-
Notifications
You must be signed in to change notification settings - Fork 7
/
point_within_format.yaml
76 lines (72 loc) · 1.51 KB
/
point_within_format.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
resume: false
test_only: false
num_workers: 10
required_devices: 1
no_test: false
debug: false
log2tb: true
allow_double_bs: false
seed: 0
distributed: false
test_freq: 10
print_freq: 5
dataset:
DATASET_NAMES: [scannet]
DATA_PATHS: ['/path/to/datalist.npy']
DATA_LIMIT: -1
BATCHSIZE_PER_REPLICA: 32
LABEL_TYPE: sample_index
DATA_TYPE: points
VOX: False
POINT_TRANSFORMS:
- name: randomcuboid
crop: 0.5
npoints: 10000
randcrop: 1.0
aspect: 0.75
- name: randomdrop
crop: 0.2
- name: multiscale
- name: RandomFlip
- name: RandomRotateAll
- name: RandomScale
- name: ToTensor
COLLATE_FUNCTION: "point_moco_collator"
INPUT_KEY_NAMES: ["points", "points_moco"]
DROP_LAST: True
optimizer:
name: "sgd"
weight_decay: 0.0001
momentum: 0.9
nesterov: False
num_epochs: 1000
lr:
name: "cosine"
base_lr: 0.12
final_lr: 0.00012
model:
name: "Pointnet1X"
model_dir: "checkpoints/pointnet1x_within_format"
model_input: ["points", "points_moco"]
model_feature: [["fp2"], ["fp2"]]
arch_point: "pointnet"
args_point:
scale: 1
use_mlp: True
mlp_dim: [512, 512, 128]
loss:
name: "NCELossMoco"
args:
two_domain: True
LOSS_TYPE: NPID
OTHER_INPUT: False
within_format_weight0: 1.0
within_format_weight1: 0.0
across_format_weight0: 0.0
across_format_weight1: 0.0
NCE_LOSS:
NORM_EMBEDDING: True
TEMPERATURE: 0.1
LOSS_TYPE: cross_entropy
NUM_NEGATIVES: 131072
EMBEDDING_DIM: 128