-
Notifications
You must be signed in to change notification settings - Fork 28
/
limo_glm.m
1220 lines (1068 loc) · 61.4 KB
/
limo_glm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function model = limo_glm(varargin)
% General Linear model analysis of EEG data.
% The model consider trials/subjects as independent observations and analyses
% are performed at one channel/IC/source only, but for all frames (time and/or
% freq) points. All multiple comparisions correction are performed post-hoc
% using bootstrap under H0.
%
% see the <https://www.hindawi.com/journals/cin/2011/831409/ LIMO EEG paper>
%
% FORMATS: model = limo_glm(Y,LIMO)
% model = limo_glm(Y, X, nb_conditions, nb_interactions, ...
% nb_continuous, method, Analysis type, n_freqs, n_times)
%
% INPUTS:
% Y = 2D matrix of EEG data with format trials x frames
% (frame can be the concatenation for freq*time)
% LIMO = structure that contains the above information (except Y)
% or input info that are in LIMO.mat
% X = 2 dimensional design matrix
% nb_conditions = a vector indicating the number of conditions per factor
% nb_interactions = a vector indicating number of columns per interactions
% nb_continuous = number of covariates
% method = 'OLS', 'WLS', 'IRLS' (bisquare)
% analysis type = 'Time', 'Frequency' or 'Time-Frequency'
% n_freqs = the nb of frequency bins
% n_times = the nb of time bins
%
% OUTPUTS:
% model.R2_univariate = the R2 of the model
% model.F = the F value of the model
% model.df = the df associated to the model F
% model.p = the p value of the model
% model.betas = the beta parameters (dimensions nb of paramters x frames)
% model.W = the weights for ea ch trial/subject (and frames if IRLS)
% model.conditions = main categorical effects
% --> F/p in rows are the factors, in columns time frames
% --> df row 1 = df, row 2 = dfe, columns are factors
% model.interactions = interaction effects
% --> F/p in rows are the factors, in columns time frames
% --> df row 1 = df, row 2 = dfe, columns are interaction levels
% model.continuous = continuous effects
% --> F/p in rows are the variables, in columns time frames
% --> df column 1 = df, column2 2 = dfe (same for all covariates)
%
% NOTES:
%
% - The parameters can be computed using 3 methods: ordinary least squares
% (OLS), weighted least squares (WLS) which attribute unique weights per trial
% and iterative reweighted least squares (IRLS) which attribute weights for
% each observations
% - For WLS, since the weights are derived for the entire trial, using a
% dimention reduction the df are adjusted for the subspace spanned by the
% parameters see < WLS paper>
% - For IRLS, dfe are computed using the Satterthwaite approximation and
% a MSE correction is used
% - Each effect is accounted for given the other effects; this means that one
% can have a different number of trials per conditions/factors
% provided there is no interactions. For interaction models (typically for
% single subject analyses), this is not directly possible and no correction
% is provided. Instead, with a design created using limo_design_matrix, data
% would have been sampled to make sure the number of trials or subjects is
% identical across interaction terms.
% - For time*frequency analyses, limo_eeg_tf sends a vector of length freq*time
% that is unwrapped after running limo_glm. Weights cannot be computed that
% way and thus one calls LIMO.Analysis to unwrap and then rewarp to get the
% right weights and betas.
