-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
255 lines (224 loc) · 13.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import faiss
import torch
import logging
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset
def test_efficient_ram_usage(args, eval_ds, model, test_method="hard_resize"):
"""This function gives the same output as test(), but uses much less RAM.
This can be useful when testing with large descriptors (e.g. NetVLAD) on large datasets (e.g. San Francisco).
Obviously it is slower than test(), and can't be used with PCA.
"""
model = model.eval()
if test_method == 'nearest_crop' or test_method == "maj_voting":
distances = np.empty([eval_ds.queries_num * 5, eval_ds.database_num], dtype=np.float32)
else:
distances = np.empty([eval_ds.queries_num, eval_ds.database_num], dtype=np.float32)
with torch.no_grad():
if test_method == 'nearest_crop' or test_method == 'maj_voting':
queries_features = np.ones((eval_ds.queries_num * 5, args.features_dim), dtype="float32")
else:
queries_features = np.ones((eval_ds.queries_num, args.features_dim), dtype="float32")
logging.debug("Extracting queries features for evaluation/testing")
queries_infer_batch_size = 1 if test_method == "single_query" else args.infer_batch_size
eval_ds.test_method = test_method
queries_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num, eval_ds.database_num+eval_ds.queries_num)))
queries_dataloader = DataLoader(dataset=queries_subset_ds, num_workers=args.num_workers,
batch_size=queries_infer_batch_size, pin_memory=(args.device=="cuda"))
for inputs, indices in tqdm(queries_dataloader, ncols=100):
if test_method == "five_crops" or test_method == "nearest_crop" or test_method == 'maj_voting':
inputs = torch.cat(tuple(inputs)) # shape = 5*bs x 3 x 480 x 480
features = model(inputs.to(args.device))
if test_method == "five_crops": # Compute mean along the 5 crops
features = torch.stack(torch.split(features, 5)).mean(1)
if test_method == "nearest_crop" or test_method == 'maj_voting':
start_idx = (indices[0] - eval_ds.database_num) * 5
end_idx = start_idx + indices.shape[0] * 5
indices = np.arange(start_idx, end_idx)
queries_features[indices, :] = features.cpu().numpy()
else:
queries_features[indices.numpy()-eval_ds.database_num, :] = features.cpu().numpy()
queries_features = torch.tensor(queries_features).type(torch.float32).cuda()
logging.debug("Extracting database features for evaluation/testing")
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
database_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num)))
database_dataloader = DataLoader(dataset=database_subset_ds, num_workers=args.num_workers,
batch_size=args.infer_batch_size, pin_memory=(args.device=="cuda"))
for inputs, indices in tqdm(database_dataloader, ncols=100):
inputs = inputs.to(args.device)
features = model(inputs)
for pn, (index, pred_feature) in enumerate(zip(indices, features)):
distances[:, index] = ((queries_features-pred_feature)**2).sum(1).cpu().numpy()
del features, queries_features, pred_feature
predictions = distances.argsort(axis=1)[:, :max(args.recall_values)]
if test_method == 'nearest_crop':
distances = np.array([distances[row, index] for row, index in enumerate(predictions)])
distances = np.reshape(distances, (eval_ds.queries_num, 20 * 5))
predictions = np.reshape(predictions, (eval_ds.queries_num, 20 * 5))
for q in range(eval_ds.queries_num):
# sort predictions by distance
sort_idx = np.argsort(distances[q])
predictions[q] = predictions[q, sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(predictions[q], return_index=True)
# unique_idx is sorted based on the unique values, sort it again
predictions[q, :20] = predictions[q, np.sort(unique_idx)][:20]
predictions = predictions[:, :20] # keep only the closer 20 predictions for each
elif test_method == 'maj_voting':
