Skip to content

JustCallMeDavid/adversarial-domain-adaptation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

adversarial-domain-adaptation

Contains the code for performing domain adaptation between different datasets using adversarial neural networks.

Runs

params src tgt acc_src acc_tgt
--epochs 2000 --source_dom svhn.pkl --tgt_dom mnist.pkl --lr 0.001 --batch_size 128 --cuda True --dropout 0.5 --momentum 0.9 --weight_decay 0.0 --normalize zeroone SVHN MNIST 88.82% 71.84%
--epochs 400 --source_dom synnum.pkl --tgt_dom svhn.pkl --lr 0.001 --batch_size 128 --cuda True --dropout 0.5 --momentum 0.9 --weight_decay 0.0 --normalize zeroone SYNNUM SVHN 99.10% 90.05%
--epochs 300 --source_dom mnist.pkl --tgt_dom mnist_m.pkl --lr 0.001 --batch_size 128 --cuda True --dropout 0.5 --momentum 0.9 --weight_decay 0.0 --normalize zeroone MNIST MNIST_M 99.11% 82.71%
--epochs 200 --source_dom mnist.pkl --tgt_dom usps.pkl --lr 0.001 --batch_size 128 --cuda True --dropout 0.5 --momentum 0.9 --weight_decay 0.0 --normalize zeroone MNIST USPS 99.41% 96.27%

Note: The network should start to adapt after a few epochs of training, in particular for similar-looking datasets. While training for too long can cause performance degradation (due to overfitting) on the source domain, it does not seem to reduce performance on the target domain. In fact, for some settings (e.g., SVHN->MNIST and SYNNUM->SVHN) adaptation still takes place in the late epochs).

Links

SVHN: http://ufldl.stanford.edu/housenumbers/

MNIST: http://yann.lecun.com/exdb/mnist/

USPS: https://git-disl.github.io/GTDLBench/datasets/usps_dataset/

EMNIST: https://www.nist.gov/itl/products-and-services/emnist-dataset

SYNNUM, MNIST_M: http://yaroslav.ganin.net/ (download links seem to have been removed, consider contacting the author)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published