forked from sophgo/LLM-TPU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tokenizer.cpp
executable file
·111 lines (95 loc) · 3.69 KB
/
tokenizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "tokenizer.h"
static const std::string PAT_STR =
R"((?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?:$|[^\S])|\s+)";
static std::pair<std::string, int> _parse(const std::string &line) {
auto pos = line.find(" ");
if (pos == std::string::npos) {
throw std::runtime_error("invalid encoder line: " + line);
}
auto token = base64::decode({line.data(), pos});
int rank = 0;
try {
rank = std::stoul(line.substr(pos + 1));
} catch (const std::exception &) {
throw std::runtime_error("invalid encoder rank: " + line);
}
return {std::move(token), rank};
}
QwenTokenizer::QwenTokenizer(const std::string &tiktoken_path) {
std::ifstream file(tiktoken_path);
if (!file) {
throw std::runtime_error("failed to open encoder file: " + tiktoken_path);
}
ankerl::unordered_dense::map<std::string, int> encoder;
std::string line;
while (std::getline(file, line)) {
auto [token, rank] = _parse(line);
if (!encoder.emplace(std::move(token), rank).second) {
throw std::runtime_error("duplicate item: " + line);
}
}
std::vector<std::string> special_tokens_s{"<|endoftext|>", "<|im_start|>",
"<|im_end|>"};
char buffer[14];
for (size_t i = 0; i < 205; i++) {
snprintf(buffer, 14, "<|extra_%zu|>", i);
special_tokens_s.push_back(buffer);
}
size_t encoder_size = encoder.size();
ankerl::unordered_dense::map<std::string, int> special_tokens;
special_tokens.reserve(special_tokens_s.size());
for (size_t i = 0; i < special_tokens_s.size(); i++) {
special_tokens[special_tokens_s[i]] = encoder_size + i;
}
tokenizer = tiktoken::tiktoken(std::move(encoder), special_tokens, PAT_STR);
}
auto QwenTokenizer::build_prompt(const std::vector<std::string> &history, const std::string &input_mode) const
-> std::string {
if (history.size() % 2 != 1) {
std::cout << "invalid history size " << history.size();
exit(-1);
}
std::ostringstream oss_prompt;
if (input_mode == "prompted") {
oss_prompt << "<|im_start|>system\nYou are a helpful assistant.<|im_end|>";
for (size_t i = 0; i < history.size() - 1; i += 2) {
oss_prompt << "\n<|im_start|>user\n"
<< history[i] << "<|im_end|>\n<|im_start|>assistant\n"
<< history[i + 1] << "<|im_end|>";
}
oss_prompt << "\n<|im_start|>user\n"
<< history.back() << "<|im_end|>\n<|im_start|>assistant\n";
} else if (input_mode == "unprompted") {
for (size_t i = 0; i < history.size(); i += 1) {
oss_prompt << history[i];
}
}
return oss_prompt.str();
}
auto QwenTokenizer::encode(const std::string &text, int max_length) const
-> std::vector<int> {
auto ids = tokenizer.encode(text);
if ((int)ids.size() > max_length) {
ids.erase(ids.begin(), ids.end() - max_length);
}
return ids;
}
auto QwenTokenizer::decode(const std::vector<int> &ids) const -> std::string {
std::vector<int> normal_ids(ids);
normal_ids.erase(std::remove_if(normal_ids.begin(), normal_ids.end(),
[this](int id) { return is_special_id(id); }),
normal_ids.end());
auto text = tokenizer.decode(normal_ids);
return text;
}
auto QwenTokenizer::encode_history(const std::vector<std::string> &history,
int max_length,
std::string input_mode) const
-> std::vector<int> {
std::string prompt = build_prompt(history, input_mode);
std::vector<int> input_ids = encode(prompt, max_length);
return input_ids;
}
auto QwenTokenizer::is_special_id(int id) const -> bool {
return id == eod_id || id == im_start_id || id == im_end_id;
}