forked from floli/PyRBF
-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo_AMLS.py
168 lines (137 loc) · 5.17 KB
/
demo_AMLS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
""" Generates data to show the effect of rescaling. Low density basisfunctions used. """
import pandas
from rbf import *
import basisfunctions, testfunctions
import matplotlib.pyplot as plt
from matplotlib import cm
import time
import mesh
import math
from mpl_toolkits.mplot3d import Axes3D
from random import randint
from scipy import spatial
from halton import *
start = time.time()
j = 0
#nPointsRange = [1000,2000,4000,8000,10000,12000,16000]
for i in range(0,1):
nPoints = 5
nPointsOut = 5
haltonPoints = halton_sequence(nPoints, 2)
print("Number of points: ",nPoints)
#in_mesh = np.linspace((1,2),(10,20),nPoints)
in_mesh = np.random.random((nPoints,2))
for i in range(0,nPoints):
in_mesh[i,0] = haltonPoints[0][i]*haltonPoints[0][i]
in_mesh[i,1] = haltonPoints[1][i]
out_mesh = np.random.random((nPointsOut,2))
#print("in_mesh: ", in_mesh)
plt.scatter(in_mesh[:,0], in_mesh[:,1], label = "In Mesh",s=2)
plt.scatter(out_mesh[:,0], out_mesh[:,1], label = "Out Mesh",s=2)
plt.show()
tree = spatial.KDTree(list(zip(in_mesh[:,0],in_mesh[:,1])))
nearest_neighbors = []
shape_params = []
for j in range(0,nPoints):
queryPt = (in_mesh[j,0],in_mesh[j,1])
nnArray = tree.query(queryPt,2)
#print(nnArray[0][1])
nearest_neighbors.append(nnArray[0][1])
shape_params.append(0)
maxNN = max(nearest_neighbors)
func = lambda x,y: np.sin(10*x)+(0.0000001*y)
one_func = lambda x: np.ones_like(x)
in_vals = func(in_mesh[:,0],in_mesh[:,1])
out_vals = func(out_mesh[:,0],out_mesh[:,1])
#for j in range(0,nPoints):
# shape_params[j]=4.55228/(5*maxNN)
for k in range(10,11):
for j in range(0,nPoints):
shape_params[j]=4.55228/(k*nearest_neighbors[j])
#shape_parameter = 4.55228/((k)*maxNN)
#print("shape_parameter: ",shape_parameter)
bf = basisfunctions.Gaussian(list(shape_params))
#func = lambda x: (x-0.1)**2 + 1
#print(in_vals)
# evaluatine_vals = func(evaluate_mesh)
# basis_vals = func(basis_mesh)
interp = AMLS(bf, in_mesh, in_vals, rescale = False)
interp_out_vals, Q = interp(out_mesh)
inverse = AMLSInverse(bf, in_mesh, in_vals, rescale = False)
C, Cinv = inverse(out_mesh)
print("C ", C)
print("Cinv: ", Cinv)
print("np.identity(nPoints): ", np.identity(nPoints) - C)
CIapprox = np.identity(nPoints) * 0
AA = np.identity(nPoints) - C
CInew = np.identity(nPoints) * 0
for tt in range(1,20):
CInew = np.identity(nPoints) * 0
for jj in range(0,tt):
CInew += AA
CIapprox += CInew
print("CIapprox: ", CIapprox)
#error_LOOCV = LOOCV(bf, in_mesh, in_vals, rescale = False)
#errors = error_LOOCV()
print("Max Error: ", max(out_vals - interp_out_vals))
print("Average Error: ", abs(np.average(out_vals - interp_out_vals)))
#error_LOOCVSVD = LOOCVSVD(bf, in_mesh, in_vals, rescale = False)
#errorsSVD = error_LOOCVSVD()
#print("Error SVD: ", max(errorsSVD))
#print("Error Difference: ", errors - errorsSVD)
#end = time.time()
#print("Elapsed time: ", end - start)
#resc_interp = NoneConsistent(bf, in_mesh, in_vals, rescale = True)
#one_interp = NoneConsistent(bf, in_mesh, one_func(in_mesh), rescale = False)
'''
plt.scatter(in_mesh[:,0], in_mesh[:,1], label = "In Mesh")
plt.scatter(plot_mesh[:,0], plot_mesh[:,1], label = "Out Mesh")
#plt.legend()
#plt.show()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(in_mesh[:,0],in_mesh[:,1], in_vals, c='r', marker='o')
ax.set_xlabel('X coordinate')
ax.set_ylabel('Y ycoordinate')
ax.set_zlabel('Magnitude')
#plt.show()
'''
#fig = plt.figure()
#ax = Axes3D(fig)
#plt.scatter(in_mesh[:,0],in_mesh[:,1], errors, c = 'b', marker='o')
#plt.plot(evaluate_mesh, interp(evaluate_mesh), "--", label = "Interpolant $S_f$")
#plt.plot(evaluate_mesh, evaluate_vals, "--", label = "Interpolant $S_r$ of $g(x) = 1$")
#plt.plot(evaluate_mesh, evaluate_vals - interp(evaluate_mesh), "--", label = "Error on selected points")
#plt.tight_layout()
#plt.plot(in_mesh, in_vals, label = "Rescaled Interpolant")
#fig = plt.figure()
#ax = Axes3D(fig)
#surf = ax.plot_trisurf(in_mesh[:,0], in_mesh[:,1], in_vals)
#fig.colorbar(surf, shrink=0.5, aspect=5)
#plt.savefig('testSurrogate.pdf')
#plt.show()
#fig = plt.figure()
#ax = fig.add_subplot(111, projection='3d')
#ax.scatter(in_mesh[:,0],in_mesh[:,1], errors, c='r', marker='o')
#ax.set_xlabel('X coordinate')
#ax.set_ylabel('Y ycoordinate')
#ax.set_zlabel('Error Magnitude')
#plt.show()
#rint("RMSE no rescale =", interp.RMSE(func, plot_mesh))
#print("RMSE rescaled =", resc_interp.RMSE(func, plot_mesh))
end = time.time()
print("Elapsed time: ", end - start)
'''
plt.plot(plot_mesh, interp.error(func, plot_mesh))
plt.plot(plot_mesh, resc_interp.error(func, plot_mesh))
plt.grid()
plt.show()
df = pandas.DataFrame(data = { "Target" : func(plot_mesh),
"Interpolant" : interp(plot_mesh),
"RescaledInterpolant" : resc_interp(plot_mesh),
"OneInterpolant" : one_interp(plot_mesh),
"Error" : interp.error(func, plot_mesh),
"RescaledError" : resc_interp.error(func, plot_mesh)},
index = plot_mesh)
df.to_csv("rescaled_demo.csv", index_label = "x")
'''