forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_predict.py
161 lines (135 loc) · 5.21 KB
/
run_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from dataclasses import dataclass, field
import os
import numpy as np
import requests
import paddle
import paddle.nn.functional as F
from paddlemix.processors.groundingdino_processing import GroudingDinoProcessor
from paddlemix.models.groundingdino.modeling import GroundingDinoModel
from PIL import Image, ImageDraw, ImageFont
from paddlenlp.trainer import PdArgumentParser
from paddlemix.utils.log import logger
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * paddle.to_tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box.numpy()
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `PdArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
input_image: str = field(metadata={"help": "The name of input image."})
prompt: str = field(
default=None,
metadata={"help": "The prompt of the image to be generated."})
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="GroundingDino/groundingdino-swint-ogc",
metadata={"help": "Path to pretrained model or model identifier"}, )
box_threshold: float = field(
default=0.3,
metadata={"help": "box threshold."}, )
text_threshold: float = field(
default=0.25,
metadata={"help": "text threshold."}, )
output_dir: str = field(
default="output",
metadata={"help": "output directory."}, )
visual: bool = field(
default=True,
metadata={"help": "save visual image."}, )
def main():
parser = PdArgumentParser((ModelArguments, DataArguments))
model_args, data_args = parser.parse_args_into_dataclasses()
#bulid processor
processor = GroudingDinoProcessor.from_pretrained(
model_args.model_name_or_path)
#bulid model
logger.info("dino_model: {}".format(model_args.model_name_or_path))
dino_model = GroundingDinoModel.from_pretrained(
model_args.model_name_or_path)
dino_model.eval()
#read image
url = (data_args.input_image)
#read image
if os.path.isfile(url):
#read image
image_pil = Image.open(data_args.input_image).convert("RGB")
else:
image_pil = Image.open(requests.get(url, stream=True).raw).convert(
"RGB")
#preprocess image text_prompt
image_tensor, mask, tokenized_out = processor(
images=image_pil, text=data_args.prompt)
with paddle.no_grad():
outputs = dino_model(
image_tensor,
mask,
input_ids=tokenized_out['input_ids'],
attention_mask=tokenized_out['attention_mask'],
text_self_attention_masks=tokenized_out[
'text_self_attention_masks'],
position_ids=tokenized_out['position_ids'])
logits = F.sigmoid(outputs["pred_logits"])[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(axis=1) > model_args.box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = processor.decode(logit > model_args.text_threshold)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
logger.info("output{}".format(pred_dict))
if model_args.visual:
# make dir
os.makedirs(model_args.output_dir, exist_ok=True)
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
image_with_box.save(os.path.join(model_args.output_dir, "pred.jpg"))
if __name__ == "__main__":
main()