ (diag(E)./dfe)'; % note dfe from full model
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(x,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
end
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ---------------------------
% now deal with interactions
% ---------------------------
if nb_factors == 2 && nb_continuous == 0 % the quick way with only one interaction
HI = diag(T)' - H(1,:) - H(2,:) - diag(E)';
df_interactions = prod(df_conditions);
F_interactions = (HI./df_interactions) ./ (diag(E)/dfe)';
pval_interactions = 1 - fcdf(F_interactions, df_interactions, dfe);
else % run through each interaction
% part of X unchanged
Main_effects = X(:,dummy_columns);
Cov_and_Mean = [X(:,covariate_columns) ones(size(Y,1),1)];
index = 1;
Ifactors = NaN(1,length(nb_interactions));
interaction = cell(1,length(nb_interactions));
for n=2:nb_factors
combinations = nchoosek(1:nb_factors,n); % note it matches X below because computed the same way in limo_design_matrix
for c = 1:size(combinations,1)
Ifactors(index) = length(combinations(c,:));
interaction{index} = combinations(c,:);
index = index + 1;
end
end
% loop through interactions
% substituting and/or incrementing parts of X
Istart = size(Main_effects,2)+1; % where we start interaction in X
Ilowbound = size(Main_effects,2)+1;
for f=1:length(nb_interactions)
I = X(:,Istart:(Istart+nb_interactions(f)-1));
if length(interaction{f}) == 2 % 1st oder interaction is main + I
x = [Main_effects I Cov_and_Mean];
else % higher oder inteaction includes lower levels
Isize = sum(nb_interactions(1:find(Ifactors == Ifactors(f),1) - 1));
Ihighbound = size(Main_effects,2)+Isize;
x = [Main_effects X(:,Ilowbound:Ihighbound) I Cov_and_Mean];
end
eoibound = size(x,2) - size(I,2) - size(Cov_and_Mean,2);
% run same model as above
wx = x.*repmat(W,1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W,1,size(Y,2)));
R = eye(size(Y,1)) - (wx*pinv(wx));
eoi = zeros(1,size(x,2));
eoi(eoibound+1:(eoibound+nb_interactions(f))) = eoibound+1:(eoibound+nb_interactions(f));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
C = eye(size(x,2));
C(:,eoni) = 0; %#ok<FNDSB>
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
HI(f,:) = diag((betas'*x'*M*x*betas))';
df_interactions(f) = prod(df_conditions(interaction{f}));
F_interactions(f,:) = (HI(f,:)./df_interactions(f)) ./ (diag(E)/dfe)';
pval_interactions(f,:) = 1 - fcdf(F_interactions(f,:), df_interactions(f), dfe);
Istart = Istart+nb_interactions(f);
end
end
F_INTERVALUES{B} = F_interactions;
p_INTERVALUES{B} = pval_interactions;
end
% -----------------------------------
%% compute F for continuous variables
% -----------------------------------
if nb_continuous ~=0
if nb_factors == 0 && nb_continuous == 1 % simple regression
F_CONTVALUES{B} = F_Rsquare;
p_CONTVALUES{B} = p_Rsquare;
else % ANCOVA
% pre-allocate space
df_continuous = NaN(nb_continuous,size(Y,2));
F_continuous = NaN(nb_continuous,size(Y,2));
pval_continuous = NaN(nb_continuous,size(Y,2));
% compute
N_conditions = sum(nb_conditions) + sum(nb_interactions);
for n = 1:nb_continuous
C = zeros(size(X,2));
C(N_conditions+n,N_conditions+n) = 1; % pick up one regressor at a time
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % all but rehressor of interest
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for regressor of interest
H = Betas'*X'*M*X*Betas;
df_continuous(n) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C) if OLS;
F_continuous(n,:) = (diag(H)./(df_continuous(n))) ./ (diag(E)/dfe);
pval_continuous(n,:) = 1 - fcdf(F_continuous(n,:), 1, dfe); % dfe same as size(Y,1)-rank(X) if OLS
end
F_CONTVALUES{B} = F_continuous';
p_CONTVALUES{B} = pval_continuous';
end
end
end
%% ---------------------------------------------------------------------
case 'IRLS'
fprintf('... be patient IRLS is slow - running %g bootstraps\n',nboot)
parfor B = 1:nboot
% compute passing resampled centered_y and W
[BETASB{B},MODELR2{B}, MODELF{B},MODELp{B},...
