forked from cics-nd/pde-surrogate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_codec_mixed_residual.py
267 lines (243 loc) · 13.1 KB
/
train_codec_mixed_residual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""Physics-constraint surrogates.
Convolutional Encoder-decoder networks for surrogate modeling of darcy flow.
Assume the PDEs and boundary conditions are known.
Train the surrogate with mixed residual loss, instead of maximum likelihood.
5 runs per setup
setup:
- training with different number of input:
512, 1024, 2048, 4096, 8192
with mini-batch size 8, 8, 16, 32, 32, correpondingly.
- metric:
relative L2 error, i.e. NRMSE
R^2 score
- Other default hyperparameters in __init__ of Parser class
"""
import torch
import torch.optim as optim
from models.codec import DenseED
from models.darcy import conv_constitutive_constraint as constitutive_constraint
from models.darcy import conv_continuity_constraint as continuity_constraint
from models.darcy import conv_boundary_condition as boundary_condition
from utils.image_gradient import SobelFilter
from utils.load import load_data
from utils.misc import mkdirs, to_numpy
from utils.plot import plot_prediction_det, save_stats
from utils.practices import OneCycleScheduler, adjust_learning_rate, find_lr
import time
import argparse
import random
from pprint import pprint
import json
import sys
import matplotlib.pyplot as plt
plt.switch_backend('agg')
class Parser(argparse.ArgumentParser):
def __init__(self):
super(Parser, self).__init__(description='Learning surrogate with mixed residual norm loss')
self.add_argument('--exp-name', type=str, default='codec/mixed_residual', help='experiment name')
self.add_argument('--exp-dir', type=str, default="./experiments", help='directory to save experiments')
# codec
self.add_argument('--blocks', type=list, default=[6, 8, 6], help='list of number of layers in each dense block')
self.add_argument('--growth-rate', type=int, default=16, help='number of output feature maps of each conv layer within each dense block')
self.add_argument('--init-features', type=int, default=48, help='number of initial features after the first conv layer')
self.add_argument('--drop-rate', type=float, default=0., help='dropout rate')
self.add_argument('--upsample', type=str, default='nearest', choices=['nearest', 'bilinear'])
# data
self.add_argument('--data-dir', type=str, default="./datasets", help='directory to dataset')
self.add_argument('--data', type=str, default='grf_kle512', choices=['grf_kle512', 'channelized'])
self.add_argument('--ntrain', type=int, default=4096, help="number of training data")
self.add_argument('--ntest', type=int, default=512, help="number of validation data")
self.add_argument('--imsize', type=int, default=64)
# training
self.add_argument('--run', type=int, default=1, help='run instance')
self.add_argument('--epochs', type=int, default=300, help='number of epochs to train')
self.add_argument('--lr', type=float, default=1e-3, help='learning rate')
self.add_argument('--lr-div', type=float, default=2., help='lr div factor to get the initial lr')
self.add_argument('--lr-pct', type=float, default=0.3, help='percentage to reach the maximun lr, which is args.lr')
self.add_argument('--weight-decay', type=float, default=0., help="weight decay")
self.add_argument('--weight-bound', type=float, default=10, help="weight for boundary loss")
self.add_argument('--batch-size', type=int, default=32, help='input batch size for training')
self.add_argument('--test-batch-size', type=int, default=64, help='input batch size for testing')
self.add_argument('--seed', type=int, default=1, help='manual seed used in Tensor')
self.add_argument('--cuda', type=int, default=1, choices=[0, 1, 2, 3], help='cuda index')
# logging
self.add_argument('--debug', action='store_true', default=False, help='debug or verbose')
self.add_argument('--ckpt-epoch', type=int, default=None, help='which epoch of checkpoints to be loaded')
self.add_argument('--ckpt-freq', type=int, default=10, help='how many epochs to wait before saving model')
self.add_argument('--log-freq', type=int, default=1, help='how many epochs to wait before logging training status')
self.add_argument('--plot-freq', type=int, default=10, help='how many epochs to wait before plotting test output')
self.add_argument('--plot-fn', type=str, default='imshow', choices=['contourf', 'imshow'], help='plotting method')
def parse(self):
args = self.parse_args()
hparams = f'{args.data}_ntrain{args.ntrain}_run{args.run}_bs{args.batch_size}_lr{args.lr}_epochs{args.epochs}_output'
if args.debug:
hparams = 'debug/' + hparams
args.run_dir = args.exp_dir + '/' + args.exp_name + '/' + hparams
args.ckpt_dir = args.run_dir + '/checkpoints'
mkdirs(args.run_dir, args.ckpt_dir)
assert args.ntrain % args.batch_size == 0 and \
args.ntest % args.test_batch_size == 0
if args.seed is None:
args.seed = random.randint(1, 10000)
print("Random Seed: ", args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
print('Arguments:')
pprint(vars(args))
with open(args.run_dir + "/args.txt", 'w') as args_file:
json.dump(vars(args), args_file, indent=4)
return args
if __name__ == '__main__':
args = Parser().parse()
device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() else "cpu")
args.train_dir = args.run_dir + '/training'
args.pred_dir = args.train_dir + '/predictions'
mkdirs(args.train_dir, args.pred_dir)