%
% References
% Christensen, R. 2002. Plane answers to complex questions. 3rd Ed. Springer-Verlag
% Friston et al. 2007. Statitical Parametric Mapping. Academic Press
% Yandell, B.S. 1997. Practical Data Analysis For Designed Experiments. Chapman & Hall
%
% See also
% LIMO_GLM_HANDLING, LIMO_DESIGN_MATRIX, LIMO_WLS, LIMO_IRLS
%
% Cyril Pernet
% ------------------------------
% Copyright (C) LIMO Team 2019
%% default
% not documented in the help but the value for that key can be passed as the last argument
variance_estimates = 'standard'; % vs 'HC4'
%% varagin
if nargin == 1
error('not enough arguments in')
elseif nargin <=3
Y = varargin{1};
X = varargin{2}.design.X;
nb_conditions = varargin{2}.design.nb_conditions;
nb_interactions = varargin{2}.design.nb_interactions;
nb_continuous = varargin{2}.design.nb_continuous;
method = varargin{2}.design.method;
Analysis = varargin{2}.Analysis;
if strcmp(Analysis,'Time-Frequency')
if strcmp(method,'WLS')
method = 'WLS-TF'; % run weights per freq band
end
n_freqs = varargin{2}.data.size4D(2);
n_times = varargin{2}.data.size4D(3);
end
% undocumented
if nargin == 3
variance_estimates = varargin{3};
end
clear varargin
elseif nargin >= 7
Y = varargin{1};
X = varargin{2};
nb_conditions = varargin{3};
nb_interactions = varargin{4};
nb_continuous = varargin{5};
method = varargin{6};
Analysis = varargin{7};
if nargin == 9
n_freqs = varargin{8};
n_times = varargin{9};
end
% undocumented
if nargin == 10
variance_estimates = varargin{10};
end
end
if isempty(nb_conditions); nb_conditions = 0; end
if isempty(nb_interactions); nb_interactions = 0; end
if isempty(nb_continuous); nb_continuous = 0; end
nb_factors = numel(nb_conditions);
if nb_factors == 1 && nb_conditions == 0
nb_factors = 0;
end
% -----------
%% Data check
% -----------
if ~isreal(Y)
Y = abs(Y).^2;
end
if size(Y,1)~=size(X,1)
error('The number of events in Y and the design matrix are different')
end
if nb_interactions == 0
nb_interactions = [];
end
%% Compute model parameters
% ------------------------------
% compute Beta parameters and weights
% -----------------------------------
if strcmp(method,'OLS')
if strcmp(Analysis,'Time-Frequency')
W = ones(n_freqs,size(X,1));
else
W = ones(size(Y,1),1);
end
WX = X;
if nb_continuous ~=0 && nb_factors == 0
Betas = WX\Y; % numerically more stable than pinv
else
Betas = pinv(WX)*Y;
end
elseif strcmp(method,'WLS')
[Betas,W] = limo_WLS(X,Y);
WX = X.*repmat(W,1,size(X,2));
elseif strcmp(method,'WLS-TF')
% unpack the data
[n_freq_times, N] = size(Y');
if n_freq_times ~= n_freqs*n_times
error('dimensions disagreement to reshape freq*time')
else
reshaped = nan(n_freqs, N, n_times);
for tr = 1:N
eft_3d = NaN(n_freqs,n_times);
for tm = 1:n_times
this_freq_start_index = tm*n_freqs - n_freqs + 1; % Set index in the long 2D tf
eft_3d(:,tm) =Y(tr,this_freq_start_index:(this_freq_start_index+n_freqs-1))';
end
reshaped(:,tr,:) = eft_3d;
end
Y = reshaped;
clear reshaped;
end
% get estimates per frequency band
index1 = 1;
Betas = NaN(size(X,2),n_freqs,n_times);
W = NaN(size(X,1),n_freqs);
WX = cell(1,n_freqs);
rf = NaN(1,n_freqs);
for f=1:n_freqs
[Betas(:,f,:),W(:,f),rf(f)] = limo_WLS(X,squeeze(Y(f,:,:)));
WX{f} = X .* repmat(W(:,f),1,size(X,2));
index1=index1+1;
end
elseif strcmp(method,'IRLS')
[Betas,W] = limo_IRLS(X,Y);
warning off
% WX = X.*W per frame = switch method
end
%% ------------------------------------
switch method
case {'OLS','WLS'}
% -----------------------------------------------------------------
%% Compute model statistics
% ------------------------------
% total sum of squares, projection matrix for errors, residuals
% --------------------------------------------------------------
T = (Y-repmat(mean(Y),size(Y,1),1))'*(Y-repmat(mean(Y),size(Y,1),1)); % SS Total (the data)
R = eye(size(Y,1)) - WX*pinv(WX); % Projection onto E
% covariance stuff
% -----------------
HM = WX*pinv(WX); % Hat matrix, projection onto X
h = diag(WX*pinv(WX'*WX)*WX'); % leverage