distances = np.array([distances[row, index] for row, index in enumerate(predictions)])
distances = np.reshape(distances, (eval_ds.queries_num, 5, 20))
predictions = np.reshape(predictions, (eval_ds.queries_num, 5, 20))
for q in range(eval_ds.queries_num):
# votings, modify distances in-place
top_n_voting('top1', predictions[q], distances[q], args.majority_weight)
top_n_voting('top5', predictions[q], distances[q], args.majority_weight)
top_n_voting('top10', predictions[q], distances[q], args.majority_weight)
# flatten dist and preds from 5, 20 -> 20*5
# and then proceed as usual to keep only first 20
dists = distances[q].flatten()
preds = predictions[q].flatten()
# sort predictions by distance
sort_idx = np.argsort(dists)
preds = preds[sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(preds, return_index=True)
# unique_idx is sorted based on the unique values, sort it again
# here the row corresponding to the first crop is used as a
# 'buffer' for each query, and in the end the dimension
# relative to crops is eliminated
predictions[q, 0, :20] = preds[np.sort(unique_idx)][:20]
predictions = predictions[:, 0, :20] # keep only the closer 20 predictions for each query
del distances
#### For each query, check if the predictions are correct
positives_per_query = eval_ds.get_positives()
# args.recall_values by default is [1, 5, 10, 20]
recalls = np.zeros(len(args.recall_values))
for query_index, pred in enumerate(predictions):
for i, n in enumerate(args.recall_values):
if np.any(np.in1d(pred[:n], positives_per_query[query_index])):
recalls[i:] += 1
break
recalls = recalls / eval_ds.queries_num * 100
recalls_str = ", ".join([f"R@{val}: {rec:.1f}" for val, rec in zip(args.recall_values, recalls)])
return recalls, recalls_str
def test(args, eval_ds, model, test_method="hard_resize", pca=None):
"""Compute features of the given dataset and compute the recalls."""
assert test_method in ["hard_resize", "single_query", "central_crop", "five_crops",
"nearest_crop", "maj_voting"], f"test_method can't be {test_method}"
if args.efficient_ram_testing:
return test_efficient_ram_usage(args, eval_ds, model, test_method)
model = model.eval()
with torch.no_grad():
logging.debug("Extracting database features for evaluation/testing")
# For database use "hard_resize", although it usually has no effect because database images have same resolution
eval_ds.test_method = "hard_resize"
database_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num)))
database_dataloader = DataLoader(dataset=database_subset_ds, num_workers=args.num_workers,
batch_size=args.infer_batch_size, pin_memory=(args.device=="cuda"))
if test_method == "nearest_crop" or test_method == 'maj_voting':
all_features = np.empty((5 * eval_ds.queries_num + eval_ds.database_num, args.features_dim), dtype="float32")
else:
all_features = np.empty((len(eval_ds), args.features_dim), dtype="float32")
for inputs, indices in tqdm(database_dataloader, ncols=100):
features = model(inputs.to(args.device))
features = features.cpu().numpy()
if pca != None:
features = pca.transform(features)
all_features[indices.numpy(), :] = features
logging.debug("Extracting queries features for evaluation/testing")
queries_infer_batch_size = 1 if test_method == "single_query" else args.infer_batch_size
eval_ds.test_method = test_method
queries_subset_ds = Subset(eval_ds, list(range(eval_ds.database_num, eval_ds.database_num+eval_ds.queries_num)))
queries_dataloader = DataLoader(dataset=queries_subset_ds, num_workers=args.num_workers,
batch_size=queries_infer_batch_size, pin_memory=(args.device=="cuda"))
for inputs, indices in tqdm(queries_dataloader, ncols=100):
if test_method == "five_crops" or test_method == "nearest_crop" or test_method == 'maj_voting':
inputs = torch.cat(tuple(inputs)) # shape = 5*bs x 3 x 480 x 480
features = model(inputs.to(args.device))
if test_method == "five_crops": # Compute mean along the 5 crops
