-
Notifications
You must be signed in to change notification settings - Fork 0
/
GAMES10113.html
524 lines (415 loc) · 105 KB
/
GAMES10113.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width">
<meta name="theme-color" content="#222"><meta name="generator" content="Hexo 7.2.0">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png">
<link rel="mask-icon" href="/images/logo.svg" color="#222">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha256-dABdfBfUoC8vJUBOwGVdm8L9qlMWaHTIfXt+7GnZCIo=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/3.1.1/animate.min.css" integrity="sha256-PR7ttpcvz8qrF57fur/yAx1qXMFJeJFiA6pSzWi0OIE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/themes/white/pace-theme-minimal.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/pace.min.js" integrity="sha256-gqd7YTjg/BtfqWSwsJOvndl0Bxc8gFImLEkXQT8+qj0=" crossorigin="anonymous"></script>
<script class="next-config" data-name="main" type="application/json">{"hostname":"example.com","root":"/","images":"/images","scheme":"Pisces","darkmode":false,"version":"8.22.0","exturl":false,"sidebar":{"position":"left","width_expanded":320,"width_dual_column":240,"display":"post","padding":18,"offset":12},"hljswrap":true,"copycode":{"enable":true,"style":"default"},"fold":{"enable":true,"height":500},"bookmark":{"enable":false,"color":"#222","save":"auto"},"mediumzoom":false,"lazyload":false,"pangu":false,"comments":{"style":"tabs","active":"disqus","storage":true,"lazyload":false,"nav":{"disqus":{"text":"Load Disqus","order":-1}},"activeClass":"disqus"},"stickytabs":false,"motion":{"enable":true,"async":false,"duration":200,"transition":{"menu_item":"fadeInDown","post_block":"fadeIn","post_header":"fadeInDown","post_body":"fadeInDown","coll_header":"fadeInLeft","sidebar":"fadeInUp"}},"prism":false,"i18n":{"placeholder":"搜索...","empty":"没有找到任何搜索结果:${query}","hits_time":"找到 ${hits} 个搜索结果(用时 ${time} 毫秒)","hits":"找到 ${hits} 个搜索结果"},"path":"/search.xml","localsearch":{"enable":true,"top_n_per_article":1,"unescape":false,"preload":false,"trigger":"auto"}}</script><script src="/js/config.js"></script>
<meta name="description" content="前言 GAMES101-14:辐射度量学的意义、能量,功率与辐射强度(intensity)的定义。 GAMES101-15:辐射度量学的基本概念:辐照强度、辐射通量,BRDF,渲染方程,全局光照">
<meta property="og:type" content="article">
<meta property="og:title" content="GAMES101-14&15:辐射度量学">
<meta property="og:url" content="http://example.com/GAMES10113.html">
<meta property="og:site_name" content="LeeKa 的酒馆">
<meta property="og:description" content="前言 GAMES101-14:辐射度量学的意义、能量,功率与辐射强度(intensity)的定义。 GAMES101-15:辐射度量学的基本概念:辐照强度、辐射通量,BRDF,渲染方程,全局光照">
<meta property="og:locale" content="zh_CN">
<meta property="og:image" content="http://example.com/assets/101-solidangel.png">
<meta property="og:image" content="http://example.com/assets/101-directillumin.png">
<meta property="og:image" content="http://example.com/assets/101-onebcillumin.png">
<meta property="og:image" content="http://example.com/assets/101-twobcillumin.png">
<meta property="og:image" content="http://example.com/assets/101-fourbcillumin.png">
<meta property="article:published_time" content="2023-08-04T15:18:19.000Z">
<meta property="article:modified_time" content="2024-04-20T18:58:06.438Z">
<meta property="article:author" content="LeeKa">
<meta property="article:tag" content="笔记">
<meta property="article:tag" content="计算机图形学">
<meta property="article:tag" content="GAMES">
<meta property="article:tag" content="GAMES101">
<meta property="article:tag" content="辐射度量学">
<meta property="article:tag" content="BRDF">
<meta property="article:tag" content="渲染方程">
<meta property="article:tag" content="全局光照">
<meta name="twitter:card" content="summary">
<meta name="twitter:image" content="http://example.com/assets/101-solidangel.png">
<link rel="canonical" href="http://example.com/GAMES10113.html">
<script class="next-config" data-name="page" type="application/json">{"sidebar":"","isHome":false,"isPost":true,"lang":"zh-CN","comments":true,"permalink":"http://example.com/GAMES10113.html","path":"/GAMES10113.html","title":"GAMES101-14&15:辐射度量学"}</script>
