forked from Mudit7/CUDA-ResNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer.h
76 lines (58 loc) · 3.01 KB
/
layer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <cstdlib>
#include <vector>
#include <memory>
#include <cublas_v2.h>
#include <cuda.h>
#ifndef LAYER_H
#define LAYER_H
#endif
const static float dt = 1.0E-01f;
const static float threshold = 1.0E-02f;
class Layer {
public:
int M, N, O;
float *output;
float *preact;
float *bias;
float *weight;
float *d_output;
float *d_preact;
float *d_weight;
Layer(int M, int N, int O);
~Layer();
void setOutput(float *data);
void clear();
void bp_clear();
};
// Utility CUDA kernel functions
__device__ float sigmoid(float v);
__global__ void apply_sigmoid(float *input, float *output, const int N);
__global__ void makeError(float *err, float *output, unsigned int Y, const int N);
__global__ void apply_grad(float *output, float *grad, const int N);
// Forward propagation kernels
__global__ void fp_preact_c1(float input[28][28], float preact[6][24][24], float weight[6][5][5]);
__global__ void fp_bias_c1(float preact[6][24][24], float bias[6]);
__global__ void fp_preact_c2(float input[6][24][24], float preact[6][12][12], float weight[6][2][2]);
__global__ void fp_bias_c2(float preact[6][12][12], float bias[6]);
__global__ void fp_preact_c3(float input[6][12][12], float preact[6][6][6], float weight[6][2][2]);
__global__ void fp_bias_c3(float preact[6][6][6], float bias[6]);
__global__ void fp_preact_f(float input[6][6][6], float preact[10], float weight[10][6][6][6]);
__global__ void fp_bias_f(float preact[10], float bias[10]);
// Back propagation kernels
__global__ void bp_weight_f(float d_weight[10][6][6][6], float d_preact[10], float p_output[6][6][6]);
__global__ void bp_bias_f(float bias[10], float d_preact[10]);
__global__ void bp_output_c3(float d_output[6][6][6], float n_weight[10][6][6][6], float nd_preact[10]);
__global__ void bp_preact_c3(float d_preact[6][6][6], float d_output[6][6][6], float preact[6][6][6]);
__global__ void bp_weight_c3(float d_weight[6][2][2], float d_preact[6][6][6], float p_output[6][12][12]);
__global__ void bp_bias_c3(float bias[6], float d_preact[6][6][6]);
__global__ void bp_output_c2(float d_output[6][12][12], float n_weight[6][2][2], float nd_preact[6][6][6]);
__global__ void bp_preact_c2(float d_preact[6][12][12], float d_output[6][12][12], float preact[6][12][12]);
__global__ void bp_weight_c2(float d_weight[6][2][2], float d_preact[6][12][12], float p_output[6][24][24]);
__global__ void bp_bias_c2(float bias[6], float d_preact[6][12][12]);
__global__ void bp_output_c1(float d_output[6][24][24], float n_weight[6][2][2], float nd_preact[6][12][12]);
__global__ void bp_preact_c1(float d_preact[6][24][24], float d_output[6][24][24], float preact[6][24][24]);
__global__ void bp_weight_c1(float d_weight[6][5][5], float d_preact[6][24][24], float p_output[28][28]);
__global__ void bp_bias_c1(float bias[6], float d_preact[6][24][24]);
__global__ void fp_preact_r(float input[6][24][24], float preact[6][6][6], float weight[1][4][4]);
__global__ void fp_bias_r(float preact[6][6][6], float bias[1]);
__global__ void fp_add_res(float preact1[6][6][6], float preact2[6][6][6]);