d = min(4,h/mean(h)); % power of the variance stabilizer E4
if strcmpi(variance_estimates,'HC4')
HC4 = (R*Y).^2./((1-h).^d); % Cribari-Neto (2004)
E = (vecnorm((R*Y)./((1-h).^d)).^2)';
else
E = diag(Y'*R*Y); % SS Error => vecnorm(R*Y).^2
end
if any(E<0)
warning on
warning('data and model are too close! negative MSE inverted\n')
E = abs(E); warning off
end
% degrees of freedom
% -------------------
df = rank(WX)-1;
if df == 0
df = 1; % case of just the mean
end
if strcmp(method,'OLS')
dfe = size(Y,1)-rank(WX);
else
% Satterthwaite approximation
dfe = trace((eye(size(HM))-HM)'*(eye(size(HM))-HM));
end
% model R^2
% -----------
if all(nb_conditions==0) && nb_continuous == 0 % just the mean
Yhat = X*Betas;
H = (Yhat-repmat(mean(Yhat),size(Y,1),1))'*(Y-repmat(mean(Yhat),size(Y,1),1));
else
C = eye(size(X,2));
C(:,size(X,2)) = 0; % all columns but the constant
C0 = eye(size(X,2)) - C*pinv(C); % only the constant
X0 = WX*C0; % Reduced model design matrix
R0 = eye(size(Y,1)) - (X0*pinv(X0)); % Projection onto error
M = R0 - R; % Projection matrix onto WXc
H = (Betas'*X'*M*X*Betas); % SS Effects (X'*M*X is weighted)
end
Rsquare = diag(H)./diag(T); % Variance explained
F_Rsquare = (diag(H)./df) ./ (E/dfe); % unconstrained error
p_Rsquare = 1 - fcdf(F_Rsquare, df, dfe);
% update the model structure
% ----------------------------
model.W = W;
model.betas = Betas;
model.betas_se = Betas;
for t=1:size(Y,2)
if strcmpi(variance_estimates,'HC4')
model.betas_se(:,t) = diag((pinv(WX'*WX))*WX'*diag(HC4(:,t))*WX*(pinv(WX'*WX)));
else
model.betas_se(:,t) = sqrt(E(t)/dfe)./ sqrt(sum(sum((WX-mean(WX)).^2)));
% sqrt(diag((E(t,t)/dfe)*pinv(WX'*WX)));
end
end
model.R2_univariate = Rsquare;
model.F = F_Rsquare;
model.df = [df dfe];
model.p = p_Rsquare;
%% Compute effects
% ------------------
% ---------------------------------
if nb_factors == 1 % 1-way ANOVA
% ---------------------------------
% compute F for categorical variables
% -----------------------------------
if nb_conditions ~= 0 && nb_continuous == 0
df_conditions = df;
F_conditions = F_Rsquare;
pval_conditions = p_Rsquare;
elseif nb_conditions ~= 0 && nb_continuous ~= 0
C = eye(size(X,2));
C(:,(nb_conditions+1):size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % here the reduced model includes the covariates
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for all categorical regressors (1 factor)
H = (Betas'*X'*M*X*Betas);
df_conditions = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS; same as tr(M)?
F_conditions = (diag(H)/df_conditions) ./ (E/dfe);
pval_conditions = 1 - fcdf(F_conditions(:), df_conditions, dfe);
end
model.conditions.F = F_conditions;
model.conditions.df = [df_conditions ; dfe];
model.conditions.p = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && isempty(nb_interactions) % N-ways ANOVA without interactions
% ------------------------------------------------
% --------------------------------------
% compute F and p values of each factor
% --------------------------------------
df_conditions = zeros(1,length(nb_conditions));
F_conditions = zeros(length(nb_conditions),size(Y,2));
pval_conditions = zeros(length(nb_conditions),size(Y,2));
% define the effect of interest (eoi)
eoi = zeros(1,size(X,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(X,2));
C(:,eoni) = 0; % set all but factor of interest to 0
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % the reduced model include all but the factor f
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for factor f
H = (Betas'*X'*M*X*Betas);
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (diag(H)/df_conditions(f)) ./ (E/dfe);
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(X,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
end
end
model.conditions.F = F_conditions;
model.conditions.df = [df_conditions ; repmat(dfe,1,numel(df_conditions))]';
model.conditions.p = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
% ------------------------------------------------