F_CONDVALUES{B}, p_CONDVALUES{B}, F_INTERVALUES{B}, p_INTERVALUES{B}, ...
F_CONTVALUES{B},p_CONTVALUES{B}]=glm_iterate(centered_y(boot_table(:,B),:),X,...
Weights(:,boot_table(:,B))',nb_conditions, nb_interactions, nb_continuous)
end
end
% fprintf('channel type 1 error rate: %g\n',mean(mean(cell2mat(MODELp)<0.05,2)))
model.R2_univariate = MODELR2; clear MODELR2
model.F = MODELF; clear MODELF
model.p = MODELp; clear MODELp
model.betas = BETASB; clear BETASB
if nb_factors ~= 0
model.conditions.F = F_CONDVALUES; clear F_CONDVALUES
model.conditions.p = p_CONDVALUES; clear p_CONDVALUES
end
if ~isempty(nb_interactions)
model.interactions.F = F_INTERVALUES; clear F_INTERVALUES
model.interactions.p = p_INTERVALUES; clear p_INTERVALUES
end
if nb_continuous ~=0
model.continuous.F = F_CONTVALUES; clear F_CONTVALUES
model.continuous.p = p_CONTVALUES; clear p_CONTVALUES
end
end
%% ----------------------------------------------------------------------------------------
function [Betas,Rsquare, F_Rsquare,p_Rsquare,...
F_conditions, pval_conditions, F_interactions, pval_interactions, ...
F_continuous,pval_continuous] = glm_iterate(Y,X,W,nb_conditions, nb_interactions, nb_continuous)
nb_factors = numel(nb_conditions);
if nb_factors == 1 && nb_conditions == 0
nb_factors = 0;
end
% pre-allocate memory space
Rsquare = NaN(1,size(Y,2));
F_Rsquare = NaN(1,size(Y,2));
p_Rsquare = NaN(1,size(Y,2));
df = NaN(1,size(Y,2));
dfe = NaN(1,size(Y,2));
dof = NaN(2,size(Y,2));
if nb_factors ~=0
F_conditions = NaN(length(nb_conditions),size(Y,2));
pval_conditions = NaN(length(nb_conditions),size(Y,2));
else
F_conditions = [];
pval_conditions = [];
end
if nb_interactions ~=0
HI = NaN(length(nb_interactions),size(Y,2));
F_interactions = NaN(length(nb_interactions),size(Y,2));
pval_interactions = NaN(length(nb_interactions),size(Y,2));
df_interactions = NaN(length(nb_interactions),size(Y,2));
% check interaction level sizes in X
index = 1;
Ifactors = NaN(1,length(nb_interactions));
interaction = cell(1,length(nb_interactions));
for n=2:nb_factors
combinations = nchoosek(1:nb_factors,n); % note it matches X below because computed the same way in limo_design_matrix
for c = 1:size(combinations,1)
Ifactors(index) = length(combinations(c,:));
interaction{index} = combinations(c,:);
index = index + 1;
end
end
else
F_interactions = [];
pval_interactions = [];
end
if nb_continuous ~=0
F_continuous = NaN(nb_continuous,size(Y,2));
pval_continuous = NaN(nb_continuous,size(Y,2));
df_continuous = NaN(nb_continuous,size(Y,2));
else
F_continuous = [];
pval_continuous = [];
end
% start computing
T = (Y-repmat(mean(Y),size(Y,1),1))'*(Y-repmat(mean(Y),size(Y,1),1));
for frame = size(Y,2):-1:1
% model stats
% -------------------------------------------------------------
% get df and dfe from the original model, then use standard GLM
WX = X.*repmat(W(:,frame),1,size(X,2));
HM = WX*pinv(WX);
R = eye(size(Y,1)) - WX*pinv(WX);
E = Y(:,frame)'*R*Y(:,frame);
% The number of degrees of freedom can be defined as the minimum number of
% independent coordinates that can specify the position of the system completely.