# Change the input channel to one with the boundary velocities.
# Use these velocities for the loss function. Assume these velocities
# are far away and remain constant.
model = DenseED(in_channels=1, out_channels=3,
imsize=args.imsize,
blocks=args.blocks,
growth_rate=args.growth_rate,
init_features=args.init_features,
drop_rate=args.drop_rate,
out_activation=None,
upsample=args.upsample)
if args.debug:
print(model)
# if start from ckpt
if args.ckpt_epoch is not None:
ckpt_file = args.run_dir + f'/checkpoints/model_epoch{args.ckpt_epoch}.pth'
model.load_state_dict(torch.load(ckpt_file, map_location='cpu'))
print(f'Loaded ckpt: {ckpt_file}')
print(f'Resume training from epoch {args.ckpt_epoch + 1} to {args.epochs}')
model = model.to(device)
# load data
if args.data == 'grf_kle512':
train_hdf5_file = args.data_dir + \
f'/{args.imsize}x{args.imsize}/kle512_lhs10000_train.hdf5'
test_hdf5_file = args.data_dir + \
f'/{args.imsize}x{args.imsize}/kle512_lhs1000_val.hdf5'
ntrain_total, ntest_total = 10000, 1000
elif args.data == 'channelized':
train_hdf5_file = args.data_dir + \
f'/{args.imsize}x{args.imsize}/channel_ng64_n4096_train.hdf5'
test_hdf5_file = args.data_dir + \
f'/{args.imsize}x{args.imsize}/channel_ng64_n512_test.hdf5'
ntrain_total, ntest_total = 4096, 512
assert args.ntrain <= ntrain_total, f"Only {args.ntrain_total} data "\
f"available in {args.data} dataset, but needs {args.ntrain} training data."
assert args.ntest <= ntest_total, f"Only {args.ntest_total} data "\
f"available in {args.data} dataset, but needs {args.ntest} test data."
train_loader, _ = load_data(train_hdf5_file, args.ntrain, args.batch_size,
only_input=True, return_stats=False)
test_loader, test_stats = load_data(test_hdf5_file, args.ntest,
args.test_batch_size, only_input=False, return_stats=True)
y_test_variation = test_stats['y_variation']
print(f'Test output variation per channel: {y_test_variation}')
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
scheduler = OneCycleScheduler(lr_max=args.lr, div_factor=args.lr_div,
pct_start=args.lr_pct)
sobel_filter = SobelFilter(args.imsize, correct=True, device=device)
n_out_pixels = test_loader.dataset[0][1].numel()
print(f'Number of out pixels per image: {n_out_pixels}')
logger = {}
logger['loss_train'] = []
logger['loss_test'] = []
logger['r2_test'] = []
logger['nrmse_test'] = []
def test(epoch):
model.eval()
loss_test = 0.