features = torch.stack(torch.split(features, 5)).mean(1)
features = features.cpu().numpy()
if pca != None:
features = pca.transform(features)
if test_method == "nearest_crop" or test_method == 'maj_voting': # store the features of all 5 crops
start_idx = eval_ds.database_num + (indices[0] - eval_ds.database_num) * 5
end_idx = start_idx + indices.shape[0] * 5
indices = np.arange(start_idx, end_idx)
all_features[indices, :] = features
else:
all_features[indices.numpy(), :] = features
queries_features = all_features[eval_ds.database_num:]
database_features = all_features[:eval_ds.database_num]
faiss_index = faiss.IndexFlatL2(args.features_dim)
faiss_index.add(database_features)
del database_features, all_features
logging.debug("Calculating recalls")
distances, predictions = faiss_index.search(queries_features, max(args.recall_values))
if test_method == 'nearest_crop':
distances = np.reshape(distances, (eval_ds.queries_num, 20 * 5))
predictions = np.reshape(predictions, (eval_ds.queries_num, 20 * 5))
for q in range(eval_ds.queries_num):
# sort predictions by distance
sort_idx = np.argsort(distances[q])
predictions[q] = predictions[q, sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(predictions[q], return_index=True)
# unique_idx is sorted based on the unique values, sort it again
predictions[q, :20] = predictions[q, np.sort(unique_idx)][:20]
predictions = predictions[:, :20] # keep only the closer 20 predictions for each query
elif test_method == 'maj_voting':
distances = np.reshape(distances, (eval_ds.queries_num, 5, 20))
predictions = np.reshape(predictions, (eval_ds.queries_num, 5, 20))
for q in range(eval_ds.queries_num):
# votings, modify distances in-place
top_n_voting('top1', predictions[q], distances[q], args.majority_weight)
top_n_voting('top5', predictions[q], distances[q], args.majority_weight)
top_n_voting('top10', predictions[q], distances[q], args.majority_weight)
# flatten dist and preds from 5, 20 -> 20*5
# and then proceed as usual to keep only first 20
dists = distances[q].flatten()
preds = predictions[q].flatten()
# sort predictions by distance
sort_idx = np.argsort(dists)
preds = preds[sort_idx]
# remove duplicated predictions, i.e. keep only the closest ones
_, unique_idx = np.unique(preds, return_index=True)
# unique_idx is sorted based on the unique values, sort it again
# here the row corresponding to the first crop is used as a
# 'buffer' for each query, and in the end the dimension
# relative to crops is eliminated
predictions[q, 0, :20] = preds[np.sort(unique_idx)][:20]
predictions = predictions[:, 0, :20] # keep only the closer 20 predictions for each query
#### For each query, check if the predictions are correct
positives_per_query = eval_ds.get_positives()
# args.recall_values by default is [1, 5, 10, 20]
recalls = np.zeros(len(args.recall_values))
for query_index, pred in enumerate(predictions):
for i, n in enumerate(args.recall_values):
if np.any(np.in1d(pred[:n], positives_per_query[query_index])):
recalls[i:] += 1
break
# Divide by the number of queries*100, so the recalls are in percentages
recalls = recalls / eval_ds.queries_num * 100
recalls_str = ", ".join([f"R@{val}: {rec:.1f}" for val, rec in zip(args.recall_values, recalls)])
return recalls, recalls_str
def top_n_voting(topn, predictions, distances, maj_weight):
if topn == 'top1':
n = 1
selected = 0
elif topn == 'top5':
n = 5
selected = slice(0, 5)
elif topn == 'top10':
n = 10
selected = slice(0, 10)
# find predictions that repeat in the first, first five,
# or fist ten columns for each crop
vals, counts = np.unique(predictions[:, selected], return_counts=True)
# for each prediction that repeats more than once,
# subtract from its score
for val, count in zip(vals[counts > 1], counts[counts > 1]):
mask = (predictions[:, selected] == val)
distances[:, selected][mask] -= maj_weight * count/n