forked from vaibhavshukla182/Brain-MRI-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
executable file
·286 lines (277 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import time
import gc
import cv2 as cv
import argparse
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ion()
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.autograd import Variable
from torch.utils import data
from models.fcn_xu import fcn_mul
from data_loader.data_loader_18 import MR18loader_CV
from metrics import runningScore
from loss import cross_entropy2d,loss_ce_t, weighted_loss, dice_loss,dice_coeff, bce2d_hed
from models.fcn_xu import fcn_xu,fcn_xu_19,fcn_nopool,fcn_xu_dilated
from models.unet import unet
from models.PAN import PAN_seg
from models.resnet import FCN_res
from models.segnet import segnet
from models.densenet import DenseNet,DenseNetSeg
from models.tiramisu import tiramisu
def adjust_learning_rate(optimizer, epoch):
lr = args.lr * (0.1 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(args):
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu_id)
#torch.manual_seed(1337)
print(args)
# setup dataloader
t_loader=MR18loader_CV(root=args.data_path,val_num=args.val_num,is_val=False,is_transform=True,is_flip=True,is_rotate=True,is_crop=True,is_histeq=True,forest=args.num_forest)
v_loader=MR18loader_CV(root=args.data_path,val_num=args.val_num,is_val=True,is_transform=True,is_flip=False,is_rotate=False,is_crop=True,is_histeq=True,forest=args.num_forest)
n_classes = t_loader.n_classes
trainloader = data.DataLoader(t_loader, batch_size=args.batch_size, num_workers=1, shuffle=True)
valloader = data.DataLoader(v_loader, batch_size=1, num_workers=1,shuffle=True)
# setup Metrics
running_metrics_single = runningScore(n_classes)
running_metrics_single_test = runningScore(4)
# setup Model
model=fcn_mul(n_classes=n_classes)
vgg16 = models.vgg16(pretrained=True)
model.init_vgg16_params(vgg16)
model.cuda()
# setup optimizer and loss
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.99, weight_decay=5e-4)
loss_ce = cross_entropy2d
#loss_ce_weight = weighted_loss
#loss_dc = dice_loss
#loss_hed= bce2d_hed
# resume
best_iou=-100.0
if args.resume is not None:
if os.path.isfile(args.resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
best_iou=checkpoint['best_iou']
model.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
print("Loaded checkpoint '{}' (epoch {}), best_iou={}"
.format(args.resume, checkpoint['epoch'],best_iou))
else:
best_iou=-100.0
print("No checkpoint found at '{}'".format(args.resume))
# visualization
t = []
loss_seg_list=[]
loss_hed_list=[]
Dice_mean=[]
Dice_CSF=[]
Dice_GM=[]
Dice_WM=[]
t_pre=time.time()
print('training prepared, cost {} seconds\n\n'.format(t_pre-t_begin))
for epoch in range(args.n_epoch):
t.append(epoch+1)
model.train()
adjust_learning_rate(optimizer,epoch)
#loss_sum=0.0
loss_epoch=0.0
t_epoch=time.time()
for i_train, (regions,T1s,IRs,T2s,lbls) in enumerate(trainloader):
T1s=Variable(T1s.cuda())
IRs,T2s=Variable(IRs.cuda()),Variable(T2s.cuda())
lbls=Variable(lbls.cuda()[:,int(args.num_forest/2),:,:].unsqueeze(1))
#edges=Variable(edges.cuda()[:,int(args.num_forest/2),:,:].unsqueeze(1))
optimizer.zero_grad()
outputs=model(T1s,IRs,T2s)
seg_out=F.log_softmax(outputs,dim=1)
max_prob,_=torch.max(seg_out,dim=1)
max_prob=-max_prob.detach().unsqueeze(1)
loss_seg_value=loss_ce(input=outputs,target=lbls)
