-
Notifications
You must be signed in to change notification settings - Fork 40
/
replay.py
144 lines (116 loc) · 5.42 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Hydra and OmegaConf
from dataclasses import MISSING, dataclass, field
import numpy as np
from pathlib import Path
from typing import Optional
from slam.common.modules import _with_viz3d
if _with_viz3d:
from viz3d.window import OpenGLWindow
from omegaconf import DictConfig, OmegaConf
# Project Imports
from tqdm import tqdm
from slam.dataset.dataset import WindowDataset
from slam.odometry.odometry_runner import SLAMRunner
from argparse import ArgumentParser
@dataclass
class ReplayArguments:
config_path: str = "" # The path to the SLAMRunner Config
sequence: str = "" # The name of sequence to replay
root_dir: Path = field(default_factory=lambda: Path())
sequence_dir: Path = field(default_factory=lambda: Path())
start_index: int = 0
num_frames: int = -1
show_information: bool = True # Whether to print information about the to experiment be replayed
overrides_path: Optional[str] = None # The path to the yaml containing the overrides
def parse_arguments() -> ReplayArguments:
parser = ArgumentParser()
parser.add_argument("--root_dir", type=str, help="Path to the root of the execution", required=True)
parser.add_argument("--start_index", type=int, help="The index at which the SLAM should start", required=False)
parser.add_argument("--seq", type=str, help="The name of the sequence to replay", required=True)
parser.add_argument("--info", action="store_true",
help="Whether to display information of the sequence prior to the replay")
parser.add_argument("--overrides", type=str,
help="The path (optional) to the overrides")
args, _ = parser.parse_known_args()
options = ReplayArguments()
root_dir = Path(args.root_dir)
assert root_dir.exists(), f"The root dir {root_dir} for the execution does not exist"
options.root_dir = root_dir
options.sequence_dir = root_dir / args.seq
assert options.sequence_dir.exists(), f"The sequence dir {options.sequence_dir} does not exist"
config_path = root_dir / "config.yaml"
assert config_path.exists(), f"The config path {config_path} does not exist"
options.config_path = str(config_path)
options.start_index = args.start_index
options.sequence = args.seq
options.show_information = args.info
options.overrides_path = args.overrides
return options
def replay_slam(options: ReplayArguments) -> None:
"""The main entry point to the script running the SLAM"""
# Load the config
from slam.common.io import read_poses_from_disk
import time
# Display information about the previous execution
poses: Optional[np.ndarray] = None
poses_file_path = options.sequence_dir / f"{options.sequence}.poses.txt"
gt_file_path = options.sequence_dir / f"{options.sequence}_gt.poses.txt"
if poses_file_path.exists():
poses = read_poses_from_disk(str(poses_file_path))
if options.show_information:
print("*" * 80)
if poses is not None:
print(f"[INFO]Found Pose Estimate file {poses_file_path}.")
if gt_file_path.exists():
print(f"[INFO]Found GT Pose Estimate file {poses_file_path}. The algorithm run to completion.")
else:
if poses is not None:
print(f"[INFO]The execution stopped after {poses.shape[0]} frames.")
print("*" * 80)
# Run the algorithm again on the same data
config: DictConfig = OmegaConf.load(options.config_path)
if options.overrides_path is not None:
overrides_conf = OmegaConf.load(options.overrides_path)
# Merge the two config
config.merge_with(overrides_conf)
config.dataset.train_sequences = [options.sequence]
config.debug = True
config.log_dir = f"/tmp/{time.time()}"
Path(config.log_dir).mkdir()
runner = SLAMRunner(config)
# Load the Datasets
datasets: list = runner.load_datasets()
for sequence_name, dataset in datasets:
window = None
try:
# Build dataloader
num_frames = options.num_frames if options.num_frames > 0 else len(dataset) - options.start_index
dataset = WindowDataset(dataset, options.start_index, num_frames)
slam = runner.load_slam_algorithm()
slam.init()
elapsed = 0.0
relative_ground_truth = runner.ground_truth(sequence_name)
if _with_viz3d:
window = OpenGLWindow()
if poses is not None:
window.init()
saved_poses = poses[options.start_index:]
if saved_poses.shape[0] > 0:
saved_poses = np.einsum("ij,njk->nik", np.linalg.inv(saved_poses[0]), saved_poses)
window.set_poses(0, saved_poses.astype(np.float32))
for data_dict in tqdm(dataset, desc=f"Sequence {sequence_name}", ncols=100, total=num_frames):
start = time.time()
# Process next frame
slam.process_next_frame(data_dict)
# Measure the time spent on the processing of the next frame
elapsed_sec = time.time() - start
elapsed += elapsed_sec
if window is not None:
window.close(True)
except KeyboardInterrupt:
if _with_viz3d and window is not None:
window.close(True)
del slam
if __name__ == "__main__":
options: ReplayArguments = parse_arguments()
replay_slam(options)