<script class="next-config" data-name="calendar" type="application/json">""</script>
<title>GAMES101-14&15:辐射度量学 | LeeKa 的酒馆</title>
<noscript>
<link rel="stylesheet" href="/css/noscript.css">
</noscript>
</head>
<body itemscope itemtype="http://schema.org/WebPage" class="use-motion">
<div class="headband"></div>
<main class="main">
<div class="column">
<header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="site-brand-container">
<div class="site-nav-toggle">
<div class="toggle" aria-label="切换导航栏" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
</div>
<div class="site-meta">
<a href="/" class="brand" rel="start">
<i class="logo-line"></i>
<p class="site-title">LeeKa 的酒馆</p>
<i class="logo-line"></i>
</a>
<p class="site-subtitle" itemprop="description">欢迎,旅人!坐下来享受一下暖烘烘的炉火吧。</p>
</div>
<div class="site-nav-right">
<div class="toggle popup-trigger" aria-label="搜索" role="button">
<i class="fa fa-search fa-fw fa-lg"></i>
</div>
</div>
</div>
<nav class="site-nav">
<ul class="main-menu menu"><li class="menu-item menu-item-home"><a href="/" rel="section"><i class="fa fa-home fa-fw"></i>首页</a></li><li class="menu-item menu-item-about"><a href="/about/" rel="section"><i class="fa fa-user fa-fw"></i>关于</a></li><li class="menu-item menu-item-tags"><a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>标签</a></li><li class="menu-item menu-item-categories"><a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>分类</a></li><li class="menu-item menu-item-archives"><a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>归档</a></li><li class="menu-item menu-item-友链"><a href="/links/" rel="section"><i class="fa-solid fa-link fa-fw"></i>友链</a></li>
<li class="menu-item menu-item-search">
<a role="button" class="popup-trigger"><i class="fa fa-search fa-fw"></i>搜索
</a>
</li>
</ul>
</nav>
<div class="search-pop-overlay">
<div class="popup search-popup">
<div class="search-header">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<div class="search-input-container">
<input autocomplete="off" autocapitalize="off" maxlength="80"
placeholder="搜索..." spellcheck="false"
type="search" class="search-input">
</div>
<span class="popup-btn-close" role="button">
<i class="fa fa-times-circle"></i>
</span>
</div>
<div class="search-result-container">
<div class="search-result-icon">
<i class="fa fa-spinner fa-pulse fa-5x"></i>
</div>
</div>
</div>
</div>
</header>
<aside class="sidebar">
<div class="sidebar-inner sidebar-nav-active sidebar-toc-active">
<ul class="sidebar-nav">
<li class="sidebar-nav-toc">
文章目录
</li>
<li class="sidebar-nav-overview">
站点概览
</li>
</ul>
<div class="sidebar-panel-container">
<!--noindex-->
<div class="post-toc-wrap sidebar-panel">
<div class="post-toc animated"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%89%8D%E8%A8%80"><span class="nav-number">1.</span> <span class="nav-text"> 前言</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E8%BE%90%E5%B0%84%E5%BA%A6%E9%87%8F%E5%AD%A6"><span class="nav-number">2.</span> <span class="nav-text"> 辐射度量学</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#brdf%E5%8F%8C%E5%90%91%E5%8F%8D%E5%B0%84%E5%88%86%E5%B8%83%E5%87%BD%E6%95%B0"><span class="nav-number">3.</span> <span class="nav-text"> BRDF:双向反射分布函数</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%8F%8D%E5%B0%84%E6%96%B9%E7%A8%8B%E4%B8%8E%E6%B8%B2%E6%9F%93%E6%96%B9%E7%A8%8B"><span class="nav-number">4.</span> <span class="nav-text"> 反射方程与渲染方程</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%85%A8%E5%B1%80%E5%85%89%E7%85%A7"><span class="nav-number">5.</span> <span class="nav-text"> 全局光照</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E8%B7%B3%E8%BD%AC"><span class="nav-number">6.</span> <span class="nav-text"> 跳转</span></a></li></ol></div>
</div>
<!--/noindex-->
<div class="site-overview-wrap sidebar-panel">
<div class="site-author animated" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" alt="LeeKa"
src="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<p class="site-author-name" itemprop="name">LeeKa</p>
<div class="site-description" itemprop="description">代码、音乐和游戏,一起来聊聊吧</div>