#+0.5*loss_dc(input=outputs,target=lbls)
#+0.5*loss_ce_weight(input=outputs,target=lbls,weight=max_prob)\
#+0.5*loss_ce_weight(input=outputs,target=lbls,weight=edges)\
#loss_hed_value=loss_hed(input=outputs[1],target=edges)
#+0.5*loss_hed(input=outputs[2],target=edges) \
#+0.5*loss_hed(input=outputs[3],target=edges) \
#+0.5*loss_hed(input=outputs[4],target=edges) \
#+0.5*loss_hed(input=outputs[5],target=edges)
loss=loss_seg_value
#loss=loss_seg_value+loss_hed_value
# loss average
#loss_sum+=loss
#if (i_train+1)%args.loss_avg==0:
# loss_sum/=args.loss_avg
# loss_sum.backward()
# optimizer.step()
# loss_sum=0.0
loss.backward()
optimizer.step()
loss_epoch+=loss.item()
# visualization
if i_train==40:
ax1=plt.subplot(241)
ax1.imshow(T1s[0,1,:,:].data.cpu().numpy(),cmap ='gray')
ax1.set_title('train_img')
ax1.axis('off')
ax2=plt.subplot(242)
ax2.imshow(t_loader.decode_segmap(lbls[0,0,:,:].data.cpu().numpy()).astype(np.uint8))
ax2.set_title('train_label')
ax2.axis('off')
ax3=plt.subplot(243)
model.eval()
train_show=model(T1s,IRs,T2s)
ax3.imshow(t_loader.decode_segmap(train_show[0].data.max(0)[1].cpu().numpy()).astype(np.uint8))
ax3.set_title('train_predict')
ax3.axis('off')
ax4=plt.subplot(244)
ax4.imshow(max_prob[0,0].cpu().numpy())
ax4.set_title('uncertainty')
ax4.axis('off')
model.train()
loss_epoch/=i_train
loss_seg_list.append(loss_epoch)
loss_hed_list.append(0)
t_train=time.time()
print('epoch: ',epoch+1)
print('--------------------------------Training--------------------------------')
print('average loss in this epoch: ',loss_epoch)
print('final loss in this epoch: ',loss.data.item())
print('cost {} seconds up to now'.format(t_train-t_begin))
print('cost {} seconds in this train epoch'.format(t_train-t_epoch))
model.eval()
for i_val, (regions_val,T1s_val,IRs_val,T2s_val,lbls_val) in enumerate(valloader):
T1s_val=Variable(T1s_val.cuda())
IRs_val,T2s_val=Variable(IRs_val.cuda()),Variable(T2s_val.cuda())
with torch.no_grad():
outputs_single=model(T1s_val,IRs_val,T2s_val)[0,:,:,:]
# get predict
pred_single=outputs_single.data.max(0)[1].cpu().numpy()
# pad to 240
pred_pad=np.zeros((240,240),np.uint8)
pred_pad[regions_val[0]:regions_val[1],regions_val[2]:regions_val[3]]= \
pred_single[0:regions_val[1]-regions_val[0],0:regions_val[3]-regions_val[2]]
# convert to 3 classes
pred_single_test=np.zeros((240,240),np.uint8)
pred_single_test=v_loader.lbl_totest(pred_pad)
# get gt
gt = lbls_val[0][int(args.num_forest/2)].numpy()
# pad to 240
gt_pad=np.zeros((240,240),np.uint8)
gt_pad[regions_val[0]:regions_val[1],regions_val[2]:regions_val[3]]= \
gt[0:regions_val[1]-regions_val[0],0:regions_val[3]-regions_val[2]]
# convert to 3 classes
gt_test=np.zeros((240,240),np.uint8)
gt_test=v_loader.lbl_totest(gt_pad)
# metrics update
running_metrics_single.update(gt_pad, pred_pad)
running_metrics_single_test.update(gt_test, pred_single_test)
# visualization
if i_val==40:
ax5=plt.subplot(245)
ax5.imshow((T1s_val[0,int(args.num_forest/2),:,:].data.cpu().numpy()*255+t_loader.T1mean).astype(np.uint8),cmap ='gray')
ax5.set_title('src_img')
ax5.axis('off')
ax6=plt.subplot(246)
ax6.imshow(t_loader.decode_segmap(gt).astype(np.uint8))
ax6.set_title('gt')
ax6.axis('off')
ax7=plt.subplot(247)
ax7.imshow(t_loader.decode_segmap(pred_single).astype(np.uint8))
ax7.set_title('pred_single')
ax7.axis('off')
ax8=plt.subplot(248)
ax8.imshow(pred_single_test[regions_val[0]:regions_val[1],regions_val[2]:regions_val[3]].astype(np.uint8))