% ---------------------------------------------------
% start by ANOVA without interaction for main effects
% ---------------------------------------------------
H = NaN(length(nb_conditions),size(Y,2));
df_conditions = NaN(1,length(nb_conditions));
F_conditions = NaN(length(nb_conditions),size(Y,2));
pval_conditions = NaN(length(nb_conditions),size(Y,2));
HI = NaN(length(nb_interactions),size(Y,2));
df_interactions = NaN(1,length(nb_interactions));
F_interactions = NaN(length(nb_interactions),size(Y,2));
pval_interactions = NaN(length(nb_interactions),size(Y,2));
% covariates
covariate_columns = (sum(nb_conditions)+sum(nb_interactions)+1):(size(X,2)-1);
% main effects
dummy_columns = 1:sum(nb_conditions);
% re-define X for main effects
x = [X(:,dummy_columns) X(:,covariate_columns) ones(size(X,1),1)];
% run same model as above with re-defined model x and
% using the weights from the full model
wx = x.*repmat(W,1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W,1,size(Y,2)));
R = eye(size(Y,1)) - wx*pinv(wx);
eoi = zeros(1,size(x,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H(f,:) = diag((betas'*x'*M*x*betas));
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (H(f,:)./df_conditions(f)) ./ (E./dfe)'; % note dfe from full model
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(x,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
end
end
model.conditions.F = F_conditions;
model.conditions.df = [df_conditions ; repmat(dfe,1,numel(df_conditions))]';
model.conditions.p = pval_conditions;
% ---------------------------
% now deal with interactions
% ---------------------------
if nb_factors == 2 && nb_continuous == 0 % the quick way with only one interaction
HI = diag(T)' - H(1,:) - H(2,:) - E';
df_interactions = prod(df_conditions);
F_interactions = (HI./df_interactions) ./ (E/dfe)';
pval_interactions = 1 - fcdf(F_interactions, df_interactions, dfe);
else % run through each interaction
% part of X unchanged
Main_effects = X(:,dummy_columns);
Cov_and_Mean = [X(:,covariate_columns) ones(size(X,1),1)];
% check interaction level sizes in X
index = 1;
Ifactors = NaN(1,length(nb_interactions));
interaction = cell(1,length(nb_interactions));
for n=2:nb_factors
combinations = nchoosek(1:nb_factors,n); % note it matches X below because computed the same way in limo_design_matrix
for c = 1:size(combinations,1)
Ifactors(index) = length(combinations(c,:));
interaction{index} = combinations(c,:);
index = index + 1;
end
end
% loop through interactions
% substituting and/or incrementing parts of X
Istart = size(Main_effects,2)+1; % where we start interaction in X
Ilowbound = size(Main_effects,2)+1;
for f=1:length(nb_interactions)
I = X(:,Istart:(Istart+nb_interactions(f)-1));
if length(interaction{f}) == 2 % 1st oder interaction is main + I
x = [Main_effects I Cov_and_Mean];
else % higher oder inteaction includes lower levels
Isize = sum(nb_interactions(1:find(Ifactors == Ifactors(f),1) - 1));
Ihighbound = size(Main_effects,2)+Isize;
x = [Main_effects X(:,Ilowbound:Ihighbound) I Cov_and_Mean];
end
eoibound = size(x,2) - size(I,2) - size(Cov_and_Mean,2);
% run same model as above
wx = x.*repmat(W,1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W,1,size(Y,2)));
R = eye(size(Y,1)) - (wx*pinv(wx));
eoi = zeros(1,size(x,2));
eoi(eoibound+1:(eoibound+nb_interactions(f))) = eoibound+1:(eoibound+nb_interactions(f));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
HI(f,:) = diag((betas'*x'*M*x*betas))';
df_interactions(f) = prod(df_conditions(interaction{f}));
F_interactions(f,:) = (HI(f,:)./df_interactions(f)) ./ (E/dfe)';
pval_interactions(f,:) = 1 - fcdf(F_interactions(f,:), df_interactions(f), dfe);
Istart = Istart+nb_interactions(f);
end
end
model.interactions.F = F_interactions;
model.interactions.df = [df_interactions ; repmat(dfe,1,numel(df_interactions))]';
model.interactions.p = pval_interactions;
end
% -----------------------------------
%% compute F for continuous variables
