This package aims to map types, as determined via type-inference, back to the source code as written by the developer. It can be used to understand program behavior and identify causes of "type instability" (inference failures) without the need to read intermediate representations of Julia code.
This package is built on JuliaSyntax and extends it by attaching type annotations to the nodes of its syntax trees. Here's a demo:
julia> using TypedSyntax
julia> f(x, y, z) = x + y * z;
julia> node = TypedSyntaxNode(f, (Float64, Int, Float32))
line:col│ tree │ type
1:1 │[=] │Float64
1:1 │ [call]
1:1 │ f
1:3 │ x │Float64
1:6 │ y │Int64
1:9 │ z │Float32
1:13 │ [call-i] │Float64
1:14 │ x │Float64
1:16 │ +
1:17 │ [call-i] │Float32
1:18 │ y │Int64
1:20 │ *
1:22 │ z │Float32
The right hand column is the new information added by TypedSyntaxNode
, indicating the type assigned to each variable or function call.
You can also display this in a form closer to the original source code, but with type-annotations:
julia> printstyled(stdout, node; hide_type_stable=false)
f(x::Float64, y::Int64, z::Float32)::Float64 = (x::Float64 + (y::Int64 * z::Float32)::Float32)::Float64
hide_type_stable=true
(which is the default) will suppress printing of concrete types, so you need to set it to false
if you want to see all the types.
The default is aimed at identifying sources of "type instability" (poor inferrability):
julia> printstyled(stdout, TypedSyntaxNode(f, (Float64, Int, Real)))
which produces
f(x, y, z::Real)::Any = (x + (y * z::Real)::Any)::Any
The boldfaced text above is typically printed in color in the REPL:
- red indicates non-concrete types
- yellow indicates a "small union" of concrete types. These usually pose no issues, unless there are too many combinations of such unions.
Printing with color can be suppressed with the keyword argument iswarn=false
.
TypedSyntax aims for accuracy, but there are a number of factors that pose challenges. First, anonymous and internal functions appear as part of the source text, but internally Julia handles these as separate type-inferred methods, and these are hidden from the annotator. Therefore, in
julia> sumfirst(c) = sum(x -> first(x), c); # better to use `sum(first, c)` but this is just an illustration
julia> printstyled(stdout, TypedSyntaxNode(sumfirst, (Vector{Any},)))
sumfirst(c)::Any = sum(x -> first(x), c)::Any
x
and first(x)
both have type Any
, but they are not annotated as such because they are hidden inside the anonymous function.
Second, this package works by attempting to "reconstruct history": starting from the type-inferred code, it tries to map calls back to the source. It would be much safer to instead keep track of the source during inference, but at present this is not possible (see this Julia issue). There are cases where this mapping fails: for example, with
julia> function summer(list)
s = 0
for x in list
s += x
end
return s
end;
then (on Julia 1.9)
julia> tsn, mappings = TypedSyntax.tsn_and_mappings(summer, (Vector{Float64},));
julia> hcat(1:length(mappings), tsn.typedsource.code, mappings)
16×3 Matrix{Any}:
1 :(_4 = 0) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[0]
2 :(_2) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[list]
3 :(_3 = Base.iterate(%2)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[(= x list)]
4 :(_3 === nothing) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
5 :(Base.not_int(%4)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
6 :(goto %16 if not %5) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
7 :(_3::Tuple{Float64, Int64}) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
8 :(_5 = Core.getfield(%7, 1)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[x]
9 :(Core.getfield(%7, 2)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
10 :(_4 = _4 + _5) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[(+= s x)]
11 :(_3 = Base.iterate(%2, %9)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
12 :(_3 === nothing) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
13 :(Base.not_int(%12)) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
14 :(goto %16 if not %13) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
15 :(goto %7) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[]
16 :(return _4) Union{TreeNode{SyntaxData}, TreeNode{TypedSyntaxData}}[s]
The left column contains the statements of the type-inferred code, the right column the mappings back to the source. You can see that the majority of these mappings are empty, indicating either no good match or that there were multiple possible matches. This is because lowering changes the implementation so significantly that there are few calls that relate directly to the source.
Nevertheless, most of the statements in the source can be annotated:
julia> tsn
line:col│ tree │ type
1:1 │[function] │Union{Float64, Int64}
1:10 │ [call]
1:10 │ summer
1:17 │ list │Vector{Float64}
1:22 │ [block]
2:5 │ [=]
2:5 │ s │Int64
2:9 │ 0 │Int64
3:5 │ [for]
3:8 │ [=] │Union{Nothing, Tuple{Float64, Int64}}
3:9 │ x │Float64
3:14 │ list │Vector{Float64}
3:18 │ [block]
4:9 │ [+=] │Float64
4:9 │ s │Float64
4:14 │ x │Float64
6:5 │ [return] │Union{Float64, Int64}
6:12 │ s │Union{Float64, Int64}
This is largely because just the named-variables provide considerable information.