% This gives the same as [rank(X)-1 (size(Y,1)-rank(X))] if OLS, here we
% use the Satterthwaite approximation
df(frame) = trace(HM'*HM)^2/trace((HM'*HM)*(HM'*HM))-1;
dfe(frame) = trace((eye(size(HM))-HM)'*(eye(size(HM))-HM));
R_ols = eye(size(Y,1)) - X*pinv(X);
E_ols = Y(:,frame)'*R_ols*Y(:,frame);
% MSE adjustment, E should not be smaller than OLS since the
% hyperplane we fit is farther away from some observations
if E < E_ols
n = size(X,1); p = rank(X);
sigmar = E/(n-p); sigmals = E_ols/(n-p);
MSE = (n*sigmar + p^2*sigmals) / (n+p^2);
E = MSE * dfe(frame);
end
WY = Y(:,frame); % under the null do not .*repmat(W(:,frame),1,1)
Betas(:,frame) = pinv(WX)*WY;
C = eye(size(X,2));
C(:,size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H = (Betas(:,frame)'*X'*M*X*Betas(:,frame));
Rsquare(frame) = H./T(frame,frame);
F_Rsquare(frame) = (H/df(frame))/(E/dfe(frame));
p_Rsquare(frame) = 1 - fcdf(F_Rsquare(frame), df(frame), dfe(frame));
dof(:,frame) = [df(frame) dfe(frame)];
%% Compute effects
% ------------------
% ---------------------------------
if nb_factors == 1 % 1-way ANOVA
% ---------------------------------
% compute F for categorical variables
% -----------------------------------
if nb_conditions ~= 0 && nb_continuous == 0
df_conditions(frame) = df(frame);
F_conditions(frame) = F_Rsquare(frame);
pval_conditions(frame) = p_Rsquare(frame);
elseif nb_conditions ~= 0 && nb_continuous ~= 0
C = eye(size(X,2));
C(:,(nb_conditions+1):size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % here the reduced model includes the covariates
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for all categorical regressors (1 factor)
H = (Betas(:,frame)'*X'*M*X*Betas(:,frame));
df_conditions(frame) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS; same as tr(M)?
F_conditions(frame) = (H/df_conditions(frame)) ./ (E/dfe(frame));
pval_conditions(frame) = 1 - fcdf(F_conditions(frame), df_conditions(frame), dfe(frame));
end
% ------------------------------------------------
elseif nb_factors > 1 && isempty(nb_interactions) % N-ways ANOVA without interactions
% ------------------------------------------------
% --------------------------------------
% compute F and p values of each factor
% --------------------------------------
% define the effect of interest (eoi)
eoi = zeros(1,size(X,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(X,2));
C(:,eoni) = 0; % set all but factor of interest to 0
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % the reduced model include all but the factor f
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for factor f
H = (Betas(:,frame)'*X'*M*X*Betas(:,frame));
df_conditions(f,frame) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,frame) = (H/df_conditions(f,frame)) ./ (E/dfe(frame));
pval_conditions(f,frame) = 1 - fcdf(F_conditions(f,frame), df_conditions(f,frame), dfe(frame));
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(X,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
end
end
% ------------------------------------------------
elseif nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
% ------------------------------------------------
% ---------------------------------------------------
% start by ANOVA without interaction for main effects
% ---------------------------------------------------
% covariates
covariate_columns = (sum(nb_conditions)+sum(nb_interactions)+1):(size(X,2)-1);
% main effects
dummy_columns = 1:sum(nb_conditions);
% re-define X
x = [X(:,dummy_columns) X(:,covariate_columns) ones(size(X,1),1)];