% -----------------------------------
if nb_continuous ~=0
if nb_factors == 0 && nb_continuous == 1 % simple regression
model.continuous.F = F_Rsquare;
model.continuous.df = [1 (size(Y,1)-rank(X))];
model.continuous.p = p_Rsquare;
else % ANCOVA type of designs
% pre-allocate space
df_continuous = zeros(nb_continuous,size(Y,2));
F_continuous = zeros(nb_continuous,size(Y,2));
pval_continuous = zeros(nb_continuous,size(Y,2));
% compute
N_conditions = sum(nb_conditions) + sum(nb_interactions);
for n = 1:nb_continuous
C = zeros(size(X,2));
C(N_conditions+n,N_conditions+n) = 1; % pick up one regressor at a time
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0; % all but regressor of interest
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for regressor of interest
H = Betas'*X'*M*X*Betas;
df_continuous(n) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C) if OLS;
F_continuous(n,:) = (diag(H)./(df_continuous(n))) ./ (E/dfe);
pval_continuous(n,:) = 1 - fcdf(F_continuous(n,:), 1, dfe); % dfe same as size(Y,1)-rank(X) if OLS
end
model.continuous.F = F_continuous';
model.continuous.df = [1 dfe];
model.continuous.p = pval_continuous';
end
end
% ---------------------------------------------------------------------
case 'WLS-TF'
% ---------------------------------------------------------------------
model.W = W;
model.betas = Betas;
model.betas_se = Betas;
model.dfe = NaN(n_freqs,2);
model.conditions.df = squeeze(NaN(nb_factors,n_freqs,2));
% iterate per frequency band
% ---------------------------
for freq=n_freqs:-1:1
T = (squeeze(Y(freq,:,:))-repmat(mean(squeeze(Y(freq,:,:))),size(Y,2),1))'*(squeeze(Y(freq,:,:))-repmat(mean(squeeze(Y(freq,:,:))),size(Y,2),1)); % SS Total (the data)
R = eye(size(Y,2)) - WX{freq}*pinv(WX{freq});
% covariance stuff
% -----------------
if strcmpi(variance_estimates,'HC4')
h = diag(WX{freq}*pinv(WX{freq}'*WX{freq})*WX{freq}');
d = min(4,h/mean(h));
HC4 = (R*squeeze(Y(freq,:,:))).^2./((1-h).^d);
E = (vecnorm((R*squeeze(Y(freq,:,:)))./((1-h).^d)).^2)';
else
E = diag(squeeze(Y(freq,:,:))'*R*squeeze(Y(freq,:,:)));
end
if any(E<0)
warning on
warning('data and model are too close! negative MSE inverted - freq%g\n',freq)
E = abs(E); warning off
end
% degrees of freedom
% -------------------
df = rank(WX{freq})-1;
HM = WX{freq}*pinv(WX{freq}); % Hat matrix, projection onto X
dfe = trace((eye(size(HM))-HM)'*(eye(size(HM))-HM));
% model R^2
% -----------
C = eye(size(X,2));
C(:,size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX{freq}*C0;
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R;
H = (squeeze(Betas(:,freq,:))'*X'*M*X*squeeze(Betas(:,freq,:)));
Rsquare = diag(H)./diag(T);
F_Rsquare = (diag(H)./df) ./ (E/dfe);
p_Rsquare = 1 - fcdf(F_Rsquare, df, dfe);
% update the model structure
% ----------------------------
for t=1:size(Y,3)
if strcmpi(variance_estimates,'HC4')
model.betas_se(:,freq,t) = diag((pinv(WX{freq}'*WX{freq}))*WX'*diag(HC4(:,t))*WX{freq}*(pinv({freq}'*{freq})));
else
model.betas_se(:,freq,t) = sqrt(E(t)/dfe)./ sqrt(sum(sum((WX{freq}-mean(WX{freq})).^2)));
end
end
model.R2_univariate(freq,:) = Rsquare;
model.F(freq,:) = F_Rsquare;
model.df(freq,:) = [df dfe];
model.p(freq,:) = p_Rsquare;
%% Compute effects
% ------------------
% ---------------------------------
if nb_factors == 1 % 1-way ANOVA
% ---------------------------------
% compute F for categorical variables
% -----------------------------------
if nb_conditions ~= 0 && nb_continuous == 0
df_conditions = df;
F_conditions = F_Rsquare;
pval_conditions = p_Rsquare;
elseif nb_conditions ~= 0 && nb_continuous ~= 0
C = eye(size(X,2));
C(:,(nb_conditions+1):size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX{freq}*C0; % here the reduced model includes the covariates
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for all categorical regressors (1 factor)
H = (squeeze(Betas(:,freq,:))'*X'*M*X*squeeze(Betas(:,freq,:)));
df_conditions = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS; same as tr(M)?
