From d56925e474354f44ff7cdd8a1a9c67af50ee61be Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Beno=C3=AEt=20Legat?= Date: Thu, 2 May 2024 17:20:56 +0200 Subject: [PATCH] Improve docs for division --- docs/src/division.md | 35 ++++++++++++++++++++++++++++--- src/division.jl | 49 ++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 81 insertions(+), 3 deletions(-) diff --git a/docs/src/division.md b/docs/src/division.md index 19fd76ce..d126550b 100644 --- a/docs/src/division.md +++ b/docs/src/division.md @@ -1,7 +1,5 @@ # Division -The `gcd` and `lcm` functions of `Base` have been implemented for monomials, you have for example `gcd(x^2*y^7*z^3, x^4*y^5*z^2)` returning `x^2*y^5*z^2` and `lcm(x^2*y^7*z^3, x^4*y^5*z^2)` returning `x^4*y^7*z^3`. - Given two polynomials, ``p`` and ``d``, there are unique ``r`` and ``q`` such that ``p = q d + r`` and the leading term of ``d`` does not divide the leading term of ``r``. You can obtain ``q`` using the `div` function and ``r`` using the `rem` function. The `divrem` function returns ``(q, r)``. @@ -9,10 +7,41 @@ The `divrem` function returns ``(q, r)``. Given a polynomial ``p`` and divisors ``d_1, \ldots, d_n``, one can find ``r`` and ``q_1, \ldots, q_n`` such that ``p = q_1 d_1 + \cdots + q_n d_n + r`` and none of the leading terms of ``q_1, \ldots, q_n`` divide the leading term of ``r``. You can obtain the vector ``[q_1, \ldots, q_n]`` using `div(p, d)` where ``d = [d_1, \ldots, d_n]`` and ``r`` using the `rem` function with the same arguments. The `divrem` function returns ``(q, r)``. - ```@docs +divrem +div +rem divides div_multiple +``` + +Note that the coefficients of the polynomials need to be a field for `div`, +`rem` and `divrem` to work. +Alternatively, [`pseudo_rem`](@ref) or [`pseudo_divrem`](@ref) can be used +instead as they do not require the coefficient type to be a field. +```@docs pseudo_rem +pseudo_divrem rem_or_pseudo_rem ``` + +## Greatest Common Divisor (GCD) + +The Greatest Common Divisor (GCD) and Least Common Multiple (LCM) can be +obtained for integers respectively with the `gcd` and `lcm` functions. +The same functions can be used with monomials and polynomials: +```@docs +gcd +AbstractUnivariateGCDAlgorithm +GeneralizedEuclideanAlgorithm +SubresultantAlgorithm +``` +Internal functions of the `gcd` algorithm: +```@docs +isolate_variable +primitive_univariate_gcd! +univariate_gcd +content +primitive_part +primitive_part_content +``` diff --git a/src/division.jl b/src/division.jl index feedeb47..889064b9 100644 --- a/src/division.jl +++ b/src/division.jl @@ -26,9 +26,36 @@ function divides(t1::AbstractTermLike, t2::AbstractTermLike) end divides(t1::AbstractVariable, t2::AbstractVariable) = t1 == t2 +""" + gcd(m1::AbstractMonomialLike, m2::AbstractMonomialLike) + +Return the largest monomial `m` such that both `divides(m, m1)` +and `divides(m, m2)` are `true`. + +```@example +julia> @polyvar x y z; + +julia> gcd(x^2*y^7*z^3, x^4*y^5*z^2) +x²y⁵z² +``` +""" function Base.gcd(m1::AbstractMonomialLike, m2::AbstractMonomialLike) return map_exponents(min, m1, m2) end + +""" + lcm(m1::AbstractMonomialLike, m2::AbstractMonomialLike) + +Return the smallest monomial `m` such that both `divides(m1, m)` +and `divides(m2, m)` are `true`. + +```@example +julia> @polyvar x y z; + +julia> lcm(x^2*y^7*z^3, x^4*y^5*z^2) +x^4*y^7*z^3 +``` +""" function Base.lcm(m1::AbstractMonomialLike, m2::AbstractMonomialLike) return map_exponents(max, m1, m2) end @@ -152,6 +179,26 @@ function Base.rem(f::_APL, g::Union{_APL,AbstractVector{<:_APL}}; kwargs...) return divrem(f, g; kwargs...)[2] end +""" + pseudo_divrem(f::_APL{S}, g::_APL{T}, algo) where {S,T} + +Return the pseudo divisor and remainder of `f` modulo `g` as defined in [Knu14, Algorithm R, p. 425]. + +When the coefficient type is not a field, it is not always possible to carry a +division. For instance, the division of `f = 3x + 1` by `g = 2x + 1` cannot be done over +integers. On the other hand, one can write `2f = 3g - 1`. +In general, the *pseudo* division of `f` by `g` is: +```math +l f(x) = q(x) g(x) + r(x) +``` +where `l` is a power of the leading coefficient of `g` some constant. + +See also [`pseudo_rem`](@ref). + +[Knu14] Knuth, D.E., 2014. +*Art of computer programming, volume 2: Seminumerical algorithms.* +Addison-Wesley Professional. Third edition. +""" function pseudo_divrem(f::_APL{S}, g::_APL{T}, algo) where {S,T} return _pseudo_divrem( algebraic_structure(MA.promote_operation(-, S, T)), @@ -189,6 +236,8 @@ end Return the pseudo remainder of `f` modulo `g` as defined in [Knu14, Algorithm R, p. 425]. +See [`pseudo_divrem`](@ref) for more details. + [Knu14] Knuth, D.E., 2014. *Art of computer programming, volume 2: Seminumerical algorithms.* Addison-Wesley Professional. Third edition.