</div>
<div class="site-state-wrap animated">
<nav class="site-state">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">62</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/">
<span class="site-state-item-count">15</span>
<span class="site-state-item-name">分类</span></a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/">
<span class="site-state-item-count">159</span>
<span class="site-state-item-name">标签</span></a>
</div>
</nav>
</div>
<div class="links-of-author animated">
<span class="links-of-author-item">
<a href="https://github.com/KXAND" title="GitHub → https://github.com/KXAND" rel="noopener me" target="_blank">GitHub</a>
</span>
<span class="links-of-author-item">
<a href="mailto:[email protected]" title="E-Mail → mailto:[email protected]" rel="noopener me" target="_blank">E-Mail</a>
</span>
<span class="links-of-author-item">
<a href="https://twitter.com/QuiXand" title="X → https://twitter.com/QuiXand" rel="noopener me" target="_blank">X</a>
</span>
<span class="links-of-author-item">
<a href="https://pinhua.leeka.pub/" title="宁远平话 → https://pinhua.leeka.pub" rel="noopener me" target="_blank">宁远平话</a>
</span>
</div>
<div class="cc-license animated" itemprop="license">
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/deed.zh-hans" class="cc-opacity" rel="noopener" target="_blank"><img src="https://cdnjs.cloudflare.com/ajax/libs/creativecommons-vocabulary/2020.11.3/assets/license_badges/big/by_nc_sa.svg" alt="Creative Commons"></a>
</div>
</div>
</div>
</div>
</aside>
</div>
<div class="main-inner post posts-expand">
<div class="post-block">
<article itemscope itemtype="http://schema.org/Article" class="post-content" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://example.com/GAMES10113.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<meta itemprop="name" content="LeeKa">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="LeeKa 的酒馆">
<meta itemprop="description" content="代码、音乐和游戏,一起来聊聊吧">
</span>
<span hidden itemprop="post" itemscope itemtype="http://schema.org/CreativeWork">
<meta itemprop="name" content="GAMES101-14&15:辐射度量学 | LeeKa 的酒馆">
<meta itemprop="description" content="">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
GAMES101-14&15:辐射度量学<a href="https://github.com/KXAND/BlogSource/edit/source/_posts/GAMES101/GAMES101-13.md" class="post-edit-link" title="编辑" rel="noopener" target="_blank"><i class="fa fa-pen-nib"></i></a>
</h1>
<div class="post-meta-container">
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2023-08-04 23:18:19" itemprop="dateCreated datePublished" datetime="2023-08-04T23:18:19+08:00">2023-08-04</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar-check"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2024-04-21 02:58:06" itemprop="dateModified" datetime="2024-04-21T02:58:06+08:00">2024-04-21</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/GAMES101/" itemprop="url" rel="index"><span itemprop="name">GAMES101</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Disqus:</span>
<a title="disqus" href="/GAMES10113.html#disqus_thread" itemprop="discussionUrl">
<span class="post-comments-count disqus-comment-count" data-disqus-identifier="/GAMES10113.html" itemprop="commentCount"></span>
</a>
</span>
<span class="post-meta-item" title="本文字数">
<span class="post-meta-item-icon">
<i class="far fa-file-word"></i>
</span>
<span class="post-meta-item-text">本文字数:</span>
<span>1.6k</span>
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody"><h2 id="前言"><a class="markdownIt-Anchor" href="#前言"></a> 前言</h2>
<p><a href="https://www.bilibili.com/video/BV1X7411F744/?p=14">GAMES101-14</a>:辐射度量学的意义、能量,功率与辐射强度(intensity)的定义。</p>
<p><a href="https://www.bilibili.com/video/BV1X7411F744/?p=15">GAMES101-15</a>:辐射度量学的基本概念:辐照强度、辐射通量,BRDF,渲染方程,全局光照 <span id="more"></span></p>
<h2 id="辐射度量学"><a class="markdownIt-Anchor" href="#辐射度量学"></a> 辐射度量学</h2>
<p>为什么要研究辐射度量学:Whitted-Style 光线追踪尽管可以在一些场景表现不错,但是其建立完全是基于经验值和表现的效果的,而不是实际的物理规律,因此其值不可能完全真实准确。这就是为什么我们需要辐射度量学。</p>
<p>要进行严谨度量,我们就要先定义单位(中文均为个人翻译,课程中没有中文名):</p>
<ul>
<li>