F_conditions = (diag(H)/df_conditions) ./ (E/dfe);
pval_conditions = 1 - fcdf(F_conditions(:), df_conditions, dfe);
end
model.conditions.F(freq,:) = F_conditions';
model.conditions.df(freq,:) = [df_conditions ; dfe]';
model.conditions.p(freq,:) = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && isempty(nb_interactions) % N-ways ANOVA without interactions
% ------------------------------------------------
% --------------------------------------
% compute F and p values of each factor
% --------------------------------------
df_conditions = zeros(1,length(nb_conditions));
F_conditions = zeros(length(nb_conditions),size(Y,3));
pval_conditions = zeros(length(nb_conditions),size(Y,3));
% define the effect of interest (eoi)
eoi = zeros(1,size(X,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(X,2));
C(:,eoni) = 0; % set all but factor of interest to 0
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX{freq}*C0; % the reduced model include all but the factor f
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for factor f
H = (squeeze(Betas(:,freq,:))'*X'*M*X*squeeze(Betas(:,freq,:)));
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (diag(H)/df_conditions(f)) ./ (E/dfe);
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(X,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(X,2);
eoni = find(eoni - eoi);
end
end
model.conditions.F(:,freq,:) = F_conditions';
model.conditions.df(:,freq,:) = [df_conditions ; repmat(dfe,1,numel(df_conditions))];
model.conditions.p(:,freq,:) = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
% ------------------------------------------------
% ---------------------------------------------------
% start by ANOVA without interaction for main effects
% ---------------------------------------------------
H = NaN(length(nb_conditions),size(Y,3));
df_conditions = NaN(1,length(nb_conditions));
F_conditions = NaN(length(nb_conditions),size(Y,3));
pval_conditions = NaN(length(nb_conditions),size(Y,3));
HI = NaN(length(nb_interactions),size(Y,3));
df_interactions = NaN(1,length(nb_interactions));
F_interactions = NaN(length(nb_interactions),size(Y,3));
pval_interactions = NaN(length(nb_interactions),size(Y,3));
% covariates
covariate_columns = (sum(nb_conditions)+sum(nb_interactions)+1):(size(X,2)-1);
% main effects
dummy_columns = 1:sum(nb_conditions);
% re-define X for main effects
x = [X(:,dummy_columns) X(:,covariate_columns) ones(size(X,1),1)];
% run same model as above with re-defined model x and
% using the weights from the full model
wx = x.*repmat(W(:,freq),1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W(:,freq),1,size(Y,2)));
R = eye(size(Y,2)) - wx*pinv(wx);
eoi = zeros(1,size(x,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R;
H(f,:) = diag((betas'*x'*M*x*betas));
df_conditions(f) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C)-1 if OLS;
F_conditions(f,:) = (H(f,:)./df_conditions(f)) ./ (E./dfe)'; % note dfe from full model
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), dfe);
% update factors
if f<length(nb_conditions)
update = find(eoi,1,'last'); % max(find(eoi));
eoi = zeros(1,size(x,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
end
end
model.conditions.F(:,freq,:) = F_conditions';
model.conditions.df(:,freq,:) = [df_conditions ; repmat(dfe,1,numel(df_conditions))];
model.conditions.p(:,freq,:) = pval_conditions;
% ---------------------------
% now deal with interactions
% ---------------------------
if nb_factors == 2 && nb_continuous == 0 % the quick way with only one interaction
HI = diag(T)' - H(1,:) - H(2,:) - E4';
df_interactions = prod(df_conditions);
F_interactions = (HI./df_interactions) ./ (E/dfe)';
else % run through each interaction
% part of X unchanged
Main_effects = X(:,dummy_columns);
Cov_and_Mean = [X(:,covariate_columns) ones(size(X,1),1)];
% check interaction level sizes in X
index = 1;
Ifactors = NaN(1,length(nb_interactions));
interaction = cell(1,length(nb_interactions));
for n=2:nb_factors