relative_l2, err2 = [], []
for batch_idx, (input, target) in enumerate(test_loader):
input, target = input.to(device), target.to(device)
#print("Input: ", input)
output = model(input)
loss_pde = constitutive_constraint(input, output, sobel_filter) \
+ continuity_constraint(output, sobel_filter)
loss_dirichlet, loss_neumann = boundary_condition(output)
loss_boundary = loss_dirichlet + loss_neumann
loss = loss_pde + loss_boundary * args.weight_bound
loss_test += loss.item()
# sum over H, W --> (B, C)
err2_sum = torch.sum((output - target) ** 2, [-1, -2])
relative_l2.append(torch.sqrt(err2_sum / (target ** 2).sum([-1, -2])))
err2.append(err2_sum)
# plot predictions
if (epoch % args.plot_freq == 0 or epoch == args.epochs) and \
batch_idx == len(test_loader) - 1:
n_samples = 4 #if epoch == args.epochs else 2
idx = torch.randperm(input.size(0))[:n_samples]
samples_output = output.data.cpu()[idx].numpy()
samples_target = target.data.cpu()[idx].numpy()
for i in range(n_samples):
print('epoch {}: plotting prediction {}'.format(epoch, i))
plot_prediction_det(args.pred_dir, samples_target[i],
samples_output[i], epoch, i, plot_fn=args.plot_fn)
loss_test /= (batch_idx + 1)
relative_l2 = to_numpy(torch.cat(relative_l2, 0).mean(0))
r2_score = 1 - to_numpy(torch.cat(err2, 0).sum(0)) / y_test_variation
print(f"Epoch: {epoch}, test r2-score: {r2_score}")
print(f"Epoch: {epoch}, test relative-l2: {relative_l2}")
print(f'Epoch {epoch}: test loss: {loss_train:.6f}, loss_pde: {loss_pde.item():.6f}, '\
f'dirichlet {loss_dirichlet:.6f}, nuemann {loss_neumann.item():.6f}')
if epoch % args.log_freq == 0:
logger['loss_test'].append(loss_test)
logger['r2_test'].append(r2_score)
logger['nrmse_test'].append(relative_l2)
print('Start training...................................................')
start_epoch = 1 if args.ckpt_epoch is None else args.ckpt_epoch + 1
tic = time.time()
# step = 0
total_steps = args.epochs * len(train_loader)
print(f'total steps: {total_steps}')
for epoch in range(start_epoch, args.epochs + 1):
model.train()
# if epoch == 30:
# print('begin finding lr')
# logs,losses = find_lr(model, train_loader, optimizer, loss_fn,
# args.weight_bound, init_value=1e-8, final_value=10., beta=0.98)
# plt.plot(logs[10:-5], losses[10:-5])
# plt.savefig(args.train_dir + '/find_lr.png')
# sys.exit(0)
loss_train, mse = 0., 0.
for batch_idx, (input, ) in enumerate(train_loader, start=1):
input = input.to(device)
#print("Input: ", input)
model.zero_grad()
output = model(input)
loss_pde = constitutive_constraint(input, output, sobel_filter) \
+ continuity_constraint(output, sobel_filter)
loss_dirichlet, loss_neumann = boundary_condition(output)
loss_boundary = loss_dirichlet + loss_neumann
loss = loss_pde + loss_boundary * args.weight_bound
loss.backward()
# lr scheduling
step = (epoch - 1) * len(train_loader) + batch_idx
pct = step / total_steps
lr = scheduler.step(pct)
adjust_learning_rate(optimizer, lr)
optimizer.step()
loss_train += loss.item()
loss_train /= batch_idx
print(f'Epoch {epoch}, lr {lr:.6f}')
print(f'Epoch {epoch}: training loss: {loss_train:.6f}, pde: {loss_pde:.6f}, '\
f'dirichlet {loss_dirichlet:.6f}, nuemann {loss_neumann:.6f}')
if epoch % args.log_freq == 0:
logger['loss_train'].append(loss_train)
if epoch % args.ckpt_freq == 0:
torch.save(model.state_dict(), args.ckpt_dir + "/model_epoch{}.pth".format(epoch))
with torch.no_grad():
test(epoch)
tic2 = time.time()
print(f'Finished training {args.epochs} epochs with {args.ntrain} data ' \
f'using {(tic2 - tic) / 60:.2f} mins')
metrics = ['loss_train', 'loss_test', 'nrmse_test', 'r2_test']
save_stats(args.train_dir, logger, *metrics)
args.training_time = tic2 - tic
args.n_params, args.n_layers = model.model_size
with open(args.run_dir + "/args.txt", 'w') as args_file:
json.dump(vars(args), args_file, indent=4)