<p>辐射能 Radiant Energy:辐射出的能量 Q <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(J)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mclose">)</span></span></span></span>。</p>
</li>
<li>
<p>辐射速率/功率 Radiant flux(power):单位时间内辐射/吸收/反射的能量。对于光源即“有多亮” .<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mi>Q</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\Phi=\frac{\mathrm{d}Q}{\mathrm{d}t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.277216em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322159999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">d</span></span><span class="mord mathnormal mtight">t</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.446108em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">d</span></span><span class="mord mathnormal mtight">Q</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> ,单位 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">W</mi><mo stretchy="false">(</mo><mi mathvariant="normal">W</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">m</mi><mo stretchy="false">(</mo><mi mathvariant="normal">l</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{W(Watt)/lm(lumen)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm" style="margin-right:0.01389em;">W</span><span class="mopen">(</span><span class="mord mathrm" style="margin-right:0.01389em;">W</span><span class="mord mathrm">a</span><span class="mord mathrm">t</span><span class="mord mathrm">t</span><span class="mclose">)</span><span class="mord mathrm">/</span><span class="mord mathrm">l</span><span class="mord mathrm">m</span><span class="mopen">(</span><span class="mord mathrm">l</span><span class="mord mathrm">u</span><span class="mord mathrm">m</span><span class="mord mathrm">e</span><span class="mord mathrm">n</span><span class="mclose">)</span></span></span></span></span></p>
<blockquote>
<p><strong>注意</strong>:下文和图形学中说到的能量往往是指 flux 而非 energy,因为我们总是在关心眼下发生的情况(实时)而非累计的结果。</p>
</blockquote>
</li>
<li>
<p>辐射强度 Radiant Intensity:一个单位立体角的功率。 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>ω</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">Φ</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>ω</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">I(\omega)=\frac{\mathrm{d}\Phi}{\mathrm{d}\omega}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2251079999999999em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">d</span></span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">ω</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">d</span></span><span class="mord mtight">Φ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>,单位 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">d</mi><mo stretchy="false">(</mo><mi mathvariant="normal">c</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">d</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">a</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">l</mi><mi mathvariant="normal">m</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">r</mi></mrow></mfrac><mi mathvariant="normal">o</mi><mi mathvariant="normal">r</mi><mfrac><mi mathvariant="normal">W</mi><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">r</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\mathrm{cd(candela)=\frac{lm}{sr}or\frac{W}{sr}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2251079999999999em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord mathrm">c</span><span class="mord mathrm">d</span><span class="mopen">(</span><span class="mord mathrm">c</span><span class="mord mathrm">a</span><span class="mord mathrm">n</span><span class="mord mathrm">d</span><span class="mord mathrm">e</span><span class="mord mathrm">l</span><span class="mord mathrm">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">s</span><span class="mord mathrm mtight">r</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">l</span><span class="mord mathrm mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathrm">o</span><span class="mord mathrm">r</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.872331em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">s</span><span class="mord mathrm mtight">r</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight" style="margin-right:0.01389em;">W</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>。</p>