combinations = nchoosek(1:nb_factors,n); % note it matches X below because computed the same way in limo_design_matrix
for c = 1:size(combinations,1)
Ifactors(index) = length(combinations(c,:));
interaction{index} = combinations(c,:);
index = index + 1;
end
end
% loop through interactions
% substituting and/or incrementing parts of X
Istart = size(Main_effects,2)+1; % where we start interaction in X
Ilowbound = size(Main_effects,2)+1;
for f=1:length(nb_interactions)
I = X(:,Istart:(Istart+nb_interactions(f)-1));
if length(interaction{f}) == 2 % 1st oder interaction is main + I
x = [Main_effects I Cov_and_Mean];
else % higher oder inteaction includes lower levels
Isize = sum(nb_interactions(1:find(Ifactors == Ifactors(f),1) - 1));
Ihighbound = size(Main_effects,2)+Isize;
x = [Main_effects X(:,Ilowbound:Ihighbound) I Cov_and_Mean];
end
eoibound = size(x,2) - size(I,2) - size(Cov_and_Mean,2);
% run same model as above
wx = x.*repmat(W(:,freq),1,size(x,2));
betas = pinv(wx)*(Y.*repmat(W(:,freq),1,size(Y,2)));
R = eye(size(Y,2)) - (wx*pinv(wx));
eoi = zeros(1,size(x,2));
eoi(eoibound+1:(eoibound+nb_interactions(f))) = eoibound+1:(eoibound+nb_interactions(f));
eoni = 1:size(x,2);
eoni = find(eoni - eoi);
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = wx*C0;
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R;
HI(f,:) = diag((betas'*x'*M*x*betas))';
df_interactions(f) = prod(df_conditions(interaction{f}));
F_interactions(f,:) = (HI(f,:)./df_interactions(f)) ./ (E/dfe)';
pval_interactions(f,:) = 1 - fcdf(F_interactions(f,:), df_interactions(f), dfe);
Istart = Istart+nb_interactions(f);
end
end
model.interactions.F(:,freq,:) = F_interactions;
model.interactions.df(:,freq,:) = [df_interactions ; repmat(dfe,1,numel(df_interactions))]';
model.interactions.p(:,freq,:) = pval_interactions;
end
% -----------------------------------
%% compute F for continuous variables
% -----------------------------------
if nb_continuous ~=0
if nb_factors == 0 && nb_continuous == 1 % simple regression
model.continuous.F(:,freq) = F_Rsquare;
model.continuous.df(:,freq) = [1 (size(Y,2)-rank(X))];
else % ANCOVA type of designs
% pre-allocate space
df_continuous = zeros(nb_continuous,1);
F_continuous = zeros(nb_continuous,n_times);
% compute
N_conditions = sum(nb_conditions) + sum(nb_interactions);
for n = 1:nb_continuous
C = zeros(size(X,2));
C(N_conditions+n,N_conditions+n) = 1; % pick up one regressor at a time
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX{freq}*C0; % all but regressor of interest
R0 = eye(size(Y,2)) - (X0*pinv(X0));
M = R0 - R; % hat matrix for regressor of interest
H = squeeze(Betas(:,freq,:))'*X'*M*X*squeeze(Betas(:,freq,:));
df_continuous(n) = trace(M'*M)^2/trace((M'*M)*(M'*M)); % same as rank(C) if OLS;
F_continuous(n,:) = (diag(H)./(df_continuous(n))) ./ (E/dfe);
pval_continuous(n,:) = 1 - fcdf(F_continuous(n,:), 1, dfe); % dfe same as size(Y,1)-rank(X) if OLS
end
model.continuous.F(:,freq,:) = F_continuous';
model.continuous.df(:,freq,:) = [1 dfe];
model.continuous.p(:,freq,:) = pval_continuous';
end
end
end
% reshape to output the same size as input
% except betas - keeping the parameters for modeling
model.R2_univariate = reshape(model.R2_univariate, [n_freqs*n_times,1]);
model.F = reshape(model.F, [n_freqs*n_times,1]);
model.p = reshape(model.p, [n_freqs*n_times,1]);
if isfield(model,'conditions')
if nb_factors == 1
model.conditions.F = reshape(model.conditions.F, [n_freqs*n_times,1]);
model.conditions.p = reshape(model.conditions.p, [n_freqs*n_times,1]);
else
for f = length(nb_conditions):-1:1
tmpF(f,:) = reshape(model.conditions.F(f,:,:), [n_freqs*n_times,1]);
tmpp(f,:) = reshape(model.conditions.p(f,:,:), [n_freqs*n_times,1]);
end
model.conditions.F = tmpF;
model.conditions.p = tmpp;
clear tmpF tmpp
end
end
if isfield(model,'interactions')
if nb_factors == 2 && nb_continuous == 0
model.interactions.F = reshape(model.conditions.F, [n_freqs*n_times,1]);
model.interactions.p = reshape(model.conditions.p, [n_freqs*n_times,1]);