% run same model as above with re-defined model x and
% using the weights from the full model
wx = x.*repmat(W(:,frame),1,size(x,2));
betas = pinv(wx)*Y(:,frame); % .*W(:,frame));
R = eye(size(Y,1)) - wx*pinv(wx);
eoi = zeros(1,size(x,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H(f,frame) = betas'*x'*M*x*betas;
df_conditions(f,frame) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,frame) = (H(f,frame)./df_conditions(f,frame)) ./ (E./dfe(frame))'; % note dfe from full model
pval_conditions(f,frame) = 1 - fcdf(F_conditions(f,frame), df_conditions(f,frame), dfe(frame));
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(x,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
end
end
% ---------------------------
% now deal with interactions
% ---------------------------
if nb_factors == 2 && nb_continuous == 0 % the quick way with only one interaction
HI(frame) = T(frame,frame) - sum(H(:,frame)) - E;
df_interactions(frame) = prod(df_conditions(frame));
F_interactions(frame) = (HI(frame)./df_interactions(frame)) ./ (E/dfe(frame))';
pval_interactions(frame) = 1 - fcdf(F_interactions(frame), df_interactions(frame), dfe(frame));
else % run through each interaction
% part of X unchanged
Main_effects = X(:,dummy_columns);
Cov_and_Mean = [X(:,covariate_columns) ones(size(Y,1),1)];
% loop through interactions
% substituting and/or incrementing parts of X
Istart = size(Main_effects,2)+1; % where we start interaction in X
Ilowbound = size(Main_effects,2)+1;
for f=1:length(nb_interactions)
I = X(:,Istart:(Istart+nb_interactions(f)-1));
if length(interaction{f}) == 2 % 1st oder interaction is main + I
x = [Main_effects I Cov_and_Mean];
else % higher oder inteaction includes lower levels
Isize = sum(nb_interactions(1:find(Ifactors == Ifactors(f),1) - 1));
Ihighbound = size(Main_effects,2)+Isize;
x = [Main_effects X(:,Ilowbound:Ihighbound) I Cov_and_Mean];
end
eoibound = size(x,2) - size(I,2) - size(Cov_and_Mean,2);
% run same model as above
wx = x.*repmat(W(:,frame),1,size(x,2));
betas = pinv(wx)*Y(:,frame); % .*W(:,frame));
R = eye(size(Y,1)) - (wx*pinv(wx));
eoi = zeros(1,size(x,2));
eoi(eoibound+1:(eoibound+nb_interactions(f))) = eoibound+1:(eoibound+nb_interactions(f));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
C = eye(size(x,2));
C(:,eoni) = 0; %#ok<FNDSB>
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
HI(f,frame) = betas'*x'*M*x*betas;
df_interactions(f,frame) = prod(df_conditions(interaction{f},frame));
F_interactions(f,frame) = (HI(f,frame)./df_interactions(f,frame)) ./ (E/dfe(frame))';
pval_interactions(f,:) = 1 - fcdf(F_interactions(f,frame), df_interactions(f,frame), dfe(frame));
Istart = Istart+nb_interactions(f);
end
end
end
% -----------------------------------
%% compute F for continuous variables
% -----------------------------------
if nb_continuous ~=0
N_conditions = sum(nb_conditions) + sum(nb_interactions);
for n = 1:nb_continuous
C = zeros(size(X,2));
C(N_conditions+n,N_conditions+n) = 1; % pick up one regressor at a time
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % all but rehressor of interest
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for regressor of interest
H = Betas(:,frame)'*X'*M*X*Betas(:,frame);
df_continuous(n,frame) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C) if OLS;
F_continuous(n,frame) = (H./(df_continuous(n,frame))) ./ (E/dfe(frame));
pval_continuous(n,frame) = 1 - fcdf(F_continuous(n,frame), 1, dfe(frame)); % dfe same as size(Y,1)-rank(X) if OLS
end
end
end
Betas = Betas'; % back to frame/regressors
end