<p>类比弧度,立体角(Solid angel)是指 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Ω</mi><mo>=</mo><mfrac><mi>S</mi><msup><mi>r</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">\Omega=\frac{S}{r^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Ω</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.217331em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.872331em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05764em;">S</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>,其中 S 是对应的表面积,一个球的立体角是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">4\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span>。将面积表示成半径 r、和 y 轴(竖直轴)的夹角 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span>、和水平面 x 轴的夹角 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">ϕ</span></span></span></span> 的组合,就有:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Ω</mi><mo>=</mo><mfrac><mi>S</mi><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mi>sin</mi><mo></mo><mi>θ</mi><mi mathvariant="normal">d</mi><mi>θ</mi><mi mathvariant="normal">d</mi><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\Omega=\frac{S}{r^2}=\sin\theta\mathrm{d}\theta \mathrm{d}\phi
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Ω</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal">ϕ</span></span></span></span></span></p>
<p><img src="./../../assets/101-solidangel.png" alt="Intensity" /></p>
<p>如果一个点光源均匀地向所有方向辐射光,那么 Intensity 就简单的有</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>I</mi><mo>=</mo><mfrac><mi mathvariant="normal">Φ</mi><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">I=\frac{\Phi}{4\pi}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Φ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
</li>
<li>
<p>辐照强度 Irradiance:单位面积接收到的(投影后的)能量(flux)。</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">d</mi><mi>S</mi></mrow></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">Φ</mi><mi>S</mi></mfrac><mi>cos</mi><mo></mo><mi>θ</mi></mrow><annotation encoding="application/x-tex">E(x)=\frac{\mathrm{d}\Phi (x)}{\mathrm{d}S}=\frac{\Phi}{S}\cos \theta
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.113em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord">Φ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Φ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span></span></p>
<p>单位 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi mathvariant="normal">l</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">x</mi></mrow><mo>=</mo><mfrac><mrow><mi>l</mi><mi>m</mi></mrow><msup><mi>m</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">\mathrm{lux}=\frac{lm}{m^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord"><span class="mord mathrm">l</span><span class="mord mathrm">u</span><span class="mord mathrm">x</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2251079999999999em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>。此处要求的能量与面积是垂直的,如果不垂直则需要投影。这正是 Blinn-Phong 模型中应用的“物体接收到的光取决于与法线的余弦”(Lambert’s Cosine Law)的物理意义。</p>
<blockquote>
<p>随着距离的增加,辐射强度 Intensity 不会发生改变,但是辐照度 Irradiance 会衰减。</p>
</blockquote>
</li>
<li>
<p>辐射通量 Radiance:单位立体角且单位面积内的辐射能量。换句话说,通量就是单位立体角中的辐照度(理解吸收)或单位面积的辐射强度(理解发出)。通量是一个有方向的量。</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>L</mi><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><mi>ω</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mn>2</mn></msup><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">d</mi><mi>ω</mi><mi mathvariant="normal">d</mi><mi>S</mi><mi>cos</mi><mo></mo><mi>θ</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">L(p,\omega)=\frac{\mathrm{d^2}\Phi(p,\omega)}{\mathrm{d}\omega\mathrm{d}S\cos\theta}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">L</span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.177108em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathrm">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathrm mtight">2</span></span></span></span></span></span></span></span></span><span class="mord">Φ</span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p>单位<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mi>i</mi><mi>t</mi><mo>=</mo><mfrac><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">d</mi></mrow><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">nit=\frac{\mathrm{cd}}{\mathrm{m^2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathnormal">n</span><span class="mord mathnormal">i</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2251079999999999em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathrm mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">c</span><span class="mord mathrm mtight">d</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>。</p>
<blockquote>
<p>对来自单位面积来自所有方向的辐射积分,就有该面积的所有能量。再对面积积分,则有物体的所有接收能量。</p>
</blockquote>
</li>
</ul>
<p>这些概念中单位相对而言并不重要,请注意理解概念本身。</p>
<h2 id="brdf双向反射分布函数"><a class="markdownIt-Anchor" href="#brdf双向反射分布函数"></a> BRDF:双向反射分布函数</h2>
<p>BRDF 的作用在于,将物体吸收的能量(Irradiance)和指定角度发出(反射)的能量(Radiance)联系了起来。对于一个极小区域 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">d</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">\mathrm{d}A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal">A</span></span></span></span>,一束从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\omega _i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 入射的辐射是:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">d</mi><mi>E</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>L</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><msub><mi>θ</mi><mi>i</mi></msub><mi mathvariant="normal">d</mi><msub><mi>ω</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{d}E(\omega_i)=L(\omega_i)\cos\theta_i\mathrm{d}\omega_i
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">L</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>物体吸收后发射(或者说物体反射)辐射到不同的方向,对于一个指定的方向 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>r</mi></msub></mrow><annotation encoding="application/x-tex">\omega_r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,反射的能量记为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">d</mi><msub><mi>L</mi><mi>r</mi></msub><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{d}L_r(\omega_r)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>。</p>
<p>此时,可以记 BRDF 为:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>f</mi><mi>r</mi></msub><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>i</mi></msub><mo>→</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>L</mi><mi>r</mi></msub><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>E</mi><mi>i</mi></msub><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>L</mi><mi>r</mi></msub><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>L</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><msub><mi>θ</mi><mi>i</mi></msub><mi mathvariant="normal">d</mi><msub><mi>ω</mi><mi>i</mi></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">f_r(\omega_i\rarr \omega_r)=\frac{\mathrm{d}L_r(\omega_r)}{\mathrm{d}E_i(\omega_i)}=\frac{\mathrm{d}L_r(\omega_r)}{L(\omega_i)\cos\theta_i\mathrm{d}\omega_i}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p>BRDF 的图像描述了辐射会被反射到哪个方向,例如如果是镜面反射,那么图像就是仅在镜面反射方向有值,其他方向没有多少值。</p>
<h2 id="反射方程与渲染方程"><a class="markdownIt-Anchor" href="#反射方程与渲染方程"></a> 反射方程与渲染方程</h2>
<p>把该点的所有入射光的 BRDF 累加起来,就可以算出该点反射了多少光,即该点的<strong>反射方程</strong>:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>L</mi><mi>r</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∫</mo><msup><mi>H</mi><mn>2</mn></msup></msub><msub><mi>f</mi><mi>r</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>i</mi></msub><mo>→</mo><msub><mi>ω</mi><mi>r</mi></msub><mo stretchy="false">)</mo><mi>L</mi><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><msub><mi>θ</mi><mi>i</mi></msub><mi mathvariant="normal">d</mi><msub><mi>ω</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">L_r(p,\omega_r)=\int_{H^2}f_r(p,\omega_i\rarr \omega_r)L(p,\omega_i)\cos\theta_i\mathrm{d}\omega_i