else
for f = length(nb_interactions)
tmpF(f,:) = reshape(model.interactions.F(f,:,:), [n_freqs*n_times,1]);
tmpp(f,:) = reshape(model.interactions.p(f,:,:), [n_freqs*n_times,1]);
end
model.conditions.F = tmpF;
model.conditions.p = tmpp;
clear tmpF tmpp
end
end
if isfield(model,'continuous')
if nb_factors == 0 && nb_continuous == 1
model.continuous.F = reshape(model.continuous.F, [n_freqs*n_times,1]);
model.continuous.p = reshape(model.continuous.p, [n_freqs*n_times,1]);
else
for f = 1:nb_continuous
tmpF(:,f) = reshape(model.continuous.F(:,:,f), [n_freqs*n_times,1]);
tmpp(:,f) = reshape(model.continuous.p(:,:,f), [n_freqs*n_times,1]);
end
model.continuous.F = tmpF;
model.continuous.p = tmpp;
clear tmpF tmpp
end
end
% ---------------------------------------------------------------------
case 'IRLS'
% -----------------------------------------------------------------
% pre-allocate memory space
Rsquare = NaN(1,size(Y,2));
F_Rsquare = NaN(1,size(Y,2));
p_Rsquare = NaN(1,size(Y,2));
betas_se = NaN(size(Betas,1),size(Y,2));
df = NaN(1,size(Y,2));
dfe = NaN(1,size(Y,2));
dof = NaN(2,size(Y,2));
if nb_factors ~=0
F_conditions = NaN(length(nb_conditions),size(Y,2));
pval_conditions = NaN(length(nb_conditions),size(Y,2));
df_conditions = NaN(length(nb_conditions),size(Y,2));
end
if nb_interactions ~=0
HI = NaN(length(nb_interactions),size(Y,2));
F_interactions = NaN(length(nb_interactions),size(Y,2));
pval_interactions = NaN(length(nb_interactions),size(Y,2));
df_interactions = NaN(length(nb_interactions),size(Y,2));
% check interaction level sizes in X
index = 1;
Ifactors = NaN(1,length(nb_interactions));
interaction = cell(1,length(nb_interactions));
for n=2:nb_factors
combinations = nchoosek(1:nb_factors,n); % note it matches X below because computed the same way in limo_design_matrix
for c = 1:size(combinations,1)
Ifactors(index) = length(combinations(c,:));
interaction{index} = combinations(c,:);
index = index + 1;
end
end
end
if nb_continuous ~=0
F_continuous = NaN(nb_continuous,size(Y,2));
pval_continuous = NaN(nb_continuous,size(Y,2));
df_continuous = NaN(nb_continuous,size(Y,2));
end
% start computing
T = (Y-repmat(mean(Y),size(Y,1),1))'*(Y-repmat(mean(Y),size(Y,1),1));
for frame = 1:size(Y,2)
% model stats
% -------------------------------------------------------------
WX = X.*repmat(W(:,frame),1,size(X,2));
HM = WX*pinv(WX);
R = eye(size(Y,1)) - WX*pinv(WX);
E = Y(:,frame)'*R*Y(:,frame);
if E<0
warning on
warning('data and model are too close! negative MSE inverted - frame %g\n',frame)
E = abs(E); warning off
end
% The number of degrees of freedom can be defined as the minimum number of
% independent coordinates that can specify the position of the system completely.
% This gives the same as [rank(X)-1 (size(Y,1)-rank(X))] if OLS, here we
% use the Satterthwaite approximation
df(frame) = trace(HM'*HM)^2/trace((HM'*HM)*(HM'*HM))-1;
dfe(frame) = trace((eye(size(HM))-HM)'*(eye(size(HM))-HM));
R_ols = eye(size(Y,1)) - X*pinv(X);
E_ols = Y(:,frame)'*R_ols*Y(:,frame);
% MSE adjustment, E cannot be smaller than OLS since the
% hyperplane we fit is farther away from some observations
if E < abs(E_ols)
n = size(X,1); p = rank(X);
sigmar = E/(n-p); sigmals = E_ols/(n-p);
MSE = (n*sigmar + p^2*sigmals) / (n+p^2);
E = MSE * dfe(frame);
end
C = eye(size(X,2));
C(:,size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = WX*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H = (Betas(:,frame)'*X'*M*X*Betas(:,frame));
Rsquare(frame) = H./T(frame,frame);
F_Rsquare(frame) = (H/df(frame))/(E/dfe(frame));
p_Rsquare(frame) = 1 - fcdf(F_Rsquare(frame), df(frame), dfe(frame));
betas_se(:,frame) = sqrt(diag((E/dfe(frame))*pinv(WX'*WX)));
dof(:,frame) = [df(frame) dfe(frame)];
%% Compute effects
% ------------------
% ---------------------------------
if nb_factors == 1 % 1-way ANOVA
% ---------------------------------
% compute F for categorical variables
% -----------------------------------