ax8.set_title('pred_single_test')
ax8.axis('off')
plt.tight_layout()
plt.subplots_adjust(wspace=.1,hspace=.3)
plt.savefig('./fig_out/val_{}_out_{}.png'.format(str(args.val_num),epoch+1))
# compute dice coefficients during validation
score_single, class_iou_single = running_metrics_single.get_scores()
score_single_test, class_iou_single_test = running_metrics_single_test.get_scores()
Dice_mean.append(score_single['Mean Dice : \t'])
Dice_CSF.append(score_single_test['Dice : \t'][1])
Dice_GM.append(score_single_test['Dice : \t'][2])
Dice_WM.append(score_single_test['Dice : \t'][3])
print('--------------------------------All tissues--------------------------------')
print('Back: Background,')
print('GM: Cortical GM(red), Basal ganglia(green),')
print('WM: WM(yellow), WM lesions(blue),')
print('CSF: CSF(pink), Ventricles(light blue),')
print('Back: Cerebellum(white), Brainstem(dark red)')
print('single predict: ')
for k, v in score_single.items():
print(k, v)
print('--------------------------------Only tests--------------------------------')
print('tissue : Back , CSF , GM , WM')
print('single predict: ')
for k, v in score_single_test.items():
print(k, v)
t_test=time.time()
print('cost {} seconds up to now'.format(t_test-t_begin))
print('cost {} seconds in this validation epoch'.format(t_test-t_train))
# save model at best validation metrics
if score_single['Mean Dice : \t'] >= best_iou:
best_iou = score_single['Mean Dice : \t']
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'optimizer_state' : optimizer.state_dict(),
'best_iou':best_iou}
torch.save(state, "val_{}_best.pkl".format(str(args.val_num)))
print('model saved!!!')
# save model every 10 epochs
if (epoch+1)%10==0:
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'optimizer_state' : optimizer.state_dict(),
'score':score_single}
torch.save(state, "val_{}_e_{}.pkl".format(str(args.val_num),epoch+1))
# plot curve
ax1=plt.subplot(211)
ax1.plot(t,loss_seg_list,'g')
ax1.plot(t,loss_hed_list,'r')
ax1.set_title('train loss')
ax2=plt.subplot(212)
ax2.plot(t,Dice_mean,'k')
ax2.plot(t,Dice_CSF,'r')
ax2.plot(t,Dice_GM,'g')
ax2.plot(t,Dice_WM,'b')
ax2.set_title('validate Dice, R/G/B for CSF/GM/WM')
plt.tight_layout()
plt.subplots_adjust(wspace=0,hspace=.3)
plt.savefig('./fig_out/val_{}_curve.png'.format(str(args.val_num)))
# metric reset
running_metrics_single.reset()
running_metrics_single_test.reset()
print('\n\n')
if __name__ == '__main__':
t_begin=time.time()
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--gpu_id', nargs='?', type=int, default=-1,
help='GPU id, -1 for cpu')
parser.add_argument('--data_path', nargs='?', type=str, default='/home/canpi/canpi/MRBrainS18/data/',
help='dataset path')
parser.add_argument('--val_num', nargs='?', type=int, default=1,
help='which set is left for validation')
parser.add_argument('--n_epoch', nargs='?', type=int, default=20,
help='# of the epochs')
parser.add_argument('--batch_size', nargs='?', type=int, default=1,
help='Batch Size')
parser.add_argument('--num_forest', nargs='?', type=int, default=3,
help='number of stacked slice')
#parser.add_argument('--loss_avg', nargs='?', type=int, default=1,
# help='loss average')
parser.add_argument('--lr', nargs='?', type=float, default=1e-3,
help='Learning Rate')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
args = parser.parse_args()
train(args)