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.27195em;vertical-align:-0.9119499999999999em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.38952999999999993em;"><span style="top:-1.7880500000000001em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119499999999999em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal">L</span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>添加自发光项使得公式对光源也适用:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>L</mi><mi>r</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>o</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mi>L</mi><mi>e</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>o</mi></msub><mo stretchy="false">)</mo><mo>+</mo><msub><mo>∫</mo><msup><mi>H</mi><mn>2</mn></msup></msub><msub><mi>L</mi><mi>i</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>i</mi></msub><mo stretchy="false">)</mo><msub><mi>f</mi><mi>r</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo separator="true">,</mo><msub><mi>ω</mi><mi>i</mi></msub><mo>→</mo><msub><mi>ω</mi><mi>o</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mover accent="true"><mi>n</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><msub><mi>ω</mi><mi>i</mi></msub><mo>⃗</mo></mover><mo stretchy="false">)</mo><mi mathvariant="normal">d</mi><msub><mi>ω</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex"> L_r(p,\omega_o)=L_e(p,\omega_o)+\int_{H^2}L_i(p,\omega_i) f_r(p,\omega_i\rarr \omega_o) (\vec{n}\cdot\vec{\omega_i}) \mathrm{d}\omega_i
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">e</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.27195em;vertical-align:-0.9119499999999999em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.38952999999999993em;"><span style="top:-1.7880500000000001em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.08125em;">H</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119499999999999em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathrm">d</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>此时方程就是<strong>渲染方程</strong>。需要指出的是涉及的向量的方向都是从 p 点指向外的,而且通过积分域的限制,我们排除了下半球内的积分,因为这个方向肯定不会对渲染起作用。(相当于 Blinn-Phong 模型中的那个 max() )。而且通过积分,我们不仅可以处理多个点光源,也可以处理面光源。</p>
<h2 id="全局光照"><a class="markdownIt-Anchor" href="#全局光照"></a> 全局光照</h2>
<p>把上面的式子简单分析一下,其实就是:反射光=自发光+入射光<em>BRDF</em>余弦角。其中未知量只有入射光和反射光。于是我们经过一系列的简化就可以有:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>L</mi><mo>=</mo><mi>E</mi><mo>+</mo><mi>K</mi><mi>L</mi></mrow><annotation encoding="application/x-tex">L=E+KL
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mord mathnormal">L</span></span></span></span></span></p>
<p>其中 I 是单位矩阵,因为反射的和入射能量没有改变所以两侧 L 相等可以直接合并。</p>
<p>考虑到入射的 L 也可以是其他物体反射的 L,所以类似泰勒展开有</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>L</mi><mo>=</mo><mi>E</mi><mo>+</mo><mi>K</mi><mi>L</mi><mspace linebreak="newline"></mspace><mo>⇒</mo><mi>L</mi><mo>=</mo><mo stretchy="false">(</mo><mi>I</mi><mo>−</mo><mi>K</mi><msup><mo stretchy="false">)</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>E</mi><mo>⇒</mo><mi>L</mi><mo>=</mo><mi>E</mi><mo>+</mo><mi>K</mi><mi>E</mi><mo>+</mo><msup><mi>K</mi><mn>2</mn></msup><mi>E</mi><mo>+</mo><msup><mi>K</mi><mn>3</mn></msup><mi>E</mi><mo>+</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">L=E+KL\\
\rArr L=(I-K)^{-1}E
\rArr L=E+KE+K^2E+K^3E+\dots
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mord mathnormal">L</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:0.36687em;vertical-align:0em;"></span><span class="mrel">⇒</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1141079999999999em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.864108em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">⇒</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9474379999999999em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9474379999999999em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.12em;vertical-align:0em;"></span><span class="minner">…</span></span></span></span></span></p>
<p>其中, E 即直接进入摄像机的光,KE 即直接打在物体表面的光,二次即一次物体反射的间接光照,三次即在物体上反射了两次才打到渲染物体上的光……依此类推。</p>
<p>光栅化可以较容易的处理前两项,但是很难处理后面的项。这也是为什么我们需要光线追踪。</p>
<p>将所有的光进行考虑得出的结果就是<strong>全局光照</strong>。下面给一些计算了不同次数反射的全局光照结果对比。</p>
<p>仅直接光(效果类似相机):<br />
<img src="./../../assets/101-directillumin.png" alt="仅直接光" /></p>
<p>一次弹射,直接光+间接光(E+KE+K^2E):<br />
<img src="./../../assets/101-onebcillumin.png" alt="一次弹射" /></p>
<p>两次弹射:<br />
<img src="./../../assets/101-twobcillumin.png" alt="两次弹射" /></p>
<p>四次弹射(效果愈发接近人眼):<br />
<img src="./../../assets/101-fourbcillumin.png" alt="四次弹射" /></p>
<p>随着次数的增加,弹射对效果的影响愈发的小,也愈发的接近人眼的效果。</p>
<p>需要注意的是,一次和二次光照的时候,屋顶的灯光反而变黑了,这是因为这里光两次折射还没有折出灯管,因此造成了错误。</p>
<p>最后说了一些概率论基础,没有特别需要记的必要。</p>
<h2 id="跳转"><a class="markdownIt-Anchor" href="#跳转"></a> 跳转</h2>
<p>Home:<a href="GAMES10101.html">GAMES101-1:课程总览与笔记导航</a></p>
<p>Prev:<a href="GAMES10112.html">GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化</a></p>
<p>Next:<a href="GAMES10114.html">GAMES101-16:辐射度量学与路径追踪</a></p>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/%E7%AC%94%E8%AE%B0/" rel="tag"><i class="fa fa-tag"></i> 笔记</a>
<a href="/tags/%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%9B%BE%E5%BD%A2%E5%AD%A6/" rel="tag"><i class="fa fa-tag"></i> 计算机图形学</a>
<a href="/tags/GAMES/" rel="tag"><i class="fa fa-tag"></i> GAMES</a>
<a href="/tags/GAMES101/" rel="tag"><i class="fa fa-tag"></i> GAMES101</a>
<a href="/tags/%E8%BE%90%E5%B0%84%E5%BA%A6%E9%87%8F%E5%AD%A6/" rel="tag"><i class="fa fa-tag"></i> 辐射度量学</a>
<a href="/tags/BRDF/" rel="tag"><i class="fa fa-tag"></i> BRDF</a>
<a href="/tags/%E6%B8%B2%E6%9F%93%E6%96%B9%E7%A8%8B/" rel="tag"><i class="fa fa-tag"></i> 渲染方程</a>
<a href="/tags/%E5%85%A8%E5%B1%80%E5%85%89%E7%85%A7/" rel="tag"><i class="fa fa-tag"></i> 全局光照</a>
</div>
<div class="post-nav">
<div class="post-nav-item">
<a href="/GAMES10112.html" rel="prev" title="GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化">
<i class="fa fa-angle-left"></i> GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化
</a>
</div>
<div class="post-nav-item">
<a href="/GAMES10114.html" rel="next" title="GAMES101-16:辐射度量学与路径追踪">
GAMES101-16:辐射度量学与路径追踪 <i class="fa fa-angle-right"></i>
</a>
</div>
</div>
</footer>
</article>
</div>
<div class="comments" id="disqus_thread">
<noscript>Please enable JavaScript to view the comments powered by Disqus.</noscript>
</div>
</div>
</main>
<footer class="footer">
<div class="footer-inner">
<div class="copyright">
© 2020 –
<span itemprop="copyrightYear">2025</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">LeeKa</span>
</div>
<div class="wordcount">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-chart-line"></i>
</span>
<span>站点总字数:</span>
<span title="站点总字数">126k</span>
</span>
</div>
<div class="powered-by">由 <a href="https://hexo.io/" rel="noopener" target="_blank">Hexo</a> & <a href="https://theme-next.js.org/pisces/" rel="noopener" target="_blank">NexT.Pisces</a> 强力驱动
</div>
</div>
</footer>
<div class="toggle sidebar-toggle" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
<div class="sidebar-dimmer"></div>
<div class="back-to-top" role="button" aria-label="返回顶部">
<i class="fa fa-arrow-up fa-lg"></i>
<span>0%</span>
</div>
<noscript>
<div class="noscript-warning">Theme NexT works best with JavaScript enabled</div>
</noscript>
<script src="https://cdnjs.cloudflare.com/ajax/libs/animejs/3.2.1/anime.min.js" integrity="sha256-XL2inqUJaslATFnHdJOi9GfQ60on8Wx1C2H8DYiN1xY=" crossorigin="anonymous"></script>
<script src="/js/comments.js"></script><script src="/js/utils.js"></script><script src="/js/motion.js"></script><script src="/js/sidebar.js"></script><script src="/js/next-boot.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/hexo-generator-searchdb/1.4.1/search.js" integrity="sha256-1kfA5uHPf65M5cphT2dvymhkuyHPQp5A53EGZOnOLmc=" crossorigin="anonymous"></script>
<script src="/js/third-party/search/local-search.js"></script>
<script src="/js/third-party/pace.js"></script>
<script class="next-config" data-name="disqus" type="application/json">{"enable":true,"shortname":"leekapub","count":true,"i18n":{"disqus":"disqus"}}</script>
<script src="/js/third-party/comments/disqus.js"></script>
</body>
</html>